Add ability to cache ETL data sources (#2169)

* Add a rough prototype allowing a developer to pre-download data sources for all ETLs

* Update code to be more production-ish

* Move fetch to Extract part of ETL
* Create a downloader to house all downloading operations
* Remove unnecessary "name" in data source

* Format source files with black

* Fix issues from pylint and get the tests working with the new folder structure

* Clean up files with black

* Fix unzip test

* Add caching notes to README

* Fix tests (linting and case sensitivity bug)

* Address PR comments and add API keys for census where missing

* Merging comparator changes from main into this branch for the sake of the PR

* Add note on using cache (-u) during pipeline
This commit is contained in:
Travis Newby 2023-03-03 12:26:24 -06:00 committed by GitHub
commit 6f39033dde
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
52 changed files with 1787 additions and 686 deletions

View file

@ -3,8 +3,9 @@ import pathlib
import numpy as np
import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.datasource import DataSource
from data_pipeline.etl.datasource import FileDataSource
from data_pipeline.score import field_names
from data_pipeline.utils import download_file_from_url
from data_pipeline.utils import get_module_logger
from data_pipeline.config import settings
@ -19,31 +20,35 @@ class MappingInequalityETL(ExtractTransformLoad):
Information on the mapping of this data to census tracts is available at
https://github.com/americanpanorama/Census_HOLC_Research.
"""
def __init__(self):
# fetch
if settings.DATASOURCE_RETRIEVAL_FROM_AWS:
self.MAPPING_INEQUALITY_CSV_URL = (
self.mapping_inequality_csv_url = (
f"{settings.AWS_JUSTICE40_DATASOURCES_URL}/raw-data-sources/"
"mapping_inequality/holc_tract_lookup.csv"
)
else:
self.MAPPING_INEQUALITY_CSV_URL = (
self.mapping_inequality_csv_url = (
"https://raw.githubusercontent.com/americanpanorama/Census_HOLC_Research/"
"main/2010_Census_Tracts/holc_tract_lookup.csv"
)
self.MAPPING_INEQUALITY_CSV = (
self.get_tmp_path() / "holc_tract_lookup.csv"
)
self.CSV_PATH = self.DATA_PATH / "dataset" / "mapping_inequality"
self.HOLC_MANUAL_MAPPING_CSV_PATH = (
# input
self.mapping_inequality_source = (
self.get_sources_path() / "holc_tract_lookup.csv"
)
self.holc_manual_mapping_source = ( # here be dragons this file is pulled from a different place than most
pathlib.Path(__file__).parent
/ "data"
/ "holc_grades_manually_mapped.csv"
)
# output
self.CSV_PATH = self.DATA_PATH / "dataset" / "mapping_inequality"
# Some input field names. From documentation: 'Census Tracts were intersected
# with HOLC Polygons. Census information can be joined via the "geoid" field.
# There are two field "holc_prop" and "tract_prop" which give the proportion
@ -73,22 +78,39 @@ class MappingInequalityETL(ExtractTransformLoad):
]
self.df: pd.DataFrame
self.holc_manually_mapped_df: pd.DataFrame
def extract(self) -> None:
download_file_from_url(
file_url=self.MAPPING_INEQUALITY_CSV_URL,
download_file_name=self.MAPPING_INEQUALITY_CSV,
)
def get_data_sources(self) -> [DataSource]:
return [
FileDataSource(
source=self.mapping_inequality_csv_url,
destination=self.mapping_inequality_source,
)
]
def transform(self) -> None:
df: pd.DataFrame = pd.read_csv(
self.MAPPING_INEQUALITY_CSV,
def extract(self, use_cached_data_sources: bool = False) -> None:
super().extract(
use_cached_data_sources
) # download and extract data sources
self.df = pd.read_csv(
self.mapping_inequality_source,
dtype={self.TRACT_INPUT_FIELD: "string"},
low_memory=False,
)
# Some data needs to be manually mapped to its grade.
# TODO: Investigate more data that may need to be manually mapped.
self.holc_manually_mapped_df = pd.read_csv(
filepath_or_buffer=self.holc_manual_mapping_source,
low_memory=False,
)
def transform(self) -> None:
# rename Tract ID
df.rename(
self.df.rename(
columns={
self.TRACT_INPUT_FIELD: self.GEOID_TRACT_FIELD_NAME,
},
@ -98,28 +120,21 @@ class MappingInequalityETL(ExtractTransformLoad):
# Keep the first character, which is the HOLC grade (A, B, C, D).
# TODO: investigate why this dataframe triggers these pylint errors.
# pylint: disable=unsupported-assignment-operation, unsubscriptable-object
df[self.HOLC_GRADE_DERIVED_FIELD] = df[
self.df[self.HOLC_GRADE_DERIVED_FIELD] = self.df[
self.HOLC_GRADE_AND_ID_FIELD
].str[0:1]
# Remove nonsense when the field has no grade or invalid grades.
valid_grades = ["A", "B", "C", "D"]
df.loc[
self.df.loc[
# pylint: disable=unsubscriptable-object
~df[self.HOLC_GRADE_DERIVED_FIELD].isin(valid_grades),
~self.df[self.HOLC_GRADE_DERIVED_FIELD].isin(valid_grades),
self.HOLC_GRADE_DERIVED_FIELD,
] = None
# Some data needs to be manually mapped to its grade.
# TODO: Investigate more data that may need to be manually mapped.
holc_manually_mapped_df = pd.read_csv(
filepath_or_buffer=self.HOLC_MANUAL_MAPPING_CSV_PATH,
low_memory=False,
)
# Join on the existing data
merged_df = df.merge(
right=holc_manually_mapped_df,
merged_df = self.df.merge(
right=self.holc_manually_mapped_df,
on=[self.HOLC_GRADE_AND_ID_FIELD, self.CITY_INPUT_FIELD],
how="left",
)