mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-22 17:44:20 -08:00
Issue 919: Fix too many tracts issue (#922)
* Some cleanup, adding error warning to merge function * Error handling around tract merge
This commit is contained in:
parent
16eb29e429
commit
a4108d24c0
7 changed files with 105 additions and 70 deletions
|
@ -34,7 +34,8 @@ class ExtractTransformLoad:
|
|||
GEOID_TRACT_FIELD_NAME: str = "GEOID10_TRACT"
|
||||
# TODO: investigate. Census says there are only 217,740 CBGs in the US. This might be from CBGs at different time periods.
|
||||
EXPECTED_MAX_CENSUS_BLOCK_GROUPS: int = 250000
|
||||
EXPECTED_MAX_CENSUS_TRACTS: int = 73076
|
||||
# TODO: investigate. Census says there are only 73,057 tracts in the US. This might be from tracts at different time periods.
|
||||
EXPECTED_MAX_CENSUS_TRACTS: int = 74027
|
||||
|
||||
def __init__(self, config_path: Path) -> None:
|
||||
"""Inits the class with instance specific variables"""
|
||||
|
|
|
@ -1,9 +1,4 @@
|
|||
DATASET_LIST = [
|
||||
{
|
||||
"name": "tree_equity_score",
|
||||
"module_dir": "tree_equity_score",
|
||||
"class_name": "TreeEquityScoreETL",
|
||||
},
|
||||
{
|
||||
"name": "census_acs",
|
||||
"module_dir": "census_acs",
|
||||
|
@ -14,11 +9,6 @@ DATASET_LIST = [
|
|||
"module_dir": "ejscreen",
|
||||
"class_name": "EJSCREENETL",
|
||||
},
|
||||
{
|
||||
"name": "housing_and_transportation",
|
||||
"module_dir": "housing_and_transportation",
|
||||
"class_name": "HousingTransportationETL",
|
||||
},
|
||||
{
|
||||
"name": "hud_housing",
|
||||
"module_dir": "hud_housing",
|
||||
|
@ -79,6 +69,16 @@ DATASET_LIST = [
|
|||
"module_dir": "census_decennial",
|
||||
"class_name": "CensusDecennialETL",
|
||||
},
|
||||
{
|
||||
"name": "housing_and_transportation",
|
||||
"module_dir": "housing_and_transportation",
|
||||
"class_name": "HousingTransportationETL",
|
||||
},
|
||||
{
|
||||
"name": "tree_equity_score",
|
||||
"module_dir": "tree_equity_score",
|
||||
"class_name": "TreeEquityScoreETL",
|
||||
},
|
||||
]
|
||||
CENSUS_INFO = {
|
||||
"name": "census",
|
||||
|
|
|
@ -19,7 +19,6 @@ class ScoreETL(ExtractTransformLoad):
|
|||
self.df: pd.DataFrame
|
||||
self.ejscreen_df: pd.DataFrame
|
||||
self.census_df: pd.DataFrame
|
||||
self.housing_and_transportation_df: pd.DataFrame
|
||||
self.hud_housing_df: pd.DataFrame
|
||||
self.cdc_places_df: pd.DataFrame
|
||||
self.census_acs_median_incomes_df: pd.DataFrame
|
||||
|
@ -41,29 +40,6 @@ class ScoreETL(ExtractTransformLoad):
|
|||
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
|
||||
low_memory=False,
|
||||
)
|
||||
# TODO move to EJScreen ETL
|
||||
self.ejscreen_df.rename(
|
||||
columns={
|
||||
"ACSTOTPOP": field_names.TOTAL_POP_FIELD,
|
||||
"CANCER": field_names.AIR_TOXICS_CANCER_RISK_FIELD,
|
||||
"RESP": field_names.RESPITORY_HAZARD_FIELD,
|
||||
"DSLPM": field_names.DIESEL_FIELD,
|
||||
"PM25": field_names.PM25_FIELD,
|
||||
"OZONE": field_names.OZONE_FIELD,
|
||||
"PTRAF": field_names.TRAFFIC_FIELD,
|
||||
"PRMP": field_names.RMP_FIELD,
|
||||
"PTSDF": field_names.TSDF_FIELD,
|
||||
"PNPL": field_names.NPL_FIELD,
|
||||
"PWDIS": field_names.WASTEWATER_FIELD,
|
||||
"LINGISOPCT": field_names.HOUSEHOLDS_LINGUISTIC_ISO_FIELD,
|
||||
"LOWINCPCT": field_names.POVERTY_FIELD,
|
||||
"LESSHSPCT": field_names.HIGH_SCHOOL_ED_FIELD,
|
||||
"OVER64PCT": field_names.OVER_64_FIELD,
|
||||
"UNDER5PCT": field_names.UNDER_5_FIELD,
|
||||
"PRE1960PCT": field_names.LEAD_PAINT_FIELD,
|
||||
},
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
# Load census data
|
||||
census_csv = (
|
||||
|
@ -75,23 +51,6 @@ class ScoreETL(ExtractTransformLoad):
|
|||
low_memory=False,
|
||||
)
|
||||
|
||||
# Load housing and transportation data
|
||||
housing_and_transportation_index_csv = (
|
||||
constants.DATA_PATH
|
||||
