Issue 919: Fix too many tracts issue (#922)

* Some cleanup, adding error warning to merge function

* Error handling around tract merge
This commit is contained in:
Lucas Merrill Brown 2021-11-24 16:47:57 -05:00 committed by lucasmbrown-usds
parent 16eb29e429
commit a4108d24c0
7 changed files with 105 additions and 70 deletions

View file

@ -34,7 +34,8 @@ class ExtractTransformLoad:
GEOID_TRACT_FIELD_NAME: str = "GEOID10_TRACT" GEOID_TRACT_FIELD_NAME: str = "GEOID10_TRACT"
# TODO: investigate. Census says there are only 217,740 CBGs in the US. This might be from CBGs at different time periods. # TODO: investigate. Census says there are only 217,740 CBGs in the US. This might be from CBGs at different time periods.
EXPECTED_MAX_CENSUS_BLOCK_GROUPS: int = 250000 EXPECTED_MAX_CENSUS_BLOCK_GROUPS: int = 250000
EXPECTED_MAX_CENSUS_TRACTS: int = 73076 # TODO: investigate. Census says there are only 73,057 tracts in the US. This might be from tracts at different time periods.
EXPECTED_MAX_CENSUS_TRACTS: int = 74027
def __init__(self, config_path: Path) -> None: def __init__(self, config_path: Path) -> None:
"""Inits the class with instance specific variables""" """Inits the class with instance specific variables"""

View file

@ -1,9 +1,4 @@
DATASET_LIST = [ DATASET_LIST = [
{
"name": "tree_equity_score",
"module_dir": "tree_equity_score",
"class_name": "TreeEquityScoreETL",
},
{ {
"name": "census_acs", "name": "census_acs",
"module_dir": "census_acs", "module_dir": "census_acs",
@ -14,11 +9,6 @@ DATASET_LIST = [
"module_dir": "ejscreen", "module_dir": "ejscreen",
"class_name": "EJSCREENETL", "class_name": "EJSCREENETL",
}, },
{
"name": "housing_and_transportation",
"module_dir": "housing_and_transportation",
"class_name": "HousingTransportationETL",
},
{ {
"name": "hud_housing", "name": "hud_housing",
"module_dir": "hud_housing", "module_dir": "hud_housing",
@ -79,6 +69,16 @@ DATASET_LIST = [
"module_dir": "census_decennial", "module_dir": "census_decennial",
"class_name": "CensusDecennialETL", "class_name": "CensusDecennialETL",
}, },
{
"name": "housing_and_transportation",
"module_dir": "housing_and_transportation",
"class_name": "HousingTransportationETL",
},
{
"name": "tree_equity_score",
"module_dir": "tree_equity_score",
"class_name": "TreeEquityScoreETL",
},
] ]
CENSUS_INFO = { CENSUS_INFO = {
"name": "census", "name": "census",

View file

@ -19,7 +19,6 @@ class ScoreETL(ExtractTransformLoad):
self.df: pd.DataFrame self.df: pd.DataFrame
self.ejscreen_df: pd.DataFrame self.ejscreen_df: pd.DataFrame
self.census_df: pd.DataFrame self.census_df: pd.DataFrame
self.housing_and_transportation_df: pd.DataFrame
self.hud_housing_df: pd.DataFrame self.hud_housing_df: pd.DataFrame
self.cdc_places_df: pd.DataFrame self.cdc_places_df: pd.DataFrame
self.census_acs_median_incomes_df: pd.DataFrame self.census_acs_median_incomes_df: pd.DataFrame
@ -41,29 +40,6 @@ class ScoreETL(ExtractTransformLoad):
dtype={self.GEOID_TRACT_FIELD_NAME: "string"}, dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False, low_memory=False,
) )
# TODO move to EJScreen ETL
self.ejscreen_df.rename(
columns={
"ACSTOTPOP": field_names.TOTAL_POP_FIELD,
"CANCER": field_names.AIR_TOXICS_CANCER_RISK_FIELD,
"RESP": field_names.RESPITORY_HAZARD_FIELD,
"DSLPM": field_names.DIESEL_FIELD,
"PM25": field_names.PM25_FIELD,
"OZONE": field_names.OZONE_FIELD,
"PTRAF": field_names.TRAFFIC_FIELD,
"PRMP": field_names.RMP_FIELD,
"PTSDF": field_names.TSDF_FIELD,
"PNPL": field_names.NPL_FIELD,
"PWDIS": field_names.WASTEWATER_FIELD,
"LINGISOPCT": field_names.HOUSEHOLDS_LINGUISTIC_ISO_FIELD,
"LOWINCPCT": field_names.POVERTY_FIELD,
"LESSHSPCT": field_names.HIGH_SCHOOL_ED_FIELD,
"OVER64PCT": field_names.OVER_64_FIELD,
"UNDER5PCT": field_names.UNDER_5_FIELD,
"PRE1960PCT": field_names.LEAD_PAINT_FIELD,
},
inplace=True,
)
# Load census data # Load census data
census_csv = ( census_csv = (
@ -75,23 +51,6 @@ class ScoreETL(ExtractTransformLoad):
low_memory=False, low_memory=False,
) )
# Load housing and transportation data
housing_and_transportation_index_csv = (
constants.DATA_PATH
/ "dataset"
/ "housing_and_transportation_index"
/ "usa.csv"
)
self.housing_and_transportation_df = pd.read_csv(
housing_and_transportation_index_csv,
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
)
# TODO move to HT Index ETL
self.housing_and_transportation_df.rename(
columns={"ht_ami": field_names.HT_INDEX_FIELD}, inplace=True
)
# Load HUD housing data # Load HUD housing data
hud_housing_csv = ( hud_housing_csv = (
constants.DATA_PATH / "dataset" / "hud_housing" / "usa.csv" constants.DATA_PATH / "dataset" / "hud_housing" / "usa.csv"
@ -180,13 +139,32 @@ class ScoreETL(ExtractTransformLoad):
def _join_tract_dfs(self, census_tract_dfs: list) -> pd.DataFrame: def _join_tract_dfs(self, census_tract_dfs: list) -> pd.DataFrame:
logger.info("Joining Census Tract dataframes") logger.info("Joining Census Tract dataframes")
def merge_function(
left: pd.DataFrame, right: pd.DataFrame
) -> pd.DataFrame:
"""This is a custom function that merges two dataframes.
It provides some logging as additional helpful context for error handling.
"""
try:
df = pd.merge(
left=left,
right=right,
on=self.GEOID_TRACT_FIELD_NAME,
how="outer",
)
except Exception as e:
# Note: it'd be nice to log the name of the dataframe, but that's not accessible in this scope.
logger.warning(
f"Exception encountered while merging dataframe `right` that has the following columns: {','.join(right.columns)}"
)
raise e
return df
census_tract_df = functools.reduce( census_tract_df = functools.reduce(
lambda left, right: pd.merge( merge_function,
left=left,
right=right,
on=self.GEOID_TRACT_FIELD_NAME,
how="outer",
),
census_tract_dfs, census_tract_dfs,
) )
@ -200,6 +178,40 @@ class ScoreETL(ExtractTransformLoad):
) )
return census_tract_df return census_tract_df
def _census_tract_df_sanity_check(
self, df_to_check: pd.DataFrame, df_name: str = None
) -> None:
"""Check an individual data frame for census tract data quality checks."""
# Note: it'd be nice to log the name of the dataframe directly, but that's not accessible in this scope.
dataframe_descriptor = (
f"dataframe `{df_name}`"
if df_name
else f"the dataframe that has columns { ','.join(df_to_check.columns)}"
)
tract_values = (
df_to_check[self.GEOID_TRACT_FIELD_NAME].str.len().unique()
)
if any(tract_values != [11]):
raise ValueError(
f"Some of the census tract data has the wrong length: {tract_values} in {dataframe_descriptor}"
)
non_unique_tract_values = len(
df_to_check[self.GEOID_TRACT_FIELD_NAME]
) - len(df_to_check[self.GEOID_TRACT_FIELD_NAME].unique())
if non_unique_tract_values > 0:
raise ValueError(
f"There are {non_unique_tract_values} duplicate tract IDs in {dataframe_descriptor}"
)
if len(df_to_check) > self.EXPECTED_MAX_CENSUS_TRACTS:
raise ValueError(
f"Too many rows in the join: {len(df_to_check)} in {dataframe_descriptor}"
)
# TODO Move a lot of this to the ETL part of the pipeline # TODO Move a lot of this to the ETL part of the pipeline
def _prepare_initial_df(self) -> pd.DataFrame: def _prepare_initial_df(self) -> pd.DataFrame:
logger.info("Preparing initial dataframe") logger.info("Preparing initial dataframe")
@ -214,20 +226,23 @@ class ScoreETL(ExtractTransformLoad):
self.ejscreen_df, self.ejscreen_df,
self.geocorr_urban_rural_df, self.geocorr_urban_rural_df,
self.persistent_poverty_df, self.persistent_poverty_df,
self.housing_and_transportation_df,
self.national_risk_index_df, self.national_risk_index_df,
self.census_acs_median_incomes_df, self.census_acs_median_incomes_df,
] ]
# Sanity check each data frame before merging.
for df in census_tract_dfs:
self._census_tract_df_sanity_check(df_to_check=df)
census_tract_df = self._join_tract_dfs(census_tract_dfs) census_tract_df = self._join_tract_dfs(census_tract_dfs)
# If GEOID10s are read as numbers instead of strings, the initial 0 is dropped, # If GEOID10s are read as numbers instead of strings, the initial 0 is dropped,
# and then we get too many CBG rows (one for 012345 and one for 12345). # and then we get too many CBG rows (one for 012345 and one for 12345).
# TODO: Investigate how many rows we should have here # Now sanity-check the merged df.
# if len(census_tract_df) > self.EXPECTED_MAX_CENSUS_TRACTS: self._census_tract_df_sanity_check(
# raise ValueError( df_to_check=census_tract_df, df_name="census_tract_df"
# f"Too many rows in the join: {len(census_tract_df)}" )
# )
# Calculate median income variables. # Calculate median income variables.
# First, calculate the income of the block group as a fraction of the state income. # First, calculate the income of the block group as a fraction of the state income.
@ -280,7 +295,6 @@ class ScoreETL(ExtractTransformLoad):
field_names.POVERTY_FIELD, field_names.POVERTY_FIELD,
field_names.HIGH_SCHOOL_ED_FIELD, field_names.HIGH_SCHOOL_ED_FIELD,
field_names.UNEMPLOYMENT_FIELD, field_names.UNEMPLOYMENT_FIELD,
field_names.HT_INDEX_FIELD,
field_names.MEDIAN_HOUSE_VALUE_FIELD, field_names.MEDIAN_HOUSE_VALUE_FIELD,
field_names.EXPECTED_BUILDING_LOSS_RATE_FIELD_NAME, field_names.EXPECTED_BUILDING_LOSS_RATE_FIELD_NAME,
field_names.EXPECTED_AGRICULTURE_LOSS_RATE_FIELD_NAME, field_names.EXPECTED_AGRICULTURE_LOSS_RATE_FIELD_NAME,

