nih-gov/www.ncbi.nlm.nih.gov/books/n/webvision/CreelAlbinism/index.html
2025-03-17 02:05:34 +00:00

477 lines
No EOL
268 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK303985" /><meta name="ncbi_domain" content="webvision" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK303985/" /><meta name="ncbi_pagename" content="Visual and Auditory Anomalies Associated with Albinism - Webvision - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="chapter" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Visual and Auditory Anomalies Associated with Albinism - Webvision - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Webvision: The Organization of the Retina and Visual System [Internet]" /><meta name="citation_title" content="Visual and Auditory Anomalies Associated with Albinism" /><meta name="citation_publisher" content="University of Utah Health Sciences Center" /><meta name="citation_date" content="2015/06/18" /><meta name="citation_author" content="Donnell J. Creel" /><meta name="citation_pmid" content="26131546" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK303985/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Visual and Auditory Anomalies Associated with Albinism" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="University of Utah Health Sciences Center" /><meta name="DC.Contributor" content="Donnell J. Creel" /><meta name="DC.Date" content="2015/06/18" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK303985/" /><meta name="description" content="One of the evolutionary characteristics of the mammalian visual system is the increase of binocular overlap of vision as eyes progress from being located on side of the head such as the guinea pig to the frontal position in Haplorrhine primates. Concomitantly as the proportion of temporal retina increases the number of uncrossed optic neurons at the optic chiasm expands from as little as 1% in guinea pigs to approximately 45% in primates including human beings (1, 2). Figure 1 illustrates the approximate distribution of crossed and uncrossed retinal ganglion cells (RGCs) in the visual pathways of normally pigmented human beings." /><meta name="og:title" content="Visual and Auditory Anomalies Associated with Albinism" /><meta name="og:type" content="book" /><meta name="og:description" content="One of the evolutionary characteristics of the mammalian visual system is the increase of binocular overlap of vision as eyes progress from being located on side of the head such as the guinea pig to the frontal position in Haplorrhine primates. Concomitantly as the proportion of temporal retina increases the number of uncrossed optic neurons at the optic chiasm expands from as little as 1% in guinea pigs to approximately 45% in primates including human beings (1, 2). Figure 1 illustrates the approximate distribution of crossed and uncrossed retinal ganglion cells (RGCs) in the visual pathways of normally pigmented human beings." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK303985/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-webvision-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/webvision/CreelAlbinism/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK303985/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8EB2BC7C9A16C10000000000C30097.m_13" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="snp">SNP</option><option value="nlmcatalog">NLM Catalog</option><option value="pcsubstance" class="last">PubChem Substance</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Kolb H, Fernandez E, Jones B, et al., editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. </p></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/webvision/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-webvision-lrg.png" alt="Cover of Webvision" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>Webvision: The Organization of the Retina and Visual System [Internet].</h2><a data-jig="ncbitoggler" href="#__NBK303985_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK303985_dtls__"><div>Kolb H, Fernandez E, Jones B, et al., editors.</div><div>Salt Lake City (UT): <a href="http://webvision.med.utah.edu/" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">University of Utah Health Sciences Center</a>; 1995-.</div></div><div class="half_rhythm"><ul class="inline_list"><li style="margin-right:1em"><a class="bk_cntns" href="/books/n/webvision/">Contents</a></li></ul></div><div class="bk_noprnt"><form method="get" action="/books/n/webvision/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div><div class="icnblk_cntnt two_col"><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/webvision/ch36clinicalerg/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/webvision/diseases/" title="Next page in this title">Next &gt;</a></div></div></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK303985_"><span class="title" itemprop="name">Visual and Auditory Anomalies Associated with Albinism</span></h1><p class="contrib-group"><span itemprop="author">Donnell J. Creel</span>, PhD.</p><a data-jig="ncbitoggler" href="#__NBK303985_ai__" style="border:0;text-decoration:none">Author Information and Affiliations</a><div style="display:none" class="ui-widget" id="__NBK303985_ai__"><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Donnell J. Creel</span>, PhD<sup><img src="/corehtml/pmc/pmcgifs/corrauth.gif" alt="corresponding author" /></sup><sup>1</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup> Department of Ophthalmology, University of Utah Medical Center.<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="ude.hatu.csh@leerc.llennoD" class="oemail">ude.hatu.csh@leerc.llennoD</a></div></div><div><sup><img src="/corehtml/pmc/pmcgifs/corrauth.gif" alt="corresponding author" /></sup>Corresponding author.</div></div><p class="small">Created: <span itemprop="datePublished">June 18, 2015</span>.</p></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="CreelAlbinism.Introduction"><h2 id="_CreelAlbinism_Introduction_">1. Introduction</h2><p>One of the evolutionary characteristics of the mammalian visual system is the increase of binocular overlap of vision as eyes progress from being located on side of the head such as the guinea pig to the frontal position in Haplorrhine primates. Concomitantly as the proportion of temporal retina increases the number of uncrossed optic neurons at the optic chiasm expands from as little as 1% in guinea pigs to approximately 45% in primates including human beings (<a class="bk_pop" href="#CreelAlbinism.REF.1" data-bk-pop-others="CreelAlbinism.REF.2">1, 2</a>). <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F1/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF1" rid-ob="figobCreelAlbinismF1">Figure 1</a> illustrates the approximate distribution of crossed and uncrossed retinal ganglion cells (RGCs) in the visual pathways of normally pigmented human beings.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF1" co-legend-rid="figlgndCreelAlbinismF1"><a href="/books/NBK303985/figure/CreelAlbinism.F1/?report=objectonly" target="object" title="Figure 1. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF1" rid-ob="figobCreelAlbinismF1"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image001.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image001.jpg" alt="Figure 1. . Schematic of approximate distribution of crossed and uncrossed retinal ganglion cells at the optic chiasm in primates including humans." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF1"><h4 id="CreelAlbinism.F1"><a href="/books/NBK303985/figure/CreelAlbinism.F1/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF1">Figure 1. </a></h4><p class="float-caption no_bottom_margin">Schematic of approximate distribution of crossed and uncrossed retinal ganglion cells at the optic chiasm in primates including humans. </p></div></div><p>C. L. Sheridan (<a class="bk_pop" href="#CreelAlbinism.REF.3">3</a>) compared the interocular visual pathways in "split brain" ocularly pigmented (hooded) rats and albino rats. Sheridan concluded &#x0201c;Perhaps the paucity of uncrossed fibers that characterized rodents in general is even further reduced in the albino". That year Lund (<a class="bk_pop" href="#CreelAlbinism.REF.4">4</a>) verified Sheridan's hypothesis anatomically. Lund stated albino rats display no organized uncrossed optic fibers. Lund agreed with previous estimates that pigmented rats possess up to 10% uncrossed optic fibers. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F2/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF2" rid-ob="figobCreelAlbinismF2">Figure 2</a> is a diagram of crossed and uncrossed optic projections in wild-type rodents.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF2" co-legend-rid="figlgndCreelAlbinismF2"><a href="/books/NBK303985/figure/CreelAlbinism.F2/?report=objectonly" target="object" title="Figure 2. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF2" rid-ob="figobCreelAlbinismF2"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image002.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image002.jpg" alt="Figure 2. . Schematic of range of crossed and uncrossed retinal ganglion cell fibers at optic chiasm in rodents." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF2"><h4 id="CreelAlbinism.F2"><a href="/books/NBK303985/figure/CreelAlbinism.F2/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF2">Figure 2. </a></h4><p class="float-caption no_bottom_margin">Schematic of range of crossed and uncrossed retinal ganglion cell fibers at optic chiasm in rodents. </p></div></div><p>Mammals with few uncrossed retinal ganglion cell fibers (RGCs) such as rodents and lagomorphs do not exhibit the laminated dorsal lateral geniculate nucleus (dLGN) seen in carnivores and primates including human beings. Carnivores and Haplorrhine primate dLGN contain up to six monocular layers with point-to-point representation of visual space organized in columns through these layers. The 90%+ crossed RGCs at the optic chiasm in rodents and lagomorphs fill the contralateral dLGN, with only a pocket of the ipsilateral dLGN devoted to the fewer uncrossed fibers. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F3/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF3" rid-ob="figobCreelAlbinismF3">Figure 3</a> illustrates RGC fiber terminations in horizontal sections through the dLGN comparing black and albino rats. The fewer uncrossed fibers in albino rodents are also projected to the dLGN in a fragmented fashion as opposed to a close organization in pigmented rodents.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF3" co-legend-rid="figlgndCreelAlbinismF3"><a href="/books/NBK303985/figure/CreelAlbinism.F3/?report=objectonly" target="object" title="Figure 3. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF3" rid-ob="figobCreelAlbinismF3"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image003.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image003.jpg" alt="Figure 3. . The distribution of pericellular optic fiber degeneration in the dorsal lateral geniculate nucleus (dLGN) of BLACK and ALBINO rats in serial horizontal section at three levels of dLGN." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF3"><h4 id="CreelAlbinism.F3"><a href="/books/NBK303985/figure/CreelAlbinism.F3/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF3">Figure 3. </a></h4><p class="float-caption no_bottom_margin">The distribution of pericellular optic fiber degeneration in the dorsal lateral geniculate nucleus (dLGN) of BLACK and ALBINO rats in serial horizontal section at three levels of dLGN. </p></div></div></div><div id="CreelAlbinism.Visual_learning_studies"><h2 id="_CreelAlbinism_Visual_learning_studies_">2. Visual learning studies</h2><p>A retrospective review of visual learning experiments, which isolated uncrossed optic pathways in rats, published 1924 to 1966 indicated that ocularly pigmented rats can learn visual discriminations using uncrossed optic fibers, whereas albino rats cannot (<a class="bk_pop" href="#CreelAlbinism.REF.5" data-bk-pop-others="CreelAlbinism.REF.6 CreelAlbinism.REF.7 CreelAlbinism.REF.8 CreelAlbinism.REF.9">5-9</a>). This correlation was not noticed until 1965. These studies were all designed similar to depicted in <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F4/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF4" rid-ob="figobCreelAlbinismF4">Figure 4</a> of rat visual pathways. A combination of limiting visual input to one eye with ablation of visual cortex restricted visual information in rats to either crossed 90-95% of RGCs or 5-10% of uncrossed RGCs. Studies reported pigmented rats can learn visual pattern discriminations using uncrossed pathways. The uncrossed terminations in albino rats are minimal. Albino rats do not learn visual pattern discriminations when limited to uncrossed visual pathways.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF4" co-legend-rid="figlgndCreelAlbinismF4"><a href="/books/NBK303985/figure/CreelAlbinism.F4/?report=objectonly" target="object" title="Figure 4. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF4" rid-ob="figobCreelAlbinismF4"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image004.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image004.jpg" alt="Figure 4. . Illustration depicting functioning optic pathways combining occlusion and visual striate cortex ablation (cross hatched areas)." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF4"><h4 id="CreelAlbinism.F4"><a href="/books/NBK303985/figure/CreelAlbinism.F4/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF4">Figure 4. </a></h4><p class="float-caption no_bottom_margin">Illustration depicting functioning optic pathways combining occlusion and visual striate cortex ablation (cross hatched areas). </p></div></div></div><div id="CreelAlbinism.Siamese_cats"><h2 id="_CreelAlbinism_Siamese_cats_">3. Siamese cats</h2><p>For several years the anatomical anomaly of few uncrossed RGCs at the optic chiasm in albinos appeared to be limited to rats and rabbits (<a class="bk_pop" href="#CreelAlbinism.REF.10">10</a>). Guillery (<a class="bk_pop" href="#CreelAlbinism.REF.11">11</a>) described aberrant retinogeniculate organization in Siamese cats, but the connection to albinism was not recognized.</p><p>The first link between Siamese cats and albinism, and suggestion that reduced uncrossed optic fibers likely is a "highly general trans-species phenomenon in albinic mammals" was in 1971 (<a class="bk_pop" href="#CreelAlbinism.REF.12" data-bk-pop-others="CreelAlbinism.REF.13">12, 13</a>). Siamese cats possess a tyrosinase-locus mutation that is a temperature sensitive pigmentation defect, i.e. pigment forms only on the cold parts of the body similar to Himalayan mice, rats and rabbits. This mutation is sometimes referred to as the Siamese - Himalayan temperature effect. Cortical mapping of visual projection areas in normally pigmented and Siamese cats demonstrated significant differences in their uncrossed optic pathways. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F5/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF5" rid-ob="figobCreelAlbinismF5">Figure 5</a> depicts monocular visual evoked potentials recorded from a Siamese cat&#x02019;s cortical visual area showing preponderance of contralateral innervation.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF5" co-legend-rid="figlgndCreelAlbinismF5"><a href="/books/NBK303985/figure/CreelAlbinism.F5/?report=objectonly" target="object" title="Figure 5. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF5" rid-ob="figobCreelAlbinismF5"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image005.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image005.jpg" alt="Figure 5. . Map of dorsal surface of Siamese cat visual cortex chowing monocular visual evoked potentials via crossed (left) and uncrossed (right) optic projections." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF5"><h4 id="CreelAlbinism.F5"><a href="/books/NBK303985/figure/CreelAlbinism.F5/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF5">Figure 5. </a></h4><p class="float-caption no_bottom_margin">Map of dorsal surface of Siamese cat visual cortex chowing monocular visual evoked potentials via crossed (left) and uncrossed (right) optic projections. From Creel, 1971 (12). </p></div></div><p>These cat studies discovered that a single recording site over each visual cortical projection area could reflect differences between pigmented and albino cats (<a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F6/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF6" rid-ob="figobCreelAlbinismF6">Figure 6</a>). This observation was the basis for testing human albinos using scalp-recorded visually evoked potentials (<a class="bk_pop" href="#CreelAlbinism.REF.14">14</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF6" co-legend-rid="figlgndCreelAlbinismF6"><a href="/books/NBK303985/figure/CreelAlbinism.F6/?report=objectonly" target="object" title="Figure 6. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF6" rid-ob="figobCreelAlbinismF6"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image006.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image006.jpg" alt="Figure 6. . Visually evoked potentials recorded by single dural electrode from normally pigmented and Siamese cat showing dramatic difference in proportion of ipsilateral optic projections." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF6"><h4 id="CreelAlbinism.F6"><a href="/books/NBK303985/figure/CreelAlbinism.F6/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF6">Figure 6. </a></h4><p class="float-caption no_bottom_margin">Visually evoked potentials recorded by single dural electrode from normally pigmented and Siamese cat showing dramatic difference in proportion of ipsilateral optic projections. From Creel, 1971 (13). </p></div></div></div><div id="CreelAlbinism.Albino_animal_studies"><h2 id="_CreelAlbinism_Albino_animal_studies_">4. Albino animal studies</h2><p>Many animal studies in the 1970s reported that all albino mammals with oculocutaneous, or only ocular albinism, demonstrate reduced uncrossed optic projections (<a class="bk_pop" href="#CreelAlbinism.REF.15" data-bk-pop-others="CreelAlbinism.REF.16 CreelAlbinism.REF.17">15-17</a>). A review with figures characterizing types of visual organization in the Siamese cat is R. W. Guillery's 1974 publication in Scientific American (<a class="bk_pop" href="#CreelAlbinism.REF.18">18</a>). One human albino brain (<a class="bk_pop" href="#CreelAlbinism.REF.19" data-bk-pop-others="CreelAlbinism.REF.20">19, 20</a>) and an albino monkey brain were studied verifying similar anomalies in albino primates (<a class="bk_pop" href="#CreelAlbinism.REF.21" data-bk-pop-others="CreelAlbinism.REF.22">21, 22</a>). Defects identified in albino mammals encompass a decreased number of photoreceptors, foveal/area centralis hypoplasia, misrouting of the temporal retinal ganglion cell axons across the chiasm, variation of central RGC terminations, vascular intrusion into area centralis, anomalous cortical organization, and fewer cones and RGCs in macular area (<a class="bk_pop" href="#CreelAlbinism.REF.23" data-bk-pop-others="CreelAlbinism.REF.24 CreelAlbinism.REF.25 CreelAlbinism.REF.26 CreelAlbinism.REF.27">23-27</a>).</p><p>The organization of the visual system varies considerably among mammals. Haplorrhine primates display well-defined foveae, foveal avascular zone, and large numbers of uncrossed optic fibers, whereas rodents and even carnivores exhibit only a central fixation area in the retina. In the domestic cat there is a trend towards an avascular zone with only capillary vessels found in the area centralis. Mammals vary not only in numbers of optic nerve fibers that decussate but further in embryonic development and proportion of optic projections terminating in various levels of the optic system from suprachiasmatic nuclei, to midbrain, to geniculate nuclei, to cortex.</p><p>An animal model manifesting dramatic effects of misrouting is the albino cat. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F7/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF7" rid-ob="figobCreelAlbinismF7">Figure 7</a> is a photograph of a litter of albino cats homologous to Type 1 tyrosinase-locus oculocutaneous human albinism (OCA1) with no ability to make pigment. All these cats had observable nystagmus and many strabismus. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F8/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF8" rid-ob="figobCreelAlbinismF8">Figure 8</a> pictures the optic chiasm of an OCA1 albino cat showing almost all RGCs cross at the chiasm.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF7" co-legend-rid="figlgndCreelAlbinismF7"><a href="/books/NBK303985/figure/CreelAlbinism.F7/?report=objectonly" target="object" title="Figure 7. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF7" rid-ob="figobCreelAlbinismF7"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image007.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image007.jpg" alt="Figure 7. . Litter of Type 1 oculocutaneous albino kittens." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF7"><h4 id="CreelAlbinism.F7"><a href="/books/NBK303985/figure/CreelAlbinism.F7/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF7">Figure 7. </a></h4><p class="float-caption no_bottom_margin">Litter of Type 1 oculocutaneous albino kittens. All displayed nystagmus and some strabismus. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF8" co-legend-rid="figlgndCreelAlbinismF8"><a href="/books/NBK303985/figure/CreelAlbinism.F8/?report=objectonly" target="object" title="Figure 8. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF8" rid-ob="figobCreelAlbinismF8"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image008.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image008.jpg" alt="Figure 8. . Dark-field autoradiograph of coronal section through the optic chiasm of a Type 1 albino cat after injection of tritiated leucine into right eye showing difference between contralateral and ipsilateral RGC projections." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF8"><h4 id="CreelAlbinism.F8"><a href="/books/NBK303985/figure/CreelAlbinism.F8/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF8">Figure 8. </a></h4><p class="float-caption no_bottom_margin">Dark-field autoradiograph of coronal section through the optic chiasm of a Type 1 albino cat after injection of tritiated leucine into right eye showing difference between contralateral and ipsilateral RGC projections. Almost all RGCs cross at the optic <a href="/books/NBK303985/figure/CreelAlbinism.F8/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF8">(more...)</a></p></div></div><p><a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F9/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF9" rid-ob="figobCreelAlbinismF9">Figure 9</a> depicts the geniculate nuclei of a Type 1 albino cat compared to a normally pigmented cat. The dLGN of albino cats containing only one small pocket of ipsilateral projections is almost as primitive as a rodent dLGN. Four patterns of geniculocortical organization are described in albino mammals (<a class="bk_pop" href="#CreelAlbinism.REF.18" data-bk-pop-others="CreelAlbinism.REF.22 CreelAlbinism.REF.28 CreelAlbinism.REF.29 CreelAlbinism.REF.30">18, 22, 28-30</a>). All forms likely exist in human albinos. Abnormal proportions of ipsilateral and contralateral RGCs continue to mid-brain nuclei probably providing the basis for atypical optokinetic nystagmus in albino mammals.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF9" co-legend-rid="figlgndCreelAlbinismF9"><a href="/books/NBK303985/figure/CreelAlbinism.F9/?report=objectonly" target="object" title="Figure 9. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF9" rid-ob="figobCreelAlbinismF9"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image009.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image009.jpg" alt="Figure 9. . Dark-field autoradiographs of coronal sections through the ipsilateral (A) and contralateral (B) dLGN of a pigmented cat and the ipsilateral (C) and contralateral (D) dLGN of a Type 1 albino cat." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF9"><h4 id="CreelAlbinism.F9"><a href="/books/NBK303985/figure/CreelAlbinism.F9/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF9">Figure 9. </a></h4><p class="float-caption no_bottom_margin">Dark-field autoradiographs of coronal sections through the ipsilateral (A) and contralateral (B) dLGN of a pigmented cat and the ipsilateral (C) and contralateral (D) dLGN of a Type 1 albino cat. The arrow in (D) points to small ipsilateral A1 input. <a href="/books/NBK303985/figure/CreelAlbinism.F9/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF9">(more...)</a></p></div></div><p>Few of the rare forms albinism have been investigated anatomically in carnivores or primates. One rare form that has is the Chediak-Higashi syndrome (CHS), which occurs in mammals including human beings and cats. Decreased oculocutaneous pigmentation, enlarged cytoplasmic granules, increased susceptibility to infections, and hemorrhagic tendencies characterize CHS. Ocular anomalies include pale irides and albinotic fundi. Cats with CHS exhibit photophobia and prolonged post-rotatory nystagmus. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F10/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF10" rid-ob="figobCreelAlbinismF10">Figure 10</a> depicts littermate cats of a Blue Smoke Persian strain. The hypopigmented cat on the left is affected with CHS. Visual projections of CHS cats misroute at the optic chiasm fragmenting layer A1 of the dLGN into several islands <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F11/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF11" rid-ob="figobCreelAlbinismF11">(Figure 11),</a> similar to the disruption of A1 outlined in the Siamese cat (<a class="bk_pop" href="#CreelAlbinism.REF.31">31</a>). Visual and auditory anomalies resembling those in albinos were described in human beings with CHS using evoked potentials (<a class="bk_pop" href="#CreelAlbinism.REF.32">32</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF10" co-legend-rid="figlgndCreelAlbinismF10"><a href="/books/NBK303985/figure/CreelAlbinism.F10/?report=objectonly" target="object" title="Figure 10. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF10" rid-ob="figobCreelAlbinismF10"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image010.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image010.jpg" alt="Figure 10. . Photograph of 2 littermate Blue Smoke Persian cats." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF10"><h4 id="CreelAlbinism.F10"><a href="/books/NBK303985/figure/CreelAlbinism.F10/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF10">Figure 10. </a></h4><p class="float-caption no_bottom_margin">Photograph of 2 littermate Blue Smoke Persian cats. The cat on the left is affected with Chediak-Kigashi syndrome. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF11" co-legend-rid="figlgndCreelAlbinismF11"><a href="/books/NBK303985/figure/CreelAlbinism.F11/?report=objectonly" target="object" title="Figure 11. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF11" rid-ob="figobCreelAlbinismF11"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image011.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image011.jpg" alt="Figure 11. . Dark-field autoradiographs of sections through the dLGN of a cat with Chediak-Higashi syndrome (HS)." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF11"><h4 id="CreelAlbinism.F11"><a href="/books/NBK303985/figure/CreelAlbinism.F11/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF11">Figure 11. </a></h4><p class="float-caption no_bottom_margin">Dark-field autoradiographs of sections through the dLGN of a cat with Chediak-Higashi syndrome (HS). Contralateral (A) and ipsilateral (B) sections about two-thirds through the dLGN, and contralateral (C) and ipsilateral (D) sections about one-third through <a href="/books/NBK303985/figure/CreelAlbinism.F11/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF11">(more...)</a></p></div></div><p>Phylogenetically older connections are less abnormal in albino mammals. Retinohypothalamic projections predate vertebrates, existing in early chordates that possess retinal pigment matching vertebrates (<a class="bk_pop" href="#CreelAlbinism.REF.33">33</a>). Melanopsin-sensitive retinal ganglion cells are completely crossed or bilaterally projecting to suprachiasmatic nuclei, and not affected (<a class="bk_pop" href="#CreelAlbinism.REF.34" data-bk-pop-others="CreelAlbinism.REF.35">34, 35</a>). The phylogenetically older bilateral projections to suprachiasmatic nuclei in albino cat (<a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F8/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF8" rid-ob="figobCreelAlbinismF8">Figure 8</a>) appear to be unaffected (<a class="bk_pop" href="#CreelAlbinism.REF.36">36</a>). The crossed/uncrossed ratio of approximately 1.4:1 of retinal ganglion fibers to the suprachiasmatic nuclei in albino cats corresponds to the ratio reported for normally pigmented cats (<a class="bk_pop" href="#CreelAlbinism.REF.37">37</a>).The later-evolving vertebrate rod-cone-RPE-ganglion cell system is vulnerable to alteration in albino mammals whereas the phylogenetically older melanopsin pathway is generally not.</p></div><div id="CreelAlbinism.Genetic_mechanisms"><h2 id="_CreelAlbinism_Genetic_mechanisms_">5. Genetic mechanisms</h2><p>Sprinkled through publications since the 1970s are suggestions that genetic effects are paramount. Sanderson et al. (<a class="bk_pop" href="#CreelAlbinism.REF.38">38</a>) and Sanderson (<a class="bk_pop" href="#CreelAlbinism.REF.15">15</a>) in the mink and rabbit, and Creel &#x00026; Giolli (<a class="bk_pop" href="#CreelAlbinism.REF.16" data-bk-pop-others="CreelAlbinism.REF.39">16, 39</a>) in guinea pigs and rats early addressed genetic factors modifying expression of anomalies in ocularly hypopigmented models. In the cat model there are indications of genetic control including reports of heterozygote effects in pigmented cats (<a class="bk_pop" href="#CreelAlbinism.REF.29" data-bk-pop-others="CreelAlbinism.REF.40">29, 40</a>). Carriers of the genes for human albinism do not show detectable visual anomalies (<a class="bk_pop" href="#CreelAlbinism.REF.41">41</a>). Up to 90% of obligate carriers of X-linked ocular albinism exhibit pigmentary mosaicism in their ocular fundus, a lyonization effect, but with no further visual anomalies yet discovered (<a class="bk_pop" href="#CreelAlbinism.REF.42">42</a>).</p><p>Many candidate agents, including signaling and transcription factors have been suggested that plausibly control targeting of retinal ganglion cells coursing through the chiasm and other visual features associated with albinism. Likely many of these conclusions are correct within the model studied, but not a general solution within mammals. Each species appear to vary. For example, significant differences between mouse and human embryogenesis specific to chiasm formation are described (<a class="bk_pop" href="#CreelAlbinism.REF.43">43</a>). These differences include that the nodal point of neurogenesis in the human/primate retina is the fovea, while in rodents it is the optic nerve head. In rodents uncrossed cells are born early for their retinal location. This is not the case in primates. Consequently temporal patterning of axon arrival at the optic chiasm and their course through the chiasm are different between man and mouse. In addition there are no absolutes. The expression of these genetically determined traits has a statistical probability of occurrence (<a class="bk_pop" href="#CreelAlbinism.REF.16">16</a>).</p><p>Variation can also be seen in the drift of retinal evolution even in Haplorrhine primates. Old World and New World monkeys evolved different retinal color vision receptors (<a class="bk_pop" href="#CreelAlbinism.REF.44">44</a>) and different cortical visual organization (<a class="bk_pop" href="#CreelAlbinism.REF.45">45</a>). Another example of variability concerning pigment chemistry is that human tyrosinase-related sequence locus on chromosome 11pll.2 is described in gorilla, but not chimpanzee (<a class="bk_pop" href="#CreelAlbinism.REF.46">46</a>). Even minor differences in pigment metabolism alter metabolic proteins, which possibly could initiate a cascade of effects on visual embryogenesis.</p><p>Due to millions of years of divergent evolution the micro mechanisms of axon guidance underlying optic neuron decussation and target fate are likely idiosyncratic for each species. Pax2, Pax6, SOX2 appear to be necessary for ocular development. Only the most fundamental, ancient, conserved loci such as SOX, ROBO 3 and 4, homeobox (VSX2), Sonic hedgehog (Shh) and PAX2/PAX 6 interaction are likely perpetual and contributing to guidance and angiogenesis decisions in most mammals (<a class="bk_pop" href="#CreelAlbinism.REF.47" data-bk-pop-others="CreelAlbinism.REF.48 CreelAlbinism.REF.49 CreelAlbinism.REF.50 CreelAlbinism.REF.51">47-51</a>). The conservation of some genes spans hundreds of millions of years. SOX21, active in developing retina and inner ear, occupies the same human loci (13q31-32) as DCT (L-dopachrome tautomerase), active in melanogenesis and tyrosine metabolism, has maintained 90-100% identity across species for hundreds of millions of years of divergent evolution (<a class="bk_pop" href="#CreelAlbinism.REF.52" data-bk-pop-others="CreelAlbinism.REF.53">52, 53</a>). Worth noting is mutations of ROBO 3 and 4 are associated with non-decussation of the pyramidal motor pathways (<a class="bk_pop" href="#CreelAlbinism.REF.54">54</a>). ROBO 3 and 4 may affect visual pathway decussation by interacting with tyrosinase loci on the same arm of chromosome 11q. Tyrosinase loci 11q13-22 are millions of base pairs from loci 11q23-24.2, but possibly communicate by interacting with noncoding RNA target sites close in three-dimensional space such as by chromosomal looping rather than linear sequence such as suggested for the X chromosome (<a class="bk_pop" href="#CreelAlbinism.REF.55" data-bk-pop-others="CreelAlbinism.REF.56">55, 56</a>). Chromosome 11q possibly contains a domain coordinating tyrosine metabolism and coding for decussation (<a class="bk_pop" href="#CreelAlbinism.REF.57">57</a>).</p><p>More intra-genome communication is probably taking place than currently credited. In addition to control of visual embryogenesis by protein coding, embryogenesis is plausibly affected by contributions from noncoding DNA or conserved noncoding portions of the genome. Noncoding DNA sequences are located near or within developmental gene loci that likely contribute to modulation or expression, and provide communication to bridge the gap between loci (<a class="bk_pop" href="#CreelAlbinism.REF.52" data-bk-pop-others="CreelAlbinism.REF.53 CreelAlbinism.REF.58">52, 53, 58</a>). Species-specific differences appear to originate more in noncoding space (<a class="bk_pop" href="#CreelAlbinism.REF.59">59</a>). Species likely evolve unique noncoding sequences contributing to variation in embryogenesis between species, and presumably are responsible for singular features in human CNS development (<a class="bk_pop" href="#CreelAlbinism.REF.60">60</a>).</p><p>The chromosomal proximity of tyrosinase loci and ROBO 3 and 4 is not replicated in most mammalian genomes, but primate vision is the most complicated of mammals, and interactive gene control likely is more centralized in human beings. In other mammals loci on different chromosomes plausibly communicate to coordinate their expression (<a class="bk_pop" href="#CreelAlbinism.REF.61">61</a>). The &#x0201c;ROBO code&#x0201d; is likely a code of gene expression not an environmental interaction during embryogenesis (<a class="bk_pop" href="#CreelAlbinism.REF.62">62</a>).</p></div><div id="CreelAlbinism.Melanin_pigment"><h2 id="_CreelAlbinism_Melanin_pigment_">6. Melanin pigment</h2><p>Melanin pigment is a phylogenetically and genetically consistent metabolic vertebrate pathway dating back to at least the evolution of early chordates. The presence of melanin pigment is as fundamental as any characteristic of vertebrates. During mammalian embryonic development melanin pigment is pervasive as is its interaction with neural crest cell migration, along with ocular and auditory system development. Additionally the chemical pathways of melanin pigment, brain catecholamines, liver, thyroid and adrenal gland metabolism maintain a delicate balance anchored by tyrosine metabolism (<a class="bk_pop" href="#CreelAlbinism.REF.63">63</a>). Even in phenotypically pigment-less cavefish that mutated to not express pigment the ability to produce pigment is preserved in neural crest derived melanoblasts (<a class="bk_pop" href="#CreelAlbinism.REF.64">64</a>).</p><p>Melanin&#x02019;s role in visual function can be traced back to the hydra and jellyfish 600 million years ago (<a class="bk_pop" href="#CreelAlbinism.REF.65">65</a>). Melanin pigment&#x02019;s roles in the eye are different than other parts of the body. Melanin pigment is conspicuously present and melanocytes are most active early in vertebrate embryogenesis. Ocular melanocytes are relatively dormant after embryogenesis and unlike extra-ocular melanocytes do not secrete melanin. The genetic basis of pigment cell development and differentiation is conserved from teleosts to mammals. The melanin pigment chemical pathway initiated with tyrosine is expressed similarly from drosophila to primates. The common ancestor of drosophila and primate eye was likely an organism similar to a rag worm 500 million years ago (<a class="bk_pop" href="#CreelAlbinism.REF.66">66</a>). The molecular sequence leading to eye formation in the fly is recapitulated in the developing human eye (<a class="bk_pop" href="#CreelAlbinism.REF.67" data-bk-pop-others="CreelAlbinism.REF.68">67, 68</a>). In general, phylogeny is recapitulated in the embryonic development of the visual system.</p></div><div id="CreelAlbinism.Human_albinos"><h2 id="_CreelAlbinism_Human_albinos_">7. Human albinos</h2><p>The features associated with hypopigmented retinae vary between species and individuals. Readily observable in most human albinos is anomalous foveal development and lack of vascular sparing of central foveal area of retina (<a class="bk_pop" href="#CreelAlbinism.REF.24" data-bk-pop-others="CreelAlbinism.REF.69">24, 69</a>). Less obvious is the predominance of crossed optic fibers at the optic chiasm quantified by visually evoked potential, functional magnetic resonance imaging (fMRI) (<a class="bk_pop" href="#CreelAlbinism.REF.27">27</a>), cortical thickening (<a class="bk_pop" href="#CreelAlbinism.REF.26">26</a>) and aforementioned anatomical studies. Retinal ganglion cells (RGCs) in pigmented retinae that originate from the nasal side of fovea cross at the optic chiasm. RGCs originating temporal side of fovea in pigmented human beings do not cross at the optic chiasm. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F12/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF12" rid-ob="figobCreelAlbinismF12">Figure 12</a> is a schematic approximation of differences between the optic chiasm of ocularly pigmented and albino human beings.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF12" co-legend-rid="figlgndCreelAlbinismF12"><a href="/books/NBK303985/figure/CreelAlbinism.F12/?report=objectonly" target="object" title="Figure 12. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF12" rid-ob="figobCreelAlbinismF12"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image012.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image012.jpg" alt="Figure 12. . Schematic of approximate distribution of crossed and uncrossed RGCs at the optic chiasm in albino human beings." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF12"><h4 id="CreelAlbinism.F12"><a href="/books/NBK303985/figure/CreelAlbinism.F12/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF12">Figure 12. </a></h4><p class="float-caption no_bottom_margin">Schematic of approximate distribution of crossed and uncrossed RGCs at the optic chiasm in albino human beings. </p></div></div><p>In mammalian hypopigmented retinae optic nerve ganglion cells that originate from retinae nasal side of fovea, <u>and</u> nearly all RGC neurons originating from up to 15 degrees in temporal retina also cross at the optic chiasm (<a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F12/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF12" rid-ob="figobCreelAlbinismF12">Figure 12</a>). The proportion is not known in human beings and likely varies considerably. In many albino animals essentially all optic neurons from nasal and temporal retina cross at the optic chiasm. In <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F12/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF12" rid-ob="figobCreelAlbinismF12">Figure 12</a> the 80% crossed and 15 degree shift of vertical meridian in human albinos was estimated based on animal anatomical studies and multifocal visually evoked potential studies (<a class="bk_pop" href="#CreelAlbinism.REF.29" data-bk-pop-others="CreelAlbinism.REF.41">29, 41</a>).</p><p>The routing of RGCs through the chiasm of human and other Haplorrhine primates is organized similar to schematic <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F13/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF13" rid-ob="figobCreelAlbinismF13">Figure 13</a> in that uncrossed RGCs originate and remain lateral at the chiasm (<a class="bk_pop" href="#CreelAlbinism.REF.70">70</a>), whereas in rodents and carnivores the nasal and temporal RGCs mix within the chiasm before routing ipsilateral or contralateral (<a class="bk_pop" href="#CreelAlbinism.REF.2" data-bk-pop-others="CreelAlbinism.REF.71">2, 71</a>). In marsupials, insectivores and primates the RGCs projecting to either hemisphere remain largely segregated with uncrossed fibers located laterally in the chiasm. In rodents and carnivores RGCs mix in the caudal nerve.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF13" co-legend-rid="figlgndCreelAlbinismF13"><a href="/books/NBK303985/figure/CreelAlbinism.F13/?report=objectonly" target="object" title="Figure 13. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF13" rid-ob="figobCreelAlbinismF13"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image013.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image013.jpg" alt="Figure 13. . Schematic drawings of two forms of RGC axon projection through the optic chiasm to the ipsilateral optic tract." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF13"><h4 id="CreelAlbinism.F13"><a href="/books/NBK303985/figure/CreelAlbinism.F13/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF13">Figure 13. </a></h4><p class="float-caption no_bottom_margin">Schematic drawings of two forms of RGC axon projection through the optic chiasm to the ipsilateral optic tract. Ipsilateral RGCs of the rodent mix with RGCs from the other eye. Primate and marsupial RGCs maintain a lateral course through the chiasm. From <a href="/books/NBK303985/figure/CreelAlbinism.F13/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF13">(more...)</a></p></div></div><p><a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F14/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF14" rid-ob="figobCreelAlbinismF14">Figure 14</a> depicts comparison of optical coherence tomography (OCT) through the foveal area of an ocularly pigmented human being (A) and a human albino&#x02019;s (B) foveal areas. In (A) note the foveal depression and that the nerve fiber layer, i.e. red layer on top, is not present across the foveal area. In most human albino retinae the nerve fiber layer (B) continues over the potential foveal area. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F15/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF15" rid-ob="figobCreelAlbinismF15">Figure 15</a> pictures OCTs of four albinos examined at the Moran Eye Center. To view more human albino OCTs see Gargiulo et al. (<a class="bk_pop" href="#CreelAlbinism.REF.72">72</a>) and McAllister et al. (<a class="bk_pop" href="#CreelAlbinism.REF.69">69</a>). Foveal under development and considerable variability among albino foveae is likely due to amount of ocular pigment and genetic background (<a class="bk_pop" href="#CreelAlbinism.REF.73">73</a>). Albino human beings manifest a reduction in cone density in the central retina of infants (<a class="bk_pop" href="#CreelAlbinism.REF.74">74</a>) and adults (<a class="bk_pop" href="#CreelAlbinism.REF.25">25</a>). Multifocal ERG studies provide evidence of arrested postnatal development of foveae in albino infants (<a class="bk_pop" href="#CreelAlbinism.REF.75">75</a>). Primates are the only mammals with foveae, but in almost all mammals with albinism the central retina is underdeveloped (<a class="bk_pop" href="#CreelAlbinism.REF.76" data-bk-pop-others="CreelAlbinism.REF.77">76, 77</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF14" co-legend-rid="figlgndCreelAlbinismF14"><a href="/books/NBK303985/figure/CreelAlbinism.F14/?report=objectonly" target="object" title="Figure 14. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF14" rid-ob="figobCreelAlbinismF14"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image014.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image014.jpg" alt="Figure 14. . Ocular coherence tomography (OCT) through the fovea of a normally pigmented (A) and albino (B) human being." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF14"><h4 id="CreelAlbinism.F14"><a href="/books/NBK303985/figure/CreelAlbinism.F14/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF14">Figure 14. </a></h4><p class="float-caption no_bottom_margin">Ocular coherence tomography (OCT) through the fovea of a normally pigmented (A) and albino (B) human being. Note the absence of foveal pit and the nerve fiber layer (red) coursing over foveal area in albino compared to pigmented (A) nerve fiber layer <a href="/books/NBK303985/figure/CreelAlbinism.F14/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF14">(more...)</a></p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF15" co-legend-rid="figlgndCreelAlbinismF15"><a href="/books/NBK303985/figure/CreelAlbinism.F15/?report=objectonly" target="object" title="Figure 15. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF15" rid-ob="figobCreelAlbinismF15"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image015.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image015.jpg" alt="Figure 15. . Ocular coherence tomography (OCT) of four albinos showing lack of foveal pit and top nerve fiber layer (red) coursing over foveal area." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF15"><h4 id="CreelAlbinism.F15"><a href="/books/NBK303985/figure/CreelAlbinism.F15/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF15">Figure 15. </a></h4><p class="float-caption no_bottom_margin">Ocular coherence tomography (OCT) of four albinos showing lack of foveal pit and top nerve fiber layer (red) coursing over foveal area. </p></div></div><p>An exception is the albino squirrel (<a class="bk_pop" href="#CreelAlbinism.REF.78">78</a>). Squirrel retinae contain a very large cone population. Rods are disrupted in albino development probably because they develop slightly later in retinal development and that cell cycle events get out of control when rod production is taking place. Cell cycle control is relatively normal early in retinal development when cones are being generated.</p><p>Retinal vascularization in human pigmented retinae spares the foveal area, whereas in albino human retinae small vessels and capillaries intrude into foveal area. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F16/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF16" rid-ob="figobCreelAlbinismF16">Figure 16</a> compares the central vascular organization in ocularly pigmented and albino human retinae. Retinae of ocularly pigmented human beings exhibit an avascular zone surrounding the fovea, albinos do not. There are likely many modifying factors such as extent of hypopigmentation specific to the loci tempering phenotypic expression.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF16" co-legend-rid="figlgndCreelAlbinismF16"><a href="/books/NBK303985/figure/CreelAlbinism.F16/?report=objectonly" target="object" title="Figure 16. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF16" rid-ob="figobCreelAlbinismF16"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image016.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image016.jpg" alt="Figure 16. . Angiogram of choriocapillaris of normally pigmented human ocular fundus (A) showing vascular sparing of the foveal area, compared to negative of red-free photograph of human albino ocular fundus (B) showing vascular intrusion into foveal area." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF16"><h4 id="CreelAlbinism.F16"><a href="/books/NBK303985/figure/CreelAlbinism.F16/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF16">Figure 16. </a></h4><p class="float-caption no_bottom_margin">Angiogram of choriocapillaris of normally pigmented human ocular fundus (A) showing vascular sparing of the foveal area, compared to negative of red-free photograph of human albino ocular fundus (B) showing vascular intrusion into foveal area. </p></div></div><p>The neural retina and retinal pigment epithelium (RPE) demonstrate an intimate embryonic relationship to the extent that each can differentiate into the other (<a class="bk_pop" href="#CreelAlbinism.REF.79">79</a>). An interaction exists between melanin pigment in the RPE and the development of the fovea and choriocapillaris, the blood supply to the retina, and RGC axon guidance (<a class="bk_pop" href="#CreelAlbinism.REF.80">80</a>). The RPE-derived vascular endothelial growth factor (VEGF) is essential for choriocapillaris development (<a class="bk_pop" href="#CreelAlbinism.REF.81" data-bk-pop-others="CreelAlbinism.REF.82">81, 82</a>). Additionally, pigment epithelium derived factor (PEDF) was isolated in the developing fovea suggesting axon guidance genes presumably accompany early mechanisms determining vascular patterning in macular area (<a class="bk_pop" href="#CreelAlbinism.REF.83">83</a>). The PEDF has a major function in development of the foveal avascular area (<a class="bk_pop" href="#CreelAlbinism.REF.84">84</a>).</p></div><div id="CreelAlbinism.Scalprecorded_VEPs_in_huma"><h2 id="_CreelAlbinism_Scalprecorded_VEPs_in_huma_">8. Scalp-recorded VEPs in human beings</h2><p>In 1974 using scalp-recorded visually evoked potentials (VEPs) four genetic forms of human oculocutaneous albinism exhibited electrophysiological evidence of reduced uncrossed optic fibers (<a class="bk_pop" href="#CreelAlbinism.REF.14">14</a>). Similar results were published for human ocular albinos (<a class="bk_pop" href="#CreelAlbinism.REF.85">85</a>) and replicated in early studies by Taylor (<a class="bk_pop" href="#CreelAlbinism.REF.86">86</a>) and Coleman et al. (<a class="bk_pop" href="#CreelAlbinism.REF.87">87</a>). Reviews of research in this area: Guillery (<a class="bk_pop" href="#CreelAlbinism.REF.88">88</a>), Hoffman et al. (<a class="bk_pop" href="#CreelAlbinism.REF.41">41</a>), Neveu &#x00026; Jeffery (<a class="bk_pop" href="#CreelAlbinism.REF.2">2</a>) and Bridge et al. (<a class="bk_pop" href="#CreelAlbinism.REF.26">26</a>).</p><p>The best visual stimulus to use recording VEPs from most albinos is a pattern onset/offset with individual checks subtending about 1 degree of arc. For individuals with very poor vision and infants, flash stimuli are preferred. In some albinos comparing evoked potentials using the International 10-20 System locations O1 and O2 (<a class="bk_pop" href="#CreelAlbinism.REF.89">89</a>) demonstrate the misrouting. In most albinos more lateral locations along the same plane about halfway to T5 and T6 (H3 and H4), marked in <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F17/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF17" rid-ob="figobCreelAlbinismF17">Figure 17</a> as blue area, better demonstrate misrouting. An early finding was that with monocular stimulation the &#x0201c;difference&#x0201d; potential comparing 10-20 International System scalp locations O1-O2, or H3-H4 across the midline is an efficient way to exhibit chiasmic misrouting in albinos (<a class="bk_pop" href="#CreelAlbinism.REF.90">90</a>). The worst stimulus is pattern reversal, which exacerbates nystagmus in albinos blurring the image.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF17" co-legend-rid="figlgndCreelAlbinismF17"><a href="/books/NBK303985/figure/CreelAlbinism.F17/?report=objectonly" target="object" title="Figure 17. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF17" rid-ob="figobCreelAlbinismF17"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image017.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image017.jpg" alt="Figure 17. . Schematic of occipital area indicating 10-20 International System scalp electrode locations highlighting locations H3 and H4." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF17"><h4 id="CreelAlbinism.F17"><a href="/books/NBK303985/figure/CreelAlbinism.F17/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF17">Figure 17. </a></h4><p class="float-caption no_bottom_margin">Schematic of occipital area indicating 10-20 International System scalp electrode locations highlighting locations H3 and H4. </p></div></div><p>To detect misrouting at the chiasm a minimum of two recording sites is required, one positive electrode and one negative location in each hemisphere about 3 cm above the inion in an adult and 4 cm or more off the midline. This bipolar montage records a "difference" potential, requiring no additional reference electrode. The ground electrode can be attached anywhere on the person. In ocularly pigmented human beings innervation of visual cortex from nasal and temporal retinae is comparable so the "difference" potential recorded between hemispheres would be similar in form whether stimulating the left or right eye (<a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F18/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF18" rid-ob="figobCreelAlbinismF18">Figure 18</a>). In contrast, most central visual field retinal ganglion fibers (RGCs) cross to the contralateral hemisphere in albinos so the "difference" potential recorded between occipital hemispheres will change polarity across the occipital area when VEPs following monocular stimulation are compared (<a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F19/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF19" rid-ob="figobCreelAlbinismF19">Figure 19</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF18" co-legend-rid="figlgndCreelAlbinismF18"><a href="/books/NBK303985/figure/CreelAlbinism.F18/?report=objectonly" target="object" title="Figure 18. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF18" rid-ob="figobCreelAlbinismF18"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image018.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image018.jpg" alt="Figure 18. . Pattern onset/offset visually evoked potentials recorded across occipital scalp in normally pigmented human being showing little difference between monocular RIGHT and LEFT visual stimulation." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF18"><h4 id="CreelAlbinism.F18"><a href="/books/NBK303985/figure/CreelAlbinism.F18/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF18">Figure 18. </a></h4><p class="float-caption no_bottom_margin">Pattern onset/offset visually evoked potentials recorded across occipital scalp in normally pigmented human being showing little difference between monocular RIGHT and LEFT visual stimulation. From Creel et al, 1990 (212). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF19" co-legend-rid="figlgndCreelAlbinismF19"><a href="/books/NBK303985/figure/CreelAlbinism.F19/?report=objectonly" target="object" title="Figure 19. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF19" rid-ob="figobCreelAlbinismF19"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image019.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image019.jpg" alt="Figure 19. . Pattern onset/offset visually evoked potentials recorded across occipital scalp from an albino showing the significant difference between Right and Left monocular simulation." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF19"><h4 id="CreelAlbinism.F19"><a href="/books/NBK303985/figure/CreelAlbinism.F19/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF19">Figure 19. </a></h4><p class="float-caption no_bottom_margin">Pattern onset/offset visually evoked potentials recorded across occipital scalp from an albino showing the significant difference between Right and Left monocular simulation. </p></div></div><p>An important addition to VEP methodology was the development of multifocal visually evoked potential (mfVEP) technology by Erich Sutter (<a class="bk_pop" href="#CreelAlbinism.REF.91">91</a>). The first publication of mfVEPs in human albinos was by Michael Hoffmann and colleagues (<a class="bk_pop" href="#CreelAlbinism.REF.41">41</a>). This group has continued to publish advances in dissecting the human albino visual system using mfVEPs and fMRI studies (<a class="bk_pop" href="#CreelAlbinism.REF.26" data-bk-pop-others="CreelAlbinism.REF.92 CreelAlbinism.REF.93 CreelAlbinism.REF.94 CreelAlbinism.REF.95">26, 92-95</a>).</p><p>VEPs&#x000a0;are of profound value in detecting the misrouting of the optic nerves in human&#x000a0;albinism and revealed that an on&#x000a0;average a central &#x000b1;8 degree wide vertical strip in the central is&#x000a0;affected by the&#x000a0;resulting representation abnormality (<a class="bk_pop" href="#CreelAlbinism.REF.96">96</a>). The extent of the misrouting varies, depending on pigmentation deficit,&#x000a0;between 2 and 15 degrees. This indicates that&#x000a0;RGCs originating up to 15 degrees&#x000a0;into temporal retina erroneously cross at the optic chiasm. The most important&#x000a0;addition of mfVEPs is allowing for a spatially resolved characterization of VEP responses.&#x000a0;This approach can be combined with the misrouting VEP paradigm (<a class="bk_pop" href="#CreelAlbinism.REF.90" data-bk-pop-others="CreelAlbinism.REF.97">90, 97</a>) to yield visual field topography of the abnormal&#x000a0;visual field representations typical for albinism as pioneered by Michael&#x000a0;Hoffmann et al. (<a class="bk_pop" href="#CreelAlbinism.REF.41">41</a>). <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F20/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF20" rid-ob="figobCreelAlbinismF20">Figure 20</a> is a print of mfVEPs recorded from a Type&#x000a0;1 oculocutaneous albino (OCA1). This person has nystagmus and exotropia, but exceptional acuity for a&#x000a0;Type 1 oculocutaneous albino. His&#x000a0;acuity meets requirements of visual acuity required for a driver&#x02019;s license. The central visual field&#x000a0;stimulated for these mfVEPs extended over 35 degrees horizontally and 30&#x000a0;degrees vertically, similar&#x000a0;to the perceptual field of a Humphrey 24-2 visual&#x000a0;field perimeter test. Potentials that reverse in polarity indicate temporal retinal&#x000a0;field areas projecting RGCs that cross the optic chiasm.&#x000a0;MfVEPs require&#x000a0;reasonably stable fixation (<a class="bk_pop" href="#CreelAlbinism.REF.41" data-bk-pop-others="CreelAlbinism.REF.96 CreelAlbinism.REF.98">41, 96, 98</a>), but they are a useful extension of the classical misrouting VEP paradigm as&#x000a0;they permit the detection of locally confined, i.e.&#x000a0;only small&#x000a0;misrepresentations. Their prime use is to explore the specificity of&#x000a0;misrouting for albinism. MfVEP studies confirmed the absence of evidence of misrouting&#x000a0;in carriers of OA (<a class="bk_pop" href="#CreelAlbinism.REF.41">41</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF20" co-legend-rid="figlgndCreelAlbinismF20"><a href="/books/NBK303985/figure/CreelAlbinism.F20/?report=objectonly" target="object" title="Figure 20. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF20" rid-ob="figobCreelAlbinismF20"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image020.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image020.jpg" alt="Figure 20. . Multifocal visually evoked potentials recorded from a Type 1 human albino reflecting the central 35 degrees of visual field." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF20"><h4 id="CreelAlbinism.F20"><a href="/books/NBK303985/figure/CreelAlbinism.F20/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF20">Figure 20. </a></h4><p class="float-caption no_bottom_margin">Multifocal visually evoked potentials recorded from a Type 1 human albino reflecting the central 35 degrees of visual field. Potentials that reverse in polarity indicate locations in temporal retina that retinal ganglion cells (RGCs) cross at the optic <a href="/books/NBK303985/figure/CreelAlbinism.F20/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF20">(more...)</a></p></div></div><p>While&#x000a0;fMRI was used to validate the misrouting VEP (<a class="bk_pop" href="#CreelAlbinism.REF.27" data-bk-pop-others="CreelAlbinism.REF.92">27, 92</a>), it further assists in uncovering the&#x000a0;organization of the human visual cortex in albinism, and higher cortical function (<a class="bk_pop" href="#CreelAlbinism.REF.30" data-bk-pop-others="CreelAlbinism.REF.99">30, 99</a>). These&#x000a0;studies indicate that the unrepresentative visual input to each hemisphere&#x000a0;is propagated to higher processing stages&#x000a0;(<a class="bk_pop" href="#CreelAlbinism.REF.95">95</a>) and is made&#x000a0;available for perceptual (<a class="bk_pop" href="#CreelAlbinism.REF.94" data-bk-pop-others="CreelAlbinism.REF.100">94, 100</a>) and visuo-motor integration (<a class="bk_pop" href="#CreelAlbinism.REF.101">101</a>). Further,&#x000a0;structural MRI&#x000a0;investigations underscore that the anatomy of the visual cortex&#x000a0;in human albinism appears to be affected more strongly by the foveal hypoplasia&#x000a0;than by the misrouting of the optic nerves (<a class="bk_pop" href="#CreelAlbinism.REF.26" data-bk-pop-others="CreelAlbinism.REF.102">26, 102</a>).</p><p>Maturation and aging of the visual system produce measurable changes reflected in visually evoked potentials. Neveu et al. (<a class="bk_pop" href="#CreelAlbinism.REF.103">103</a>) described dramatic differences in a population of albino human beings ranging from 8 months to 60 years. Visual acuity usually improves until adolescence due to physiological maturation, dampening of nystagmus, finding a favorable head position, and learning how to manage poor acuity, including perceptual cues (<a class="bk_pop" href="#CreelAlbinism.REF.104" data-bk-pop-others="CreelAlbinism.REF.105 CreelAlbinism.REF.106">104-106</a>).</p><p>Acuity is significantly diminished in most human albinos averaging from 20/80 to 20/200 with a wide range of 20/40 to 20/400. Nystagmus, usually horizontal, pendular or jerky in character is almost always present. A high incidence of strabismus is also seen in albinism including both horizontal and vertical misalignment (<a class="bk_pop" href="#CreelAlbinism.REF.86" data-bk-pop-others="CreelAlbinism.REF.107">86, 107</a>).</p><p>Contributing to differences in optic tract development are possible differences in axon sizes and myelination in the albino mammal&#x02019;s optic tract (<a class="bk_pop" href="#CreelAlbinism.REF.108">108</a>). When RGC axons go to the wrong side of the brain they may not myelinate properly. Myelination changes with age add weight to Neveu et al.&#x02019;s (<a class="bk_pop" href="#CreelAlbinism.REF.103">103</a>) finding of age-related changes in VEP development.</p></div><div id="CreelAlbinism.Visual_perception"><h2 id="_CreelAlbinism_Visual_perception_">9. Visual perception</h2><p>Studies demonstrate that albino human beings do not fuse binocular stimuli (<a class="bk_pop" href="#CreelAlbinism.REF.104" data-bk-pop-others="CreelAlbinism.REF.109 CreelAlbinism.REF.110">104, 109, 110</a>). Few binocular cells are located in areas 17, 18 and 19 in Siamese cats and cats with complete albinism, disturbing the underlying anatomical connections for stereovision (<a class="bk_pop" href="#CreelAlbinism.REF.111" data-bk-pop-others="CreelAlbinism.REF.112 CreelAlbinism.REF.113">111-113</a>). Some individuals with albinism manifest coarse binocular fusion with some stereovision (<a class="bk_pop" href="#CreelAlbinism.REF.114">114</a>). In addition, while areas 17/18 of the Siamese cat do not contain binocular cells, the postero-medial lateral suprasylvian area (PMLS) includes binocular cells (<a class="bk_pop" href="#CreelAlbinism.REF.115">115</a>). The superior colliculus (SC) also possesses binocular cells (<a class="bk_pop" href="#CreelAlbinism.REF.116">116</a>). The corpus callosum possibly is an anatomical connection enabling some binocular vision (<a class="bk_pop" href="#CreelAlbinism.REF.117" data-bk-pop-others="CreelAlbinism.REF.118 CreelAlbinism.REF.119 CreelAlbinism.REF.120">117-120</a>). Stereovision may be accomplished through these cortico-cortical connections. Although stereovision is dramatically affected in albinos, spatial perception remains (<a class="bk_pop" href="#CreelAlbinism.REF.94">94</a>).</p><p>Adjustments improving perception appear to be made at each level as the anomalous visual information in albino visual pathways progress towards the cortex. In the albino cat the disaster at the level of the dLGN where only 46% of cells responded normally improves to 84% in cortical area 17, and to 70% of cells in cortical area 18 (<a class="bk_pop" href="#CreelAlbinism.REF.121">121</a>). The competence of the albino visual system improves greatly at the cortical level of cats and human beings (<a class="bk_pop" href="#CreelAlbinism.REF.100">100</a>) resulting in near-normal visual perceptual abilities within the limits of an individual&#x02019;s acuity.</p><p>In general the level of pigmentation of an albino correlates negatively with severity of expression of visual anomalies (<a class="bk_pop" href="#CreelAlbinism.REF.73">73</a>) (<a class="bk_pop" href="#CreelAlbinism.REF.122">122</a>). It is likely that the more pigment present in the retina, the more normally routed RGC fibers.</p></div><div id="CreelAlbinism.Genetic_classifications_of"><h2 id="_CreelAlbinism_Genetic_classifications_of_">10. Genetic classifications of forms of human albinism</h2><p>Current classification of forms of albinism is based on genetic locus. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F21/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF21" rid-ob="figobCreelAlbinismF21">Figure 21</a> is a photograph of an&#x000a0;individual with Type&#x000a0;1 oculocutaneous albinism. Chromosomal location has been identified for twenty forms of human albinism on twelve different chromosomes: oculocutaneous albinism (<i>OCA1-7)</i>, ocular albinism (<i>OA1</i>), nine forms of Hermansky Pudlak syndrome (<i>HPS1-9</i>), Chediak Higashi syndrome (<i>CHS</i>) and Griscelli syndrome (<i>GS</i>) (<a class="bk_pop" href="#CreelAlbinism.REF.123" data-bk-pop-others="CreelAlbinism.REF.124">123, 124</a>). An additional syndromic form of albinism to be added is the rare Vici syndrome (<i>VICIS</i>) (<a class="bk_pop" href="#CreelAlbinism.REF.125" data-bk-pop-others="CreelAlbinism.REF.126 CreelAlbinism.REF.127">125-127</a>). Phenotypic expression varies considerably within genetic forms of albinism, and even between siblings (<a class="bk_pop" href="#CreelAlbinism.REF.128" data-bk-pop-others="CreelAlbinism.REF.129">128, 129</a>). Many genes modify expression of albinism (<a class="bk_pop" href="#CreelAlbinism.REF.130">130</a>). For tyrosinase enzymes alone more than 100 mutations are involved in coding (see Albinism Database (<a href="http://www.ifpcs.org/albinism/index.html" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://www.ifpcs.org/albinism/index.html</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF21" co-legend-rid="figlgndCreelAlbinismF21"><a href="/books/NBK303985/figure/CreelAlbinism.F21/?report=objectonly" target="object" title="Figure 21. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF21" rid-ob="figobCreelAlbinismF21"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image021.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image021.jpg" alt="Figure 21. . Type 1 oculocutaneous albino (OCA1)." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF21"><h4 id="CreelAlbinism.F21"><a href="/books/NBK303985/figure/CreelAlbinism.F21/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF21">Figure 21. </a></h4><p class="float-caption no_bottom_margin">Type 1 oculocutaneous albino (OCA1). </p></div></div><p>Visual abnormalities reported in albinism do not include disorders of hypopigmentation due to embryonic migration defects of neurons and pigment cells from the neural crest such as in Waardenburg syndrome and deaf white cat (<i>W</i> gene), vitiligo or piebald spotting, nor other forms of hypopigmentation such as phenylketonuria. These conditions do not exhibit the visual anomalies.</p></div><div id="CreelAlbinism.Exceptions_to_direct_assoc"><h2 id="_CreelAlbinism_Exceptions_to_direct_assoc_">11. Exceptions to direct association with albinism</h2><p>Recently a&#x000a0;novel gene mutation on human chromosome 16 was described that is associated with&#x000a0;foveal&#x000a0;hypoplasia, optic-nerve-decussation defects, and anterior segment dysgenesis&#x000a0;(FHONDA) in the absence of pigment&#x000a0;deficits (<a class="bk_pop" href="#CreelAlbinism.REF.131" data-bk-pop-others="CreelAlbinism.REF.132">131, 132</a>). Current research addresses whether in this condition optic nerve misrouting is&#x000a0;initiated by a mechanism that is independent of the one that&#x000a0;is associated with&#x000a0;the pigment deficit in albinism. While enhanced crossing of the optic nerves at&#x000a0;the optic chiasm was previously viewed to be specific for albinism or related only to&#x000a0;ocular pigment deficits there may be exceptions.&#x000a0;FHONDA may be an important exception. A possible site of common determination of visual abnormalities in FHONDA and albinism could be the similar influences affecting optic anomalies in both such as genetic control by Sonic hedgehog (Shh), VSX2, PAX 2 and PAX 6.</p><p>There are reports of optic misrouting in human non-albinos such as some with Kartagener syndrome (<a class="bk_pop" href="#CreelAlbinism.REF.133">133</a>), and selected hypopigmented patients with Prader-Willi syndrome (<a class="bk_pop" href="#CreelAlbinism.REF.134">134</a>), with microdeletion at tyrosinase locus 15q11-13 superimposed on the most prominent albino sequence. The Kartagener syndrome loci, 15q24-25, are on same arm of chromosome 15q as the most prominent human albino sequence. Few individuals with the Kartagener syndrome show optic misrouting (<a class="bk_pop" href="#CreelAlbinism.REF.135">135</a>). Other exceptions are some individuals with congenital stationary night blindness (CSNB) reported to express optic misrouting (<a class="bk_pop" href="#CreelAlbinism.REF.136" data-bk-pop-others="CreelAlbinism.REF.137">136, 137</a>). Genetic loci for forms of CSNB range from chromosome Xp11 to Xp22 (<a class="bk_pop" href="#CreelAlbinism.REF.138">138</a>). These mutations are located on the same arm of X chromosome located Xp22. Some of these exceptions are possibly due to interaction with albino loci or a common feature to both of dysregulation within these sequences. Communication may be enhanced by noncoding DNA bridging the gap between nearby loci.</p></div><div id="CreelAlbinism.Underlying_mechanisms"><h2 id="_CreelAlbinism_Underlying_mechanisms_">12. Underlying mechanisms</h2><p>Many studies were published pursuing a causal relationship between retinal pigmentation and determination of neuronal routing at the optic chiasm. No mechanism has been described that can be generalized across species and genetic loci. Prominent theories include the role of tyrosinase or its precursor DOPA as critical in the synthesis of melanin such as reporting addition of DOPA to albino eyes in vitro normalizes patterns of cell production (<a class="bk_pop" href="#CreelAlbinism.REF.139">139</a>). Ocular albinism (OA1) associated with a mutation of the GPR143 (G-protein-coupled receptor) gene on the X chromosome (Xp22.3) provides evidence of another possible function of DOPA. The GPR143 gene regulates melanin biosynthesis (<a class="bk_pop" href="#CreelAlbinism.REF.140">140</a>). The OA1 GPCR protein encoded by GPR143 gene was found to be a selective DOPA receptor, where both Dopamine and DOPA compete to bind at its site (<a class="bk_pop" href="#CreelAlbinism.REF.141">141</a>). DOPA function in the melanin pathway may also play a role in the downstream effects that affect the developing retina (<a class="bk_pop" href="#CreelAlbinism.REF.142">142</a>).</p><p>Other factors influencing ganglion cell targeting at the optic chiasm include, in different species, growth cone action, molecules, and regulatory genes including laminin, NCAM, L1 and cadherins (<a class="bk_pop" href="#CreelAlbinism.REF.143">143</a>). Evidence that Netrin-1 (<a class="bk_pop" href="#CreelAlbinism.REF.144">144</a>), Slit ligand molecules that are expressed at the optic pathway and their associated axon guidance receptors from the Roundabout (Robo) family (<a class="bk_pop" href="#CreelAlbinism.REF.145">145</a>), Sema5A (<a class="bk_pop" href="#CreelAlbinism.REF.146">146</a>), Sonic Hedgehog (Shh) (<a class="bk_pop" href="#CreelAlbinism.REF.147">147</a>), transcription factor 2 (Zic-2) regulated by Islet 2 in mice (<a class="bk_pop" href="#CreelAlbinism.REF.148" data-bk-pop-others="CreelAlbinism.REF.149">148, 149</a>), and EphrinB2 (EphB2) (<a class="bk_pop" href="#CreelAlbinism.REF.150">150</a>) are also suggested as impacting cell fate. The transcription factor visual system homeobox 2 (VSX2) probably also affects the retinal anomalies (<a class="bk_pop" href="#CreelAlbinism.REF.151" data-bk-pop-others="CreelAlbinism.REF.152">151, 152</a>). Many signals likely vary between species.</p></div><div id="CreelAlbinism.Vision_and_hearing"><h2 id="_CreelAlbinism_Vision_and_hearing_">13. Vision and hearing</h2><p>Vision and hearing have an ancient history of evolving in parallel traced back to the PaxB gene, which functions as a single gene controlling eye and hearing (mechanoreceptors) genesis in box jellyfish predating the later-appearing separate Pax 2 and Pax 6 genes (<a class="bk_pop" href="#CreelAlbinism.REF.153">153</a>). The continuity of SOX 21 was mentioned earlier (<a class="bk_pop" href="#CreelAlbinism.REF.53">53</a>). There are evolutionary connections between eyes and mechanoreceptors of the inner ear to the extent that during evolution, &#x0201c;sensory cells can shift their sensory modalities&#x0201d; (<a class="bk_pop" href="#CreelAlbinism.REF.154">154</a>).</p><p>There is a history of both functional integration and anomalous syndromes involving the visual and auditory systems such as Usher&#x02019;s Syndrome, which includes retinitis pigmentosa and congenital deafness. In spite of their differences in embryogenesis further similarities were recently described in retinal and inner ear hair cell physiology. The same Usher protein functions in retinal rod physiology and inner ear hair cell physiology (<a class="bk_pop" href="#CreelAlbinism.REF.155" data-bk-pop-others="CreelAlbinism.REF.156">155, 156</a>) and ribbon synapses are similar in structure and function in both photoreceptors and hair cells (<a class="bk_pop" href="#CreelAlbinism.REF.157">157</a>). Further metabolic roles of melanin in the inner ear, and the similarities of retinal and inner ear physiology are yet to be elucidated. Melanin pigment is located in the stria vascularis of the inner ear (<a class="bk_pop" href="#CreelAlbinism.REF.158" data-bk-pop-others="CreelAlbinism.REF.159">158, 159</a>). <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F22/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF22" rid-ob="figobCreelAlbinismF22">Figure 22</a> depicts a decalcified cochlea of pigmented guinea pig (A) displaying a band of melanin pigment (P) in the stria vascularis, and a section through a pigmented guinea pig cochlea (B) showing melanin pigment. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F23/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF23" rid-ob="figobCreelAlbinismF23">Figure 23</a> is an enlargement of an area in a different guinea pig similar to that boxed in <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F22/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF22" rid-ob="figobCreelAlbinismF22">Figure 22B</a> illustrating detail of pigment deposition. Melanocytes are adjacent to and wrap around capillaries in the stria vascularis.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF22" co-legend-rid="figlgndCreelAlbinismF22"><a href="/books/NBK303985/figure/CreelAlbinism.F22/?report=objectonly" target="object" title="Figure 22. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF22" rid-ob="figobCreelAlbinismF22"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image022.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image022.jpg" alt="Figure 22. . Decalcified guinea pig cochlea (A) and sagittal section (B) through a guinea pig cochlea show deposition of melanin pigment (P) in stria vascularis Red boxed area enlarged in Figure 23." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF22"><h4 id="CreelAlbinism.F22"><a href="/books/NBK303985/figure/CreelAlbinism.F22/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF22">Figure 22. </a></h4><p class="float-caption no_bottom_margin">Decalcified guinea pig cochlea (A) and sagittal section (B) through a guinea pig cochlea show deposition of melanin pigment (P) in stria vascularis Red boxed area enlarged in Figure 23. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF23" co-legend-rid="figlgndCreelAlbinismF23"><a href="/books/NBK303985/figure/CreelAlbinism.F23/?report=objectonly" target="object" title="Figure 23. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF23" rid-ob="figobCreelAlbinismF23"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image023.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image023.jpg" alt="Figure 23. . Red-boxed area in Figure 22 enlarged showing melanin deposition adjacent to capillaries indicated by red arrows." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF23"><h4 id="CreelAlbinism.F23"><a href="/books/NBK303985/figure/CreelAlbinism.F23/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF23">Figure 23. </a></h4><p class="float-caption no_bottom_margin">Red-boxed area in Figure 22 enlarged showing melanin deposition adjacent to capillaries indicated by red arrows. From Conlee et al., 1989 (158). </p></div></div><p>In most mammals auditory cues mainly tell vision where to look (<a class="bk_pop" href="#CreelAlbinism.REF.160" data-bk-pop-others="CreelAlbinism.REF.161">160, 161</a>). Within each species spatial vision and auditory localization evolve in a coordinated manner. Analogous evolutionary and functional relationships exist in vision and audition. The second level termination of visual neurons is cortical including synapses with binocular cells, the substrate for binocular, stereo, and spatial vision. The second level neuron terminations in the auditory system are in the superior olivary complex where binaural cells receive input from each ear giving similar spatial information. The auditory space map in the brainstem is strongly related to the cortical visual space map (<a class="bk_pop" href="#CreelAlbinism.REF.162">162</a>). Visual and auditory spaces are connected to the extent that in human beings fMRIs depict more recruitment of visual cortex than auditory cortex when blind individuals perform auditory echo localization (<a class="bk_pop" href="#CreelAlbinism.REF.163">163</a>).</p><p>Albino mammals are not hearing impaired, per se. The auditory and visual deficits in albino mammals are connected in that similar anomalies are present in processing the highest-level integration of spatial localization.</p><p>Auditory anomalies are reported in albino mammals. The absence of melanin pigment in the inner ear of albinos is associated with susceptibility to noise damage (<a class="bk_pop" href="#CreelAlbinism.REF.164" data-bk-pop-others="CreelAlbinism.REF.165">164, 165</a>). In human beings and animal models prolonged sensitivity to noise measured as a longer temporary threshold shift (TTS) following exposure to loud sounds is documented (<a class="bk_pop" href="#CreelAlbinism.REF.166" data-bk-pop-others="CreelAlbinism.REF.167 CreelAlbinism.REF.168">166-168</a>). Cell size and dendritic length in the medial superior olivary nucleus is reduced in albinos (<a class="bk_pop" href="#CreelAlbinism.REF.167" data-bk-pop-others="CreelAlbinism.REF.169">167, 169</a>). Functionally the reduced cell size in brainstem olivary nuclei was associated with reduced binaural cell responses in medial superior olive of albino cats (<a class="bk_pop" href="#CreelAlbinism.REF.170">170</a>). One study demonstrated reduced ipsilateral projections from the cochlear nuclei in hypopigmented ferrets (<a class="bk_pop" href="#CreelAlbinism.REF.171">171</a>).</p><p>The auditory brainstem response (ABR) is an auditory version of a visually evoked potential except the generators measured end at the level of the superior colliculus. Auditory brainstem responses are recorded by placing a positive electrode on top of the head at 10-20 International System position Cz. A negative pole electrode is placed on ipsilateral earlobe or mastoid. Often the contralateral earlobe or mastoid is used for ground location. Click stimuli at one or more intensity approximately 70 dB above hearing level threshold (HL) are presented to one ear at click rates of 10 or more per second. Potentials appearing in the first 10 milliseconds evoked by about 2,000 clicks are averaged. Audiologists record a more complicated sequence using several click intensities, tones bursts, and bone conduction testing to evaluate hearing.</p><p>A feature of the ABR is that in addition to anomalies in the auditory brainstem pathways, alterations in adjacent brainstem structures such as cranial nerve nuclei IV to VII are often detected. The ABR is of use locating etiology of ocular and facial movement disorders such as Duane&#x02019;s retraction syndrome, Marcus-Gunn ptosis, blepharospasm, facial cranial nerve palsies, and is a common site of demyelination in patients with multiple sclerosis. Another feature of the ABR is the first five peaks, I &#x02013; V, are associated with the level of the brainstem generating each component.</p><p>A sample human ABR is depicted with generators labeled in <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F24/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF24" rid-ob="figobCreelAlbinismF24">Figure 24</a>. ABRs of most mammals contain 5 or more components in the first 6 milliseconds following click stimuli. ABRs of some rodents include a double component III due to separate medial and lateral olivary nuclei generators. A variant in some human ABRs is coalesced components IV and V into one wave. In albino human beings and animal models component III of ABRs are attenuated. These are generated in region of the medial superior olivary nuclei reflecting the reduced neuronal size and dendritic length in albino mammals (<a class="bk_pop" href="#CreelAlbinism.REF.32" data-bk-pop-others="CreelAlbinism.REF.167 CreelAlbinism.REF.169 CreelAlbinism.REF.172">32, 167, 169, 172</a>). <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F25/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF25" rid-ob="figobCreelAlbinismF25">Figure 25</a> illustrates sample abnormal ABRs in a Type 1 oculocutaneous human albino with components III &#x02013; IV attenuated in amplitude.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF24" co-legend-rid="figlgndCreelAlbinismF24"><a href="/books/NBK303985/figure/CreelAlbinism.F24/?report=objectonly" target="object" title="Figure 24. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF24" rid-ob="figobCreelAlbinismF24"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image024.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image024.jpg" alt="Figure 24. . Auditory brainstem response (ABR) recorded from pigmented human being at click intensity of 70 dB HL and rate of 11." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF24"><h4 id="CreelAlbinism.F24"><a href="/books/NBK303985/figure/CreelAlbinism.F24/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF24">Figure 24. </a></h4><p class="float-caption no_bottom_margin">Auditory brainstem response (ABR) recorded from pigmented human being at click intensity of 70 dB HL and rate of 11.9 per second. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF25" co-legend-rid="figlgndCreelAlbinismF25"><a href="/books/NBK303985/figure/CreelAlbinism.F25/?report=objectonly" target="object" title="Figure 25. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF25" rid-ob="figobCreelAlbinismF25"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image025.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image025.jpg" alt="Figure 25. . Auditory brainstem response (ABR) recorded from a Type 1 oculocutaneous human albino (OCA1) showing attenuated component III in contralateral ABR." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF25"><h4 id="CreelAlbinism.F25"><a href="/books/NBK303985/figure/CreelAlbinism.F25/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF25">Figure 25. </a></h4><p class="float-caption no_bottom_margin">Auditory brainstem response (ABR) recorded from a Type 1 oculocutaneous human albino (OCA1) showing attenuated component III in contralateral ABR. From Creel et al., 1980 (172). </p></div></div></div><div id="CreelAlbinism.Eye_Movement_Albinism_Diss"><h2 id="_CreelAlbinism_Eye_Movement_Albinism_Diss_">14. Eye Movement: Albinism, Dissociated Vertical Deviation, Latent Nystagmus</h2><p>Adjacent to the brainstem auditory centers are the nuclei integrating sensory input including the superior colliculus and other nuclei involved in eye alignment and fixation. Abnormal proportions of ipsilateral RGCs in albino mammals include reduced RGCs to mid-brain nuclei that contribute to strabismus, nystagmus, and atypical optokinetic nystagmus in albino mammals. In albino guinea pigs, rabbits and ferrets there are no ipsilateral optic projections to the ventral lateral geniculate nucleus (LGNv), superior colliculus (SC), pretectum, nucleus of the optic tract (NOT) or accessory optic system (AOS) (<a class="bk_pop" href="#CreelAlbinism.REF.173" data-bk-pop-others="CreelAlbinism.REF.174 CreelAlbinism.REF.175">173-175</a>).</p><p>In the normally pigmented cat about 50% of RGCs project via the LGN to the ipsilateral cortex. 24% of RGCs originating in temporal retina project to the ipsilateral superior colliculus (<a class="bk_pop" href="#CreelAlbinism.REF.176">176</a>), and about 15% of RGCs project to the ipsilateral pretectum (<a class="bk_pop" href="#CreelAlbinism.REF.177">177</a>). The albino cat has very few ipsilateral projections to the pretectum and almost no ipsilateral projections to superior colliculus (<a class="bk_pop" href="#CreelAlbinism.REF.31">31</a>). All albino cats have nystagmus and many have strabismus.</p><p>Several types of aberrant optokinetic nystagmus (OKN) are described in human albinos (<a class="bk_pop" href="#CreelAlbinism.REF.178" data-bk-pop-others="CreelAlbinism.REF.179 CreelAlbinism.REF.180">178-180</a>). The nuclei responsible for the OKN are the terminal nuclei of the accessory optic system: the dorsal terminal nucleus (DTN), lateral terminal nucleus (LTN), medial terminal nucleus (MTN) and the Nucleus of the Optic Tract (NOT). <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F26/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF26" rid-ob="figobCreelAlbinismF26">Figure 26</a> depicts the rat and rabbit accessory optic system showing the connections of the medial terminal nucleus (MTN) (<a class="bk_pop" href="#CreelAlbinism.REF.181">181</a>). <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F27/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF27" rid-ob="figobCreelAlbinismF27">Figure 27</a> illustrates the accessory optic system (AOS) projections from the lateral terminal nucleus (LTN) of a primate, the Marmoset.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF26" co-legend-rid="figlgndCreelAlbinismF26"><a href="/books/NBK303985/figure/CreelAlbinism.F26/?report=objectonly" target="object" title="Figure 26. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF26" rid-ob="figobCreelAlbinismF26"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image026.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image026.jpg" alt="Figure 26. . The efferent projections in the rat and rabbit of the medial terminal nucleus (MTN) are depicted." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF26"><h4 id="CreelAlbinism.F26"><a href="/books/NBK303985/figure/CreelAlbinism.F26/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF26">Figure 26. </a></h4><p class="float-caption no_bottom_margin">The efferent projections in the rat and rabbit of the medial terminal nucleus (MTN) are depicted. The plane of this figure is horizontal. Arrows depict projections of the MTN. (Re-labeled with permission from Giolli et al., 2006 (181). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF27" co-legend-rid="figlgndCreelAlbinismF27"><a href="/books/NBK303985/figure/CreelAlbinism.F27/?report=objectonly" target="object" title="Figure 27. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF27" rid-ob="figobCreelAlbinismF27"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image027.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image027.jpg" alt="Figure 27. . Diagram of the projections from the lateral terminal nucleus (LTN) in the marmoset." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF27"><h4 id="CreelAlbinism.F27"><a href="/books/NBK303985/figure/CreelAlbinism.F27/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF27">Figure 27. </a></h4><p class="float-caption no_bottom_margin">Diagram of the projections from the lateral terminal nucleus (LTN) in the marmoset. The illustration depicts a horizontal plane. (Re-labeled with permission from Giolli et al., 2006 (181). </p></div></div><p>Albinism in mammals is associated with most RGCs crossing in the optic chiasm. Few RGCs project to the ipsilateral side ultimately projecting to the cortex and brainstem. The optic chiasm plays a pivotal role in human binocularity. Hemidecussation in the optic chiasm dictates the nasal retinal ganglion cells to cross to the other side of the brain, and temporal retinal ganglion cells to stay on the same side of the brain. Retinotopy directs ganglion cells, one nasal and one temporal from each eye, to pair up at the cortex. In this way each pair finally drives one binocular cell in the visual cortex. Besides hemidecussation in the optic chiasm, the corpus callosum and commissural connections in the brainstem are essential building blocks of mammalian binocularity. Identical binocular retinotopic loci on both sides of the cortex are connected through the corpus callosum. These connections facilitate fusion of the eyes, and the right and left visual hemifield (<a class="bk_pop" href="#CreelAlbinism.REF.182" data-bk-pop-others="CreelAlbinism.REF.183">182, 183</a>). Albinism, characterized by a substantial reduction in ipsilateral projections of RGCs in the optic chiasm, and poor binocularity, results in less coordination and loss of association between the eyes, and infantile strabismus occurs. Dissociated Vertical Deviation (DVD) and Latent Nystagmus (LN), both occurring in infantile strabismus, are characterized by binocular motor dissociation. The co-occurrence of both DVD and LN in albinos suggests a common dissociative origin (<a class="bk_pop" href="#CreelAlbinism.REF.182">182</a>).</p><p>There are several theories rooted in the argument that older evolutionary connections dominate during the first several months of human infancy before cortical pathways have matured. Michael C. Brodsky and colleagues propose atavistic reflexes of the accessory optic system generate the dissociated eye movements associated with infantile strabismus (<a class="bk_pop" href="#CreelAlbinism.REF.184" data-bk-pop-others="CreelAlbinism.REF.185 CreelAlbinism.REF.186 CreelAlbinism.REF.187">184-187</a>). They argue that when foveal vision develops slowly in early infancy, the phylogenetically older optokinetic system prominent in lateral-eyed vertebrates that is expressed in first 2 months of infancy continues to be expressed. Monocular, subcortical, nasotemporal optokinetic asymmetry normal in lateral-eyed vertebrates is suppressed in human beings with cortical binocular vision. They suggest cases of possible infantile nystagmus may be due to genetically determined maturational delay in development of cortical binocular vision allowing phylogenetically older pathways to dominate; &#x0201c;[hypothesizing] that the oculomotor disturbances of infantile strabismus correspond to subcortical binocular visual reflexes that are operative in lateral-eyed animals.&#x0201d;; and that the vestibulocerebellum actively contributes to generating infantile nystagmus (<a class="bk_pop" href="#CreelAlbinism.REF.184">184</a>).</p><p>Marcel ten Tusscher also proposes a fall back to older evolutionary connections including the corpus callosum, lateral geniculate nucleus, lack of normal binocularity at the cortex, and subsequent loss of binocular input to the subcortical centers including the superior colliculus (<a class="bk_pop" href="#CreelAlbinism.REF.182" data-bk-pop-others="CreelAlbinism.REF.188 CreelAlbinism.REF.189 CreelAlbinism.REF.190 CreelAlbinism.REF.191">182, 188-191</a>).</p><p>The evolution of the eye and the brain provides a possible explanation for both the anomalous eye movements in albino mammals, and the dissociation of infantile esotropia and its motor characteristics. In the course of evolution, the eyes moved from a lateral to a frontal position. In 300 million years, modern mammals, birds and reptiles evolved from a common ancestor, the captorhinidea (<a class="bk_pop" href="#CreelAlbinism.REF.192" data-bk-pop-others="CreelAlbinism.REF.193">192, 193</a>). Consequently, the monocular visual fields progressed forward on the head to overlap resulting in a binocular visual field. In lateral-eyed animals, the retinae project to the contralateral visual cortices only. These projections are also found in binocular mammals and birds with binocular visual fields. In binocular mammals there are also uncrossed projections from the temporal retinae to the visual cortex. Partial chiasmal decussation and the corpus callosum provide the necessary connections for binocular vision to develop (<a class="bk_pop" href="#CreelAlbinism.REF.194">194</a>). Disruption of normal binocular development causes a loss of binocularity in the primary visual cortex and adjacent areas. Outside the primary visual cortex, the contralateral eye dominates while the temporal retinal signal appears to lose influence.</p><p>Complete motor dissociation between the eyes often results from sensory dissociation between the eyes. In human achiasma, where all retinal nerve fibers project to the ipsilateral cortex, saccades are executed monocularly. Dissociation with monocular saccades also occurs in animals with lateral eyes, e.g. reptiles. Retinal ganglion cells in these species show 100% crossing in the optic chiasm.</p><p>Eye movements in animals with laterally-located eyes are intended to stabilize the visual environment. The vestibular ocular reflex compensates for body movements and the optokinetic reflex compensates for optic flow. Motion sensitive neurons in the retina project to the contralateral brainstem, i.e. the terminal nuclei of the accessory optic system (<a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F27/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF27" rid-ob="figobCreelAlbinismF27">Figure 27</a>) that comprise the afferents of the optokinetic reflex. The nucleus of the optic tract (NOT) is one of these nuclei. The right NOT senses horizontal movement to the right, and the left NOT senses movement to the left. The major target of the optic tract in lateral-eyed animals, however, is the superior colliculus that is responsible for directing gaze movements and sensory integration. Similar neuroanatomical pathways and eye movements also exist in human beings. Human beings, in addition, demonstrate saccades, pursuit and vergence, all of which are initiated by the visual cortex, not the brainstem. The retinal ganglion cells partially decussating in the optic chiasm are one of the evolutionary solutions for combining information from frontal eyes, enabling a correlated binocular signal in the visual cortex. The binocular human cortex ties the temporal retina of one eye together with the nasal retina of the fellow eye. Binocular visual experience overrules the brainstem through an ipsilateral signal directly from the retina, but even more so, via the visual cortex. The optokinetic reflex interacts with the pursuit system, while the superior colliculus (SC) interacts with the saccade and vergence systems (<a class="bk_pop" href="#CreelAlbinism.REF.182">182</a>).</p><p>Newborn children have smooth nasally directed monocular pursuit and impaired temporal-directed pursuit (<a class="bk_pop" href="#CreelAlbinism.REF.195">195</a>). At birth, the eye is controlled by the contralateral nucleus of the optic tract (NOT) (<a class="bk_pop" href="#CreelAlbinism.REF.196">196</a>). The right nucleus of the optic tract senses movement to the right, the left nucleus to the left. The newer pathways (ipsilateral from retina to nucleus of the optic tract (NOT), and the more abundant cortical projection to the NOT are activated through binocular visual experience. When the primary visual cortex does not receive realistic binocular input from both eyes the crossed older pathway dominates. The corticotectal pathway is dominated by the contralateral pathways (<a class="bk_pop" href="#CreelAlbinism.REF.196" data-bk-pop-others="CreelAlbinism.REF.197">196, 197</a>). Van Rijn et al. (<a class="bk_pop" href="#CreelAlbinism.REF.198">198</a>) showed that the same mechanism responsible for LN might be true for DVD (<a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F28/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF28" rid-ob="figobCreelAlbinismF28">Figure 28</a>). DVD combines vertical vergence with binocular torsional version. The elevating eye shows excyclotorsion while the fixating eye shows incyclotorsion. Van Rijn et al. (<a class="bk_pop" href="#CreelAlbinism.REF.198">198</a>) measured eye movements in DVD and showed that these movements are similar to the eye movements in disparity-induced vertical vergence. They suggested that, like LN that likely results from dissociation in the optokinetic /pursuit pathways, DVD might result from dissociation in the vergence pathways (<a class="bk_pop" href="#CreelAlbinism.REF.190" data-bk-pop-others="CreelAlbinism.REF.198">190, 198</a>). In LN the optokinetic pathway is driven by the signal that originates in the crossed retinal ganglion cells due to sensory dissociation, and less so the uncrossed cortical influence on the NOT in the brainstem. DVD likely is a supranuclear cortical problem of the pathways responsible for vergence originating in the crossed retinal ganglion cells due to sensory dissociation and less binocular cortical influence on the brainstem level (<a class="bk_pop" href="#CreelAlbinism.REF.190">190</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figCreelAlbinismF28" co-legend-rid="figlgndCreelAlbinismF28"><a href="/books/NBK303985/figure/CreelAlbinism.F28/?report=objectonly" target="object" title="Figure 28. " class="img_link icnblk_img figpopup" rid-figpopup="figCreelAlbinismF28" rid-ob="figobCreelAlbinismF28"><img class="small-thumb" src="/books/NBK303985/bin/CreelAlbinism-Image028.gif" src-large="/books/NBK303985/bin/CreelAlbinism-Image028.jpg" alt="Figure 28. . Neuroanatomical summary of the pathways involved in dissociated vertical deviation (DVD)." /></a><div class="icnblk_cntnt" id="figlgndCreelAlbinismF28"><h4 id="CreelAlbinism.F28"><a href="/books/NBK303985/figure/CreelAlbinism.F28/?report=objectonly" target="object" rid-ob="figobCreelAlbinismF28">Figure 28. </a></h4><p class="float-caption no_bottom_margin">Neuroanatomical summary of the pathways involved in dissociated vertical deviation (DVD). (Redrawn with permission from ten Tusscher, 2014 (182). </p></div></div><p>DVD appears as a result of inhibition of the uncrossed temporal retinal signal. Beyond the primary visual cortex and the reciprocal connection of the callosum, a biased cortical activation leads to corticotectal stimulation dominated by the nasal retina. <a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F28/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF28" rid-ob="figobCreelAlbinismF28">Figure 28</a> depicts the neuroanatomical summary of the pathways involved in DVD projection from nasal retina of the contralateral eye that dominate the superior colliculi in infantile strabismus. With occlusion of the left eye, the nasal bias in ocular dominance in the visual cortex in a patient with infantile strabismus gives rise to dominance of the left visual cortex and the left corticotectal pathway. The left superior colliculus (SC) projects to the left interstitial nucleus of Cajal (INC) and the right omnipause (OPN) neurons that results in elevation of the left eye and counterclockwise cycloversion. The pathway from the superior colliculi (SC) to the interstitial nuclei of Cajal (INC) links the two dimensional cortex and superior colliculus to the three dimensional brainstem. A monocular vertical signal leads to torsional vergence, DVD.</p><p>Partial decussation in the optic chiasm appears to be only one of the components important for binocularity. In rodents, e.g. the rat, with 95% crossing in the optic chiasm binocularity of the visual cortex depends on the combination of a signal from the contralateral eye through the geniculate pathway, and a signal from the ipsilateral eye to the contralateral geniculate and back through the corpus callosum. But even in cats that have substantial hemidecussation at the optic chiasm, transection of all crossing retinal ganglion cell axons in the optic chiasm appears not to affect most kinds of disparity (<a class="bk_pop" href="#CreelAlbinism.REF.183">183</a>). In mammals without partial decussation in the optic chiasm and without a corpus callosum, like marsupials, e.g., the wallaby, binocularity is still demonstrated in brainstem neurons (<a class="bk_pop" href="#CreelAlbinism.REF.199">199</a>). Binocularity appears to depend on commissural connections between both superior colliculi and between the nuclei of the optic tract. So, mammalian binocularity includes information provided by 1) partial decussation in the optic chiasm, 2) the corpus callosum and 3) commissural connections in the brainstem (<a class="bk_pop" href="#CreelAlbinism.REF.182">182</a>).</p><p>A high percentage of both infantile exotropia (67%) and esotropia (49%) patients were found to have a coexisting ocular or systemic abnormality (<a class="bk_pop" href="#CreelAlbinism.REF.200">200</a>). Agenesis of the corpus callosum underlines the importance of the corpus callosum for normal binocular fusion. Strabismus is found in 46% of patients with partial agenesis of the corpus callosum (<a class="bk_pop" href="#CreelAlbinism.REF.201">201</a>). Moreover, hemispherectomy early in life often causes strabismus (<a class="bk_pop" href="#CreelAlbinism.REF.202">202</a>). Hemidecussation in the optic chiasm allows retinotopic matching between the nasal and the temporal retina. In albinism, many RGCs originating in temporal retina project to the contralateral LGN then to contralateral visual cortex. The border between crossed and uncrossed ganglion cell fibers in most human albinos appears to vary from point of fixation to 6&#x02013;14 degrees into the temporal retina. Besides prominent misrouting in the chiasm, as in albinism, or agenesis of the corpus callosum, more subtle misrouting may cause a mismatch between temporal and nasal signals or between the direct thalamic and the indirect corpus callosum signal. Also the vertical meridian of one retina may not coincide with the overlapping zone of the other eye. In a primate study, the retinal vertical meridian in one of three monkeys was found not to coincide with the fovea (<a class="bk_pop" href="#CreelAlbinism.REF.203">203</a>).</p><p>Both esotropia induced by prisms or surgery in the sensitive postnatal period, and infantile esotropia change the binocular response of neurons in the primary visual cortex dramatically. After early surgically induced strabismus, neurons in the primary visual cortex, area 17, of kittens were found to be responsive to one eye only. An approximately equal representation of both eyes was found in both hemispheres. These results have often been confirmed, although a small bias of the non-operated eye in the ocular dominance columns sometimes occurred. Also most cortical neurons distal to area 17, the extrastriate cortex, could exclusively be triggered by one eye. An equal representation of both eyes is not found in the extrastriate cortex. The large majority of neurons in, for example, area 18, respond to the contralateral eye exclusively. In contrast to this huge contralateral dominance, only a slight dominance of the non-operated eye was found. In electrophysiological studies cortical neurons representing the temporal retina were found to be unresponsive to a stimulus from the squinting eye. In the early postnatal period, crossing nasal retinal afferents were found to be far less vulnerable than temporal uncrossed retinal afferents (<a class="bk_pop" href="#CreelAlbinism.REF.204">204</a>).</p><p>Crossed retinal dominance beyond the primary visual cortex appears to explain Dissociated Vertical Deviation and Latent Nystagmus, however, the cause of DVD is often explained differently. In a 2014 overview of a symposium on dissociated vertical divergence (DVD), Christoff et al. (<a class="bk_pop" href="#CreelAlbinism.REF.185">185</a>) discussed two popular theories on the origin of DVD: a hypothesis that suggests that DVD results from damping of latent nystagmus (LN), and another theory that postulates an atavistic origin: a righting reflex in fish.</p><p>Ten Tusscher argues the co-occurrence of both DVD and LN in infantile strabismus may well suggest a common dissociative origin, or perhaps one of these phenomena may be the result of the other. It is postulated to be the latter because damping of latent nystagmus occurs after the start of vertical divergence in DVD. However, DVD is more frequent than latent nystagmus. Moreover, DVD is a unique binocular cyclovertical eye movement. It is suggested to occur in order to suppress a horizontal eye movement and only if this movement is latent. Why does it not occur in manifest latent nystagmus and why not in congenital nystagmus? ten Tusscher argues the righting reflex observed in fish as the origin of DVD is less likely (<a class="bk_pop" href="#CreelAlbinism.REF.190" data-bk-pop-others="CreelAlbinism.REF.191">190, 191</a>). They argue the righting reflex is a postural reflex, not an ocular one and is orchestrated by the torus longitudinalis and the valvula cerebelli, and that both of these have no analogue in the human brain. Moreover, during a righting reflex the eye that is illuminated most, will move downward and the other upward. In DVD, however, blinding an eye by light will cause an upward movement of the blinded eye (the Bielschowsky phenomenon). Also, in contrast with the righting reflex, DVD is influenced by blur and by fixation. DVD combines vertical vergence with binocular torsional version. The elevating eye shows excyclotorsion while the fixating eye shows incyclotorsion. Early research measured eye movements in DVD. DVD characteristics appeared similar to the eye movements in disparity-induced vertical vergence (<a class="bk_pop" href="#CreelAlbinism.REF.198">198</a>).</p><p>Albinism is an example that sensory dissociation may be the result of a change in chiasmal decussation. Dissociated Vertical Deviation (DVD) and Latent Nystagmus (LN), are characterized by binocular motor dissociation with a common dissociative origin. Brain pathology may cause sensory dissociation, which may subsequently lead to motor dissociation. The binocular link between the cortex and the brainstem nuclei like the NOT and the superior colliculus, is a key element in the origin of motor dissociation in infantile strabismus. In primates with infantile strabismus, the visual cortex beyond V1 is dominated by the crossed retinal signal. The equilibrium between the crossed and the uncrossed signal is not established. The brainstem is deprived of normal binocular input. This causes the NOT and superior colliculus to be driven mostly by the contralateral eye (<a class="figpopup" href="/books/NBK303985/figure/CreelAlbinism.F28/?report=objectonly" target="object" rid-figpopup="figCreelAlbinismF28" rid-ob="figobCreelAlbinismF28">Figure 28</a>). If an eye is connected mostly to the contralateral NOT it will be more sensitive to motion directed towards the nose. This asymmetry causes latent nystagmus during monocular viewing. Fixation, saccades and vergence rely on the information from visual cortex to the superior colliculus. Loss of uncrossed retinal signal to the superior colliculus causes the upward movement of the eye. Cortical deactivation of this system causes Bell&#x02019;s phenomenon and the upward movement of the eyes during the early stages of general anesthesia that is related to the loss of cortical influence. The two dimensional cortex and superior colliculus are connected to a three dimensional brainstem. Vertical eye movements are associated with torsional movements by way of a pathway from the superior colliculus to the contralateral interstitial nucleus of Cajal (<a class="bk_pop" href="#CreelAlbinism.REF.191" data-bk-pop-others="CreelAlbinism.REF.205">191, 205</a>). If the contralateral eye dominates the cortical information to the superior colliculus, vertical vergence and torsional version (DVD) result.</p><p>If all features of infantile strabismus can be explained with a general principle based on proven changes in primate neuroanatomy, ten Tusscher suggests Occam&#x02019;s razor applies; and there is no reason to explain one of its features with a body reflex with characteristics different from DVD originating from the fish brain that phylogenetically bears little relationship to the primate brain, or assume it arises to facilitate viewing during occlusion of one eye. It follows that sensory dissociation beyond V1, most likely due to active suppression by the older evolutionary crossed pathway (crossed retinal dominance) leads to the eye movement dissociation that is typically seen in the infantile strabismus syndrome.</p></div><div id="CreelAlbinism.Creel_theory"><h2 id="_CreelAlbinism_Creel_theory_">15. Creel theory</h2><p>The Creel theory proposes that the lack of melanin pigment initiates atavistic expression of visual and auditory embryogenesis. In albino mammals&#x02019; embryogenesis vision and hearing take an analogous step back. Visual anomalies in albino mammals, including human beings, represent a developmental field defect that occurs as a normal developmental state in closely related species (<a class="bk_pop" href="#CreelAlbinism.REF.206">206</a>). As pointed out by Meckel (<a class="bk_pop" href="#CreelAlbinism.REF.207">207</a>), primary malformations, in this case complete optic decussation, are not aberrant. Complete decussation of retinal ganglion cells at the optic chiasm is a conventional ancestral state in non-mammalian vertebrates, and reduced non-decussated optic fibers are the norm in ancestral mammals.</p><p>In an embryonic environment, neural stem cells, lacking positive signals to progress, transition into more primitive neural precursor cells (<a class="bk_pop" href="#CreelAlbinism.REF.208">208</a>). Melanin pigment in the nascent retina, or likely genetic coding for melanin pigment, is the positive inductive signal launching normal retinal development and retinal ganglion cell targeting. When retinal melanin is reduced, retinal embryogenesis defaults to the conserved genetic package existing when the species first evolved with a cascade of consequences.</p><p>The vertebrate genome includes coding of genetic past. Charles Darwin (<a class="bk_pop" href="#CreelAlbinism.REF.209">209</a>) popularized atavism as the term for reappearance of ancestral characteristics in future generations. Most atavistic expression is probably not random, but due to an error in early embryonic environment triggering expression of genes conserved across evolution. Actuating atavistic optic misrouting likely includes several possible events.