nih-gov/www.ncbi.nlm.nih.gov/books/n/webvision/HaverkampGRD/index.html
2025-03-17 02:05:34 +00:00

599 lines
No EOL
121 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK92606" /><meta name="ncbi_domain" content="webvision" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK92606/" /><meta name="ncbi_pagename" content="Glycine Receptor Diversity in the Mammalian Retina - Webvision - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="chapter" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Glycine Receptor Diversity in the Mammalian Retina - Webvision - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Webvision: The Organization of the Retina and Visual System [Internet]" /><meta name="citation_title" content="Glycine Receptor Diversity in the Mammalian Retina" /><meta name="citation_publisher" content="University of Utah Health Sciences Center" /><meta name="citation_date" content="2012/03/27" /><meta name="citation_author" content="Silke Haverkamp" /><meta name="citation_pmid" content="22574341" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK92606/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Glycine Receptor Diversity in the Mammalian Retina" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="University of Utah Health Sciences Center" /><meta name="DC.Contributor" content="Silke Haverkamp" /><meta name="DC.Date" content="2012/03/27" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK92606/" /><meta name="description" content="Glycine is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Its receptors, the inhibitory glycine receptors (GlyRs), are ligand-gated chloride channels composed of ligand-binding α and β subunits (1, 2). In mature neurons, the activation of GlyRs allows for an influx of chloride ions into the cytoplasm, which hyperpolarizes the postsynaptic membrane and, thereby, reduces neuronal firing. Inversely, the blockade of GlyRs by the competitive antagonist strychnine causes overexcitation resulting in pain, muscle cramps and exaggerated startle responses (3). Apart from its major transmitter function in spinal cord and brainstem, glycine also mediates substantial inhibitory neurotransmission via glycinergic amacrine cells in the mammalian retina. Thus, the abundant and highly complex expression patterns of different GlyR subtypes in the inner plexiform layer create an appealing field of retinal research." /><meta name="og:title" content="Glycine Receptor Diversity in the Mammalian Retina" /><meta name="og:type" content="book" /><meta name="og:description" content="Glycine is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Its receptors, the inhibitory glycine receptors (GlyRs), are ligand-gated chloride channels composed of ligand-binding α and β subunits (1, 2). In mature neurons, the activation of GlyRs allows for an influx of chloride ions into the cytoplasm, which hyperpolarizes the postsynaptic membrane and, thereby, reduces neuronal firing. Inversely, the blockade of GlyRs by the competitive antagonist strychnine causes overexcitation resulting in pain, muscle cramps and exaggerated startle responses (3). Apart from its major transmitter function in spinal cord and brainstem, glycine also mediates substantial inhibitory neurotransmission via glycinergic amacrine cells in the mammalian retina. Thus, the abundant and highly complex expression patterns of different GlyR subtypes in the inner plexiform layer create an appealing field of retinal research." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK92606/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-webvision-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/webvision/HaverkampGRD/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK92606/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8CB6487C99B2010000000000F900D1.m_13" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="snp">SNP</option><option value="nlmcatalog">NLM Catalog</option><option value="pcsubstance" class="last">PubChem Substance</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Kolb H, Fernandez E, Jones B, et al., editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. </p></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/webvision/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-webvision-lrg.png" alt="Cover of Webvision" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>Webvision: The Organization of the Retina and Visual System [Internet].</h2><a data-jig="ncbitoggler" href="#__NBK92606_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK92606_dtls__"><div>Kolb H, Fernandez E, Jones B, et al., editors.</div><div>Salt Lake City (UT): <a href="http://webvision.med.utah.edu/" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">University of Utah Health Sciences Center</a>; 1995-.</div></div><div class="half_rhythm"><ul class="inline_list"><li style="margin-right:1em"><a class="bk_cntns" href="/books/n/webvision/">Contents</a></li></ul></div><div class="bk_noprnt"><form method="get" action="/books/n/webvision/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div><div class="icnblk_cntnt two_col"><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/webvision/ch17nt/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/webvision/PopovaDopamine/" title="Next page in this title">Next &gt;</a></div></div></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK92606_"><span class="title" itemprop="name">Glycine Receptor Diversity in the Mammalian Retina</span></h1><p class="contrib-group"><span itemprop="author">Silke Haverkamp</span>, PhD.</p><a data-jig="ncbitoggler" href="#__NBK92606_ai__" style="border:0;text-decoration:none">Author Information and Affiliations</a><div style="display:none" class="ui-widget" id="__NBK92606_ai__"><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Silke Haverkamp</span>, PhD<sup><img src="/corehtml/pmc/pmcgifs/corrauth.gif" alt="corresponding author" /></sup><sup>1</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup> Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt/Main, Germany.<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="ed.gpm.niarb@pmakrevah.eklis" class="oemail">ed.gpm.niarb@pmakrevah.eklis</a></div></div><div><sup><img src="/corehtml/pmc/pmcgifs/corrauth.gif" alt="corresponding author" /></sup>Corresponding author.</div></div><p class="small">Created: <span itemprop="datePublished">March 27, 2012</span>.</p></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="HaverkampGRD.1_Introduction"><h2 id="_HaverkampGRD_1_Introduction_">1. Introduction</h2><p>Glycine is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Its receptors, the inhibitory glycine receptors (GlyRs), are ligand-gated chloride channels composed of ligand-binding &#x003b1; and &#x003b2; subunits (<a class="bk_pop" href="#HaverkampGRD.REF.1" data-bk-pop-others="HaverkampGRD.REF.2">1, 2</a>). In mature neurons, the activation of GlyRs allows for an influx of chloride ions into the cytoplasm, which hyperpolarizes the postsynaptic membrane and, thereby, reduces neuronal firing. Inversely, the blockade of GlyRs by the competitive antagonist strychnine causes overexcitation resulting in pain, muscle cramps and exaggerated startle responses (<a class="bk_pop" href="#HaverkampGRD.REF.3">3</a>). Apart from its major transmitter function in spinal cord and brainstem, glycine also mediates substantial inhibitory neurotransmission via glycinergic amacrine cells in the mammalian retina. Thus, the abundant and highly complex expression patterns of different GlyR subtypes in the inner plexiform layer create an appealing field of retinal research.</p></div><div id="HaverkampGRD.2_Structure_of_glycine_rece"><h2 id="_HaverkampGRD_2_Structure_of_glycine_rece_">2. Structure of glycine receptors</h2><p>The GlyR was the first neurotransmitter receptor protein to be isolated from the mammalian CNS. Purification of the GlyR from rat spinal cord by strychnine affinity chromatography revealed three distinct polypeptides of molecular mass 48, 58 and 98 kDa (<a class="bk_pop" href="#HaverkampGRD.REF.4">4</a>). The 48 and 58 kDa peptides were shown to correspond to the &#x003b1;1 and &#x003b2; subunits, respectively. The 98 kDa peptide was later identified as the cytoplasmic protein, gephyrin, which is essential for clustering GlyRs at postsynaptic densities via direct interactions between the GlyR &#x003b2; subunit and intracellular microtubules (<a class="bk_pop" href="#HaverkampGRD.REF.5">5</a>).</p><p>GlyRs are pentameric ligand-gated ion channel receptors of the Cys-loop family, which also include GABA<sub>A/C</sub> receptors, muscle and neuronal nicotinic acetylcholine receptors, and serotonin type 3 receptors. Members of this superfamily share a common proposed structure (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F1/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF1" rid-ob="figobHaverkampGRDF1">Fig. 1</a>). Each subunit consists of a large N-terminal extracellular domain, four transmembrane segments (TM1&#x02013;TM4), a long intracellular loop connecting TM3 and TM4, and a short extracellular C-terminus. The second transmembrane segment, TM2, lines the inner ion pore which, in GlyRs and GABA<sub>A/C</sub> receptors, displays strict anion selectivity.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF1" co-legend-rid="figlgndHaverkampGRDF1"><a href="/books/NBK92606/figure/HaverkampGRD.F1/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF1" rid-ob="figobHaverkampGRDF1"><img class="small-thumb" src="/books/NBK92606/bin/GRD_fig1.gif" src-large="/books/NBK92606/bin/GRD_fig1.jpg" alt="Figure 1" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF1"><h4 id="HaverkampGRD.F1"><a href="/books/NBK92606/figure/HaverkampGRD.F1/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF1">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 1. Structure of ligand-gated ion channels. A. Each GlyR subunit consists of a large N-terminal extracellular domain, four transmembrane segments (TM1&#x02013;TM4), a long intracellular loop connecting TM3 and TM4, and a short extracellular C-terminus. <a href="/books/NBK92606/figure/HaverkampGRD.F1/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF1">(more...)</a></p></div></div><p>Molecular cloning has revealed four genes encoding the &#x003b1; subunits (&#x003b1;1, &#x003b1;2, &#x003b1;3, &#x003b1;4) and only one gene encoding the &#x003b2; subunit (<a class="bk_pop" href="#HaverkampGRD.REF.6" data-bk-pop-others="HaverkampGRD.REF.7">6, 7</a>). In the adult organism, two copies of the &#x003b1; subunit and three copies of the &#x003b2; subunit form the pentameric receptor protein (<a class="bk_pop" href="#HaverkampGRD.REF.8">8</a>).</p></div><div id="HaverkampGRD.3_Developmental_expression"><h2 id="_HaverkampGRD_3_Developmental_expression_">3. Developmental expression</h2><p>Glycine is excitatory during embryonic development and around birth. The neonatal form of the GlyR is thought to be a homopentamer of &#x003b1;2 subunits that are mainly found extrasynaptically in vivo, whereas adult synaptic GlyRs are heteromeric &#x003b1;&#x003b2; receptors. It seems that homomeric &#x003b1;2 GlyRs mediate a depolarizing glycine-gated chloride flux that in turn stimulates the calcium influx necessary for the development of numerous neuronal specializations, including glycinergic synapses (<a class="bk_pop" href="#HaverkampGRD.REF.2" data-bk-pop-others="HaverkampGRD.REF.9">2, 9</a>). Surprisingly, however, knockout of the &#x003b1;2 subunit has no obvious effect on neuronal development (<a class="bk_pop" href="#HaverkampGRD.REF.10">10</a>), whereas an &#x003b1;1 knockout (<i>Glra1</i><sup><i>spd-ot</i></sup><i>,&#x0201d;oscillator&#x0201d;)</i> has severe consequences: mice appear normal until the 2nd postnatal week whereupon they show prolonged periods of rapid tremor, producing extreme rigor and stiffness, and die within 10 days (<a class="bk_pop" href="#HaverkampGRD.REF.11" data-bk-pop-others="HaverkampGRD.REF.12">11, 12</a>).</p></div><div id="HaverkampGRD.4_Glycinergic_amacrine_cell"><h2 id="_HaverkampGRD_4_Glycinergic_amacrine_cell_">4. Glycinergic amacrine cells</h2><p>In the retina, approximately half of the amacrine cells release glycine at their synapses with bipolar, other amacrine, and ganglion cells. Glycinergic amacrine cells can be immunolabeled with antibodies against glycine or against the glycine transporter GlyT1 (<a class="bk_pop" href="#HaverkampGRD.REF.13" data-bk-pop-others="HaverkampGRD.REF.14 HaverkampGRD.REF.15">13-15</a>). <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F2/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF2" rid-ob="figobHaverkampGRDF2">Figure 2</a> shows a vertical section through a mouse retina that was double immunolabeled for glycine and for GlyT1 (<a class="bk_pop" href="#HaverkampGRD.REF.16">16</a>). Strong glycine immunoreactivity can be observed in amacrine cell bodies and their dendrites descending into the inner plexiform layer (IPL) or in dendrites from interplexiform amacrine cells ascending into the outer plexiform layer (OPL). Weak glycine expression is also found in putative ON-cone bipolar cells in the outer half of the inner nuclear layer (INL). The section was also immunolabeled for GlyT1 which labels all glycinergic amacrine cells but not bipolar cells. Bipolar cells do not express GlyT1 but they receive glycine by diffusion through electrical synapses (gap junctions) from glycinergic amacrine cells (<a class="bk_pop" href="#HaverkampGRD.REF.17">17</a>). In other parts of the CNS, GlyT1 has been localized to glial cells, while GlyT2 is now known to represent the presynaptic neuronal glycine transporter. Surprisingly, GlyT2 does not appear to be expressed in the mammalian retina (<a class="bk_pop" href="#HaverkampGRD.REF.18">18</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF2" co-legend-rid="figlgndHaverkampGRDF2"><a href="/books/NBK92606/figure/HaverkampGRD.F2/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF2" rid-ob="figobHaverkampGRDF2"><img class="small-thumb" src="/books/NBK92606/bin/GRD_fig2.gif" src-large="/books/NBK92606/bin/GRD_fig2.jpg" alt="Figure 2" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF2"><h4 id="HaverkampGRD.F2"><a href="/books/NBK92606/figure/HaverkampGRD.F2/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF2">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 2. Glycinergic amacrine cells of the mouse retina. A vertical section was double immunolabeled for glycine (red) and the glycine transporter GlyT1 (green). The arrows indicate an interplexiform process ascending to the OPL (OPL: outer plexiform <a href="/books/NBK92606/figure/HaverkampGRD.F2/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF2">(more...)</a></p></div></div></div><div id="HaverkampGRD.5_Morphological_types_of_gl"><h2 id="_HaverkampGRD_5_Morphological_types_of_gl_">5. Morphological types of glycinergic amacrine cells</h2><p>Glycinergic amacrine cells are small-field amacrine cells with principally vertically oriented dendrites, and they comprise more than 10 different morphological types (<a class="bk_pop" href="#HaverkampGRD.REF.13" data-bk-pop-others="HaverkampGRD.REF.19">13, 19</a>). Most of them have small, diffuse dendritic trees and perform local circuit operations between the different sublayers of the IPL.</p><p>The most prominent and also most numerous glycinergic amacrine cell is the AII amacrine cell which transfers the light signal from rod bipolar cells into the cone pathway (<a class="bk_pop" href="#HaverkampGRD.REF.20">20</a>). In the inner IPL, AII cells receive direct glutamatergic input from rod bipolar cells, but they are also engaged with ON-cone bipolar cell axon terminals via electrical synapses (gap junctions). In the outer IPL. AII cell lobular dendrites provide glycinergic, chemical output synapses onto OFF-cone bipolar cell axon terminals and dendrites of OFF ganglion cells. Further glycinergic, small-field amacrine cells were identified in the cat retina by combined Golgi-staining and glycine uptake (<a class="bk_pop" href="#HaverkampGRD.REF.21">21</a>), and Menger et al. (<a class="bk_pop" href="#HaverkampGRD.REF.13">13</a>) identified at least 8 different glycinergic amacrine cells in the rat retina (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F3/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF3" rid-ob="figobHaverkampGRDF3">Fig. 3</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF3" co-legend-rid="figlgndHaverkampGRDF3"><a href="/books/NBK92606/figure/HaverkampGRD.F3/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF3" rid-ob="figobHaverkampGRDF3"><img class="small-thumb" src="/books/NBK92606/bin/rat_ACs.gif" src-large="/books/NBK92606/bin/rat_ACs.jpg" alt="Figure 3" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF3"><h4 id="HaverkampGRD.F3"><a href="/books/NBK92606/figure/HaverkampGRD.F3/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF3">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 3. Glycinergic amacrine cells of the rat retina. From Menger, Pow and W&#x000e4;ssle, 1998 (13). </p></div></div><p>Recently it became possible to study glycinergic amacrine cells in the retina of transgenic mice which express green fluorescent protein (GFP) under the control of the Thy1 promotor (Thy1-GFP-O) (<a class="bk_pop" href="#HaverkampGRD.REF.22" data-bk-pop-others="HaverkampGRD.REF.23">22, 23</a>). Three such cells are illustrated in <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F4/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF4" rid-ob="figobHaverkampGRDF4">figure 4</a>, with double labeling for calcium binding protein 5 (CaBP5) in order to reveal the different sublaminas of the IPL and possible bipolar cell candidates as synaptic partners. The cells in <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F4/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF4" rid-ob="figobHaverkampGRDF4">figures 4A and B</a> have small, diffuse dendritic trees; the cell in <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F4/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF4" rid-ob="figobHaverkampGRDF4">figure 4C</a> has a bistratified appearance and has been identified as A8 cell in cats and human retinas (<a class="bk_pop" href="#HaverkampGRD.REF.24" data-bk-pop-others="HaverkampGRD.REF.25 HaverkampGRD.REF.26">24-26</a>) (<a href="/books/n/webvision/ch12amacrines/">see also chapter on &#x02018;Roles of Amacrine Cells&#x02019;, Webvision</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF4" co-legend-rid="figlgndHaverkampGRDF4"><a href="/books/NBK92606/figure/HaverkampGRD.F4/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF4" rid-ob="figobHaverkampGRDF4"><img class="small-thumb" src="/books/NBK92606/bin/Figure_ACs_CaB5_II.gif" src-large="/books/NBK92606/bin/Figure_ACs_CaB5_II.jpg" alt="Figure 4" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF4"><h4 id="HaverkampGRD.F4"><a href="/books/NBK92606/figure/HaverkampGRD.F4/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF4">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 4. Glycinergic amacrine cells expressing GFP in the Thy1-GFP-O mouse. Sections are double labeled for bipolar cell marker CaBP5 (red). CaBP5 is expressed in rod bipolar cells (RB), in type 5 ON-cone bipolar cells (b5), and in type 3 OFF-cone bipolar <a href="/books/NBK92606/figure/HaverkampGRD.F4/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF4">(more...)</a></p></div></div></div><div id="HaverkampGRD.6_GlyR_diversity_in_the_mou"><h2 id="_HaverkampGRD_6_GlyR_diversity_in_the_mou_">6. GlyR diversity in the mouse retina</h2><p>The diversity of types of glycinergic amacrine cells is paralleled by the striking heterogeneity of glycine receptors. All four &#x003b1; subunits of the GlyR have been localized to specific synapses within the mammalian retina (<a class="bk_pop" href="#HaverkampGRD.REF.23" data-bk-pop-others="HaverkampGRD.REF.27 HaverkampGRD.REF.28 HaverkampGRD.REF.29 HaverkampGRD.REF.30">23, 27-30</a>). When subunit selective antibodies were applied to lightly fixed tissue, they each produced a distinct punctate immunofluorescence pattern (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F5/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF5" rid-ob="figobHaverkampGRDF5">Figure 5</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF5" co-legend-rid="figlgndHaverkampGRDF5"><a href="/books/NBK92606/figure/HaverkampGRD.F5/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF5" rid-ob="figobHaverkampGRDF5"><img class="small-thumb" src="/books/NBK92606/bin/GlyR14.gif" src-large="/books/NBK92606/bin/GlyR14.jpg" alt="Figure 5" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF5"><h4 id="HaverkampGRD.F5"><a href="/books/NBK92606/figure/HaverkampGRD.F5/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF5">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 5. Diversity of GlyR subtypes in the mouse retina. A. GlyR&#x003b1;1 immunoreactive puncta are most prominent in the outer IPL (OFF sublamina). B. GlyR&#x003b1;2 immunofluorescence is more evenly distributed across the IPL. C. GlyR&#x003b1;3 expression <a href="/books/NBK92606/figure/HaverkampGRD.F5/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF5">(more...)</a></p></div></div><p>The GlyR&#x003b1;1 subunit is expressed in a sparse population of puncta in the OPL, which represent synapses between glycinergic interplexiform cells and bipolar cell dendrites (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F5/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF5" rid-ob="figobHaverkampGRDF5">Fig. 5A</a>). In the outer IPL (stratum S1 and S2) GlyR &#x003b1;1 immunoreactivity is found in large puncta, which occur at high density. They represent synapses between AII amacrine cells and OFF-cone bipolar cells (<a class="bk_pop" href="#HaverkampGRD.REF.30">30</a>). In the inner IPL (stratum S3-S5) smaller GlyR&#x003b1;1 immunoreactive puncta can be observed representing synapses onto ganglion cell dendrites and rod bipolar cell axons (<a class="bk_pop" href="#HaverkampGRD.REF.31" data-bk-pop-others="HaverkampGRD.REF.32">31, 32</a>). The GlyR&#x003b1;2 subunit is more uniformly distributed across all strata (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F5/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF5" rid-ob="figobHaverkampGRDF5">Fig. 5B</a>), and GlyR&#x003b1;2 immunoreactive puncta occur at the highest density amongst the four &#x003b1; subunits (<a class="bk_pop" href="#HaverkampGRD.REF.28">28</a>). The GlyR&#x003b1;3 subunit (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F5/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF5" rid-ob="figobHaverkampGRDF5">Fig. 5C)</a> shows four bands whose density of puncta successively declines towards the ON sublamina (<a class="bk_pop" href="#HaverkampGRD.REF.27">27</a>). Lastly, the GlyR&#x003b1;4 subunit (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F5/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF5" rid-ob="figobHaverkampGRDF5">Fig. 5D</a>) shows a band of high density of puncta at the border between stratum 3 and 4 and further small and sparsely distributed puncta throughout the remaining strata (<a class="bk_pop" href="#HaverkampGRD.REF.23">23</a>). Taken together, the characteristic distribution of subunits across the IPL suggests that the GlyR subtypes are expressed at different synapses and are involved with different neuronal circuits.</p><p>Electron microscopy confirms the notion that the immunofluorescent puncta represent clusters of GlyRs at postsynaptic sites. Antibodies against the &#x003b1;1 subunit recognize extracellular epitopes of the receptor. Thus, staining from preembedding immunoelectron-microscopic experiments appears in the synaptic cleft of the synapse (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F6/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF6" rid-ob="figobHaverkampGRDF6">Fig. 6A</a>). Accordingly, postembedding immunoelectron microscopy showed that the &#x003b1;3 subunit was localized at the postsynaptic membrane (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F6/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF6" rid-ob="figobHaverkampGRDF6">Fig. 6B</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF6" co-legend-rid="figlgndHaverkampGRDF6"><a href="/books/NBK92606/figure/HaverkampGRD.F6/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF6" rid-ob="figobHaverkampGRDF6"><img class="small-thumb" src="/books/NBK92606/bin/GlyR_EM_Kopie.gif" src-large="/books/NBK92606/bin/GlyR_EM_Kopie.jpg" alt="Figure 6" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF6"><h4 id="HaverkampGRD.F6"><a href="/books/NBK92606/figure/HaverkampGRD.F6/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF6">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 6. Synaptic localization of two GlyR subunits at conventional synapses in the IPL. A. Preembedding electron microscopy on vibratome sections of rat retina. The figure shows an amacrine cell synapse (AC, arrow) with GlyR&#x003b1;1 immunoreactivity. <a href="/books/NBK92606/figure/HaverkampGRD.F6/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF6">(more...)</a></p></div></div></div><div id="HaverkampGRD.7_Colocalization_of_GlyR_su"><h2 id="_HaverkampGRD_7_Colocalization_of_GlyR_su_">7. Co-localization of GlyR subunits at postsynaptic sites</h2><p>Since synaptic GlyRs are composed of 2&#x003b1; and 3&#x003b2; subunits (<a class="bk_pop" href="#HaverkampGRD.REF.8">8</a>) there is the possibility that two different &#x003b1; subunits co-exist in a single heteromeric GlyR. In addition, it is possible that two different GlyR subtypes, such as &#x003b1;2&#x003b2; and &#x003b1;3&#x003b2; GlyRs co-distribute at the same postsynaptic sites. In both cases, the immunoreactive hot spots should coincide. However, when retinal sections were double labeled for the GlyR&#x003b1;1 subunit and the other three GlyR&#x003b1; subunits, no statistically significant coincidence rate of immunoreactive puncta was observed. When retinal sections were double labeled for the GlyR&#x003b1;2 and &#x003b1;3 subunits a coincidence rate of 26.7% was found (<a class="bk_pop" href="#HaverkampGRD.REF.28">28</a>). In retinal sections double labeled for the GlyR&#x003b1;3 and &#x003b1;4 subunits no significant coincidence rate was found (<a class="bk_pop" href="#HaverkampGRD.REF.23">23</a>). In sections double labeled for the GlyR&#x003b1;4 and &#x003b1;2 subunits, 31.5% of the &#x003b1;4 immunoreactive clusters also contained the &#x003b1;2 subunit (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F7/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF7" rid-ob="figobHaverkampGRDF7">Fig. 7</a>). The results indicate that postsynaptic GlyR clusters usually contain only one type of &#x003b1; subunit. The exception is approximately one third of synapses immunoreactive for GlyR &#x003b1;2 which can also contain the &#x003b1;3 or the &#x003b1;4 subunits.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF7" co-legend-rid="figlgndHaverkampGRDF7"><a href="/books/NBK92606/figure/HaverkampGRD.F7/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF7" rid-ob="figobHaverkampGRDF7"><img class="small-thumb" src="/books/NBK92606/bin/GlyR_doppelt_v9.gif" src-large="/books/NBK92606/bin/GlyR_doppelt_v9.jpg" alt="Figure 7" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF7"><h4 id="HaverkampGRD.F7"><a href="/books/NBK92606/figure/HaverkampGRD.F7/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF7">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 7. Colocalization of GlyR subunits at postsynaptic sites. GlyR&#x003b1;3 and GlyR&#x003b1;1 immunoreactive puncta are not colocalized whereas GlyR&#x003b1;2 and GlyR&#x003b1;4 immunoreactive puncta sometimes colocalize. From Haverkamp et al., 2003 <a href="/books/NBK92606/figure/HaverkampGRD.F7/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF7">(more...)</a></p></div></div></div><div id="HaverkampGRD.8_Expression_of_GlyRs_by_id"><h2 id="_HaverkampGRD_8_Expression_of_GlyRs_by_id_">8. Expression of GlyRs by identified neurons</h2><p>In order to reveal the involvement of selected GlyR subtypes with different retinal circuits, identified neurons were immunostained for the different GlyR &#x003b1; subunits. <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F8/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF8" rid-ob="figobHaverkampGRDF8">Figure 8</a> shows a GFP labeled A-type ganglion cell in a whole mount of Thy1-GFP-O mouse retina (<a class="bk_pop" href="#HaverkampGRD.REF.32">32</a>). The retina was immunolabeled for the GlyR&#x003b1;1 subunit demonstrating that many GlyR&#x003b1;1 immunoreactive puncta decorate the dendrites of this A-type ON ganglion cell. A coincidence of puncta and dendrites was also obvious for A-type OFF ganglion cells, which suggests that both ON and OFF A-type ganglion cells receive glycinergic input through &#x003b1;1 subunit expressing synapses. A-type ganglion cells were also double labeled for the other &#x003b1; subunits but quantification showed that the predominant input is through GlyR&#x003b1;1 containing synapses (<a class="bk_pop" href="#HaverkampGRD.REF.32">32</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF8" co-legend-rid="figlgndHaverkampGRDF8"><a href="/books/NBK92606/figure/HaverkampGRD.F8/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF8" rid-ob="figobHaverkampGRDF8"><img class="small-thumb" src="/books/NBK92606/bin/GRD_fig8.gif" src-large="/books/NBK92606/bin/GRD_fig8.jpg" alt="Figure 8" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF8"><h4 id="HaverkampGRD.F8"><a href="/books/NBK92606/figure/HaverkampGRD.F8/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF8">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 8. Colocalization of GlyR&#x003b1;1 with the dendrites of an A-type ganglion cell. The image on the left shows an A2-ON ganglion cell in the Thy1-GFP-O mouse (22). The whole mount was also immunostained for GlyR&#x003b1;1 and many immunoreactive <a href="/books/NBK92606/figure/HaverkampGRD.F8/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF8">(more...)</a></p></div></div><p><a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F9/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF9" rid-ob="figobHaverkampGRDF9">Figure 9</a> shows a vertical view of a Type 3 glycinergic amacrine cell in the Thy1-GFP-O mouse retina (<a class="bk_pop" href="#HaverkampGRD.REF.33">33</a>). Many GlyR&#x003b1;2 immunoreactive puncta (red) coincide with dendritic varicosities of the Type 3 cell (green) (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F9/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF9" rid-ob="figobHaverkampGRDF9">Fig. 9D-F</a>). Since this cell is a glycinergic amacrine cell, the puncta may represent input synapses the cell receives from other glycinergic amacrine cells or output synapses the cell makes onto other, non-labeled neurons. The fact that the red GlyR&#x003b1;2 immunoreactive puncta are always slightly displaced from the green varicosities (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F9/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF9" rid-ob="figobHaverkampGRDF9">Fig. 9F</a>) indicates that these synaptic GlyR&#x003b1;2 clusters are expressed by unknown neurons that are postsynaptic to this Type 3 cell.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF9" co-legend-rid="figlgndHaverkampGRDF9"><a href="/books/NBK92606/figure/HaverkampGRD.F9/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF9" rid-ob="figobHaverkampGRDF9"><img class="small-thumb" src="/books/NBK92606/bin/GRD_fig9.gif" src-large="/books/NBK92606/bin/GRD_fig9.jpg" alt="Figure 9" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF9"><h4 id="HaverkampGRD.F9"><a href="/books/NBK92606/figure/HaverkampGRD.F9/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF9">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 9. Association of GlyR&#x003b1;2 with a glycinergic amacrine cell. C. Type 3 amacrine cell from the Thy1-GFP-O mouse retina. D. Single confocal section of the cell in C also immunostained for GlyR&#x003b1;2. The boxed area is shown at higher magnification <a href="/books/NBK92606/figure/HaverkampGRD.F9/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF9">(more...)</a></p></div></div><p>The two examples of cells presented in <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F8/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF8" rid-ob="figobHaverkampGRDF8">figure 8</a> and <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F9/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF9" rid-ob="figobHaverkampGRDF9">figure 9</a> suggest a correlation between the morphological type of a given neuron and the molecular signature of the glycinergic synapse it receives or forms onto postsynaptic neurons. In this context one interesting question is whether the presynaptic neuron instructs the postsynaptic cell to express certain GlyR subunits or whether a given postsynaptic neuron expresses an exclusive GlyR subtype. To address this question a detailed physiological characterization of selected synaptic GlyRs on individual cells is essential.</p><p>To date, selective agonists or antagonists that distinguish different isoforms of synaptic GlyRs have not been identified (<a class="bk_pop" href="#HaverkampGRD.REF.1" data-bk-pop-others="HaverkampGRD.REF.34">1, 34</a>). However, mutant mice are available that have dysfunction of specific GlyR subunits and thus it became possible to study details of the glycinergic synaptic transmission in the mammalian retina (<a class="bk_pop" href="#HaverkampGRD.REF.31" data-bk-pop-others="HaverkampGRD.REF.32 HaverkampGRD.REF.35 HaverkampGRD.REF.36">31, 32, 35, 36</a>). The kinetic properties of GlyRs were measured by recording spontaneous inhibitory postsynaptic currents (sIPSCs) from identified retinal neurons in wild-type mice and mice lacking GlyR &#x003b1; subunit (<i>Glra1</i><sup><i>spd-ot</i></sup><i>, Glra2</i> and <i>Glra3</i>. From the observed differences of sIPSCs in wild-type and mutant mice, the cell-type specific subunit composition of GlyRs can be defined.</p><div id="HaverkampGRD.Glycine_receptors_express_1"><h3>Glycine receptors expressed by bipolar cells</h3><p>Patch-clamp recordings performed from identified bipolar cells in slices of the mouse retina (<a class="bk_pop" href="#HaverkampGRD.REF.31">31</a>) enabled the study of GlyRs by the application of exogenous glycine and by recording glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs). Glycine application elicited large-amplitude currents in all OFF-cone and rod bipolar cells while ON-cone bipolar cells exhibited only very small, if any, glycinergic currents (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F10/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF10" rid-ob="figobHaverkampGRDF10">Fig. 10</a> (<a class="bk_pop" href="#HaverkampGRD.REF.31" data-bk-pop-others="HaverkampGRD.REF.37">31, 37</a>), ). By comparing sIPSCs of bipolar cells in wild-type and <i>Glra3</i><sup><i>-/-</i></sup> mice, no statistically significant differences were found; whereas glycine-induced currents and sIPSCs were absent from all bipolar cells of <i>Glra1</i><sup><i>spd-ot</i></sup> mice. Thus, OFF-cone and rod bipolar cells receive kinetically fast glycinergic inputs, preferentially mediated by GlyRs composed of &#x003b1;1 and &#x003b2; subunits (decay time constant &#x003c4; ~ 5 ms). Slow sIPSCs, the characteristic of GlyRs containing the &#x003b1;2 subunit, were not observed in bipolar cells.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF10" co-legend-rid="figlgndHaverkampGRDF10"><a href="/books/NBK92606/figure/HaverkampGRD.F10/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF10" rid-ob="figobHaverkampGRDF10"><img class="small-thumb" src="/books/NBK92606/bin/GlyR_on_BPs_15.gif" src-large="/books/NBK92606/bin/GlyR_on_BPs_15.jpg" alt="Figure 10" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF10"><h4 id="HaverkampGRD.F10"><a href="/books/NBK92606/figure/HaverkampGRD.F10/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF10">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 10. Glycine-induced currents from mouse bipolar cells. OFF- and ON-bipolar cells of the mouse retina as described by Ghosh et al., 2004 (55) and summary diagram of the peak amplitudes of inward currents elicited by the application of glycine (1&#x02013;2 <a href="/books/NBK92606/figure/HaverkampGRD.F10/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF10">(more...)</a></p></div></div></div><div id="HaverkampGRD.Glycine_receptors_on_AII_an"><h3>Glycine receptors on AII and narrow-field amacrine cells</h3><p>Amacrine cells are known to express strychnine-sensitive glycine receptors. The GlyRs expressed by AII amacrine cells and by the narrow-field (NF) amacrine cells (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F11/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF11" rid-ob="figobHaverkampGRDF11">Fig. 11A</a>) were studied by patch-clamp recordings in mouse retinal slices (<a class="bk_pop" href="#HaverkampGRD.REF.36">36</a>). Glycinergic sIPSCs of AII cells displayed medium fast kinetics (&#x003c4; ~ 11 ms, <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F11/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF11" rid-ob="figobHaverkampGRDF11">Fig. 11B</a>), which were completely absent in the <i>Glra3</i><sup><i>-/-</i></sup> mouse, indicating that synaptic GlyRs of AII cells mainly contain the &#x003b1;3 subunit. Glycinergic sIPSCs of NF cells had slow kinetics (&#x003c4; ~ 27 ms, Figs. <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F11/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF11" rid-ob="figobHaverkampGRDF11">11B</a> and <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F12/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF12" rid-ob="figobHaverkampGRDF12">12C</a>) that were significantly prolonged in <i>Glra2</i><sup><i>-/-</i></sup> mice (&#x003c4; ~ 69 ms, Fig. <a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F12/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF12" rid-ob="figobHaverkampGRDF12">12F</a>). These data show that morphologically distinct amacrine cells express different sets of glycine receptors.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF11" co-legend-rid="figlgndHaverkampGRDF11"><a href="/books/NBK92606/figure/HaverkampGRD.F11/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF11" rid-ob="figobHaverkampGRDF11"><img class="small-thumb" src="/books/NBK92606/bin/GRD_fig11.gif" src-large="/books/NBK92606/bin/GRD_fig11.jpg" alt="Figure 11" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF11"><h4 id="HaverkampGRD.F11"><a href="/books/NBK92606/figure/HaverkampGRD.F11/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF11">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 11. Glycinergic sIPSCs of mouse narrow-field amacrine cells. A. Examples of recorded AII, and narrow field (NF) glycinergic amacrine cells. B. Frequency histogram of decay time constants of glycinergic sIPSCs recorded from AII cells and from NF <a href="/books/NBK92606/figure/HaverkampGRD.F11/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF11">(more...)</a></p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figHaverkampGRDF12" co-legend-rid="figlgndHaverkampGRDF12"><a href="/books/NBK92606/figure/HaverkampGRD.F12/?report=objectonly" target="object" title="Figure" class="img_link icnblk_img figpopup" rid-figpopup="figHaverkampGRDF12" rid-ob="figobHaverkampGRDF12"><img class="small-thumb" src="/books/NBK92606/bin/GRD_fig12.gif" src-large="/books/NBK92606/bin/GRD_fig12.jpg" alt="Figure 12" /></a><div class="icnblk_cntnt" id="figlgndHaverkampGRDF12"><h4 id="HaverkampGRD.F12"><a href="/books/NBK92606/figure/HaverkampGRD.F12/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF12">Figure</a></h4><p class="float-caption no_bottom_margin">Figure 12. Mutations of glycine receptor &#x003b1; subunits change sIPSC decay times. C-F. Decay time constants of glycinergic sIPSCs recorded from narrow field (NF) cells of wild-type, <i>Glra</i><sup><i>spd-ot</i></sup>, <i>Glra3</i><sup><i>-/-</i></sup> and <i>Glra2</i><sup><i>-/-</i></sup> mice. From Weiss et al., 2008 (36). <a href="/books/NBK92606/figure/HaverkampGRD.F12/?report=objectonly" target="object" rid-ob="figobHaverkampGRDF12">(more...)</a></p></div></div></div><div id="HaverkampGRD.Glycine_receptors_express_2"><h3>Glycine receptors expressed by wide-field amacrine cells</h3><p>Glycine induced currents and sIPSCs were also recorded from displaced wide-field, putative GABAergic amacrine cells. These GlyRs had slow kinetics (&#x003c4; ~ 25 ms) (<a class="bk_pop" href="#HaverkampGRD.REF.35" data-bk-pop-others="HaverkampGRD.REF.38">35, 38</a>) comparable to NF amacrine cells. ON-starburst (cholinergic amacrine cells) had sIPSCs with extremely long decay time constants (&#x003c4; ~ 50 - 70 ms), which did not differ between wild-type and the three mutant mice (<a class="bk_pop" href="#HaverkampGRD.REF.35">35</a>). Since GlyR &#x003b1;4 immunoreactive puncta (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F6/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF6" rid-ob="figobHaverkampGRDF6">Fig. 5D</a>) occur at higher density along the dendrites of ON-starburst amacrine cells, it is possible that GlyRs of ON-starburst cells are dominated by the &#x003b1;4 subunit. This would in turn suggest that GlyRs containing the &#x003b1;4 subunit have slow kinetics.</p></div><div id="HaverkampGRD.Glycine_receptors_express_3"><h3>Glycine receptors expressed by ganglion cells</h3><p>There are more than ten different types of ganglion cells in any mammalian retina. The GlyRs expressed by A-type ganglion cells (alpha-cell homologues) of the mouse retina were also investigated both in wild-type and mutant mice (<a class="bk_pop" href="#HaverkampGRD.REF.32">32</a>). In the wild-type retina, glycinergic sIPSCs of A-type ganglion cells have fast kinetics (mean &#x003c4; = 3.9 &#x000b1; 2.5 ms). Glycinergic sIPSCs recorded from <i>Glra2</i><sup><i>-/-</i></sup> and <i>Glra3</i><sup><i>-/-</i></sup> mice did not differ from those of wild-type mice. However, the number of glycinergic sIPSCs was significantly reduced in <i>Glra1</i><sup><i>spd-ot</i></sup> mice and the remaining sIPSCs had slower kinetics. These results show that A-type ganglion cells receive preferentially kinetically fast glycinergic inputs, mediated by GlyRs containing the &#x003b1;1 subunit.</p><p>B-type cells (beta-cell homologues) are probably involved with sustained neurotransmission. They are also believed to perform complex tasks like local edge detection. However, the specific roles of different B-type cells in the mouse retina are not yet clearly understood. There are four classes of small-field B-type ganglion cells (<a class="bk_pop" href="#HaverkampGRD.REF.39">39</a>), and there seems to be a substantial heterogeneity with respect to GlyR expression in these cell types. GlyRs of B1 cells are dominated by the &#x003b1;1 subunit, while in B4 cells the &#x003b1;3 subunit plays an important role. B2 and B3 cells express a more balanced mixture of fast (&#x003b1;1) and slow (&#x003b1;2, &#x003b1;3, &#x003b1;4) GlyR subunits (<a class="bk_pop" href="#HaverkampGRD.REF.40">40</a>).</p></div></div><div id="HaverkampGRD.9_Summary_and_conclusion"><h2 id="_HaverkampGRD_9_Summary_and_conclusion_">9. Summary and conclusion</h2><p>All four GlyR &#x003b1; subunits are clustered in synaptic hot spots (<a class="figpopup" href="/books/NBK92606/figure/HaverkampGRD.F6/?report=objectonly" target="object" rid-figpopup="figHaverkampGRDF6" rid-ob="figobHaverkampGRDF6">Fig. 5</a>) that show characteristic distributions across the IPL of the mouse retina (<a class="bk_pop" href="#HaverkampGRD.REF.23">23</a>). Gephyrin is responsible for clustering GlyRs to postsynaptic sites by linking the GlyR &#x003b2; subunit to the cytoskeleton (<a class="bk_pop" href="#HaverkampGRD.REF.5" data-bk-pop-others="HaverkampGRD.REF.41">5, 41</a>). No GlyR clusters could be detected in gephyrin deficient mouse retinas (<a class="bk_pop" href="#HaverkampGRD.REF.42">42</a>), which suggests that synaptic GlyRs in the retina are always heteromeric. In the adult, two copies of the &#x003b1; subunit and three copies of the &#x003b2; subunit form the pentameric receptor protein (<a class="bk_pop" href="#HaverkampGRD.REF.8">8</a>).</p><p>Bipolar cells and A-type ganglion cells represent the fast transfer channel of the mammalian retina and, therefore, express &#x003b1;1&#x003b2; GlyRs with fast kinetics. AII amacrine cells relay rod light signals with lower temporal resolution and express &#x003b1;3&#x003b2; GlyRs with medium-fast kinetics. NF amacrine cells are modulatory interneurons, where temporal precision seems less important and they express the &#x003b1;2&#x003b2; and &#x003b1;4&#x003b2; GlyRs with slow kinetics.</p><p>Both GABA and glycine inhibition are used to modulate different aspects of ganglion cell responses and receptive field (RF) organization (<a class="bk_pop" href="#HaverkampGRD.REF.43" data-bk-pop-others="HaverkampGRD.REF.44 HaverkampGRD.REF.45">43-45</a>). GABAergic amacrine cells often provide feedforward inhibition and target both GABA<sub>A</sub>Rs and GABA<sub>C</sub>Rs in reciprocal inhibitory circuits to modulate the RF center excitation (<a class="bk_pop" href="#HaverkampGRD.REF.46">46</a>), and they target GABA<sub>A</sub>Rs to amplify and refine the RF surround (<a class="bk_pop" href="#HaverkampGRD.REF.47">47</a>). Glycinergic inhibition on the other hand modulates less spatial than temporal properties and may increase the gain of the ganglion cell response. Glycinergic amacrine cells often use (crossover) inhibition to modulate ganglion cell excitatory inputs within their RF center (<a class="bk_pop" href="#HaverkampGRD.REF.48" data-bk-pop-others="HaverkampGRD.REF.49 HaverkampGRD.REF.50 HaverkampGRD.REF.51 HaverkampGRD.REF.52">48-52</a>).</p></div><div id="HaverkampGRD.About_the_Authors"><h2 id="_HaverkampGRD_About_the_Authors_">About the Authors</h2><p>
<span class="graphic"><img src="/books/NBK92606/bin/s_haverkamp.jpg" alt="Image s_haverkamp.jpg" /></span>
</p><p>Silke Haverkamp received her PhD from the Carl von Ossietzky Universit&#x000e4;t Oldenburg, Germany, in Visual Neuroscience under the mentorship of Josef Ammerm&#x000fc;ller. She was a postdoctoral researcher at the Boston University with Bill Eldred and then at the Moran Eye Center in Salt Lake City with Helga Kolb. Afterwards, Silke moved back to Germany to join the Department of Neuroanatomy headed by Heinz W&#x000e4;ssle at the Max Planck Institute of Brain Research in Frankfurt. She has now her own research group at the Institute and focuses on the structure and function of neurons and synaptic circuits within the mammalian retina, using neuroanatomical and electrophysiological methods.</p></div><div id="HaverkampGRD.References"><h2 id="_HaverkampGRD_References_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.1">Betz H., Laube B.
<em>Glycine receptors: recent insights into their structural organization and functional diversity.</em>
<span><span class="ref-journal">J Neurochem. </span>2006;<span class="ref-vol">97</span>(6):160010.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16805771" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16805771</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.2">Lynch J.W.
<em>Native glycine receptor subtypes and their physiological roles.</em>
<span><span class="ref-journal">Neuropharmacology. </span>2009;<span class="ref-vol">56</span>(1):3039.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18721822" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18721822</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.3">Harvey R.J. et al.
<em>The genetics of hyperekplexia: more than startle!</em>
<span><span class="ref-journal">Trends Genet. </span>2008;<span class="ref-vol">24</span>(9):43947.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18707791" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18707791</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.4">Pfeiffer F., Graham D., Betz H.
<em>Purification by affinity chromatography of the glycine receptor of rat spinal cord.</em>
<span><span class="ref-journal">J Biol Chem. </span>1982;<span class="ref-vol">257</span>(16):938993.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6286620" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6286620</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.5">Meyer G. et al.
<em>Identification of a gephyrin binding motif on the glycine receptor beta subunit.</em>
<span><span class="ref-journal">Neuron. </span>1995;<span class="ref-vol">15</span>(3):56372.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7546736" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7546736</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.6">Harvey R.J. et al.
<em>Glycine receptors containing the alpha4 subunit in the embryonic sympathetic nervous system, spinal cord and male genital ridge.</em>
<span><span class="ref-journal">Eur J Neurosci. </span>2000;<span class="ref-vol">12</span>(3):9941001.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10762330" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10762330</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.7">Matzenbach B. et al.
<em>Structural analysis of mouse glycine receptor alpha subunit genes. Identification and chromosomal localization of a novel variant.</em>
<span><span class="ref-journal">J Biol Chem. </span>1994;<span class="ref-vol">269</span>(4):260712.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7507926" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7507926</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.8">Grudzinska J. et al.
<em>The beta subunit determines the ligand binding properties of synaptic glycine receptors.</em>
<span><span class="ref-journal">Neuron. </span>2005;<span class="ref-vol">45</span>(5):72739.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15748848" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15748848</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.9">Kirsch J., Betz H.
<em>Glycine-receptor activation is required for receptor clustering in spinal neurons.</em>
<span><span class="ref-journal">Nature. </span>1998;<span class="ref-vol">392</span>(6677):71720.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9565032" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9565032</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.10">Young-Pearse T.L. et al.
<em>Characterization of mice with targeted deletion of glycine receptor alpha 2.</em>
<span><span class="ref-journal">Mol Cell Biol. </span>2006;<span class="ref-vol">26</span>(15):572834.</span> [<a href="/pmc/articles/PMC1592777/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1592777</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16847326" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16847326</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.11">Buckwalter M.S. et al.
<em>A frameshift mutation in the mouse alpha 1 glycine receptor gene (Glra1) results in progressive neurological symptoms and juvenile death.</em>
<span><span class="ref-journal">Hum Mol Genet. </span>1994;<span class="ref-vol">3</span>(11):202530.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7874121" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7874121</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.12">Kling C. et al.
<em>The frameshift mutation oscillator (Glra1(spd-ot)) produces a complete loss of glycine receptor alpha1-polypeptide in mouse central nervous system.</em>
<span><span class="ref-journal">Neuroscience. </span>1997;<span class="ref-vol">78</span>(2):4117.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9145798" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9145798</span></a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.13">Menger N., Pow D.V., W&#x000e4;ssle H.
<em>Glycinergic amacrine cells of the rat retina.</em>
<span><span class="ref-journal">J Comp Neurol. </span>1998;<span class="ref-vol">401</span>(1):3446.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9802699" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9802699</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.14">Pow D.V.
<em>Transport is the primary determinant of glycine content in retinal neurons.</em>
<span><span class="ref-journal">J Neurochem. </span>1998;<span class="ref-vol">70</span>(6):262836.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9603230" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9603230</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.15">Pow D.V., Hendrickson A.E.
<em>Distribution of the glycine transporter glyt-1 in mammalian and nonmammalian retinae.</em>
<span><span class="ref-journal">Vis Neurosci. </span>1999;<span class="ref-vol">16</span>(2):2319.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10367958" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10367958</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.16">Haverkamp S., W&#x000e4;ssle H.
<em>Immunocytochemical analysis of the mouse retina.</em>
<span><span class="ref-journal">J Comp Neurol. </span>2000;<span class="ref-vol">424</span>(1):123.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10888735" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10888735</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.17">Vaney D.I., Nelson J.C., Pow D.V.
<em>Neurotransmitter coupling through gap junctions in the retina.</em>
<span><span class="ref-journal">J Neurosci. </span>1998;<span class="ref-vol">18</span>(24):10594602.</span> [<a href="/pmc/articles/PMC6793342/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6793342</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9852595" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9852595</span></a>]</div></dd><dt>18.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.18">Zafra F. et al.
<em>Glycine transporters are differentially expressed among CNS cells.</em>
<span><span class="ref-journal">J Neurosci. </span>1995;<span class="ref-vol">15</span>(5 Pt 2):395269.</span> [<a href="/pmc/articles/PMC6578198/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6578198</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7751957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7751957</span></a>]</div></dd><dt>19.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.19">MacNeil M.A., Masland R.H.
<em>Extreme diversity among amacrine cells: implications for function.</em>
<span><span class="ref-journal">Neuron. </span>1998;<span class="ref-vol">20</span>(5):97182.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9620701" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9620701</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.20">Kolb H., Famiglietti E.V.
<em>Rod and cone pathways in the inner plexiform layer of cat retina.</em>
<span><span class="ref-journal">Science. </span>1974;<span class="ref-vol">186</span>(4158):479.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4417736" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4417736</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.21">Pourcho R.G., Goebel D.J.
<em>A combined Golgi and autoradiographic study of (</em>
<sup>
<em>3</em>
</sup>
<em>H)glycine-accumulating amacrine cells in the cat retina.</em>
<span><span class="ref-journal">J Comp Neurol. </span>1985;<span class="ref-vol">233</span>(4):47380.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2984258" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2984258</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.22">Feng G. et al.
<em>Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP.</em>
<span><span class="ref-journal">Neuron. </span>2000;<span class="ref-vol">28</span>(1):4151.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11086982" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11086982</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.23">Heinze L. et al.
<em>Diversity of glycine receptors in the mouse retina: localization of the alpha4 subunit.</em>
<span><span class="ref-journal">J Comp Neurol. </span>2007;<span class="ref-vol">500</span>(4):693707.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17154252" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17154252</span></a>]</div></dd><dt>24.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.24">Kolb H., Linberg K.A., Fisher S.K.
<em>Neurons of the human retina: a Golgi study.</em>
<span><span class="ref-journal">J Comp Neurol. </span>1992;<span class="ref-vol">318</span>(2):14787.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1374766" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1374766</span></a>]</div></dd><dt>25.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.25">Kolb H., Nelson R.
<em>Hyperpolarizing, small-field, amacrine cells in cone pathways of cat retina.</em>
<span><span class="ref-journal">J Comp Neurol. </span>1996;<span class="ref-vol">371</span>(3):41536.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8842896" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8842896</span></a>]</div></dd><dt>26.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.26">Kolb H., Nelson R., Mariani A.
<em>Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study.</em>
<span><span class="ref-journal">Vision Res. </span>1981;<span class="ref-vol">21</span>(7):10811114.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7314489" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7314489</span></a>]</div></dd><dt>27.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.27">Haverkamp S. et al.
<em>Diversity of glycine receptors in the mouse retina: localization of the alpha3 subunit.</em>
<span><span class="ref-journal">J Comp Neurol. </span>2003;<span class="ref-vol">465</span>(4):52439.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12975813" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12975813</span></a>]</div></dd><dt>28.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.28">Haverkamp S. et al.
<em>Diversity of glycine receptors in the mouse retina: localization of the alpha2 subunit.</em>
<span><span class="ref-journal">J Comp Neurol. </span>2004;<span class="ref-vol">477</span>(4):399411.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15329889" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15329889</span></a>]</div></dd><dt>29.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.29">Jusuf P.R., Haverkamp S., Grunert U.
<em>Localization of glycine receptor alpha subunits on bipolar and amacrine cells in primate retina.</em>
<span><span class="ref-journal">J Comp Neurol. </span>2005;<span class="ref-vol">488</span>(2):11328.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15924342" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15924342</span></a>]</div></dd><dt>30.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.30">Sassoe-Pognetto M., W&#x000e4;ssle H., Grunert U.
<em>Glycinergic synapses in the rod pathway of the rat retina: cone bipolar cells express the alpha 1 subunit of the glycine receptor.</em>
<span><span class="ref-journal">J Neurosci. </span>1994;<span class="ref-vol">14</span>(8):513146.</span> [<a href="/pmc/articles/PMC6577182/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6577182</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8046473" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8046473</span></a>]</div></dd><dt>31.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.31">Ivanova E., M&#x00171;ller F.
<em>Retinal bipolar cell types differ in their inventory of ion channels.</em>
<span><span class="ref-journal">Vis Neurosci. </span>2006;<span class="ref-vol">23</span>(2):14354.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16638168" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16638168</span></a>]</div></dd><dt>32.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.32">Majumdar S. et al.
<em>Glycine receptors of A-type ganglion cells of the mouse retina.</em>
<span><span class="ref-journal">Vis Neurosci. </span>2007;<span class="ref-vol">24</span>(4):47187.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17550639" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17550639</span></a>]</div></dd><dt>33.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.33">W&#x000e4;ssle H. et al.
<em>Glycinergic transmission in the Mammalian retina.</em>
<span><span class="ref-journal">Front Mol Neurosci. </span>2009;<span class="ref-vol">2</span>:6.</span> [<a href="/pmc/articles/PMC2777502/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2777502</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19924257" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19924257</span></a>]</div></dd><dt>34.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.34">Webb T.I., Lynch J.W.
<em>Molecular pharmacology of the glycine receptor chloride channel.</em>
<span><span class="ref-journal">Curr Pharm Des. </span>2007;<span class="ref-vol">13</span>(23):235067.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17692006" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17692006</span></a>]</div></dd><dt>35.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.35">Majumdar S., Weiss J., W&#x000e4;ssle H.
<em>Glycinergic input of widefield, displaced amacrine cells of the mouse retina.</em>
<span><span class="ref-journal">J Physiol. </span>2009;<span class="ref-vol">587</span>(Pt 15):383149.</span> [<a href="/pmc/articles/PMC2746613/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2746613</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19528249" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19528249</span></a>]</div></dd><dt>36.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.36">Weiss J. et al.
<em>Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice.</em>
<span><span class="ref-journal">Mol Cell Neurosci. </span>2008;<span class="ref-vol">37</span>(1):4055.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17920294" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17920294</span></a>]</div></dd><dt>37.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.37">Eggers E.D., Lukasiewicz P.D.
<em>GABA</em>
<sub>
<em>A</em>
</sub>
<em>, GABA</em>
<sub>
<em>C</em>
</sub>
<em> and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells.</em>
<span><span class="ref-journal">J Physiol. </span>2006;<span class="ref-vol">572</span>(Pt 1):21525.</span> [<a href="/pmc/articles/PMC1779659/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1779659</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16439422" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16439422</span></a>]</div></dd><dt>38.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.38">Veruki M.L., Gill S.B., Hartveit E.
<em>Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina.</em>
<span><span class="ref-journal">J Physiol. </span>2007;<span class="ref-vol">581</span>(Pt 1):20319.</span> [<a href="/pmc/articles/PMC2075214/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2075214</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17331993" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17331993</span></a>]</div></dd><dt>39.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.39">Sun W., Li N., He S.
<em>Large-scale morphological survey of mouse retinal ganglion cells.</em>
<span><span class="ref-journal">J Comp Neurol. </span>2002;<span class="ref-vol">451</span>(2):11526.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12209831" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12209831</span></a>]</div></dd><dt>40.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.40">Majumdar, S., L. Heinze, and H. W&#x000e4;ssle, <em>Glycinergic Synaptic Inputs of B-type Ganglion Cells of the Mouse Retina.</em> ARVO Meeting Abstracts, 2007<strong>48</strong>(5): p. 4597.</div></dd><dt>41.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.41">Kirsch J., Betz H.
<em>Widespread expression of gephyrin, a putative glycine receptor-tubulin linker protein, in rat brain.</em>
<span><span class="ref-journal">Brain Res. </span>1993;<span class="ref-vol">621</span>(2):30110.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8242343" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8242343</span></a>]</div></dd><dt>42.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.42">Fischer F. et al.
<em>Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse.</em>
<span><span class="ref-journal">J Comp Neurol. </span>2000;<span class="ref-vol">427</span>(4):63448.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11056469" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11056469</span></a>]</div></dd><dt>43.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.43">Caldwell J.H., Daw N.W.
<em>Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: changes in centre surround receptive fields.</em>
<span><span class="ref-journal">J Physiol. </span>1978;<span class="ref-vol">276</span>:299310.</span> [<a href="/pmc/articles/PMC1282425/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1282425</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/650452" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 650452</span></a>]</div></dd><dt>44.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.44">Chen X. et al.
<em>Three forms of spatial temporal feedforward inhibition are common to different ganglion cell types in rabbit retina.</em>
<span><span class="ref-journal">J Neurophysiol. </span>2010;<span class="ref-vol">103</span>(5):261832.</span> [<a href="/pmc/articles/PMC4073908/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4073908</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20220071" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20220071</span></a>]</div></dd><dt>45.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.45">O'Brien B.J., Richardson R.C., Berson D.M.
<em>Inhibitory network properties shaping the light evoked responses of cat alpha retinal ganglion cells.</em>
<span><span class="ref-journal">Vis Neurosci. </span>2003;<span class="ref-vol">20</span>(4):35161.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14658764" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14658764</span></a>]</div></dd><dt>46.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.46">Eggers E.D., Lukasiewicz P.D.
<em>Multiple pathways of inhibition shape bipolar cell responses in the retina.</em>
<span><span class="ref-journal">Vis Neurosci. </span>2011;<span class="ref-vol">28</span>(1):95108.</span> [<a href="/pmc/articles/PMC3222954/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3222954</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20932357" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20932357</span></a>]</div></dd><dt>47.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.47">Flores-Herr N., Protti D.A., W&#x000e4;ssle H.
<em>Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina.</em>
<span><span class="ref-journal">J Neurosci. </span>2001;<span class="ref-vol">21</span>(13):485263.</span> [<a href="/pmc/articles/PMC6762364/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6762364</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11425912" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11425912</span></a>]</div></dd><dt>48.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.48">Hsueh H.A., Molnar A., Werblin F.S.
<em>Amacrine-to-amacrine cell inhibition in the rabbit retina.</em>
<span><span class="ref-journal">J Neurophysiol. </span>2008;<span class="ref-vol">100</span>(4):207788.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18667544" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18667544</span></a>]</div></dd><dt>49.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.49">Manookin M.B. et al.
<em>Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight.</em>
<span><span class="ref-journal">J Neurosci. </span>2008;<span class="ref-vol">28</span>(16):413650.</span> [<a href="/pmc/articles/PMC2557439/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2557439</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18417693" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18417693</span></a>]</div></dd><dt>50.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.50">van Wyk M., W&#x000e4;ssle H., Taylor W.R.
<em>Receptive field properties of ON- and OFF-ganglion cells in the mouse retina.</em>
<span><span class="ref-journal">Vis Neurosci. </span>2009;<span class="ref-vol">26</span>(3):297308.</span> [<a href="/pmc/articles/PMC2874828/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2874828</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19602302" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19602302</span></a>]</div></dd><dt>51.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.51">W&#x000e4;ssle H., Schafer-Trenkler I., Voigt T.
<em>Analysis of a glycinergic inhibitory pathway in the cat retina.</em>
<span><span class="ref-journal">J Neurosci. </span>1986;<span class="ref-vol">6</span>(2):594604.</span> [<a href="/pmc/articles/PMC6568517/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6568517</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/3950712" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3950712</span></a>]</div></dd><dt>52.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.52">Werblin F.S.
<em>Six different roles for crossover inhibition in the retina: correcting the nonlinearities of synaptic transmission.</em>
<span><span class="ref-journal">Vis Neurosci. </span>2010;<span class="ref-vol">27</span>(1-2):18.</span> [<a href="/pmc/articles/PMC2990954/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2990954</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20392301" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20392301</span></a>]</div></dd><dt>53.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.53">Stafford B.K. et al.
<em>Spatial-Temporal Patterns of Retinal Waves Underlying Activity-Dependent Refinement of Retinofugal Projections.</em>
<span><span class="ref-journal">Neuron. </span>2009;<span class="ref-vol">64</span>(2):200212.</span> [<a href="/pmc/articles/PMC2771121/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2771121</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19874788" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19874788</span></a>]</div></dd><dt>54.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.54">Moss S.J., Smart T.G.
<em>Constructing inhibitory synapses.</em>
<span><span class="ref-journal">Nat Rev Neurosci. </span>2001;<span class="ref-vol">2</span>(4):240250.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11283747" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11283747</span></a>]</div></dd><dt>55.</dt><dd><div class="bk_ref" id="HaverkampGRD.REF.55">Ghosh K.K. et al.
<em>Types of bipolar cells in the mouse retina.</em>
<span><span class="ref-journal">J Comp Neurol. </span>2004;<span class="ref-vol">469</span>(1):7082.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14689473" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14689473</span></a>]</div></dd></dl></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a>: © 2025 Webvision .<p class="small">All copyright for chapters belongs to the individual authors who created them. However, for non-commercial, academic purposes, images and content from the chapters portion of Webvision may be used with a non-exclusive rights under a Attribution, <a href="https://creativecommons.org/licenses/by-nc/4.0/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Noncommercial 4.0 International (CC BY-NC) Creative Commons license</a>. Cite Webvision, http://webvision.med.utah.edu/ as the source. Commercial applications need to obtain license permission from the administrator of Webvision and are generally declined unless the copyright owner can/wants to donate or license material. Use online should be accompanied by a link back to the original source of the material. All imagery or content associated with blog posts belong to the authors of said posts, except where otherwise noted.</p></div><div class="small"><span class="label">Bookshelf ID: NBK92606</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/22574341" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">22574341</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/webvision/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/webvision/ch17nt/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/webvision/PopovaDopamine/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK92606&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK92606/?report=reader">PubReader</a></li><li><a href="/books/NBK92606/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK92606" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK92606" style="display:none" title="Cite this Page"><div class="bk_tt">Haverkamp S. Glycine Receptor Diversity in the Mammalian Retina. 2012 Mar 27. In: Kolb H, Fernandez E, Jones B, et al., editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. <span class="bk_cite_avail"></span></div></div></li><li><a href="/books/NBK92606/pdf/Bookshelf_NBK92606.pdf">PDF version of this page</a> (1.7M)</li><li><a href="/books/n/webvision/pdf/">PDF version of this title</a> (235M)</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#HaverkampGRD.1_Introduction" ref="log$=inpage&amp;link_id=inpage">Introduction</a></li><li><a href="#HaverkampGRD.2_Structure_of_glycine_rece" ref="log$=inpage&amp;link_id=inpage">Structure of glycine receptors</a></li><li><a href="#HaverkampGRD.3_Developmental_expression" ref="log$=inpage&amp;link_id=inpage"> Developmental expression</a></li><li><a href="#HaverkampGRD.4_Glycinergic_amacrine_cell" ref="log$=inpage&amp;link_id=inpage"> Glycinergic amacrine cells</a></li><li><a href="#HaverkampGRD.5_Morphological_types_of_gl" ref="log$=inpage&amp;link_id=inpage"> Morphological types of glycinergic amacrine cells</a></li><li><a href="#HaverkampGRD.6_GlyR_diversity_in_the_mou" ref="log$=inpage&amp;link_id=inpage"> GlyR diversity in the mouse retina</a></li><li><a href="#HaverkampGRD.7_Colocalization_of_GlyR_su" ref="log$=inpage&amp;link_id=inpage"> Co-localization of GlyR subunits at postsynaptic sites</a></li><li><a href="#HaverkampGRD.8_Expression_of_GlyRs_by_id" ref="log$=inpage&amp;link_id=inpage"> Expression of GlyRs by identified neurons</a></li><li><a href="#HaverkampGRD.9_Summary_and_conclusion" ref="log$=inpage&amp;link_id=inpage"> Summary and conclusion</a></li><li><a href="#HaverkampGRD.About_the_Authors" ref="log$=inpage&amp;link_id=inpage">About the Authors</a></li><li><a href="#HaverkampGRD.References" ref="log$=inpage&amp;link_id=inpage">References</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related Items in Bookshelf</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="source-links" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="https://www.ncbi.nlm.nih.gov/books?term=%22reference%20works%22%5BResource%20Type%5D" ref="pagearea=source-links&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">All Reference Works</a></li><li><a href="https://www.ncbi.nlm.nih.gov/books?term=&quot;textbooks&quot;%5BResource%20Type%5D" ref="pagearea=source-links&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">All Textbooks</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related information</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="discovery_db_links" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pmc&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pmc_refs&amp;IdsFromResult=2905286" ref="log$=recordlinks">PMC</a><div class="brieflinkpop offscreen_noflow">PubMed Central citations</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pubmed&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pubmed_refs&amp;IdsFromResult=2905286" ref="log$=recordlinks">PubMed</a><div class="brieflinkpop offscreen_noflow">Links to PubMed</div></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/32119275" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Histology, Axon.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">Histology, Axon.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Muzio MR, Fakoya AO, Cascella M. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/29494117" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Ciguatera Toxicity.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">Ciguatera Toxicity.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Traylor J, Murray BP, Singhal M. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/29262102" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Gyromitra Mushroom Toxicity.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">Gyromitra Mushroom Toxicity.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Horowitz KM, Kong EL, Regina AC, Horowitz BZ. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/36137063" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.</a><span class="source">[The Time of Anthropology: Stud...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Salisbury L, Baraitser L. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">The Time of Anthropology: Studies of Contemporary Chronopolitics. 2020</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/21413382" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Bipolar Cell Pathways in the Vertebrate Retina.</a><span class="source">[Webvision: The Organization of...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Bipolar Cell Pathways in the Vertebrate Retina.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Nelson R, Connaughton V. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Webvision: The Organization of the Retina and Visual System. 1995</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=22574341" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=22574341" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67c9a746a68b6b5afcde5e78">Glycine Receptor Diversity in the Mammalian Retina - Webvision</a><div class="ralinkpop offscreen_noflow">Glycine Receptor Diversity in the Mammalian Retina - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=2" href="/portal/utils/pageresolver.fcgi?recordid=67c9a74584f3725e59a64ede">Neurotransmitters in the Retina by Helga Kolb - Webvision</a><div class="ralinkpop offscreen_noflow">Neurotransmitters in the Retina by Helga Kolb - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=3" href="/portal/utils/pageresolver.fcgi?recordid=67c9a744f4a390645ea3b7c6">Part IV: Neurotransmitters in the Retina - Webvision</a><div class="ralinkpop offscreen_noflow">Part IV: Neurotransmitters in the Retina - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=4" href="/portal/utils/pageresolver.fcgi?recordid=67c9a742a68b6b5afcde3a7a">Myriad roles for gap junctions in retinal circuits - Webvision</a><div class="ralinkpop offscreen_noflow">Myriad roles for gap junctions in retinal circuits - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=5" href="/portal/utils/pageresolver.fcgi?recordid=67c9a741a68b6b5afcde3539">Feedback Loops in the Retina - Webvision</a><div class="ralinkpop offscreen_noflow">Feedback Loops in the Retina - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK92606&amp;ncbi_domain=webvision&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK92606/&amp;ncbi_pagename=Glycine Receptor Diversity in the Mammalian Retina - Webvision - NCBI Bookshelf&amp;ncbi_bookparttype=chapter&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal105 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>