5646 lines
246 KiB
Text
5646 lines
246 KiB
Text
|
||
|
||
<!DOCTYPE html>
|
||
<html lang="en">
|
||
<head>
|
||
<meta charset="utf-8" />
|
||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||
<title>
|
||
|
||
|
||
Map
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</title>
|
||
|
||
|
||
|
||
<link rel="stylesheet"
|
||
type="text/css"
|
||
href="/dist/custom_fontawesome.ac60244596e1.css">
|
||
<link rel="stylesheet"
|
||
type="text/css"
|
||
href="/dist/application.ca391f6cb6ce.css">
|
||
<link rel="stylesheet" type="text/css" href="/dist/content.124706b6abde.css">
|
||
|
||
|
||
|
||
<script nonce="VGGJL6qR72rqyokScTQSXA=="
|
||
type="text/javascript"
|
||
src="/dist/uswds-init.min.0c5600cc9db1.js"></script>
|
||
|
||
|
||
|
||
<meta name="description"
|
||
content="" />
|
||
|
||
<link rel="canonical" href="/airmf-resources/playbook/map/" />
|
||
<meta property="og:url" content="/airmf-resources/playbook/map/" />
|
||
|
||
|
||
|
||
|
||
<meta name="twitter:card" content="summary" />
|
||
<meta name="twitter:title"
|
||
content="Map " />
|
||
<meta name="twitter:description"
|
||
content="">
|
||
|
||
|
||
|
||
<meta property="og:type" content="website" />
|
||
<meta property="og:title" content="Map" />
|
||
|
||
<meta property="og:description"
|
||
content="" />
|
||
<meta property="og:site_name" content="" />
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</head>
|
||
<body class="
|
||
|
||
layout-styleguide
|
||
|
||
">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a class="usa-skipnav" href="#main-content">Skip to main content</a>
|
||
<div class="app-content">
|
||
|
||
<section class="usa-banner site-banner"
|
||
aria-label="Official website of the United States government">
|
||
<div class="usa-accordion">
|
||
<header class="usa-banner__header">
|
||
<div class="usa-banner__inner">
|
||
<div class="grid-col-auto">
|
||
<img aria-hidden="true"
|
||
class="usa-banner__header-flag"
|
||
src="/img/us_flag_small.png"
|
||
alt="Small US Flag" />
|
||
</div>
|
||
<div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true">
|
||
<p class="usa-banner__header-text">An official website of the United States government</p>
|
||
<p class="usa-banner__header-action">Here’s how you know</p>
|
||
</div>
|
||
<button type="button"
|
||
class="usa-accordion__button usa-banner__button"
|
||
aria-expanded="false"
|
||
aria-controls="gov-banner-default-default">
|
||
<span class="usa-banner__button-text">Here’s how you know</span>
|
||
</button>
|
||
</div>
|
||
</header>
|
||
<div class="usa-banner__content usa-accordion__content"
|
||
id="gov-banner-default-default">
|
||
<div class="grid-row grid-gap-lg">
|
||
<div class="usa-banner__guidance tablet:grid-col-6">
|
||
<img class="usa-banner__icon usa-media-block__img"
|
||
src="/img/icon-dot-gov.svg"
|
||
role="img"
|
||
alt="Small Dot Gov Icon"
|
||
aria-hidden="true" />
|
||
<div class="usa-media-block__body">
|
||
<p>
|
||
<strong>Official websites use .gov</strong>
|
||
<br />
|
||
A
|
||
<strong>.gov</strong> website belongs to an official government
|
||
organization in the United States.
|
||
</p>
|
||
</div>
|
||
</div>
|
||
<div class="usa-banner__guidance tablet:grid-col-6">
|
||
<img class="usa-banner__icon usa-media-block__img"
|
||
src="/img/icon-https.svg"
|
||
role="img"
|
||
alt="Small HTTPS Lock Icon"
|
||
aria-hidden="true" />
|
||
<div class="usa-media-block__body">
|
||
<p>
|
||
<strong>Secure .gov websites use HTTPS</strong>
|
||
<br />
|
||
A
|
||
<strong>lock</strong> (
|
||
<span class="icon-lock">
|
||
<svg xmlns="http://www.w3.org/2000/svg"
|
||
width="52"
|
||
height="64"
|
||
viewBox="0 0 52 64"
|
||
class="usa-banner__lock-image"
|
||
role="img"
|
||
aria-labelledby="banner-lock-description-default"
|
||
focusable="false">
|
||
<title id="banner-lock-title-default">Lock</title>
|
||
<desc id="banner-lock-description-default">Locked padlock icon</desc>
|
||
<path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" />
|
||
</svg>
|
||
</span>) or <strong>https://</strong> means you’ve safely connected to
|
||
the .gov website. Share sensitive information only on official,
|
||
secure websites.
|
||
</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
|
||
<a class="usa-skipnav" href="#main-content">Skip to main content</a>
|
||
|
||
|
||
<header class="usa-header usa-header--extended site-header site-header--dark"
|
||
role="banner">
|
||
<div class="usa-navbar site-header__navbar">
|
||
<a href="https://www.nist.gov"
|
||
title="National Institute of Standards and Technology"
|
||
aria-label="Home">
|
||
<img src="/img/nist_logo_brand_white.svg"
|
||
role="img"
|
||
class="nist-logo"
|
||
alt="National Institute of Standards and Technology logo" />
|
||
</a>
|
||
<button type="button" class="usa-menu-btn">Menu</button>
|
||
</div>
|
||
</header>
|
||
<div class="usa-overlay"></div>
|
||
|
||
<nav aria-label="Main Site navigation" class="usa-nav site-nav">
|
||
<div class="usa-nav__inner site-nav__inner nav-header">
|
||
<button type="button" class="usa-nav__close">
|
||
<img src="/img/usa-icons/close.svg" role="img" alt="Close" />
|
||
</button>
|
||
<ul class="usa-nav__primary usa-accordion airc-nav-list">
|
||
<li class="usa-nav__primary-item">
|
||
<div class="usa-logo site-logo" id="-logo">
|
||
<em class="usa-logo__text site-logo__text site-nav-text">
|
||
<a href="/" title="Trustworthy & Responsible AI Resource Center">
|
||
<span aria-hidden="true" class="site-title--short">AIRMF</span>
|
||
<span class="site-title--long">Trustworthy & Responsible AI Resource Center</span>
|
||
</a>
|
||
</em>
|
||
</div>
|
||
</li>
|
||
<!-- Mobile-nav -->
|
||
|
||
|
||
<ul class="usa-nav__primary usa-nav__primary--mobile usa-accordion emp-mobilenav"
|
||
id="airc-mobile-bar">
|
||
|
||
|
||
<li class="usa-nav__primary-item is-current ">
|
||
<a href="/"
|
||
|
||
class="usa-current"
|
||
>
|
||
|
||
<span>Home</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
<li class="usa-nav__primary-item is-current ">
|
||
<a href="/airmf-resources/"
|
||
class="usa-current
|
||
sb-menu
|
||
|
||
"
|
||
id="mentgl_4"
|
||
>
|
||
|
||
<span>AI RMF Resources</span>
|
||
<span class="caret"></span>
|
||
</a>
|
||
|
||
|
||
|
||
|
||
<ul class="usa-sidenav__sublist" id="mentgl_4">
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item ">
|
||
|
||
<a href="/airmf-resources/airmf/"
|
||
class="
|
||
sb-menu
|
||
"
|
||
|
||
id="mentgl_5"
|
||
|
||
>
|
||
<span>AI RMF</span>
|
||
<span class="caret"></span>
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item is-current ">
|
||
|
||
<a href="/airmf-resources/playbook/"
|
||
class="usa-current
|
||
sb-menu
|
||
"
|
||
|
||
id="mentgl_18"
|
||
|
||
>
|
||
<span>Playbook</span>
|
||
<span class="caret"></span>
|
||
</a>
|
||
|
||
|
||
|
||
|
||
<ul class="usa-sidenav__sublist" id="mentgl_18">
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item ">
|
||
|
||
<a href="/airmf-resources/playbook/govern/"
|
||
|
||
class=""
|
||
>
|
||
<span>Govern</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item is-current ">
|
||
|
||
<a href="/airmf-resources/playbook/map/"
|
||
|
||
class="usa-current"
|
||
>
|
||
<span>Map</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item ">
|
||
|
||
<a href="/airmf-resources/playbook/measure/"
|
||
|
||
class=""
|
||
>
|
||
<span>Measure</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item ">
|
||
|
||
<a href="/airmf-resources/playbook/manage/"
|
||
|
||
class=""
|
||
>
|
||
<span>Manage</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item ">
|
||
|
||
<a href="/airmf-resources/playbook/audit-log/"
|
||
|
||
class=""
|
||
>
|
||
<span>Audit Log</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item ">
|
||
|
||
<a href="/airmf-resources/playbook/faq/"
|
||
|
||
class=""
|
||
>
|
||
<span>FAQ</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
<style nonce="VGGJL6qR72rqyokScTQSXA==">
|
||
ul.usa-sidenav__sublist::marker,
|
||
li.usa-nav__submenu-item::marker {
|
||
content: ' ';
|
||
font-size: 1.2em;
|
||
}
|
||
</style>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item ">
|
||
|
||
<a href="/airmf-resources/roadmap/"
|
||
|
||
class=""
|
||
>
|
||
<span>Roadmap</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item ">
|
||
|
||
<a href="/airmf-resources/usecases/"
|
||
|
||
class=""
|
||
>
|
||
<span>Example of Use Cases</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-nav__submenu-item ">
|
||
|
||
<a href="/airmf-resources/crosswalks/"
|
||
|
||
class=""
|
||
>
|
||
<span>Crosswalk Documents</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
<style nonce="VGGJL6qR72rqyokScTQSXA==">
|
||
ul.usa-sidenav__sublist::marker,
|
||
li.usa-nav__submenu-item::marker {
|
||
content: ' ';
|
||
font-size: 1.2em;
|
||
}
|
||
</style>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
|
||
<li class="usa-nav__primary-item ">
|
||
<a href="/glossary/"
|
||
|
||
class=""
|
||
>
|
||
|
||
<span>Glossary</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
<li class="usa-nav__primary-item ">
|
||
<a href="/technical-reports/"
|
||
|
||
class=""
|
||
>
|
||
|
||
<span>Technical Reports</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
<!-- end Mobile nav -->
|
||
</ul>
|
||
|
||
|
||
|
||
<div class="usa-nav__secondary">
|
||
<form id="search_form-mobile"
|
||
class="site-search usa-search usa-search--small flex-fill"
|
||
action="/search"
|
||
accept-charset="UTF-8"
|
||
method="get">
|
||
<!-- input name="utf8" type="hidden" value="✓" /-->
|
||
<input type="hidden" name="affiliate" id="affiliate-mobile" value="uswds" />
|
||
<div role="search">
|
||
<label class="usa-sr-only" for="query-mobile">Search the AIRC Website</label>
|
||
<input id="query-mobile"
|
||
class="usa-input usagov-search-autocomplete"
|
||
name="query"
|
||
type="search"
|
||
placeholder="Search AIRC Website"
|
||
autocomplete="off" />
|
||
<button class="site-search__button usa-button margin-top-0"
|
||
type="submit"
|
||
name="commit">
|
||
<img src="/img/usa-icons-bg/search--white.svg"
|
||
class="usa-search__submit-icon"
|
||
alt="Search">
|
||
</button>
|
||
</div>
|
||
</form>
|
||
</div>
|
||
</div>
|
||
</nav>
|
||
|
||
|
||
|
||
|
||
|
||
<div class="default-container">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<nav class="usa-breadcrumb site-breadcrumbs" aria-label="Breadcrumbs">
|
||
|
||
<ol class="usa-breadcrumb__list">
|
||
|
||
|
||
|
||
|
||
<li class="usa-breadcrumb__list-item">
|
||
<span class="usa-breadcrumb__link">
|
||
|
||
|
||
<a href="/">Home</a>
|
||
|
||
</span>
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-breadcrumb__list-item">
|
||
<span class="usa-breadcrumb__link">
|
||
|
||
|
||
<a href="/airmf-resources/">AI RMF Resources</a>
|
||
|
||
</span>
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-breadcrumb__list-item">
|
||
<span class="usa-breadcrumb__link">
|
||
|
||
|
||
<a href="/airmf-resources/playbook/">Playbook</a>
|
||
|
||
</span>
|
||
</li>
|
||
|
||
|
||
<li class="usa-breadcrumb__link active">Map</li>
|
||
</ol>
|
||
|
||
</nav>
|
||
|
||
|
||
|
||
|
||
|
||
<div id="user-content-root">
|
||
|
||
|
||
<aside class="sidenav emp-sidenav padding-top-1"
|
||
id="page-side-navigation"
|
||
aria-label="Side Navigation">
|
||
<ul class="site-sidenav usa-sidenav usa-accordion" id="airc-sidebar">
|
||
|
||
|
||
|
||
<li class="usa-sidenav__item is-current">
|
||
|
||
<a href="/"
|
||
|
||
class="usa-current"
|
||
>
|
||
<span>Home</span>
|
||
|
||
</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sidenav__item is-current">
|
||
|
||
<a href="/airmf-resources/"
|
||
class="usa-current
|
||
sb-menu
|
||
|
||
"
|
||
id="ddtoggle_4"
|
||
>
|
||
<span>AI RMF Resources</span>
|
||
<span class="caret"></span>
|
||
</a>
|
||
|
||
|
||
|
||
|
||
<ul class="usa-sidenav__sublist" id="ddtoggle_4">
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item ">
|
||
|
||
<a href="/airmf-resources/airmf/"
|
||
class="
|
||
sb-menu
|
||
"
|
||
|
||
id="ddtoggle_5"
|
||
|
||
>
|
||
<span>AI RMF</span>
|
||
<span class="caret"></span>
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item is-current">
|
||
|
||
<a href="/airmf-resources/playbook/"
|
||
class="usa-current
|
||
sb-menu
|
||
"
|
||
|
||
id="ddtoggle_18"
|
||
|
||
>
|
||
<span>Playbook</span>
|
||
<span class="caret"></span>
|
||
</a>
|
||
|
||
|
||
|
||
<ul class="usa-sidenav__sublist" id="ddtoggle_18">
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item ">
|
||
|
||
<a href="/airmf-resources/playbook/govern/"
|
||
|
||
class=""
|
||
>
|
||
<span>Govern</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item is-current">
|
||
|
||
<a href="/airmf-resources/playbook/map/"
|
||
|
||
class="usa-current"
|
||
>
|
||
<span>Map</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item ">
|
||
|
||
<a href="/airmf-resources/playbook/measure/"
|
||
|
||
class=""
|
||
>
|
||
<span>Measure</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item ">
|
||
|
||
<a href="/airmf-resources/playbook/manage/"
|
||
|
||
class=""
|
||
>
|
||
<span>Manage</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item ">
|
||
|
||
<a href="/airmf-resources/playbook/audit-log/"
|
||
|
||
class=""
|
||
>
|
||
<span>Audit Log</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item ">
|
||
|
||
<a href="/airmf-resources/playbook/faq/"
|
||
|
||
class=""
|
||
>
|
||
<span>FAQ</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item ">
|
||
|
||
<a href="/airmf-resources/roadmap/"
|
||
|
||
class=""
|
||
>
|
||
<span>Roadmap</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item ">
|
||
|
||
<a href="/airmf-resources/usecases/"
|
||
|
||
class=""
|
||
>
|
||
<span>Example of Use Cases</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sitenav__item ">
|
||
|
||
<a href="/airmf-resources/crosswalks/"
|
||
|
||
class=""
|
||
>
|
||
<span>Crosswalk Documents</span>
|
||
|
||
</a>
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sidenav__item">
|
||
|
||
<a href="/glossary/"
|
||
|
||
class=""
|
||
>
|
||
<span>Glossary</span>
|
||
|
||
</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
|
||
|
||
<li class="usa-sidenav__item">
|
||
|
||
<a href="/technical-reports/"
|
||
|
||
class=""
|
||
>
|
||
<span>Technical Reports</span>
|
||
|
||
</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
</aside>
|
||
|
||
<div class="usa-in-page-nav-container site-in-page-nav-container">
|
||
|
||
|
||
<aside class="usa-in-page-nav">
|
||
</aside>
|
||
|
||
<main id="main-content" class="main-content">
|
||
|
||
|
||
<div class="grid-container"><style>
|
||
aside.usa-in-page-nav li.usa-in-page-nav__item--sub-item {
|
||
margin-left: 0.25rem;
|
||
}
|
||
</style>
|
||
|
||
<div class="pbindex grid-container" id="pbindex-Map">
|
||
<ul class="usa-button-group flex-justify-end">
|
||
<li class="usa-button-group__item">
|
||
<button
|
||
id="pbindex-button-expand"
|
||
class="usa-button usa-button--outline pbindex-event"
|
||
>
|
||
Expand All
|
||
</button>
|
||
</li>
|
||
<li class="usa-button-group__item">
|
||
<button
|
||
id="pbindex-button-collapse"
|
||
class="usa-button usa-button--outline pbindex-event"
|
||
>
|
||
Collapse All
|
||
</button>
|
||
</li>
|
||
</ul>
|
||
<h1>Map</h1>
|
||
|
||
<ul id="Map" class="pbindex__top-ul">
|
||
<li>
|
||
<h2 class="pbindex__top__heading">Map 1</h2>
|
||
<p class="usa-intro pbindex__top__title">
|
||
Context is established and understood.
|
||
</p>
|
||
<ul class="pbindex__subcat-ul">
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%201.1"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 1.1"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 1.1
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Intended purpose, potentially beneficial uses, context-specific
|
||
laws, norms and expectations, and prospective settings in which
|
||
the AI system will be deployed are understood and documented.
|
||
Considerations include: specific set or types of users along with
|
||
their expectations; potential positive and negative impacts of
|
||
system uses to individuals, communities, organizations, society,
|
||
and the planet; assumptions and related limitations about AI
|
||
system purposes; uses and risks across the development or product
|
||
AI lifecycle; TEVV and system metrics.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 1.1"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Highly accurate and optimized systems can cause harm.
|
||
Relatedly, organizations should expect broadly deployed AI
|
||
tools to be reused, repurposed, and potentially misused
|
||
regardless of intentions.
|
||
</p>
|
||
<p>
|
||
AI actors can work collaboratively, and with external
|
||
parties such as community groups, to help delineate the
|
||
bounds of acceptable deployment, consider preferable
|
||
alternatives, and identify principles and strategies to
|
||
manage likely risks. Context mapping is the first step in
|
||
this effort, and may include examination of the following:
|
||
</p>
|
||
<ul>
|
||
<li>intended purpose and impact of system use.</li>
|
||
<li>concept of operations.</li>
|
||
<li>
|
||
intended, prospective, and actual deployment setting.
|
||
</li>
|
||
<li>requirements for system deployment and operation.</li>
|
||
<li>end user and operator expectations.</li>
|
||
<li>specific set or types of end users.</li>
|
||
<li>
|
||
potential negative impacts to individuals, groups,
|
||
communities, organizations, and society – or
|
||
context-specific impacts such as legal requirements or
|
||
impacts to the environment.
|
||
</li>
|
||
<li>
|
||
unanticipated, downstream, or other unknown contextual
|
||
factors.
|
||
</li>
|
||
<li>how AI system changes connect to impacts.</li>
|
||
</ul>
|
||
<p>
|
||
These types of processes can assist AI actors in
|
||
understanding how limitations, constraints, and other
|
||
realities associated with the deployment and use of AI
|
||
technology can create impacts once they are deployed or
|
||
operate in the real world. When coupled with the enhanced
|
||
organizational culture resulting from the established
|
||
policies and procedures in the Govern function, the Map
|
||
function can provide opportunities to foster and instill
|
||
new perspectives, activities, and skills for approaching
|
||
risks and impacts.
|
||
</p>
|
||
<p>
|
||
Context mapping also includes discussion and consideration
|
||
of non-AI or non-technology alternatives especially as
|
||
related to whether the given context is narrow enough to
|
||
manage AI and its potential negative impacts. Non-AI
|
||
alternatives may include capturing and evaluating
|
||
information using semi-autonomous or mostly-manual
|
||
methods.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Maintain awareness of industry, technical, and
|
||
applicable legal standards.
|
||
</li>
|
||
<li>
|
||
Examine trustworthiness of AI system design and
|
||
consider, non-AI solutions
|
||
</li>
|
||
<li>
|
||
Consider intended AI system design tasks along with
|
||
unanticipated purposes in collaboration with human
|
||
factors and socio-technical domain experts.
|
||
</li>
|
||
<li>
|
||
Define and document the task, purpose, minimum
|
||
functionality, and benefits of the AI system to inform
|
||
considerations about whether the utility of the project
|
||
or its lack of.
|
||
</li>
|
||
<li>
|
||
Identify whether there are non-AI or non-technology
|
||
alternatives that will lead to more trustworthy
|
||
outcomes.
|
||
</li>
|
||
<li>
|
||
Examine how changes in system performance affect
|
||
downstream events such as decision-making (e.g: changes
|
||
in an AI model objective function create what types of
|
||
impacts in how many candidates do/do not get a job
|
||
interview).
|
||
</li>
|
||
<li>
|
||
Determine actions to map and track post-decommissioning
|
||
stages of AI deployment and potential negative or
|
||
positive impacts to individuals, groups and communities.
|
||
</li>
|
||
<li>
|
||
Determine the end user and organizational requirements,
|
||
including business and technical requirements.
|
||
</li>
|
||
<li>
|
||
Determine and delineate the expected and acceptable AI
|
||
system context of use, including:
|
||
<ul>
|
||
<li>social norms</li>
|
||
<li>Impacted individuals, groups, and communities</li>
|
||
<li>
|
||
potential positive and negative impacts to
|
||
individuals, groups, communities, organizations, and
|
||
society
|
||
</li>
|
||
<li>operational environment</li>
|
||
</ul>
|
||
</li>
|
||
<li>
|
||
Perform context analysis related to time frame, safety
|
||
concerns, geographic area, physical environment,
|
||
ecosystems, social environment, and cultural norms
|
||
within the intended setting (or conditions that closely
|
||
approximate the intended setting.
|
||
</li>
|
||
<li>
|
||
Gain and maintain awareness about evaluating scientific
|
||
claims related to AI system performance and benefits
|
||
before launching into system design.
|
||
</li>
|
||
<li>
|
||
Identify human-AI interaction and/or roles, such as
|
||
whether the application will support or replace human
|
||
decision making.
|
||
</li>
|
||
<li>
|
||
Plan for risks related to human-AI configurations, and
|
||
document requirements, roles, and responsibilities for
|
||
human oversight of deployed systems.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
To what extent is the output of each component
|
||
appropriate for the operational context?
|
||
</li>
|
||
<li>
|
||
Which AI actors are responsible for the decisions of the
|
||
AI and is this person aware of the intended uses and
|
||
limitations of the analytic?
|
||
</li>
|
||
<li>
|
||
Which AI actors are responsible for maintaining,
|
||
re-verifying, monitoring, and updating this AI once
|
||
deployed?
|
||
</li>
|
||
<li>
|
||
Who is the person(s) accountable for the ethical
|
||
considerations across the AI lifecycle?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities,
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
“Stakeholders in Explainable AI,” Sep. 2018.
|
||
<a href="http://arxiv.org/abs/1810.00184">URL</a>
|
||
</li>
|
||
<li>
|
||
"Microsoft Responsible AI Standard, v2".
|
||
<a
|
||
href="https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4ZPmV"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Socio-technical systems</h5>
|
||
<p>
|
||
Andrew D. Selbst, danah boyd, Sorelle A. Friedler, et al.
|
||
2019. Fairness and Abstraction in Sociotechnical Systems.
|
||
In Proceedings of the Conference on Fairness,
|
||
Accountability, and Transparency (FAccT'19). Association
|
||
for Computing Machinery, New York, NY, USA, 59–68.
|
||
<a href="https://doi.org/10.1145/3287560.3287598">URL</a>
|
||
</p>
|
||
<h5>Problem formulation</h5>
|
||
<p>
|
||
Roel Dobbe, Thomas Krendl Gilbert, and Yonatan Mintz.
|
||
2021. Hard choices in artificial intelligence. Artificial
|
||
Intelligence 300 (14 July 2021), 103555, ISSN 0004-3702.
|
||
<a href="https://doi.org/10.1016/j.artint.2021.103555"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Samir Passi and Solon Barocas. 2019. Problem Formulation
|
||
and Fairness. In Proceedings of the Conference on
|
||
Fairness, Accountability, and Transparency (FAccT'19).
|
||
Association for Computing Machinery, New York, NY, USA,
|
||
39–48.
|
||
<a href="https://doi.org/10.1145/3287560.3287567">URL</a>
|
||
</p>
|
||
<h5>Context mapping</h5>
|
||
<p>
|
||
Emilio Gómez-González and Emilia Gómez. 2020. Artificial
|
||
intelligence in medicine and healthcare. Joint Research
|
||
Centre (European Commission).
|
||
<a
|
||
href="https://op.europa.eu/en/publication-detail/-/publication/b4b5db47-94c0-11ea-aac4-01aa75ed71a1/language-en"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Sarah Spiekermann and Till Winkler. 2020. Value-based
|
||
Engineering for Ethics by Design. arXiv:2004.13676.
|
||
<a href="https://arxiv.org/abs/2004.13676">URL</a>
|
||
</p>
|
||
<p>
|
||
Social Impact Lab. 2017. Framework for Context Analysis of
|
||
Technologies in Social Change Projects (Draft v2.0).
|
||
<a
|
||
href="https://www.alnap.org/system/files/content/resource/files/main/Draft%20SIMLab%20Context%20Analysis%20Framework%20v2.0.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Solon Barocas, Asia J. Biega, Margarita Boyarskaya, et al.
|
||
2021. Responsible computing during COVID-19 and beyond.
|
||
Commun. ACM 64, 7 (July 2021), 30–32.
|
||
<a href="https://doi.org/10.1145/3466612">URL</a>
|
||
</p>
|
||
<h5>Identification of harms</h5>
|
||
<p>
|
||
Harini Suresh and John V. Guttag. 2020. A Framework for
|
||
Understanding Sources of Harm throughout the Machine
|
||
Learning Life Cycle. arXiv:1901.10002.
|
||
<a href="https://arxiv.org/abs/1901.10002">URL</a>
|
||
</p>
|
||
<p>
|
||
Margarita Boyarskaya, Alexandra Olteanu, and Kate
|
||
Crawford. 2020. Overcoming Failures of Imagination in AI
|
||
Infused System Development and Deployment.
|
||
arXiv:2011.13416.
|
||
<a href="https://arxiv.org/abs/2011.13416">URL</a>
|
||
</p>
|
||
<p>
|
||
Microsoft. Foundations of assessing harm. 2022.
|
||
<a
|
||
href="https://docs.microsoft.com/en-us/azure/architecture/guide/responsible-innovation/harms-modeling/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<h5>Understanding and documenting limitations in ML</h5>
|
||
<p>
|
||
Alexander D'Amour, Katherine Heller, Dan Moldovan, et al.
|
||
2020. Underspecification Presents Challenges for
|
||
Credibility in Modern Machine Learning. arXiv:2011.03395.
|
||
<a href="https://arxiv.org/abs/2011.03395">URL</a>
|
||
</p>
|
||
<p>
|
||
Arvind Narayanan. "How to Recognize AI Snake Oil." Arthur
|
||
Miller Lecture on Science and Ethics (2019).
|
||
<a
|
||
href="https://www.cs.princeton.edu/~arvindn/talks/MIT-STS-AI-snakeoil.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Jessie J. Smith, Saleema Amershi, Solon Barocas, et al.
|
||
2022. REAL ML: Recognizing, Exploring, and Articulating
|
||
Limitations of Machine Learning Research.
|
||
arXiv:2205.08363.
|
||
<a href="https://arxiv.org/abs/2205.08363">URL</a>
|
||
</p>
|
||
<p>
|
||
Margaret Mitchell, Simone Wu, Andrew Zaldivar, et al.
|
||
2019. Model Cards for Model Reporting. In Proceedings of
|
||
the Conference on Fairness, Accountability, and
|
||
Transparency (FAT* '19). Association for Computing
|
||
Machinery, New York, NY, USA, 220–229.
|
||
<a href="https://doi.org/10.1145/3287560.3287596">URL</a>
|
||
</p>
|
||
<p>
|
||
Matthew Arnold, Rachel K. E. Bellamy, Michael Hind, et al.
|
||
2019. FactSheets: Increasing Trust in AI Services through
|
||
Supplier's Declarations of Conformity. arXiv:1808.07261.
|
||
<a href="https://arxiv.org/abs/1808.07261">URL</a>
|
||
</p>
|
||
<p>
|
||
Matthew J. Salganik, Ian Lundberg, Alexander T. Kindel,
|
||
Caitlin E. Ahearn, Khaled Al-Ghoneim, Abdullah Almaatouq,
|
||
Drew M. Altschul et al. "Measuring the Predictability of
|
||
Life Outcomes with a Scientific Mass Collaboration."
|
||
Proceedings of the National Academy of Sciences 117, No.
|
||
15 (2020): 8398-8403.
|
||
<a href="https://www.pnas.org/doi/10.1073/pnas.1915006117"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Michael A. Madaio, Luke Stark, Jennifer Wortman Vaughan,
|
||
and Hanna Wallach. 2020. Co-Designing Checklists to
|
||
Understand Organizational Challenges and Opportunities
|
||
around Fairness in AI. In Proceedings of the 2020 CHI
|
||
Conference on Human Factors in Computing Systems (CHI
|
||
‘20). Association for Computing Machinery, New York, NY,
|
||
USA, 1–14.
|
||
<a href="https://doi.org/10.1145/3313831.3376445">URL</a>
|
||
</p>
|
||
<p>
|
||
Timnit Gebru, Jamie Morgenstern, Briana Vecchione, et al.
|
||
2021. Datasheets for Datasets. arXiv:1803.09010.
|
||
<a href="https://arxiv.org/abs/1803.09010">URL</a>
|
||
</p>
|
||
<p>
|
||
Bender, E. M., Friedman, B. & McMillan-Major, A.,
|
||
(2022). A Guide for Writing Data Statements for Natural
|
||
Language Processing. University of Washington. Accessed
|
||
July 14, 2022.
|
||
<a
|
||
href="https://techpolicylab.uw.edu/wp-content/uploads/2021/11/Data_Statements_Guide_V2.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Meta AI. System Cards, a new resource for understanding
|
||
how AI systems work, 2021.
|
||
<a
|
||
href="https://ai.facebook.com/blog/system-cards-a-new-resource-for-understanding-how-ai-systems-work/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<h5>When not to deploy</h5>
|
||
<p>
|
||
Solon Barocas, Asia J. Biega, Benjamin Fish, et al. 2020.
|
||
When not to design, build, or deploy. In Proceedings of
|
||
the 2020 Conference on Fairness, Accountability, and
|
||
Transparency (FAT* '20). Association for Computing
|
||
Machinery, New York, NY, USA, 695.
|
||
<a href="https://doi.org/10.1145/3351095.3375691">URL</a>
|
||
</p>
|
||
<h5>Post-decommission</h5>
|
||
<p>
|
||
Upol Ehsan, Ranjit Singh, Jacob Metcalf and Mark O. Riedl.
|
||
“The Algorithmic Imprint.” Proceedings of the 2022 ACM
|
||
Conference on Fairness, Accountability, and Transparency
|
||
(2022). [URL] (https://arxiv.org/pdf/2206.03275v1)
|
||
</p>
|
||
<h5>Statistical balance</h5>
|
||
<p>
|
||
Ziad Obermeyer, Brian Powers, Christine Vogeli, and
|
||
Sendhil Mullainathan. 2019. Dissecting racial bias in an
|
||
algorithm used to manage the health of populations.
|
||
Science 366, 6464 (25 Oct. 2019), 447-453.
|
||
<a href="https://doi.org/10.1126/science.aax2342">URL</a>
|
||
</p>
|
||
<h5>Assessment of science in AI</h5>
|
||
<p>
|
||
Arvind Narayanan. How to recognize AI snake oil.
|
||
<a
|
||
href="https://www.cs.princeton.edu/~arvindn/talks/MIT-STS-AI-snakeoil.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Emily M. Bender. 2022. On NYT Magazine on AI: Resist the
|
||
Urge to be Impressed. (April 17, 2022).
|
||
<a
|
||
href="https://medium.com/@emilymenonbender/on-nyt-magazine-on-ai-resist-the-urge-to-be-impressed-3d92fd9a0edd"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%201.2"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 1.2"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 1.2
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Inter-disciplinary AI actors, competencies, skills and capacities
|
||
for establishing context reflect demographic diversity and broad
|
||
domain and user experience expertise, and their participation is
|
||
documented. Opportunities for interdisciplinary collaboration are
|
||
prioritized.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 1.2"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Successfully mapping context requires a team of AI actors
|
||
with a diversity of experience, expertise, abilities and
|
||
backgrounds, and with the resources and independence to
|
||
engage in critical inquiry.
|
||
</p>
|
||
<p>
|
||
Having a diverse team contributes to more broad and open
|
||
sharing of ideas and assumptions about the purpose and
|
||
function of the technology being designed and developed –
|
||
making these implicit aspects more explicit. The benefit
|
||
of a diverse staff in managing AI risks is not the beliefs
|
||
or presumed beliefs of individual workers, but the
|
||
behavior that results from a collective perspective. An
|
||
environment which fosters critical inquiry creates
|
||
opportunities to surface problems and identify existing
|
||
and emergent risks.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Establish interdisciplinary teams to reflect a wide
|
||
range of skills, competencies, and capabilities for AI
|
||
efforts. Verify that team membership includes
|
||
demographic diversity, broad domain expertise, and lived
|
||
experiences. Document team composition.
|
||
</li>
|
||
<li>
|
||
Create and empower interdisciplinary expert teams to
|
||
capture, learn, and engage the interdependencies of
|
||
deployed AI systems and related terminologies and
|
||
concepts from disciplines outside of AI practice such as
|
||
law, sociology, psychology, anthropology, public policy,
|
||
systems design, and engineering.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
To what extent do the teams responsible for developing
|
||
and maintaining the AI system reflect diverse opinions,
|
||
backgrounds, experiences, and perspectives?
|
||
</li>
|
||
<li>
|
||
Did the entity document the demographics of those
|
||
involved in the design and development of the AI system
|
||
to capture and communicate potential biases inherent to
|
||
the development process, according to forum
|
||
participants?
|
||
</li>
|
||
<li>
|
||
What specific perspectives did stakeholders share, and
|
||
how were they integrated across the design, development,
|
||
deployment, assessment, and monitoring of the AI system?
|
||
</li>
|
||
<li>
|
||
To what extent has the entity addressed stakeholder
|
||
perspectives on the potential negative impacts of the AI
|
||
system on end users and impacted populations?
|
||
</li>
|
||
<li>
|
||
What type of information is accessible on the design,
|
||
operations, and limitations of the AI system to external
|
||
stakeholders, including end users, consumers,
|
||
regulators, and individuals impacted by use of the AI
|
||
system?
|
||
</li>
|
||
<li>
|
||
Did your organization address usability problems and
|
||
test whether user interfaces served their intended
|
||
purposes? Consulting the community or end users at the
|
||
earliest stages of development to ensure there is
|
||
transparency on the technology used and how it is
|
||
deployed.
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Model AI Governance Framework Assessment 2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGModelAIGovFramework2.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Companion to the Model AI Governance Framework-
|
||
2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGIsago.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
AI policies and initiatives, in Artificial Intelligence
|
||
in Society, OECD, 2019.
|
||
<a
|
||
href="https://www.oecd.org/publications/artificial-intelligence-in-society-eedfee77-en.htm"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Sina Fazelpour and Maria De-Arteaga. 2022. Diversity in
|
||
sociotechnical machine learning systems. Big Data &
|
||
Society 9, 1 (Jan. 2022).
|
||
<a href="https://doi.org/10.1177%2F20539517221082027"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Microsoft Community Jury , Azure Application Architecture
|
||
Guide.
|
||
<a
|
||
href="https://docs.microsoft.com/en-us/azure/architecture/guide/responsible-innovation/community-jury/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Fernando Delgado, Stephen Yang, Michael Madaio, Qian Yang.
|
||
(2021). Stakeholder Participation in AI: Beyond "Add
|
||
Diverse Stakeholders and Stir".
|
||
<a
|
||
href="https://deepai.org/publication/stakeholder-participation-in-ai-beyond-add-diverse-stakeholders-and-stir"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Kush Varshney, Tina Park, Inioluwa Deborah Raji, Gaurush
|
||
Hiranandani, Narasimhan Harikrishna, Oluwasanmi Koyejo,
|
||
Brianna Richardson, and Min Kyung Lee. Participatory
|
||
specification of trustworthy machine learning, 2021.
|
||
</p>
|
||
<p>
|
||
Donald Martin, Vinodkumar Prabhakaran, Jill A. Kuhlberg,
|
||
Andrew Smart and William S. Isaac. “Participatory Problem
|
||
Formulation for Fairer Machine Learning Through Community
|
||
Based System Dynamics”, ArXiv abs/2005.07572 (2020).
|
||
<a href="https://arxiv.org/pdf/2005.07572.pdf">URL</a>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%201.3"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 1.3"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 1.3
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
The organization’s mission and relevant goals for the AI
|
||
technology are understood and documented.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 1.3"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Defining and documenting the specific business purpose of
|
||
an AI system in a broader context of societal values helps
|
||
teams to evaluate risks and increases the clarity of
|
||
“go/no-go” decisions about whether to deploy.
|
||
</p>
|
||
<p>
|
||
Trustworthy AI technologies may present a demonstrable
|
||
business benefit beyond implicit or explicit costs,
|
||
provide added value, and don't lead to wasted resources.
|
||
Organizations can feel confident in performing risk
|
||
avoidance if the implicit or explicit risks outweigh the
|
||
advantages of AI systems, and not implementing an AI
|
||
solution whose risks surpass potential benefits.
|
||
</p>
|
||
<p>
|
||
For example, making AI systems more equitable can result
|
||
in better managed risk, and can help enhance consideration
|
||
of the business value of making inclusively designed,
|
||
accessible and more equitable AI systems.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Build transparent practices into AI system development
|
||
processes.
|
||
</li>
|
||
<li>
|
||
Review the documented system purpose from a
|
||
socio-technical perspective and in consideration of
|
||
societal values.
|
||
</li>
|
||
<li>
|
||
Determine possible misalignment between societal values
|
||
and stated organizational principles and code of ethics.
|
||
</li>
|
||
<li>
|
||
Flag latent incentives that may contribute to negative
|
||
impacts.
|
||
</li>
|
||
<li>
|
||
Evaluate AI system purpose in consideration of potential
|
||
risks, societal values, and stated organizational
|
||
principles.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
How does the AI system help the entity meet its goals
|
||
and objectives?
|
||
</li>
|
||
<li>
|
||
How do the technical specifications and requirements
|
||
align with the AI system’s goals and objectives?
|
||
</li>
|
||
<li>
|
||
To what extent is the output appropriate for the
|
||
operational context?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
Assessment List for Trustworthy AI (ALTAI) - The
|
||
High-Level Expert Group on AI – 2019,
|
||
<a href="https://altai.insight-centre.org/">LINK</a>,
|
||
<a
|
||
href="https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment"
|
||
>URL</a
|
||
>.
|
||
</li>
|
||
<li>
|
||
Including Insights from the Comptroller General’s Forum
|
||
on the Oversight of Artificial Intelligence An
|
||
Accountability Framework for Federal Agencies and Other
|
||
Entities, 2021,
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>,
|
||
<a
|
||
href="https://www.gao.gov/assets/gao-21-519sp-highlights.pdf"
|
||
>PDF</a
|
||
>.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
M.S. Ackerman (2000). The Intellectual Challenge of CSCW:
|
||
The Gap Between Social Requirements and Technical
|
||
Feasibility. Human–Computer Interaction, 15, 179 - 203.
|
||
<a
|
||
href="https://socialworldsresearch.org/sites/default/files/hci.final_.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
McKane Andrus, Sarah Dean, Thomas Gilbert, Nathan Lambert,
|
||
Tom Zick (2021). AI Development for the Public Interest:
|
||
From Abstraction Traps to Sociotechnical Risks.
|
||
<a href="https://arxiv.org/pdf/2102.04255.pdf">URL</a>
|
||
</p>
|
||
<p>
|
||
Abeba Birhane, Pratyusha Kalluri, Dallas Card, et al.
|
||
2022. The Values Encoded in Machine Learning Research.
|
||
arXiv:2106.15590.
|
||
<a href="https://arxiv.org/abs/2106.15590">URL</a>
|
||
</p>
|
||
<p>
|
||
Board of Governors of the Federal Reserve System. SR 11-7:
|
||
Guidance on Model Risk Management. (April 4, 2011).
|
||
<a
|
||
href="https://www.federalreserve.gov/supervisionreg/srletters/sr1107.htm"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Iason Gabriel, Artificial Intelligence, Values, and
|
||
Alignment. Minds & Machines 30, 411–437 (2020).
|
||
<a href="https://doi.org/10.1007/s11023-020-09539-2"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
PEAT “Business Case for Equitable AI”.
|
||
<a
|
||
href="https://www.peatworks.org/ai-disability-inclusion-toolkit/business-case-for-equitable-ai/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%201.4"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 1.4"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 1.4
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
The business value or context of business use has been clearly
|
||
defined or – in the case of assessing existing AI systems –
|
||
re-evaluated.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 1.4"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Socio-technical AI risks emerge from the interplay between
|
||
technical development decisions and how a system is used,
|
||
who operates it, and the social context into which it is
|
||
deployed. Addressing these risks is complex and requires a
|
||
commitment to understanding how contextual factors may
|
||
interact with AI lifecycle actions. One such contextual
|
||
factor is how organizational mission and identified system
|
||
purpose create incentives within AI system design,
|
||
development, and deployment tasks that may result in
|
||
positive and negative impacts. By establishing
|
||
comprehensive and explicit enumeration of AI systems’
|
||
context of of business use and expectations, organizations
|
||
can identify and manage these types of risks.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Document business value or context of business use
|
||
</li>
|
||
<li>
|
||
Reconcile documented concerns about the system’s purpose
|
||
within the business context of use compared to the
|
||
organization’s stated values, mission statements, social
|
||
responsibility commitments, and AI principles.
|
||
</li>
|
||
<li>
|
||
Reconsider the design, implementation strategy, or
|
||
deployment of AI systems with potential impacts that do
|
||
not reflect institutional values.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
What goals and objectives does the entity expect to
|
||
achieve by designing, developing, and/or deploying the
|
||
AI system?
|
||
</li>
|
||
<li>
|
||
To what extent are the system outputs consistent with
|
||
the entity’s values and principles to foster public
|
||
trust and equity?
|
||
</li>
|
||
<li>
|
||
To what extent are the metrics consistent with system
|
||
goals, objectives, and constraints, including ethical
|
||
and compliance considerations?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Intel.gov: AI Ethics Framework for Intelligence
|
||
Community - 2020.
|
||
<a
|
||
href="https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Model AI Governance Framework Assessment 2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGModelAIGovFramework2.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Algorithm Watch. AI Ethics Guidelines Global Inventory.
|
||
<a href="https://inventory.algorithmwatch.org/">URL</a>
|
||
</p>
|
||
<p>
|
||
Ethical OS toolkit.
|
||
<a href="https://ethicalos.org/">URL</a>
|
||
</p>
|
||
<p>
|
||
Emanuel Moss and Jacob Metcalf. 2020. Ethics Owners: A New
|
||
Model of Organizational Responsibility in Data-Driven
|
||
Technology Companies. Data & Society Research
|
||
Institute.
|
||
<a href="https://datasociety.net/pubs/Ethics-Owners.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Future of Life Institute. Asilomar AI Principles.
|
||
<a
|
||
href="https://futureoflife.org/2017/08/11/ai-principles/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Leonard Haas, Sebastian Gießler, and Veronika Thiel. 2020.
|
||
In the realm of paper tigers – exploring the failings of
|
||
AI ethics guidelines. (April 28, 2020).
|
||
<a
|
||
href="https://algorithmwatch.org/en/ai-ethics-guidelines-inventory-upgrade-2020/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%201.5"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 1.5"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 1.5
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Organizational risk tolerances are determined and documented.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 1.5"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Risk tolerance reflects the level and type of risk the
|
||
organization is willing to accept while conducting its
|
||
mission and carrying out its strategy.
|
||
</p>
|
||
<p>
|
||
Organizations can follow existing regulations and
|
||
guidelines for risk criteria, tolerance and response
|
||
established by organizational, domain, discipline, sector,
|
||
or professional requirements. Some sectors or industries
|
||
may have established definitions of harm or may have
|
||
established documentation, reporting, and disclosure
|
||
requirements.
|
||
</p>
|
||
<p>
|
||
Within sectors, risk management may depend on existing
|
||
guidelines for specific applications and use case
|
||
settings. Where established guidelines do not exist,
|
||
organizations will want to define reasonable risk
|
||
tolerance in consideration of different sources of risk
|
||
(e.g., financial, operational, safety and wellbeing,
|
||
business, reputational, and model risks) and different
|
||
levels of risk (e.g., from negligible to critical).
|
||
</p>
|
||
<p>
|
||
Risk tolerances inform and support decisions about whether
|
||
to continue with development or deployment - termed
|
||
“go/no-go”. Go/no-go decisions related to AI system risks
|
||
can take stakeholder feedback into account, but remain
|
||
independent from stakeholders’ vested financial or
|
||
reputational interests.
|
||
</p>
|
||
<p>
|
||
If mapping risk is prohibitively difficult, a "no-go"
|
||
decision may be considered for the specific system.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Utilize existing regulations and guidelines for risk
|
||
criteria, tolerance and response established by
|
||
organizational, domain, discipline, sector, or
|
||
professional requirements.
|
||
</li>
|
||
<li>
|
||
Establish risk tolerance levels for AI systems and
|
||
allocate the appropriate oversight resources to each
|
||
level.
|
||
</li>
|
||
<li>
|
||
Establish risk criteria in consideration of different
|
||
sources of risk, (e.g., financial, operational, safety
|
||
and wellbeing, business, reputational, and model risks)
|
||
and different levels of risk (e.g., from negligible to
|
||
critical).
|
||
</li>
|
||
<li>
|
||
Identify maximum allowable risk tolerance above which
|
||
the system will not be deployed, or will need to be
|
||
prematurely decommissioned, within the contextual or
|
||
application setting.
|
||
</li>
|
||
<li>
|
||
Articulate and analyze tradeoffs across trustworthiness
|
||
characteristics as relevant to proposed context of use.
|
||
When tradeoffs arise, document them and plan for
|
||
traceable actions (e.g.: impact mitigation, removal of
|
||
system from development or use) to inform management
|
||
decisions.
|
||
</li>
|
||
<li>
|
||
Review uses of AI systems for “off-label” purposes,
|
||
especially in settings that organizations have deemed as
|
||
high-risk. Document decisions, risk-related trade-offs,
|
||
and system limitations.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
Which existing regulations and guidelines apply, and the
|
||
entity has followed, in the development of system risk
|
||
tolerances?
|
||
</li>
|
||
<li>
|
||
What criteria and assumptions has the entity utilized
|
||
when developing system risk tolerances?
|
||
</li>
|
||
<li>
|
||
How has the entity identified maximum allowable risk
|
||
tolerance?
|
||
</li>
|
||
<li>
|
||
What conditions and purposes are considered “off-label”
|
||
for system use?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Model AI Governance Framework Assessment 2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGModelAIGovFramework2.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Companion to the Model AI Governance Framework-
|
||
2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGIsago.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Board of Governors of the Federal Reserve System. SR 11-7:
|
||
Guidance on Model Risk Management. (April 4, 2011).
|
||
<a
|
||
href="https://www.federalreserve.gov/supervisionreg/srletters/sr1107.htm"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
The Office of the Comptroller of the Currency. Enterprise
|
||
Risk Appetite Statement. (Nov. 20, 2019).
|
||
<a
|
||
href="https://www.occ.treas.gov/publications-and-resources/publications/banker-education/files/pub-risk-appetite-statement.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Brenda Boultwood, How to Develop an Enterprise Risk-Rating
|
||
Approach (Aug. 26, 2021). Global Association of Risk
|
||
Professionals (garp.org). Accessed Jan. 4, 2023.
|
||
<a
|
||
href="https://www.garp.org/risk-intelligence/culture-governance/how-to-develop-an-enterprise-risk-rating-approach"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Virginia Eubanks, 1972-, Automating Inequality: How
|
||
High-tech Tools Profile, Police, and Punish the Poor. New
|
||
York, NY, St. Martin's Press, 2018.
|
||
</p>
|
||
<p>
|
||
GAO-17-63: Enterprise Risk Management: Selected Agencies’
|
||
Experiences Illustrate Good Practices in Managing Risk.
|
||
<a href="https://www.gao.gov/assets/gao-17-63.pdf">URL</a>
|
||
See Table 3.
|
||
</p>
|
||
<p>
|
||
NIST Risk Management Framework.
|
||
<a
|
||
href="https://csrc.nist.gov/projects/risk-management/about-rmf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%201.6"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 1.6"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 1.6
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
System requirements (e.g., “the system shall respect the privacy
|
||
of its users”) are elicited from and understood by relevant AI
|
||
actors. Design decisions take socio-technical implications into
|
||
account to address AI risks.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 1.6"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
AI system development requirements may outpace
|
||
documentation processes for traditional software. When
|
||
written requirements are unavailable or incomplete, AI
|
||
actors may inadvertently overlook business and stakeholder
|
||
needs, over-rely on implicit human biases such as
|
||
confirmation bias and groupthink, and maintain exclusive
|
||
focus on computational requirements.
|
||
</p>
|
||
<p>
|
||
Eliciting system requirements, designing for end users,
|
||
and considering societal impacts early in the design phase
|
||
is a priority that can enhance AI systems’
|
||
trustworthiness.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Proactively incorporate trustworthy characteristics into
|
||
system requirements.
|
||
</li>
|
||
<li>
|
||
Establish mechanisms for regular communication and
|
||
feedback between relevant AI actors and internal or
|
||
external stakeholders related to system design or
|
||
deployment decisions.
|
||
</li>
|
||
<li>
|
||
Develop and standardize practices to assess potential
|
||
impacts at all stages of the AI lifecycle, and in
|
||
collaboration with interdisciplinary experts, actors
|
||
external to the team that developed or deployed the AI
|
||
system, and potentially impacted communities .
|
||
</li>
|
||
<li>
|
||
Include potentially impacted groups, communities and
|
||
external entities (e.g. civil society organizations,
|
||
research institutes, local community groups, and trade
|
||
associations) in the formulation of priorities,
|
||
definitions and outcomes during impact assessment
|
||
activities.
|
||
</li>
|
||
<li>
|
||
Conduct qualitative interviews with end user(s) to
|
||
regularly evaluate expectations and design plans related
|
||
to Human-AI configurations and tasks.
|
||
</li>
|
||
<li>
|
||
Analyze dependencies between contextual factors and
|
||
system requirements. List potential impacts that may
|
||
arise from not fully considering the importance of
|
||
trustworthiness characteristics in any decision making.
|
||
</li>
|
||
<li>
|
||
Follow responsible design techniques in tasks such as
|
||
software engineering, product management, and
|
||
participatory engagement. Some examples for eliciting
|
||
and documenting stakeholder requirements include product
|
||
requirement documents (PRDs), user stories, user
|
||
interaction/user experience (UI/UX) research, systems
|
||
engineering, ethnography and related field methods.
|
||
</li>
|
||
<li>
|
||
Conduct user research to understand individuals, groups
|
||
and communities that will be impacted by the AI, their
|
||
values & context, and the role of systemic and
|
||
historical biases. Integrate learnings into decisions
|
||
about data selection and representation.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
What type of information is accessible on the design,
|
||
operations, and limitations of the AI system to external
|
||
stakeholders, including end users, consumers,
|
||
regulators, and individuals impacted by use of the AI
|
||
system?
|
||
</li>
|
||
<li>
|
||
To what extent is this information sufficient and
|
||
appropriate to promote transparency? Promote
|
||
transparency by enabling external stakeholders to access
|
||
information on the design, operation, and limitations of
|
||
the AI system.
|
||
</li>
|
||
<li>
|
||
To what extent has relevant information been disclosed
|
||
regarding the use of AI systems, such as (a) what the
|
||
system is for, (b) what it is not for, (c) how it was
|
||
designed, and (d) what its limitations are?
|
||
(Documentation and external communication can offer a
|
||
way for entities to provide transparency.)
|
||
</li>
|
||
<li>
|
||
How will the relevant AI actor(s) address changes in
|
||
accuracy and precision due to either an adversary’s
|
||
attempts to disrupt the AI system or unrelated changes
|
||
in the operational/business environment, which may
|
||
impact the accuracy of the AI system?
|
||
</li>
|
||
<li>
|
||
What metrics has the entity developed to measure
|
||
performance of the AI system?
|
||
</li>
|
||
<li>
|
||
What justifications, if any, has the entity provided for
|
||
the assumptions, boundaries, and limitations of the AI
|
||
system?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Stakeholders in Explainable AI, Sep. 2018.
|
||
<a href="http://arxiv.org/abs/1810.00184">URL</a>
|
||
</li>
|
||
<li>
|
||
High-Level Expert Group on Artificial Intelligence set
|
||
up by the European Commission, Ethics Guidelines for
|
||
Trustworthy AI.
|
||
<a
|
||
href="https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai"
|
||
>URL</a
|
||
>,
|
||
<a
|
||
href="https://www.aepd.es/sites/default/files/2019-12/ai-ethics-guidelines.pdf"
|
||
>PDF</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
National Academies of Sciences, Engineering, and Medicine
|
||
2022. Fostering Responsible Computing Research:
|
||
Foundations and Practices. Washington, DC: The National
|
||
Academies Press.
|
||
<a href="https://doi.org/10.17226/26507">URL</a>
|
||
</p>
|
||
<p>
|
||
Abeba Birhane, William S. Isaac, Vinodkumar Prabhakaran,
|
||
Mark Diaz, Madeleine Clare Elish, Iason Gabriel and Shakir
|
||
Mohamed. “Power to the People? Opportunities and
|
||
Challenges for Participatory AI.” Equity and Access in
|
||
Algorithms, Mechanisms, and Optimization (2022).
|
||
<a href="https://arxiv.org/pdf/2209.07572.pdf">URL</a>
|
||
</p>
|
||
<p>
|
||
Amit K. Chopra, Fabiano Dalpiaz, F. Başak Aydemir, et al.
|
||
2014. Protos: Foundations for engineering innovative
|
||
sociotechnical systems. In 2014 IEEE 22nd International
|
||
Requirements Engineering Conference (RE) (2014), 53-62.
|
||
<a href="https://doi.org/10.1109/RE.2014.6912247">URL</a>
|
||
</p>
|
||
<p>
|
||
Andrew D. Selbst, danah boyd, Sorelle A. Friedler, et al.
|
||
2019. Fairness and Abstraction in Sociotechnical Systems.
|
||
In Proceedings of the Conference on Fairness,
|
||
Accountability, and Transparency (FAT* '19). Association
|
||
for Computing Machinery, New York, NY, USA, 59–68.
|
||
<a href="https://doi.org/10.1145/3287560.3287598">URL</a>
|
||
</p>
|
||
<p>
|
||
Gordon Baxter and Ian Sommerville. 2011. Socio-technical
|
||
systems: From design methods to systems engineering.
|
||
Interacting with Computers, 23, 1 (Jan. 2011), 4–17.
|
||
<a href="https://doi.org/10.1016/j.intcom.2010.07.003"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Roel Dobbe, Thomas Krendl Gilbert, and Yonatan Mintz.
|
||
2021. Hard choices in artificial intelligence. Artificial
|
||
Intelligence 300 (14 July 2021), 103555, ISSN 0004-3702.
|
||
<a href="https://doi.org/10.1016/j.artint.2021.103555"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Yilin Huang, Giacomo Poderi, Sanja Šćepanović, et al.
|
||
2019. Embedding Internet-of-Things in Large-Scale
|
||
Socio-technical Systems: A Community-Oriented Design in
|
||
Future Smart Grids. In The Internet of Things for Smart
|
||
Urban Ecosystems (2019), 125-150. Springer, Cham.
|
||
<a href="https://doi.org/10.1007/978-3-319-96550-5_6"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Victor Udoewa, (2022). An introduction to radical
|
||
participatory design: decolonising participatory design
|
||
processes. Design Science. 8. 10.1017/dsj.2022.24.
|
||
<a
|
||
href="https://www.cambridge.org/core/journals/design-science/article/an-introduction-to-radical-participatory-design-decolonising-participatory-design-processes/63F70ECC408844D3CD6C1A5AC7D35F4D"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
|
||
<li>
|
||
<h2 class="pbindex__top__heading">Map 2</h2>
|
||
<p class="usa-intro pbindex__top__title">
|
||
Categorization of the AI system is performed.
|
||
</p>
|
||
<ul class="pbindex__subcat-ul">
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%202.1"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 2.1"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 2.1
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
The specific task, and methods used to implement the task, that
|
||
the AI system will support is defined (e.g., classifiers,
|
||
generative models, recommenders).
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 2.1"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
AI actors define the technical learning or decision-making
|
||
task(s) an AI system is designed to accomplish, or the
|
||
benefits that the system will provide. The clearer and
|
||
narrower the task definition, the easier it is to map its
|
||
benefits and risks, leading to more fulsome risk
|
||
management.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Define and document AI system’s existing and potential
|
||
learning task(s) along with known assumptions and
|
||
limitations.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
To what extent has the entity clearly defined technical
|
||
specifications and requirements for the AI system?
|
||
</li>
|
||
<li>
|
||
To what extent has the entity documented the AI system’s
|
||
development, testing methodology, metrics, and
|
||
performance outcomes?
|
||
</li>
|
||
<li>
|
||
How do the technical specifications and requirements
|
||
align with the AI system’s goals and objectives?
|
||
</li>
|
||
<li>
|
||
Did your organization implement accountability-based
|
||
practices in data management and protection (e.g. the
|
||
PDPA and OECD Privacy Principles)?
|
||
</li>
|
||
<li>
|
||
How are outputs marked to clearly show that they came
|
||
from an AI?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
Datasheets for Datasets.
|
||
<a href="http://arxiv.org/abs/1803.09010">URL</a>
|
||
</li>
|
||
<li>
|
||
WEF Model AI Governance Framework Assessment 2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGModelAIGovFramework2.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Companion to the Model AI Governance Framework-
|
||
2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGIsago.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
ATARC Model Transparency Assessment (WD) – 2020.
|
||
<a
|
||
href="https://atarc.org/wp-content/uploads/2020/10/atarc_model_transparency_assessment-FINAL-092020-2.docx"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Transparency in Artificial Intelligence - S. Larsson and
|
||
F. Heintz – 2020.
|
||
<a
|
||
href="https://lucris.lub.lu.se/ws/files/79208055/Larsson_Heintz_2020_Transparency_in_artificial_intelligence_2020_05_05.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Leong, Brenda (2020). The Spectrum of Artificial
|
||
Intelligence - An Infographic Tool. Future of Privacy
|
||
Forum.
|
||
<a
|
||
href="https://fpf.org/blog/the-spectrum-of-artificial-intelligence-an-infographic-tool/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Brownlee, Jason (2020). A Tour of Machine Learning
|
||
Algorithms. Machine Learning Mastery.
|
||
<a
|
||
href="https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%202.2"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 2.2"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 2.2
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Information about the AI system’s knowledge limits and how system
|
||
output may be utilized and overseen by humans is documented.
|
||
Documentation provides sufficient information to assist relevant
|
||
AI actors when making informed decisions and taking subsequent
|
||
actions.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 2.2"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
An AI lifecycle consists of many interdependent activities
|
||
involving a diverse set of actors that often do not have
|
||
full visibility or control over other parts of the
|
||
lifecycle and its associated contexts or risks. The
|
||
interdependencies between these activities, and among the
|
||
relevant AI actors and organizations, can make it
|
||
difficult to reliably anticipate potential impacts of AI
|
||
systems. For example, early decisions in identifying the
|
||
purpose and objective of an AI system can alter its
|
||
behavior and capabilities, and the dynamics of deployment
|
||
setting (such as end users or impacted individuals) can
|
||
shape the positive or negative impacts of AI system
|
||
decisions. As a result, the best intentions within one
|
||
dimension of the AI lifecycle can be undermined via
|
||
interactions with decisions and conditions in other, later
|
||
activities. This complexity and varying levels of
|
||
visibility can introduce uncertainty. And, once deployed
|
||
and in use, AI systems may sometimes perform poorly,
|
||
manifest unanticipated negative impacts, or violate legal
|
||
or ethical norms. These risks and incidents can result
|
||
from a variety of factors. For example, downstream
|
||
decisions can be influenced by end user over-trust or
|
||
under-trust, and other complexities related to
|
||
AI-supported decision-making.
|
||
</p>
|
||
<p>
|
||
Anticipating, articulating, assessing and documenting AI
|
||
systems’ knowledge limits and how system output may be
|
||
utilized and overseen by humans can help mitigate the
|
||
uncertainty associated with the realities of AI system
|
||
deployments. Rigorous design processes include defining
|
||
system knowledge limits, which are confirmed and refined
|
||
based on TEVV processes.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Document settings, environments and conditions that are
|
||
outside the AI system’s intended use.
|
||
</li>
|
||
<li>
|
||
Design for end user workflows and toolsets, concept of
|
||
operations, and explainability and interpretability
|
||
criteria in conjunction with end user(s) and associated
|
||
qualitative feedback.
|
||
</li>
|
||
<li>
|
||
Plan and test human-AI configurations under close to
|
||
real-world conditions and document results.
|
||
</li>
|
||
<li>
|
||
Follow stakeholder feedback processes to determine
|
||
whether a system achieved its documented purpose within
|
||
a given use context, and whether end users can correctly
|
||
comprehend system outputs or results.
|
||
</li>
|
||
<li>
|
||
Document dependencies on upstream data and other AI
|
||
systems, including if the specified system is an
|
||
upstream dependency for another AI system or other data.
|
||
</li>
|
||
<li>
|
||
Document connections the AI system or data will have to
|
||
external networks (including the internet), financial
|
||
markets, and critical infrastructure that have potential
|
||
for negative externalities. Identify and document
|
||
negative impacts as part of considering the broader risk
|
||
thresholds and subsequent go/no-go deployment as well as
|
||
post-deployment decommissioning decisions.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
Does the AI system provide sufficient information to
|
||
assist the personnel to make an informed decision and
|
||
take actions accordingly?
|
||
</li>
|
||
<li>
|
||
What type of information is accessible on the design,
|
||
operations, and limitations of the AI system to external
|
||
stakeholders, including end users, consumers,
|
||
regulators, and individuals impacted by use of the AI
|
||
system?
|
||
</li>
|
||
<li>
|
||
Based on the assessment, did your organization implement
|
||
the appropriate level of human involvement in
|
||
AI-augmented decision-making?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
Datasheets for Datasets.
|
||
<a href="http://arxiv.org/abs/1803.09010">URL</a>
|
||
</li>
|
||
<li>
|
||
WEF Model AI Governance Framework Assessment 2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGModelAIGovFramework2.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Companion to the Model AI Governance Framework-
|
||
2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGIsago.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
ATARC Model Transparency Assessment (WD) – 2020.
|
||
<a
|
||
href="https://atarc.org/wp-content/uploads/2020/10/atarc_model_transparency_assessment-FINAL-092020-2.docx"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Transparency in Artificial Intelligence - S. Larsson and
|
||
F. Heintz – 2020.
|
||
<a
|
||
href="https://lucris.lub.lu.se/ws/files/79208055/Larsson_Heintz_2020_Transparency_in_artificial_intelligence_2020_05_05.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Context of use</h5>
|
||
<p>
|
||
International Standards Organization (ISO). 2019. ISO
|
||
9241-210:2019 Ergonomics of human-system interaction —
|
||
Part 210: Human-centred design for interactive systems.
|
||
<a href="https://www.iso.org/standard/77520.html">URL</a>
|
||
</p>
|
||
<p>
|
||
National Institute of Standards and Technology (NIST),
|
||
Mary Theofanos, Yee-Yin Choong, et al. 2017. NIST Handbook
|
||
161 Usability Handbook for Public Safety Communications:
|
||
Ensuring Successful Systems for First Responders.
|
||
<a href="https://doi.org/10.6028/NIST.HB.161">URL</a>
|
||
</p>
|
||
<h5>Human-AI interaction</h5>
|
||
<p>
|
||
Committee on Human-System Integration Research Topics for
|
||
the 711th Human Performance Wing of the Air Force Research
|
||
Laboratory and the National Academies of Sciences,
|
||
Engineering, and Medicine. 2022. Human-AI Teaming:
|
||
State-of-the-Art and Research Needs. Washington, D.C.
|
||
National Academies Press.
|
||
<a
|
||
href="https://nap.nationalacademies.org/catalog/26355/human-ai-teaming-state-of-the-art-and-research-needs"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Human Readiness Level Scale in the System Development
|
||
Process, American National Standards Institute and Human
|
||
Factors and Ergonomics Society, ANSI/HFES 400-2021
|
||
</p>
|
||
<p>
|
||
Microsoft Responsible AI Standard, v2.
|
||
<a
|
||
href="https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4ZPmV"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Saar Alon-Barkat, Madalina Busuioc, Human–AI Interactions
|
||
in Public Sector Decision Making: “Automation Bias” and
|
||
“Selective Adherence” to Algorithmic Advice, Journal of
|
||
Public Administration Research and Theory, 2022;, muac007.
|
||
<a href="https://doi.org/10.1093/jopart/muac007">URL</a>
|
||
</p>
|
||
<p>
|
||
Zana Buçinca, Maja Barbara Malaya, and Krzysztof Z. Gajos.
|
||
2021. To Trust or to Think: Cognitive Forcing Functions
|
||
Can Reduce Overreliance on AI in AI-assisted
|
||
Decision-making. Proc. ACM Hum.-Comput. Interact. 5,
|
||
CSCW1, Article 188 (April 2021), 21 pages.
|
||
<a href="https://doi.org/10.1145/3449287">URL</a>
|
||
</p>
|
||
<p>
|
||
Mary L. Cummings. 2006 Automation and accountability in
|
||
decision support system interface design.The Journal of
|
||
Technology Studies 32(1): 23–31.
|
||
<a
|
||
href="https://scholar.lib.vt.edu/ejournals/JOTS/v32/v32n1/pdf/cummings.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Engstrom, D. F., Ho, D. E., Sharkey, C. M., & Cuéllar,
|
||
M. F. (2020). Government by algorithm: Artificial
|
||
intelligence in federal administrative agencies. NYU
|
||
School of Law, Public Law Research Paper, (20-54).
|
||
<a
|
||
href="https://www.acus.gov/report/government-algorithm-artificial-intelligence-federal-administrative-agencies"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Susanne Gaube, Harini Suresh, Martina Raue, et al. 2021.
|
||
Do as AI say: susceptibility in deployment of clinical
|
||
decision-aids. npj Digital Medicine 4, Article 31 (2021).
|
||
<a href="https://doi.org/10.1038/s41746-021-00385-9"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Ben Green. 2021. The Flaws of Policies Requiring Human
|
||
Oversight of Government Algorithms. Computer Law &
|
||
Security Review 45 (26 Apr. 2021).
|
||
<a href="https://dx.doi.org/10.2139/ssrn.3921216">URL</a>
|
||
</p>
|
||
<p>
|
||
Ben Green and Amba Kak. 2021. The False Comfort of Human
|
||
Oversight as an Antidote to A.I. Harm. (June 15, 2021).
|
||
<a
|
||
href="https://slate.com/technology/2021/06/human-oversight-artificial-intelligence-laws.html"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Grgić-Hlača, N., Engel, C., & Gummadi, K. P. (2019).
|
||
Human decision making with machine assistance: An
|
||
experiment on bailing and jailing. Proceedings of the ACM
|
||
on Human-Computer Interaction, 3(CSCW), 1-25.
|
||
<a href="https://dl.acm.org/doi/pdf/10.1145/3359280"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake M
|
||
Hofman, et al. 2021. Manipulating and Measuring Model
|
||
Interpretability. In Proceedings of the 2021 CHI
|
||
Conference on Human Factors in Computing Systems (CHI
|
||
'21). Association for Computing Machinery, New York, NY,
|
||
USA, Article 237, 1–52.
|
||
<a href="https://doi.org/10.1145/3411764.3445315">URL</a>
|
||
</p>
|
||
<p>
|
||
C. J. Smith (2019). Designing trustworthy AI: A
|
||
human-machine teaming framework to guide development.
|
||
arXiv preprint arXiv:1910.03515.
|
||
<a
|
||
href="https://kilthub.cmu.edu/articles/conference_contribution/Designing_Trustworthy_AI_A_Human-Machine_Teaming_Framework_to_Guide_Development/12119847/1"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
T. Warden, P. Carayon, EM et al. The National Academies
|
||
Board on Human System Integration (BOHSI) Panel:
|
||
Explainable AI, System Transparency, and Human Machine
|
||
Teaming. Proceedings of the Human Factors and Ergonomics
|
||
Society Annual Meeting. 2019;63(1):631-635.
|
||
doi:10.1177/1071181319631100.
|
||
<a
|
||
href="https://sites.nationalacademies.org/cs/groups/dbassesite/documents/webpage/dbasse_196735.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%202.3"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 2.3"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 2.3
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Scientific integrity and TEVV considerations are identified and
|
||
documented, including those related to experimental design, data
|
||
collection and selection (e.g., availability, representativeness,
|
||
suitability), system trustworthiness, and construct validation.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 2.3"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Standard testing and evaluation protocols provide a basis
|
||
to confirm assurance in a system that it is operating as
|
||
designed and claimed. AI systems’ complexities create
|
||
challenges for traditional testing and evaluation
|
||
methodologies, which tend to be designed for static or
|
||
isolated system performance. Opportunities for risk
|
||
continue well beyond design and deployment, into system
|
||
operation and application of system-enabled decisions.
|
||
Testing and evaluation methodologies and metrics therefore
|
||
address a continuum of activities. TEVV is enhanced when
|
||
key metrics for performance, safety, and reliability are
|
||
interpreted in a socio-technical context and not confined
|
||
to the boundaries of the AI system pipeline.
|
||
</p>
|
||
<p>
|
||
Other challenges for managing AI risks relate to
|
||
dependence on large scale datasets, which can impact data
|
||
quality and validity concerns. The difficulty of finding
|
||
the “right” data may lead AI actors to select datasets
|
||
based more on accessibility and availability than on
|
||
suitability for operationalizing the phenomenon that the
|
||
AI system intends to support or inform. Such decisions
|
||
could contribute to an environment where the data used in
|
||
processes is not fully representative of the populations
|
||
or phenomena that are being modeled, introducing
|
||
downstream risks. Practices such as dataset reuse may also
|
||
lead to disconnect from the social contexts and time
|
||
periods of their creation. This contributes to issues of
|
||
validity of the underlying dataset for providing proxies,
|
||
measures, or predictors within the model.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Identify and document experiment design and statistical
|
||
techniques that are valid for testing complex
|
||
socio-technical systems like AI, which involve human
|
||
factors, emergent properties, and dynamic context(s) of
|
||
use.
|
||
</li>
|
||
<li>
|
||
Develop and apply TEVV protocols for models, system and
|
||
its subcomponents, deployment, and operation.
|
||
</li>
|
||
<li>
|
||
Demonstrate and document that AI system performance and
|
||
validation metrics are interpretable and unambiguous for
|
||
downstream decision making tasks, and take
|
||
socio-technical factors such as context of use into
|
||
consideration.
|
||
</li>
|
||
<li>
|
||
Identify and document assumptions, techniques, and
|
||
metrics used for testing and evaluation throughout the
|
||
AI lifecycle including experimental design techniques
|
||
for data collection, selection, and management practices
|
||
in accordance with data governance policies established
|
||
in GOVERN.
|
||
</li>
|
||
<li>
|
||
Identify testing modules that can be incorporated
|
||
throughout the AI lifecycle, and verify that processes
|
||
enable corroboration by independent evaluators.
|
||
</li>
|
||
<li>
|
||
Establish mechanisms for regular communication and
|
||
feedback among relevant AI actors and internal or
|
||
external stakeholders related to the validity of design
|
||
and deployment assumptions.
|
||
</li>
|
||
<li>
|
||
Establish mechanisms for regular communication and
|
||
feedback between relevant AI actors and internal or
|
||
external stakeholders related to the development of TEVV
|
||
approaches throughout the lifecycle to detect and assess
|
||
potentially harmful impacts
|
||
</li>
|
||
<li>
|
||
Document assumptions made and techniques used in data
|
||
selection, curation, preparation and analysis,
|
||
including:
|
||
<ul>
|
||
<li>
|
||
identification of constructs and proxy targets,
|
||
</li>
|
||
<li>
|
||
development of indices – especially those
|
||
operationalizing concepts that are inherently
|
||
unobservable (e.g. “hireability,” “criminality.”
|
||
“lendability”).
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
<li>
|
||
Map adherence to policies that address data and
|
||
construct validity, bias, privacy and security for AI
|
||
systems and verify documentation, oversight, and
|
||
processes.
|
||
</li>
|
||
<li>
|
||
Identify and document transparent methods (e.g. causal
|
||
discovery methods) for inferring causal relationships
|
||
between constructs being modeled and dataset attributes
|
||
or proxies.
|
||
</li>
|
||
<li>
|
||
Identify and document processes to understand and trace
|
||
test and training data lineage and its metadata
|
||
resources for mapping risks.
|
||
</li>
|
||
<li>
|
||
Document known limitations, risk mitigation efforts
|
||
associated with, and methods used for, training data
|
||
collection, selection, labeling, cleaning, and analysis
|
||
(e.g. treatment of missing, spurious, or outlier data;
|
||
biased estimators).
|
||
</li>
|
||
<li>
|
||
Establish and document practices to check for
|
||
capabilities that are in excess of those that are
|
||
planned for, such as emergent properties, and to revisit
|
||
prior risk management steps in light of any new
|
||
capabilities.
|
||
</li>
|
||
<li>
|
||
Establish processes to test and verify that design
|
||
assumptions about the set of deployment contexts
|
||
continue to be accurate and sufficiently complete.
|
||
</li>
|
||
<li>
|
||
Work with domain experts and other external AI actors
|
||
to:
|
||
<ul>
|
||
<li>
|
||
Gain and maintain contextual awareness and knowledge
|
||
about how human behavior, organizational factors and
|
||
dynamics, and society influence, and are represented
|
||
in, datasets, processes, models, and system output.
|
||
</li>
|
||
<li>
|
||
Identify participatory approaches for responsible
|
||
Human-AI configurations and oversight tasks, taking
|
||
into account sources of cognitive bias.
|
||
</li>
|
||
<li>
|
||
Identify techniques to manage and mitigate sources
|
||
of bias (systemic, computational, human- cognitive)
|
||
in computational models and systems, and the
|
||
assumptions and decisions in their development..
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
<li>
|
||
Investigate and document potential negative impacts due
|
||
related to the full product lifecycle and associated
|
||
processes that may conflict with organizational values
|
||
and principles.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
Are there any known errors, sources of noise, or
|
||
redundancies in the data?
|
||
</li>
|
||
<li>
|
||
Over what time-frame was the data collected? Does the
|
||
collection time-frame match the creation time-frame
|
||
</li>
|
||
<li>
|
||
What is the variable selection and evaluation process?
|
||
</li>
|
||
<li>
|
||
How was the data collected? Who was involved in the data
|
||
collection process? If the dataset relates to people
|
||
(e.g., their attributes) or was generated by people,
|
||
were they informed about the data collection? (e.g.,
|
||
datasets that collect writing, photos, interactions,
|
||
transactions, etc.)
|
||
</li>
|
||
<li>
|
||
As time passes and conditions change, is the training
|
||
data still representative of the operational
|
||
environment?
|
||
</li>
|
||
<li>
|
||
Why was the dataset created? (e.g., were there specific
|
||
tasks in mind, or a specific gap that needed to be
|
||
filled?)
|
||
</li>
|
||
<li>
|
||
How does the entity ensure that the data collected are
|
||
adequate, relevant, and not excessive in relation to the
|
||
intended purpose?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
Datasheets for Datasets.
|
||
<a href="http://arxiv.org/abs/1803.09010">URL</a>
|
||
</li>
|
||
<li>
|
||
WEF Model AI Governance Framework Assessment 2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGModelAIGovFramework2.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Companion to the Model AI Governance Framework-
|
||
2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGIsago.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
ATARC Model Transparency Assessment (WD) – 2020.
|
||
<a
|
||
href="https://atarc.org/wp-content/uploads/2020/10/atarc_model_transparency_assessment-FINAL-092020-2.docx"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Transparency in Artificial Intelligence - S. Larsson and
|
||
F. Heintz – 2020.
|
||
<a
|
||
href="https://lucris.lub.lu.se/ws/files/79208055/Larsson_Heintz_2020_Transparency_in_artificial_intelligence_2020_05_05.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Challenges with dataset selection</h5>
|
||
<p>
|
||
Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and
|
||
Emre Kiciman. 2019. Social Data: Biases, Methodological
|
||
Pitfalls, and Ethical Boundaries. Front. Big Data 2, 13
|
||
(11 July 2019).
|
||
<a href="https://doi.org/10.3389/fdata.2019.00013">URL</a>
|
||
</p>
|
||
<p>
|
||
Amandalynne Paullada, Inioluwa Deborah Raji, Emily M.
|
||
Bender, et al. 2020. Data and its (dis)contents: A survey
|
||
of dataset development and use in machine learning
|
||
research. arXiv:2012.05345.
|
||
<a href="https://arxiv.org/abs/2012.05345">URL</a>
|
||
</p>
|
||
<p>
|
||
Catherine D'Ignazio and Lauren F. Klein. 2020. Data
|
||
Feminism. The MIT Press, Cambridge, MA.
|
||
<a href="https://data-feminism.mitpress.mit.edu/">URL</a>
|
||
</p>
|
||
<p>
|
||
Miceli, M., & Posada, J. (2022). The Data-Production
|
||
Dispositif. ArXiv, abs/2205.11963.
|
||
</p>
|
||
<p>
|
||
Barbara Plank. 2016. What to do about non-standard (or
|
||
non-canonical) language in NLP. arXiv:1608.07836.
|
||
<a href="https://arxiv.org/abs/1608.07836">URL</a>
|
||
</p>
|
||
<h5>
|
||
Dataset and test, evaluation, validation and verification
|
||
(TEVV) processes in AI system development
|
||
</h5>
|
||
<p>
|
||
National Institute of Standards and Technology (NIST),
|
||
Reva Schwartz, Apostol Vassilev, et al. 2022. NIST Special
|
||
Publication 1270 Towards a Standard for Identifying and
|
||
Managing Bias in Artificial Intelligence.
|
||
<a
|
||
href="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1270.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Inioluwa Deborah Raji, Emily M. Bender, Amandalynne
|
||
Paullada, et al. 2021. AI and the Everything in the Whole
|
||
Wide World Benchmark. arXiv:2111.15366.
|
||
<a href="https://arxiv.org/abs/2111.15366">URL</a>
|
||
</p>
|
||
<h5>Statistical balance</h5>
|
||
<p>
|
||
Ziad Obermeyer, Brian Powers, Christine Vogeli, and
|
||
Sendhil Mullainathan. 2019. Dissecting racial bias in an
|
||
algorithm used to manage the health of populations.
|
||
Science 366, 6464 (25 Oct. 2019), 447-453.
|
||
<a href="https://doi.org/10.1126/science.aax2342">URL</a>
|
||
</p>
|
||
<p>
|
||
Amandalynne Paullada, Inioluwa Deborah Raji, Emily M.
|
||
Bender, et al. 2020. Data and its (dis)contents: A survey
|
||
of dataset development and use in machine learning
|
||
research. arXiv:2012.05345.
|
||
<a href="https://arxiv.org/abs/2012.05345">URL</a>
|
||
</p>
|
||
<p>
|
||
Solon Barocas, Anhong Guo, Ece Kamar, et al. 2021.
|
||
Designing Disaggregated Evaluations of AI Systems:
|
||
Choices, Considerations, and Tradeoffs. Proceedings of the
|
||
2021 AAAI/ACM Conference on AI, Ethics, and Society.
|
||
Association for Computing Machinery, New York, NY, USA,
|
||
368–378.
|
||
<a href="https://doi.org/10.1145/3461702.3462610">URL</a>
|
||
</p>
|
||
<h5>Measurement and evaluation</h5>
|
||
<p>
|
||
Abigail Z. Jacobs and Hanna Wallach. 2021. Measurement and
|
||
Fairness. In Proceedings of the 2021 ACM Conference on
|
||
Fairness, Accountability, and Transparency (FAccT ‘21).
|
||
Association for Computing Machinery, New York, NY, USA,
|
||
375–385.
|
||
<a href="https://doi.org/10.1145/3442188.3445901">URL</a>
|
||
</p>
|
||
<p>
|
||
Ben Hutchinson, Negar Rostamzadeh, Christina Greer, et al.
|
||
2022. Evaluation Gaps in Machine Learning Practice.
|
||
arXiv:2205.05256.
|
||
<a href="https://arxiv.org/abs/2205.05256">URL</a>
|
||
</p>
|
||
<p>
|
||
Laura Freeman, "Test and evaluation for artificial
|
||
intelligence." Insight 23.1 (2020): 27-30.
|
||
<a href="https://doi.org/10.1002/inst.12281">URL</a>
|
||
</p>
|
||
<h5>Existing frameworks</h5>
|
||
<p>
|
||
National Institute of Standards and Technology. (2018).
|
||
Framework for improving critical infrastructure
|
||
cybersecurity.
|
||
<a
|
||
href="https://nvlpubs.nist.gov/nistpubs/cswp/nist.cswp.04162018.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Kaitlin R. Boeckl and Naomi B. Lefkovitz. "NIST Privacy
|
||
Framework: A Tool for Improving Privacy Through Enterprise
|
||
Risk Management, Version 1.0." National Institute of
|
||
Standards and Technology (NIST), January 16, 2020.
|
||
<a
|
||
href="https://www.nist.gov/publications/nist-privacy-framework-tool-improving-privacy-through-enterprise-risk-management."
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
|
||
<li>
|
||
<h2 class="pbindex__top__heading">Map 3</h2>
|
||
<p class="usa-intro pbindex__top__title">
|
||
AI capabilities, targeted usage, goals, and expected benefits and costs
|
||
compared with appropriate benchmarks are understood.
|
||
</p>
|
||
<ul class="pbindex__subcat-ul">
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%203.1"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 3.1"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 3.1
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Potential benefits of intended AI system functionality and
|
||
performance are examined and documented.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 3.1"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
AI systems have enormous potential to improve quality of
|
||
life, enhance economic prosperity and security costs.
|
||
Organizations are encouraged to define and document system
|
||
purpose and utility, and its potential positive impacts
|
||
and benefits beyond current known performance benchmarks.
|
||
</p>
|
||
<p>
|
||
It is encouraged that risk management and assessment of
|
||
benefits and impacts include processes for regular and
|
||
meaningful communication with potentially affected groups
|
||
and communities. These stakeholders can provide valuable
|
||
input related to systems’ benefits and possible
|
||
limitations. Organizations may differ in the types and
|
||
number of stakeholders with which they engage.
|
||
</p>
|
||
<p>
|
||
Other approaches such as human-centered design (HCD) and
|
||
value-sensitive design (VSD) can help AI teams to engage
|
||
broadly with individuals and communities. This type of
|
||
engagement can enable AI teams to learn about how a given
|
||
technology may cause positive or negative impacts, that
|
||
were not originally considered or intended.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Utilize participatory approaches and engage with system
|
||
end users to understand and document AI systems’
|
||
potential benefits, efficacy and interpretability of AI
|
||
task output.
|
||
</li>
|
||
<li>
|
||
Maintain awareness and documentation of the individuals,
|
||
groups, or communities who make up the system’s internal
|
||
and external stakeholders.
|
||
</li>
|
||
<li>
|
||
Verify that appropriate skills and practices are
|
||
available in-house for carrying out participatory
|
||
activities such as eliciting, capturing, and
|
||
synthesizing user, operator and external feedback, and
|
||
translating it for AI design and development functions.
|
||
</li>
|
||
<li>
|
||
Establish mechanisms for regular communication and
|
||
feedback between relevant AI actors and internal or
|
||
external stakeholders related to system design or
|
||
deployment decisions.
|
||
</li>
|
||
<li>
|
||
Consider performance to human baseline metrics or other
|
||
standard benchmarks.
|
||
</li>
|
||
<li>
|
||
Incorporate feedback from end users, and potentially
|
||
impacted individuals and communities about perceived
|
||
system benefits .
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
Have the benefits of the AI system been communicated to
|
||
end users?
|
||
</li>
|
||
<li>
|
||
Have the appropriate training material and disclaimers
|
||
about how to adequately use the AI system been provided
|
||
to end users?
|
||
</li>
|
||
<li>
|
||
Has your organization implemented a risk management
|
||
system to address risks involved in deploying the
|
||
identified AI system (e.g. personnel risk or changes to
|
||
commercial objectives)?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
Intel.gov: AI Ethics Framework for Intelligence
|
||
Community - 2020.
|
||
<a
|
||
href="https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Assessment List for Trustworthy AI (ALTAI) - The
|
||
High-Level Expert Group on AI – 2019.
|
||
<a href="https://altai.insight-centre.org/">LINK</a>,
|
||
<a
|
||
href="https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Roel Dobbe, Thomas Krendl Gilbert, and Yonatan Mintz.
|
||
2021. Hard choices in artificial intelligence. Artificial
|
||
Intelligence 300 (14 July 2021), 103555, ISSN 0004-3702.
|
||
<a href="https://doi.org/10.1016/j.artint.2021.103555"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Samir Passi and Solon Barocas. 2019. Problem Formulation
|
||
and Fairness. In Proceedings of the Conference on
|
||
Fairness, Accountability, and Transparency (FAT* '19).
|
||
Association for Computing Machinery, New York, NY, USA,
|
||
39–48.
|
||
<a href="https://doi.org/10.1145/3287560.3287567">URL</a>
|
||
</p>
|
||
<p>
|
||
Vincent T. Covello. 2021. Stakeholder Engagement and
|
||
Empowerment. In Communicating in Risk, Crisis, and High
|
||
Stress Situations (Vincent T. Covello, ed.), 87-109.
|
||
<a href="https://ieeexplore.ieee.org/document/9648995"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Yilin Huang, Giacomo Poderi, Sanja Šćepanović, et al.
|
||
2019. Embedding Internet-of-Things in Large-Scale
|
||
Socio-technical Systems: A Community-Oriented Design in
|
||
Future Smart Grids. In The Internet of Things for Smart
|
||
Urban Ecosystems (2019), 125-150. Springer, Cham.
|
||
<a
|
||
href="https://link.springer.com/chapter/10.1007/978-3-319-96550-5_6"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Eloise Taysom and Nathan Crilly. 2017. Resilience in
|
||
Sociotechnical Systems: The Perspectives of Multiple
|
||
Stakeholders. She Ji: The Journal of Design, Economics,
|
||
and Innovation, 3, 3 (2017), 165-182, ISSN 2405-8726.
|
||
<a
|
||
href="https://www.sciencedirect.com/science/article/pii/S2405872617300758"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%203.2"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 3.2"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 3.2
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Potential costs, including non-monetary costs, which result from
|
||
expected or realized AI errors or system functionality and
|
||
trustworthiness - as connected to organizational risk tolerance -
|
||
are examined and documented.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 3.2"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Anticipating negative impacts of AI systems is a difficult
|
||
task. Negative impacts can be due to many factors, such as
|
||
system non-functionality or use outside of its operational
|
||
limits, and may range from minor annoyance to serious
|
||
injury, financial losses, or regulatory enforcement
|
||
actions. AI actors can work with a broad set of
|
||
stakeholders to improve their capacity for understanding
|
||
systems’ potential impacts – and subsequently – systems’
|
||
risks.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Perform context analysis to map potential negative
|
||
impacts arising from not integrating trustworthiness
|
||
characteristics. When negative impacts are not direct or
|
||
obvious, AI actors can engage with stakeholders external
|
||
to the team that developed or deployed the AI system,
|
||
and potentially impacted communities, to examine and
|
||
document:
|
||
<ul>
|
||
<li>Who could be harmed?</li>
|
||
<li>What could be harmed?</li>
|
||
<li>When could harm arise?</li>
|
||
<li>How could harm arise?</li>
|
||
</ul>
|
||
</li>
|
||
<li>
|
||
Identify and implement procedures for regularly
|
||
evaluating the qualitative and quantitative costs of
|
||
internal and external AI system failures. Develop
|
||
actions to prevent, detect, and/or correct potential
|
||
risks and related impacts. Regularly evaluate failure
|
||
costs to inform go/no-go deployment decisions throughout
|
||
the AI system lifecycle.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
To what extent does the system/entity consistently
|
||
measure progress towards stated goals and objectives?
|
||
</li>
|
||
<li>
|
||
To what extent can users or parties affected by the
|
||
outputs of the AI system test the AI system and provide
|
||
feedback?
|
||
</li>
|
||
<li>
|
||
Have you documented and explained that machine errors
|
||
may differ from human errors?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
Intel.gov: AI Ethics Framework for Intelligence
|
||
Community - 2020.
|
||
<a
|
||
href="https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Assessment List for Trustworthy AI (ALTAI) - The
|
||
High-Level Expert Group on AI – 2019.
|
||
<a href="https://altai.insight-centre.org/">LINK</a>,
|
||
<a
|
||
href="https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Abagayle Lee Blank. 2019. Computer vision machine learning
|
||
and future-oriented ethics. Honors Project. Seattle
|
||
Pacific University (SPU), Seattle, WA.
|
||
<a
|
||
href="https://digitalcommons.spu.edu/cgi/viewcontent.cgi?article=1100&context=honorsprojects"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Margarita Boyarskaya, Alexandra Olteanu, and Kate
|
||
Crawford. 2020. Overcoming Failures of Imagination in AI
|
||
Infused System Development and Deployment.
|
||
arXiv:2011.13416.
|
||
<a href="https://arxiv.org/abs/2011.13416">URL</a>
|
||
</p>
|
||
<p>
|
||
Jeff Patton. 2014. User Story Mapping. O'Reilly,
|
||
Sebastopol, CA.
|
||
<a href="https://www.jpattonassociates.com/story-mapping/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Margarita Boenig-Liptsin, Anissa Tanweer & Ari
|
||
Edmundson (2022) Data Science Ethos Lifecycle: Interplay
|
||
of ethical thinking and data science practice, Journal of
|
||
Statistics and Data Science Education, DOI:
|
||
10.1080/26939169.2022.2089411
|
||
</p>
|
||
<p>
|
||
J. Cohen, D. S. Katz, M. Barker, N. Chue Hong, R. Haines
|
||
and C. Jay, "The Four Pillars of Research Software
|
||
Engineering," in IEEE Software, vol. 38, no. 1, pp.
|
||
97-105, Jan.-Feb. 2021, doi: 10.1109/MS.2020.2973362.
|
||
</p>
|
||
<p>
|
||
National Academies of Sciences, Engineering, and Medicine
|
||
2022. Fostering Responsible Computing Research:
|
||
Foundations and Practices. Washington, DC: The National
|
||
Academies Press.
|
||
<a href="https://doi.org/10.17226/26507">URL</a>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%203.3"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 3.3"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 3.3
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Targeted application scope is specified and documented based on
|
||
the system’s capability, established context, and AI system
|
||
categorization.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 3.3"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Systems that function in a narrow scope tend to enable
|
||
better mapping, measurement, and management of risks in
|
||
the learning or decision-making tasks and the system
|
||
context. A narrow application scope also helps ease TEVV
|
||
functions and related resources within an organization.
|
||
</p>
|
||
<p>
|
||
For example, large language models or open-ended chatbot
|
||
systems that interact with the public on the internet have
|
||
a large number of risks that may be difficult to map,
|
||
measure, and manage due to the variability from both the
|
||
decision-making task and the operational context. Instead,
|
||
a task-specific chatbot utilizing templated responses that
|
||
follow a defined “user journey” is a scope that can be
|
||
more easily mapped, measured and managed.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Consider narrowing contexts for system deployment,
|
||
including factors related to: - How outcomes may
|
||
directly or indirectly affect users, groups, communities
|
||
and the environment. - Length of time the system is
|
||
deployed in between re-trainings. - Geographical regions
|
||
in which the system operates. - Dynamics related to
|
||
community standards or likelihood of system misuse or
|
||
abuses (either purposeful or unanticipated). - How AI
|
||
system features and capabilities can be utilized within
|
||
other applications, or in place of other existing
|
||
processes.
|
||
</li>
|
||
<li>
|
||
Engage AI actors from legal and procurement functions
|
||
when specifying target application scope.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
To what extent has the entity clearly defined technical
|
||
specifications and requirements for the AI system?
|
||
</li>
|
||
<li>
|
||
How do the technical specifications and requirements
|
||
align with the AI system’s goals and objectives?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Assessment List for Trustworthy AI (ALTAI) - The
|
||
High-Level Expert Group on AI – 2019.
|
||
<a href="https://altai.insight-centre.org/">LINK</a>,
|
||
<a
|
||
href="https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Mark J. Van der Laan and Sherri Rose (2018). Targeted
|
||
Learning in Data Science. Cham: Springer International
|
||
Publishing, 2018.
|
||
</p>
|
||
<p>
|
||
Alice Zheng. 2015. Evaluating Machine Learning Models
|
||
(2015). O'Reilly.
|
||
<a
|
||
href="https://www.oreilly.com/library/view/evaluating-machine-learning/9781492048756/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Brenda Leong and Patrick Hall (2021). 5 things lawyers
|
||
should know about artificial intelligence. ABA Journal.
|
||
<a
|
||
href="https://www.abajournal.com/columns/article/5-things-lawyers-should-know-about-artificial-intelligence"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
UK Centre for Data Ethics and Innovation, “The roadmap to
|
||
an effective AI assurance ecosystem”.
|
||
<a
|
||
href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1039146/The_roadmap_to_an_effective_AI_assurance_ecosystem.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%203.4"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 3.4"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 3.4
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Processes for operator and practitioner proficiency with AI system
|
||
performance and trustworthiness – and relevant technical standards
|
||
and certifications – are defined, assessed and documented.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 3.4"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Human-AI configurations can span from fully autonomous to
|
||
fully manual. AI systems can autonomously make decisions,
|
||
defer decision-making to a human expert, or be used by a
|
||
human decision-maker as an additional opinion. In some
|
||
scenarios, professionals with expertise in a specific
|
||
domain work in conjunction with an AI system towards a
|
||
specific end goal—for example, a decision about another
|
||
individual(s). Depending on the purpose of the system, the
|
||
expert may interact with the AI system but is rarely part
|
||
of the design or development of the system itself. These
|
||
experts are not necessarily familiar with machine
|
||
learning, data science, computer science, or other fields
|
||
traditionally associated with AI design or development and
|
||
- depending on the application - will likely not require
|
||
such familiarity. For example, for AI systems that are
|
||
deployed in health care delivery the experts are the
|
||
physicians and bring their expertise about medicine—not
|
||
data science, data modeling and engineering, or other
|
||
computational factors. The challenge in these settings is
|
||
not educating the end user about AI system capabilities,
|
||
but rather leveraging, and not replacing, practitioner
|
||
domain expertise.
|
||
</p>
|
||
<p>
|
||
Questions remain about how to configure humans and
|
||
automation for managing AI risks. Risk management is
|
||
enhanced when organizations that design, develop or deploy
|
||
AI systems for use by professional operators and
|
||
practitioners:
|
||
</p>
|
||
<ul>
|
||
<li>
|
||
are aware of these knowledge limitations and strive to
|
||
identify risks in human-AI interactions and
|
||
configurations across all contexts, and the potential
|
||
resulting impacts,
|
||
</li>
|
||
<li>
|
||
define and differentiate the various human roles and
|
||
responsibilities when using or interacting with AI
|
||
systems, and
|
||
</li>
|
||
<li>
|
||
determine proficiency standards for AI system operation
|
||
in proposed context of use, as enumerated in MAP-1 and
|
||
established in GOVERN-3.2.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Identify and declare AI system features and capabilities
|
||
that may affect downstream AI actors’ decision-making in
|
||
deployment and operational settings for example how
|
||
system features and capabilities may activate known
|
||
risks in various human-AI configurations, such as
|
||
selective adherence.
|
||
</li>
|
||
<li>
|
||
Identify skills and proficiency requirements for
|
||
operators, practitioners and other domain experts that
|
||
interact with AI systems,Develop AI system operational
|
||
documentation for AI actors in deployed and operational
|
||
environments, including information about known risks,
|
||
mitigation criteria, and trustworthy characteristics
|
||
enumerated in Map-1.
|
||
</li>
|
||
<li>
|
||
Define and develop training materials for proposed end
|
||
users, practitioners and operators about AI system use
|
||
and known limitations.
|
||
</li>
|
||
<li>
|
||
Define and develop certification procedures for
|
||
operating AI systems within defined contexts of use, and
|
||
information about what exceeds operational boundaries.
|
||
</li>
|
||
<li>
|
||
Include operators, practitioners and end users in AI
|
||
system prototyping and testing activities to help inform
|
||
operational boundaries and acceptable performance.
|
||
Conduct testing activities under scenarios similar to
|
||
deployment conditions.
|
||
</li>
|
||
<li>
|
||
Verify model output provided to AI system operators,
|
||
practitioners and end users is interactive, and
|
||
specified to context and user requirements defined in
|
||
MAP-1.
|
||
</li>
|
||
<li>
|
||
Verify AI system output is interpretable and unambiguous
|
||
for downstream decision making tasks.
|
||
</li>
|
||
<li>
|
||
Design AI system explanation complexity to match the
|
||
level of problem and context complexity.
|
||
</li>
|
||
<li>
|
||
Verify that design principles are in place for safe
|
||
operation by AI actors in decision-making environments.
|
||
</li>
|
||
<li>
|
||
Develop approaches to track human-AI configurations,
|
||
operator, and practitioner outcomes for integration into
|
||
continual improvement.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
What policies has the entity developed to ensure the use
|
||
of the AI system is consistent with its stated values
|
||
and principles?
|
||
</li>
|
||
<li>
|
||
How will the accountable human(s) address changes in
|
||
accuracy and precision due to either an adversary’s
|
||
attempts to disrupt the AI or unrelated changes in
|
||
operational/business environment, which may impact the
|
||
accuracy of the AI?
|
||
</li>
|
||
<li>
|
||
How does the entity assess whether personnel have the
|
||
necessary skills, training, resources, and domain
|
||
knowledge to fulfill their assigned responsibilities?
|
||
</li>
|
||
<li>
|
||
Are the relevant staff dealing with AI systems properly
|
||
trained to interpret AI model output and decisions as
|
||
well as to detect and manage bias in data?
|
||
</li>
|
||
<li>
|
||
What metrics has the entity developed to measure
|
||
performance of various components?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Companion to the Model AI Governance Framework-
|
||
2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGIsago.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
National Academies of Sciences, Engineering, and Medicine.
|
||
2022. Human-AI Teaming: State-of-the-Art and Research
|
||
Needs. Washington, DC: The National Academies Press.
|
||
<a href="https://doi.org/10.17226/26355">URL</a>
|
||
</p>
|
||
<p>
|
||
Human Readiness Level Scale in the System Development
|
||
Process, American National Standards Institute and Human
|
||
Factors and Ergonomics Society, ANSI/HFES 400-2021.
|
||
</p>
|
||
<p>
|
||
Human-Machine Teaming Systems Engineering Guide. P
|
||
McDermott, C Dominguez, N Kasdaglis, M Ryan, I Trahan, A
|
||
Nelson. MITRE Corporation, 2018.
|
||
</p>
|
||
<p>
|
||
Saar Alon-Barkat, Madalina Busuioc, Human–AI Interactions
|
||
in Public Sector Decision Making: “Automation Bias” and
|
||
“Selective Adherence” to Algorithmic Advice, Journal of
|
||
Public Administration Research and Theory, 2022;, muac007.
|
||
<a href="https://doi.org/10.1093/jopart/muac007">URL</a>
|
||
</p>
|
||
<p>
|
||
Breana M. Carter-Browne, Susannah B. F. Paletz, Susan G.
|
||
Campbell , Melissa J. Carraway, Sarah H. Vahlkamp, Jana
|
||
Schwartz , Polly O’Rourke, “There is No “AI” in Teams: A
|
||
Multidisciplinary Framework for AIs to Work in Human
|
||
Teams; Applied Research Laboratory for Intelligence and
|
||
Security (ARLIS) Report, June 2021.
|
||
<a
|
||
href="https://www.arlis.umd.edu/sites/default/files/2022-03/No_AI_In_Teams_FinalReport%20(1).pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
R Crootof, ME Kaminski, and WN Price II. Humans in the
|
||
Loop (March 25, 2022). Vanderbilt Law Review, Forthcoming
|
||
2023, U of Colorado Law Legal Studies Research Paper No.
|
||
22-10, U of Michigan Public Law Research Paper No. 22-011.
|
||
<a
|
||
href="https://ssrn.com/abstract=4066781 or http://dx.doi.org/10.2139/ssrn.4066781"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
S Mo Jones-Jang, Yong Jin Park, How do people react to AI
|
||
failure? Automation bias, algorithmic aversion, and
|
||
perceived controllability, Journal of Computer-Mediated
|
||
Communication, Volume 28, Issue 1, January 2023, zmac029.
|
||
<a href="https://doi.org/10.1093/jcmc/zmac029">URL</a>
|
||
</p>
|
||
<p>
|
||
A Knack, R Carter and A Babuta, "Human-Machine Teaming in
|
||
Intelligence Analysis: Requirements for developing trust
|
||
in machine learning systems," CETaS Research Reports
|
||
(December 2022).
|
||
<a
|
||
href="https://cetas.turing.ac.uk/sites/default/files/2022-12/cetas_research_report_-_hmt_and_intelligence_analysis_vfinal.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
SD Ramchurn, S Stein , NR Jennings. Trustworthy human-AI
|
||
partnerships. iScience. 2021;24(8):102891. Published 2021
|
||
Jul 24. doi:10.1016/j.isci.2021.102891.
|
||
<a
|
||
href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365362/pdf/main.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
M. Veale, M. Van Kleek, and R. Binns, “Fairness and
|
||
Accountability Design Needs for Algorithmic Support in
|
||
High-Stakes Public Sector Decision-Making,” in Proceedings
|
||
of the 2018 CHI Conference on Human Factors in Computing
|
||
Systems - CHI ’18. Montreal QC, Canada: ACM Press, 2018,
|
||
pp. 1–14.
|
||
<a
|
||
href="http://dl.acm.org/citation.cfm?doid=3173574.3174014"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%203.5"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 3.5"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 3.5
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Processes for human oversight are defined, assessed, and
|
||
documented in accordance with organizational policies from GOVERN
|
||
function.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 3.5"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
As AI systems have evolved in accuracy and precision,
|
||
computational systems have moved from being used purely
|
||
for decision support—or for explicit use by and under the
|
||
control of a human operator—to automated decision making
|
||
with limited input from humans. Computational decision
|
||
support systems augment another, typically human, system
|
||
in making decisions.These types of configurations increase
|
||
the likelihood of outputs being produced with little human
|
||
involvement.
|
||
</p>
|
||
<p>
|
||
Defining and differentiating various human roles and
|
||
responsibilities for AI systems’ governance, and
|
||
differentiating AI system overseers and those using or
|
||
interacting with AI systems can enhance AI risk management
|
||
activities.
|
||
</p>
|
||
<p>
|
||
In critical systems, high-stakes settings, and systems
|
||
deemed high-risk it is of vital importance to evaluate
|
||
risks and effectiveness of oversight procedures before an
|
||
AI system is deployed.
|
||
</p>
|
||
<p>
|
||
Ultimately, AI system oversight is a shared
|
||
responsibility, and attempts to properly authorize or
|
||
govern oversight practices will not be effective without
|
||
organizational buy-in and accountability mechanisms, for
|
||
example those suggested in the GOVERN function.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Identify and document AI systems’ features and
|
||
capabilities that require human oversight, in relation
|
||
to operational and societal contexts, trustworthy
|
||
characteristics, and risks identified in MAP-1.
|
||
</li>
|
||
<li>
|
||
Establish practices for AI systems’ oversight in
|
||
accordance with policies developed in GOVERN-1.
|
||
</li>
|
||
<li>
|
||
Define and develop training materials for relevant AI
|
||
Actors about AI system performance, context of use,
|
||
known limitations and negative impacts, and suggested
|
||
warning labels.
|
||
</li>
|
||
<li>
|
||
Include relevant AI Actors in AI system prototyping and
|
||
testing activities. Conduct testing activities under
|
||
scenarios similar to deployment conditions.
|
||
</li>
|
||
<li>
|
||
Evaluate AI system oversight practices for validity and
|
||
reliability. When oversight practices undergo extensive
|
||
updates or adaptations, retest, evaluate results, and
|
||
course correct as necessary.
|
||
</li>
|
||
<li>
|
||
Verify that model documents contain interpretable
|
||
descriptions of system mechanisms, enabling oversight
|
||
personnel to make informed, risk-based decisions about
|
||
system risks.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
What are the roles, responsibilities, and delegation of
|
||
authorities of personnel involved in the design,
|
||
development, deployment, assessment and monitoring of
|
||
the AI system?
|
||
</li>
|
||
<li>
|
||
How does the entity assess whether personnel have the
|
||
necessary skills, training, resources, and domain
|
||
knowledge to fulfill their assigned responsibilities?
|
||
</li>
|
||
<li>
|
||
Are the relevant staff dealing with AI systems properly
|
||
trained to interpret AI model output and decisions as
|
||
well as to detect and manage bias in data?
|
||
</li>
|
||
<li>
|
||
To what extent has the entity documented the AI system’s
|
||
development, testing methodology, metrics, and
|
||
performance outcomes?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Ben Green, “The Flaws of Policies Requiring Human
|
||
Oversight of Government Algorithms,” SSRN Journal, 2021.
|
||
<a href="https://www.ssrn.com/abstract=3921216">URL</a>
|
||
</p>
|
||
<p>
|
||
Luciano Cavalcante Siebert, Maria Luce Lupetti, Evgeni
|
||
Aizenberg, Niek Beckers, Arkady Zgonnikov, Herman
|
||
Veluwenkamp, David Abbink, Elisa Giaccardi, Geert-Jan
|
||
Houben, Catholijn Jonker, Jeroen van den Hoven, Deborah
|
||
Forster, & Reginald Lagendijk (2021). Meaningful human
|
||
control: actionable properties for AI system development.
|
||
AI and Ethics.
|
||
<a
|
||
href="https://link.springer.com/article/10.1007/s43681-022-00167-3"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Mary Cummings, (2014). Automation and Accountability in
|
||
Decision Support System Interface Design. The Journal of
|
||
Technology Studies. 32. 10.21061/jots.v32i1.a.4.
|
||
<a
|
||
href="https://scholar.lib.vt.edu/ejournals/JOTS/v32/v32n1/pdf/cummings.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Madeleine Elish, M. (2016). Moral Crumple Zones:
|
||
Cautionary Tales in Human-Robot Interaction (WeRobot
|
||
2016). SSRN Electronic Journal. 10.2139/ssrn.2757236.
|
||
<a
|
||
href="https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2757236"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
R Crootof, ME Kaminski, and WN Price II. Humans in the
|
||
Loop (March 25, 2022). Vanderbilt Law Review, Forthcoming
|
||
2023, U of Colorado Law Legal Studies Research Paper No.
|
||
22-10, U of Michigan Public Law Research Paper No. 22-011.
|
||
<a href="https://ssrn.com/abstract=4066781">LINK</a>,
|
||
<a href="http://dx.doi.org/10.2139/ssrn.4066781">URL</a>
|
||
</p>
|
||
<p>
|
||
Bogdana Rakova, Jingying Yang, Henriette Cramer, &
|
||
Rumman Chowdhury (2020). Where Responsible AI meets
|
||
Reality. Proceedings of the ACM on Human-Computer
|
||
Interaction, 5, 1 - 23.
|
||
<a href="https://arxiv.org/pdf/2006.12358.pdf">URL</a>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
|
||
<li>
|
||
<h2 class="pbindex__top__heading">Map 4</h2>
|
||
<p class="usa-intro pbindex__top__title">
|
||
Risks and benefits are mapped for all components of the AI system
|
||
including third-party software and data.
|
||
</p>
|
||
<ul class="pbindex__subcat-ul">
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%204.1"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 4.1"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 4.1
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Approaches for mapping AI technology and legal risks of its
|
||
components – including the use of third-party data or software –
|
||
are in place, followed, and documented, as are risks of
|
||
infringement of a third-party’s intellectual property or other
|
||
rights.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 4.1"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Technologies and personnel from third-parties are another
|
||
potential sources of risk to consider during AI risk
|
||
management activities. Such risks may be difficult to map
|
||
since risk priorities or tolerances may not be the same as
|
||
the deployer organization.
|
||
</p>
|
||
<p>
|
||
For example, the use of pre-trained models, which tend to
|
||
rely on large uncurated dataset or often have undisclosed
|
||
origins, has raised concerns about privacy, bias, and
|
||
unanticipated effects along with possible introduction of
|
||
increased levels of statistical uncertainty, difficulty
|
||
with reproducibility, and issues with scientific validity.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Review audit reports, testing results, product roadmaps,
|
||
warranties, terms of service, end user license
|
||
agreements, contracts, and other documentation related
|
||
to third-party entities to assist in value assessment
|
||
and risk management activities.
|
||
</li>
|
||
<li>
|
||
Review third-party software release schedules and
|
||
software change management plans (hotfixes, patches,
|
||
updates, forward- and backward- compatibility
|
||
guarantees) for irregularities that may contribute to AI
|
||
system risks.
|
||
</li>
|
||
<li>
|
||
Inventory third-party material (hardware, open-source
|
||
software, foundation models, open source data,
|
||
proprietary software, proprietary data, etc.) required
|
||
for system implementation and maintenance.
|
||
</li>
|
||
<li>
|
||
Review redundancies related to third-party technology
|
||
and personnel to assess potential risks due to lack of
|
||
adequate support.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
Did you establish a process for third parties (e.g.
|
||
suppliers, end users, subjects, distributors/vendors or
|
||
workers) to report potential vulnerabilities, risks or
|
||
biases in the AI system?
|
||
</li>
|
||
<li>
|
||
If your organization obtained datasets from a third
|
||
party, did your organization assess and manage the risks
|
||
of using such datasets?
|
||
</li>
|
||
<li>How will the results be independently verified?</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Intel.gov: AI Ethics Framework for Intelligence
|
||
Community - 2020.
|
||
<a
|
||
href="https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Model AI Governance Framework Assessment 2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGModelAIGovFramework2.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Language models</h5>
|
||
<p>
|
||
Emily M. Bender, Timnit Gebru, Angelina McMillan-Major,
|
||
and Shmargaret Shmitchell. 2021. On the Dangers of
|
||
Stochastic Parrots: Can Language Models Be Too Big? 🦜. In
|
||
Proceedings of the 2021 ACM Conference on Fairness,
|
||
Accountability, and Transparency (FAccT '21). Association
|
||
for Computing Machinery, New York, NY, USA, 610–623.
|
||
<a href="https://doi.org/10.1145/3442188.3445922">URL</a>
|
||
</p>
|
||
<p>
|
||
Julia Kreutzer, Isaac Caswell, Lisa Wang, et al. 2022.
|
||
Quality at a Glance: An Audit of Web-Crawled Multilingual
|
||
Datasets. Transactions of the Association for
|
||
Computational Linguistics 10 (2022), 50–72.
|
||
<a href="https://doi.org/10.1162/tacl_a_00447">URL</a>
|
||
</p>
|
||
<p>
|
||
Laura Weidinger, Jonathan Uesato, Maribeth Rauh, et al.
|
||
2022. Taxonomy of Risks posed by Language Models. In 2022
|
||
ACM Conference on Fairness, Accountability, and
|
||
Transparency (FAccT '22). Association for Computing
|
||
Machinery, New York, NY, USA, 214–229.
|
||
<a href="https://doi.org/10.1145/3531146.3533088">URL</a>
|
||
</p>
|
||
<p>
|
||
Office of the Comptroller of the Currency. 2021.
|
||
Comptroller's Handbook: Model Risk Management, Version
|
||
1.0, August 2021.
|
||
<a
|
||
href="https://www.occ.gov/publications-and-resources/publications/comptrollers-handbook/files/model-risk-management/index-model-risk-management.html"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, et al. 2021.
|
||
On the Opportunities and Risks of Foundation Models.
|
||
arXiv:2108.07258.
|
||
<a href="https://arxiv.org/abs/2108.07258">URL</a>
|
||
</p>
|
||
<p>
|
||
Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret
|
||
Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma,
|
||
Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori
|
||
Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, William
|
||
Fedus. “Emergent Abilities of Large Language Models.”
|
||
ArXiv abs/2206.07682 (2022).
|
||
<a href="https://arxiv.org/pdf/2206.07682.pdf">URL</a>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%204.2"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 4.2"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 4.2
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Internal risk controls for components of the AI system including
|
||
third-party AI technologies are identified and documented.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 4.2"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
In the course of their work, AI actors often utilize
|
||
open-source, or otherwise freely available, third-party
|
||
technologies – some of which may have privacy, bias, and
|
||
security risks. Organizations may consider internal risk
|
||
controls for these technology sources and build up
|
||
practices for evaluating third-party material prior to
|
||
deployment.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Track third-parties preventing or hampering risk-mapping
|
||
as indications of increased risk.
|
||
</li>
|
||
<li>
|
||
Supply resources such as model documentation templates
|
||
and software safelists to assist in third-party
|
||
technology inventory and approval activities.
|
||
</li>
|
||
<li>
|
||
Review third-party material (including data and models)
|
||
for risks related to bias, data privacy, and security
|
||
vulnerabilities.
|
||
</li>
|
||
<li>
|
||
Apply traditional technology risk controls – such as
|
||
procurement, security, and data privacy controls – to
|
||
all acquired third-party technologies.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
Can the AI system be audited by independent third
|
||
parties?
|
||
</li>
|
||
<li>
|
||
To what extent do these policies foster public trust and
|
||
confidence in the use of the AI system?
|
||
</li>
|
||
<li>
|
||
Are mechanisms established to facilitate the AI system’s
|
||
auditability (e.g. traceability of the development
|
||
process, the sourcing of training data and the logging
|
||
of the AI system’s processes, outcomes, positive and
|
||
negative impact)?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Intel.gov: AI Ethics Framework for Intelligence
|
||
Community - 2020.
|
||
<a
|
||
href="https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
WEF Model AI Governance Framework Assessment 2020.
|
||
<a
|
||
href="https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGModelAIGovFramework2.pdf"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Assessment List for Trustworthy AI (ALTAI) - The
|
||
High-Level Expert Group on AI - 2019.
|
||
<a href="https://altai.insight-centre.org/">LINK</a>,
|
||
<a
|
||
href="https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment"
|
||
>URL</a
|
||
>.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Office of the Comptroller of the Currency. 2021.
|
||
Comptroller's Handbook: Model Risk Management, Version
|
||
1.0, August 2021. Retrieved on July 7, 2022.
|
||
<a
|
||
href="https://www.occ.gov/publications-and-resources/publications/comptrollers-handbook/files/model-risk-management/index-model-risk-management.html"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Proposed Interagency Guidance on Third-Party
|
||
Relationships: Risk Management, 2021.
|
||
<a
|
||
href="https://www.occ.gov/news-issuances/news-releases/2021/nr-occ-2021-74a.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Kang, D., Raghavan, D., Bailis, P.D., & Zaharia, M.A.
|
||
(2020). Model Assertions for Monitoring and Improving ML
|
||
Models. ArXiv, abs/2003.01668.
|
||
<a
|
||
href="https://proceedings.mlsys.org/paper/2020/file/a2557a7b2e94197ff767970b67041697-Paper.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
|
||
<li>
|
||
<h2 class="pbindex__top__heading">Map 5</h2>
|
||
<p class="usa-intro pbindex__top__title">
|
||
Impacts to individuals, groups, communities, organizations, and society
|
||
are characterized.
|
||
</p>
|
||
<ul class="pbindex__subcat-ul">
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%205.1"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 5.1"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 5.1
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Likelihood and magnitude of each identified impact (both
|
||
potentially beneficial and harmful) based on expected use, past
|
||
uses of AI systems in similar contexts, public incident reports,
|
||
feedback from those external to the team that developed or
|
||
deployed the AI system, or other data are identified and
|
||
documented.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 5.1"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
AI actors can evaluate, document and triage the likelihood
|
||
of AI system impacts identified in Map 5.1 Likelihood
|
||
estimates may then be assessed and judged for go/no-go
|
||
decisions about deploying an AI system. If an organization
|
||
decides to proceed with deploying the system, the
|
||
likelihood and magnitude estimates can be used to assign
|
||
TEVV resources appropriate for the risk level.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Establish assessment scales for measuring AI systems’
|
||
impact. Scales may be qualitative, such as
|
||
red-amber-green (RAG), or may entail simulations or
|
||
econometric approaches. Document and apply scales
|
||
uniformly across the organization’s AI portfolio.
|
||
</li>
|
||
<li>
|
||
Apply TEVV regularly at key stages in the AI lifecycle,
|
||
connected to system impacts and frequency of system
|
||
updates.
|
||
</li>
|
||
<li>
|
||
Identify and document likelihood and magnitude of system
|
||
benefits and negative impacts in relation to
|
||
trustworthiness characteristics.
|
||
</li>
|
||
<li>
|
||
Establish processes for red teaming to identify and
|
||
connect system limitations to AI lifecycle stage(s) and
|
||
potential downstream impacts
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>Which population(s) does the AI system impact?</li>
|
||
<li>
|
||
What assessments has the entity conducted on
|
||
trustworthiness characteristics for example data
|
||
security and privacy impacts associated with the AI
|
||
system?
|
||
</li>
|
||
<li>
|
||
Can the AI system be tested by independent third
|
||
parties?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
Datasheets for Datasets.
|
||
<a href="http://arxiv.org/abs/1803.09010">URL</a>
|
||
</li>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
AI policies and initiatives, in Artificial Intelligence
|
||
in Society, OECD, 2019.
|
||
<a
|
||
href="https://www.oecd.org/publications/artificial-intelligence-in-society-eedfee77-en.htm"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Intel.gov: AI Ethics Framework for Intelligence
|
||
Community - 2020.
|
||
<a
|
||
href="https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Assessment List for Trustworthy AI (ALTAI) - The
|
||
High-Level Expert Group on AI - 2019.
|
||
<a href="https://altai.insight-centre.org/">LINK</a>,
|
||
<a
|
||
href="https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Emilio Gómez-González and Emilia Gómez. 2020. Artificial
|
||
intelligence in medicine and healthcare. Joint Research
|
||
Centre (European Commission).
|
||
<a
|
||
href="https://op.europa.eu/en/publication-detail/-/publication/b4b5db47-94c0-11ea-aac4-01aa75ed71a1/language-en"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Artificial Intelligence Incident Database. 2022.
|
||
<a href="https://incidentdatabase.ai/?lang=en">URL</a>
|
||
</p>
|
||
<p>
|
||
Anthony M. Barrett, Dan Hendrycks, Jessica Newman and
|
||
Brandie Nonnecke. “Actionable Guidance for
|
||
High-Consequence AI Risk Management: Towards Standards
|
||
Addressing AI Catastrophic Risks". ArXiv abs/2206.08966
|
||
(2022) <a href="https://arxiv.org/abs/2206.08966">URL</a>
|
||
</p>
|
||
<p>
|
||
Ganguli, D., et al. (2022). Red Teaming Language Models to
|
||
Reduce Harms: Methods, Scaling Behaviors, and Lessons
|
||
Learned. arXiv. https://arxiv.org/abs/2209.07858
|
||
</p>
|
||
<p>
|
||
Upol Ehsan, Q. Vera Liao, Samir Passi, Mark O. Riedl, and
|
||
Hal Daumé. 2024. Seamful XAI: Operationalizing Seamful
|
||
Design in Explainable AI. Proc. ACM Hum.-Comput. Interact.
|
||
8, CSCW1, Article 119. https://doi.org/10.1145/3637396
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
|
||
<li>
|
||
<div
|
||
data-allow-multiple="data-allow-multiple"
|
||
class="usa-accordion usa-accordion-multiselectable pbindex__outer-accordion__container"
|
||
>
|
||
<h3
|
||
id="Map%205.2"
|
||
class="usa-accordion__heading pbindex__outer-accordion__heading"
|
||
>
|
||
<button
|
||
type="button"
|
||
aria-expanded="false"
|
||
aria-controls="button-MAP 5.2"
|
||
class="usa-accordion__button pbindex__outer-accordion__button"
|
||
>
|
||
MAP 5.2
|
||
</button>
|
||
</h3>
|
||
<p class="pbindex__outer-accordion__description">
|
||
Practices and personnel for supporting regular engagement with
|
||
relevant AI actors and integrating feedback about positive,
|
||
negative, and unanticipated impacts are in place and documented.
|
||
</p>
|
||
|
||
<div
|
||
id="button-MAP 5.2"
|
||
class="usa-accordion__content usa-prose pbindex__outer-accordion__content pbindex__outer-accordion__content__withul"
|
||
>
|
||
<ul class="pbindex__collection__ul usa-collection">
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">About</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
AI systems are socio-technical in nature and can have
|
||
positive, neutral, or negative implications that extend
|
||
beyond their stated purpose. Negative impacts can be wide-
|
||
ranging and affect individuals, groups, communities,
|
||
organizations, and society, as well as the environment and
|
||
national security.
|
||
</p>
|
||
<p>
|
||
Organizations can create a baseline for system monitoring
|
||
to increase opportunities for detecting emergent risks.
|
||
After an AI system is deployed, engaging different
|
||
stakeholder groups – who may be aware of, or experience,
|
||
benefits or negative impacts that are unknown to AI actors
|
||
involved in the design, development and deployment
|
||
activities – allows organizations to understand and
|
||
monitor system benefits and potential negative impacts
|
||
more readily.
|
||
</p>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">Suggested Actions</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<ul>
|
||
<li>
|
||
Establish and document stakeholder engagement processes
|
||
at the earliest stages of system formulation to identify
|
||
potential impacts from the AI system on individuals,
|
||
groups, communities, organizations, and society.
|
||
</li>
|
||
<li>
|
||
Employ methods such as value sensitive design (VSD) to
|
||
identify misalignments between organizational and
|
||
societal values, and system implementation and impact.
|
||
</li>
|
||
<li>
|
||
Identify approaches to engage, capture, and incorporate
|
||
input from system end users and other key stakeholders
|
||
to assist with continuous monitoring for potential
|
||
impacts and emergent risks.
|
||
</li>
|
||
<li>
|
||
Incorporate quantitative, qualitative, and mixed methods
|
||
in the assessment and documentation of potential impacts
|
||
to individuals, groups, communities, organizations, and
|
||
society.
|
||
</li>
|
||
<li>
|
||
Identify a team (internal or external) that is
|
||
independent of AI design and development functions to
|
||
assess AI system benefits, positive and negative impacts
|
||
and their likelihood and magnitude.
|
||
</li>
|
||
<li>
|
||
Evaluate and document stakeholder feedback to assess
|
||
potential impacts for actionable insights regarding
|
||
trustworthiness characteristics and changes in design
|
||
approaches and principles.
|
||
</li>
|
||
<li>
|
||
Develop TEVV procedures that incorporate socio-technical
|
||
elements and methods and plan to normalize across
|
||
organizational culture. Regularly review and refine TEVV
|
||
processes.
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">
|
||
Transparency and Documentation
|
||
</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<h5>Organizations can document the following</h5>
|
||
<ul>
|
||
<li>
|
||
If the AI system relates to people, does it unfairly
|
||
advantage or disadvantage a particular social group? In
|
||
what ways? How was this managed?
|
||
</li>
|
||
<li>
|
||
If the AI system relates to other ethically protected
|
||
groups, have appropriate obligations been met? (e.g.,
|
||
medical data might include information collected from
|
||
animals)
|
||
</li>
|
||
<li>
|
||
If the AI system relates to people, could this dataset
|
||
expose people to harm or legal action? (e.g., financial
|
||
social or otherwise) What was done to mitigate or reduce
|
||
the potential for harm?
|
||
</li>
|
||
</ul>
|
||
<h5>AI Transparency Resources</h5>
|
||
<ul>
|
||
<li>
|
||
Datasheets for Datasets.
|
||
<a href="http://arxiv.org/abs/1803.09010">URL</a>
|
||
</li>
|
||
<li>
|
||
GAO-21-519SP: AI Accountability Framework for Federal
|
||
Agencies & Other Entities.
|
||
<a href="https://www.gao.gov/products/gao-21-519sp"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
AI policies and initiatives, in Artificial Intelligence
|
||
in Society, OECD, 2019.
|
||
<a
|
||
href="https://www.oecd.org/publications/artificial-intelligence-in-society-eedfee77-en.htm"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Intel.gov: AI Ethics Framework for Intelligence
|
||
Community - 2020.
|
||
<a
|
||
href="https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
<li>
|
||
Assessment List for Trustworthy AI (ALTAI) - The
|
||
High-Level Expert Group on AI - 2019.
|
||
<a href="https://altai.insight-centre.org/">LINK</a>,
|
||
<a
|
||
href="https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment"
|
||
>URL</a
|
||
>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</li>
|
||
|
||
<li class="usa-collection__item">
|
||
<div class="pbindex__content_section_heading_container">
|
||
<h4 class="usa-collection__heading">References</h4>
|
||
</div>
|
||
<div
|
||
class="usa-collection__body pbindex__content_section_contentp_container"
|
||
>
|
||
<p>
|
||
Susanne Vernim, Harald Bauer, Erwin Rauch, et al. 2022. A
|
||
value sensitive design approach for designing AI-based
|
||
worker assistance systems in manufacturing. Procedia
|
||
Comput. Sci. 200, C (2022), 505–516.
|
||
<a href="https://doi.org/10.1016/j.procs.2022.01.248"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Harini Suresh and John V. Guttag. 2020. A Framework for
|
||
Understanding Sources of Harm throughout the Machine
|
||
Learning Life Cycle. arXiv:1901.10002. Retrieved from
|
||
<a href="https://arxiv.org/abs/1901.10002">URL</a>
|
||
</p>
|
||
<p>
|
||
Margarita Boyarskaya, Alexandra Olteanu, and Kate
|
||
Crawford. 2020. Overcoming Failures of Imagination in AI
|
||
Infused System Development and Deployment.
|
||
arXiv:2011.13416.
|
||
<a href="https://arxiv.org/abs/2011.13416">URL</a>
|
||
</p>
|
||
<p>
|
||
Konstantinia Charitoudi and Andrew Blyth. A
|
||
Socio-Technical Approach to Cyber Risk Management and
|
||
Impact Assessment. Journal of Information Security 4, 1
|
||
(2013), 33-41.
|
||
<a href="http://dx.doi.org/10.4236/jis.2013.41005">URL</a>
|
||
</p>
|
||
<p>
|
||
Raji, I.D., Smart, A., White, R.N., Mitchell, M., Gebru,
|
||
T., Hutchinson, B., Smith-Loud, J., Theron, D., &
|
||
Barnes, P. (2020). Closing the AI accountability gap:
|
||
defining an end-to-end framework for internal algorithmic
|
||
auditing. Proceedings of the 2020 Conference on Fairness,
|
||
Accountability, and Transparency.
|
||
</p>
|
||
<p>
|
||
Emanuel Moss, Elizabeth Anne Watkins, Ranjit Singh,
|
||
Madeleine Clare Elish, & Jacob Metcalf. 2021.
|
||
Assemlbing Accountability: Algorithmic Impact Assessment
|
||
for the Public Interest. Data & Society. Accessed
|
||
7/14/2022 at
|
||
<a
|
||
href="https://datasociety.net/library/assembling-accountability-algorithmic-impact-assessment-for-the-public-interest/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Shari Trewin (2018). AI Fairness for People with
|
||
Disabilities: Point of View. ArXiv, abs/1811.10670.
|
||
<a href="https://arxiv.org/pdf/1811.10670.pdf">URL</a>
|
||
</p>
|
||
<p>
|
||
Ada Lovelace Institute. 2022. Algorithmic Impact
|
||
Assessment: A Case Study in Healthcare. Accessed July 14,
|
||
2022.
|
||
<a
|
||
href="https://www.adalovelaceinstitute.org/report/algorithmic-impact-assessment-case-study-healthcare/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Microsoft Responsible AI Impact Assessment Template. 2022.
|
||
Accessed July 14, 2022.
|
||
<a
|
||
href="https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-RAI-Impact-Assessment-Template.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Microsoft Responsible AI Impact Assessment Guide. 2022.
|
||
Accessed July 14, 2022.
|
||
<a
|
||
href="https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-RAI-Impact-Assessment-Guide.pdf"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Microsoft Responsible AI Standard, v2.
|
||
<a
|
||
href="https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4ZPmV"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
Microsoft Research AI Fairness Checklist.
|
||
<a
|
||
href="https://www.microsoft.com/en-us/research/project/ai-fairness-checklist/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
<p>
|
||
PEAT AI & Disability Inclusion Toolkit – Risks of Bias
|
||
and Discrimination in AI Hiring Tools.
|
||
<a
|
||
href="https://www.peatworks.org/ai-disability-inclusion-toolkit/risks-of-bias-and-discrimination-in-ai-hiring-tools/"
|
||
>URL</a
|
||
>
|
||
</p>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
</main>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<footer class="nist-footer padding-bottom-4">
|
||
<div class="grid-container nist-footer__info">
|
||
<div class="grid-row">
|
||
<div class="tablet:grid-col-6 padding-left-0">
|
||
<div class="nist-footer__logo">
|
||
<a href="https://www.nist.gov/"
|
||
title="National Institute of Standards and Technology"
|
||
class="nist-footer__logo-link"
|
||
rel="home">
|
||
<img src="/img/nist_logo_brand_white.svg"
|
||
role="img"
|
||
alt="National Institute of Standards and Technology logo"
|
||
width="300px"
|
||
height="42px" />
|
||
</a>
|
||
</div>
|
||
<div class="nist-footer__contact">
|
||
<h3 class="nist-footer__contact-heading">HEADQUARTERS</h3>
|
||
<address>
|
||
100 Bureau Drive
|
||
<br>
|
||
Gaithersburg, MD 20899
|
||
<br>
|
||
<a href="tel:301-975-2000">301-975-2000</a>
|
||
</address>
|
||
<p>
|
||
<a href="mailto:do-webmaster@nist.gov">Webmaster</a> | <a href="https://www.nist.gov/about-nist/contact-us">Contact Us</a> | <a href="https://www.nist.gov/visit">Our Other Offices</a>
|
||
</p>
|
||
</div>
|
||
</div>
|
||
<div class="tablet:grid-col-6">
|
||
<div class="nist-footer__social-links grid-row">
|
||
<a class="nist-social nist-social--x-white ext"
|
||
href=" https://x.com/NIST"
|
||
data-extlink="">
|
||
<span>X</span>
|
||
<img class="nist-social-footer-icon filter-white"
|
||
src="/img/usa-icons/x.svg"
|
||
alt="X" />
|
||
</a>
|
||
<a class="nist-social nist-social--facebook-white ext"
|
||
href=" https://www.facebook.com/NIST"
|
||
data-extlink="">
|
||
<span>Facebook</span>
|
||
<img class="nist-social-footer-icon filter-white"
|
||
src="/img/usa-icons/facebook.svg"
|
||
alt="Facebook" />
|
||
</a>
|
||
<a class="nist-social nist-social--linkedin-white ext"
|
||
href=" https://www.linkedin.com/company/nist"
|
||
data-extlink="">
|
||
<span>LinkedIn</span>
|
||
<img class="nist-social-footer-icon filter-white"
|
||
src="/img/usa-icons/linkedin.svg"
|
||
alt="LinkedIn" />
|
||
</a>
|
||
<a class="nist-social nist-social--instagram-white ext"
|
||
href=" https://www.instagram.com/nist/"
|
||
data-extlink="">
|
||
<span>Instagram</span>
|
||
<img class="nist-social-footer-icon filter-white"
|
||
src="/img/usa-icons/instagram.svg"
|
||
alt="Instagram" />
|
||
</a>
|
||
<a class="nist-social nist-social--youtube-white ext"
|
||
href=" https://www.youtube.com/NIST"
|
||
data-extlink="">
|
||
<span>YouTube</span>
|
||
<img class="nist-social-footer-icon filter-white"
|
||
src="/img/usa-icons/youtube.svg"
|
||
alt="YouTube" />
|
||
</a>
|
||
<a class="nist-social nist-social--rss-white"
|
||
href=" https://www.nist.gov/news-events/nist-rss-feeds">
|
||
<span>RSS Feed</span>
|
||
<img class="nist-social-footer-icon filter-white"
|
||
src="/img/usa-icons/rss_feed.svg"
|
||
alt="RSS" />
|
||
</a>
|
||
<a class="nist-social nist-social--envelope-white ext"
|
||
href=" https://public.govdelivery.com/accounts/USNIST/subscriber/new"
|
||
data-extlink="">
|
||
<span>Mailing List</span>
|
||
<img class="nist-social-footer-icon filter-white"
|
||
src="/img/usa-icons/mail.svg"
|
||
alt="Subscribe to Mailing List" />
|
||
</a>
|
||
</div>
|
||
<br>
|
||
<div class="nist-footer__feedback grid-row">
|
||
How are we doing? <a class="margin-left-2 usa-button"
|
||
rel="nofollow"
|
||
href="https://www.nist.gov/form/nist-gov-feedback?destination=/national-institute-standards-and-technology"
|
||
title="Provide feedback">Feedback</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="nist-footer__inner">
|
||
<div class="nist-footer__menu" role="navigation">
|
||
<ul>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.nist.gov/privacy-policy">Site Privacy</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.nist.gov/oism/accessibility">Accessibility</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.nist.gov/privacy">Privacy Program</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.nist.gov/oism/copyrights">Copyrights</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.commerce.gov/vulnerability-disclosure-policy">Vulnerability Disclosure</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.nist.gov/no-fear-act-policy">No Fear Act Policy</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.nist.gov/foia">FOIA</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.nist.gov/environmental-policy-statement">Environmental Policy</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item ">
|
||
<a href="https://www.nist.gov/summary-report-scientific-integrity">Scientific Integrity</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item ">
|
||
<a href="https://www.nist.gov/nist-information-quality-standards">Information Quality Standards</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.commerce.gov/">Commerce.gov</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.science.gov/">Science.gov</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://www.usa.gov/">USA.gov</a>
|
||
</li>
|
||
<li class="nist-footer__menu-item">
|
||
<a href="https://vote.gov/">Vote.gov</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</footer>
|
||
|
||
|
||
</div>
|
||
|
||
|
||
|
||
|
||
<script nonce="VGGJL6qR72rqyokScTQSXA=="
|
||
defer
|
||
src="/dist/uswds.min.fce4bb2752d4.js"></script>
|
||
<script nonce="VGGJL6qR72rqyokScTQSXA=="
|
||
type="text/javascript"
|
||
src="/dist/application.a74e10c27c89.js"
|
||
defer></script>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<script nonce="VGGJL6qR72rqyokScTQSXA==" src="https://www.googletagmanager.com/gtag/js?id=G-3CZ2H64ZSV" async></script>
|
||
<script nonce="VGGJL6qR72rqyokScTQSXA==" type="application/javascript" defer>window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-3CZ2H64ZSV');</script>
|
||
<noscript>
|
||
<style nonce="VGGJL6qR72rqyokScTQSXA==" >
|
||
iframe {
|
||
display: none;
|
||
visibility: hidden;
|
||
}
|
||
</style>
|
||
|
||
<iframe src="https://www.googletagmanager.com/ns.html?id=G-3CZ2H64ZSV"
|
||
height="0"
|
||
width="0"
|
||
style="display:none;
|
||
visibility:hidden"></iframe>
|
||
</noscript>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</body>
|
||
</html>
|