mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-08-05 22:04:19 -07:00
Issue 1007: remove some recent additions to Definition L (#1008)
This commit is contained in:
parent
1a61026ecf
commit
524b822651
1 changed files with 0 additions and 75 deletions
|
@ -177,8 +177,6 @@ class ScoreL(Score):
|
||||||
field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_FIELD,
|
field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_FIELD,
|
||||||
field_names.EXPECTED_AGRICULTURE_LOSS_RATE_LOW_INCOME_FIELD,
|
field_names.EXPECTED_AGRICULTURE_LOSS_RATE_LOW_INCOME_FIELD,
|
||||||
field_names.EXPECTED_BUILDING_LOSS_RATE_LOW_INCOME_FIELD,
|
field_names.EXPECTED_BUILDING_LOSS_RATE_LOW_INCOME_FIELD,
|
||||||
field_names.EXTREME_HEAT_MEDIAN_HOUSE_VALUE_LOW_INCOME_FIELD,
|
|
||||||
field_names.IMPENETRABLE_SURFACES_LOW_INCOME_FIELD,
|
|
||||||
]
|
]
|
||||||
|
|
||||||
expected_population_loss_threshold = (
|
expected_population_loss_threshold = (
|
||||||
|
@ -205,28 +203,6 @@ class ScoreL(Score):
|
||||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||||
)
|
)
|
||||||
|
|
||||||
extreme_heat_median_home_value_threshold = (
|
|
||||||
self.df[
|
|
||||||
field_names.EXTREME_HEAT_FIELD
|
|
||||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
|
||||||
]
|
|
||||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
|
||||||
) & (
|
|
||||||
self.df[
|
|
||||||
field_names.MEDIAN_HOUSE_VALUE_FIELD
|
|
||||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
|
||||||
]
|
|
||||||
<= self.MEDIAN_HOUSE_VALUE_THRESHOLD
|
|
||||||
)
|
|
||||||
|
|
||||||
impenetrable_surfaces_threshold = (
|
|
||||||
self.df[
|
|
||||||
field_names.IMPENETRABLE_SURFACES_FIELD
|
|
||||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
|
||||||
]
|
|
||||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
|
||||||
)
|
|
||||||
|
|
||||||
self.df[field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_FIELD] = (
|
self.df[field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_FIELD] = (
|
||||||
expected_population_loss_threshold
|
expected_population_loss_threshold
|
||||||
& self.df[field_names.FPL_200_SERIES]
|
& self.df[field_names.FPL_200_SERIES]
|
||||||
|
@ -242,18 +218,6 @@ class ScoreL(Score):
|
||||||
& self.df[field_names.FPL_200_SERIES]
|
& self.df[field_names.FPL_200_SERIES]
|
||||||
)
|
)
|
||||||
|
|
||||||
self.df[
|
|
||||||
field_names.EXTREME_HEAT_MEDIAN_HOUSE_VALUE_LOW_INCOME_FIELD
|
|
||||||
] = (
|
|
||||||
extreme_heat_median_home_value_threshold
|
|
||||||
& self.df[field_names.FPL_200_SERIES]
|
|
||||||
)
|
|
||||||
|
|
||||||
self.df[field_names.IMPENETRABLE_SURFACES_LOW_INCOME_FIELD] = (
|
|
||||||
impenetrable_surfaces_threshold
|
|
||||||
& self.df[field_names.FPL_200_SERIES]
|
|
||||||
)
|
|
||||||
|
|
||||||
self._increment_total_eligibility_exceeded(climate_eligibility_columns)
|
self._increment_total_eligibility_exceeded(climate_eligibility_columns)
|
||||||
|
|
||||||
return self.df[climate_eligibility_columns].any(axis="columns")
|
return self.df[climate_eligibility_columns].any(axis="columns")
|
||||||
|
@ -407,8 +371,6 @@ class ScoreL(Score):
|
||||||
field_names.RMP_LOW_INCOME_FIELD,
|
field_names.RMP_LOW_INCOME_FIELD,
|
||||||
field_names.SUPERFUND_LOW_INCOME_FIELD,
|
field_names.SUPERFUND_LOW_INCOME_FIELD,
|
||||||
field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD,
|
field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD,
|
||||||
field_names.AIR_TOXICS_CANCER_RISK_LOW_INCOME_FIELD,
|
|
||||||
field_names.RESPIRATORY_HAZARD_LOW_INCOME_FIELD,
|
|
||||||
]
|
]
|
||||||
|
|
||||||
rmp_sites_threshold = (
|
rmp_sites_threshold = (
|
||||||
|
@ -428,22 +390,6 @@ class ScoreL(Score):
|
||||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||||