View file

@ -220,9 +220,7 @@ class CensusDecennialETL(ExtractTransformLoad):
# Creating Geo ID (Census Block Group) Field Name # Creating Geo ID (Census Block Group) Field Name
self.df_all[self.GEOID_TRACT_FIELD_NAME] = ( self.df_all[self.GEOID_TRACT_FIELD_NAME] = (
self.df_all["state"] self.df_all["state"] + self.df_all["county"] + self.df_all["tract"]
+ self.df_all["county"]
+ self.df_all["tract"]
) )
# Reporting Missing Values # Reporting Missing Values

View file

@ -1,6 +1,7 @@
import pandas as pd import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.score import field_names
from data_pipeline.utils import get_module_logger from data_pipeline.utils import get_module_logger
logger = get_module_logger(__name__) logger = get_module_logger(__name__)
@ -35,6 +36,25 @@ class EJSCREENETL(ExtractTransformLoad):
self.df.rename( self.df.rename(
columns={ columns={
"ID": self.GEOID_TRACT_FIELD_NAME, "ID": self.GEOID_TRACT_FIELD_NAME,
# Note: it is currently unorthodox to use `field_names` in an ETL class,
# but I think that's the direction we'd like to move all ETL classes. - LMB
"ACSTOTPOP": field_names.TOTAL_POP_FIELD,
"CANCER": field_names.AIR_TOXICS_CANCER_RISK_FIELD,
"RESP": field_names.RESPITORY_HAZARD_FIELD,
"DSLPM": field_names.DIESEL_FIELD,
"PM25": field_names.PM25_FIELD,
"OZONE": field_names.OZONE_FIELD,
"PTRAF": field_names.TRAFFIC_FIELD,
"PRMP": field_names.RMP_FIELD,
"PTSDF": field_names.TSDF_FIELD,
"PNPL": field_names.NPL_FIELD,
"PWDIS": field_names.WASTEWATER_FIELD,
"LINGISOPCT": field_names.HOUSEHOLDS_LINGUISTIC_ISO_FIELD,
"LOWINCPCT": field_names.POVERTY_FIELD,
"LESSHSPCT": field_names.HIGH_SCHOOL_ED_FIELD,
"OVER64PCT": field_names.OVER_64_FIELD,
"UNDER5PCT": field_names.UNDER_5_FIELD,
"PRE1960PCT": field_names.LEAD_PAINT_FIELD,
}, },
inplace=True, inplace=True,
) )

View file

@ -51,7 +51,9 @@ class HousingTransportationETL(ExtractTransformLoad):
logger.info("Transforming Housing and Transportation Data") logger.info("Transforming Housing and Transportation Data")
# Rename and reformat tract ID # Rename and reformat tract ID
self.df.rename(columns={"tract": self.GEOID_TRACT_FIELD_NAME}, inplace=True) self.df.rename(
columns={"tract": self.GEOID_TRACT_FIELD_NAME}, inplace=True
)
self.df[self.GEOID_TRACT_FIELD_NAME] = self.df[ self.df[self.GEOID_TRACT_FIELD_NAME] = self.df[
self.GEOID_TRACT_FIELD_NAME self.GEOID_TRACT_FIELD_NAME
].str.replace('"', "") ].str.replace('"', "")

View file

@ -24,7 +24,7 @@ class ScoreC(Score):
+ field_names.PERCENTILE_FIELD_SUFFIX, + field_names.PERCENTILE_FIELD_SUFFIX,
field_names.UNEMPLOYMENT_FIELD field_names.UNEMPLOYMENT_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX, + field_names.PERCENTILE_FIELD_SUFFIX,
field_names.HT_INDEX_FIELD field_names.HOUSING_BURDEN_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX, + field_names.PERCENTILE_FIELD_SUFFIX,
], ],
) )