Add ability to cache ETL data sources (#2169)

* Add a rough prototype allowing a developer to pre-download data sources for all ETLs

* Update code to be more production-ish

* Move fetch to Extract part of ETL
* Create a downloader to house all downloading operations
* Remove unnecessary "name" in data source

* Format source files with black

* Fix issues from pylint and get the tests working with the new folder structure

* Clean up files with black

* Fix unzip test

* Add caching notes to README

* Fix tests (linting and case sensitivity bug)

* Address PR comments and add API keys for census where missing

* Merging comparator changes from main into this branch for the sake of the PR

* Add note on using cache (-u) during pipeline
This commit is contained in:
Travis Newby 2023-03-03 12:26:24 -06:00 committed by GitHub
commit 6f39033dde
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
52 changed files with 1787 additions and 686 deletions

View file

@ -1,6 +1,8 @@
import numpy as np
import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.datasource import DataSource
from data_pipeline.etl.datasource import FileDataSource
from data_pipeline.score import field_names
from data_pipeline.utils import get_module_logger
from data_pipeline.config import settings
@ -11,22 +13,28 @@ logger = get_module_logger(__name__)
class CDCSVIIndex(ExtractTransformLoad):
"""CDC SVI Index class ingests 2018 dataset located
here: https://www.atsdr.cdc.gov/placeandhealth/svi/index.html
Please see the README in this module for further details.
"""
def __init__(self):
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "cdc_svi_index"
# fetch
if settings.DATASOURCE_RETRIEVAL_FROM_AWS:
self.CDC_SVI_INDEX_URL = (
self.cdc_svi_index_url = (
f"{settings.AWS_JUSTICE40_DATASOURCES_URL}/raw-data-sources/"
"cdc_svi_index/SVI2018_US.csv"
)
else:
self.CDC_SVI_INDEX_URL = "https://svi.cdc.gov/Documents/Data/2018_SVI_Data/CSV/SVI2018_US.csv"
self.cdc_svi_index_url = "https://svi.cdc.gov/Documents/Data/2018_SVI_Data/CSV/SVI2018_US.csv"
# input
self.svi_source = self.get_sources_path() / "SVI2018_US.csv"
# output
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "cdc_svi_index"
self.CDC_RPL_THEMES_THRESHOLD = 0.90
self.CDC_SVI_INDEX_TRACTS_FIPS_CODE = "FIPS"
self.COLUMNS_TO_KEEP = [
@ -47,9 +55,21 @@ class CDCSVIIndex(ExtractTransformLoad):
self.df: pd.DataFrame
def extract(self) -> None:
def get_data_sources(self) -> [DataSource]:
return [
FileDataSource(
source=self.cdc_svi_index_url, destination=self.svi_source
)
]
def extract(self, use_cached_data_sources: bool = False) -> None:
super().extract(
use_cached_data_sources
) # download and extract data sources
self.df = pd.read_csv(
filepath_or_buffer=self.CDC_SVI_INDEX_URL,
filepath_or_buffer=self.svi_source,
dtype={self.CDC_SVI_INDEX_TRACTS_FIPS_CODE: "string"},
low_memory=False,
)
@ -107,8 +127,8 @@ class CDCSVIIndex(ExtractTransformLoad):
)
def load(self) -> None:
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
self.df[self.COLUMNS_TO_KEEP].to_csv(
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
)