diff --git a/data/data-pipeline/data_pipeline/score/score_l.py b/data/data-pipeline/data_pipeline/score/score_l.py index 64976d80..b9e46051 100644 --- a/data/data-pipeline/data_pipeline/score/score_l.py +++ b/data/data-pipeline/data_pipeline/score/score_l.py @@ -177,8 +177,6 @@ class ScoreL(Score): field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_FIELD, field_names.EXPECTED_AGRICULTURE_LOSS_RATE_LOW_INCOME_FIELD, field_names.EXPECTED_BUILDING_LOSS_RATE_LOW_INCOME_FIELD, - field_names.EXTREME_HEAT_MEDIAN_HOUSE_VALUE_LOW_INCOME_FIELD, - field_names.IMPENETRABLE_SURFACES_LOW_INCOME_FIELD, ] expected_population_loss_threshold = ( @@ -205,28 +203,6 @@ class ScoreL(Score): >= self.ENVIRONMENTAL_BURDEN_THRESHOLD ) - extreme_heat_median_home_value_threshold = ( - self.df[ - field_names.EXTREME_HEAT_FIELD - + field_names.PERCENTILE_FIELD_SUFFIX - ] - >= self.ENVIRONMENTAL_BURDEN_THRESHOLD - ) & ( - self.df[ - field_names.MEDIAN_HOUSE_VALUE_FIELD - + field_names.PERCENTILE_FIELD_SUFFIX - ] - <= self.MEDIAN_HOUSE_VALUE_THRESHOLD - ) - - impenetrable_surfaces_threshold = ( - self.df[ - field_names.IMPENETRABLE_SURFACES_FIELD - + field_names.PERCENTILE_FIELD_SUFFIX - ] - >= self.ENVIRONMENTAL_BURDEN_THRESHOLD - ) - self.df[field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_FIELD] = ( expected_population_loss_threshold & self.df[field_names.FPL_200_SERIES] @@ -242,18 +218,6 @@ class ScoreL(Score): & self.df[field_names.FPL_200_SERIES] ) - self.df[ - field_names.EXTREME_HEAT_MEDIAN_HOUSE_VALUE_LOW_INCOME_FIELD - ] = ( - extreme_heat_median_home_value_threshold - & self.df[field_names.FPL_200_SERIES] - ) - - self.df[field_names.IMPENETRABLE_SURFACES_LOW_INCOME_FIELD] = ( - impenetrable_surfaces_threshold - & self.df[field_names.FPL_200_SERIES] - ) - self._increment_total_eligibility_exceeded(climate_eligibility_columns) return self.df[climate_eligibility_columns].any(axis="columns") @@ -407,8 +371,6 @@ class ScoreL(Score): field_names.RMP_LOW_INCOME_FIELD, field_names.SUPERFUND_LOW_INCOME_FIELD, field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD, - field_names.AIR_TOXICS_CANCER_RISK_LOW_INCOME_FIELD, - field_names.RESPIRATORY_HAZARD_LOW_INCOME_FIELD, ] rmp_sites_threshold = ( @@ -428,22 +390,6 @@ class ScoreL(Score): >= self.ENVIRONMENTAL_BURDEN_THRESHOLD ) - air_toxics_cancer_risk_threshold = ( - self.df[ - field_names.AIR_TOXICS_CANCER_RISK_FIELD - + field_names.PERCENTILE_FIELD_SUFFIX - ] - >= self.ENVIRONMENTAL_BURDEN_THRESHOLD - ) - - respiratory_hazard_risk_threshold = ( - self.df[ - field_names.RESPIRATORY_HAZARD_FIELD - + field_names.PERCENTILE_FIELD_SUFFIX - ] - >= self.ENVIRONMENTAL_BURDEN_THRESHOLD - ) - # individual series-by-series self.df[field_names.RMP_LOW_INCOME_FIELD] = ( rmp_sites_threshold & self.df[field_names.FPL_200_SERIES] @@ -454,14 +400,6 @@ class ScoreL(Score): self.df[field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD] = ( tsdf_sites_threshold & self.df[field_names.FPL_200_SERIES] ) - self.df[field_names.AIR_TOXICS_CANCER_RISK_LOW_INCOME_FIELD] = ( - air_toxics_cancer_risk_threshold - & self.df[field_names.FPL_200_SERIES] - ) - self.df[field_names.RESPIRATORY_HAZARD_LOW_INCOME_FIELD] = ( - respiratory_hazard_risk_threshold - & self.df[field_names.FPL_200_SERIES] - ) self._increment_total_eligibility_exceeded( pollution_eligibility_columns @@ -593,7 +531,6 @@ class ScoreL(Score): field_names.POVERTY_LOW_HS_EDUCATION_FIELD, field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD, field_names.MEDIAN_INCOME_LOW_HS_EDUCATION_FIELD, - field_names.LOW_READING_LOW_HS_EDUCATION_FIELD, ] high_scool_achievement_rate_threshold = ( @@ -635,14 +572,6 @@ class ScoreL(Score): >= self.ENVIRONMENTAL_BURDEN_THRESHOLD ) - low_reading_threshold = ( - self.df[ - field_names.LOW_READING_FIELD - + field_names.PERCENTILE_FIELD_SUFFIX - ] - >= self.ENVIRONMENTAL_BURDEN_THRESHOLD - ) - self.df[field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD] = ( linguistic_isolation_threshold & high_scool_achievement_rate_threshold @@ -660,10 +589,6 @@ class ScoreL(Score): unemployment_threshold & high_scool_achievement_rate_threshold ) - self.df[field_names.LOW_READING_LOW_HS_EDUCATION_FIELD] = ( - low_reading_threshold & high_scool_achievement_rate_threshold - ) - workforce_combined_criteria_for_states = self.df[ workforce_eligibility_columns ].any(axis="columns")