)
|
)
|
||||||
|
|
||||||
air_toxics_cancer_risk_threshold = (
|
|
||||||
self.df[
|
|
||||||
field_names.AIR_TOXICS_CANCER_RISK_FIELD
|
|
||||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
|
||||||
]
|
|
||||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
|
||||||
)
|
|
||||||
|
|
||||||
respiratory_hazard_risk_threshold = (
|
|
||||||
self.df[
|
|
||||||
field_names.RESPIRATORY_HAZARD_FIELD
|
|
||||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
|
||||||
]
|
|
||||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
|
||||||
)
|
|
||||||
|
|
||||||
# individual series-by-series
|
# individual series-by-series
|
||||||
self.df[field_names.RMP_LOW_INCOME_FIELD] = (
|
self.df[field_names.RMP_LOW_INCOME_FIELD] = (
|
||||||
rmp_sites_threshold & self.df[field_names.FPL_200_SERIES]
|
rmp_sites_threshold & self.df[field_names.FPL_200_SERIES]
|
||||||
|
@ -454,14 +400,6 @@ class ScoreL(Score):
|
||||||
self.df[field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD] = (
|
self.df[field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD] = (
|
||||||
tsdf_sites_threshold & self.df[field_names.FPL_200_SERIES]
|
tsdf_sites_threshold & self.df[field_names.FPL_200_SERIES]
|
||||||
)
|
)
|
||||||
self.df[field_names.AIR_TOXICS_CANCER_RISK_LOW_INCOME_FIELD] = (
|
|
||||||
air_toxics_cancer_risk_threshold
|
|
||||||
& self.df[field_names.FPL_200_SERIES]
|
|
||||||
)
|
|
||||||
self.df[field_names.RESPIRATORY_HAZARD_LOW_INCOME_FIELD] = (
|
|
||||||
respiratory_hazard_risk_threshold
|
|
||||||
& self.df[field_names.FPL_200_SERIES]
|
|
||||||
)
|
|
||||||
|
|
||||||
self._increment_total_eligibility_exceeded(
|
self._increment_total_eligibility_exceeded(
|
||||||
pollution_eligibility_columns
|
pollution_eligibility_columns
|
||||||
|
@ -593,7 +531,6 @@ class ScoreL(Score):
|
||||||
field_names.POVERTY_LOW_HS_EDUCATION_FIELD,
|
field_names.POVERTY_LOW_HS_EDUCATION_FIELD,
|
||||||
field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD,
|
field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD,
|
||||||
field_names.MEDIAN_INCOME_LOW_HS_EDUCATION_FIELD,
|
field_names.MEDIAN_INCOME_LOW_HS_EDUCATION_FIELD,
|
||||||
field_names.LOW_READING_LOW_HS_EDUCATION_FIELD,
|
|
||||||
]
|
]
|
||||||
|
|
||||||
high_scool_achievement_rate_threshold = (
|
high_scool_achievement_rate_threshold = (
|
||||||
|
@ -635,14 +572,6 @@ class ScoreL(Score):
|
||||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||||
)
|
)
|
||||||
|
|
||||||
low_reading_threshold = (
|
|
||||||
self.df[
|
|
||||||
field_names.LOW_READING_FIELD
|
|
||||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
|
||||||
]
|
|
||||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
|
||||||
)
|
|
||||||
|
|
||||||
self.df[field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD] = (
|
self.df[field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD] = (
|
||||||
linguistic_isolation_threshold
|
linguistic_isolation_threshold
|
||||||
& high_scool_achievement_rate_threshold
|
& high_scool_achievement_rate_threshold
|
||||||
|
@ -660,10 +589,6 @@ class ScoreL(Score):
|
||||||
unemployment_threshold & high_scool_achievement_rate_threshold
|
unemployment_threshold & high_scool_achievement_rate_threshold
|
||||||
)
|
)
|
||||||
|
|
||||||
self.df[field_names.LOW_READING_LOW_HS_EDUCATION_FIELD] = (
|
|
||||||
low_reading_threshold & high_scool_achievement_rate_threshold
|
|
||||||
)
|
|
||||||
|
|
||||||
workforce_combined_criteria_for_states = self.df[
|
workforce_combined_criteria_for_states = self.df[
|
||||||
workforce_eligibility_columns
|
workforce_eligibility_columns
|
||||||
].any(axis="columns")
|
].any(axis="columns")
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue