mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-28 20:01:16 -07:00
Add ability to cache ETL data sources (#2169)
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs * Update code to be more production-ish * Move fetch to Extract part of ETL * Create a downloader to house all downloading operations * Remove unnecessary "name" in data source * Format source files with black * Fix issues from pylint and get the tests working with the new folder structure * Clean up files with black * Fix unzip test * Add caching notes to README * Fix tests (linting and case sensitivity bug) * Address PR comments and add API keys for census where missing * Merging comparator changes from main into this branch for the sake of the PR * Add note on using cache (-u) during pipeline
This commit is contained in:
parent
4d9c1dd11e
commit
6f39033dde
52 changed files with 1787 additions and 686 deletions
|
@ -3,12 +3,16 @@ from data_pipeline.config import settings
|
|||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.base import ValidGeoLevel
|
||||
from data_pipeline.utils import get_module_logger
|
||||
from data_pipeline.etl.datasource import DataSource
|
||||
from data_pipeline.etl.datasource import ZIPDataSource
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class HistoricRedliningETL(ExtractTransformLoad):
|
||||
|
||||
NAME = "historic_redlining"
|
||||
|
||||
GEO_LEVEL: ValidGeoLevel = ValidGeoLevel.CENSUS_TRACT
|
||||
EXPECTED_MISSING_STATES = [
|
||||
"10",
|
||||
|
@ -25,14 +29,14 @@ class HistoricRedliningETL(ExtractTransformLoad):
|
|||
]
|
||||
PUERTO_RICO_EXPECTED_IN_DATA = False
|
||||
ALASKA_AND_HAWAII_EXPECTED_IN_DATA: bool = False
|
||||
SOURCE_URL = settings.AWS_JUSTICE40_DATASOURCES_URL + "/HRS_2010.zip"
|
||||
|
||||
def __init__(self):
|
||||
self.CSV_PATH = self.DATA_PATH / "dataset" / "historic_redlining"
|
||||
|
||||
self.HISTORIC_REDLINING_FILE_PATH = (
|
||||
self.get_tmp_path() / "HRS_2010.xlsx"
|
||||
)
|
||||
# fetch
|
||||
self.hrs_url = settings.AWS_JUSTICE40_DATASOURCES_URL + "/HRS_2010.zip"
|
||||
|
||||
# input
|
||||
self.hrs_source = self.get_sources_path() / "HRS_2010.xlsx"
|
||||
|
||||
self.REDLINING_SCALAR = "Tract-level redlining score"
|
||||
|
||||
|
@ -40,30 +44,47 @@ class HistoricRedliningETL(ExtractTransformLoad):
|
|||
self.GEOID_TRACT_FIELD_NAME,
|
||||
self.REDLINING_SCALAR,
|
||||
]
|
||||
|
||||
self.df: pd.DataFrame
|
||||
self.historic_redlining_data: pd.DataFrame
|
||||
|
||||
def get_data_sources(self) -> [DataSource]:
|
||||
return [
|
||||
ZIPDataSource(
|
||||
source=self.hrs_url, destination=self.get_sources_path()
|
||||
)
|
||||
]
|
||||
|
||||
def extract(self, use_cached_data_sources: bool = False) -> None:
|
||||
|
||||
super().extract(
|
||||
use_cached_data_sources
|
||||
) # download and extract data sources
|
||||
|
||||
self.historic_redlining_data = pd.read_excel(self.hrs_source)
|
||||
|
||||
def transform(self) -> None:
|
||||
# this is obviously temporary
|
||||
historic_redlining_data = pd.read_excel(
|
||||
self.HISTORIC_REDLINING_FILE_PATH
|
||||
|
||||
self.historic_redlining_data[self.GEOID_TRACT_FIELD_NAME] = (
|
||||
self.historic_redlining_data["GEOID10"].astype(str).str.zfill(11)
|
||||
)
|
||||
historic_redlining_data[self.GEOID_TRACT_FIELD_NAME] = (
|
||||
historic_redlining_data["GEOID10"].astype(str).str.zfill(11)
|
||||
)
|
||||
historic_redlining_data = historic_redlining_data.rename(
|
||||
self.historic_redlining_data = self.historic_redlining_data.rename(
|
||||
columns={"HRS2010": self.REDLINING_SCALAR}
|
||||
)
|
||||
|
||||
logger.debug(f"{historic_redlining_data.columns}")
|
||||
logger.debug(f"{self.historic_redlining_data.columns}")
|
||||
|
||||
# Calculate lots of different score thresholds for convenience
|
||||
for threshold in [3.25, 3.5, 3.75]:
|
||||
historic_redlining_data[
|
||||
self.historic_redlining_data[
|
||||
f"{self.REDLINING_SCALAR} meets or exceeds {round(threshold, 2)}"
|
||||
] = (historic_redlining_data[self.REDLINING_SCALAR] >= threshold)
|
||||
] = (
|
||||
self.historic_redlining_data[self.REDLINING_SCALAR] >= threshold
|
||||
)
|
||||
## NOTE We add to columns to keep here
|
||||
self.COLUMNS_TO_KEEP.append(
|
||||
f"{self.REDLINING_SCALAR} meets or exceeds {round(threshold, 2)}"
|
||||
)
|
||||
|
||||
self.output_df = historic_redlining_data
|
||||
self.output_df = self.historic_redlining_data
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue