mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-22 01:31:25 -08:00
2119 there are a few tracts places where the values over the 90th percentile are not showing as blue (#2160)
* ipython notebook to debug greenspace indicator * changing greenspace and income to just greenspace * fixing greenspace indicator to not include low income * Update greenspace_indicator.ipynb * running tox checks * update score narwhal to pass smoke test (fix donut threshold) --------- Co-authored-by: Travis Newby <travis.b.newby@omb.eop.gov>
This commit is contained in:
parent
7384cc5fec
commit
4d9c1dd11e
3 changed files with 2698 additions and 6 deletions
|
@ -353,7 +353,7 @@ TILES_SCORE_COLUMNS = {
|
|||
field_names.ADJACENT_TRACT_SCORE_ABOVE_DONUT_THRESHOLD: "ADJ_ET",
|
||||
field_names.TRACT_PERCENT_NON_NATURAL_FIELD_NAME
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX: "IS_PFS",
|
||||
field_names.NON_NATURAL_LOW_INCOME_FIELD_NAME: "IS_ET",
|
||||
field_names.NON_NATURAL_PCTILE_THRESHOLD: "IS_ET", # NON_NATURAL_LOW_INCOME_FIELD_NAME
|
||||
field_names.AML_BOOLEAN_FILLED_IN: "AML_ET",
|
||||
field_names.ELIGIBLE_FUDS_BINARY_FIELD_NAME: "FUDS_RAW",
|
||||
field_names.ELIGIBLE_FUDS_FILLED_IN_FIELD_NAME: "FUDS_ET",
|
||||
|
|
2686
data/data-pipeline/data_pipeline/ipython/greenspace_indicator.ipynb
Normal file
2686
data/data-pipeline/data_pipeline/ipython/greenspace_indicator.ipynb
Normal file
File diff suppressed because one or more lines are too long
|
@ -4,7 +4,9 @@ import data_pipeline.etl.score.constants as constants
|
|||
import data_pipeline.score.field_names as field_names
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from data_pipeline.score.score import Score
|
||||
from data_pipeline.score.score import (
|
||||
Score,
|
||||
) # this just adds the framework of the score class
|
||||
from data_pipeline.score.utils import calculate_tract_adjacency_scores
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
|
@ -14,7 +16,7 @@ logger = get_module_logger(__name__)
|
|||
class ScoreNarwhal(Score):
|
||||
"""Score N, aka Narwhal."""
|
||||
|
||||
LOW_INCOME_THRESHOLD: float = 0.65
|
||||
LOW_INCOME_THRESHOLD: float = 0.65 # this is the low income threshold that gets compared against the other indicators. It is a percentile rank
|
||||
MAX_COLLEGE_ATTENDANCE_THRESHOLD: float = 0.20
|
||||
ENVIRONMENTAL_BURDEN_THRESHOLD: float = 0.90
|
||||
MEDIAN_HOUSE_VALUE_THRESHOLD: float = 0.90
|
||||
|
@ -441,9 +443,13 @@ class ScoreNarwhal(Score):
|
|||
)
|
||||
|
||||
# any of the burdens
|
||||
self.df[field_names.HOUSING_THREHSOLD_EXCEEDED] = self.df[
|
||||
self.df[
|
||||
field_names.HOUSING_THREHSOLD_EXCEEDED
|
||||
] = self.df[ # we need this to include all of the ones that are intersected with low income in order to properly calculate the total score.
|
||||
housing_eligibility_columns
|
||||
].any(axis="columns")
|
||||
].any(
|
||||
axis="columns"
|
||||
)
|
||||
|
||||
self._increment_total_eligibility_exceeded(
|
||||
housing_eligibility_columns,
|
||||
|
@ -461,7 +467,7 @@ class ScoreNarwhal(Score):
|
|||
# Source: Census's American Community Survey
|
||||
|
||||
pollution_eligibility_columns = [
|
||||
field_names.RMP_LOW_INCOME_FIELD,
|
||||
field_names.RMP_LOW_INCOME_FIELD, # include low income in these fields because they help calculate the overall score
|
||||
field_names.SUPERFUND_LOW_INCOME_FIELD,
|
||||
field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD,
|
||||
field_names.AML_LOW_INCOME_FIELD,
|
||||
|
|
Loading…
Add table
Reference in a new issue