Add ability to cache ETL data sources (#2169)

* Add a rough prototype allowing a developer to pre-download data sources for all ETLs

* Update code to be more production-ish

* Move fetch to Extract part of ETL
* Create a downloader to house all downloading operations
* Remove unnecessary "name" in data source

* Format source files with black

* Fix issues from pylint and get the tests working with the new folder structure

* Clean up files with black

* Fix unzip test

* Add caching notes to README

* Fix tests (linting and case sensitivity bug)

* Address PR comments and add API keys for census where missing

* Merging comparator changes from main into this branch for the sake of the PR

* Add note on using cache (-u) during pipeline
This commit is contained in:
Travis Newby 2023-03-03 12:26:24 -06:00 committed by GitHub
commit 6f39033dde
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
52 changed files with 1787 additions and 686 deletions

View file

@ -5,6 +5,7 @@ from data_pipeline.config import settings
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.base import ValidGeoLevel
from data_pipeline.utils import get_module_logger
from data_pipeline.etl.datasource import DataSource
logger = get_module_logger(__name__)
@ -30,6 +31,9 @@ class ExampleETL(ExtractTransformLoad):
self.EXAMPLE_FIELD_NAME,
]
def get_data_sources(self) -> [DataSource]:
return []
def extract(self):
# Pretend to download zip from external URL, write it to CSV.
zip_file_path = (
@ -42,11 +46,11 @@ class ExampleETL(ExtractTransformLoad):
)
with zipfile.ZipFile(zip_file_path, "r") as zip_ref:
zip_ref.extractall(self.get_tmp_path())
zip_ref.extractall(self.get_sources_path())
def transform(self):
df: pd.DataFrame = pd.read_csv(
self.get_tmp_path() / "input.csv",
self.get_sources_path() / "input.csv",
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
)