tribal tiles fix (#1874)

* Alaska tribal points fix (#1821)

* tribal tiles fix

* disabling child opportunity

* lint

* removing COI

* removing commented out code
This commit is contained in:
Jorge Escobar 2022-09-01 10:19:13 -04:00 committed by GitHub
commit ccd72e2cce
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 5 additions and 45 deletions

View file

@ -95,12 +95,6 @@ DATASET_LIST = [
"class_name": "GeoCorrETL", "class_name": "GeoCorrETL",
"is_memory_intensive": False, "is_memory_intensive": False,
}, },
{
"name": "child_opportunity_index",
"module_dir": "child_opportunity_index",
"class_name": "ChildOpportunityIndex",
"is_memory_intensive": False,
},
{ {
"name": "mapping_inequality", "name": "mapping_inequality",
"module_dir": "mapping_inequality", "module_dir": "mapping_inequality",

View file

@ -45,7 +45,7 @@ class ScoreETL(ExtractTransformLoad):
self.persistent_poverty_df: pd.DataFrame self.persistent_poverty_df: pd.DataFrame
self.census_decennial_df: pd.DataFrame self.census_decennial_df: pd.DataFrame
self.census_2010_df: pd.DataFrame self.census_2010_df: pd.DataFrame
self.child_opportunity_index_df: pd.DataFrame # self.child_opportunity_index_df: pd.DataFrame
self.hrs_df: pd.DataFrame self.hrs_df: pd.DataFrame
self.dot_travel_disadvantage_df: pd.DataFrame self.dot_travel_disadvantage_df: pd.DataFrame
self.fsf_flood_df: pd.DataFrame self.fsf_flood_df: pd.DataFrame
@ -192,19 +192,6 @@ class ScoreETL(ExtractTransformLoad):
low_memory=False, low_memory=False,
) )
# Load COI data
child_opportunity_index_csv = (
constants.DATA_PATH
/ "dataset"
/ "child_opportunity_index"
/ "usa.csv"
)
self.child_opportunity_index_df = pd.read_csv(
child_opportunity_index_csv,
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
)
# Load HRS data # Load HRS data
hrs_csv = ( hrs_csv = (
constants.DATA_PATH / "dataset" / "historic_redlining" / "usa.csv" constants.DATA_PATH / "dataset" / "historic_redlining" / "usa.csv"
@ -368,7 +355,6 @@ class ScoreETL(ExtractTransformLoad):
self.census_acs_median_incomes_df, self.census_acs_median_incomes_df,
self.census_decennial_df, self.census_decennial_df,
self.census_2010_df, self.census_2010_df,
self.child_opportunity_index_df,
self.hrs_df, self.hrs_df,
self.dot_travel_disadvantage_df, self.dot_travel_disadvantage_df,
self.fsf_flood_df, self.fsf_flood_df,
@ -455,9 +441,6 @@ class ScoreETL(ExtractTransformLoad):
field_names.CENSUS_UNEMPLOYMENT_FIELD_2010, field_names.CENSUS_UNEMPLOYMENT_FIELD_2010,
field_names.CENSUS_POVERTY_LESS_THAN_100_FPL_FIELD_2010, field_names.CENSUS_POVERTY_LESS_THAN_100_FPL_FIELD_2010,
field_names.CENSUS_DECENNIAL_TOTAL_POPULATION_FIELD_2009, field_names.CENSUS_DECENNIAL_TOTAL_POPULATION_FIELD_2009,
field_names.EXTREME_HEAT_FIELD,
field_names.HEALTHY_FOOD_FIELD,
field_names.IMPENETRABLE_SURFACES_FIELD,
field_names.UST_FIELD, field_names.UST_FIELD,
field_names.DOT_TRAVEL_BURDEN_FIELD, field_names.DOT_TRAVEL_BURDEN_FIELD,
field_names.FUTURE_FLOOD_RISK_FIELD, field_names.FUTURE_FLOOD_RISK_FIELD,
@ -509,10 +492,6 @@ class ScoreETL(ExtractTransformLoad):
# This low field will not exist yet, it is only calculated for the # This low field will not exist yet, it is only calculated for the
# percentile. # percentile.
# TODO: This will come from the YAML dataset config # TODO: This will come from the YAML dataset config
ReversePercentile(
field_name=field_names.READING_FIELD,
low_field_name=field_names.LOW_READING_FIELD,
),
ReversePercentile( ReversePercentile(
field_name=field_names.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD, field_name=field_names.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD,
low_field_name=field_names.LOW_MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD, low_field_name=field_names.LOW_MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD,

View file

@ -59,7 +59,7 @@ class TribalETL(ExtractTransformLoad):
) )
bia_national_lar_df.rename( bia_national_lar_df.rename(
columns={"TSAID": "tribalId", "LARName": "landAreaName"}, columns={"LARID": "tribalId", "LARName": "landAreaName"},
inplace=True, inplace=True,
) )
@ -154,7 +154,9 @@ class TribalETL(ExtractTransformLoad):
# load the geojsons # load the geojsons
bia_national_lar_geojson = ( bia_national_lar_geojson = (
self.GEOJSON_BASE_PATH / "bia_national_lar" / "BIA_TSA.json" self.GEOJSON_BASE_PATH
/ "bia_national_lar"
/ "BIA_National_LAR.json"
) )
bia_aian_supplemental_geojson = ( bia_aian_supplemental_geojson = (
self.GEOJSON_BASE_PATH self.GEOJSON_BASE_PATH

View file

@ -318,21 +318,6 @@ MARYLAND_EJSCREEN_SCORE_FIELD: str = "Maryland Environmental Justice Score"
MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD: str = ( MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD: str = (
"Maryland EJSCREEN Priority Community" "Maryland EJSCREEN Priority Community"
) )
# Child Opportunity Index data
# Summer days with maximum temperature above 90F.
EXTREME_HEAT_FIELD = "Summer days above 90F"
# Percentage households without a car located further than a half-mile from the
# nearest supermarket.
HEALTHY_FOOD_FIELD = "Percent low access to healthy food"
# Percentage impenetrable surface areas such as rooftops, roads or parking lots.
IMPENETRABLE_SURFACES_FIELD = "Percent impenetrable surface areas"
# Percentage third graders scoring proficient on standardized reading tests,
# converted to NAEP scale score points.
READING_FIELD = "Third grade reading proficiency"
LOW_READING_FIELD = "Low third grade reading proficiency"
# Alternative energy-related definition of DACs # Alternative energy-related definition of DACs
ENERGY_RELATED_COMMUNITIES_DEFINITION_ALTERNATIVE = ( ENERGY_RELATED_COMMUNITIES_DEFINITION_ALTERNATIVE = (