nih-gov/www.ncbi.nlm.nih.gov/bionlp/Tools/dnorm

376 lines
No EOL
16 KiB
Text

<!DOCTYPE html>
<html lang="en" >
<head >
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<!-- Mobile properties -->
<meta name="HandheldFriendly" content="True">
<meta name="MobileOptimized" content="320">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<!-- Stylesheets -->
<link href="/research/bionlp/static/django_uswds/uswds/css/uswds.css" rel="stylesheet" />
<title>
DNorm: Disease Named Entity Recognition and Normalization
</title>
<link rel="stylesheet" href="/research/bionlp/static/main/css/uswds.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/header.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/footer.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/form.css">
<!-- Labs template -->
<link rel="stylesheet" href="/research/bionlp/static/main/css/atoms.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/docsum.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/media.css">
<!-- Additional template -->
<link rel="stylesheet" href="/research/bionlp/static/main/css/journals.molecules.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/custom.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/journals.journal-page.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/iconic-glyphs.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/featherlight.min.css">
<link rel="stylesheet" href="/research/bionlp/static/main/css/styles.css">
<!--[if lt IE 9]>
<link rel="stylesheet" href="/research/bionlp/static/main/css/iconic-glyphs-legacy.css">
<![endif]-->
<!-- Some JS -->
<script src="/research/bionlp/static/main/js/jquery.js"></script>
<script src="/research/bionlp/static/main/js/modernizr.js"></script>
<script src="/research/bionlp/static/main/js/featherlight.min.js"></script>
<script src="/research/bionlp/static/main/js/custom.js"></script>
</head>
<body >
<div>
<a class="skipnav" href="#maincontent">
Skip to main page content
</a>
<header class="ncbi-page-header" role="banner">
<div class="prefix">
<span class="nih" title="National Institutes of Health">
<a href="https://www.nih.gov/" title="To NIH homepage">
<img src="/research/bionlp/static/base/images/nih-logo-header.svg" alt="NIH">
</a>
</span>
<span class="nlm">
<a href="https://www.nlm.nih.gov/" title="To NLM homepage">U.S. National Library of Medicine</a>
</span>
</div>
<div class="ncbi">
<!-- <abbr class="abbr">
<a href="https://www.ncbi.nlm.nih.gov/" title="To NCBI homepage">NCBI</a>
</abbr>
<span class="name">
<a href="https://www.ncbi.nlm.nih.gov/" accesskey="1" title="To NCBI homepage">National Center for Biotechnology Information</a>
</span> -->
<!-- <abbr class="abbr">
<a href="https://www.nlm.nih.gov/research/index.html" title="To DIR homepage">DIR</a>
</abbr> -->
<span class="name">
<a href="https://www.nlm.nih.gov/research/index.html" accesskey="1" title="To DIR homepage">Division of Intramural Research</a>
</span>
<div class="right">
<a id="in" href="/research/bionlp/accounts/login/?next=/research/bionlp/">Log in</a>
</div>
</div>
</header>
<!--app-specific header, something that might want to take full width of screen -->
<a class="skipnav" href="#maincontent">
Skip to main page content
</a>
<div class="breadcrumbs-container menu">
<div class="usa-grid-full">
<ul class="topnav" accesskey="4">
<li class="current">
<a href="/research/bionlp/" title="Home">
Home
</a>
</li>
<li class="separator"></li>
<li>
<a href="/research/bionlp/Zhiyong-Lu" title="Zhiyong Lu">
Zhiyong Lu
</a>
</li>
<li class="separator"></li>
<li>
<a href="/research/bionlp/News" title="Media">
Media
</a>
</li>
<li class="separator"></li>
<li>
<a href="/research/bionlp/Team" title="Team">
Team
</a>
</li>
<li class="separator"></li>
<li>
<a href="/research/bionlp/Research" title="Research">
Research
</a>
</li>
<li class="separator"></li>
<li>
<a href="/research/bionlp/Publications/" title="Publications">
Publications
</a>
</li>
<li class="separator"></li>
<li>
<a href="/research/bionlp/Tools/" title="Tools">
Tools
</a>
</li>
<li>
<a href="/research/bionlp/APIs/" title="Tools">
Web APIs
</a>
</li>
<li class="separator"></li>
<li>
<a href="/research/bionlp/Data/" title="Data">
AI Datasets
</a>
</li>
<li>
<a href="/research/bionlp/Visiting-us" title="Visiting us">
Visiting us
</a>
</li>
<li class="icon">
<a href="#">&#9776;</a>
</li>
</ul>
</div>
</div>
<!-- asign css class in case app will need to alter styles of this div -->
<div id="maincontent" class="usa-grid-full ncbi-base-page-container">
<div class="labs-pagecontent">
<div class="usa-width-one-whole">
<main class="usa-grid journals-lists">
<h3>DNorm: Disease Named Entity Recognition and Normalization with Pairwise Learning to Rank</h3>
<main class="usa-width-one-whole journal-container">
<div>
<div class="issue labs-docsums labs-content-box wrappall">
<h4>Authors: <a href="https://scholar.google.com/citations?user=FLnUx4cAAAAJ" target="_blank">Robert
Leaman</a>, <a href="/CBBresearch/Fellows/Dogan/" target="_blank">Rezarta
Islamaj Dogan</a> and <a href="/bionlp/" target="_blank">Zhiyong Lu</a> (PI)</h4>
<h4>Research highlights (<a
href="/CBBresearch/Lu/Demo/tmTools/demo/DNorm/demo.cgi" target="_blank">demo</a>)
</h4>
<div class="usa-width-one-whole">
<p>
DNorm is an automated method for determining which diseases are mentioned in biomedical text, the
task of disease normalization. Diseases have a central role in many lines of biomedical research,
making this task important for many lines of inquiry, including etiology (e.g. gene-disease
relationships) and clinical aspects (e.g. diagnosis, prevention, and treatment). DNorm is a
high-performing and mathematically principled framework for learning similarities between mentions
and concept names directly from training data. DNorm is the first technique to use machine learning
to normalize disease names and also the first method employing pairwise learning to rank in a
normalization task. DNorm achieved the best performance in the 2013 ShARe/CLEF shared task on
disease normalization in clinical notes.
</p>
</div>
</div>
<div class="issue labs-docsums labs-content-box wrappall">
<h4>Method overview</h4>
<div class="usa-width-one-whole">
<p>
The technique consists of series of processing steps summarized in Figure 1 and described below.
</p>
<div class="figure">
<img src="/research/bionlp/static/main/images/tools/DNorm.png" width="350"/>
<span><b>Figure 1.</b> Processing pipeline diagram.</span>
</div>
</div>
</div>
<div class="issue labs-docsums labs-content-box wrappall">
<h4>Results</h4>
<div class="usa-width-one-whole">
<p>
We evaluated the system on the NCBI Disease Corpus test set at the level of associations between the
disease concept and the abstract, not individual mentions.
</p>
<table class="customtable">
<tbody>
<tr>
<td align="center"><strong>Method</strong></td>
<td align="center"><strong>Precision</strong></td>
<td align="center"><strong>Recall</strong></td>
<td align="center"><strong>F-measure</strong></td>
</tr>
<tr>
<td align="center" nowrap="">NLM Lexical Normalization</td>
<td align="center">0.218</td>
<td align="center">0.685</td>
<td align="center">0.331</td>
</tr>
<tr>
<td align="center" nowrap="">MetaMap</td>
<td align="center">0.502</td>
<td align="center">0.665</td>
<td align="center">0.572</td>
</tr>
<tr>
<td align="center" nowrap="">Inference Method</td>
<td align="center">0.533</td>
<td align="center">0.662</td>
<td align="center">0.591</td>
</tr>
<tr>
<td align="center" nowrap="">BANNER + Lucene</td>
<td align="center">0.612</td>
<td align="center">0.647</td>
<td align="center">0.629</td>
</tr>
<tr>
<td align="center" nowrap="">BANNER + cosine similarity</td>
<td align="center">0.649</td>
<td align="center">0.674</td>
<td align="center">0.661</td>
</tr>
<tr>
<td align="center" class="best">DNorm (BANNER + pLTR)</td>
<td align="center" class="best">0.803</td>
<td align="center" class="best">0.763</td>
<td align="center" class="best">0.782</td>
</tr>
</tbody>
</table>
<span><b>Table 1.</b> Evaluation of DNorm against several baseline techniques, using micro-averaged precision, recall and F-measure.</span>
</div>
</div>
<div class="issue labs-docsums labs-content-box wrappall">
<h4>Downloads</h4>
<div class="usa-width-one-whole">
<p>
<a href="/CBBresearch/Lu/Demo/tmTools/download/DNorm/DNorm-0.0.7.tgz"
target="_blank">DNorm Software</a><br/>
<a href="/CBBresearch/Dogan/DISEASE" target="_blank">NCBI Disease
Corpus</a><br/>
DNorm-tagged PubMed results in <a href="/CBBresearch/Lu/Demo/PubTator/"
target="_blank">PubTator</a><br/>
<a href="/research/bionlp/APIs/">DNorm
RESTful API</a>
</p>
</div>
</div>
<div class="issue labs-docsums labs-content-box wrappall">
<h4>Please cite</h4>
<div class="usa-width-one-whole">
<ul class="dot-list">
<li>Robert Leaman, Rezarta Islamaj Dog
<CC><8C>an and Zhiyong Lu. <a
href="http://bioinformatics.oxfordjournals.org/content/early/2013/09/26/bioinformatics.btt474.full"
target="_blank">DNorm: Disease Name Normalization with Pairwise Learning to Rank</a>.
Bioinformatics (2013) 29 (22): 2909-2917, doi:10.1093/bioinformatics/btt474
</li>
<li>Robert Leaman, Ritu Khare and Zhiyong Lu. <a
href="http://ceur-ws.org/Vol-1179/CLEF2013wn-CLEFeHealth-LeamanEt2013.pdf" target="_blank">NCBI
at 2013 ShARe/CLEF eHealth Share Task: Disorder Normalization in Clinical Notes with DNorm</a>.
Working Notes of the Conference and Labs of the Evaluation Forum (2013)
</li>
<li>Robert Leaman and Zhiyong Lu. <a href="http://www.aclweb.org/anthology/W14-3404"
target="_blank">Automated Disease Normalization with Low Rank
Approximations</a>. Proceedings of BioNLP 2014: pp 24-28
</li>
</ul>
</div>
</div>
</div>
</main>
</main>
</div>
</div>
</div>
<footer class="usa-footer usa-footer-big ncbi-footer" role="contentinfo">
<div class="usa-grid">
<div class="usa-row">
<div class="usa-width-one-half">
<div>
<div class="org-section">
<a href="https://www.hhs.gov/"><img class="usa-footer-logo-img hhs-logo"
src="/research/bionlp/static/base/images/dhhs-logo-white.svg"
alt="U.S. Department of Health & Human Services">
<span class="usa-sr-only">Department of Health and Human Services</span></a>
<a href="https://www.nih.gov/"><img class="usa-footer-logo-img nih-logo"
src="/research/bionlp/static/base/images/nih-logo-white.svg"
alt="National Institutes of Health">
<span class="usa-sr-only">National Institutes of Health</span></a>
<a href="https://www.nlm.nih.gov/"><img class="usa-footer-logo-img nlm-logo"
src="/research/bionlp/static/base/images/nlm-logo-letters-white.svg"
alt="National Library of Medicine">
<span class="usa-sr-only">National Library of Medicine</span></a>
<a href="https://www.usa.gov/"><img class="usa-footer-logo-img usagov-logo"
src="/research/bionlp/static/base/images/usagov-logo-white.svg"
alt="USA.gov"/>
<span class="usa-sr-only">USA.gov</span></a>
</div>
</div>
</div>
<div class="usa-width-one-half">
<div>
<p class="about-links">
<a href="https://www.nlm.nih.gov/research/index.html">About DIR</a>
<a href="https://www.nlm.nih.gov/web_policies.html">Web Policies</a></p>
</div>
</div>
</div>
</div>
</footer>
</div>
<!-- JavaScript -->
<script src="/research/bionlp/static/django_uswds/uswds/js/uswds.js"></script>
<script type="text/javascript" src="/research/bionlp/static/base/header.js"></script>
</body>
</html>