mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-24 10:34:18 -08:00
* Some cleanup, adding error warning to merge function * Error handling around tract merge
66 lines
2.6 KiB
Python
66 lines
2.6 KiB
Python
import pandas as pd
|
|
|
|
from data_pipeline.etl.base import ExtractTransformLoad
|
|
from data_pipeline.score import field_names
|
|
from data_pipeline.utils import get_module_logger
|
|
|
|
logger = get_module_logger(__name__)
|
|
|
|
|
|
class EJSCREENETL(ExtractTransformLoad):
|
|
def __init__(self):
|
|
self.EJSCREEN_FTP_URL = "https://edap-arcgiscloud-data-commons.s3.amazonaws.com/EJSCREEN2020/EJSCREEN_Tract_2020_USPR.csv.zip"
|
|
self.EJSCREEN_CSV = self.TMP_PATH / "EJSCREEN_Tract_2020_USPR.csv"
|
|
self.CSV_PATH = self.DATA_PATH / "dataset" / "ejscreen_2019"
|
|
self.df: pd.DataFrame
|
|
|
|
def extract(self) -> None:
|
|
logger.info("Downloading EJScreen Data")
|
|
super().extract(
|
|
self.EJSCREEN_FTP_URL,
|
|
self.TMP_PATH,
|
|
verify=False, # EPA EJScreen end point has certificate issues often
|
|
)
|
|
|
|
def transform(self) -> None:
|
|
logger.info("Transforming EJScreen Data")
|
|
self.df = pd.read_csv(
|
|
self.EJSCREEN_CSV,
|
|
dtype={"ID": "string"},
|
|
# EJSCREEN writes the word "None" for NA data.
|
|
na_values=["None"],
|
|
low_memory=False,
|
|
)
|
|
|
|
# rename ID to Tract ID
|
|
self.df.rename(
|
|
columns={
|
|
"ID": self.GEOID_TRACT_FIELD_NAME,
|
|
# Note: it is currently unorthodox to use `field_names` in an ETL class,
|
|
# but I think that's the direction we'd like to move all ETL classes. - LMB
|
|
"ACSTOTPOP": field_names.TOTAL_POP_FIELD,
|
|
"CANCER": field_names.AIR_TOXICS_CANCER_RISK_FIELD,
|
|
"RESP": field_names.RESPITORY_HAZARD_FIELD,
|
|
"DSLPM": field_names.DIESEL_FIELD,
|
|
"PM25": field_names.PM25_FIELD,
|
|
"OZONE": field_names.OZONE_FIELD,
|
|
"PTRAF": field_names.TRAFFIC_FIELD,
|
|
"PRMP": field_names.RMP_FIELD,
|
|
"PTSDF": field_names.TSDF_FIELD,
|
|
"PNPL": field_names.NPL_FIELD,
|
|
"PWDIS": field_names.WASTEWATER_FIELD,
|
|
"LINGISOPCT": field_names.HOUSEHOLDS_LINGUISTIC_ISO_FIELD,
|
|
"LOWINCPCT": field_names.POVERTY_FIELD,
|
|
"LESSHSPCT": field_names.HIGH_SCHOOL_ED_FIELD,
|
|
"OVER64PCT": field_names.OVER_64_FIELD,
|
|
"UNDER5PCT": field_names.UNDER_5_FIELD,
|
|
"PRE1960PCT": field_names.LEAD_PAINT_FIELD,
|
|
},
|
|
inplace=True,
|
|
)
|
|
|
|
def load(self) -> None:
|
|
logger.info("Saving EJScreen CSV")
|
|
# write nationwide csv
|
|
self.CSV_PATH.mkdir(parents=True, exist_ok=True)
|
|
self.df.to_csv(self.CSV_PATH / "usa.csv", index=False)
|