Add ability to cache ETL data sources (#2169)

* Add a rough prototype allowing a developer to pre-download data sources for all ETLs

* Update code to be more production-ish

* Move fetch to Extract part of ETL
* Create a downloader to house all downloading operations
* Remove unnecessary "name" in data source

* Format source files with black

* Fix issues from pylint and get the tests working with the new folder structure

* Clean up files with black

* Fix unzip test

* Add caching notes to README

* Fix tests (linting and case sensitivity bug)

* Address PR comments and add API keys for census where missing

* Merging comparator changes from main into this branch for the sake of the PR

* Add note on using cache (-u) during pipeline
This commit is contained in:
Travis Newby 2023-03-03 12:26:24 -06:00 committed by GitHub
commit 6f39033dde
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
52 changed files with 1787 additions and 686 deletions

View file

@ -5,22 +5,35 @@ from data_pipeline.config import settings
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.base import ValidGeoLevel
from data_pipeline.utils import get_module_logger
from data_pipeline.etl.datasource import DataSource
from data_pipeline.etl.datasource import ZIPDataSource
logger = get_module_logger(__name__)
class DOEEnergyBurden(ExtractTransformLoad):
NAME = "doe_energy_burden"
SOURCE_URL: str = (
settings.AWS_JUSTICE40_DATASOURCES_URL
+ "/DOE_LEAD_AMI_TRACT_2018_ALL.csv.zip"
)
GEO_LEVEL = ValidGeoLevel.CENSUS_TRACT
LOAD_YAML_CONFIG: bool = True
REVISED_ENERGY_BURDEN_FIELD_NAME: str
def __init__(self):
# fetch
self.doe_energy_burden_url = (
settings.AWS_JUSTICE40_DATASOURCES_URL
+ "/DOE_LEAD_AMI_TRACT_2018_ALL.csv.zip"
)
# input
self.doe_energy_burden_source = (
self.get_sources_path() / "DOE_LEAD_AMI_TRACT_2018_ALL.csv"
)
# output
self.OUTPUT_PATH: Path = (
self.DATA_PATH / "dataset" / "doe_energy_burden"
)
@ -29,10 +42,22 @@ class DOEEnergyBurden(ExtractTransformLoad):
self.raw_df: pd.DataFrame
self.output_df: pd.DataFrame
def transform(self) -> None:
raw_df: pd.DataFrame = pd.read_csv(
filepath_or_buffer=self.get_tmp_path()
/ "DOE_LEAD_AMI_TRACT_2018_ALL.csv",
def get_data_sources(self) -> [DataSource]:
return [
ZIPDataSource(
source=self.doe_energy_burden_url,
destination=self.get_sources_path(),
)
]
def extract(self, use_cached_data_sources: bool = False) -> None:
super().extract(
use_cached_data_sources
) # download and extract data sources
self.raw_df = pd.read_csv(
filepath_or_buffer=self.doe_energy_burden_source,
# The following need to remain as strings for all of their digits, not get converted to numbers.
dtype={
self.INPUT_GEOID_TRACT_FIELD_NAME: "string",
@ -40,8 +65,10 @@ class DOEEnergyBurden(ExtractTransformLoad):
low_memory=False,
)
def transform(self) -> None:
logger.debug("Renaming columns and ensuring output format is correct")
output_df = raw_df.rename(
output_df = self.raw_df.rename(
columns={
self.INPUT_ENERGY_BURDEN_FIELD_NAME: self.REVISED_ENERGY_BURDEN_FIELD_NAME,
self.INPUT_GEOID_TRACT_FIELD_NAME: self.GEOID_TRACT_FIELD_NAME,