/ "dataset"
|
||||
/ "housing_and_transportation_index"
|
||||
/ "usa.csv"
|
||||
)
|
||||
self.housing_and_transportation_df = pd.read_csv(
|
||||
housing_and_transportation_index_csv,
|
||||
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
|
||||
low_memory=False,
|
||||
)
|
||||
# TODO move to HT Index ETL
|
||||
self.housing_and_transportation_df.rename(
|
||||
columns={"ht_ami": field_names.HT_INDEX_FIELD}, inplace=True
|
||||
)
|
||||
|
||||
# Load HUD housing data
|
||||
hud_housing_csv = (
|
||||
constants.DATA_PATH / "dataset" / "hud_housing" / "usa.csv"
|
||||
|
@ -180,13 +139,32 @@ class ScoreETL(ExtractTransformLoad):
|
|||
|
||||
def _join_tract_dfs(self, census_tract_dfs: list) -> pd.DataFrame:
|
||||
logger.info("Joining Census Tract dataframes")
|
||||
census_tract_df = functools.reduce(
|
||||
lambda left, right: pd.merge(
|
||||
|
||||
def merge_function(
|
||||
left: pd.DataFrame, right: pd.DataFrame
|
||||
) -> pd.DataFrame:
|
||||
"""This is a custom function that merges two dataframes.
|
||||
|
||||
It provides some logging as additional helpful context for error handling.
|
||||
"""
|
||||
try:
|
||||
df = pd.merge(
|
||||
left=left,
|
||||
right=right,
|
||||
on=self.GEOID_TRACT_FIELD_NAME,
|
||||
how="outer",
|
||||
),
|
||||
)
|
||||
except Exception as e:
|
||||
# Note: it'd be nice to log the name of the dataframe, but that's not accessible in this scope.
|
||||
logger.warning(
|
||||
f"Exception encountered while merging dataframe `right` that has the following columns: {','.join(right.columns)}"
|
||||
)
|
||||
raise e
|
||||
|
||||
return df
|
||||
|
||||
census_tract_df = functools.reduce(
|
||||
merge_function,
|
||||
census_tract_dfs,
|
||||
)
|
||||
|
||||
|
@ -200,6 +178,40 @@ class ScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
return census_tract_df
|
||||
|
||||
def _census_tract_df_sanity_check(
|
||||
self, df_to_check: pd.DataFrame, df_name: str = None
|
||||
) -> None:
|
||||
"""Check an individual data frame for census tract data quality checks."""
|
||||
|
||||
# Note: it'd be nice to log the name of the dataframe directly, but that's not accessible in this scope.
|
||||
dataframe_descriptor = (
|
||||
f"dataframe `{df_name}`"
|
||||
if df_name
|
||||
else f"the dataframe that has columns { ','.join(df_to_check.columns)}"
|
||||
)
|
||||
|
||||
tract_values = (
|
||||
df_to_check[self.GEOID_TRACT_FIELD_NAME].str.len().unique()
|
||||
)
|
||||
if any(tract_values != [11]):
|
||||
raise ValueError(
|
||||
f"Some of the census tract data has the wrong length: {tract_values} in {dataframe_descriptor}"
|
||||
)
|
||||
|
||||
non_unique_tract_values = len(
|
||||
df_to_check[self.GEOID_TRACT_FIELD_NAME]
|
||||
) - len(df_to_check[self.GEOID_TRACT_FIELD_NAME].unique())
|
||||
|
||||
if non_unique_tract_values > 0:
|
||||
raise ValueError(
|
||||
f"There are {non_unique_tract_values} duplicate tract IDs in {dataframe_descriptor}"
|
||||
)
|
||||
|
||||
if len(df_to_check) > self.EXPECTED_MAX_CENSUS_TRACTS:
|
||||
raise ValueError(
|
||||
f"Too many rows in the join: {len(df_to_check)} in {dataframe_descriptor}"
|
||||
)
|
||||
|
||||
# TODO Move a lot of this to the ETL part of the pipeline
|
||||
def _prepare_initial_df(self) -> pd.DataFrame:
|
||||
logger.info("Preparing initial dataframe")
|
||||
|
@ -214,20 +226,23 @@ class ScoreETL(ExtractTransformLoad):
|
|||
self.ejscreen_df,
|
||||
self.geocorr_urban_rural_df,
|
||||
self.persistent_poverty_df,
|
||||
self.housing_and_transportation_df,
|
||||
self.national_risk_index_df,
|
||||
self.census_acs_median_incomes_df,
|
||||
]
|
||||
|
||||
# Sanity check each data frame before merging.
|
||||
for df in census_tract_dfs:
|
||||
self._census_tract_df_sanity_check(df_to_check=df)
|
||||
|
||||
census_tract_df = self._join_tract_dfs(census_tract_dfs)
|
||||
|
||||
# If GEOID10s are read as numbers instead of strings, the initial 0 is dropped,
|
||||
# and then we get too many CBG rows (one for 012345 and one for 12345).
|
||||
|
||||
# TODO: Investigate how many rows we should have here
|
||||
# if len(census_tract_df) > self.EXPECTED_MAX_CENSUS_TRACTS:
|
||||
# raise ValueError(
|
||||
# f"Too many rows in the join: {len(census_tract_df)}"
|
||||
# )
|
||||
# Now sanity-check the merged df.
|
||||
self._census_tract_df_sanity_check(
|
||||
df_to_check=census_tract_df, df_name="census_tract_df"
|
||||
)
|
||||
|
||||
# Calculate median income variables.
|
||||
# First, calculate the income of the block group as a fraction of the state income.
|
||||
|
@ -280,7 +295,6 @@ class ScoreETL(ExtractTransformLoad):
|
|||
field_names.POVERTY_FIELD,
|
||||
field_names.HIGH_SCHOOL_ED_FIELD,
|
||||
field_names.UNEMPLOYMENT_FIELD,
|
||||
field_names.HT_INDEX_FIELD,
|
||||
field_names.MEDIAN_HOUSE_VALUE_FIELD,
|
||||
field_names.EXPECTED_BUILDING_LOSS_RATE_FIELD_NAME,
|
||||
field_names.EXPECTED_AGRICULTURE_LOSS_RATE_FIELD_NAME,
|
||||
|
|
|
@ -220,9 +220,7 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
|
||||
# Creating Geo ID (Census Block Group) Field Name
|
||||
self.df_all[self.GEOID_TRACT_FIELD_NAME] = (
|
||||
self.df_all["state"]
|
||||
+ self.df_all["county"]
|
||||
+ self.df_all["tract"]
|
||||
self.df_all["state"] + self.df_all["county"] + self.df_all["tract"]
|
||||
)
|
||||
|
||||
# Reporting Missing Values
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import pandas as pd
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.score import field_names
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
@ -35,6 +36,25 @@ class EJSCREENETL(ExtractTransformLoad):
|
|||
self.df.rename(
|
||||
columns={
|
||||
"ID": self.GEOID_TRACT_FIELD_NAME,
|
||||
# Note: it is currently unorthodox to use `field_names` in an ETL class,
|
||||
# but I think that's the direction we'd like to move all ETL classes. - LMB
|
||||
"ACSTOTPOP": field_names.TOTAL_POP_FIELD,
|
||||
"CANCER": field_names.AIR_TOXICS_CANCER_RISK_FIELD,
|
||||
"RESP": field_names.RESPITORY_HAZARD_FIELD,
|
||||
"DSLPM": field_names.DIESEL_FIELD,
|
||||
"PM25": field_names.PM25_FIELD,
|
||||
"OZONE": field_names.OZONE_FIELD,
|
||||
"PTRAF": field_names.TRAFFIC_FIELD,
|
||||
"PRMP": field_names.RMP_FIELD,
|
||||
"PTSDF": field_names.TSDF_FIELD,
|
||||
"PNPL": field_names.NPL_FIELD,
|
||||
"PWDIS": field_names.WASTEWATER_FIELD,
|
||||
"LINGISOPCT": field_names.HOUSEHOLDS_LINGUISTIC_ISO_FIELD,
|
||||
"LOWINCPCT": field_names.POVERTY_FIELD,
|
||||
"LESSHSPCT": field_names.HIGH_SCHOOL_ED_FIELD,
|
||||
"OVER64PCT": field_names.OVER_64_FIELD,
|
||||
"UNDER5PCT": field_names.UNDER_5_FIELD,
|
||||
"PRE1960PCT": field_names.LEAD_PAINT_FIELD,
|
||||
},
|
||||
inplace=True,
|
||||
)
|
||||
|
|
|
@ -51,7 +51,9 @@ class HousingTransportationETL(ExtractTransformLoad):
|
|||
logger.info("Transforming Housing and Transportation Data")
|
||||
|
||||
# Rename and reformat tract ID
|
||||
self.df.rename(columns={"tract": self.GEOID_TRACT_FIELD_NAME}, inplace=True)
|
||||
self.df.rename(
|
||||
columns={"tract": self.GEOID_TRACT_FIELD_NAME}, inplace=True
|
||||
)
|
||||
self.df[self.GEOID_TRACT_FIELD_NAME] = self.df[
|
||||
self.GEOID_TRACT_FIELD_NAME
|
||||
].str.replace('"', "")
|
||||
|
|
|
@ -24,7 +24,7 @@ class ScoreC(Score):
|
|||
+ field_names.PERCENTILE_FIELD_SUFFIX,
|
||||
field_names.UNEMPLOYMENT_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX,
|
||||
field_names.HT_INDEX_FIELD
|
||||
field_names.HOUSING_BURDEN_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX,
|
||||
],
|
||||
)
|
||||
|
|
Loading…
Add table
Reference in a new issue