mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-28 23:01:16 -07:00
Issue 1007: remove some recent additions to Definition L (#1008)
This commit is contained in:
parent
1a61026ecf
commit
524b822651
1 changed files with 0 additions and 75 deletions
|
@ -177,8 +177,6 @@ class ScoreL(Score):
|
|||
field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_FIELD,
|
||||
field_names.EXPECTED_AGRICULTURE_LOSS_RATE_LOW_INCOME_FIELD,
|
||||
field_names.EXPECTED_BUILDING_LOSS_RATE_LOW_INCOME_FIELD,
|
||||
field_names.EXTREME_HEAT_MEDIAN_HOUSE_VALUE_LOW_INCOME_FIELD,
|
||||
field_names.IMPENETRABLE_SURFACES_LOW_INCOME_FIELD,
|
||||
]
|
||||
|
||||
expected_population_loss_threshold = (
|
||||
|
@ -205,28 +203,6 @@ class ScoreL(Score):
|
|||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||
)
|
||||
|
||||
extreme_heat_median_home_value_threshold = (
|
||||
self.df[
|
||||
field_names.EXTREME_HEAT_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
]
|
||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||
) & (
|
||||
self.df[
|
||||
field_names.MEDIAN_HOUSE_VALUE_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
]
|
||||
<= self.MEDIAN_HOUSE_VALUE_THRESHOLD
|
||||
)
|
||||
|
||||
impenetrable_surfaces_threshold = (
|
||||
self.df[
|
||||
field_names.IMPENETRABLE_SURFACES_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
]
|
||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||
)
|
||||
|
||||
self.df[field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_FIELD] = (
|
||||
expected_population_loss_threshold
|
||||
& self.df[field_names.FPL_200_SERIES]
|
||||
|
@ -242,18 +218,6 @@ class ScoreL(Score):
|
|||
& self.df[field_names.FPL_200_SERIES]
|
||||
)
|
||||
|
||||
self.df[
|
||||
field_names.EXTREME_HEAT_MEDIAN_HOUSE_VALUE_LOW_INCOME_FIELD
|
||||
] = (
|
||||
extreme_heat_median_home_value_threshold
|
||||
& self.df[field_names.FPL_200_SERIES]
|
||||
)
|
||||
|
||||
self.df[field_names.IMPENETRABLE_SURFACES_LOW_INCOME_FIELD] = (
|
||||
impenetrable_surfaces_threshold
|
||||
& self.df[field_names.FPL_200_SERIES]
|
||||
)
|
||||
|
||||
self._increment_total_eligibility_exceeded(climate_eligibility_columns)
|
||||
|
||||
return self.df[climate_eligibility_columns].any(axis="columns")
|
||||
|
@ -407,8 +371,6 @@ class ScoreL(Score):
|
|||
field_names.RMP_LOW_INCOME_FIELD,
|
||||
field_names.SUPERFUND_LOW_INCOME_FIELD,
|
||||
field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD,
|
||||
field_names.AIR_TOXICS_CANCER_RISK_LOW_INCOME_FIELD,
|
||||
field_names.RESPIRATORY_HAZARD_LOW_INCOME_FIELD,
|
||||
]
|
||||
|
||||
rmp_sites_threshold = (
|
||||
|
@ -428,22 +390,6 @@ class ScoreL(Score):
|
|||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||
)
|
||||
|
||||
air_toxics_cancer_risk_threshold = (
|
||||
self.df[
|
||||
field_names.AIR_TOXICS_CANCER_RISK_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
]
|
||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||
)
|
||||
|
||||
respiratory_hazard_risk_threshold = (
|
||||
self.df[
|
||||
field_names.RESPIRATORY_HAZARD_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
]
|
||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||
)
|
||||
|
||||
# individual series-by-series
|
||||
self.df[field_names.RMP_LOW_INCOME_FIELD] = (
|
||||
rmp_sites_threshold & self.df[field_names.FPL_200_SERIES]
|
||||
|
@ -454,14 +400,6 @@ class ScoreL(Score):
|
|||
self.df[field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD] = (
|
||||
tsdf_sites_threshold & self.df[field_names.FPL_200_SERIES]
|
||||
)
|
||||
self.df[field_names.AIR_TOXICS_CANCER_RISK_LOW_INCOME_FIELD] = (
|
||||
air_toxics_cancer_risk_threshold
|
||||
& self.df[field_names.FPL_200_SERIES]
|
||||
)
|
||||
self.df[field_names.RESPIRATORY_HAZARD_LOW_INCOME_FIELD] = (
|
||||
respiratory_hazard_risk_threshold
|
||||
& self.df[field_names.FPL_200_SERIES]
|
||||
)
|
||||
|
||||
self._increment_total_eligibility_exceeded(
|
||||
pollution_eligibility_columns
|
||||
|
@ -593,7 +531,6 @@ class ScoreL(Score):
|
|||
field_names.POVERTY_LOW_HS_EDUCATION_FIELD,
|
||||
field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD,
|
||||
field_names.MEDIAN_INCOME_LOW_HS_EDUCATION_FIELD,
|
||||
field_names.LOW_READING_LOW_HS_EDUCATION_FIELD,
|
||||
]
|
||||
|
||||
high_scool_achievement_rate_threshold = (
|
||||
|
@ -635,14 +572,6 @@ class ScoreL(Score):
|
|||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||
)
|
||||
|
||||
low_reading_threshold = (
|
||||
self.df[
|
||||
field_names.LOW_READING_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
]
|
||||
>= self.ENVIRONMENTAL_BURDEN_THRESHOLD
|
||||
)
|
||||
|
||||
self.df[field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD] = (
|
||||
linguistic_isolation_threshold
|
||||
& high_scool_achievement_rate_threshold
|
||||
|
@ -660,10 +589,6 @@ class ScoreL(Score):
|
|||
unemployment_threshold & high_scool_achievement_rate_threshold
|
||||
)
|
||||
|
||||
self.df[field_names.LOW_READING_LOW_HS_EDUCATION_FIELD] = (
|
||||
low_reading_threshold & high_scool_achievement_rate_threshold
|
||||
)
|
||||
|
||||
workforce_combined_criteria_for_states = self.df[
|
||||
workforce_eligibility_columns
|
||||
].any(axis="columns")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue