diff --git a/data/data-pipeline/data_pipeline/etl/constants.py b/data/data-pipeline/data_pipeline/etl/constants.py index 569c088c..1223ddb1 100644 --- a/data/data-pipeline/data_pipeline/etl/constants.py +++ b/data/data-pipeline/data_pipeline/etl/constants.py @@ -95,12 +95,6 @@ DATASET_LIST = [ "class_name": "GeoCorrETL", "is_memory_intensive": False, }, - { - "name": "child_opportunity_index", - "module_dir": "child_opportunity_index", - "class_name": "ChildOpportunityIndex", - "is_memory_intensive": False, - }, { "name": "mapping_inequality", "module_dir": "mapping_inequality", diff --git a/data/data-pipeline/data_pipeline/etl/score/etl_score.py b/data/data-pipeline/data_pipeline/etl/score/etl_score.py index b33707af..0745b3a7 100644 --- a/data/data-pipeline/data_pipeline/etl/score/etl_score.py +++ b/data/data-pipeline/data_pipeline/etl/score/etl_score.py @@ -45,7 +45,7 @@ class ScoreETL(ExtractTransformLoad): self.persistent_poverty_df: pd.DataFrame self.census_decennial_df: pd.DataFrame self.census_2010_df: pd.DataFrame - self.child_opportunity_index_df: pd.DataFrame + # self.child_opportunity_index_df: pd.DataFrame self.hrs_df: pd.DataFrame self.dot_travel_disadvantage_df: pd.DataFrame self.fsf_flood_df: pd.DataFrame @@ -192,19 +192,6 @@ class ScoreETL(ExtractTransformLoad): low_memory=False, ) - # Load COI data - child_opportunity_index_csv = ( - constants.DATA_PATH - / "dataset" - / "child_opportunity_index" - / "usa.csv" - ) - self.child_opportunity_index_df = pd.read_csv( - child_opportunity_index_csv, - dtype={self.GEOID_TRACT_FIELD_NAME: "string"}, - low_memory=False, - ) - # Load HRS data hrs_csv = ( constants.DATA_PATH / "dataset" / "historic_redlining" / "usa.csv" @@ -368,7 +355,6 @@ class ScoreETL(ExtractTransformLoad): self.census_acs_median_incomes_df, self.census_decennial_df, self.census_2010_df, - self.child_opportunity_index_df, self.hrs_df, self.dot_travel_disadvantage_df, self.fsf_flood_df, @@ -455,9 +441,6 @@ class ScoreETL(ExtractTransformLoad): field_names.CENSUS_UNEMPLOYMENT_FIELD_2010, field_names.CENSUS_POVERTY_LESS_THAN_100_FPL_FIELD_2010, field_names.CENSUS_DECENNIAL_TOTAL_POPULATION_FIELD_2009, - field_names.EXTREME_HEAT_FIELD, - field_names.HEALTHY_FOOD_FIELD, - field_names.IMPENETRABLE_SURFACES_FIELD, field_names.UST_FIELD, field_names.DOT_TRAVEL_BURDEN_FIELD, field_names.FUTURE_FLOOD_RISK_FIELD, @@ -509,10 +492,6 @@ class ScoreETL(ExtractTransformLoad): # This low field will not exist yet, it is only calculated for the # percentile. # TODO: This will come from the YAML dataset config - ReversePercentile( - field_name=field_names.READING_FIELD, - low_field_name=field_names.LOW_READING_FIELD, - ), ReversePercentile( field_name=field_names.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD, low_field_name=field_names.LOW_MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD, diff --git a/data/data-pipeline/data_pipeline/etl/sources/tribal/etl.py b/data/data-pipeline/data_pipeline/etl/sources/tribal/etl.py index 852a956d..48258268 100644 --- a/data/data-pipeline/data_pipeline/etl/sources/tribal/etl.py +++ b/data/data-pipeline/data_pipeline/etl/sources/tribal/etl.py @@ -59,7 +59,7 @@ class TribalETL(ExtractTransformLoad): ) bia_national_lar_df.rename( - columns={"TSAID": "tribalId", "LARName": "landAreaName"}, + columns={"LARID": "tribalId", "LARName": "landAreaName"}, inplace=True, ) @@ -154,7 +154,9 @@ class TribalETL(ExtractTransformLoad): # load the geojsons bia_national_lar_geojson = ( - self.GEOJSON_BASE_PATH / "bia_national_lar" / "BIA_TSA.json" + self.GEOJSON_BASE_PATH + / "bia_national_lar" + / "BIA_National_LAR.json" ) bia_aian_supplemental_geojson = ( self.GEOJSON_BASE_PATH diff --git a/data/data-pipeline/data_pipeline/score/field_names.py b/data/data-pipeline/data_pipeline/score/field_names.py index fc68ebbb..7aaf376c 100644 --- a/data/data-pipeline/data_pipeline/score/field_names.py +++ b/data/data-pipeline/data_pipeline/score/field_names.py @@ -318,21 +318,6 @@ MARYLAND_EJSCREEN_SCORE_FIELD: str = "Maryland Environmental Justice Score" MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD: str = ( "Maryland EJSCREEN Priority Community" ) -# Child Opportunity Index data -# Summer days with maximum temperature above 90F. -EXTREME_HEAT_FIELD = "Summer days above 90F" - -# Percentage households without a car located further than a half-mile from the -# nearest supermarket. -HEALTHY_FOOD_FIELD = "Percent low access to healthy food" - -# Percentage impenetrable surface areas such as rooftops, roads or parking lots. -IMPENETRABLE_SURFACES_FIELD = "Percent impenetrable surface areas" - -# Percentage third graders scoring proficient on standardized reading tests, -# converted to NAEP scale score points. -READING_FIELD = "Third grade reading proficiency" -LOW_READING_FIELD = "Low third grade reading proficiency" # Alternative energy-related definition of DACs ENERGY_RELATED_COMMUNITIES_DEFINITION_ALTERNATIVE = (