mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-29 08:31:17 -07:00
Add ability to cache ETL data sources (#2169)
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs * Update code to be more production-ish * Move fetch to Extract part of ETL * Create a downloader to house all downloading operations * Remove unnecessary "name" in data source * Format source files with black * Fix issues from pylint and get the tests working with the new folder structure * Clean up files with black * Fix unzip test * Add caching notes to README * Fix tests (linting and case sensitivity bug) * Address PR comments and add API keys for census where missing * Merging comparator changes from main into this branch for the sake of the PR * Add note on using cache (-u) during pipeline
This commit is contained in:
parent
4d9c1dd11e
commit
6f39033dde
52 changed files with 1787 additions and 686 deletions
|
@ -3,6 +3,8 @@
|
|||
import pandas as pd
|
||||
from data_pipeline.config import settings
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.datasource import DataSource
|
||||
from data_pipeline.etl.datasource import ZIPDataSource
|
||||
from data_pipeline.etl.base import ValidGeoLevel
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
|
@ -13,10 +15,7 @@ class NatureDeprivedETL(ExtractTransformLoad):
|
|||
"""ETL class for the Nature Deprived Communities dataset"""
|
||||
|
||||
NAME = "nlcd_nature_deprived"
|
||||
SOURCE_URL = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
+ "/usa_conus_nat_dep__compiled_by_TPL.csv.zip"
|
||||
)
|
||||
|
||||
GEO_LEVEL = ValidGeoLevel.CENSUS_TRACT
|
||||
PUERTO_RICO_EXPECTED_IN_DATA = False
|
||||
LOAD_YAML_CONFIG: bool = True
|
||||
|
@ -29,14 +28,25 @@ class NatureDeprivedETL(ExtractTransformLoad):
|
|||
TRACT_PERCENT_CROPLAND_FIELD_NAME: str
|
||||
|
||||
def __init__(self):
|
||||
# define the full path for the input CSV file
|
||||
self.INPUT_CSV = (
|
||||
self.get_tmp_path() / "usa_conus_nat_dep__compiled_by_TPL.csv"
|
||||
|
||||
# fetch
|
||||
self.nature_deprived_url = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
+ "/usa_conus_nat_dep__compiled_by_TPL.csv.zip"
|
||||
)
|
||||
|
||||
# source
|
||||
# define the full path for the input CSV file
|
||||
self.nature_deprived_source = (
|
||||
self.get_sources_path() / "usa_conus_nat_dep__compiled_by_TPL.csv"
|
||||
)
|
||||
|
||||
# output
|
||||
# this is the main dataframe
|
||||
self.df: pd.DataFrame
|
||||
|
||||
self.df_ncld: pd.DataFrame
|
||||
|
||||
# Start dataset-specific vars here
|
||||
self.PERCENT_NATURAL_FIELD_NAME = "PctNatural"
|
||||
self.PERCENT_IMPERVIOUS_FIELD_NAME = "PctImperv"
|
||||
|
@ -47,28 +57,43 @@ class NatureDeprivedETL(ExtractTransformLoad):
|
|||
# for area. This does indeed remove tracts from the 90th+ percentile later on
|
||||
self.TRACT_ACRES_LOWER_BOUND = 35
|
||||
|
||||
def transform(self) -> None:
|
||||
def get_data_sources(self) -> [DataSource]:
|
||||
return [
|
||||
ZIPDataSource(
|
||||
source=self.nature_deprived_url,
|
||||
destination=self.get_sources_path(),
|
||||
)
|
||||
]
|
||||
|
||||
def extract(self, use_cached_data_sources: bool = False) -> None:
|
||||
"""Reads the unzipped data file into memory and applies the following
|
||||
transformations to prepare it for the load() method:
|
||||
|
||||
- Renames columns as needed
|
||||
"""
|
||||
|
||||
df_ncld: pd.DataFrame = pd.read_csv(
|
||||
self.INPUT_CSV,
|
||||
super().extract(
|
||||
use_cached_data_sources
|
||||
) # download and extract data sources
|
||||
|
||||
self.df_ncld = pd.read_csv(
|
||||
self.nature_deprived_source,
|
||||
dtype={self.INPUT_GEOID_TRACT_FIELD_NAME: str},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
df_ncld[self.ELIGIBLE_FOR_NATURE_DEPRIVED_FIELD_NAME] = (
|
||||
df_ncld[self.TRACT_ACRES_FIELD_NAME] >= self.TRACT_ACRES_LOWER_BOUND
|
||||
def transform(self) -> None:
|
||||
|
||||
self.df_ncld[self.ELIGIBLE_FOR_NATURE_DEPRIVED_FIELD_NAME] = (
|
||||
self.df_ncld[self.TRACT_ACRES_FIELD_NAME]
|
||||
>= self.TRACT_ACRES_LOWER_BOUND
|
||||
)
|
||||
df_ncld[self.TRACT_PERCENT_NON_NATURAL_FIELD_NAME] = (
|
||||
100 - df_ncld[self.PERCENT_NATURAL_FIELD_NAME]
|
||||
self.df_ncld[self.TRACT_PERCENT_NON_NATURAL_FIELD_NAME] = (
|
||||
100 - self.df_ncld[self.PERCENT_NATURAL_FIELD_NAME]
|
||||
)
|
||||
|
||||
# Assign the final df to the class' output_df for the load method with rename
|
||||
self.output_df = df_ncld.rename(
|
||||
self.output_df = self.df_ncld.rename(
|
||||
columns={
|
||||
self.PERCENT_IMPERVIOUS_FIELD_NAME: self.TRACT_PERCENT_IMPERVIOUS_FIELD_NAME,
|
||||
self.PERCENT_CROPLAND_FIELD_NAME: self.TRACT_PERCENT_CROPLAND_FIELD_NAME,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue