nih-gov/www.ncbi.nlm.nih.gov/books/n/webvision/RetinalProthesis/index.html
2025-03-17 02:05:34 +00:00

481 lines
No EOL
196 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK493746" /><meta name="ncbi_domain" content="webvision" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK493746/" /><meta name="ncbi_pagename" content="Retinal Prostheses - Webvision - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="chapter" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Retinal Prostheses - Webvision - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Webvision: The Organization of the Retina and Visual System [Internet]" /><meta name="citation_title" content="Retinal Prostheses" /><meta name="citation_publisher" content="University of Utah Health Sciences Center" /><meta name="citation_date" content="2018/03/19" /><meta name="citation_author" content="Ethan D. Cohen" /><meta name="citation_pmid" content="29697233" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK493746/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Retinal Prostheses" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="University of Utah Health Sciences Center" /><meta name="DC.Contributor" content="Ethan D. Cohen" /><meta name="DC.Date" content="2018/03/19" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK493746/" /><meta name="description" content="Retina prostheses try to reactivate the residual circuitry in a blind patients retina to produce a synthetic form of usable vision. Using an array of stimulus electrodes or light-sensitive proteins, the neurons in the degenerate retinal network are activated to elicit a series of light percepts termed “phosphenes”. If the patients phosphenes act as independent spatial percepts in their visual field, a crude type of form vision may be achieved. This form vision could improve a visually impaired patients ability to orient to landmarks in foreign visual environments, avoid obstacles, and improve social interactions. While most retinal prostheses in the current clinical trials rely on stimulation by electrical pulses from electrode arrays to locally excite the patients retinal neurons, several research groups are also trying more biologically compatible stimulation methods termed “optogenetics” which deploy viruses to transduce light-activated stimulator protein genes into select groups of retinal neurons which when expressed modulate their neural activity. Each technology presents different challenges and benefits for biological integration into the blind patients degenerate retina. Coupling and replacing the lost retinal neurons in the central fovea remains a challenge for both electronic and optogenetic combination therapies. There are many common issues involved in the real-world assessment of patient visual benefit from these novel medical technologies. Given the heterogeneity of RP as a disease, the availability of multiple therapies may be useful for patients, each offering different advantages for their type of retinal degeneration and its degree of progression." /><meta name="og:title" content="Retinal Prostheses" /><meta name="og:type" content="book" /><meta name="og:description" content="Retina prostheses try to reactivate the residual circuitry in a blind patients retina to produce a synthetic form of usable vision. Using an array of stimulus electrodes or light-sensitive proteins, the neurons in the degenerate retinal network are activated to elicit a series of light percepts termed “phosphenes”. If the patients phosphenes act as independent spatial percepts in their visual field, a crude type of form vision may be achieved. This form vision could improve a visually impaired patients ability to orient to landmarks in foreign visual environments, avoid obstacles, and improve social interactions. While most retinal prostheses in the current clinical trials rely on stimulation by electrical pulses from electrode arrays to locally excite the patients retinal neurons, several research groups are also trying more biologically compatible stimulation methods termed “optogenetics” which deploy viruses to transduce light-activated stimulator protein genes into select groups of retinal neurons which when expressed modulate their neural activity. Each technology presents different challenges and benefits for biological integration into the blind patients degenerate retina. Coupling and replacing the lost retinal neurons in the central fovea remains a challenge for both electronic and optogenetic combination therapies. There are many common issues involved in the real-world assessment of patient visual benefit from these novel medical technologies. Given the heterogeneity of RP as a disease, the availability of multiple therapies may be useful for patients, each offering different advantages for their type of retinal degeneration and its degree of progression." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK493746/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-webvision-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/webvision/RetinalProthesis/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK493746/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/ncbimedia/ncbimedia.js"> </script><script type="text/javascript">var ncbimedia_baseDir = "/corehtml/pmc/ncbimedia/";</script><script type="text/javascript" src="/corehtml/pmc/ncbimedia/pmcmedia.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8D84367C99E8F10000000000A50088.m_13" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="snp">SNP</option><option value="nlmcatalog">NLM Catalog</option><option value="pcsubstance" class="last">PubChem Substance</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Kolb H, Fernandez E, Jones B, et al., editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. </p></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/webvision/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-webvision-lrg.png" alt="Cover of Webvision" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>Webvision: The Organization of the Retina and Visual System [Internet].</h2><a data-jig="ncbitoggler" href="#__NBK493746_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK493746_dtls__"><div>Kolb H, Fernandez E, Jones B, et al., editors.</div><div>Salt Lake City (UT): <a href="http://webvision.med.utah.edu/" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">University of Utah Health Sciences Center</a>; 1995-.</div></div><div class="half_rhythm"><ul class="inline_list"><li style="margin-right:1em"><a class="bk_cntns" href="/books/n/webvision/">Contents</a></li></ul></div><div class="bk_noprnt"><form method="get" action="/books/n/webvision/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div><div class="icnblk_cntnt two_col"><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/webvision/FernandezIVP/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/webvision/anteriorsegment/" title="Next page in this title">Next &gt;</a></div></div></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK493746_"><span class="title" itemprop="name">Retinal Prostheses</span></h1><p class="contrib-group"><span itemprop="author">Ethan D. Cohen</span>, Ph.D.</p><a data-jig="ncbitoggler" href="#__NBK493746_ai__" style="border:0;text-decoration:none">Author Information and Affiliations</a><div style="display:none" class="ui-widget" id="__NBK493746_ai__"><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Ethan D. Cohen</span>, Ph.D.<sup><img src="/corehtml/pmc/pmcgifs/corrauth.gif" alt="corresponding author" /></sup><sup>1</sup><sup>,<a href="#RetinalProthesis.Tc.an1" class="bk_pop">*</a></sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup> Division of Biomedical Physics,<br />Office of Science and Engineering Labs,<br />Center for Devices and Radiological Health,<br />White Oak Federal Research Center. Silver Spring, MD, 20993<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="vog.shh.adf@nehoc.nahtE" class="oemail">vog.shh.adf@nehoc.nahtE</a></div></div><div><sup><img src="/corehtml/pmc/pmcgifs/corrauth.gif" alt="corresponding author" /></sup>Corresponding author.</div></div><p class="small">Created: <span itemprop="datePublished">March 19, 2018</span>.</p></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="RetinalProthesis.Abstract" itemprop="description"><h2 id="_RetinalProthesis_Abstract_">Abstract</h2><p>Retina prostheses try to reactivate the residual circuitry in a blind patient&#x02019;s retina to produce a synthetic form of usable vision. Using an array of stimulus electrodes or light-sensitive proteins, the neurons in the degenerate retinal network are activated to elicit a series of light percepts termed &#x0201c;phosphenes&#x0201d;. If the patient&#x02019;s phosphenes act as independent spatial percepts in their visual field, a crude type of form vision may be achieved. This form vision could improve a visually impaired patient&#x02019;s ability to orient to landmarks in foreign visual environments, avoid obstacles, and improve social interactions. While most retinal prostheses in the current clinical trials rely on stimulation by electrical pulses from electrode arrays to locally excite the patient&#x02019;s retinal neurons, several research groups are also trying more biologically compatible stimulation methods termed &#x0201c;optogenetics&#x0201d; which deploy viruses to transduce light-activated stimulator protein genes into select groups of retinal neurons which when expressed modulate their neural activity. Each technology presents different challenges and benefits for biological integration into the blind patient&#x02019;s degenerate retina. Coupling and replacing the lost retinal neurons in the central fovea remains a challenge for both electronic and optogenetic combination therapies. There are many common issues involved in the real-world assessment of patient visual benefit from these novel medical technologies. Given the heterogeneity of RP as a disease, the availability of multiple therapies may be useful for patients, each offering different advantages for their type of retinal degeneration and its degree of progression.</p></div><div id="RetinalProthesis.Introduction"><h2 id="_RetinalProthesis_Introduction_">Introduction</h2><p>Retina prostheses try to reactivate the residual circuitry in a blind patient&#x02019;s retina to produce a synthetic form of usable vision (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F1/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF1" rid-ob="figobRetinalProthesisF1">Figure 1</a>). Using an array of stimulus electrodes or light-sensitive proteins, the neurons in the degenerate retinal network are activated to elicit a series of light percepts termed &#x0201c;phosphenes&#x0201d; (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F2/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF2" rid-ob="figobRetinalProthesisF2">Figure 2</a>). If the patient&#x02019;s phosphenes act as independent spatial percepts in the patient&#x02019;s visual field, a crude type of form vision may be achieved.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF1" co-legend-rid="figlgndRetinalProthesisF1"><a href="/books/NBK493746/figure/RetinalProthesis.F1/?report=objectonly" target="object" title="Figure 1. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF1" rid-ob="figobRetinalProthesisF1"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image003.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image003.jpg" alt="Figure 1. . Patients testing retinal prosthetic implants in human clinical trials." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF1"><h4 id="RetinalProthesis.F1"><a href="/books/NBK493746/figure/RetinalProthesis.F1/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF1">Figure 1. </a></h4><p class="float-caption no_bottom_margin"><i>Patients testing retinal prosthetic implants in human clinical trials.</i> A. Subretinal implant patient using the Alpha IMS in a common object identification task. (Retinal Implant AG, retrieved from https://www.youtube.com/watch?v=WSdmWbItsvU). B. Suprachoroidal <a href="/books/NBK493746/figure/RetinalProthesis.F1/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF1">(more...)</a></p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF2" co-legend-rid="figlgndRetinalProthesisF2"><a href="/books/NBK493746/figure/RetinalProthesis.F2/?report=objectonly" target="object" title="Figure 2. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF2" rid-ob="figobRetinalProthesisF2"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image004.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image004.jpg" alt="Figure 2. . Early examples of electrical phosphenes images resulting from gross stimulation of the eye." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF2"><h4 id="RetinalProthesis.F2"><a href="/books/NBK493746/figure/RetinalProthesis.F2/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF2">Figure 2. </a></h4><p class="float-caption no_bottom_margin"><i>Early examples of electrical phosphenes images resulting from gross stimulation of the eye</i>. Drawings of self-induced phosphenes reported by Purkinje (1823), (1) resulting from direct current stimulation across the eye between conductors in his mouth and <a href="/books/NBK493746/figure/RetinalProthesis.F2/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF2">(more...)</a></p></div></div><p>This form vision could improve a visually impaired patient&#x02019;s ability to orient to landmarks in foreign visual environments, avoid obstacles, and improve social interactions. All prosthetic designs to date rely on the same general image encoding strategy to produce vision. The lost photoreceptor mosaic is replaced with an artificial array of silicon photosensors located in a pair of glasses or a photodiode chip (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F3/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF3" rid-ob="figobRetinalProthesisF3">Figure 3</a>). Photoreceptor adaptation is replaced by an electronic automatic gain control. To simulate the antagonistic center-surround contrast enhancement of the ganglion cell receptive field by horizontal and amacrine cells, a video processor chip scales and edge enhances the viewed image. Neural encoder circuitry then transforms the down-sampled image into a limited set of discrete stimulation levels suitable for activating the retinal network (i.e., modulating spike frequencies for ganglion cells or graded potentials for inner retinal neurons) within its usable dynamic response range. Finally, the stimulator uses this level information to alter the firing patterns of retinal ganglion cells whose action potentials propagate up the optic nerve to generate phosphene patterns in the visual areas of the brain. While most retinal prostheses in the current clinical trials rely on stimulators producing electrical pulses from electrode arrays to locally excite the patient&#x02019;s retinal neurons, several research groups are also trying more biologically compatible stimulation methods termed &#x0201c;optogenetics&#x0201d; which deploy patches of light-activated stimulator proteins expressed in groups of retinal neurons to selectively modulate their neural activity. To be effective, a retinal prosthesis must not only improve visual acuity on eye charts, but also improve visual performance in real-world uncontrolled lighting environment tasks, such as finding doors, navigating streets, socializing, and other activities of daily living. Patient performance test guidelines for these prosthetic devices are currently being formalized by the HOVER consortium to allow better device outcome comparisons (<a class="bk_pop" href="#RetinalProthesis.REF.3">3</a>). For descriptions of earlier retinal prostheses see reviews (<a class="bk_pop" href="#RetinalProthesis.REF.4" data-bk-pop-others="RetinalProthesis.REF.5 RetinalProthesis.REF.6">4-6</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF3" co-legend-rid="figlgndRetinalProthesisF3"><a href="/books/NBK493746/figure/RetinalProthesis.F3/?report=objectonly" target="object" title="Figure 3. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF3" rid-ob="figobRetinalProthesisF3"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image005.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image005.jpg" alt="Figure 3. . Retinal prosthetic image encoding and stimulation schemes." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF3"><h4 id="RetinalProthesis.F3"><a href="/books/NBK493746/figure/RetinalProthesis.F3/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF3">Figure 3. </a></h4><p class="float-caption no_bottom_margin"><i>Retinal prosthetic image encoding and stimulation schemes.</i> The image boxes show the natural retinal mechanism and its prosthetic replacement. An example is shown of the conversion of a 250 x 250 pixel color image of a face for retinal stimulation using <a href="/books/NBK493746/figure/RetinalProthesis.F3/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF3">(more...)</a></p></div></div></div><div id="RetinalProthesis.The_retinal_prosthetic"><h2 id="_RetinalProthesis_The_retinal_prosthetic_">The retinal prosthetic patient</h2><p>A patient group commonly involved in visual prosthetic clinical trials has a severe form of a retinal degeneration termed &#x0201c;retinitis pigmentosa&#x0201d; (RP). With time, the patient&#x02019;s peripheral rod and then cone vision is gradually lost resulting in a narrow central visual field some 3&#x02013;10&#x000b0; in diameter. Upon funduscopic examination, pigmented lesions with the appearance of &#x02018;spicules&#x02019; begin to appear in their peripheral retinae due to RPE cell migration into the retina. Disease progression in RP is highly variable, however a smaller cohort of patients progress to what is termed &#x0201c;late-stage RP&#x0201d;, characterized by nearly complete degeneration of both rod and cone photoreceptors resulting in bare or no light perception (<a class="bk_pop" href="#RetinalProthesis.REF.10" data-bk-pop-others="RetinalProthesis.REF.11 RetinalProthesis.REF.12">10-12</a>). Currently, patients from this late-stage RP group are the main retinal prosthesis users.</p><p>RP is a genetically heterogeneous group of diseases, which include rod-cone dystrophies, Usher&#x02019;s syndrome, and Leber&#x02019;s congenital amaurosis. The number of mutations involved in RP is very large, and a significant number of patients may clinically present with unknown genetic variants (<a class="bk_pop" href="#RetinalProthesis.REF.13">13</a>). The types of RP inheritance can be autosomal dominant, X-linked, recessive, and simplex, from roughly 100 different gene families (<a href="https://sph.uth.edu/retnet/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">RetNet</a>, 3/2017). This heterogeneity presents a severe challenge to personalized gene therapies such as autologous stem cell transplants, CRISPR-Cas9 gene excision technology, or the recently approved biallelic RPE65 retinal dystrophy gene therapy which may require timely defect identification and selective treatment of each affected individual. Studies of gene therapy in dog models of some RP subtypes suggest an early genetic intervention is desirable, as the retinal degeneration may continue even after the gene therapy is delivered (<a class="bk_pop" href="#RetinalProthesis.REF.14">14</a>). In contrast, retinal prosthetic (electronic and optogenetics) therapies are not disease gene mutation dependent, which could potentially benefit a larger prosthetic patient cohort.</p><p>The end stage retina in RP patients also shows significant remodeling and reorganization of the anatomical organization, receptors, and function in the retinal network (<a href="/books/n/webvision/retinal_degeneration/">See Marc et al Webvision entry for more details</a>) (<a class="bk_pop" href="#RetinalProthesis.REF.15" data-bk-pop-others="RetinalProthesis.REF.16">15, 16</a>), which presents a challenge for prosthetic therapies replacing lost photoreceptors and foveal cones (<a class="bk_pop" href="#RetinalProthesis.REF.17" data-bk-pop-others="RetinalProthesis.REF.18 RetinalProthesis.REF.19">17-19</a>). Bipolar cell dendrites retract their processes from the synaptic endings of dying central photoreceptors (<a class="bk_pop" href="#RetinalProthesis.REF.5" data-bk-pop-others="RetinalProthesis.REF.16 RetinalProthesis.REF.19 RetinalProthesis.REF.20 RetinalProthesis.REF.21 RetinalProthesis.REF.22">5, 16, 19-22</a>). Bipolar and amacrine cells in the inner nuclear layer often survive by making abnormal synaptic contacts. RP patients experience on average a 30% decline in their number of retinal ganglion cells, whose axons are critical for sending phosphene-evoked spikes to the brain through the optic nerve (<a class="bk_pop" href="#RetinalProthesis.REF.23">23</a>). Since all retinal prostheses rely on the presence of functioning retinal ganglion cells, prosthetic candidates are often evaluated for ganglion cell function using a corneal stimulation electrode to induce electrically-evoked phosphenes termed the &#x0201c;electrically-evoked response&#x0201d; (EER) (<a class="bk_pop" href="#RetinalProthesis.REF.24" data-bk-pop-others="RetinalProthesis.REF.25 RetinalProthesis.REF.26">24-26</a>). Currently, there are two main classes of retinal prostheses: electrical and optogenetic.</p><p><a href="/books/NBK493746/table/RetinalProthesis.T.retinal_implants_usin/?report=objectonly" target="object" rid-ob="figobRetinalProthesisTretinalimplantsusin">Table I</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figRetinalProthesisTretinalimplantsusin"><a href="/books/NBK493746/table/RetinalProthesis.T.retinal_implants_usin/?report=objectonly" target="object" title="Table I: " class="img_link icnblk_img" rid-ob="figobRetinalProthesisTretinalimplantsusin"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="RetinalProthesis.T.retinal_implants_usin"><a href="/books/NBK493746/table/RetinalProthesis.T.retinal_implants_usin/?report=objectonly" target="object" rid-ob="figobRetinalProthesisTretinalimplantsusin">Table I: </a></h4><p class="float-caption no_bottom_margin">Retinal Implants using electrical stimulation. Devices tested in human clinical trials are shown in bold. See also http://www.eye-tuebingen.de/zrenner/retimplantlist/, and http://www.io.mei.titech.ac.jp/research/retina/index.html </p></div></div></div><div id="RetinalProthesis.Retinal_prostheses_usin"><h2 id="_RetinalProthesis_Retinal_prostheses_usin_">Retinal prostheses using electrical stimulation</h2><p>A large group of retinal prostheses elicit vision in blind patients by using electrical current pulses to depolarize and activate neurons in the retinal network. Retinal implants using electrical stimulation are classified according to the location of their stimulating electrodes in the eye. The prosthesis electrodes can be placed at the inner retinal surface or inner limiting membrane (ILM) (epiretinal), or in the subretinal space (subretinal), or in the sclera behind the choroidal vasculature (termed &#x0201c;suprachoroidal or episcleral&#x0201d;), or on/in the optic nerve (optic nerve) (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F3/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF3" rid-ob="figobRetinalProthesisF3">Figure 3</a>). Each implant electrode location has different advantages and disadvantages for stimulating the retinal circuitry (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F4/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF4" rid-ob="figobRetinalProthesisF4">Figure 4</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF4" co-legend-rid="figlgndRetinalProthesisF4"><a href="/books/NBK493746/figure/RetinalProthesis.F4/?report=objectonly" target="object" title="Figure 4. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF4" rid-ob="figobRetinalProthesisF4"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image006.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image006.jpg" alt="Figure 4. . Locations of electrically-stimulating prosthetic electrode array, and examples of epiretinal prostheses." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF4"><h4 id="RetinalProthesis.F4"><a href="/books/NBK493746/figure/RetinalProthesis.F4/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF4">Figure 4. </a></h4><p class="float-caption no_bottom_margin"><i>Locations of electrically-stimulating prosthetic electrode array, and examples of epiretinal prostheses.</i> A: Section of the human parafoveal retina showing the main stimulus electrode locations and the retinal layers: from(5) (with permission from IOP <a href="/books/NBK493746/figure/RetinalProthesis.F4/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF4">(more...)</a></p></div></div><div id="RetinalProthesis.Epiretinal_Electrode_Pr"><h3>Epiretinal Electrode Prostheses</h3><p>Epiretinal prostheses electrodes are placed on the inner limiting membrane of the retina, to locally stimulate the underlying retinal ganglion cells and inner retinal neurons. Through an incision in the ora serrata, the surgeon implants a flexible stimulus electrode array close to the ILM surface, where it is held in place with one or more retinal tacks. The array is connected by a cable to the stimulator case and coil, which is sutured on the outside of the globe, and held in place by scleral bands. Telemetry coils mounted on the arm of the patient&#x02019;s camera glasses deliver wireless power and data signals to the implant coil. A pocket visual processor/battery unit allows user-selectable viewing modes. The first epiretinal prosthesis in a clinical trial, the Argus I used a modified cochlear implant stimulator and had a 4 x 4 array of 250-500&#x000b5;m diameter platinum (Pt) epiretinal electrodes (<a class="bk_pop" href="#RetinalProthesis.REF.27">27</a>). For visual scale of electrode size at the retina, 1 degree visual angle is about 280&#x000b5;m on the retina. This is the visual field size of the nail of the index finger held at arm&#x02019;s length (<a class="bk_pop" href="#RetinalProthesis.REF.28">28</a>). Other early epiretinal prosthesis designs clinically tested included the Epi-Ret (<a class="bk_pop" href="#RetinalProthesis.REF.29">29</a>) and the IMI retinal implant (<a class="bk_pop" href="#RetinalProthesis.REF.30">30</a>). The &#x0201c;Argus II Retinal Prosthesis System&#x0201d; is currently the only retinal prosthesis legally marketed in the U.S. It was approved by the U.S. Food and Drug Administration (FDA) in 2013 as a humanitarian use device, and was CE marked (EU) in 2011.</p><p>The Argus II uses a 6x10 array of 200&#x000b5;m diameter Pt disc electrodes placed against the inner retinal surface (diagonal visual field of ~20&#x000b0;) (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F2/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF2" rid-ob="figobRetinalProthesisF2">Figure 2, B</a>) (<a class="bk_pop" href="#RetinalProthesis.REF.31" data-bk-pop-others="RetinalProthesis.REF.32">31,32</a>). Most Argus II subjects (~70%), can follow a white line on a black floor, and ~55% were able to find a black door on white wall (<a href="https://www.accessdata.fda.gov/cdrh_docs/pdf11/H110002B.pdf" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">HDE FDA report, 2013</a> ), while a few (10%) are able to slowly read large white letters on black backgrounds (<a class="bk_pop" href="#RetinalProthesis.REF.33">33</a>).</p><p>A newer epiretinal prosthesis, the IRIS II sends event-based camera encoded images of visual scenes to a hexagonal array of 150 stimulus electrodes and in 2017 was implanted in 10 patients in EU clinical trials (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F3/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF3" rid-ob="figobRetinalProthesisF3">Figure 3, C</a>). To avoid the data bottleneck of sending each electrode stimulus level as a radiofrequency (RF) signal through a magnetic coil, the IRIS II uses an IR LED mounted on the patient&#x02019;s glasses to transmit the stimulation signal directly through the patient&#x02019;s lens to a photodiode sensor decoder mounted on the intraocular cable of the implant&#x02019;s stimulus electrode array.</p></div><div id="RetinalProthesis.Performance_of_epiretin"><h3>Performance of epiretinal electrode prostheses</h3><p>The advantage of epiretinal prostheses is that they are minimally invasive to the retina, do not occlude the retinal vasculature, and are easily monitored through the patient&#x02019;s lens using a funduscope or optical coherence tomography (OCT). In animal models, short current pulses (0.1-0.5msec) tend to activate action potentials directly at the ganglion cell. Longer duration pulses may produce delayed spikes due to synaptic transmission from activated bipolar or amacrine cells (<a class="bk_pop" href="#RetinalProthesis.REF.35" data-bk-pop-others="RetinalProthesis.REF.36 RetinalProthesis.REF.37">35-37</a>). Epiretinal electrode stimulation excites both ON- and OFF-center ganglion cells non-selectively. For Argus II users, phosphene thresholds to biphasic 0.45msec pulses averaged 206.5&#x000b5;A (93nC) (<a class="bk_pop" href="#RetinalProthesis.REF.32">32</a>). Argus I subjects reported phosphene percepts from single stimulated electrodes as elliptical blobs (~4 x 10&#x000b0;), or thin (1&#x000b0;) arcs some 7-15&#x000b0; in length (<a class="bk_pop" href="#RetinalProthesis.REF.38" data-bk-pop-others="RetinalProthesis.REF.39">38, 39</a>), and Argus II subjects have reported similar shaped percepts (<a class="bk_pop" href="#RetinalProthesis.REF.40">40</a>). Phosphene brightness perception of Argus II subjects is limited to some 6-10 stimulus current steps (<a class="bk_pop" href="#RetinalProthesis.REF.9">9</a>). The Argus II&#x02019;s camera glasses are fixed to the patient&#x02019;s head but the electrode array is fixed on the retina in the eye. However, the brain maps the phosphenes induced by epiretinal stimulation electrodes based on the patient&#x02019;s eye gaze position, so if the eyes move so do the phosphenes. Argus II subjects also report a perceptual fading of stimulated phosphenes due to a Troxler-like effect, in some cases in under 0.5 sec, so they often use head scans to study an object of interest (<a class="bk_pop" href="#RetinalProthesis.REF.41">41</a>).</p><p>For epiretinal prostheses, close conformation of the stimulus electrode array to the inner retinal surface is necessary to provide uniformly focused stimulation across the electrode array. While stimulus array electrodes near the retinal tack region lie directly against the retina, the proximity of stimulus electrodes of Argus II patients averaged 179.6&#x000b5;m from the retinal surface (<a class="bk_pop" href="#RetinalProthesis.REF.32">32</a>). Incomplete contact could be caused by residual vitreal cortex fibers, posterior hyaloid/epiretinal membranes, patient/gender differences in the retinal curvature, and a lack of conformation to the curved fovea. The closest structures to epiretinal stimulus electrodes are often arcuate nerve fiber bundles under the inner limiting membrane from the axons of peripheral retinal ganglion cells, which course around the fovea, and converge on the optic nerve head (<a class="bk_pop" href="#RetinalProthesis.REF.20" data-bk-pop-others="RetinalProthesis.REF.42 RetinalProthesis.REF.43">20, 42, 43</a>). The thickness of the perifoveal nerve fiber layer bundles average 80 -120&#x000b5;m (<a class="bk_pop" href="#RetinalProthesis.REF.44">44</a>), and the nerve fiber layer near the macula averages 33.9&#x000b5;m (<a class="bk_pop" href="#RetinalProthesis.REF.45">45</a>). Using submillisecond stimulus pulses, subjects often report seeing arc-like phosphene percepts to electrode stimulation (<a class="bk_pop" href="#RetinalProthesis.REF.39" data-bk-pop-others="RetinalProthesis.REF.40 RetinalProthesis.REF.46 RetinalProthesis.REF.47">39, 40, 46, 47</a>). Recent stimulation strategies using long sinusoidal current pulses 10-20msec in duration may reduce this nerve fiber activation which could improve spatial percepts by individual electrodes (<a class="bk_pop" href="#RetinalProthesis.REF.47" data-bk-pop-others="RetinalProthesis.REF.48">47-48</a>).</p></div><div id="RetinalProthesis.Subretinal_electrode_pr"><h3>Subretinal electrode prostheses</h3><p>Subretinal prostheses place electrode arrays in the subretinal space between the pigment epithelium and the degenerate photoreceptor layer (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F5/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF5" rid-ob="figobRetinalProthesisF5">Figure 5</a>). This places the stimulus electrodes in close proximity to activate the remaining bipolar and amacrine cells of the blind patient, which theoretically could excite the remaining retinal circuitry in a more natural fashion than epiretinal prostheses. Early subretinal devices tested included an ambient light powered 5,000 microphotodiode-stimulator chip, which performed poorly in US clinical trials (<a class="bk_pop" href="#RetinalProthesis.REF.51">51</a>). However, actively-powered photodiode-based subretinal stimulator chips have been more successful in clinical trials with some patients able to read large letters (5-10&#x000b0;) (<a class="bk_pop" href="#RetinalProthesis.REF.52" data-bk-pop-others="RetinalProthesis.REF.53">52-53</a>). A second generation 40 &#x000d7; 40 stimulus electrode/photodiode array (1600 electrodes) termed the Alpha AMS was CE marked in the EU in 2016 with improved durability (<a class="bk_pop" href="#RetinalProthesis.REF.53" data-bk-pop-others="RetinalProthesis.REF.54 RetinalProthesis.REF.55">53-55</a>). This polyimide-encapsulated combination photodiode and stimulation electrode based chip (3.2 x 4mm, 70 &#x1d707;m thick) allows subjects to use natural eye scanning with a synthetic visual field of ~13<sup>o</sup> to analyze objects. Active power to the AMS chip is provided by a cable from a coil-powered case sutured onto the skull, similar to a cochlear implant. Patients with functional implants had grating acuities which ranged from 0.1 - 3.33 cycles/degree (<a class="bk_pop" href="#RetinalProthesis.REF.55">55</a>). Several other subretinal stimulation implants are in active development by US/EU groups. Recently, the light-powered photodiode stimulation electrode chip concept has been revived by the Palanker group, using a chip whose pixels contain multiple photodiodes in series with a central-stimulus electrode. When actively illuminated, each pixel generates enough voltage to excite the retinal network, which altered ganglion cell firing in animal models (<a class="bk_pop" href="#RetinalProthesis.REF.50">50</a>). Termed the &#x0201c;PRIMA&#x0201d; implant, a camera/view-screen stimulator goggle generates IR light pulse &#x0201c;images&#x0201d; to power the implant chip array in the blind retina. A clinical trial for the PRIMA is currently started in the EU (11/2017). Other subretinal implant designs include a 256-electrode array by the Rizzo group with a more conventional globe-mounted titanium case/coil and camera glasses (<a class="bk_pop" href="#RetinalProthesis.REF.56">56</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF5" co-legend-rid="figlgndRetinalProthesisF5"><a href="/books/NBK493746/figure/RetinalProthesis.F5/?report=objectonly" target="object" title="Figure 5. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF5" rid-ob="figobRetinalProthesisF5"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image007.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image007.jpg" alt="Figure 5. . Examples of electrically stimulating suprachoroidal and subretinal prosthetic stimulation electrode arrays." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF5"><h4 id="RetinalProthesis.F5"><a href="/books/NBK493746/figure/RetinalProthesis.F5/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF5">Figure 5. </a></h4><p class="float-caption no_bottom_margin"><i>Examples of electrically stimulating suprachoroidal and subretinal prosthetic stimulation electrode arrays.</i> (A, B): Subretinal, and (C) suprachoroidal types of arrays. A: Alpha AMS photodiode/ stimulation electrode chip array and power cable, B: Prima <a href="/books/NBK493746/figure/RetinalProthesis.F5/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF5">(more...)</a></p></div></div></div><div id="RetinalProthesis.Performance_of_subretin"><h3>Performance of subretinal electrode prostheses</h3><p>The advantage of subretinal prostheses is that their electrodes stimulate the remaining neurons of the outer retina such as the bipolar cells. This could provide a more coordinated visual circuitry activation in blind patients, which would propagate through the retinal network. In many subretinal designs, the photosensors are also located directly over the stimulation electrodes. An intraretinal mount allows blind subjects to use natural eye movements to scan objects of interest, and helps prevent the perceptual fading reported for static retinal stimulation (<a class="bk_pop" href="#RetinalProthesis.REF.57">57</a>). However, subretinal chips may also partially block oxygen diffusion from the choriocapillary bed, and some Alpha IMS implant patients exhibit mild leakage of the retinal vessels when studied with fluorescein angiography (<a class="bk_pop" href="#RetinalProthesis.REF.58" data-bk-pop-others="RetinalProthesis.REF.59">58, 59</a>). Subretinal implantation devices need a thin package to fit in the subretinal space, and a durable near-hermetic encapsulation of the implant electronics.</p></div><div id="RetinalProthesis.Suprachoroidal_electrod"><h3>Suprachoroidal electrodes</h3><p>Suprachoroidal (or episcleral) prostheses place their stimulus electrodes in a scleral pocket directly behind the choroidal blood vessels (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F5/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF5" rid-ob="figobRetinalProthesisF5">Figure 5, C</a>). A suprachoroidal electrode array of 49 bullet shaped stimulus electrodes (0.5-mm diameter) was implanted behind the temporal retina in three subjects in Japan (Fujikado) (<a class="bk_pop" href="#RetinalProthesis.REF.49">49</a>). The array was connected to a multiplexing stimulator case (similar in form to a cochlear implant) which was surgically attached to the patient&#x02019;s temporal bone, and controlled by a camera/processor. Using biphasic pulses (0.5msec duration), large phosphenes extending &#x02265;10 degrees visual angle were reported (<a class="bk_pop" href="#RetinalProthesis.REF.60">60</a>). A second suprachoroidal design developed by the Bionic Vision Australia Consortium used a smaller array of 20 Pt electrodes (400-600um diameter), which was implanted in the temporal suprachoroidal space near the fovea in 3 RP subjects. The cable ended in a percutaneous connector for interfacing with an external camera and stimulator (<a class="bk_pop" href="#RetinalProthesis.REF.61">61</a>). Using either anodic or cathodic first biphasic pulses, 2 subjects reported phosphene shapes with average diameters of 8.4 and 9.0 degrees of visual angle, respectively (<a class="bk_pop" href="#RetinalProthesis.REF.62">62</a>).</p><p>The advantages of suprachoroidal prostheses are that minimal surgery is needed for electrode array implantation which causes less risk of retinal detachment, and there is reduced risk of infection, as the vitreal cavity of the eye is never entered. While suprachoroidal electrodes are located behind the retinal pigment epithelium/choroidal vessels, which can spread the stimulus pulse currents at the retina, subjects can perceive simple phosphene shapes, suggesting these devices may have clinical utility for regaining peripheral vision commonly lost in most RP patients. However, strong electrical phosphene stimuli can occasionally evoke a tingling sensation in the trigeminal choroidal nerve (<a class="bk_pop" href="#RetinalProthesis.REF.60">60</a>).</p></div><div id="RetinalProthesis.Optic_nerve_prostheses"><h3>Optic nerve prostheses</h3><p>Historically, a few groups have investigated stimulating the optic nerve, largely with surface electrodes (<a class="bk_pop" href="#RetinalProthesis.REF.63">63</a>), however each electrode appears to activate large numbers of axons, resulting in multiple phosphene percepts in the patient&#x02019;s visual field. The optic nerve innervates the visual thalamus, or lateral geniculate nucleus, which in turn innervates the occipital lobe of the visual cortex. These are also targets for visual prosthesis, particularly relevant to blindness resulting from ganglion-cell loss, or optic nerve injury. These prostheses are reviewed in the companion Webvision chapter <a href="/books/n/webvision/FernandezIVP/">&#x0201c;Introduction to Visual Prosthesis&#x02019; by Eduardo Fernandez and Richard Normann</a>.</p></div></div><div id="RetinalProthesis.Neurotransmitterreleasi"><h2 id="_RetinalProthesis_Neurotransmitterreleasi_">Neurotransmitter-releasing retinal prostheses</h2><p>The amino acid glutamate is the major excitatory neurotransmitter used in synaptic transmission from photoreceptor- to-bipolar-cell, and bipolar-to-ganglion-cell synapses. In theory, glutamate released onto bipolar cells would depolarize OFF-bipolar cells, while simultaneously hyperpolarizing ON-bipolar cells (OBCs). Conceivably, if a glutamate-releasing prosthesis could be placed at the level of the missing photoreceptor endings in RP patients, communication with the remaining bipolar cell dendrites could propagate the visual signal to ganglion cells. Several glutamate-releasing prosthetic designs have recently been proposed; one using optical waveguide uncaging of neurotransmitter near retinal neurons (<a class="bk_pop" href="#RetinalProthesis.REF.65">65</a>)<i>,</i> and another using microfluidic neurotransmitter release through miniature orifices (<a class="bk_pop" href="#RetinalProthesis.REF.66" data-bk-pop-others="RetinalProthesis.REF.67">66,67</a>). The Pepperberg group has proposed stimulation using tethered neurotransmitters (<a class="bk_pop" href="#RetinalProthesis.REF.68">68</a>). However, it is unclear how these devices can attract the dendrites of retinal neurons, and replenish released neurotransmitter.</p></div><div id="RetinalProthesis.Retinal_prostheses_usin_1"><h2 id="_RetinalProthesis_Retinal_prostheses_usin_1_">Retinal prostheses using optogenetic stimulation</h2><p>Optogenetics is a newer prosthetic stimulation technology that relies on viral expression (transduction) of light-sensitive ion channels in blind retinal neurons, enabling subsequent excitation of these neurons by light. This molecular technology has the potential to improve cellular targeting, increase spatial resolution and provide better coupling of the light stimulus to cellular excitation. Optogenetics originates from an 1865 observation by Ferdinand Cohn (<a class="bk_pop" href="#RetinalProthesis.REF.69">69</a>) that certain unicellular algae exhibit phototropism to blue but not red light. Mast in 1916 localized this algal light behavior to an orange eye spot (<a class="bk_pop" href="#RetinalProthesis.REF.70">70</a>) (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F6/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF6" rid-ob="figobRetinalProthesisF6">Figure 6</a>). Suction electrode recordings by Sineshchekov (<a class="bk_pop" href="#RetinalProthesis.REF.71" data-bk-pop-others="RetinalProthesis.REF.72">71, 72</a>) showed that light rapidly activated a current (submsec latency) in the algal membrane, with faster kinetics than rhodopsin. Hegemann and Nagel&#x02019;s group expressed these algal membrane proteins in Xenopus oocytes and found one that acted as a direct light-activated mixed cation channel (<a class="bk_pop" href="#RetinalProthesis.REF.73">73</a>), which they termed &#x0201c;Channelrhodopsin 2&#x0201d; (ChR 2). Boyden and Diesseroth expressed the ChR2 protein in mammalian neurons and found they could evoke action potentials by single pulses of blue light (<a class="bk_pop" href="#RetinalProthesis.REF.74">74</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF6" co-legend-rid="figlgndRetinalProthesisF6"><a href="/books/NBK493746/figure/RetinalProthesis.F6/?report=objectonly" target="object" title="Figure 6. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF6" rid-ob="figobRetinalProthesisF6"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image008.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image008.jpg" alt="Figure 6. . Location of the eyespot opsin pigment (arrow) which induces photaxis in the quadraflagellate freshwater algae Carteria." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF6"><h4 id="RetinalProthesis.F6"><a href="/books/NBK493746/figure/RetinalProthesis.F6/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF6">Figure 6. </a></h4><p class="float-caption no_bottom_margin">Location of the eyespot opsin pigment (arrow) which induces photaxis in the quadraflagellate freshwater algae Carteria. The flagellar attachment can be seen on the right. From the Connecticut College algae taxonomic database (maintained by P. A. Siver). <a href="/books/NBK493746/figure/RetinalProthesis.F6/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF6">(more...)</a></p></div></div><p>Given the large number of genetic mutations involved in RP, a disease-independent gene therapy such as optogenetics could benefit many blind patients. Currently, a variety of optogenetic protein stimulation technologies are currently being evaluated for modulating neurons including light-activated ion channels, ion pumps (ex. bacteriorhodopsin, halorhodopsin), and G-protein-coupled receptors (ex. melanopsin, rhodopsin). Optogenetic proteins all incorporate a vitamin A /retinal analog in the binding pocket of their protein side chains (either all-trans 14-retinal or 13- retinal) (<a class="bk_pop" href="#RetinalProthesis.REF.75">75</a>). Other light-activated proteins also under investigation include: N-ethyl maleimide modified glutamate channels (LiGluR) (<a class="bk_pop" href="#RetinalProthesis.REF.76">76</a>), adenyl/guanyl cyclases (<a class="bk_pop" href="#RetinalProthesis.REF.77">77</a>), phosphodiesterases (<a class="bk_pop" href="#RetinalProthesis.REF.78">78</a>), and IR light-gated G-proteins (ex. snake TrpA1, often termed thermogenetics) (<a class="bk_pop" href="#RetinalProthesis.REF.79">79</a>). However, it is not currently clear whether these mechanisms have the fast kinetics and higher quantal sensitivity needed for activating the retinal network.</p><p>All optogenetic proteins currently in development express the optoprotein solely in the neuronal membrane, which severely reduces the quantal catch in comparison to retinal photoreceptors. For example, a foveal cone photoreceptor contains 1000-1200 photopsin-filled membrane infoldings which amplifies quantal catch some 1000X (<a class="bk_pop" href="#RetinalProthesis.REF.80" data-bk-pop-others="RetinalProthesis.REF.81">80, 81</a>), and a similar number of rhodopsin-filled discs are found in rods (<a class="bk_pop" href="#RetinalProthesis.REF.82">82</a>). Therefore, an intense light source is often required to supply the high irradiances (&#x0003e;10<sup>15-17</sup>quanta/cm<sup>2</sup>/sec) needed to adequately activate ChRs in the membrane to depolarize the retinal ganglion cells to action potential threshold (<a class="bk_pop" href="#RetinalProthesis.REF.83" data-bk-pop-others="RetinalProthesis.REF.84 RetinalProthesis.REF.85">83-85</a>). Because these irradiance levels are rarely encountered in the office environment, most optogenetic prostheses are thought to be combination product technologies that rely on cameras and artificial light sources (i.e. projector glasses) for delivering high flux retinal activation, light adaptation, and scene contrast enhancement (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F2/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF2" rid-ob="figobRetinalProthesisF2">Figure 2</a>). Research is also progressing on the optical stimulus encoder paradigms for delivery of effective light stimuli for the ChR therapy to activate natural retinal network function (Yan and Nirenberg) (<a class="bk_pop" href="#RetinalProthesis.REF.86">86</a>).</p><div id="RetinalProthesis.Lightactivated_depolari"><h3>Light-activated depolarizing channels for optogenetic therapies</h3><p>ChR2 was first virally transduced into blind rd1 mouse and rat inner retinal neurons by Bi et al. in 2006 (<a class="bk_pop" href="#RetinalProthesis.REF.83">83</a>). They used an adeno-associated virus (AAV) vector construct coupled to a powerful nonselective promoter to express the ChR2 GFP tag construct (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F7/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF7" rid-ob="figobRetinalProthesisF7">Figure 7</a>). Injected into the vitreous humor, the AAV2 construct transduced many mouse and rat retinal ganglion cells and some inner retinal neurons. Blue light stimuli caused transduced retinal ganglion cells to depolarize and fire action potentials, which could be monitored as visual evoked potentials (VEPs). Currently, an early feasibility clinical trial of a ChR2 therapy has started in the US as of (8/2015), where it has been recently reported (11/17/2017) that some patients can sense the location of windows in rooms (<a class="bk_pop" href="#RetinalProthesis.REF.87">87</a>). Red-shifted ChRs termed "ReaChR" or "Chrimsons" are also being explored in primate and human retinas for blindness indications, also using a non-selective CAG promoter (<a class="bk_pop" href="#RetinalProthesis.REF.88">88</a>). A 2017 EU clinical trial for retinitis pigmentosa patients used the optogenetic combination product &#x0201c;ChrimsonR&#x0201d; ChR and biomimetic &#x0201c;Visual Interface Stimulating Glasses&#x0201d; (<a href="https://clinicaltrials.gov/show/NCT03326336" title="Study NCT03326336" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=clinical-trial">NCT03326336</a> Clinicaltrials.gov).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF7" co-legend-rid="figlgndRetinalProthesisF7"><a href="/books/NBK493746/figure/RetinalProthesis.F7/?report=objectonly" target="object" title="Figure 7. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF7" rid-ob="figobRetinalProthesisF7"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image009.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image009.jpg" alt="Figure 7. . Optogenetic transduction of retinal neurons by ChR2." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF7"><h4 id="RetinalProthesis.F7"><a href="/books/NBK493746/figure/RetinalProthesis.F7/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF7">Figure 7. </a></h4><p class="float-caption no_bottom_margin"><i>Optogenetic transduction of retinal neurons by ChR2.</i> A: AAV Promoter construct used to transduce retinal neurons using a cytomegalovirus beta actin (CAG) promoter, and a green fluorescent protein tag (GFP). Transduction pattern of the channelrhodopsin <a href="/books/NBK493746/figure/RetinalProthesis.F7/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF7">(more...)</a></p></div></div><p>Like ChR2, OBCs normally produce a sustained depolarization to center light stimulation. In rodents. OBCs can be genetically targeted using the Grm6 promoter (<a class="bk_pop" href="#RetinalProthesis.REF.89">89</a>). Lagali et al. in 2008 used in-vivo electroporation to transfect OBCs with a ChR2 lentiviral gene construct in the eyes of rd1 blind mouse neonates (<a class="bk_pop" href="#RetinalProthesis.REF.84">84</a>). The transfected mice had a measurable optomotor response to moving gratings of up to 0.26 c/degree. Bipolar cell response thresholds as measured by ganglion-cell firing to blue light stimulation were ~3x10<sup>15</sup> quanta/cm<sup>2</sup>/sec. Doroudchi et al in 2011, used AAV Grm6 ChR2 constructs to transduce OBCs in a series of blind mouse lines (rd1, rd10, rd16) (<a class="bk_pop" href="#RetinalProthesis.REF.85">85</a>). They showed that ChR2 expression was stable for up to one year, and found ganglion cell firing thresholds to blue light ~4 &#x000d7; 10<sup>16</sup> quanta/cm<sup>2</sup>/sec. Transduced blind mice were able to discriminate escape platforms illuminated with blue light in a Morris water maze test (<a class="bk_pop" href="#RetinalProthesis.REF.90">90</a>).</p></div><div id="RetinalProthesis.Lightactivated_hyperpol"><h3>Light-activated hyperpolarizing channels for optogenetic therapies</h3><p>Optogenetic hyperpolarizing mechansims are also useful for mimicking the light response of photoreceptors and OFF-center bipolar cells, which normally hyperpolarize to light. Several pumps and channels that produce hyperpolarization have been discovered: 1. Halorhodopsin, a yellow-light activated chloride pump hyperpolarizes cells; 2. Light-activation of proton pumps such as Chief or bacteriorhodopsin cause acid-sensing ion channels to open and hyperpolarize cells (<a class="bk_pop" href="#RetinalProthesis.REF.91" data-bk-pop-others="RetinalProthesis.REF.92 RetinalProthesis.REF.93">91-93</a>); 3. A family of true light-gated chloride channels has recently been discovered, with increased light sensitivity and a green shifted activation spectrum (GtACR1) (<a class="bk_pop" href="#RetinalProthesis.REF.94">94</a>); and 4. The chloride ChR, IC++ has been developed (<a class="bk_pop" href="#RetinalProthesis.REF.95">95</a>). The Pan group transduced inner retinal neurons in rd1 blind mice with a viral combination construct of halorhodopsin and ChR2 for a dual blue light excitatory and yellow light inhibitory ion channel control of these neurons (<a class="bk_pop" href="#RetinalProthesis.REF.96">96</a>).</p><p>Degenerate cones have been known to survive in some blind mouse strains. Because halorhodopsin activation hyperpolarizes neurons, similar to the light-evoked hyperpolarizations of photoreceptors, a second application for halorhodopsin was to restore the light response of degenerate cone photoreceptors. (<a href="/books/n/webvision/retinal_degeneration/">See also Marc et al chapter in Webvision</a>). Busskamp et al, in 2010 used a halorhodopsin EYFP construct and cone-specific promoters to transduce expression in two strains of blind mice (<a class="bk_pop" href="#RetinalProthesis.REF.97">97</a>). Yellow-light stimuli caused the transduced cones to hyperpolarize and synaptically activate the retinal network. Both ON- and OFF-center retinal-ganglion-cell light responses could be recorded in halorhodopsin-transduced cone retinas at thresholds of 10<sup>14</sup>quanta/cm<sup>2</sup>/sec. Improvements in cone-specific promoter transduction for primate and human foveal cones have recently been reported (<a class="bk_pop" href="#RetinalProthesis.REF.98">98</a>).</p></div><div id="RetinalProthesis.Lightactivated_Gprotein"><h3>Light-activated G-protein gated mechanisms for optogenetic therapies</h3><p>The use of G-protein gated opsins for retinal prostheses, such as rod rhodopsin or melanopsin, employ energetically favorable biochemical amplification mechanisms which significantly increase light sensitivity compared to direct light-gated ion channel ChR counterparts. Early work by Kim et al in 2005 showed light activation of G-protein chimaeras of rhodopsin could be coupled to adrenergic receptors (<a class="bk_pop" href="#RetinalProthesis.REF.99">99</a>), while Qiu et al. in 2005 showed transfection of melanopsin caused light to depolarize kidney cells in culture (<a class="bk_pop" href="#RetinalProthesis.REF.100">100</a>). The first retinal application by Lin et al. 2008 used an AAV cytomegalovirus (CMV) promotor-melanopsin construct to transduce retinal ganglion cells in rd1 blind mice (<a class="bk_pop" href="#RetinalProthesis.REF.101">101</a>). The transduced blind mice were now able to detect light in a 2-channel water maze test.</p><p>Currently the ON-center bipolar cell (OBC) is an active target area for optogenetic, G-protein-gated, blindness therapies, due to the abundance of ON-center parafoveal rod and foveal cone bipolar cells, and the dependence of the ON-response on G-protein activation of TrpM1 cation channels (<a class="bk_pop" href="#RetinalProthesis.REF.102">102</a>). Recently, several groups found that transduction of melanopsin (G<sub>q</sub> G-protein) or rhodopsin (G<sub>t</sub> G-protein) in OBCs could promiscuously activate the mGluR6 metabotropic receptor (G<sub>q</sub>) G-protein. This foreign mechanism in the OBCs reverses the closure of the normally open TrpM1 excitatory channels to light, and causes the TrpM1 channel in the OBC to have a light-response which operates in reverse from normal. Van Wyk et al, in 2015, used an AAV-Grm6 melanopsin-mGluR6 chimera construct termed &#x0201c;Opto-mGluR6&#x0201d; to activate the TrpM1-gated excitatory ion channels in OBCs in Rd1 blind mice (<a class="bk_pop" href="#RetinalProthesis.REF.103">103</a>). In Opto-mGluR6 Rd1 blind mice, light thresholds for ganglion cell activation were ~1000X lower than in their Rd1 ChR2 transduced littermates, and both light-ON- and OFF- retinal network responses appeared (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F8/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF8" rid-ob="figobRetinalProthesisF8">Figure 8</a>). A similar increase in light sensitivity in Rd1 blind mice was found using an AAV2-Grm6 rhodopsin construct by Gaub et al in 2015, and by Cehajic-Kapetanovic et al in 2015, who showed a behavioral increase in running distance when presented with a swooping owl movie (104-105).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF8" co-legend-rid="figlgndRetinalProthesisF8"><a href="/books/NBK493746/figure/RetinalProthesis.F8/?report=objectonly" target="object" title="Figure 8. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF8" rid-ob="figobRetinalProthesisF8"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image010.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image010.jpg" alt="Figure 8. . Transduction pattern and light sensitivity of a melanopsin chimaera AAV construct targeted to ON-bipolar cells in a blind mouse model." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF8"><h4 id="RetinalProthesis.F8"><a href="/books/NBK493746/figure/RetinalProthesis.F8/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF8">Figure 8. </a></h4><p class="float-caption no_bottom_margin"><i>Transduction pattern and light sensitivity of a melanopsin chimaera AAV construct targeted to ON-bipolar cells in a blind mouse model.</i> A: Opto- Grm6 AAV transduction pattern for rod bipolar cells in an rd1 mouse retina. Anti-choline acetyltransferase <a href="/books/NBK493746/figure/RetinalProthesis.F8/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF8">(more...)</a></p></div></div></div><div id="RetinalProthesis.Performance_of_the_opto"><h3>Performance of the optogenetic therapies</h3><p>Optogenetic stimulation therapies have the advantage over electrical stimulation of being able to deliver photosensitive stimulation at near cellular resolution to a large retinal area, and to better spatially couple to the blind patient&#x02019;s neurons in a retinal prosthesis. However, the injection of viral capsids into the central retinae of primates has revealed some unforeseen issues with the transduction of retinal neurons, particularly in the fovea, which is critically used for normal vision in humans. Foveal bipolar and ganglion cell bodies are displaced ~2&#x000b0; from cone photoreceptor inputs in the center (<a class="bk_pop" href="#RetinalProthesis.REF.5" data-bk-pop-others="RetinalProthesis.REF.21">5, 21</a>). In the blind patient, viral transduction of ChRs into these surrounding bipolar and ganglion cell bodies when activated by light may elicit phosphenes that seem to originate from their central cones.</p><p>Finally, the primate retina has a series of membrane barriers that currently impede viral transduction, particularly to intravitreal injection of viral construct, which is the preferred method in patients with advanced RP. Transduction of some AAV capsid constructs may be reduced in efficacy in primates when compared to mouse models (<a class="bk_pop" href="#RetinalProthesis.REF.106" data-bk-pop-others="RetinalProthesis.REF.107">106,107</a>). There may also be a modest host immune response to the viral capsid and or fluorescent protein tags, (<a class="bk_pop" href="#RetinalProthesis.REF.108" data-bk-pop-others="RetinalProthesis.REF.109">108, 109</a>). The ILM/M&#x000fc;ller glia end feet play a complex role in viral transduction, first by preventing diffusion of AAV viral proteins into the retina, but also by providing binding sites for viral attachment for retinal entry. In primates, the ILM appears to be thinnest near the perifovea and in the retinal periphery (<a class="bk_pop" href="#RetinalProthesis.REF.110">110</a>). The ILM is a basement membrane composed of several extracellular matrix proteins (laminin, agrin, perlecan, nidogen, collagen), nucleases and several heparin sulfate proteoglycans (<a class="bk_pop" href="#RetinalProthesis.REF.111" data-bk-pop-others="RetinalProthesis.REF.112">111,112</a>).</p><p>Yin et al in 2011 and 2014, and Ivanova et al in 2010, both intravitreally injected AAV2-gene-GFP constructs with actin-based promoters in primate eyes and found that viral transduction of ganglion cell bodies was largely limited to a thin ring-like zone centered 2 degrees around the fovea where the ILM was thinnest, and also to a few isolated spots in peripheral retina (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F9/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF9" rid-ob="figobRetinalProthesisF9">Figure 9</a>) (<a class="bk_pop" href="#RetinalProthesis.REF.21" data-bk-pop-others="RetinalProthesis.REF.106 RetinalProthesis.REF.113 RetinalProthesis.REF.114">21, 106, 113, 114</a>). A similar ring-shaped foveal transduction pattern has also been reported with intravitreal injected constructs targeting bipolar cells in primates (<a class="bk_pop" href="#RetinalProthesis.REF.107">107</a>). To reduce the ILM AAV diffusion barriers seen in old world primates eyes, injections of vitreolytic enzymes, vitrectomies, with or without inner limiting membrane peels have been proposed (<a class="bk_pop" href="#RetinalProthesis.REF.113" data-bk-pop-others="RetinalProthesis.REF.115 RetinalProthesis.REF.116">113, 115,116</a>); however, these treatments may also reduce AAV construct attachment. This has caused others to advocate limited subretinal injections (&#x0003c;100&#x000b5;L) of AAV constructs (<a class="bk_pop" href="#RetinalProthesis.REF.117" data-bk-pop-others="RetinalProthesis.REF.118">117, 118</a>); however, these injections these may not be suitable for RP patients with advanced retinal disease (<a class="bk_pop" href="#RetinalProthesis.REF.106">106</a>). However even effective optogenetic transduction of the parafoveal retina could provide significant visual benefit in severely blind patients.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF9" co-legend-rid="figlgndRetinalProthesisF9"><a href="/books/NBK493746/figure/RetinalProthesis.F9/?report=objectonly" target="object" title="Figure 9. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF9" rid-ob="figobRetinalProthesisF9"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image011.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image011.jpg" alt="Figure 9. . Viral transduction pattern by an intravitreal injection of an AAV capsid in the primate eye." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF9"><h4 id="RetinalProthesis.F9"><a href="/books/NBK493746/figure/RetinalProthesis.F9/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF9">Figure 9. </a></h4><p class="float-caption no_bottom_margin"><i>Viral transduction pattern by an intravitreal injection of an AAV capsid in the primate eye.</i> A. Fluorescein angiogram showing retinal location of fluorescent image in B. Transduction of the AAV2/2 hCx &#x02013;GFP labeled construct occurs in inner retinal <a href="/books/NBK493746/figure/RetinalProthesis.F9/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF9">(more...)</a></p></div></div><p>Gene expression patterns in a degenerate RP retina may differ from normal, resulting in ineffective AAV therapies. RP patients experience long periods of gradual visual loss that may take many years, unlike most blind rodent models. (<a href="/books/n/webvision/retinal_degeneration/">See Webvision chapter on retinal degeneration)</a>. Although RP has traditionally been represented as a disease that causes loss of photoreceptors, these retinal degenerations also induce retinal remodeling and synaptic reorganization of many inner retinal neurons (<a class="bk_pop" href="#RetinalProthesis.REF.119" data-bk-pop-others="RetinalProthesis.REF.120">119, 120</a>). Inactive gene DNA may be methylated (<a class="bk_pop" href="#RetinalProthesis.REF.121" data-bk-pop-others="RetinalProthesis.REF.122 RetinalProthesis.REF.123">121-123</a>), which in the degenerate retina may produce gene inactivation/degradation in cells; reducing AAV promoter transduction efficiency, or cause off-target cellular gene expression (<a class="bk_pop" href="#RetinalProthesis.REF.103" data-bk-pop-others="RetinalProthesis.REF.124">103, 124</a>). This is particularly true of AAV therapies for OBCs, where in cultured human retinal explants, transduction by an 4XGrm6 promoter construct was not OBC specific (<a class="bk_pop" href="#RetinalProthesis.REF.124">124</a>). More specific OBC promoters may be required for transducing human retina (<a class="bk_pop" href="#RetinalProthesis.REF.107">107</a>). How these promoter expression patterns change in OBCs in degenerate human RP patients is currently unknown, and may only be revealed by clinical trials.</p><p><a href="/books/NBK493746/table/RetinalProthesis.T.retinal_implants_usin_1/?report=objectonly" target="object" rid-ob="figobRetinalProthesisTretinalimplantsusin1">Table II</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figRetinalProthesisTretinalimplantsusin1"><a href="/books/NBK493746/table/RetinalProthesis.T.retinal_implants_usin_1/?report=objectonly" target="object" title="Table II: " class="img_link icnblk_img" rid-ob="figobRetinalProthesisTretinalimplantsusin1"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="RetinalProthesis.T.retinal_implants_usin_1"><a href="/books/NBK493746/table/RetinalProthesis.T.retinal_implants_usin_1/?report=objectonly" target="object" rid-ob="figobRetinalProthesisTretinalimplantsusin1">Table II: </a></h4><p class="float-caption no_bottom_margin">Retinal Implants using optogenetic combination therapies. Products tested in human clinical trials are shown in bold. </p></div></div></div></div><div id="RetinalProthesis.Retinal_prosthetic_stim"><h2 id="_RetinalProthesis_Retinal_prosthetic_stim_">Retinal prosthetic stimulation safety</h2><p>Patients using retinal prostheses in daily life expose their retinal tissue to chronic stimulation conditions. There are limits to the amount of electrical current and light that can be safely tolerated by the retinal tissue. A variety of methods have been developed to assess the retina under stimulation electrodes and to study retinal function by using funduscopes, fluorescence, optically transparent stimulus electrodes and/or optical coherence tomography (<a class="bk_pop" href="#RetinalProthesis.REF.125" data-bk-pop-others="RetinalProthesis.REF.126 RetinalProthesis.REF.127">125-127</a>). Excessive electrical stimulation can cause electroporation of retinal neurons and glia cells. Overstimulation near the epiretinal surface can cause swelling of the M&#x000fc;ller cell end feet lining the ILM, and ganglion cell death (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.vid10/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisvid10" rid-ob="figobRetinalProthesisvid10">Video 10</a>, <a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F10/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF10" rid-ob="figobRetinalProthesisF10">Figure 10</a>) (<a class="bk_pop" href="#RetinalProthesis.REF.125">125</a>). However, chronic electrical stimulation damage limits (Hrs.) for the retina are less well defined, may be location specific, and sensitive to tissue proximity (<a class="bk_pop" href="#RetinalProthesis.REF.126" data-bk-pop-others="RetinalProthesis.REF.127 RetinalProthesis.REF.128 RetinalProthesis.REF.129">126-129</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisvid10" co-legend-rid="figlgndRetinalProthesisvid10"><a href="/books/NBK493746/figure/RetinalProthesis.vid10/?report=objectonly" target="object" title="Video 10. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisvid10" rid-ob="figobRetinalProthesisvid10"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image002.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image002.jpg" alt="Video 10. . Example of the use of optical coherence tomography (OCT) to image retinal damage under optically transparent stimulation electrodes in real time." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisvid10"><h4 id="RetinalProthesis.vid10"><a href="/books/NBK493746/figure/RetinalProthesis.vid10/?report=objectonly" target="object" rid-ob="figobRetinalProthesisvid10">Video 10. </a></h4><p class="float-caption no_bottom_margin"><i>Example of the use of optical coherence tomography (OCT) to image retinal damage under optically transparent stimulation electrodes in real time.</i> OCT time lapse movie of a 5-minute period of retinal overstimulation (50Hz 749&#x000b5;C/cm2/ph) using a <a href="/books/NBK493746/figure/RetinalProthesis.vid10/?report=objectonly" target="object" rid-ob="figobRetinalProthesisvid10">(more...)</a></p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figRetinalProthesisF10" co-legend-rid="figlgndRetinalProthesisF10"><a href="/books/NBK493746/figure/RetinalProthesis.F10/?report=objectonly" target="object" title="Figure 10. " class="img_link icnblk_img figpopup" rid-figpopup="figRetinalProthesisF10" rid-ob="figobRetinalProthesisF10"><img class="small-thumb" src="/books/NBK493746/bin/RetinalProthesis-Image012.gif" src-large="/books/NBK493746/bin/RetinalProthesis-Image012.jpg" alt="Figure 10. . Example of the use of optical coherence tomography (OCT) to image retinal damage under optically transparent stimulation electrodes in real time." /></a><div class="icnblk_cntnt" id="figlgndRetinalProthesisF10"><h4 id="RetinalProthesis.F10"><a href="/books/NBK493746/figure/RetinalProthesis.F10/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF10">Figure 10. </a></h4><p class="float-caption no_bottom_margin"><i>Example of the use of optical coherence tomography (OCT) to image retinal damage under optically transparent stimulation electrodes in real time.</i> Above. OCT time lapse movie of a 5 min period of retinal overstimulation (50Hz 749&#x000b5;C/cm<sup>2</sup>/ph) using <a href="/books/NBK493746/figure/RetinalProthesis.F10/?report=objectonly" target="object" rid-ob="figobRetinalProthesisF10">(more...)</a></p></div></div><p>For prostheses using light stimulation to excite retinal neurons, standards exist to limit the retinal exposure of normally sighted patients to excessive UV and blue light. RP patients often complain of being sensitive to excess light and glare, while the retinae of RP animal models are very sensitive to light injury by long funduscopic illumination (<a class="bk_pop" href="#RetinalProthesis.REF.130">130</a>). Many earlier ChR-based optogenetic therapies rely on high retinal fluxes of short wavelength light by the camera-projector glasses to provide adequate ChR channel activation of the transduced retinal neurons. However, newer ChRs and G-protein opsins have been developed with sensitivities shifted to longer wavelengths and with higher light sensitivity (<a class="figpopup" href="/books/NBK493746/figure/RetinalProthesis.F8/?report=objectonly" target="object" rid-figpopup="figRetinalProthesisF8" rid-ob="figobRetinalProthesisF8">Figure 8, C</a>).</p><p>Light can damage the retinal layers both thermally and photochemically. Standards for safe levels of illumination of healthy retina at different wavelengths were based on primate eye exposure data by Ham (<a class="bk_pop" href="#RetinalProthesis.REF.131" data-bk-pop-others="RetinalProthesis.REF.132">131, 132</a>), and earlier studies by Noell in rats (<a class="bk_pop" href="#RetinalProthesis.REF.133">133</a>). These studies and others have been adapted into a series of international standards (ANSI Z80.36, ISO15004, ISO 60825 , Rp27.1) among others for ophthalmic devices. Most of these light safety studies relied on photoreceptor-induced light injury as the damage endpoint (<a class="bk_pop" href="#RetinalProthesis.REF.134" data-bk-pop-others="RetinalProthesis.REF.135">134,135</a>). It is currently unresolved how much light can be safely tolerated by the remaining retinal neurons in end-stage RP animal models and patients, with their degenerate photoreceptors and pigment epithelium cells.</p></div><div id="RetinalProthesis.Conclusions"><h2 id="_RetinalProthesis_Conclusions_">Conclusions</h2><p>There are exciting new developments in retinal prosthetic therapies that use electrical and optogenetic stimulation that have the potential to provide better form vision and improve the quality of life for the severely visually impaired. Each technology presents different challenges and benefits for biological integration into the blind patient&#x02019;s degenerate retina. Coupling and replacing the lost retinal neurons in the central fovea remains a challenge for both electronic and optogenetic combination therapies. There are many common issues involved in the real-world assessment of patient visual benefit from these novel medical technologies. Given the heterogeneity of RP as a disease, the availability of multiple therapies may be useful for patients, each offering different advantages for their type of retinal degeneration and its degree of progression.</p></div><div id="RetinalProthesis.Disclaimer"><h2 id="_RetinalProthesis_Disclaimer_">Disclaimer</h2><p>The opinions and/or conclusions expressed herein are solely those of the author and in no way imply a policy or position of the Food and Drug Administration. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.</p></div><div id="RetinalProthesis.Acknowledgments"><h2 id="_RetinalProthesis_Acknowledgments_">Acknowledgments</h2><p>We thank Bruce Drum, Sunder Rajan, and Ksenia Blinova for critical manuscript comments.</p></div><div id="RetinalProthesis.About_the_author"><h2 id="_RetinalProthesis_About_the_author_">About the author</h2><p>
<span class="graphic"><img src="/books/NBK493746/bin/RetinalProthesis-Image001.jpg" alt="Image RetinalProthesis-Image001.jpg" /></span>
</p><p>Dr. Cohen received his Ph.D. in the retina lab of Dr. Peter Sterling at the University of Pennsylvania in 1987. After postdoctoral training in physiology at the University of Minnesota with Dr. Robert Miller, and at the UCLA Jules Stein Eye Institute with Dr. Gordon Fain, he joined the faculty of the Department. of Ophthalmology at Yale University Medical School as a retinal neurophysiologist in 1992. In 2000, he was a visiting professor in the Department of Molecular and Cellular Biology at Harvard University with John Dowling. Since 2003, he is a research scientist at the Office of Science and Engineering Labs at the Center for Devices and Radiological Health at FDA. His research interests include devising new methods to evaluate the safety and effectiveness of visual neurostimulation devices and improving the detection of neurotoxic drugs.</p></div><div id="RetinalProthesis.References"><h2 id="_RetinalProthesis_References_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.1">Purkinje, J., <em>Beobachtungen und Versuche zur Physiologie der Sinne, Volume 1</em>. Vol. 1. 1823, Prague: Calve.</div></dd><dt>2.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.2">Volta A. On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds. <span><span class="ref-journal">Philosophical Transactions of the Royal Society of London. </span>1800;<span class="ref-vol">90</span>:403431.</span></div></dd><dt>3.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.3">Rizzo J.F. III, Ayton L.N. Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force. <span><span class="ref-journal">Journal of neural engineering. </span>2014;<span class="ref-vol">11</span>(2):020301.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/24556526" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24556526</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.4">Margalit E., et al. Retinal prosthesis for the blind. <span><span class="ref-journal">Survey of ophthalmology. </span>2002;<span class="ref-vol">47</span>(4):335356.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12161210" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12161210</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.5">Cohen E.D. Prosthetic interfaces with the visual system: biological issues. <span><span class="ref-journal">Journal of neural engineering. </span>2007;<span class="ref-vol">4</span>(2):R14.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17409473" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17409473</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.6">Winter J.O., Cogan S.F., Rizzo J.F. Retinal prostheses: current challenges and future outlook. <span><span class="ref-journal">Journal of Biomaterials Science, Polymer Edition. </span>2007;<span class="ref-vol">18</span>(8):10311055.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17705997" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17705997</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.7">Weiland J.D., Cho A.K., Humayun M.S. Retinal prostheses: current clinical results and future needs. <span><span class="ref-journal">Ophthalmology. </span>2011;<span class="ref-vol">118</span>(11):22272237.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22047893" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22047893</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.8">Sobel, I., <em>Camera models and machine perception</em>. 1970, Stanford Univ Calif Dept of Computer Science.</div></dd><dt>9.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.9">Greenwald S.H., et al. Brightness as a function of current amplitude in human retinal electrical stimulation. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2009;<span class="ref-vol">50</span>(11):50175025.</span> [<a href="/pmc/articles/PMC2798064/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2798064</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19608533" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19608533</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.10">Grover S., Fishman G.A., Brown J. Patterns of visual field progression in patients with retinitis pigmentosa. <span><span class="ref-journal">Ophthalmology. </span>1998;<span class="ref-vol">105</span>(6):10691075.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9627658" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9627658</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.11">Fishman G.A. Retinitis pigmentosa: visual loss. <span><span class="ref-journal">Archives of Ophthalmology. </span>1978;<span class="ref-vol">96</span>(7):11851188.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/307377" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 307377</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.12">Berson E.L., et al. Disease progression in patients with dominant retinitis pigmentosa and rhodopsin mutations. <span><span class="ref-journal">Investigative Ophthalmology &#x00026; Visual Science. </span>2002;<span class="ref-vol">43</span>(9):30273036.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12202526" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12202526</span></a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.13">Daiger S., Sullivan L., Bowne S. Genes and mutations causing retinitis pigmentosa. <span><span class="ref-journal">Clinical genetics. </span>2013;<span class="ref-vol">84</span>(2):132141.</span> [<a href="/pmc/articles/PMC3856531/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3856531</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23701314" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23701314</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.14">Cideciyan A.V., et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>2013;<span class="ref-vol">110</span>(6):E51725.</span> [<a href="/pmc/articles/PMC3568385/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3568385</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23341635" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23341635</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.15">Stasheff S.F. Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. <span><span class="ref-journal">Journal of neurophysiology. </span>2008</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18216234" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18216234</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.16">Strettoi E., Pignatelli V. Modifications of retinal neurons in a mouse model of retinitis pigmentosa. <span><span class="ref-journal">Proceedings of the National Academy of Sciences. </span>2000;<span class="ref-vol">97</span>(20):1102011025.</span> [<a href="/pmc/articles/PMC27141/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC27141</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10995468" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10995468</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.17">Marc R.E., Jones B.W. Retinal remodeling in inherited photoreceptor degenerations. <span><span class="ref-journal">Molecular neurobiology. </span>2003;<span class="ref-vol">28</span>(2):139147.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14576452" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14576452</span></a>]</div></dd><dt>18.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.18">Jones B.W., et al. Retinal remodeling triggered by photoreceptor degenerations. <span><span class="ref-journal">Journal of Comparative Neurology. </span>2003;<span class="ref-vol">464</span>(1):116.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12866125" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12866125</span></a>]</div></dd><dt>19.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.19">Jones B., et al. Retinal remodeling in human retinitis pigmentosa. <span><span class="ref-journal">Experimental eye research. </span>2016;<span class="ref-vol">150</span>:149165.</span> [<a href="/pmc/articles/PMC5031517/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5031517</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27020758" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27020758</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.20">Sj&#x000f6;strand J., et al. Morphometric study of the displacement of retinal ganglion cells subserving cones within the human fovea. <span><span class="ref-journal">Graefe's archive for clinical and experimental ophthalmology. </span>1999;<span class="ref-vol">237</span>(12):10141023.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10654171" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10654171</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.21">Yin L., et al. Imaging light responses of foveal ganglion cells in the living macaque eye. <span><span class="ref-journal">J Neurosci. </span>2014;<span class="ref-vol">34</span>(19):6596605.</span> [<a href="/pmc/articles/PMC4012315/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4012315</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24806684" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24806684</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.22">Yang J., et al. Destructive Changes in the Neuronal Structure of the FVB/N Mouse Retina. <span><span class="ref-journal">PLoS One. </span>2015;<span class="ref-vol">10</span>(6):e0129719.</span> [<a href="/pmc/articles/PMC4475023/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4475023</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26091175" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26091175</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.23">Santos A., et al. Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. <span><span class="ref-journal">Archives of Ophthalmology. </span>1997;<span class="ref-vol">115</span>(4):511515.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9109761" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9109761</span></a>]</div></dd><dt>24.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.24">Potts A.M., Inoue J. The electrically evoked response (EER) of the visual system II. Effect of adaptation and retinitis pigmentosa. <span><span class="ref-journal">Investigative Ophthalmology &#x00026; Visual Science. </span>1969;<span class="ref-vol">8</span>(6):605612.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/5359577" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 5359577</span></a>]</div></dd><dt>25.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.25">Yanai D., et al. The value of preoperative tests in the selection of blind patients for a permanent microelectronic implant. <span><span class="ref-journal">Transactions of the American Ophthalmological Society. </span>2003;<span class="ref-vol">101</span>:223.</span> [<a href="/pmc/articles/PMC1358992/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1358992</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14971581" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14971581</span></a>]</div></dd><dt>26.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.26">Naycheva L., et al. Phosphene Thresholds Elicited by Transcorneal Electrical Stimulation in Healthy Subjects and Patients with Retinal DiseasesEPTs Elicited by Transcorneal Electrical Stimulation. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2012;<span class="ref-vol">53</span>(12):74407448.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/23049087" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23049087</span></a>]</div></dd><dt>27.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.27">Humayun M.S., et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. <span><span class="ref-journal">Vision research. </span>2003;<span class="ref-vol">43</span>(24):25732581.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/13129543" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 13129543</span></a>]</div></dd><dt>28.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.28">O'Shea R.P. Thumb's rule tested: visual angle of thumb's width is about 2 deg. <span><span class="ref-journal">Perception. </span>1991;<span class="ref-vol">20</span>(3):4158.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1762884" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1762884</span></a>]</div></dd><dt>29.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.29">Roessler G., et al. Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2009;<span class="ref-vol">50</span>(6):30033008.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19420330" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19420330</span></a>]</div></dd><dt>30.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.30">Keser&#x000fc; M., et al. Acute electrical stimulation of the human retina with an epiretinal electrode array. <span><span class="ref-journal">Acta ophthalmologica. </span>2012;<span class="ref-vol">90</span>(1)</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22067614" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22067614</span></a>]</div></dd><dt>31.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.31">Humayun M.S., et al. Interim results from the international trial of Second Sight's visual prosthesis. <span><span class="ref-journal">Ophthalmology. </span>2012;<span class="ref-vol">119</span>(4):77988.</span> [<a href="/pmc/articles/PMC3319859/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3319859</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22244176" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22244176</span></a>]</div></dd><dt>32.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.32">Ahuja A., et al. Factors affecting perceptual threshold in Argus II retinal prosthesis subjects. <span><span class="ref-journal">Translational vision science &#x00026; technology. </span>2013;<span class="ref-vol">2</span>(4):11.</span> [<a href="/pmc/articles/PMC3763895/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3763895</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24049718" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24049718</span></a>]</div></dd><dt>33.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.33">Da Cruz, L., et al., <em>The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss.</em> British Journal of Ophthalmology, 2013: p. bjophthalmol-2012-301525. [<a href="/pmc/articles/PMC3632967/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3632967</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23426738" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23426738</span></a>]</div></dd><dt>34.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.34">Jensen R.J., Ziv O.R., Rizzo J.F. Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode. <span><span class="ref-journal">Journal of neural engineering. </span>2005;<span class="ref-vol">2</span>(1):S16.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15876650" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15876650</span></a>]</div></dd><dt>35.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.35">Jensen R.J., Ziv O.R., Rizzo J.F. Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2005;<span class="ref-vol">46</span>(4):14861496.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15790920" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15790920</span></a>]</div></dd><dt>36.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.36">Margalit E., Thoreson W.B. Inner retinal mechanisms engaged by retinal electrical stimulation. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2006;<span class="ref-vol">47</span>(6):26062612.</span> [<a href="/pmc/articles/PMC2474546/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2474546</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16723477" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16723477</span></a>]</div></dd><dt>37.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.37">Fried S.I., Hsueh H.-A., Werblin F.S. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. <span><span class="ref-journal">Journal of neurophysiology. </span>2006;<span class="ref-vol">95</span>(2):970978.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16236780" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16236780</span></a>]</div></dd><dt>38.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.38">Nanduri D., et al. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. <span><span class="ref-journal">Investigative Ophthalmology &#x00026; Visual Science. </span>2012;<span class="ref-vol">53</span>(1):205214.</span> [<a href="/pmc/articles/PMC3292357/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3292357</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22110084" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22110084</span></a>]</div></dd><dt>39.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.39">Nanduri, D., et al. <em>Retinal prosthesis phosphene shape analysis</em>. in <em>Engineering in Medicine and Biology Society</em><em>,</em> 2008<em>. </em><em>EMBS 2008. 30th Annual International Conference of the IEEE</em>. 2008. IEEE. [<a href="https://pubmed.ncbi.nlm.nih.gov/19163027" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19163027</span></a>]</div></dd><dt>40.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.40">Luo Y.H., et al. Long-term repeatability and reproducibility of phosphene characteristics in chronically implanted Argus II retinal prosthesis subjects. <span><span class="ref-journal">American journal of ophthalmology. </span>2016;<span class="ref-vol">170</span>:100109.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/27491695" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27491695</span></a>]</div></dd><dt>41.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.41">Fornos A.P., et al. Temporal properties of visual perception on electrical stimulation of the retina. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2012;<span class="ref-vol">53</span>(6):27202731.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22447863" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22447863</span></a>]</div></dd><dt>42.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.42">Vrabec F. The temporal raphe of the human retina. <span><span class="ref-journal">American journal of ophthalmology. </span>1966;<span class="ref-vol">62</span>(5):926938.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4162879" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4162879</span></a>]</div></dd><dt>43.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.43">FitzGibbon T., Taylor S. Mean retinal ganglion cell axon diameter varies with location in the human retina. <span><span class="ref-journal">Japanese journal of ophthalmology. </span>2012;<span class="ref-vol">56</span>(6):631637.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/23011679" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23011679</span></a>]</div></dd><dt>44.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.44">Paunescu L.A., et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2004;<span class="ref-vol">45</span>(6):17161724.</span> [<a href="/pmc/articles/PMC1993821/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1993821</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15161831" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15161831</span></a>]</div></dd><dt>45.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.45">Tan O., et al. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. <span><span class="ref-journal">Ophthalmology. </span>2008;<span class="ref-vol">115</span>(6):94956.</span> [<a href="/pmc/articles/PMC2692598/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2692598</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17981334" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17981334</span></a>]</div></dd><dt>46.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.46">Fine I., Boynton G.M. Pulse trains to percepts: the challenge of creating a perceptually intelligible world with sight recovery technologies. <span><span class="ref-journal">Phil. Trans. R. Soc. B. </span>1677;<span class="ref-vol">2015</span>(370):20140208.</span> [<a href="/pmc/articles/PMC4528820/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4528820</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26240423" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26240423</span></a>]</div></dd><dt>47.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.47">Weitz, A.C., et al., <em>Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration.</em> Science translational medicine, 2015. <strong>7</strong>(318): p. 318ra203-318ra203. [<a href="/pmc/articles/PMC4698804/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4698804</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26676610" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26676610</span></a>]</div></dd><dt>48.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.48">Freeman D.K., et al. Selective activation of neuronal targets with sinusoidal electric stimulation. <span><span class="ref-journal">Journal of neurophysiology. </span>2010;<span class="ref-vol">104</span>(5):27782791.</span> [<a href="/pmc/articles/PMC2997038/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2997038</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20810683" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20810683</span></a>]</div></dd><dt>49.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.49">Fujikado T., et al. One-Year Outcome of 49-Channel Suprachoroidal&#x02013;Transretinal Stimulation Prosthesis in Patients With Advanced Retinitis Pigmentosa. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2016;<span class="ref-vol">57</span>(14):61476157.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/27835711" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27835711</span></a>]</div></dd><dt>50.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.50">Lorach H., et al. Photovoltaic restoration of sight with high visual acuity. <span><span class="ref-journal">Nature medicine. </span>2015;<span class="ref-vol">21</span>(5):476482.</span> [<a href="/pmc/articles/PMC4601644/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4601644</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25915832" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25915832</span></a>]</div></dd><dt>51.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.51">Chow A.Y., et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. <span><span class="ref-journal">Archives of ophthalmology. </span>2004;<span class="ref-vol">122</span>(4):460469.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15078662" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15078662</span></a>]</div></dd><dt>52.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.52">Zrenner E., et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. <span><span class="ref-journal">Proc Biol Sci. </span>1711;<span class="ref-vol">2011</span>(278):148997.</span> [<a href="/pmc/articles/PMC3081743/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3081743</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21047851" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21047851</span></a>]</div></dd><dt>53.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.53">Stingl, K., et al. <em>Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS</em>. in <em>Proc. R. Soc. B</em><em>.</em> 2013. The Royal Society. [<a href="/pmc/articles/PMC3619489/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3619489</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23427175" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23427175</span></a>]</div></dd><dt>54.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.54">Stingl K., et al. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. <span><span class="ref-journal">Frontiers in neuroscience. </span>2017;<span class="ref-vol">11</span>:445.</span> [<a href="/pmc/articles/PMC5572402/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5572402</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28878616" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28878616</span></a>]</div></dd><dt>55.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.55">Edwards T.L., et al. Assessment of the Electronic Retinal Implant Alpha AMS in Restoring Vision to Blind Patients with End-Stage Retinitis Pigmentosa. <span><span class="ref-journal">Ophthalmology. </span>2017</span> [<a href="/pmc/articles/PMC5818267/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5818267</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29110946" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29110946</span></a>]</div></dd><dt>56.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.56">Kelly, S.K., et al. <em>Developments on the Boston 256-channel retinal implant</em>. in <em>2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)</em>. 2013.</div></dd><dt>57.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.57">Wilke R., et al. Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. <span><span class="ref-journal">Invest Ophthalmol Vis Sci. </span>2011;<span class="ref-vol">52</span>(8):59956003.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21693599" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21693599</span></a>]</div></dd><dt>58.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.58">Kitiratschky V.B., et al. Safety evaluation of &#x0201c;retina implant alpha IMS&#x0201d;&#x02014;a prospective clinical trial. <span><span class="ref-journal">Graefe's Archive for Clinical and Experimental Ophthalmology. </span>2015;<span class="ref-vol">253</span>(3):381387.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/25219982" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25219982</span></a>]</div></dd><dt>59.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.59">Linsenmeier R.A., Zhang H.F. Retinal oxygen: from animals to humans. <span><span class="ref-journal">Progress in retinal and eye research. </span>2017</span> [<a href="/pmc/articles/PMC5441959/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5441959</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28109737" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28109737</span></a>]</div></dd><dt>60.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.60">Fujikado T., et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2011;<span class="ref-vol">52</span>(7):47264733.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21436271" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21436271</span></a>]</div></dd><dt>61.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.61">Ayton L.N., et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. <span><span class="ref-journal">PLoS One. </span>2014;<span class="ref-vol">9</span>(12):e115239.</span> [<a href="/pmc/articles/PMC4270734/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4270734</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25521292" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25521292</span></a>]</div></dd><dt>62.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.62">Sinclair N.C., et al. The appearance of phosphenes elicited using a suprachoroidal retinal prosthesis. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2016;<span class="ref-vol">57</span>(11):49484961.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/27654422" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27654422</span></a>]</div></dd><dt>63.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.63">Delbeke J., Oozeer M., Veraart C. Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. <span><span class="ref-journal">Vision research. </span>2003;<span class="ref-vol">43</span>(9):10911102.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12676250" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12676250</span></a>]</div></dd><dt>64.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.64">Sui X., et al. Mechanical analysis and fabrication of a penetrating silicon microprobe as an artificial optic nerve visual prosthesis. <span><span class="ref-journal">Int J Artif Organs. </span>2012;<span class="ref-vol">35</span>(1):3444.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22328332" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22328332</span></a>]</div></dd><dt>65.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.65">Safadi M., et al. Development of a microfluidic drug delivery neural stimulating device for vision. <span><span class="ref-journal">Investigative Ophthalmology &#x00026; Visual Science. </span>2003;<span class="ref-vol">44</span>(13):50825082.</span></div></dd><dt>66.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.66">Peterman M.C., et al. Localized chemical release from an artificial synapse chip. <span><span class="ref-journal">Proceedings of the National Academy of Sciences of the United States of America. </span>2004;<span class="ref-vol">101</span>(27):99519954.</span> [<a href="/pmc/articles/PMC454196/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC454196</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15218102" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15218102</span></a>]</div></dd><dt>67.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.67">Inayat S., et al. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis. <span><span class="ref-journal">Journal of neural engineering. </span>2014;<span class="ref-vol">12</span>(1):016010.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/25504758" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25504758</span></a>]</div></dd><dt>68.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.68">Vu T.Q., et al. Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment. <span><span class="ref-journal">Biomaterials. </span>2005;<span class="ref-vol">26</span>(14):18951903.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15576163" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15576163</span></a>]</div></dd><dt>69.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.69">Cohn F. &#x000dc;ber die Gesetze der Bewegung der microscopischen Pflanzen und Thiere unter Einflu&#x000df; des Lichtes. <span><span class="ref-journal">Jb. Schles. Ges. Vaterl. Kultur. </span>1865;<span class="ref-vol">42</span>:3537.</span></div></dd><dt>70.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.70">Mast S.O. The process of orientation in the colonial organism, Gonium pectorale, and a study of the structure and function of the eye&#x02010;spot. <span><span class="ref-journal">Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. </span>1916;<span class="ref-vol">20</span>(1):117.</span></div></dd><dt>71.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.71">Litvin F.F., Sineshchekov O.A., Sineshchekov V.A. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. <span><span class="ref-journal">Nature. </span>1978;<span class="ref-vol">271</span>(5644):4768.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/628427" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 628427</span></a>]</div></dd><dt>72.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.72">Sineshchekov O.A., Litvin F.F., Keszthelyi L. Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis. <span><span class="ref-journal">Biophysical journal. </span>1990;<span class="ref-vol">57</span>(1):3339.</span> [<a href="/pmc/articles/PMC1280640/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1280640</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19431753" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19431753</span></a>]</div></dd><dt>73.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.73">Nagel G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. <span><span class="ref-journal">Proceedings of the National Academy of Sciences. </span>2003;<span class="ref-vol">100</span>(24):1394013945.</span> [<a href="/pmc/articles/PMC283525/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC283525</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14615590" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14615590</span></a>]</div></dd><dt>74.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.74">Boyden E.S., et al. Millisecond-timescale, genetically targeted optical control of neural activity. <span><span class="ref-journal">Nature neuroscience. </span>2005;<span class="ref-vol">8</span>(9):12631268.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16116447" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16116447</span></a>]</div></dd><dt>75.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.75">Bruun S., et al. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers. <span><span class="ref-journal">Biochemistry. </span>2015;<span class="ref-vol">54</span>(35):5389400.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/26237332" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26237332</span></a>]</div></dd><dt>76.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.76">Szobota S., et al. Remote control of neuronal activity with a light-gated glutamate receptor. <span><span class="ref-journal">Neuron. </span>2007;<span class="ref-vol">54</span>(4):535545.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17521567" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17521567</span></a>]</div></dd><dt>77.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.77">Schr&#x000f6;der-Lang S., et al. Fast manipulation of cellular cAMP level by light in vivo. <span><span class="ref-journal">Nature methods. </span>2007;<span class="ref-vol">4</span>(1):3942.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17128267" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17128267</span></a>]</div></dd><dt>78.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.78">Gasser C., et al. Engineering of a red-light&#x02013;activated human cAMP/cGMP-specific phosphodiesterase. <span><span class="ref-journal">Proceedings of the National Academy of Sciences. </span>2014;<span class="ref-vol">111</span>(24):88038808.</span> [<a href="/pmc/articles/PMC4066486/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4066486</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24889611" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24889611</span></a>]</div></dd><dt>79.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.79">Ermakova Y.G., et al. Thermogenetic neurostimulation with single-cell resolution. <span><span class="ref-journal">Nat Commun. </span>2017;<span class="ref-vol">8</span>:15362.</span> [<a href="/pmc/articles/PMC5493594/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5493594</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28530239" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28530239</span></a>]</div></dd><dt>80.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.80">Dowling J.E. Foveal receptors of the monkey retina: fine structure. <span><span class="ref-journal">Science. </span>1965;<span class="ref-vol">147</span>(3653):5759.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14224526" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14224526</span></a>]</div></dd><dt>81.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.81">Hogan, M.J., J.A. Alvarado, and J. Weddell, <em>Ciliary body and posterior chamber.</em> Histology of the human eye: an atlas and textbook. Philadelphia: Saunders, 1971.</div></dd><dt>82.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.82">Cohen A.I. New details of the ultrastructure of the outer segments and ciliary connectives of the rods of human and macaque retinas. <span><span class="ref-journal">The Anatomical Record. </span>1965;<span class="ref-vol">152</span>(1):6379.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14316821" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14316821</span></a>]</div></dd><dt>83.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.83">Bi A., et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. <span><span class="ref-journal">Neuron. </span>2006;<span class="ref-vol">50</span>(1):2333.</span> [<a href="/pmc/articles/PMC1459045/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1459045</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16600853" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16600853</span></a>]</div></dd><dt>84.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.84">Lagali P.S., et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. <span><span class="ref-journal">Nature neuroscience. </span>2008;<span class="ref-vol">11</span>(6):667675.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18432197" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18432197</span></a>]</div></dd><dt>85.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.85">Doroudchi M.M., et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. <span><span class="ref-journal">Molecular Therapy. </span>2011;<span class="ref-vol">19</span>(7):12201229.</span> [<a href="/pmc/articles/PMC3129568/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3129568</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21505421" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21505421</span></a>]</div></dd><dt>86.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.86">Yan B., Nirenberg S. An Embedded Real-time Processing Platform for Optogenetic Neuroprosthetic Applications. <span><span class="ref-journal">IEEE Trans Neural Syst Rehabil Eng. </span>2017</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/29035219" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29035219</span></a>]</div></dd><dt>87.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.87">Williams, S., <em>Optogenetic therapies move closer to clinical use.</em> in <em>The Scientist</em>. 2017, The Scientist: New York.</div></dd><dt>88.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.88">Sengupta A., et al. Red&#x02010;shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. <span><span class="ref-journal">EMBO molecular medicine. </span>2016;<span class="ref-vol">8</span>(11):12481264.</span> [<a href="/pmc/articles/PMC5090658/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5090658</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27679671" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27679671</span></a>]</div></dd><dt>89.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.89">Kim D.S., Matsuda T., Cepko C.L. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. <span><span class="ref-journal">Journal of Neuroscience. </span>2008;<span class="ref-vol">28</span>(31):77487764.</span> [<a href="/pmc/articles/PMC2714707/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2714707</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18667607" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18667607</span></a>]</div></dd><dt>90.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.90">Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. <span><span class="ref-journal">J Neurosci Methods. </span>1984;<span class="ref-vol">11</span>(1):4760.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6471907" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6471907</span></a>]</div></dd><dt>91.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.91">Chow B.Y., et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. <span><span class="ref-journal">Nature. </span>2010;<span class="ref-vol">463</span>(7277):98102.</span> [<a href="/pmc/articles/PMC2939492/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2939492</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20054397" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20054397</span></a>]</div></dd><dt>92.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.92">Wagner N.L., et al. Directed evolution of bacteriorhodopsin for applications in bioelectronics. <span><span class="ref-journal">Journal of The Royal Society Interface. </span>2013;<span class="ref-vol">10</span>(84):20130197.</span> [<a href="/pmc/articles/PMC3673155/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3673155</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23676894" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23676894</span></a>]</div></dd><dt>93.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.93">Greco J.A., et al. Stimulation of Retinal Ganglion Cells Using an Ion-Mediated, Protein-Based Retinal Implant. <span><span class="ref-journal">Investigative Ophthalmology &#x00026; Visual Science. </span>2017;<span class="ref-vol">58</span>(8):41844184.</span></div></dd><dt>94.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.94">Govorunova E.G., et al. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. <span><span class="ref-journal">Science. </span>2015;<span class="ref-vol">349</span>(6248):647650.</span> [<a href="/pmc/articles/PMC4764398/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4764398</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26113638" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26113638</span></a>]</div></dd><dt>95.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.95">Berndt A., et al. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. <span><span class="ref-journal">Proceedings of the National Academy of Sciences. </span>2016;<span class="ref-vol">113</span>(4):822829.</span> [<a href="/pmc/articles/PMC4743797/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4743797</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26699459" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26699459</span></a>]</div></dd><dt>96.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.96">Zhang Y., et al. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. <span><span class="ref-journal">Journal of Neuroscience. </span>2009;<span class="ref-vol">29</span>(29):91869196.</span> [<a href="/pmc/articles/PMC2774241/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2774241</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19625509" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19625509</span></a>]</div></dd><dt>97.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.97">Busskamp V., et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. <span><span class="ref-journal">Science. </span>2010;<span class="ref-vol">329</span>(5990):413417.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20576849" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20576849</span></a>]</div></dd><dt>98.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.98">Khabou, H., et al., <em>Noninvasive gene delivery to foveal cones for vision restoration.</em> JCI Insight, 2018. <strong>3</strong>(2). [<a href="/pmc/articles/PMC5821199/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5821199</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29367457" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29367457</span></a>]</div></dd><dt>99.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.99">Kim J.-M., et al. Light-driven activation of &#x003b2;2-adrenergic receptor signaling by a chimeric rhodopsin containing the &#x003b2;2-adrenergic receptor cytoplasmic loops. <span><span class="ref-journal">Biochemistry. </span>2005;<span class="ref-vol">44</span>(7):22842292.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15709741" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15709741</span></a>]</div></dd><dt>100.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.100">Qiu X., et al. Induction of photosensitivity by heterologous expression of melanopsin. <span><span class="ref-journal">Nature. </span>2005;<span class="ref-vol">433</span>(7027):745749.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15674243" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15674243</span></a>]</div></dd><dt>101.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.101">Lin B., et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>2008;<span class="ref-vol">105</span>(41):1600914.</span> [<a href="/pmc/articles/PMC2572922/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2572922</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18836071" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18836071</span></a>]</div></dd><dt>102.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.102">Koike C., et al. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. <span><span class="ref-journal">Proceedings of the National Academy of Sciences. </span>2010;<span class="ref-vol">107</span>(1):332337.</span> [<a href="/pmc/articles/PMC2806705/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2806705</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19966281" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19966281</span></a>]</div></dd><dt>103.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.103">van Wyk M., et al. Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. <span><span class="ref-journal">PLoS biology. </span>2015;<span class="ref-vol">13</span>(5):e1002143.</span> [<a href="/pmc/articles/PMC4423780/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4423780</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25950461" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25950461</span></a>]</div></dd><dt>104.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.104">Gaub B.M., et al. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. <span><span class="ref-journal">Molecular Therapy. </span>2015;<span class="ref-vol">23</span>(10):15621571.</span> [<a href="/pmc/articles/PMC4817926/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4817926</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26137852" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26137852</span></a>]</div></dd><dt>105.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.105">Cehajic-Kapetanovic J., et al. Restoration of vision with ectopic expression of human rod opsin. <span><span class="ref-journal">Current Biology. </span>2015;<span class="ref-vol">25</span>(16):21112122.</span> [<a href="/pmc/articles/PMC4540256/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4540256</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26234216" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26234216</span></a>]</div></dd><dt>106.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.106">Dalkara, D., et al., <em>In vivo&#x02013;directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous.</em> Science translational medicine, 2013. <strong>5</strong>(189): p. 189ra76-189ra76. [<a href="https://pubmed.ncbi.nlm.nih.gov/23761039" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23761039</span></a>]</div></dd><dt>107.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.107">Lu Q., et al. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. <span><span class="ref-journal">Gene therapy. </span>2016;<span class="ref-vol">23</span>(8):680689.</span> [<a href="/pmc/articles/PMC4863234/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4863234</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27115727" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27115727</span></a>]</div></dd><dt>108.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.108">Hadaczek P., et al. Transduction of nonhuman primate brain with adeno-associated virus serotype 1: vector trafficking and immune response. <span><span class="ref-journal">Human gene therapy. </span>2009;<span class="ref-vol">20</span>(3):225237.</span> [<a href="/pmc/articles/PMC2730589/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2730589</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19292604" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19292604</span></a>]</div></dd><dt>109.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.109">Okada H., et al. Robust long-term transduction of common marmoset neuromuscular tissue with rAAV1 and rAAV9. <span><span class="ref-journal">Molecular Therapy&#x02014;Nucleic Acids. </span>2013;<span class="ref-vol">2</span>(5):e95.</span> [<a href="/pmc/articles/PMC4817936/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4817936</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23715217" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23715217</span></a>]</div></dd><dt>110.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.110">Matsumoto B., Blanks J., Ryan S. Topographic variations in the rabbit and primate internal limiting membrane. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>1984;<span class="ref-vol">25</span>(1):7182.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6199321" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6199321</span></a>]</div></dd><dt>111.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.111">Halfter W., et al. Embryonic synthesis of the inner limiting membrane and vitreous body. <span><span class="ref-journal">Invest Ophthalmol Vis Sci. </span>2005;<span class="ref-vol">46</span>(6):22029.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15914642" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15914642</span></a>]</div></dd><dt>112.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.112">Vacca, O., et al., <em>Using adeno-associated virus as a tool to study retinal barriers in disease.</em> Journal of visualized experiments: JoVE, 2015(98). [<a href="/pmc/articles/PMC4541578/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4541578</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25938717" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25938717</span></a>]</div></dd><dt>113.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.113">Yin L., et al. Intravitreal injection of AAV2 transduces macaque inner retina. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2011;<span class="ref-vol">52</span>(5):27752783.</span> [<a href="/pmc/articles/PMC3088562/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3088562</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21310920" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21310920</span></a>]</div></dd><dt>114.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.114">Ivanova E., et al. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2010;<span class="ref-vol">51</span>(10):52885296.</span> [<a href="/pmc/articles/PMC2939198/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2939198</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20484599" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20484599</span></a>]</div></dd><dt>115.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.115">Tshilenge K.-T., et al. Vitrectomy Before Intravitreal Injection of AAV2/2 Vector Promotes Efficient Transduction of Retinal Ganglion Cells in Dogs and Nonhuman Primates. <span><span class="ref-journal">Human gene therapy methods. </span>2016;<span class="ref-vol">27</span>(3):122134.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/27229628" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27229628</span></a>]</div></dd><dt>116.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.116">Takahashi K., et al. Improved intravitreal AAV-mediated inner retinal gene transduction after surgical internal limiting membrane peeling in cynomolgus monkeys. <span><span class="ref-journal">Molecular Therapy. </span>2017;<span class="ref-vol">25</span>(1):296302.</span> [<a href="/pmc/articles/PMC5363307/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5363307</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28129123" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28129123</span></a>]</div></dd><dt>117.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.117">De Silva S.R., et al. Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy. <span><span class="ref-journal">Proceedings of the National Academy of Sciences. </span>2017;<span class="ref-vol">114</span>(42):1121111216.</span> [<a href="/pmc/articles/PMC5651734/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5651734</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28973921" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28973921</span></a>]</div></dd><dt>118.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.118">Xue K., et al. Technique of retinal gene therapy: delivery of viral vector into the subretinal space. <span><span class="ref-journal">Eye (Lond). </span>2017;<span class="ref-vol">31</span>(9):13081316.</span> [<a href="/pmc/articles/PMC5601444/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5601444</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28820183" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28820183</span></a>]</div></dd><dt>119.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.119">Calame M., et al. Retinal degeneration progression changes lentiviral vector cell targeting in the retina. <span><span class="ref-journal">PloS one. </span>2011;<span class="ref-vol">6</span>(8):e23782.</span> [<a href="/pmc/articles/PMC3161995/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3161995</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21901134" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21901134</span></a>]</div></dd><dt>120.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.120">Pignatelli V., Cepko C.L., Strettoi E. Inner retinal abnormalities in a mouse model of Leber's congenital amaurosis. <span><span class="ref-journal">Journal of Comparative Neurology. </span>2004;<span class="ref-vol">469</span>(3):351359.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14730587" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14730587</span></a>]</div></dd><dt>121.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.121">Farinelli P., et al. DNA methylation and differential gene regulation in photoreceptor cell death. <span><span class="ref-journal">Cell death &#x00026; disease. </span>2014;<span class="ref-vol">5</span>(12):e1558.</span> [<a href="/pmc/articles/PMC4649831/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4649831</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25476906" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25476906</span></a>]</div></dd><dt>122.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.122">Arango-Gonzalez B., et al. Identification of a common non-apoptotic cell death mechanism in hereditary retinal degeneration. <span><span class="ref-journal">PLoS One. </span>2014;<span class="ref-vol">9</span>(11):e112142.</span> [<a href="/pmc/articles/PMC4230983/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4230983</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25392995" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25392995</span></a>]</div></dd><dt>123.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.123">Wahlin K.J., et al. Epigenetics and cell death: DNA hypermethylation in programmed retinal cell death. <span><span class="ref-journal">PloS one. </span>2013;<span class="ref-vol">8</span>(11):e79140.</span> [<a href="/pmc/articles/PMC3823652/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3823652</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24244436" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24244436</span></a>]</div></dd><dt>124.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.124">van Wyk M., et al. Present Molecular Limitations of ON-Bipolar Cell Targeted Gene Therapy. <span><span class="ref-journal">Front Neurosci. </span>2017;<span class="ref-vol">11</span>:161.</span> [<a href="/pmc/articles/PMC5372788/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5372788</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28424574" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28424574</span></a>]</div></dd><dt>125.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.125">Cohen E., et al. Optical coherence tomography imaging of retinal damage in real time under a stimulus electrode. <span><span class="ref-journal">Journal of neural engineering. </span>2011;<span class="ref-vol">8</span>(5):056017.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21934187" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21934187</span></a>]</div></dd><dt>126.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.126">Butterwick A., et al. Tissue damage by pulsed electrical stimulation. <span><span class="ref-journal">IEEE Trans Biomed Eng. </span>2007;<span class="ref-vol">54</span>(12):22617.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18075042" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18075042</span></a>]</div></dd><dt>127.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.127">Cohen E.D. Effects of high-level pulse train stimulation on retinal function. <span><span class="ref-journal">J Neural Eng. </span>2009;<span class="ref-vol">6</span>(3):035005.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19458404" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19458404</span></a>]</div></dd><dt>128.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.128">Nayagam D.A.X., et al. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study. <span><span class="ref-journal">PloS one. </span>2014;<span class="ref-vol">9</span>(5):e97182.</span> [<a href="/pmc/articles/PMC4031073/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4031073</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24853376" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24853376</span></a>]</div></dd><dt>129.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.129">McCreery D.B., et al. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. <span><span class="ref-journal">IEEE Transactions on Biomedical Engineering. </span>1990;<span class="ref-vol">37</span>(10):9961001.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2249872" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2249872</span></a>]</div></dd><dt>130.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.130">De Vera Mudry M.C., et al. Blinded by the light: retinal phototoxicity in the context of safety studies. <span><span class="ref-journal">Toxicologic pathology. </span>2013;<span class="ref-vol">41</span>(6):813825.</span> [<a href="/pmc/articles/PMC3786130/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3786130</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23271306" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23271306</span></a>]</div></dd><dt>131.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.131">Ham W.T., Mueller H.A., Sliney D.H. Retinal sensitivity to damage from short wavelength light. <span><span class="ref-journal">Nature. </span>1976;<span class="ref-vol">260</span>(5547):153155.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/815821" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 815821</span></a>]</div></dd><dt>132.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.132">Ham W.T., et al. Sensitivity of the retina to radiation damage as a function of wavelength. <span><span class="ref-journal">Photochemistry and Photobiology. </span>1979;<span class="ref-vol">29</span>(4):735743.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/109869" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 109869</span></a>]</div></dd><dt>133.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.133">Noell W.K., et al. Retinal damage by light in rats. <span><span class="ref-journal">Investigative Ophthalmology &#x00026; Visual Science. </span>1966;<span class="ref-vol">5</span>(5):450473.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/5929286" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 5929286</span></a>]</div></dd><dt>134.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.134">Wenzel A., et al. The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration. <span><span class="ref-journal">Journal of Neuroscience. </span>2001;<span class="ref-vol">21</span>(1):5358.</span> [<a href="/pmc/articles/PMC6762429/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6762429</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11150319" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11150319</span></a>]</div></dd><dt>135.</dt><dd><div class="bk_ref" id="RetinalProthesis.REF.135">Wenzel A., et al. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. <span><span class="ref-journal">Progress in retinal and eye research. </span>2005;<span class="ref-vol">24</span>(2):275306.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15610977" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15610977</span></a>]</div></dd></dl></div><div><dl class="temp-labeled-list small"><dt>*</dt><dd><div id="RetinalProthesis.Tc.an1"><p class="no_top_margin">
<a href="#RetinalProthesis.About_the_author">About the author</a>
</p></div></dd></dl></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a>: © 2025 Webvision .<p class="small">All copyright for chapters belongs to the individual authors who created them. However, for non-commercial, academic purposes, images and content from the chapters portion of Webvision may be used with a non-exclusive rights under a Attribution, <a href="https://creativecommons.org/licenses/by-nc/4.0/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Noncommercial 4.0 International (CC BY-NC) Creative Commons license</a>. Cite Webvision, http://webvision.med.utah.edu/ as the source. Commercial applications need to obtain license permission from the administrator of Webvision and are generally declined unless the copyright owner can/wants to donate or license material. Use online should be accompanied by a link back to the original source of the material. All imagery or content associated with blog posts belong to the authors of said posts, except where otherwise noted.</p></div><div class="small"><span class="label">Bookshelf ID: NBK493746</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/29697233" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">29697233</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/webvision/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/webvision/FernandezIVP/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/webvision/anteriorsegment/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK493746&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK493746/?report=reader">PubReader</a></li><li><a href="/books/NBK493746/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK493746" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK493746" style="display:none" title="Cite this Page"><div class="bk_tt">Cohen ED. Retinal Prostheses. 2018 Mar 19. In: Kolb H, Fernandez E, Jones B, et al., editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. <span class="bk_cite_avail"></span></div></div></li><li><a href="/books/NBK493746/pdf/Bookshelf_NBK493746.pdf">PDF version of this page</a> (1.8M)</li><li><a href="/books/n/webvision/pdf/">PDF version of this title</a> (235M)</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#RetinalProthesis.Abstract" ref="log$=inpage&amp;link_id=inpage">Abstract</a></li><li><a href="#RetinalProthesis.Introduction" ref="log$=inpage&amp;link_id=inpage">Introduction</a></li><li><a href="#RetinalProthesis.The_retinal_prosthetic" ref="log$=inpage&amp;link_id=inpage">The retinal prosthetic patient</a></li><li><a href="#RetinalProthesis.Retinal_prostheses_usin" ref="log$=inpage&amp;link_id=inpage">Retinal prostheses using electrical stimulation</a></li><li><a href="#RetinalProthesis.Neurotransmitterreleasi" ref="log$=inpage&amp;link_id=inpage">Neurotransmitter-releasing retinal prostheses</a></li><li><a href="#RetinalProthesis.Retinal_prostheses_usin_1" ref="log$=inpage&amp;link_id=inpage">Retinal prostheses using optogenetic stimulation</a></li><li><a href="#RetinalProthesis.Retinal_prosthetic_stim" ref="log$=inpage&amp;link_id=inpage">Retinal prosthetic stimulation safety</a></li><li><a href="#RetinalProthesis.Conclusions" ref="log$=inpage&amp;link_id=inpage">Conclusions</a></li><li><a href="#RetinalProthesis.Disclaimer" ref="log$=inpage&amp;link_id=inpage">Disclaimer</a></li><li><a href="#RetinalProthesis.Acknowledgments" ref="log$=inpage&amp;link_id=inpage">Acknowledgments</a></li><li><a href="#RetinalProthesis.About_the_author" ref="log$=inpage&amp;link_id=inpage">About the author</a></li><li><a href="#RetinalProthesis.References" ref="log$=inpage&amp;link_id=inpage">References</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related Items in Bookshelf</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="source-links" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="https://www.ncbi.nlm.nih.gov/books?term=%22reference%20works%22%5BResource%20Type%5D" ref="pagearea=source-links&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">All Reference Works</a></li><li><a href="https://www.ncbi.nlm.nih.gov/books?term=&quot;textbooks&quot;%5BResource%20Type%5D" ref="pagearea=source-links&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">All Textbooks</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related information</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="discovery_db_links" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pmc&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pmc_refs&amp;IdsFromResult=4526802" ref="log$=recordlinks">PMC</a><div class="brieflinkpop offscreen_noflow">PubMed Central citations</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pubmed&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pubmed_refs&amp;IdsFromResult=4526802" ref="log$=recordlinks">PubMed</a><div class="brieflinkpop offscreen_noflow">Links to PubMed</div></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/36943975" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedarticles&amp;logdbfrom=pubmed">The Spherical Equivalent.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">The Spherical Equivalent.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Enaholo ES, Musa MJ, Zeppieri M. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/30020595" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Peer Play.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">Peer Play.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Scott HK, Cogburn M. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/39650795" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Far Posterior Approach for Rib Fracture Fixation: Surgical Technique and Tips.</a><span class="source">[JBJS Essent Surg Tech. 2024]</span><div class="brieflinkpop offscreen_noflow">Far Posterior Approach for Rib Fracture Fixation: Surgical Technique and Tips.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Manes TJ, DeGenova DT, Taylor BC, Patel JN. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">JBJS Essent Surg Tech. 2024 Oct-Dec; 14(4). Epub 2024 Dec 6.</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/36137063" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.</a><span class="source">[The Time of Anthropology: Stud...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Salisbury L, Baraitser L. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">The Time of Anthropology: Studies of Contemporary Chronopolitics. 2020</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/39470206" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Conservative, physical and surgical interventions for managing faecal incontinence and constipation in adults with central neurological diseases.</a><span class="source">[Cochrane Database Syst Rev. 2024]</span><div class="brieflinkpop offscreen_noflow">Conservative, physical and surgical interventions for managing faecal incontinence and constipation in adults with central neurological diseases.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Todd CL, Johnson EE, Stewart F, Wallace SA, Bryant A, Woodward S, Norton C. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Cochrane Database Syst Rev. 2024 Oct 29; 10(10):CD002115. Epub 2024 Oct 29.</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=29697233" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=29697233" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67c9a78684f3725e59a85b82">Retinal Prostheses - Webvision</a><div class="ralinkpop offscreen_noflow">Retinal Prostheses - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=2" href="/portal/utils/pageresolver.fcgi?recordid=67c9a784b15b832ebc7a9e26">Part XV: Visual Prostheses - Webvision</a><div class="ralinkpop offscreen_noflow">Part XV: Visual Prostheses - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=3" href="/portal/utils/pageresolver.fcgi?recordid=67c9a784a68b6b5afce04250">Introduction to Visual Prostheses - Webvision</a><div class="ralinkpop offscreen_noflow">Introduction to Visual Prostheses - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=4" href="/portal/utils/pageresolver.fcgi?recordid=67c9a782f4a390645ea5a406">Evolution of Phototransduction, Vertebrate Photoreceptors and Retina - Webvision</a><div class="ralinkpop offscreen_noflow">Evolution of Phototransduction, Vertebrate Photoreceptors and Retina - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=5" href="/portal/utils/pageresolver.fcgi?recordid=67c9a78084f3725e59a82924">Part XIV: Evolution of Phototransduction, Vertebrate Photoreceptors and Retina b...</a><div class="ralinkpop offscreen_noflow">Part XIV: Evolution of Phototransduction, Vertebrate Photoreceptors and Retina by Trevor Lamb - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK493746&amp;ncbi_domain=webvision&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK493746/&amp;ncbi_pagename=Retinal Prostheses - Webvision - NCBI Bookshelf&amp;ncbi_bookparttype=chapter&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>