mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-28 23:11:16 -07:00
Add ability to cache ETL data sources (#2169)
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs * Update code to be more production-ish * Move fetch to Extract part of ETL * Create a downloader to house all downloading operations * Remove unnecessary "name" in data source * Format source files with black * Fix issues from pylint and get the tests working with the new folder structure * Clean up files with black * Fix unzip test * Add caching notes to README * Fix tests (linting and case sensitivity bug) * Address PR comments and add API keys for census where missing * Merging comparator changes from main into this branch for the sake of the PR * Add note on using cache (-u) during pipeline
This commit is contained in:
parent
4d9c1dd11e
commit
6f39033dde
52 changed files with 1787 additions and 686 deletions
|
@ -4,6 +4,8 @@ import geopandas as gpd
|
|||
import pandas as pd
|
||||
from data_pipeline.config import settings
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.datasource import DataSource
|
||||
from data_pipeline.etl.datasource import ZIPDataSource
|
||||
from data_pipeline.score import field_names
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
|
@ -17,11 +19,16 @@ class MarylandEJScreenETL(ExtractTransformLoad):
|
|||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.MARYLAND_EJSCREEN_URL = (
|
||||
|
||||
# fetch
|
||||
self.maryland_ejscreen_url = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL + "/MD_EJScreen.zip"
|
||||
)
|
||||
|
||||
self.SHAPE_FILES_PATH = self.get_tmp_path() / "mdejscreen"
|
||||
# input
|
||||
self.shape_files_source = self.get_sources_path() / "mdejscreen"
|
||||
|
||||
# output
|
||||
self.OUTPUT_CSV_PATH = self.DATA_PATH / "dataset" / "maryland_ejscreen"
|
||||
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
|
@ -31,37 +38,47 @@ class MarylandEJScreenETL(ExtractTransformLoad):
|
|||
]
|
||||
|
||||
self.df: pd.DataFrame
|
||||
self.dfs_list: pd.DataFrame
|
||||
|
||||
def get_data_sources(self) -> [DataSource]:
|
||||
return [
|
||||
ZIPDataSource(
|
||||
source=self.maryland_ejscreen_url,
|
||||
destination=self.get_sources_path(),
|
||||
)
|
||||
]
|
||||
|
||||
def extract(self, use_cached_data_sources: bool = False) -> None:
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.debug("Downloading 207MB Maryland EJSCREEN Data")
|
||||
super().extract(
|
||||
self.MARYLAND_EJSCREEN_URL,
|
||||
self.get_tmp_path(),
|
||||
)
|
||||
use_cached_data_sources
|
||||
) # download and extract data sources
|
||||
|
||||
def transform(self) -> None:
|
||||
list_of_files = list(glob(str(self.SHAPE_FILES_PATH) + "/*.shp"))
|
||||
logger.debug("Downloading 207MB Maryland EJSCREEN Data")
|
||||
list_of_files = list(glob(str(self.shape_files_source) + "/*.shp"))
|
||||
|
||||
# Ignore counties becauses this is not the level of measurement
|
||||
# Ignore counties because this is not the level of measurement
|
||||
# that is consistent with our current scoring and ranking methodology.
|
||||
dfs_list = [
|
||||
self.dfs_list = [
|
||||
gpd.read_file(f)
|
||||
for f in list_of_files
|
||||
if not f.endswith("CountiesEJScore.shp")
|
||||
]
|
||||
|
||||
def transform(self) -> None:
|
||||
|
||||
# Set the Census tract as the index and drop the geometry column
|
||||
# that produces the census tract boundaries.
|
||||
# The latter is because Geopandas raises an exception if there
|
||||
# are duplicate geometry columns.
|
||||
# Moreover, since the unit of measurement is at the tract level
|
||||
# we can consistantly merge this with other datasets
|
||||
dfs_list = [
|
||||
self.dfs_list = [
|
||||
df.set_index("Census_Tra").drop("geometry", axis=1)
|
||||
for df in dfs_list
|
||||
for df in self.dfs_list
|
||||
]
|
||||
# pylint: disable=unsubscriptable-object
|
||||
self.df = gpd.GeoDataFrame(pd.concat(dfs_list, axis=1))
|
||||
self.df = gpd.GeoDataFrame(pd.concat(self.dfs_list, axis=1))
|
||||
|
||||
# Reset index so that we no longer have the tract as our index
|
||||
self.df = self.df.reset_index()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue