mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-31 20:31:16 -07:00
Add ability to cache ETL data sources (#2169)
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs * Update code to be more production-ish * Move fetch to Extract part of ETL * Create a downloader to house all downloading operations * Remove unnecessary "name" in data source * Format source files with black * Fix issues from pylint and get the tests working with the new folder structure * Clean up files with black * Fix unzip test * Add caching notes to README * Fix tests (linting and case sensitivity bug) * Address PR comments and add API keys for census where missing * Merging comparator changes from main into this branch for the sake of the PR * Add note on using cache (-u) during pipeline
This commit is contained in:
parent
4d9c1dd11e
commit
6f39033dde
52 changed files with 1787 additions and 686 deletions
|
@ -3,8 +3,9 @@ import pathlib
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.datasource import DataSource
|
||||
from data_pipeline.etl.datasource import FileDataSource
|
||||
from data_pipeline.score import field_names
|
||||
from data_pipeline.utils import download_file_from_url
|
||||
from data_pipeline.utils import get_module_logger
|
||||
from data_pipeline.config import settings
|
||||
|
||||
|
@ -19,31 +20,35 @@ class MappingInequalityETL(ExtractTransformLoad):
|
|||
|
||||
Information on the mapping of this data to census tracts is available at
|
||||
https://github.com/americanpanorama/Census_HOLC_Research.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
|
||||
# fetch
|
||||
if settings.DATASOURCE_RETRIEVAL_FROM_AWS:
|
||||
self.MAPPING_INEQUALITY_CSV_URL = (
|
||||
self.mapping_inequality_csv_url = (
|
||||
f"{settings.AWS_JUSTICE40_DATASOURCES_URL}/raw-data-sources/"
|
||||
"mapping_inequality/holc_tract_lookup.csv"
|
||||
)
|
||||
else:
|
||||
self.MAPPING_INEQUALITY_CSV_URL = (
|
||||
self.mapping_inequality_csv_url = (
|
||||
"https://raw.githubusercontent.com/americanpanorama/Census_HOLC_Research/"
|
||||
"main/2010_Census_Tracts/holc_tract_lookup.csv"
|
||||
)
|
||||
self.MAPPING_INEQUALITY_CSV = (
|
||||
self.get_tmp_path() / "holc_tract_lookup.csv"
|
||||
)
|
||||
self.CSV_PATH = self.DATA_PATH / "dataset" / "mapping_inequality"
|
||||
|
||||
self.HOLC_MANUAL_MAPPING_CSV_PATH = (
|
||||
# input
|
||||
self.mapping_inequality_source = (
|
||||
self.get_sources_path() / "holc_tract_lookup.csv"
|
||||
)
|
||||
self.holc_manual_mapping_source = ( # here be dragons – this file is pulled from a different place than most
|
||||
pathlib.Path(__file__).parent
|
||||
/ "data"
|
||||
/ "holc_grades_manually_mapped.csv"
|
||||
)
|
||||
|
||||
# output
|
||||
self.CSV_PATH = self.DATA_PATH / "dataset" / "mapping_inequality"
|
||||
|
||||
# Some input field names. From documentation: 'Census Tracts were intersected
|
||||
# with HOLC Polygons. Census information can be joined via the "geoid" field.
|
||||
# There are two field "holc_prop" and "tract_prop" which give the proportion
|
||||
|
@ -73,22 +78,39 @@ class MappingInequalityETL(ExtractTransformLoad):
|
|||
]
|
||||
|
||||
self.df: pd.DataFrame
|
||||
self.holc_manually_mapped_df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
download_file_from_url(
|
||||
file_url=self.MAPPING_INEQUALITY_CSV_URL,
|
||||
download_file_name=self.MAPPING_INEQUALITY_CSV,
|
||||
)
|
||||
def get_data_sources(self) -> [DataSource]:
|
||||
return [
|
||||
FileDataSource(
|
||||
source=self.mapping_inequality_csv_url,
|
||||
destination=self.mapping_inequality_source,
|
||||
)
|
||||
]
|
||||
|
||||
def transform(self) -> None:
|
||||
df: pd.DataFrame = pd.read_csv(
|
||||
self.MAPPING_INEQUALITY_CSV,
|
||||
def extract(self, use_cached_data_sources: bool = False) -> None:
|
||||
|
||||
super().extract(
|
||||
use_cached_data_sources
|
||||
) # download and extract data sources
|
||||
|
||||
self.df = pd.read_csv(
|
||||
self.mapping_inequality_source,
|
||||
dtype={self.TRACT_INPUT_FIELD: "string"},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
# Some data needs to be manually mapped to its grade.
|
||||
# TODO: Investigate more data that may need to be manually mapped.
|
||||
self.holc_manually_mapped_df = pd.read_csv(
|
||||
filepath_or_buffer=self.holc_manual_mapping_source,
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
|
||||
# rename Tract ID
|
||||
df.rename(
|
||||
self.df.rename(
|
||||
columns={
|
||||
self.TRACT_INPUT_FIELD: self.GEOID_TRACT_FIELD_NAME,
|
||||
},
|
||||
|
@ -98,28 +120,21 @@ class MappingInequalityETL(ExtractTransformLoad):
|
|||
# Keep the first character, which is the HOLC grade (A, B, C, D).
|
||||
# TODO: investigate why this dataframe triggers these pylint errors.
|
||||
# pylint: disable=unsupported-assignment-operation, unsubscriptable-object
|
||||
df[self.HOLC_GRADE_DERIVED_FIELD] = df[
|
||||
self.df[self.HOLC_GRADE_DERIVED_FIELD] = self.df[
|
||||
self.HOLC_GRADE_AND_ID_FIELD
|
||||
].str[0:1]
|
||||
|
||||
# Remove nonsense when the field has no grade or invalid grades.
|
||||
valid_grades = ["A", "B", "C", "D"]
|
||||
df.loc[
|
||||
self.df.loc[
|
||||
# pylint: disable=unsubscriptable-object
|
||||
~df[self.HOLC_GRADE_DERIVED_FIELD].isin(valid_grades),
|
||||
~self.df[self.HOLC_GRADE_DERIVED_FIELD].isin(valid_grades),
|
||||
self.HOLC_GRADE_DERIVED_FIELD,
|
||||
] = None
|
||||
|
||||
# Some data needs to be manually mapped to its grade.
|
||||
# TODO: Investigate more data that may need to be manually mapped.
|
||||
holc_manually_mapped_df = pd.read_csv(
|
||||
filepath_or_buffer=self.HOLC_MANUAL_MAPPING_CSV_PATH,
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
# Join on the existing data
|
||||
merged_df = df.merge(
|
||||
right=holc_manually_mapped_df,
|
||||
merged_df = self.df.merge(
|
||||
right=self.holc_manually_mapped_df,
|
||||
on=[self.HOLC_GRADE_AND_ID_FIELD, self.CITY_INPUT_FIELD],
|
||||
how="left",
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue