nih-gov/www.ncbi.nlm.nih.gov/books/n/webvision/ch18glu/index.html
2025-03-17 02:05:34 +00:00

997 lines
No EOL
174 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK11526" /><meta name="ncbi_domain" content="webvision" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK11526/" /><meta name="ncbi_pagename" content="Glutamate and Glutamate Receptors in the Vertebrate Retina - Webvision - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="chapter" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Glutamate and Glutamate Receptors in the Vertebrate Retina - Webvision - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Webvision: The Organization of the Retina and Visual System [Internet]" /><meta name="citation_title" content="Glutamate and Glutamate Receptors in the Vertebrate Retina" /><meta name="citation_publisher" content="University of Utah Health Sciences Center" /><meta name="citation_date" content="2007/05/07" /><meta name="citation_author" content="Victoria Connaughton" /><meta name="citation_pmid" content="21413387" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK11526/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Glutamate and Glutamate Receptors in the Vertebrate Retina" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="University of Utah Health Sciences Center" /><meta name="DC.Contributor" content="Victoria Connaughton" /><meta name="DC.Date" content="2007/05/07" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK11526/" /><meta name="description" content="Histological analyses of presynaptic neurons and physiological recordings from postsynaptic cells suggest that photoreceptor, bipolar, and ganglion cells release glutamate as their neurotransmitter. Multiple glutamate receptor types are present in the retina. These receptors are pharmacologically distinct and differentially distributed. IGluRs directly gate ion channels and mediate rapid synaptic transmission through either kainate/AMPA or NMDA receptors. Glutamate binding onto iGluRs opens cation channels, depolarizing the postsynaptic cell membrane. Neurons within the OFF-pathway (horizontal cells, OFF-bipolar cells, amacrine cells, and ganglion cells) express functional iGluRs. mGluRs are coupled to G-proteins. Glutamate binding onto mGluRs can have a variety of effects, depending on the second messenger cascade to which the receptor is coupled. The APB receptor, found on ON-bipolar cell dendrites, is coupled to the synthesis of cGMP. At these receptors, glutamate decreases cGMP formation, leading to the closure of ion channels. Glutamate transporters, found on glial and photoreceptor cells, are also present at glutamatergic synapses (Fig. 17). Transporters remove excess glutamate from the synaptic cleft to prevent neurotoxicity. Thus, postsynaptic responses to glutamate are determined by the distribution of receptors and transporters at glutamatergic synapses which, in retina, determine the conductance mechanisms underlying visual information processing within the ON- and OFF-pathways." /><meta name="og:title" content="Glutamate and Glutamate Receptors in the Vertebrate Retina" /><meta name="og:type" content="book" /><meta name="og:description" content="Histological analyses of presynaptic neurons and physiological recordings from postsynaptic cells suggest that photoreceptor, bipolar, and ganglion cells release glutamate as their neurotransmitter. Multiple glutamate receptor types are present in the retina. These receptors are pharmacologically distinct and differentially distributed. IGluRs directly gate ion channels and mediate rapid synaptic transmission through either kainate/AMPA or NMDA receptors. Glutamate binding onto iGluRs opens cation channels, depolarizing the postsynaptic cell membrane. Neurons within the OFF-pathway (horizontal cells, OFF-bipolar cells, amacrine cells, and ganglion cells) express functional iGluRs. mGluRs are coupled to G-proteins. Glutamate binding onto mGluRs can have a variety of effects, depending on the second messenger cascade to which the receptor is coupled. The APB receptor, found on ON-bipolar cell dendrites, is coupled to the synthesis of cGMP. At these receptors, glutamate decreases cGMP formation, leading to the closure of ion channels. Glutamate transporters, found on glial and photoreceptor cells, are also present at glutamatergic synapses (Fig. 17). Transporters remove excess glutamate from the synaptic cleft to prevent neurotoxicity. Thus, postsynaptic responses to glutamate are determined by the distribution of receptors and transporters at glutamatergic synapses which, in retina, determine the conductance mechanisms underlying visual information processing within the ON- and OFF-pathways." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK11526/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-webvision-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/webvision/ch18glu/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK11526/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8D12DE7C9A70A10000000000060004.m_13" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="snp">SNP</option><option value="nlmcatalog">NLM Catalog</option><option value="pcsubstance" class="last">PubChem Substance</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Kolb H, Fernandez E, Jones B, et al., editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. </p></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/webvision/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-webvision-lrg.png" alt="Cover of Webvision" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>Webvision: The Organization of the Retina and Visual System [Internet].</h2><a data-jig="ncbitoggler" href="#__NBK11526_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK11526_dtls__"><div>Kolb H, Fernandez E, Jones B, et al., editors.</div><div>Salt Lake City (UT): <a href="http://webvision.med.utah.edu/" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">University of Utah Health Sciences Center</a>; 1995-.</div></div><div class="half_rhythm"><ul class="inline_list"><li style="margin-right:1em"><a class="bk_cntns" href="/books/n/webvision/">Contents</a></li></ul></div><div class="bk_noprnt"><form method="get" action="/books/n/webvision/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div><div class="icnblk_cntnt two_col"><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/webvision/FuPhototran/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/webvision/ch19bcchapter/" title="Next page in this title">Next &gt;</a></div></div></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK11526_"><span class="title" itemprop="name">Glutamate and Glutamate Receptors in the Vertebrate Retina</span></h1><p class="contrib-group"><span itemprop="author">Victoria Connaughton</span>.</p><p class="small">Created: <span itemprop="datePublished">May 1, 2005</span>; Last Update: <span itemprop="dateModified">May 7, 2007</span>.</p></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="ch18glu.General_Overview_of_"><h2 id="_ch18glu_General_Overview_of__">General Overview of Synaptic Transmission</h2><p>Cells communicate with each other electrically, through gap junctions, and
chemically, using neurotransmitters. Chemical synaptic transmission allows nerve
signals to be exchanged between cells that are electrically isolated from each
other. The chemical messenger, or neurotransmitter, provides a way to send the
signal across the extracellular space, from the presynaptic neuron to the
postsynaptic cell. The space is called a <b>cleft</b> and is typically more
than 10 nanometers across. Neurotransmitters are synthesized in the presynaptic cell
and stored in vesicles in presynaptic processes, such as the axon terminal. When the
presynaptic neuron is stimulated, calcium channels open, and the influx of calcium
ions into the axon terminal triggers a cascade of events leading to the release of
neurotransmitter. Once released, the neurotransmitter diffuses across the cleft and
binds to receptors on the postsynaptic cell, allowing the signal to propagate.
Neurotransmitter molecules can also bind onto presynaptic autoreceptors and
transporters, regulating subsequent release and clearing excess neurotransmitter
from the cleft. Compounds classified as neurotransmitters have several
characteristics in common (reviewed in Massey (<a class="bk_pop" href="#ch18glu.EXTYLES.1">1</a>) and Erulkar (<a class="bk_pop" href="#ch18glu.EXTYLES.2">2</a>)).</p><p>Briefly: 1) the neurotransmitter is synthesized, stored, and released from the
presynaptic terminal; 2) specific neurotransmitter receptors are localized on the
postsynaptic cells; and 3) there exists a mechanism to stop neurotransmitter release
and clear molecules from the cleft. Common neurotransmitters in the retina are
glutamate, GABA, glycine, dopamine, and acetylcholine. Neurotransmitter compounds
can be small molecules, such as glutamate and glycine, or large peptides, such as
vasoactive intestinal peptide (VIP). Some neuroactive compounds are amino acids,
which also have metabolic functions in the presynaptic cell.</p><p>Glutamate (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F1/?report=objectonly" target="object" rid-figpopup="figch18gluF1" rid-ob="figobch18gluF1">Fig. 1</a>) is believed to be the major
excitatory neurotransmitter in the retina. In general, glutamate is synthesized from
ammonium and &#x003b1;-ketoglutarate (a component of the Krebs cycle) and is
used in the synthesis of proteins, other amino acids, and even other
neurotransmitters (such as GABA) (<a class="bk_pop" href="#ch18glu.EXTYLES.3">3</a>). Although glutamate is present in all neurons, only a few are
glutamatergic, releasing glutamate as their neurotransmitter. Neuroactive glutamate
is stored in synaptic vesicles in presynaptic axon terminals (<a class="bk_pop" href="#ch18glu.EXTYLES.4">4</a>). Glutamate is
incorporated into the vesicles by a glutamate transporter located in the vesicular
membrane. This transporter selectively accumulates glutamate through a
sodium-independent, ATP-dependent process (<a class="bk_pop" href="#ch18glu.EXTYLES.4">4-6</a>),
resulting in a high concentration of glutamate in each vesicle. Neuroactive
glutamate is classified as an excitatory amino acid (EAA), because glutamate binding
onto postsynaptic receptors typically stimulates, or depolarizes, the postsynaptic
cells.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF1" co-legend-rid="figlgndch18gluF1"><a href="/books/NBK11526/figure/ch18glu.F1/?report=objectonly" target="object" title="Figure 1" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF1" rid-ob="figobch18gluF1"><img class="small-thumb" src="/books/NBK11526/bin/gluf1.gif" src-large="/books/NBK11526/bin/gluf1.jpg" alt="Figure 1. Structure of the glutamate molecule." /></a><div class="icnblk_cntnt" id="figlgndch18gluF1"><h4 id="ch18glu.F1"><a href="/books/NBK11526/figure/ch18glu.F1/?report=objectonly" target="object" rid-ob="figobch18gluF1">Figure 1</a></h4><p class="float-caption no_bottom_margin">Structure of the glutamate molecule. </p></div></div></div><div id="ch18glu.Histological_Techniq"><h2 id="_ch18glu_Histological_Techniq_">Histological Techniques Identify Glutamatergic Neurons</h2><p>Using immunocytochemical techniques, neurons containing glutamate are identified and
labeled with a glutamate antibody. In the retina, photoreceptors, bipolar cells, and
ganglion cells are glutamate immunoreactive (<a class="bk_pop" href="#ch18glu.EXTYLES.7">7-12</a>)
(<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F2/?report=objectonly" target="object" rid-figpopup="figch18gluF2" rid-ob="figobch18gluF2">Fig.
2</a>). Some horizontal and/or amacrine cells can also display weak labeling
with glutamate antibodies (<a class="bk_pop" href="#ch18glu.EXTYLES.7">7</a>,
<a class="bk_pop" href="#ch18glu.EXTYLES.8">8</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.10">10</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.13">13</a>).
These neurons are believed to release GABA, not glutamate, as their neurotransmitter
(<a class="bk_pop" href="#ch18glu.EXTYLES.14">14</a>), suggesting that the
weak glutamate labeling reflects the pool of metabolic glutamate used in the
synthesis of GABA. This has been supported by the results from double-labeling
studies using antibodies to both GABA and glutamate; glutamate-positive amacrine
cells also label with the GABA antibodies (<a class="bk_pop" href="#ch18glu.EXTYLES.8">8</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.13">13</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF2" co-legend-rid="figlgndch18gluF2"><a href="/books/NBK11526/figure/ch18glu.F2/?report=objectonly" target="object" title="Figure 2" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF2" rid-ob="figobch18gluF2"><img class="small-thumb" src="/books/NBK11526/bin/gluf2.gif" src-large="/books/NBK11526/bin/gluf2.jpg" alt="Figure 2. Glutamate immunoreactivity." /></a><div class="icnblk_cntnt" id="figlgndch18gluF2"><h4 id="ch18glu.F2"><a href="/books/NBK11526/figure/ch18glu.F2/?report=objectonly" target="object" rid-ob="figobch18gluF2">Figure 2</a></h4><p class="float-caption no_bottom_margin">Glutamate immunoreactivity. </p></div></div><p>Photoreceptors, which contain glutamate, actively take up radiolabeled glutamate from
the extracellular space, as do Muller cells (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F3/?report=objectonly" target="object" rid-figpopup="figch18gluF3" rid-ob="figobch18gluF3">Fig. 3</a>) (<a class="bk_pop" href="#ch18glu.EXTYLES.15">15</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.16">16</a>).
Glutamate is incorporated into these cell types through a high-affinity glutamate
transporter located in the plasma membrane. Glutamate transporters maintain the
concentration of glutamate within the synaptic cleft at low levels, preventing
glutamate-induced cell death (<a class="bk_pop" href="#ch18glu.EXTYLES.17">17</a>). Although Muller cells take up glutamate, they do not label with
glutamate antibodies (<a class="bk_pop" href="#ch18glu.EXTYLES.8">8</a>). Glutamate
incorporated into Muller cells is rapidly broken down into glutamine, which is then
exported from glial cells and incorporated into surrounding neurons (<a class="bk_pop" href="#ch18glu.EXTYLES.18">18</a>). Neurons can then synthesize
glutamate from glutamine (<a class="bk_pop" href="#ch18glu.EXTYLES.18">18</a>,
<a class="bk_pop" href="#ch18glu.EXTYLES.19">19</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF3" co-legend-rid="figlgndch18gluF3"><a href="/books/NBK11526/figure/ch18glu.F3/?report=objectonly" target="object" title="Figure 3" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF3" rid-ob="figobch18gluF3"><img class="small-thumb" src="/books/NBK11526/bin/gluf3.gif" src-large="/books/NBK11526/bin/gluf3.jpg" alt="Figure 3. Autoradiogram of glutamate uptake through glutamate transporters." /></a><div class="icnblk_cntnt" id="figlgndch18gluF3"><h4 id="ch18glu.F3"><a href="/books/NBK11526/figure/ch18glu.F3/?report=objectonly" target="object" rid-ob="figobch18gluF3">Figure 3</a></h4><p class="float-caption no_bottom_margin">Autoradiogram of glutamate uptake through glutamate
transporters. </p></div></div><p>Thus, histological techniques are used to identify potential glutamatergic neurons by
labeling neurons containing glutamate (through immunocytochemistry) and neurons that
take up glutamate (through autoradiography). To determine whether these cell types
actually release glutamate as their neurotransmitter, however, the receptors on
postsynaptic cells have to be examined.</p></div><div id="ch18glu.Glutamate_Receptors"><h2 id="_ch18glu_Glutamate_Receptors_">Glutamate Receptors</h2><p>Once released from the presynaptic terminal, glutamate diffuses across the cleft and
binds onto receptors located on the dendrites of the postsynaptic cell(s). Multiple
glutamate receptor types have been identified. Although glutamate will bind onto all
glutamate receptors, each receptor is characterized by its sensitivity to specific
glutamate analogs and by the features of the glutamate-elicited current. Glutamate
receptor agonists and antagonists are structurally similar to glutamate (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F4/?report=objectonly" target="object" rid-figpopup="figch18gluF4" rid-ob="figobch18gluF4">Fig.
4</a>), which allows them to bind onto glutamate receptors. These compounds are
highly specific and, even in intact tissue, can be used in very low concentrations
because they are poor substrates for glutamate uptake systems (<a class="bk_pop" href="#ch18glu.EXTYLES.20">20</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.21">21</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF4" co-legend-rid="figlgndch18gluF4"><a href="/books/NBK11526/figure/ch18glu.F4/?report=objectonly" target="object" title="Figure 4" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF4" rid-ob="figobch18gluF4"><img class="small-thumb" src="/books/NBK11526/bin/gluf4.gif" src-large="/books/NBK11526/bin/gluf4.jpg" alt="Figure 4. Glutamate receptor agonists and antagonists." /></a><div class="icnblk_cntnt" id="figlgndch18gluF4"><h4 id="ch18glu.F4"><a href="/books/NBK11526/figure/ch18glu.F4/?report=objectonly" target="object" rid-ob="figobch18gluF4">Figure 4</a></h4><p class="float-caption no_bottom_margin">Glutamate receptor agonists and antagonists. </p></div></div><p>Two classes of glutamate receptors (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F5/?report=objectonly" target="object" rid-figpopup="figch18gluF5" rid-ob="figobch18gluF5">Fig. 5</a>) have been identified: 1)
ionotropic glutamate receptors, which directly gate ion channels; and 2)
metabotropic glutamate receptors, which may be coupled to an ion channel or other
cellular functions via an intracellular second messenger cascade. These receptor
types are similar in that they both bind glutamate, and glutamate binding can
influence the permeability of ion channels. However, there are several differences
between the two classes.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF5" co-legend-rid="figlgndch18gluF5"><a href="/books/NBK11526/figure/ch18glu.F5/?report=objectonly" target="object" title="Figure 5" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF5" rid-ob="figobch18gluF5"><img class="small-thumb" src="/books/NBK11526/bin/gluf5.gif" src-large="/books/NBK11526/bin/gluf5.jpg" alt="Figure 5. Ionotropic and metabotropic glutamate receptors and channels." /></a><div class="icnblk_cntnt" id="figlgndch18gluF5"><h4 id="ch18glu.F5"><a href="/books/NBK11526/figure/ch18glu.F5/?report=objectonly" target="object" rid-ob="figobch18gluF5">Figure 5</a></h4><p class="float-caption no_bottom_margin">Ionotropic and metabotropic glutamate receptors and channels. From
Kandel et al. (127). </p></div></div></div><div id="ch18glu.Ionotropic_Glutamate"><h2 id="_ch18glu_Ionotropic_Glutamate_">Ionotropic Glutamate Receptors</h2><p>Glutamate binding onto an ionotropic receptor directly influences ion channel
activity because the receptor and the ion channel form one complex (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F5/?report=objectonly" target="object" rid-figpopup="figch18gluF5" rid-ob="figobch18gluF5">Fig. 5</a>a). These receptors mediate fast
synaptic transmission between neurons. Each ionotropic glutamate receptor, or iGluR,
is formed from the co-assembly of individual subunits. The assembled subunits may or
may not be homologous, with the different combinations of subunits resulting in
channels with different characteristics (<a class="bk_pop" href="#ch18glu.EXTYLES.22">22-26</a>).</p><p>Two iGluR types (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F6/?report=objectonly" target="object" rid-figpopup="figch18gluF6" rid-ob="figobch18gluF6">Fig. 6</a>) have been identified: 1) NMDA
receptors, which bind glutamate and the glutamate analog
<i>N</i>-methyl-<span class="small-caps">d</span>-aspartate (NMDA) and 2) non-NMDA receptors,
which are selectively agonized by kainate, AMPA, and quisqualate, but not NMDA.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF6" co-legend-rid="figlgndch18gluF6"><a href="/books/NBK11526/figure/ch18glu.F6/?report=objectonly" target="object" title="Figure 6" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF6" rid-ob="figobch18gluF6"><img class="small-thumb" src="/books/NBK11526/bin/gluf6.gif" src-large="/books/NBK11526/bin/gluf6.jpg" alt="Figure 6. Comparison between NMDA and non-NMDA receptors." /></a><div class="icnblk_cntnt" id="figlgndch18gluF6"><h4 id="ch18glu.F6"><a href="/books/NBK11526/figure/ch18glu.F6/?report=objectonly" target="object" rid-ob="figobch18gluF6">Figure 6</a></h4><p class="float-caption no_bottom_margin">Comparison between NMDA and non-NMDA receptors. From Kandel et al.
(127). </p></div></div><div id="ch18glu.NonNMDA_Receptors"><h3>Non-NMDA Receptors</h3><p>Glutamate binding onto a non-NMDA receptor opens non-selective cation channels
more permeable to sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) ions
than calcium (Ca<sup>2+</sup>) (<a class="bk_pop" href="#ch18glu.EXTYLES.27">27</a>).
Glutamate binding elicits a rapidly activating inward current at membrane
potentials negative to 0 mV and an outward current at potentials positive to 0
mV. Kainate, quisqualate, and AMPA
(&#x003b1;-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) are the
specific agonists at these receptors; CNQX
(6-cyano-7-nitroquinoxaline-2,3-dione), NBQX
(1,2,3,4-tetrahydro-6-nitro-2,3-dione-benzo[<i>f</i>]quinoxaline-7-sulfonamide),
and DNQX (6,7-dinitroquinoxaline-2,3-dione) are the antagonists.</p><p>In retina, non-NMDA receptors have been identified on horizontal cells,
OFF-bipolar cells, amacrine cells, and ganglion cells (see below). Patch clamp
recordings (<a class="bk_pop" href="#ch18glu.EXTYLES.28">28-32</a>)
indicate that AMPA, quisqualate, and/or kainate application can evoke currents
in these cells. However, the kinetics of the ligand-gated currents differ. AMPA-
and quisqualate-elicited currents rapidly desensitize, whereas kainate-gated
currents do not (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F7/?report=objectonly" target="object" rid-figpopup="figch18gluF7" rid-ob="figobch18gluF7">Fig. 7</a>a). The desensitization at
AMPA/quisqualate receptors can be reduced (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F7/?report=objectonly" target="object" rid-figpopup="figch18gluF7" rid-ob="figobch18gluF7">Fig. 7</a>b) by adding cyclothiazide (<a class="bk_pop" href="#ch18glu.EXTYLES.33">33</a>), which
stabilizes the receptor in an active (or non-desensitized) state (<a class="bk_pop" href="#ch18glu.EXTYLES.33">33</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.34">34</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF7" co-legend-rid="figlgndch18gluF7"><a href="/books/NBK11526/figure/ch18glu.F7/?report=objectonly" target="object" title="Figure 7" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF7" rid-ob="figobch18gluF7"><img class="small-thumb" src="/books/NBK11526/bin/gluf7.gif" src-large="/books/NBK11526/bin/gluf7.jpg" alt="Figure 7. Whole-cell patch clamp to show quisqualate- and kainate-gated currents." /></a><div class="icnblk_cntnt" id="figlgndch18gluF7"><h4 id="ch18glu.F7"><a href="/books/NBK11526/figure/ch18glu.F7/?report=objectonly" target="object" rid-ob="figobch18gluF7">Figure 7</a></h4><p class="float-caption no_bottom_margin">Whole-cell patch clamp to show quisqualate- and kainate-gated
currents. </p></div></div><p>Each non-NMDA receptor is formed from the co-assembly of several subunits (<a class="bk_pop" href="#ch18glu.EXTYLES.25">25</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.35">35</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.36">36</a>).
To date, seven subunits (named GluR1 through GluR7) have been cloned (<a class="bk_pop" href="#ch18glu.EXTYLES.22">22</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.35">35-40</a>).
Expression of subunit clones in <i>Xenopus</i> oocytes revealed that
GluR5, GluR6, and GluR7 (along with subunits KA1 and KA2) co-assemble to form
kainate(-preferring) receptors, whereas GluR1, GluR2, GluR3, and GluR4 are
assembled into AMPA(-preferring) receptors (<a class="bk_pop" href="#ch18glu.EXTYLES.25">25</a>).</p></div><div id="ch18glu.NMDA_Receptors"><h3>NMDA Receptors</h3><p>Glutamate binding onto an NMDA receptor also opens non-selective cation channels,
resulting in a conductance increase. However, the high conductance channel
associated with these receptors is more permeable to Ca<sup>2+</sup> than
Na<sup>+</sup> ions (<a class="bk_pop" href="#ch18glu.EXTYLES.27">27</a>), and
NMDA-gated currents typically have slower kinetics than kainate- and AMPA-gated
channels. As the name suggests, NMDA is the selective agonist at these
receptors. The compounds MK-801, AP-5 (2-amino-5-phosphonopentanoic acid), and
AP-7 (2-amino-7-phosphoheptanoic acid) are NMDA receptor antagonists.</p><p>NMDA receptors are structurally complex, with separate binding sites for
glutamate, glycine, magnesium ions (Mg<sup>2+</sup>), zinc ions
(Zn<sup>2+</sup>), and a polyamine recognition site (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F6/?report=objectonly" target="object" rid-figpopup="figch18gluF6" rid-ob="figobch18gluF6">Fig. 6</a>b). There is also an antagonist binding site
for PCP and MK-801 (<a class="bk_pop" href="#ch18glu.EXTYLES.41">41</a>).
The glutamate, glycine, and magnesium binding sites are important for receptor
activation and gating of the ion channel. In contrast, the zinc and polyamine
sites are not needed for receptor activation but affect the efficacy of the
channel. Zinc blocks the channel in a voltage-independent manner (<a class="bk_pop" href="#ch18glu.EXTYLES.42">42</a>). The
polyamine site (<a class="bk_pop" href="#ch18glu.EXTYLES.43">43</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.44">44</a>)
binds compounds such as spermine or spermidine, either potentiating (<a class="bk_pop" href="#ch18glu.EXTYLES.43">43</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.44">44</a>) or
inhibiting (<a class="bk_pop" href="#ch18glu.EXTYLES.44">44</a>) the activity of the
receptor, depending on the combination of subunits forming each NMDA receptor
(<a class="bk_pop" href="#ch18glu.EXTYLES.44">44</a>).</p><p>To date, five subunits (NR1, NR2a, N2b, N2c, and N2d) of NMDA receptors have been
cloned (<a class="bk_pop" href="#ch18glu.EXTYLES.45">45-49</a>).
As with non-NMDA receptors, NMDA receptor subunits can co-assemble as homomers
(i.e., five NR1 subunits) (<a class="bk_pop" href="#ch18glu.EXTYLES.23">23</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.49">49</a>) or
heteromers (one NR1 + four NR2 subunits) (<a class="bk_pop" href="#ch18glu.EXTYLES.23">23</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.46">46-48</a>).
However, all functional NMDA receptors express the NR1 subunit (<a class="bk_pop" href="#ch18glu.EXTYLES.23">23</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.25">25</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.46">46</a>).</p><p>The glutamate, glycine, and Mg<sup>2+</sup> binding sites confer both
ligand-gated and voltage-gated properties onto NMDA receptors. NMDA receptors
are ligand gated because the binding of glutamate (ligand) is required to
activate the channel. In addition, micromolar concentrations of glycine must
also be present (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F8/?report=objectonly" target="object" rid-figpopup="figch18gluF8" rid-ob="figobch18gluF8">Fig. 8</a>) (<a class="bk_pop" href="#ch18glu.EXTYLES.50">50</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.51">51</a>).
The requirement for both glutamate and glycine makes them co-agonists (<a class="bk_pop" href="#ch18glu.EXTYLES.51">51</a>) at NMDA
receptors.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF8" co-legend-rid="figlgndch18gluF8"><a href="/books/NBK11526/figure/ch18glu.F8/?report=objectonly" target="object" title="Figure 8" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF8" rid-ob="figobch18gluF8"><img class="small-thumb" src="/books/NBK11526/bin/gluf8.gif" src-large="/books/NBK11526/bin/gluf8.jpg" alt="Figure 8. NMDA receptor activation." /></a><div class="icnblk_cntnt" id="figlgndch18gluF8"><h4 id="ch18glu.F8"><a href="/books/NBK11526/figure/ch18glu.F8/?report=objectonly" target="object" rid-ob="figobch18gluF8">Figure 8</a></h4><p class="float-caption no_bottom_margin">NMDA receptor activation. </p></div></div><p>Mg<sup>2+</sup> ions provide a voltage-dependent block of NMDA-gated channels
(<a class="bk_pop" href="#ch18glu.EXTYLES.52">52</a>). This can
be seen in the current-voltage (I-V) relationship presented in <a class="figpopup" href="/books/NBK11526/figure/ch18glu.F9/?report=objectonly" target="object" rid-figpopup="figch18gluF9" rid-ob="figobch18gluF9">Fig.
9</a> (from Nowak et al. (<a class="bk_pop" href="#ch18glu.EXTYLES.52">52</a>)). I-V
curves plotted from currents recorded in the presence of Mg<sup>2+</sup> have a
characteristic J-shape (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F9/?report=objectonly" target="object" rid-figpopup="figch18gluF9" rid-ob="figobch18gluF9">Fig. 9</a>,
dotted line), whereas a linear relationship is calculated in
Mg<sup>2+</sup>-free solutions (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F9/?report=objectonly" target="object" rid-figpopup="figch18gluF9" rid-ob="figobch18gluF9">Fig.
9</a>, solid line). At negative membrane potentials, Mg<sup>2+</sup> ions
occupy the binding site, causing less current to flow through the channel. As
the membrane depolarizes, the Mg<sup>2+</sup> block is removed (<a class="bk_pop" href="#ch18glu.EXTYLES.52">52</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF9" co-legend-rid="figlgndch18gluF9"><a href="/books/NBK11526/figure/ch18glu.F9/?report=objectonly" target="object" title="Figure 9" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF9" rid-ob="figobch18gluF9"><img class="small-thumb" src="/books/NBK11526/bin/gluf9.gif" src-large="/books/NBK11526/bin/gluf9.jpg" alt="Figure 9. Mg2+ ions block NMDA receptor channels." /></a><div class="icnblk_cntnt" id="figlgndch18gluF9"><h4 id="ch18glu.F9"><a href="/books/NBK11526/figure/ch18glu.F9/?report=objectonly" target="object" rid-ob="figobch18gluF9">Figure 9</a></h4><p class="float-caption no_bottom_margin">Mg<sup>2+</sup> ions block NMDA receptor channels. </p></div></div><p>Retinal ganglion cells and some amacrine cell types express functional NMDA
receptors in addition to non-NMDA receptors (i.e., <a class="bk_pop" href="#ch18glu.EXTYLES.29">29</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.53">53-57</a>).
The currents elicited through these different iGluR types can be distinguished
pharmacologically. Non-NMDA receptor antagonists block a transient component of
the ganglion cell light response, whereas NMDA receptor antagonists block a more
sustained component (<a class="bk_pop" href="#ch18glu.EXTYLES.29">29</a>,
<a class="bk_pop" href="#ch18glu.EXTYLES.53">53</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.57">57</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.58">58</a>).
These findings suggest that the currents elicited through colocalized NMDA and
non-NMDA receptors mediate differential contributions to the ON- and OFF-light
responses observed in ganglion cells (<a class="bk_pop" href="#ch18glu.EXTYLES.53">53</a>).</p></div></div><div id="ch18glu.Metabotropic_Glutama"><h2 id="_ch18glu_Metabotropic_Glutama_">Metabotropic Glutamate Receptors</h2><p>Unlike ionotropic receptors, which are directly linked to an ion channel,
metabotropic receptors are coupled to their associated ion channel through a second
messenger pathway. Ligand (glutamate) binding activates a G-protein and initiates an
intracellular cascade (<a class="bk_pop" href="#ch18glu.EXTYLES.59">59</a>).
Metabotropic glutamate receptors (mGluRs) are not co-assembled from multiple
subunits but are one polypeptide (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F5/?report=objectonly" target="object" rid-figpopup="figch18gluF5" rid-ob="figobch18gluF5">Fig.
5</a>b). To date, eight mGluRs (mGluR1 through mGluR8) have been cloned
(<a class="bk_pop" href="#ch18glu.EXTYLES.60">60-66</a>).
These receptors are classified into three groups (I, II, and III) based on
structural homology, agonist selectivity, and their associated second messenger
cascade (<a href="/books/NBK11526/table/ch18glu.T1/?report=objectonly" target="object" rid-ob="figobch18gluT1">Table
1</a>) (reviewed in Nakanishi (<a class="bk_pop" href="#ch18glu.EXTYLES.67">67</a>), Knopel et
al. (<a class="bk_pop" href="#ch18glu.EXTYLES.68">68</a>), Pin and
Bockaert (<a class="bk_pop" href="#ch18glu.EXTYLES.69">69</a>), and Pin and
Duvoisin (<a class="bk_pop" href="#ch18glu.EXTYLES.70">70</a>)).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figch18gluT1"><a href="/books/NBK11526/table/ch18glu.T1/?report=objectonly" target="object" title="Table 1" class="img_link icnblk_img" rid-ob="figobch18gluT1"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="ch18glu.T1"><a href="/books/NBK11526/table/ch18glu.T1/?report=objectonly" target="object" rid-ob="figobch18gluT1">Table 1</a></h4><p class="float-caption no_bottom_margin">
<i>Metabotropic glutamate receptor groups (from Pin and
Duvoisin (</i>
<i>)).</i>
</p></div></div><p>In brief, Group I mGluRs (mGluR1 and mGluR5) are coupled to the hydrolysis of fatty
acids and the release of calcium from internal stores. Quisqualate and
<i>trans</i>-ACPD are Group I agonists. Group II (mGluR2 and mGluR3)
and Group III (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are considered
inhibitory because they are coupled to the downregulation of cyclic nucleotide
synthesis (<a class="bk_pop" href="#ch18glu.EXTYLES.70">70</a>). L-CCG-1 and
<i>trans</i>-ACPD agonize Group II receptors; L-AP4 (also called APB)
selectively agonizes Group III receptors. <i>In situ</i> hybridization
studies have revealed that the mRNAs encoding Groups I, II, and III mGluRs are
present in retina (see below); however, with the exception of the APB receptor, the
function of all of these receptor types in retina has not been characterized.</p><div id="ch18glu.APB_Receptor"><h3>APB Receptor</h3><p>In contrast to non-NMDA and NMDA receptors, glutamate binding onto an APB
receptor elicits a conductance decrease (<a class="bk_pop" href="#ch18glu.EXTYLES.71">71-73</a>)
because of the closure of cGMP-gated, non-selective cation channels (<a class="bk_pop" href="#ch18glu.EXTYLES.74">74</a>) (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F10/?report=objectonly" target="object" rid-figpopup="figch18gluF10" rid-ob="figobch18gluF10">Fig.
10</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF10" co-legend-rid="figlgndch18gluF10"><a href="/books/NBK11526/figure/ch18glu.F10/?report=objectonly" target="object" title="Figure 10" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF10" rid-ob="figobch18gluF10"><img class="small-thumb" src="/books/NBK11526/bin/gluf10.gif" src-large="/books/NBK11526/bin/gluf10.jpg" alt="Figure 10. Whole-cell current traces to show kinetics of APB receptor-gated currents." /></a><div class="icnblk_cntnt" id="figlgndch18gluF10"><h4 id="ch18glu.F10"><a href="/books/NBK11526/figure/ch18glu.F10/?report=objectonly" target="object" rid-ob="figobch18gluF10">Figure 10</a></h4><p class="float-caption no_bottom_margin">Whole-cell current traces to show kinetics of APB receptor-gated
currents. </p></div></div><p>APB application selectively blocks the ON-pathway in the retina (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F11/?report=objectonly" target="object" rid-figpopup="figch18gluF11" rid-ob="figobch18gluF11">Fig.
11</a>) (<a class="bk_pop" href="#ch18glu.EXTYLES.73">73</a>), i.e.,
ON-bipolar cell responses and the ON-responses in amacrine cells (<a class="bk_pop" href="#ch18glu.EXTYLES.75">75</a>) and
ganglion cells (<a class="bk_pop" href="#ch18glu.EXTYLES.29">29</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.76">76</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.77">77</a>)
are eliminated by APB. Experimental evidence (<a class="bk_pop" href="#ch18glu.EXTYLES.73">73</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.78">78</a>)
suggests that the APB receptor is localized to ON-bipolar cell dendrites.
Inhibition of amacrine and ganglion cell light responses, therefore, is due to a
decrease in the input from ON-bipolar cells, not a direct effect on postsynaptic
receptors.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF11" co-legend-rid="figlgndch18gluF11"><a href="/books/NBK11526/figure/ch18glu.F11/?report=objectonly" target="object" title="Figure 11" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF11" rid-ob="figobch18gluF11"><img class="small-thumb" src="/books/NBK11526/bin/gluf11.gif" src-large="/books/NBK11526/bin/gluf11.jpg" alt="Figure 11. Intracellular recordings to show that APB selectively antagonizes the ON-pathways." /></a><div class="icnblk_cntnt" id="figlgndch18gluF11"><h4 id="ch18glu.F11"><a href="/books/NBK11526/figure/ch18glu.F11/?report=objectonly" target="object" rid-ob="figobch18gluF11">Figure 11</a></h4><p class="float-caption no_bottom_margin">Intracellular recordings to show that APB selectively antagonizes
the ON-pathways. </p></div></div><p>APB (2-amino-4-phosphobutyric acid, also called L-AP4) is the selective agonist
for all Group III mGluRs (mGluR4, mGluR6, mGluR7, and mGluR8). So, which is the
APB receptor located on ON-bipolar cell dendrites? MGluR4, mGluR7, and mGluR8
expression has been observed in both the inner nuclear layer and the ganglion
cell layer (<a class="bk_pop" href="#ch18glu.EXTYLES.61">61</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.79">79</a>),
suggesting that these mGluRs are associated with more than one cell type. In
contrast, mGluR6 expression has been localized to the inner nuclearmlayer (INL)
(<a class="bk_pop" href="#ch18glu.EXTYLES.64">64</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.79">79</a>)
and the outer plexiform layer (OPL) (<a class="bk_pop" href="#ch18glu.EXTYLES.80">80</a>), where
bipolar cell somata and dendrites are located. Furthermore, ON-responses are
abolished in mice lacking mGluR6 expression (<a class="bk_pop" href="#ch18glu.EXTYLES.81">81</a>). These
mutants also display abnormal ERG b-waves, suggesting an inhibition of the
ON-retinal pathway at the level of bipolar cells (<a class="bk_pop" href="#ch18glu.EXTYLES.81">81</a>). Taken
together, these findings suggest that the APB receptor on ON-bipolar cells is
mGluR6.</p></div></div><div id="ch18glu.Glutamate_Transporte"><h2 id="_ch18glu_Glutamate_Transporte_">Glutamate Transporters and Transporter-like Receptors</h2><p>Glutamate transporters have been identified on photoreceptors (<a class="bk_pop" href="#ch18glu.EXTYLES.15">15</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.21">21</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.82">82</a>)
and Muller cells (<a class="bk_pop" href="#ch18glu.EXTYLES.15">15</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.16">16</a>).
From glutamate labeling studies, the average concentration of glutamate in
photoreceptors, bipolar cells, and ganglion cells is 5 m<span class="small-caps">m</span> (<a class="bk_pop" href="#ch18glu.EXTYLES.10">10</a>). Physiological
studies using isolated cells indicate that only &#x003bc;<span class="small-caps">m</span> levels of
glutamate are required to activate glutamate receptors (<a class="bk_pop" href="#ch18glu.EXTYLES.32">32</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.83">83</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.84">84</a>).
Thus, the amount of glutamate released into the synaptic cleft is several orders of
magnitude higher than the concentration required to activate most postsynaptic
receptors. High-affinity glutamate transporters located on adjacent neurons and
surrounding glial cells rapidly remove glutamate from the synaptic cleft to prevent
cell death (<a class="bk_pop" href="#ch18glu.EXTYLES.17">17</a>). Five
glutamate transporters, EAAT-1 (or GLAST), EAAT-2 (or GLT-1), EAAT-3 (or EAAC-1),
EAAT-4, and EAAT-5, have been cloned (<a class="bk_pop" href="#ch18glu.EXTYLES.85">85-90</a>).</p><p>Glutamate transporters are pharmacologically distinct from both iGluRs and mGluRs.
<span class="small-caps">l</span>-Glutamate, <span class="small-caps">l</span>-aspartate, and <span class="small-caps">d</span>-aspartate are
substrates for the transporters (<a class="bk_pop" href="#ch18glu.EXTYLES.21">21</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.82">82</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.91">91</a>);
glutamate receptor agonists (<a class="bk_pop" href="#ch18glu.EXTYLES.20">20</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.21">21</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.82">82</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.91">91</a>)
and antagonists (<a class="bk_pop" href="#ch18glu.EXTYLES.82">82</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.92">92</a>)
are not. Glutamate uptake can be blocked by the transporter blockers dihydrokainate
(DHKA) and <span class="small-caps">dl</span>-<i>threo</i>-&#x003b2;-hydroxyaspartate (HA)
(<a class="bk_pop" href="#ch18glu.EXTYLES.82">82</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.92">92</a>).</p><p>Glutamate transporters incorporate glutamate into Muller cells along with the
co-transport of three Na<sup>+</sup> ions (<a class="bk_pop" href="#ch18glu.EXTYLES.91">91</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.93">93</a>)
and the antiport of one K<sup>+</sup> ion (<a class="bk_pop" href="#ch18glu.EXTYLES.93">93</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.94">94</a>)
and either one OH&#x02212; or one HCO<sup>3-</sup> ion (<a class="bk_pop" href="#ch18glu.EXTYLES.94">94</a>) (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F12/?report=objectonly" target="object" rid-figpopup="figch18gluF12" rid-ob="figobch18gluF12">Fig.
12</a>). The excess sodium ions generate a net positive inward current, which
drives the transporter (<a class="bk_pop" href="#ch18glu.EXTYLES.91">91</a>,
<a class="bk_pop" href="#ch18glu.EXTYLES.93">93</a>).
More recent findings indicate that a glutamate-elicited chloride current is also
associated with some transporters (<a class="bk_pop" href="#ch18glu.EXTYLES.85">85</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.95">95</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF12" co-legend-rid="figlgndch18gluF12"><a href="/books/NBK11526/figure/ch18glu.F12/?report=objectonly" target="object" title="Figure 12" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF12" rid-ob="figobch18gluF12"><img class="small-thumb" src="/books/NBK11526/bin/gluf12.gif" src-large="/books/NBK11526/bin/gluf12.jpg" alt="Figure 12. Glutamate transporters in Muller cells are electrogenic." /></a><div class="icnblk_cntnt" id="figlgndch18gluF12"><h4 id="ch18glu.F12"><a href="/books/NBK11526/figure/ch18glu.F12/?report=objectonly" target="object" rid-ob="figobch18gluF12">Figure 12</a></h4><p class="float-caption no_bottom_margin">Glutamate transporters in Muller cells are electrogenic. </p></div></div><p>It should be noted that the glutamate transporters located in the plasma membrane of
neuronal and glial cells (discussed in this section) are different from the
glutamate transporters located on synaptic vesicles within presynaptic terminals
(see General Overview of Synaptic Transmission). The transporters in the plasma
membrane transport glutamate in a Na<sup>+</sup>- and voltage-dependent manner
independent of chloride (<a class="bk_pop" href="#ch18glu.EXTYLES.17">17</a>,
<a class="bk_pop" href="#ch18glu.EXTYLES.91">91</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.93">93</a>).
<span class="small-caps">l</span>-Glutamate, <span class="small-caps">l</span>-aspartate, and <span class="small-caps">d</span>-aspartate are
substrates for these transporters (<a class="bk_pop" href="#ch18glu.EXTYLES.91">91</a>). In
contrast, the vesicular transporter selectively concentrates glutamate into synaptic
vesicles in a Na<span class="small-caps">+</span>-independent, ATP-dependent manner (<a class="bk_pop" href="#ch18glu.EXTYLES.4">4-6</a>)
that requires chloride (<a class="bk_pop" href="#ch18glu.EXTYLES.4">4</a>,
<a class="bk_pop" href="#ch18glu.EXTYLES.6">6</a>).</p><p>Glutamate receptors with transporter-like pharmacology have been described in
photoreceptors (<a class="bk_pop" href="#ch18glu.EXTYLES.96">96-98</a>)
and ON-bipolar cells (<a class="bk_pop" href="#ch18glu.EXTYLES.99">99</a>,
<a class="bk_pop" href="#ch18glu.EXTYLES.100">100</a>).
These receptors are coupled to a chloride current. The pharmacology of these
receptors is similar to that described for glutamate transporters, because the
glutamate-elicited current is: 1) dependent upon external Na<sup>+</sup>; 2) reduced
by transporter blockers; and 3) insensitive to glutamate agonists and antagonists.
However, altering internal Na<sup>+</sup> concentration does not change the reversal
potential (<a class="bk_pop" href="#ch18glu.EXTYLES.100">100</a>) or the
amplitude (<a class="bk_pop" href="#ch18glu.EXTYLES.96">96</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.99">99</a>) of the
glutamate-elicited current, suggesting that the receptor is distinct from glutamate
transporters. At the photoreceptor terminals, the glutamate-elicited chloride
current may regulate membrane potential and subsequent voltage-gated channel
activity (<a class="bk_pop" href="#ch18glu.EXTYLES.99">99</a>). Postsynaptically, this
receptor is believed to mediate conductance changes underlying photoreceptor input
to ON-cone bipolar cells (<a class="bk_pop" href="#ch18glu.EXTYLES.99">99</a>).</p></div><div id="ch18glu.Localization_of_Glut"><h2 id="_ch18glu_Localization_of_Glut_">Localization of Glutamate Receptor Types in the Retina</h2><p>Photoreceptor, bipolar, and ganglion cells compose the vertical transduction pathway
in the retina. This pathway is modulated by lateral inputs from horizontal cells in
the distal retina and amacrine cells in the proximal retina (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F13/?report=objectonly" target="object" rid-figpopup="figch18gluF13" rid-ob="figobch18gluF13">Fig. 13</a>). As
described in the previous sections, photoreceptor, bipolar, and ganglion cells show
glutamate immunoreactivity. Glutamate responses have been electrically characterized
in horizontal and bipolar cells, which are postsynaptic to photoreceptors, and in
amacrine and ganglion cells, which are postsynaptic to bipolar cells. Taken
together, these results suggest that glutamate is the neurotransmitter released by
neurons in the vertical pathway. Recent <i>in situ</i> hybridization and
immunocytochemical studies have localized the expression of iGluR subunits, mGluRs,
and glutamate transporter proteins in the retina. These findings are summarized
below.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF13" co-legend-rid="figlgndch18gluF13"><a href="/books/NBK11526/figure/ch18glu.F13/?report=objectonly" target="object" title="Figure 13" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF13" rid-ob="figobch18gluF13"><img class="small-thumb" src="/books/NBK11526/bin/gluf13.gif" src-large="/books/NBK11526/bin/gluf13.jpg" alt="Figure 13. The types of neurons in the vertebrate retina." /></a><div class="icnblk_cntnt" id="figlgndch18gluF13"><h4 id="ch18glu.F13"><a href="/books/NBK11526/figure/ch18glu.F13/?report=objectonly" target="object" rid-ob="figobch18gluF13">Figure 13</a></h4><p class="float-caption no_bottom_margin">The types of neurons in the vertebrate retina. </p></div></div></div><div id="ch18glu._Retinal_Neurons_Expr"><h2 id="_ch18glu__Retinal_Neurons_Expr_">Retinal Neurons Expressing Ionotropic Glutamate Receptors</h2><p>In both higher and lower vertebrates, electrophysiological recording techniques have
identified ionotropic glutamate receptors on the neurons composing the OFF-pathway
(<a href="/books/NBK11526/table/ch18glu.T2/?report=objectonly" target="object" rid-ob="figobch18gluT2">Table
2</a>). In the distal retina, OFF-bipolar cells (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F14/?report=objectonly" target="object" rid-figpopup="figch18gluF14" rid-ob="figobch18gluF14">Fig. 14</a>) (<a class="bk_pop" href="#ch18glu.EXTYLES.84">84</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.101">101</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.102">102</a>)
and horizontal cells (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F15/?report=objectonly" target="object" rid-figpopup="figch18gluF15" rid-ob="figobch18gluF15">Fig. 15</a>) (<a class="bk_pop" href="#ch18glu.EXTYLES.32">32</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.103">103</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.104">104</a>)
respond to kainate, AMPA, and quisqualate application, but not NMDA nor APB.
(However, NMDA receptors have been identified on catfish horizontal cells (<a class="bk_pop" href="#ch18glu.EXTYLES.105">105</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.106">106</a>),
and APB-induced hyperpolarizations have been reported in some fish horizontal cells
(<a class="bk_pop" href="#ch18glu.EXTYLES.107">107-109</a>)).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figch18gluT2"><a href="/books/NBK11526/table/ch18glu.T2/?report=objectonly" target="object" title="Table 2" class="img_link icnblk_img" rid-ob="figobch18gluT2"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="ch18glu.T2"><a href="/books/NBK11526/table/ch18glu.T2/?report=objectonly" target="object" rid-ob="figobch18gluT2">Table 2</a></h4><p class="float-caption no_bottom_margin">Glutamate receptor types on retinal neurons,
electrophysiological measurements. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF14" co-legend-rid="figlgndch18gluF14"><a href="/books/NBK11526/figure/ch18glu.F14/?report=objectonly" target="object" title="Figure 14" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF14" rid-ob="figobch18gluF14"><img class="small-thumb" src="/books/NBK11526/bin/gluf14.gif" src-large="/books/NBK11526/bin/gluf14.jpg" alt="Figure 14. Whole-cell currents in OFF bipolar cells." /></a><div class="icnblk_cntnt" id="figlgndch18gluF14"><h4 id="ch18glu.F14"><a href="/books/NBK11526/figure/ch18glu.F14/?report=objectonly" target="object" rid-ob="figobch18gluF14">Figure 14</a></h4><p class="float-caption no_bottom_margin">Whole-cell currents in OFF bipolar cells. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF15" co-legend-rid="figlgndch18gluF15"><a href="/books/NBK11526/figure/ch18glu.F15/?report=objectonly" target="object" title="Figure 15" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF15" rid-ob="figobch18gluF15"><img class="small-thumb" src="/books/NBK11526/bin/gluf15.gif" src-large="/books/NBK11526/bin/gluf15.jpg" alt="Figure 15. Whole-cell currents in horizontal cells." /></a><div class="icnblk_cntnt" id="figlgndch18gluF15"><h4 id="ch18glu.F15"><a href="/books/NBK11526/figure/ch18glu.F15/?report=objectonly" target="object" rid-ob="figobch18gluF15">Figure 15</a></h4><p class="float-caption no_bottom_margin">Whole-cell currents in horizontal cells. </p></div></div><p>Non-NMDA agonists also stimulate both amacrine cells (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F16/?report=objectonly" target="object" rid-figpopup="figch18gluF16" rid-ob="figobch18gluF16">Fig. 16</a>a) (<a class="bk_pop" href="#ch18glu.EXTYLES.28">28</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.54">54</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.55">55</a>) and ganglion
cells (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F16/?report=objectonly" target="object" rid-figpopup="figch18gluF16" rid-ob="figobch18gluF16">Fig. 16</a>b) (<a class="bk_pop" href="#ch18glu.EXTYLES.29">29</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.31">31</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.53">53</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.57">57</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.58">58</a>).
Ganglion cells responses to NMDA have been observed (<a class="bk_pop" href="#ch18glu.EXTYLES.29">29</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.53">53</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.55">55-57</a>),
whereas NMDA responses have been recorded in only some types of amacrine cells
(<a class="bk_pop" href="#ch18glu.EXTYLES.28">28</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.54">54</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.55">55</a>)
but see Hartveit and Veruki (<a class="bk_pop" href="#ch18glu.EXTYLES.110">110</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF16" co-legend-rid="figlgndch18gluF16"><a href="/books/NBK11526/figure/ch18glu.F16/?report=objectonly" target="object" title="Figure 16" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF16" rid-ob="figobch18gluF16"><img class="small-thumb" src="/books/NBK11526/bin/gluf16.gif" src-large="/books/NBK11526/bin/gluf16.jpg" alt="Figure 16. Glutamate receptors on amacrine and ganglion cells." /></a><div class="icnblk_cntnt" id="figlgndch18gluF16"><h4 id="ch18glu.F16"><a href="/books/NBK11526/figure/ch18glu.F16/?report=objectonly" target="object" rid-ob="figobch18gluF16">Figure 16</a></h4><p class="float-caption no_bottom_margin">Glutamate receptors on amacrine and ganglion cells. </p></div></div><p>Consistent with this physiological data, antibodies to the different non-NMDA
receptor subunits differentially label all retinal layers (<a href="/books/NBK11526/table/ch18glu.T3/?report=objectonly" target="object" rid-ob="figobch18gluT3">Table 3</a>) (<a class="bk_pop" href="#ch18glu.EXTYLES.111">111-114</a>),
and mRNAs encoding the different non-NMDA iGluR subunits are similarly expressed
(<a class="bk_pop" href="#ch18glu.EXTYLES.115">115-117</a>).
In contrast, mRNAs encoding NMDA subunits are expressed predominantly in the
proximal retina, where amacrine and ganglion cells are located (INL, IPL, GCL)
(<a href="/books/NBK11526/table/ch18glu.T3/?report=objectonly" target="object" rid-ob="figobch18gluT3">Table 3</a>) (<a class="bk_pop" href="#ch18glu.EXTYLES.111">111</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.115">115</a>),
although mRNA encoding the NR2a subunit (<a class="bk_pop" href="#ch18glu.EXTYLES.111">111</a>) has been
observed in the OPL and antibodies to the NR2d (<a class="bk_pop" href="#ch18glu.EXTYLES.118">118</a>) and the NR1
subunits (<a class="bk_pop" href="#ch18glu.EXTYLES.112">112</a>) label rod
bipolar cells.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figch18gluT3"><a href="/books/NBK11526/table/ch18glu.T3/?report=objectonly" target="object" title="Table 3" class="img_link icnblk_img" rid-ob="figobch18gluT3"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="ch18glu.T3"><a href="/books/NBK11526/table/ch18glu.T3/?report=objectonly" target="object" rid-ob="figobch18gluT3">Table 3</a></h4><p class="float-caption no_bottom_margin">Ionotropic glutamate receptor expression in retinal neurons and
retinal layers, immunocytochemistry, and <i>in situ</i>
hybridization. </p></div></div></div><div id="ch18glu._Retinal_Neurons_Expr_1"><h2 id="_ch18glu__Retinal_Neurons_Expr_1_">Retinal Neurons Expressing Metabotropic Glutamate Receptors</h2><p>All metabotropic glutamate receptors, except mGluR3, have been identified in retina
either through antibody staining (<a class="bk_pop" href="#ch18glu.EXTYLES.113">113</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.114">114</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.119">119</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.120">120</a>)
or <i>in situ</i> hybridization (<a class="bk_pop" href="#ch18glu.EXTYLES.61">61</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.64">64</a>, <a class="bk_pop" href="#ch18glu.EXTYLES.79">79</a>).
MGluRs are differentially expressed throughout the retina, specifically in the outer
plexiform layer, inner nuclear layer, inner plexiform layer, and the ganglion cell
layer (<a href="/books/NBK11526/table/ch18glu.T4/?report=objectonly" target="object" rid-ob="figobch18gluT4">Table
4</a>). Although different patterns of mGluR expression have been observed in
the retina, only the APB receptor on ON-bipolar cells has been physiologically
examined.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figch18gluT4"><a href="/books/NBK11526/table/ch18glu.T4/?report=objectonly" target="object" title="Table 4" class="img_link icnblk_img" rid-ob="figobch18gluT4"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="ch18glu.T4"><a href="/books/NBK11526/table/ch18glu.T4/?report=objectonly" target="object" rid-ob="figobch18gluT4">Table 4</a></h4><p class="float-caption no_bottom_margin">Metabotropic glutamate receptor expression in retinal neurons
and retinal layers, immunocytochemistry, and in situ hybridization. </p></div></div></div><div id="ch18glu._Retinal_Neurons_Expr_2"><h2 id="_ch18glu__Retinal_Neurons_Expr_2_">Retinal Neurons Expressing Glutamate Transporters</h2><p>The glutamate transporters GLAST, EAAC1, and GLT-1have been identified in retina
(<a href="/books/NBK11526/table/ch18glu.T5/?report=objectonly" target="object" rid-ob="figobch18gluT5">Table
5</a>). GLAST
(<span class="small-caps">l</span>-<b>gl</b>utamate/<span class="small-caps">l</span>-<b>as</b>partate
<b>t</b>ransporter) immunoreactivity is found in all retinal layers (<a class="bk_pop" href="#ch18glu.EXTYLES.121">121</a>) but not in neuronal
tissue. GLAST is localized to Muller cell membranes (<a class="bk_pop" href="#ch18glu.EXTYLES.121">121-124</a>). In contrast, EAAC-1
(<b>e</b>xcitatory <b>a</b>mino <b>a</b>cid
<b>c</b>arrier-1) antibodies do not label Muller cells or photoreceptors.
EAAC-1 immunoreactivity is observed in ganglion and amacrine cells in chicken, rat,
goldfish, and turtle retinas. In addition, bipolar cells positively labeled with
EAAC-1 antibody in lower vertebrates, and immunopositive horizontal cells were
observed in rat (<a class="bk_pop" href="#ch18glu.EXTYLES.90">90</a>). GLT-1
(<b>gl</b>utamate <b>t</b>ransporter-1) proteins have been
identified in monkey (<a class="bk_pop" href="#ch18glu.EXTYLES.125">125</a>),
rat (<a class="bk_pop" href="#ch18glu.EXTYLES.124">124</a>), and rabbit (<a class="bk_pop" href="#ch18glu.EXTYLES.126">126</a>) bipolar cells. In
addition, a few amacrine cells were weakly labeled with the GLT-1 antibody in rat
(<a class="bk_pop" href="#ch18glu.EXTYLES.124">124</a>), as were
photoreceptor terminals in rabbit (<a class="bk_pop" href="#ch18glu.EXTYLES.126">126</a>).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figch18gluT5"><a href="/books/NBK11526/table/ch18glu.T5/?report=objectonly" target="object" title="Table 5" class="img_link icnblk_img" rid-ob="figobch18gluT5"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="ch18glu.T5"><a href="/books/NBK11526/table/ch18glu.T5/?report=objectonly" target="object" rid-ob="figobch18gluT5">Table 5</a></h4><p class="float-caption no_bottom_margin">Glutamate transporters in retinal neurons and retinal layers,
immunocytochemical localizations. </p></div></div></div><div id="ch18glu.Summary_and_Conclusi"><h2 id="_ch18glu_Summary_and_Conclusi_">Summary and Conclusions</h2><p>Histological analyses of presynaptic neurons and physiological recordings from
postsynaptic cells suggest that photoreceptor, bipolar, and ganglion cells release
glutamate as their neurotransmitter. Multiple glutamate receptor types are present
in the retina. These receptors are pharmacologically distinct and differentially
distributed. IGluRs directly gate ion channels and mediate rapid synaptic
transmission through either kainate/AMPA or NMDA receptors. Glutamate binding onto
iGluRs opens cation channels, depolarizing the postsynaptic cell membrane. Neurons
within the OFF-pathway (horizontal cells, OFF-bipolar cells, amacrine cells, and
ganglion cells) express functional iGluRs. mGluRs are coupled to G-proteins.
Glutamate binding onto mGluRs can have a variety of effects, depending on the second
messenger cascade to which the receptor is coupled. The APB receptor, found on
ON-bipolar cell dendrites, is coupled to the synthesis of cGMP. At these receptors,
glutamate decreases cGMP formation, leading to the closure of ion channels.
Glutamate transporters, found on glial and photoreceptor cells, are also present at
glutamatergic synapses (<a class="figpopup" href="/books/NBK11526/figure/ch18glu.F17/?report=objectonly" target="object" rid-figpopup="figch18gluF17" rid-ob="figobch18gluF17">Fig. 17</a>). Transporters remove excess
glutamate from the synaptic cleft to prevent neurotoxicity. Thus, postsynaptic
responses to glutamate are determined by the distribution of receptors and
transporters at glutamatergic synapses which, in retina, determine the conductance
mechanisms underlying visual information processing within the ON- and
OFF-pathways.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch18gluF17" co-legend-rid="figlgndch18gluF17"><a href="/books/NBK11526/figure/ch18glu.F17/?report=objectonly" target="object" title="Figure 17" class="img_link icnblk_img figpopup" rid-figpopup="figch18gluF17" rid-ob="figobch18gluF17"><img class="small-thumb" src="/books/NBK11526/bin/gluf17.gif" src-large="/books/NBK11526/bin/gluf17.jpg" alt="Figure 17. The ribbon glutamatergic synapse in the retina." /></a><div class="icnblk_cntnt" id="figlgndch18gluF17"><h4 id="ch18glu.F17"><a href="/books/NBK11526/figure/ch18glu.F17/?report=objectonly" target="object" rid-ob="figobch18gluF17">Figure 17</a></h4><p class="float-caption no_bottom_margin">The ribbon glutamatergic synapse in the retina. </p></div></div></div><div id="ch18glu.AFN1"><h2 id="_ch18glu_AFN1_">About the Author</h2><p>
<div class="graphic"><img src="/books/NBK11526/bin/glufu1.jpg" alt="Image glufu1.jpg" /></div>
Dr. Victoria Connaughton was born in Sellersville,
Pennsylvania. She received her B.A. from Bucknell University in Biology in
1989 and her Ph.D. in Marine Studies from The University of Delaware in
1994. She is currently an Assistant Professor in the Biology Department at
American University, Washington, DC. In her thesis work under Dr. Charles
Epifano, she studied the visually guided feeding behavior of larval fish.
Dr. Connaughton pursued postdoctoral studies with Dr. Greg Maguire at the
University of Houston and Dr. Ralph Nelson at the National Institutes of
Health. Dr. Connaughton's current research interests include
electrophysiological examination of zebrafish mutants with visual system
defects and the characterization of light responses in zebrafish retinal
bipolar cells.</p></div><div id="ch18glu.References"><h2 id="_ch18glu_References_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.1">Massey SC. Cell types using glutamate as a neurotransmitter in the
vertebrate retina. <span><span class="ref-journal">Prog Retinal Res. </span>1990;<span class="ref-vol">9</span>:399425.</span></div></dd><dt>2.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.2">Erulkar SD. Chemically mediated synaptic
transmission: an overview. In: Siegel GJ, Agranoff BJ, Albers RW, Molinoff PB,
editors. Basic neurochemistry, 5th ed. New York: Raven Press; 1994. p.
181-208.</div></dd><dt>3.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.3">Stryer L. <span class="ref-journal">Biochemistry.</span> 3rd ed. New York: W.H. Freeman; 1988. </div></dd><dt>4.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.4">Fykse EM, Fonnum F. Amino acid neurotransmission: dynamics of vesicular
uptake. <span><span class="ref-journal">Neurochem Res. </span>1996;<span class="ref-vol">21</span>:10531060.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8897468" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8897468</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.5">Naito S, Ueda T. Adenosine triphosphate-dependent uptake of glutamate into protein
I-associated synaptic vesicles. <span><span class="ref-journal">J Biol Chem. </span>1983;<span class="ref-vol">258</span>:696699.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6130088" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6130088</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.6">Tabb JS, Ueda T. Phylogenetic studies on the synaptic vesicle glutamate
transporter. <span><span class="ref-journal">J Neurosci. </span>1991;<span class="ref-vol">11</span>:18221828.</span> [<a href="/pmc/articles/PMC6575416/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6575416</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2045887" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2045887</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.7">Ehinger B, Ottersen OP, Storm-Mathisen J, Dowling JE. Bipolar cells in the turtle retina are strongly immunoreactive
for glutamate. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>1988;<span class="ref-vol">85</span>:83218325.</span> [<a href="/pmc/articles/PMC282421/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC282421</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2903503" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2903503</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.8">Jojich L, Pourcho RG. Glutamate immunoreactivity in the cat retina: a quantitative
study. <span><span class="ref-journal">Vis Neurosci. </span>1996;<span class="ref-vol">13</span>:117133.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8730994" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8730994</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.9">Kalloniatis M, Fletcher EL. Immunocytochemical localization of the amino acid
neurotransmitters in the chicken retina. <span><span class="ref-journal">J Comp Neurol. </span>1993;<span class="ref-vol">336</span>:174193.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7902364" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7902364</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.10">Marc RE, Liu W-LS, Kalloniatis M, Raiguel SF, Van Haesendonck E. Patterns of glutamate immunoreactivity in the goldfish
retina. <span><span class="ref-journal">J Neurosci. </span>1990;<span class="ref-vol">10</span>:40064034.</span> [<a href="/pmc/articles/PMC6570043/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6570043</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1980136" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1980136</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.11">Van Haesendonck E, Missotten L. Glutamate-like immunoreactivity in the retina of a marine
teleost, the dragonet. <span><span class="ref-journal">Neurosci Lett. </span>1990;<span class="ref-vol">111</span>:281286.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2336203" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2336203</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.12">Yang C-Y, Yazulla S. Glutamate-, GABA-, and GAD-immunoreactivities co-localize in
bipolar cells of tiger salamander retina. <span><span class="ref-journal">Vis Neurosci. </span>1994;<span class="ref-vol">11</span>:11931203.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7841126" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7841126</span></a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.13">Yang C-Y. Glutamate immunoreactivity in the tiger salamander retina
differentiates between GABA-immunoreactive and glycine-immunoreactive
amacrine cells. <span><span class="ref-journal">J Neurocytol. </span>1996;<span class="ref-vol">25</span>:391403.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8866240" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8866240</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.14">Yazulla S. GABAergic neurons in the retina. <span><span class="ref-journal">Prog Retinal Res. </span>1986;<span class="ref-vol">5</span>:152.</span></div></dd><dt>15.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.15">Marc RE, Lam DMK. Uptake of aspartic and glutamic acid by photoreceptors in
goldfish retina. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>1981;<span class="ref-vol">78</span>:71857189.</span> [<a href="/pmc/articles/PMC349221/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC349221</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6118867" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6118867</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.16">Yang JH, Wu SM. Characterization of glutamate transporter function in the tiger
salamander retina. <span><span class="ref-journal">Vision Res. </span>1997;<span class="ref-vol">37</span>:827838.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9156180" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9156180</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.17">Kanai Y, Smith CP, Hediger MA. A new family of neurotransmitter transporters: the high-affinity
glutamate transporters. <span><span class="ref-journal">FASEB J. </span>1993;<span class="ref-vol">7</span>:14501459.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7903261" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7903261</span></a>]</div></dd><dt>18.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.18">Pow DV, Crook DR. Direct immunocytochemical evidence for the transfer of glutamine
from glial cells to neurons: use of specific antibodies directed against the
D-stereoisomers of glutamate and glutamine. <span><span class="ref-journal">Neuroscience. </span>1996;<span class="ref-vol">70</span>:295302.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8848133" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8848133</span></a>]</div></dd><dt>19.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.19">Hertz L. Functional interactions between neurons and astrocytes. I.
Turnover and metabolism of putative amino acid transmitters. <span><span class="ref-journal">Prog Neurobiol. </span>1979;<span class="ref-vol">13</span>:277323.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/42117" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 42117</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.20">Schwartz EA, Tachibana M. Electrophysiology of glutamate and sodium co-transport in a glial
cell of the salamander retina. <span><span class="ref-journal">J Physiol. </span>1990;<span class="ref-vol">426</span>:4380.</span> [<a href="/pmc/articles/PMC1189876/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1189876</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2231407" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2231407</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.21">Tachibana M, Kaneko A. L-Glutamate-induced depolarization in solitary photoreceptors: a
process that may contribute to the interaction between photoreceptors in
situ. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>1988;<span class="ref-vol">85</span>:53155319.</span> [<a href="/pmc/articles/PMC281741/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC281741</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2899327" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2899327</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.22">Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Versoorn TA, Sakmann B, Seeburg PH. A family of AMPA-selective glutamate receptors. <span><span class="ref-journal">Science. </span>1990;<span class="ref-vol">249</span>:556560.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2166337" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2166337</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.23">Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH. Heteromeric NMDA receptors: molecular and functional distinction
of subtypes. <span><span class="ref-journal">Science. </span>1992;<span class="ref-vol">256</span>:12171221.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1350383" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1350383</span></a>]</div></dd><dt>24.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.24">Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B. Structural determinants of ion flow through recombinant glutamate
receptor channels. <span><span class="ref-journal">Science. </span>1991;<span class="ref-vol">252</span>:17151718.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1710829" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1710829</span></a>]</div></dd><dt>25.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.25">Nakanishi S. Molecular diversity of glutamate receptors and implications for
brain function. <span><span class="ref-journal">Science. </span>1992;<span class="ref-vol">258</span>:597603.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1329206" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1329206</span></a>]</div></dd><dt>26.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.26">Ozawa S, Rossier J. Molecular basis for functional differences of AMPA-subtype
glutamate receptors. <span><span class="ref-journal">News Physiol Soc. </span>1996;<span class="ref-vol">11</span>:7782.</span></div></dd><dt>27.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.27">Mayer ML, Westbrook GL. Permeation and block of N-methyl-D-aspartic acid receptor
channels by divalent cations in mouse cultured central
neurones. <span><span class="ref-journal">J Physiol. </span>1987;<span class="ref-vol">394</span>:501527.</span> [<a href="/pmc/articles/PMC1191974/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1191974</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2451020" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2451020</span></a>]</div></dd><dt>28.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.28">Boos R, Schneider H, Wassle H. Voltage- and transmitter-gated currents of AII amacrine cells in
a slice preparation of the rat retina. <span><span class="ref-journal">J Neurosci. </span>1993;<span class="ref-vol">13</span>:28742888.</span> [<a href="/pmc/articles/PMC6576675/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6576675</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7687279" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7687279</span></a>]</div></dd><dt>29.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.29">Cohen ED, Miller RF. The role of NMDA and non-NMDA excitatory amino acid receptors in
the functional organization of primate retinal ganglion
cells. <span><span class="ref-journal">Vis Neurosci. </span>1994;<span class="ref-vol">11</span>:317332.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8003456" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8003456</span></a>]</div></dd><dt>30.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.30">Gilbertson TA, Scobey R, Wilson M. Permeation of calcium ions through non-NMDA glutamate channels in
retinal bipolar cells. <span><span class="ref-journal">Science. </span>1991;<span class="ref-vol">251</span>:16131615.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1849316" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1849316</span></a>]</div></dd><dt>31.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.31">Yu W, Miller RF. NBQX, an improved non-NMDA antagonist studied in retinal ganglion
cells. <span><span class="ref-journal">Brain Res. </span>1995;<span class="ref-vol">692</span>:190194.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8548303" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8548303</span></a>]</div></dd><dt>32.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.32">Zhou ZJ, Fain GL, Dowling JE. The excitatory and inhibitory amino acid receptors on horizontal
cells isolated from the white perch retina. <span><span class="ref-journal">J Neurophysiol. </span>1993;<span class="ref-vol">70</span>:819.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8103091" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8103091</span></a>]</div></dd><dt>33.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.33">Yamada KA, Tang C-M. Benzothiadiazides inhibit rapid glutamate receptor
desensitization and enhance glutamatergic synaptic currents. <span><span class="ref-journal">J Neurosci. </span>1993;<span class="ref-vol">13</span>:39043915.</span> [<a href="/pmc/articles/PMC6576449/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6576449</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8103555" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8103555</span></a>]</div></dd><dt>34.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.34">Kessler M, Arai A, Quan A, Lynch G. Effect of cyclothiazide on binding properties of AMPA-type
glutamate receptors: lack of competition between cyclothiazide and GYKI
52466. <span><span class="ref-journal">Mol Pharmacol. </span>1996;<span class="ref-vol">49</span>:123131.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8569697" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8569697</span></a>]</div></dd><dt>35.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.35">Boulter J, Hollmann M, O'Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S. Molecular cloning and functional expression of glutamate receptor
subunit genes. <span><span class="ref-journal">Science. </span>1990;<span class="ref-vol">249</span>:10331037.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2168579" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2168579</span></a>]</div></dd><dt>36.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.36">Nakanishi N, Schneider NA, Axel R. A family of glutamate receptor genes: evidence for the formation
of heteromultimeric receptors with distinct channel
properties. <span><span class="ref-journal">Neuron. </span>1990;<span class="ref-vol">5</span>:569581.</span> [<a href="/pmc/articles/PMC4481242/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4481242</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1699567" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1699567</span></a>]</div></dd><dt>37.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.37">Bettler B, Boulter J, Hermans-Borgmeyer I, O'Shea-Greenfield A, Deneris ES, Moll C, Borgmeyer U, Hollmann M, Heinemann S. Cloning of a novel glutamate receptor subunit, GluR5: expression
in the nervous system during development. <span><span class="ref-journal">Neuron. </span>1990;<span class="ref-vol">5</span>:583595.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1977421" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1977421</span></a>]</div></dd><dt>38.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.38">Bettler B, Egebjerg J, Sharma G, Pecht G, Hermans-Borgmeyer I, Moll C, Stevens CF, Heinemann S. Cloning of a putative glutamate receptor: a low affinity
kainate-binding subunit. <span><span class="ref-journal">Neuron. </span>1992;<span class="ref-vol">8</span>:257265.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1371217" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1371217</span></a>]</div></dd><dt>39.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.39">Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S. Cloning of a cDNA for a glutamate receptor subunit activated by
kainate but not AMPA. <span><span class="ref-journal">Nature. </span>1991;<span class="ref-vol">351</span>:745748.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1648177" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1648177</span></a>]</div></dd><dt>40.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.40">Hollmann M, O'Shea-Greenfield A, Rogers SW, Heinemann S. Cloning by functional expression of a member of the glutamate
receptor family. <span><span class="ref-journal">Nature. </span>1989;<span class="ref-vol">342</span>:643648.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2480522" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2480522</span></a>]</div></dd><dt>41.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.41">Lodge D. Subtypes of glutamate receptors.
Historical perspectives on their pharmacological differentiation. In: Monaghan
DT, Weinhold RJ, editors. The ionotropic glutamate receptors. Totowa (NJ):
Humana Press; 1997. p. 1-38.</div></dd><dt>42.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.42">Westbrook GL, Mayer ML. Micromolar concentrations of Zn<sup>2+</sup> antagonize NMDA and
GABA responses of hippocampal neurons. <span><span class="ref-journal">Nature. </span>1987;<span class="ref-vol">328</span>:640643.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3039375" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3039375</span></a>]</div></dd><dt>43.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.43">Ransom RW, Stec NL. Cooperative modulation of [3H}MK-801 binding to the
N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine,
and polyamines. <span><span class="ref-journal">J Neurochem. </span>1988;<span class="ref-vol">51</span>:830836.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2457653" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2457653</span></a>]</div></dd><dt>44.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.44">Williams K, Zappia AM, Pritchett DB, Shen YM, Molinoff PB. Sensitivity of the N-methyl-D-aspartate receptor to polyamines is
controlled by NR2 subunits. <span><span class="ref-journal">Mol Pharmacol. </span>1994;<span class="ref-vol">45</span>:803809.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8190097" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8190097</span></a>]</div></dd><dt>45.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.45">Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoue Y, Mishina M. Cloning and expression of the 4 subunit of the NMDA receptor
channel. <span><span class="ref-journal">FEBS Lett. </span>1992;<span class="ref-vol">313</span>:3438.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1385220" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1385220</span></a>]</div></dd><dt>46.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.46">Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S. Molecular characterization of the family of N-methyl-D-aspartate
receptor subunits. <span><span class="ref-journal">J Biol Chem. </span>1993;<span class="ref-vol">268</span>:28362843.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8428958" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8428958</span></a>]</div></dd><dt>47.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.47">Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M. Molecular diversity of the NMDA receptor channel. <span><span class="ref-journal">Nature. </span>1992;<span class="ref-vol">358</span>:3641.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1377365" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1377365</span></a>]</div></dd><dt>48.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.48">Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M. Functional characterization of a heteromeric NMDA receptor
channel expressed from cloned cDNAs. <span><span class="ref-journal">Nature. </span>1992;<span class="ref-vol">357</span>:7074.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1374164" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1374164</span></a>]</div></dd><dt>49.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.49">Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA
receptor. <span><span class="ref-journal">Nature. </span>1991;<span class="ref-vol">354</span>:3137.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1834949" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1834949</span></a>]</div></dd><dt>50.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.50">Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain
neurons. <span><span class="ref-journal">Nature. </span>1987;<span class="ref-vol">325</span>:529531.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2433595" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2433595</span></a>]</div></dd><dt>51.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.51">Kleckner NW, Dingledine R. Requirement for glycine activation of NMDA-receptors expressed in
Xenopus oocytes. <span><span class="ref-journal">Science. </span>1988;<span class="ref-vol">241</span>:835837.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2841759" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2841759</span></a>]</div></dd><dt>52.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.52">Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central
neurones. <span><span class="ref-journal">Nature. </span>1984;<span class="ref-vol">307</span>:462465.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6320006" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6320006</span></a>]</div></dd><dt>53.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.53">Diamond JS, Copenhagen DR. The contribution of NMDA and non-NMDA receptors to the
light-evoked input-output characteristics of retinal ganglion
cells. <span><span class="ref-journal">Neuron. </span>1993;<span class="ref-vol">11</span>:725738.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8104431" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8104431</span></a>]</div></dd><dt>54.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.54">Dixon DB, Copenhagen DR. Two types of glutamate receptors differentially excite amacrine
cells in the tiger salamander retina. <span><span class="ref-journal">J Physiol. </span>1992;<span class="ref-vol">449</span>:589606.</span> [<a href="/pmc/articles/PMC1176096/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1176096</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1355793" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1355793</span></a>]</div></dd><dt>55.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.55">Massey SC, Miller RF. Glutamate receptors of ganglion cells in the rabbit retina:
evidence for glutamate as a bipolar cell transmitter. <span><span class="ref-journal">J Physiol. </span>1988;<span class="ref-vol">405</span>:635655.</span> [<a href="/pmc/articles/PMC1190996/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1190996</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2908248" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2908248</span></a>]</div></dd><dt>56.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.56">Massey SC, Miller RF. N-Methyl-D-aspartate receptors of ganglion cells in rabbit
retina. <span><span class="ref-journal">J Neurophysiol. </span>1990;<span class="ref-vol">63</span>:1630.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2153770" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2153770</span></a>]</div></dd><dt>57.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.57">Mittman S, Taylor WR, Copenhagen DR. Concomitant activation of two types of glutamate receptor
mediates excitation of salamander retinal ganglion cells. <span><span class="ref-journal">J Physiol. </span>1990;<span class="ref-vol">428</span>:175197.</span> [<a href="/pmc/articles/PMC1181641/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1181641</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2172521" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2172521</span></a>]</div></dd><dt>58.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.58">Hensley SH, Yang X-L, Wu SM. Identification of glutamate receptor subtypes mediating inputs to
bipolar cells and ganglion cells in the tiger salamander
retina. <span><span class="ref-journal">J Neurophysiol. </span>1993;<span class="ref-vol">69</span>:20992107.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7688801" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7688801</span></a>]</div></dd><dt>59.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.59">Nestler EJ, Duman ES. G proteins and cyclic
nucleotides in the nervous system. In: Siegel GJ, Agranoff BW, Albers RW,
Molinoff PB, editors. Basic Neurochemistry. 5th ed. New York: Raven Press; 1994.
p. 429-448.</div></dd><dt>60.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.60">Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel metabotropic glutamate
receptor mGluR5 coupled to inositol phosphate/Ca<sup>2+</sup> signal
transduction. <span><span class="ref-journal">J Biol Chem. </span>1992;<span class="ref-vol">267</span>:1336113368.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1320017" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1320017</span></a>]</div></dd><dt>61.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.61">Duvoisin RM, Zhang C, Ramonell K. A novel metabotropic glutamate receptor expressed in the retina
and olfactory bulb. <span><span class="ref-journal">J Neurosci. </span>1995;<span class="ref-vol">15</span>:30753083.</span> [<a href="/pmc/articles/PMC6577763/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6577763</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7722646" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7722646</span></a>]</div></dd><dt>62.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.62">Houamed KM, Kuijper JL, Gilbert TL, Haldeman BA, O'Hara PJ, Mulvihill ER, Almers W, Hagen FS. Cloning, expression, and gene structure of a G protein-coupled
glutamate receptor from rat brain. <span><span class="ref-journal">Science. </span>1991;<span class="ref-vol">252</span>:13181321.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1656524" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1656524</span></a>]</div></dd><dt>63.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.63">Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S. Sequence and expression of a metabotropic glutamate
receptor. <span><span class="ref-journal">Nature. </span>1991;<span class="ref-vol">349</span>:760765.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1847995" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1847995</span></a>]</div></dd><dt>64.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.64">Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel retinal metabotropic
glutamate receptor mGluR6 with a high agonist selectively for
L-2-amino-4-phosphobutyrate. <span><span class="ref-journal">J Biol Chem. </span>1993;<span class="ref-vol">268</span>:1186811873.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8389366" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8389366</span></a>]</div></dd><dt>65.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.65">Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. A family of metabotropic glutamate receptors. <span><span class="ref-journal">Neuron. </span>1992;<span class="ref-vol">8</span>:169179.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1309649" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1309649</span></a>]</div></dd><dt>66.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.66">Saugstad JA, Kinzie JM, Mulvihill ER, Segerson TP, Westbrook GL. Cloning and expression of a new member of the
L-2-amino-4-phosphobutyric acid-sensitive class of metabotropic glutamate
receptors. <span><span class="ref-journal">Mol Pharmacol. </span>1994;<span class="ref-vol">45</span>:367372.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8145723" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8145723</span></a>]</div></dd><dt>67.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.67">Nakanishi S. Metabotropic glutamate receptors: synaptic transmission,
modulation, and plasticity. <span><span class="ref-journal">Neuron. </span>1994;<span class="ref-vol">13</span>:10311037.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7946343" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7946343</span></a>]</div></dd><dt>68.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.68">Knopfel T, Kuhn R, Allgeier H. Metabotropic glutamate receptors: novel targets for drug
development. <span><span class="ref-journal">J Med Chem. </span>1995;<span class="ref-vol">38</span>:14171426.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7738999" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7738999</span></a>]</div></dd><dt>69.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.69">Pin JP, Bockaert J. Get receptive to metabotropic glutamate receptors. <span><span class="ref-journal">Curr Opin Neurobiol. </span>1995;<span class="ref-vol">5</span>:342349.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7580157" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7580157</span></a>]</div></dd><dt>70.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.70">Pin JP, Duvoisin R. Review: Neurotransmitter receptors. I. The metabotropic glutamate
receptors: structure and functions. <span><span class="ref-journal">Neuropharmacology. </span>1995;<span class="ref-vol">34</span>:126.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7623957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7623957</span></a>]</div></dd><dt>71.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.71">Nawy S, Copenhagen DR. Multiple classes of glutamate receptor on depolarizing bipolar
cells in retina. <span><span class="ref-journal">Nature. </span>1987;<span class="ref-vol">325</span>:5658.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3025746" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3025746</span></a>]</div></dd><dt>72.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.72">Nawy S, Copenhagen DR. Intracellular cesium separates two glutamate conductances in
retinal bipolar cells of goldfish. <span><span class="ref-journal">Vision Res. </span>1990;<span class="ref-vol">30</span>:967972.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1975465" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1975465</span></a>]</div></dd><dt>73.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.73">Slaughter MM, Miller RF. 2-Amino-4-phosphobutyric acid: a new pharmacological tool for
retina research. <span><span class="ref-journal">Science. </span>1981;<span class="ref-vol">211</span>:182184.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6255566" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6255566</span></a>]</div></dd><dt>74.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.74">Nawy S, Jahr CE. Suppression by glutamate of cGMP-activated conductance in retinal
bipolar cells. <span><span class="ref-journal">Nature. </span>1990;<span class="ref-vol">346</span>:269271.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1695713" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1695713</span></a>]</div></dd><dt>75.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.75">Taylor WR, Wassle H. Receptive field properties of starburst cholinergic amacrine
cells in the rabbit retina. <span><span class="ref-journal">Eur J Neurosci. </span>1995;<span class="ref-vol">7</span>:23082321.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8563980" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8563980</span></a>]</div></dd><dt>76.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.76">Jin XT, Brunken WJ. A differential effect of APB on ON- and OFF-center ganglion cells
in the dark adapted rabbit retina. <span><span class="ref-journal">Brain Res. </span>1996;<span class="ref-vol">708</span>:191196.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8720878" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8720878</span></a>]</div></dd><dt>77.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.77">Kittila CA, Massey SC. Effect of ON pathway blockade on directional selectively in the
rabbit retina. <span><span class="ref-journal">J Neurophysiol. </span>1995;<span class="ref-vol">73</span>:703712.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7760129" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7760129</span></a>]</div></dd><dt>78.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.78">Massey SC, Redburn DA, Crawford MLJ. The effects of 2-amino-4-phosphobutyric acid (APB) on the ERG and
ganglion cell discharge of rabbit retina. <span><span class="ref-journal">Vision Res. </span>1983;<span class="ref-vol">23</span>:16071613.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6666062" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6666062</span></a>]</div></dd><dt>79.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.79">Hartveit E, Brandsttter JH, Enz R, Wassle H. Expression of the mRNA of seven metabotropic glutamate receptors
(mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue
section and isolated cells. <span><span class="ref-journal">Eur J Neurosci. </span>1995;<span class="ref-vol">7</span>:14721483.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7551173" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7551173</span></a>]</div></dd><dt>80.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.80">Nomura A, Shigemoto R, Nakamura Y, Okamoto N, Mizuno N, Nakanishi S. Developmentally regulated postsynaptic localization of a
metabotropic glutamate receptor in rat bipolar cells. <span><span class="ref-journal">Cell. </span>1994;<span class="ref-vol">77</span>:361369.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8181056" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8181056</span></a>]</div></dd><dt>81.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.81">Masu M, Iwakabe H, Tagawa Y, Miyoshi T, Yamashita M, Fukuda Y, Sasaki H, Hiroi K, Nakamura Y, Shigemoto R, Takada M, Nakamura K, Makao K, Katsuki M, Nakanishi S. Specific deficit of the ON response in visual transmission by
targeted disruption of the mGluR6 gene. <span><span class="ref-journal">Cell. </span>1995;<span class="ref-vol">80</span>:757765.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7889569" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7889569</span></a>]</div></dd><dt>82.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.82">Eliasof S, Werblin F. Characterization of the glutamate transporter in retinal cones of
the tiger salamander. <span><span class="ref-journal">J Neurosci. </span>1993;<span class="ref-vol">13</span>:402411.</span> [<a href="/pmc/articles/PMC6576323/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6576323</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8093715" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8093715</span></a>]</div></dd><dt>83.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.83">Aizenman E, Frosch MP, Lipton SA. Responses mediated by excitatory amino acid receptors in solitary
retinal ganglion cells from rat. <span><span class="ref-journal">J Physiol. </span>1988;<span class="ref-vol">396</span>:7591.</span> [<a href="/pmc/articles/PMC1192034/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1192034</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2842491" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2842491</span></a>]</div></dd><dt>84.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.84">Sasaki T, Kaneko A. L-Glutamate-induced responses in OFF-type bipolar cells of the
cat retina. <span><span class="ref-journal">Vision Res. </span>1996;<span class="ref-vol">36</span>:787795.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8736215" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8736215</span></a>]</div></dd><dt>85.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.85">Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate
transporter coupled to a chloride conductance. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>1997;<span class="ref-vol">94</span>:41554160.</span> [<a href="/pmc/articles/PMC20584/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC20584</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9108121" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9108121</span></a>]</div></dd><dt>86.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.86">Fairman WA, Vandengerg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a
ligand-gated chloride channel. <span><span class="ref-journal">Nature. </span>1995;<span class="ref-vol">375</span>:599603.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7791878" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7791878</span></a>]</div></dd><dt>87.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.87">Kanai Y, Hediger MA. Primary structure and functional characterization of a
high-affinity glutamate transporter. <span><span class="ref-journal">Nature. </span>1992;<span class="ref-vol">360</span>:467471.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1280334" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1280334</span></a>]</div></dd><dt>88.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.88">Kanai Y, Trotti D, Nussberger S, Hediger MA.
1997. The high-affinity glutamate transporter family, structure, function, and
physiological relevance. In: Reith MEA, editor. Neurotransmitter transporters:
structure, function, and regulation. Totowa (NJ): Humana Press; 1997. p.
171-213.</div></dd><dt>89.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.89">Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI. Cloning and expression of a rat brain L-glutamate
transporter. <span><span class="ref-journal">Nature. </span>1992;<span class="ref-vol">360</span>:464467.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1448170" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1448170</span></a>]</div></dd><dt>90.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.90">Schultz K, Stell WK. Immunocytochemical localization of the high-affinity glutamate
transporter, EAAC1, in the retina of representative vertebrate
species. <span><span class="ref-journal">Neurosci Lett. </span>1996;<span class="ref-vol">211</span>:191194.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8817573" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8817573</span></a>]</div></dd><dt>91.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.91">Brew H, Attwell D. Electrogenic glutamate uptake is a major current carrier in the
membrane of axolotl retinal glial cells. <span><span class="ref-journal">Nature. </span>1987;<span class="ref-vol">327</span>:707709.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2885752" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2885752</span></a>]</div></dd><dt>92.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.92">Barbour B, Brew H, Attwell D. Electrogenic uptake of glutamate and aspartate into glial cells
isolated from the salamander (Ambystoma) retina. <span><span class="ref-journal">J Physiol. </span>1991;<span class="ref-vol">436</span>:169193.</span> [<a href="/pmc/articles/PMC1181500/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1181500</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1676418" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1676418</span></a>]</div></dd><dt>93.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.93">Barbour B, Brew H, Attwell D. Electrogenic glutamate uptake in glial cells is activated by
intracellular potassium. <span><span class="ref-journal">Nature. </span>1988;<span class="ref-vol">335</span>:433435.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2901670" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2901670</span></a>]</div></dd><dt>94.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.94">Bouvier M, Szatkowski M, Amato A, Attwell D. The glial cell glutamate uptake carrier countertransports
pH-changing ions. <span><span class="ref-journal">Nature. </span>1992;<span class="ref-vol">360</span>:471474.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1448171" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1448171</span></a>]</div></dd><dt>95.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.95">Eliasof S, Jahr CE. Retinal glial cell glutamate transporter is coupled to an anionic
conductance. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>1996;<span class="ref-vol">93</span>:41534158.</span> [<a href="/pmc/articles/PMC39503/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC39503</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8633032" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8633032</span></a>]</div></dd><dt>96.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.96">Grant GB, Werblin FS. A glutamate-elicited chloride current with transporter-like
properties in rod photoreceptors of the tiger salamander. <span><span class="ref-journal">Vis Neurosci. </span>1996;<span class="ref-vol">13</span>:135144.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8730995" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8730995</span></a>]</div></dd><dt>97.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.97">Picaud S, Larsson HP, Wellis DP, Lecar H, Werblin F. Cone photoreceptors respond to their own glutamate release in the
tiger salamander. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>1995a;<span class="ref-vol">92</span>:94179421.</span> [<a href="/pmc/articles/PMC40996/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC40996</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7568144" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7568144</span></a>]</div></dd><dt>98.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.98">Picaud SA, Larsson HP, Grant GB, Lecar H, Werblin FS. Glutamate-gated chloride channel with glutamate-transporter-like
properties in cone photoreceptors of the tiger salamander. <span><span class="ref-journal">J Neurophysiol. </span>1995b;<span class="ref-vol">74</span>:17601771.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8989410" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8989410</span></a>]</div></dd><dt>99.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.99">Grant GB, Dowling JE. A glutamate-activated chloride current in cone-driven ON bipolar
cells of the white perch retina. <span><span class="ref-journal">J Neurosci. </span>1995;<span class="ref-vol">15</span>:38523862.</span> [<a href="/pmc/articles/PMC6578192/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6578192</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7538566" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7538566</span></a>]</div></dd><dt>100.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.100">Grant GB, Dowling JE. ON bipolar cell responses in the teleost retina are generated by
two distinct mechanisms. <span><span class="ref-journal">J Neurophysiol. </span>1996;<span class="ref-vol">76</span>:38423849.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8985882" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8985882</span></a>]</div></dd><dt>101.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.101">Euler T, Schneider H, Wassle H. Glutamate responses of bipolar cells in a slice preparation of
the rat retina. <span><span class="ref-journal">J Neurosci. </span>1996;<span class="ref-vol">16</span>:29342944.</span> [<a href="/pmc/articles/PMC6579066/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6579066</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8622124" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8622124</span></a>]</div></dd><dt>102.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.102">Hartveit E. Functional organization of cone bipolar cells in the rat
retina. <span><span class="ref-journal">J Neurophysiol. </span>1997;<span class="ref-vol">77</span>:17161730.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9114231" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9114231</span></a>]</div></dd><dt>103.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.103">Krizaj D, Akopian A, Witkovsky P. The effects of L-glutamate, AMPA, quisqualate, and kainate on
retinal horizontal cells depend on adaptational state: implications for
rod-cone interactions. <span><span class="ref-journal">J Neurosci. </span>1994;<span class="ref-vol">14</span>:56615671.</span> [<a href="/pmc/articles/PMC6577084/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6577084</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7521912" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7521912</span></a>]</div></dd><dt>104.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.104">Yang X-L, Wu SM. Coexistence and function of glutamate receptor subtypes in the
horizontal cells of the tiger salamander retina. <span><span class="ref-journal">Vis Neurosci. </span>1991;<span class="ref-vol">7</span>:377382.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1661137" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1661137</span></a>]</div></dd><dt>105.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.105">Eliasof S, Jahr CE. Rapid AMPA receptor desensitization in catfish cone horizontal
cells. <span><span class="ref-journal">Vis Neurosci. </span>1997;<span class="ref-vol">14</span>:1318.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9057264" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9057264</span></a>]</div></dd><dt>106.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.106">O'Dell TJ, Christensen BN. Horizontal cells isolated from catfish retina contain two types
of excitatory amino acid receptors. <span><span class="ref-journal">J Neurophysiol. </span>1989;<span class="ref-vol">61</span>:10971109.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2473174" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2473174</span></a>]</div></dd><dt>107.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.107">Furukawa T, Yamada KM, Petruv R, Djamgoz MBA, Yasui S. Nitric oxide, 2-amino-4-phosphobutyric acid and light/dark
adaptation modulate short-wavelength-sensitive synaptic transmission to
retinal horizontal cells. <span><span class="ref-journal">Neurosci Res. </span>1997;<span class="ref-vol">27</span>:6574.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9089700" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9089700</span></a>]</div></dd><dt>108.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.108">Nawy SE, Sie A, Copenhagen DR. The glutamate analog 2-amino-4-phosphonobutyrate antagonizes
synaptic transmission from cones to horizontal cells in the goldfish
retina. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>1989;<span class="ref-vol">86</span>:17261730.</span> [<a href="/pmc/articles/PMC286774/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC286774</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2537984" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2537984</span></a>]</div></dd><dt>109.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.109">Takahashi K, Copenhagen DR. APB suppresses synaptic input to retinal horizontal cells in
fish: a direct action on horizontal cells modulated by intracellular
pH. <span><span class="ref-journal">J Neurophysiol. </span>1992;<span class="ref-vol">67</span>:16331642.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1352805" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1352805</span></a>]</div></dd><dt>110.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.110">Hartveit E, Veruki ML. AII amacrine cells express functional NMDA
receptors. <span><span class="ref-journal">Neuroreport. </span>1997;<span class="ref-vol">8</span>:12191223.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9175117" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9175117</span></a>]</div></dd><dt>111.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.111">Hartveit E, Brandstatter JH, Sasso-Pognetto M, Laurie DJ, Seeburgh PH, Wassle H. Localization and developmental expression of the NMDA receptor
subunit NR2A in the mammalian retina. <span><span class="ref-journal">J Comp Neurol. </span>1994;<span class="ref-vol">348</span>:570582.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7836563" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7836563</span></a>]</div></dd><dt>112.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.112">Hughes TE. Are there ionotropic glutamate receptors on the rod bipolar cell
of the mouse retina? <span><span class="ref-journal">Vis Neurosci. </span>1997;<span class="ref-vol">14</span>:103109.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9057273" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9057273</span></a>]</div></dd><dt>113.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.113">Peng YW, Blackstone CD, Huganir RL, Yau KW. Distribution of glutamate receptor subtypes in the vertebrate
retina. <span><span class="ref-journal">Neuroscience. </span>1995;<span class="ref-vol">66</span>:483497.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7477889" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7477889</span></a>]</div></dd><dt>114.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.114">Pourcho RG, Cai W, Qin P. Glutamate receptor subunits in cat retina: light and electron
microscopic observations. <span><span class="ref-journal">Invest Ophthal Vis Sci. </span>1997;<span class="ref-vol">38</span>:S46.</span></div></dd><dt>115.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.115">Brandstatter JH, Hartveit E, Sasso-Pognetto M, Wassle H. Expression of NMDA and high-affinity kainate receptor subunit
mRNAs in the adult rat retina. <span><span class="ref-journal">Eur J Neurosci. </span>1994;<span class="ref-vol">6</span>:11001112.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7952290" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7952290</span></a>]</div></dd><dt>116.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.116">Hamassaki-Britto DE, Hermans-Borgmeyer I, Heinemann S, Hughes TE. Expression of glutamate receptor genes in the mammalian retina:
the localization of GluR1 through GluR7 mRNAs. <span><span class="ref-journal">J Neurosci. </span>1993;<span class="ref-vol">13</span>:18881898.</span> [<a href="/pmc/articles/PMC6576571/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6576571</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8478682" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8478682</span></a>]</div></dd><dt>117.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.117">Hughes TE, Hermans-Borgmeyer I, Heinemann S. Differential expression of glutamate receptor genes (GluR1-5) in
the rat retina. <span><span class="ref-journal">Vis Neurosci. </span>1992;<span class="ref-vol">8</span>:4955.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1310870" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1310870</span></a>]</div></dd><dt>118.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.118">Wenzel A, Benke D, Mohler H, Fritschy J-M. N-Methyl-D-aspartate receptors containing the NR2D subunit in the
retina are selectively expressed in rod bipolar cells. <span><span class="ref-journal">Neuroscience. </span>1997;<span class="ref-vol">78</span>:11051112.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9174077" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9174077</span></a>]</div></dd><dt>119.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.119">Brandstatter JH, Koulen P, Kuhn R, van der Putten H, Wassle H. Compartmental localization of a metabotropic glutamate receptor
(mGluR7): two different active sites at a retinal synapse. <span><span class="ref-journal">J Neurosci. </span>1996;<span class="ref-vol">16</span>:47494756.</span> [<a href="/pmc/articles/PMC6579013/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6579013</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8764662" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8764662</span></a>]</div></dd><dt>120.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.120">Koulen P, Kuhn R, Wassle H, Brandstatter JH. Group I metabotropic glutamate receptors mGluR1 and mGluR5a:
localization in both synaptic layers of the rat retina. <span><span class="ref-journal">J Neurosci. </span>1997;<span class="ref-vol">17</span>:22002211.</span> [<a href="/pmc/articles/PMC6793758/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6793758</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9045744" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9045744</span></a>]</div></dd><dt>121.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.121">Otori Y, Shimada S, Tanaka T, Ishimoto I, Tana Y, Tohyama M. Marked increase in glutamate-aspartate transporter (GLAST/GluT-1)
mRNA following transient retinal ischemia. <span><span class="ref-journal">Brain Res Mol Brain Res. </span>1994;<span class="ref-vol">27</span>:310314.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7898315" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7898315</span></a>]</div></dd><dt>122.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.122">Derouiche A, Rauen T. Coincidence of L-glutamate/L-aspartate transporter (GLAST) and
glutamine synthetase (GS) immunoreactions in retinal glia: evidence for
coupling of GLAST and GS in transmitter clearance. <span><span class="ref-journal">J Neurosci Res. </span>1995;<span class="ref-vol">42</span>:131143.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8531222" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8531222</span></a>]</div></dd><dt>123.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.123">Lehre KP, Davanger S, Danbolt NC. Localization of the glutamate transporter protein GLAST in rat
retina. <span><span class="ref-journal">Brain Res. </span>1997;<span class="ref-vol">744</span>:129137.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9030421" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9030421</span></a>]</div></dd><dt>124.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.124">Rauen T, Rothstein JF, Wassle H. Differential expression of three glutamate transporter subtypes
in the rat retina. <span><span class="ref-journal">Cell Tissue Res. </span>1996;<span class="ref-vol">286</span>:325336.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8929335" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8929335</span></a>]</div></dd><dt>125.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.125">Grunert U, Martin PR, Wassle H. Immunocytochemical analysis of bipolar cells in the macaque
monkey retina. <span><span class="ref-journal">J Comp Neurol. </span>1994;<span class="ref-vol">348</span>:607627.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7530731" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7530731</span></a>]</div></dd><dt>126.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.126">Massey SC, Koomen JM, Liu S, Lehre KP, Danbolt NC. Distribution of the glutamate transporter GLT-1 in the rabbit
retina. <span><span class="ref-journal">Invest Ophthal Vis Sci. </span>1997;<span class="ref-vol">38</span>:S689.</span></div></dd><dt>127.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.127">Kandel ER, Schwartz JH, Jessell TM. <span class="ref-journal">Principles of neuroscience.</span> 3rd ed. New
York: Elsevier Publishing Co; 1991. </div></dd><dt>128.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.128">Slaughter MM, Miller RF. The role of excitatory amino acid transmitters in the mudpuppy
retina: an analysis with kainic acid and N-methyl aspartate. <span><span class="ref-journal">J Neurosci. </span>1983;<span class="ref-vol">3</span>:17011711.</span> [<a href="/pmc/articles/PMC6564532/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6564532</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6135763" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6135763</span></a>]</div></dd><dt>129.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.129">Hirano AA, MacLeish PR. Glutamate and 2-amino-4-phosphobutyric acid evoke an increase in
potassium conductance in retinal bipolar cells. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>1991;<span class="ref-vol">88</span>:805809.</span> [<a href="/pmc/articles/PMC50902/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC50902</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1671534" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1671534</span></a>]</div></dd><dt>130.</dt><dd><div class="bk_ref" id="ch18glu.EXTYLES.130">de la Villa P, Kurahashi T, Kaneko A. L-Glutamate-induced responses and cGMP-activated channels in
three subtypes of retinal bipolar cells dissociated from the
cat. <span><span class="ref-journal">J Neurosci. </span>1995;<span class="ref-vol">15</span>:35713582.</span> [<a href="/pmc/articles/PMC6578194/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6578194</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7538564" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7538564</span></a>]</div></dd></dl></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a>: © 2025 Webvision .<p class="small">All copyright for chapters belongs to the individual authors who created them. However, for non-commercial, academic purposes, images and content from the chapters portion of Webvision may be used with a non-exclusive rights under a Attribution, <a href="https://creativecommons.org/licenses/by-nc/4.0/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Noncommercial 4.0 International (CC BY-NC) Creative Commons license</a>. Cite Webvision, http://webvision.med.utah.edu/ as the source. Commercial applications need to obtain license permission from the administrator of Webvision and are generally declined unless the copyright owner can/wants to donate or license material. Use online should be accompanied by a link back to the original source of the material. All imagery or content associated with blog posts belong to the authors of said posts, except where otherwise noted.</p></div><div class="small"><span class="label">Bookshelf ID: NBK11526</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/21413387" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">21413387</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/webvision/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/webvision/FuPhototran/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/webvision/ch19bcchapter/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK11526&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK11526/?report=reader">PubReader</a></li><li><a href="/books/NBK11526/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK11526" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK11526" style="display:none" title="Cite this Page"><div class="bk_tt">Connaughton V. Glutamate and Glutamate Receptors in the Vertebrate Retina. 2005 May 1 [Updated 2007 May 7]. In: Kolb H, Fernandez E, Jones B, et al., editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. <span class="bk_cite_avail"></span></div></div></li><li><a href="/books/NBK11526/pdf/Bookshelf_NBK11526.pdf">PDF version of this page</a> (1.0M)</li><li><a href="/books/n/webvision/pdf/">PDF version of this title</a> (235M)</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#ch18glu.General_Overview_of_" ref="log$=inpage&amp;link_id=inpage">General Overview of Synaptic Transmission</a></li><li><a href="#ch18glu.Histological_Techniq" ref="log$=inpage&amp;link_id=inpage">Histological Techniques Identify Glutamatergic Neurons</a></li><li><a href="#ch18glu.Glutamate_Receptors" ref="log$=inpage&amp;link_id=inpage">Glutamate Receptors</a></li><li><a href="#ch18glu.Ionotropic_Glutamate" ref="log$=inpage&amp;link_id=inpage">Ionotropic Glutamate Receptors</a></li><li><a href="#ch18glu.Metabotropic_Glutama" ref="log$=inpage&amp;link_id=inpage">Metabotropic Glutamate Receptors</a></li><li><a href="#ch18glu.Glutamate_Transporte" ref="log$=inpage&amp;link_id=inpage">Glutamate Transporters and Transporter-like Receptors</a></li><li><a href="#ch18glu.Localization_of_Glut" ref="log$=inpage&amp;link_id=inpage">Localization of Glutamate Receptor Types in the Retina</a></li><li><a href="#ch18glu._Retinal_Neurons_Expr" ref="log$=inpage&amp;link_id=inpage">Retinal Neurons Expressing Ionotropic Glutamate Receptors</a></li><li><a href="#ch18glu._Retinal_Neurons_Expr_1" ref="log$=inpage&amp;link_id=inpage">Retinal Neurons Expressing Metabotropic Glutamate Receptors</a></li><li><a href="#ch18glu._Retinal_Neurons_Expr_2" ref="log$=inpage&amp;link_id=inpage">Retinal Neurons Expressing Glutamate Transporters</a></li><li><a href="#ch18glu.Summary_and_Conclusi" ref="log$=inpage&amp;link_id=inpage">Summary and Conclusions</a></li><li><a href="#ch18glu.AFN1" ref="log$=inpage&amp;link_id=inpage">About the Author</a></li><li><a href="#ch18glu.References" ref="log$=inpage&amp;link_id=inpage">References</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related Items in Bookshelf</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="source-links" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="https://www.ncbi.nlm.nih.gov/books?term=%22reference%20works%22%5BResource%20Type%5D" ref="pagearea=source-links&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">All Reference Works</a></li><li><a href="https://www.ncbi.nlm.nih.gov/books?term=&quot;textbooks&quot;%5BResource%20Type%5D" ref="pagearea=source-links&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">All Textbooks</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related information</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="discovery_db_links" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pmc&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pmc_refs&amp;IdsFromResult=1652008" ref="log$=recordlinks">PMC</a><div class="brieflinkpop offscreen_noflow">PubMed Central citations</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pubmed&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pubmed_refs&amp;IdsFromResult=1652008" ref="log$=recordlinks">PubMed</a><div class="brieflinkpop offscreen_noflow">Links to PubMed</div></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/21413382" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Bipolar Cell Pathways in the Vertebrate Retina.</a><span class="source">[Webvision: The Organization of...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Bipolar Cell Pathways in the Vertebrate Retina.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Nelson R, Connaughton V. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Webvision: The Organization of the Retina and Visual System. 1995</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/32119275" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Histology, Axon.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">Histology, Axon.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Muzio MR, Fakoya AO, Cascella M. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/29494117" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Ciguatera Toxicity.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">Ciguatera Toxicity.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Traylor J, Murray BP, Singhal M. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/39775947" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Evolution of rod bipolar cells and rod vision.</a><span class="source">[J Physiol. 2025]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Evolution of rod bipolar cells and rod vision.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Frederiksen R, Peng YR, Sampath AP, Fain GL. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">J Physiol. 2025 Jan 7; . Epub 2025 Jan 7.</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/36137063" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.</a><span class="source">[The Time of Anthropology: Stud...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Salisbury L, Baraitser L. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">The Time of Anthropology: Studies of Contemporary Chronopolitics. 2020</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=21413387" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=21413387" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67c9a74e84f3725e59a697db">Glutamate and Glutamate Receptors in the Vertebrate Retina - Webvision</a><div class="ralinkpop offscreen_noflow">Glutamate and Glutamate Receptors in the Vertebrate Retina - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=2" href="/portal/utils/pageresolver.fcgi?recordid=67c9a74db15b832ebc78fdb7">Phototransduction in Rods and Cones - Webvision</a><div class="ralinkpop offscreen_noflow">Phototransduction in Rods and Cones - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=3" href="/portal/utils/pageresolver.fcgi?recordid=67c9a74984f3725e59a66cd8">Part V: Phototransduction and Photoreceptor Synaptic Pathways - Webvision</a><div class="ralinkpop offscreen_noflow">Part V: Phototransduction and Photoreceptor Synaptic Pathways - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=4" href="/portal/utils/pageresolver.fcgi?recordid=67c9a748a68b6b5afcde684b">Role of Dopamine in Retinal Function - Webvision</a><div class="ralinkpop offscreen_noflow">Role of Dopamine in Retinal Function - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=5" href="/portal/utils/pageresolver.fcgi?recordid=67c9a746a68b6b5afcde5e78">Glycine Receptor Diversity in the Mammalian Retina - Webvision</a><div class="ralinkpop offscreen_noflow">Glycine Receptor Diversity in the Mammalian Retina - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK11526&amp;ncbi_domain=webvision&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK11526/&amp;ncbi_pagename=Glutamate and Glutamate Receptors in the Vertebrate Retina - Webvision - NCBI Bookshelf&amp;ncbi_bookparttype=chapter&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>