</p><p>Mammals retain the evolutionary base instruction package for complete crossing of the retinal ganglion cells in ancestral vertebrates, and little genetic information re area centralis development, foveal, or vascular sparing of the foveal area. As each mammalian species or subspecies branched off and went their own way the genetic control of visual and auditory system development evolved to fit the environment of the species, revising embryogenesis that existed at the time the species became independent.</p><p>The essence of this theory is that retinal melanin pigment is so fundamental to retinal, vascular, and early retinal ganglion cell targeting that insufficient retinal melanin triggers a switch resulting in the conventional genetic instructions not to be completed. Mammals with nondecussating retinal ganglion cells are genetically unstable. In albinos genetic instruction defaults to the simpler, more entrenched, platform. An atavistic expression of the conserved, more stable, genetic platform skewed toward complete crossing of retinal ganglion cells at the chiasm, and commensurate visual and auditory anomalies, develops consistent with genetics of each species&#x02019; evolutionary origin.</p><p>A genome is not comprised of independently functioning loci on chromosomes, but an interactive compilation of coded instructions that reacts to alterations in the genome. The inductive signals for entirely crossed optic fibers are conserved in mammals. The atavistic fallback to this morphology is an easy misstep because of the phylogenetically recent development of the temporal retina, vascular sparing in macula, and foveal development in primates. As suggested by Gehring (<a class="bk_pop" href="#CreelAlbinism.REF.210">210</a>) regarding early evolution of eyes, morphogenetic pathways are progressively being modified by intercalation of novel genes. Phylogenetically late genetic addendums to conserved instructions are vulnerable to not being expressed if genetic cues, such as sufficient retinal melanin pigmentation, are not present to support variation from highly conserved coding. Coding for reduced pigment in the retina also possibly disrupts silencing of ancestral genes, which dictate complete decussation of optic neurons and more primitive vascular and retinal development.</p></div><div id="CreelAlbinism.About_the_Authors"><h2 id="_CreelAlbinism_About_the_Authors_">About the Authors</h2><p>Dr. Donnell Creel's biography and photograph are seen in the chapter entitled "<a href="/books/n/webvision/ch36clinicalerg/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">The Electroretinogram: Clinical Applications</a>" in Webvision</p></div><div id="CreelAlbinism.References"><h2 id="_CreelAlbinism_References_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.1">Polyak, S.L., The vertebrate visual system; its origin, structure, and function and its manifestations in disease with an analysis of its role in the life of animals and in the origin of man, preceded by a historical review of investigations of the eye, and of the visual pathways and centers of the brain. 1957, Chicago: University of Chicago Press. xviii, 1390 p.</div></dd><dt>2.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.2">Neveu M.M., Jeffery G. Chiasm formation in man is fundamentally different from that in the mouse. <span><span class="ref-journal">Eye (Lond). </span>2007;<span class="ref-vol">21</span>(10):126470.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17914429" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17914429</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.3">Sheridan C.L. Interocular Transfer of Brightness and Pattern Discriminations in Normal and Corpus Callosum-Sectioned Rats. <span><span class="ref-journal">J Comp Physiol Psychol. </span>1965;<span class="ref-vol">59</span>:2924.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14288359" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14288359</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.4">Lund R.D. Uncrossed Visual Pathways of Hooded and Albino Rats. <span><span class="ref-journal">Science. </span>1965;<span class="ref-vol">149</span>(3691):15067.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17791642" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17791642</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.5">Lashley K. Studies of cerebral function in learning: V. The retention of motor habits after destruction of the so-called motor areas in primates. <span><span class="ref-journal">Archives of Neurology &#x00026; Psychiatry. </span>1924;<span class="ref-vol">12</span>(3):249276.</span></div></dd><dt>6.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.6">Chang M. Neural mechanism of monocular vision: I. Disturbance of monocular pattern discrimination in the albino rat after destruction of the cerebral visual area. <span><span class="ref-journal">Chin. J. Psychol. </span>1936;<span class="ref-vol">1</span>:10.</span></div></dd><dt>7.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.7">Muntz W., Sutherland N. The role of crossed and uncrossed optic nerve fibers in the visual discrimination of shape by rats. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1964;<span class="ref-vol">122</span>(1):6977.</span></div></dd><dt>8.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.8">Sheridan C.L. Interocular transfer of brightness and pattern discriminations in normal and corpus callosum-sectioned rats. <span><span class="ref-journal">Journal of comparative and physiological psychology. </span>1965;<span class="ref-vol">59</span>(2):292.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14288359" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14288359</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.9">Creel D.J., Sheridan C.L. Monocular acquisition and interocular transfer in albino rats with unilateral striate ablations. <span><span class="ref-journal">Psychonomic Science. </span>1966;<span class="ref-vol">6</span>(3):8990.</span></div></dd><dt>10.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.10">Giolli R.A., Guthrie M.D. The primary optic projections in the rabbit. An experimental degeneration study. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1969;<span class="ref-vol">136</span>(1):99125.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/5795899" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 5795899</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.11">G&#x000fc;illery R. A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. <span><span class="ref-journal">Zeitschrift f&#x000fc;r Zellforschung und mikroskopische Anatomie. </span>1969;<span class="ref-vol">96</span>(1):3948.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/5772028" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 5772028</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.12">Creel D.J. Differences of ipsilateral and contralateral visually evoked responses in the cat: strains compared. <span><span class="ref-journal">J Comp Physiol Psychol. </span>1971;<span class="ref-vol">77</span>(1):1615.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/5120681" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 5120681</span></a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.13">Creel D.J. Visual system anomaly associated with albinism in the cat. <span><span class="ref-journal">Nature. </span>1971;<span class="ref-vol">231</span>(5303):4656.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4931610" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4931610</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.14">CREEL. D., C.J. WITKOP, and R.A. KING, Asymmetric visually evoked potentials in human albinos: evidence for visual system anomalies. <span><span class="ref-journal">Investigative Ophthalmology &#x00026; Visual Science. </span>1974;<span class="ref-vol">13</span>(6):430440.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4831697" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4831697</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.15">Sanderson K. Retinogeniculate projections in the rabbits of the albino allelomorphic series. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1975;<span class="ref-vol">159</span>(1):1527.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1109379" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1109379</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.16">Creel D., Giolli R.A. Retinogeniculate projections in albino and ocularly hypopigmented rats. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1976;<span class="ref-vol">166</span>(4):445455.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1270616" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1270616</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.17">Guillery R., Oberdorfer M., Murphy E. Abnormal retino&#x02010;geniculate and geniculo&#x02010;cortical pathways in several genetically distinct color phases of the mink (Mustela vison). <span><span class="ref-journal">Journal of Comparative Neurology. </span>1979;<span class="ref-vol">185</span>(4):623655.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/447875" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 447875</span></a>]</div></dd><dt>18.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.18">Guillery R. Visual pathways in albinos. <span><span class="ref-journal">Scientific American. </span>1974</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4822986" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4822986</span></a>]</div></dd><dt>19.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.19">Guillery R., Okoro A.N., Witkop C.J. Abnormal visual pathways in the brain of a human albino. <span><span class="ref-journal">Brain research. </span>1975;<span class="ref-vol">96</span>(2):373377.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1175020" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1175020</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.20">Hickey T., Guillery R. Variability of laminar patterns in the human lateral geniculate nucleus. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1979;<span class="ref-vol">183</span>(2):221246.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/762256" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 762256</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.21">Gross K., Hickey T. Abnormal laminar patterns in the lateral geniculate nucleus of an albino monkey. <span><span class="ref-journal">Brain research. </span>1980;<span class="ref-vol">190</span>(1):231237.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6769535" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6769535</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.22">Guillery R., et al. Abnormal central visual pathways in the brain of an albino green monkey (Cercopithecus aethiops). <span><span class="ref-journal">Journal of Comparative Neurology. </span>1984;<span class="ref-vol">226</span>(2):165183.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6330179" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6330179</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.23">Elschnig A. Zur anatomie des menschlichen albinoauges. <span><span class="ref-journal">Graefe's Archive for Clinical and Experimental Ophthalmology. </span>1913;<span class="ref-vol">84</span>(3):401419.</span></div></dd><dt>24.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.24">Fulton A.B., Albert D.M., Craft J.L. Human albinism: light and electron microscopy study. <span><span class="ref-journal">Archives of ophthalmology. </span>1978;<span class="ref-vol">96</span>(2):305310.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/629678" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 629678</span></a>]</div></dd><dt>25.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.25">Wilson H.R., et al. Albino spatial vision as an instance of arrested visual development. <span><span class="ref-journal">Vision research. </span>1988;<span class="ref-vol">28</span>(9):979990.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3254652" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3254652</span></a>]</div></dd><dt>26.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.26">Bridge H., et al. Changes in brain morphology in albinism reflect reduced visual acuity. <span><span class="ref-journal">Cortex. </span>2014;<span class="ref-vol">56</span>:6472.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/23039995" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23039995</span></a>]</div></dd><dt>27.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.27">Mcketton L., Kelly K.R., Schneider K.A. Abnormal lateral geniculate nucleus and optic chiasm in human albinism. <span><span class="ref-journal">Journal of Comparative Neurology. </span>2014;<span class="ref-vol">522</span>(11):26802687.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/24639208" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24639208</span></a>]</div></dd><dt>28.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.28">Hubel D., Wiesel T. Aberrant visual projections in the Siamese cat. <span><span class="ref-journal">The Journal of physiology. </span>1971;<span class="ref-vol">218</span>(1):3362.</span> [<a href="/pmc/articles/PMC1331583/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1331583</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/5130620" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 5130620</span></a>]</div></dd><dt>29.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.29">Leventhal A.G., Vitek D.J., Creel D.J. Abnormal visual pathways in normally pigmented cats that are heterozygous for albinism. <span><span class="ref-journal">Science. </span>1985;<span class="ref-vol">229</span>(4720):13951397.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3929383" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3929383</span></a>]</div></dd><dt>30.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.30">Hoffmann M.B., et al. Organization of the visual cortex in human albinism. <span><span class="ref-journal">The Journal of neuroscience. </span>2003;<span class="ref-vol">23</span>(26):89218930.</span> [<a href="/pmc/articles/PMC6740392/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6740392</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14523094" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14523094</span></a>]</div></dd><dt>31.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.31">Creel D., et al. Abnormal retinal projections in cats with the Chediak-Higashi syndrome. <span><span class="ref-journal">Invest Ophthalmol Vis Sci. </span>1982;<span class="ref-vol">23</span>(6):798801.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7141822" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7141822</span></a>]</div></dd><dt>32.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.32">Creel D., Conlee J.W., Parks T.N. Auditory brainstem anomalies in albino cats. I. Evoked potential studies. <span><span class="ref-journal">Brain research. </span>1983;<span class="ref-vol">260</span>(1):19.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6824946" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6824946</span></a>]</div></dd><dt>33.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.33">Vopalensky P., et al. Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. <span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>2012;<span class="ref-vol">109</span>(38):153838.</span> [<a href="/pmc/articles/PMC3458357/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3458357</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22949670" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22949670</span></a>]</div></dd><dt>34.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.34">Lucas R., et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. <span><span class="ref-journal">Science. </span>2003;<span class="ref-vol">299</span>(5604):245247.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12522249" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12522249</span></a>]</div></dd><dt>35.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.35">Hattar S., et al. Central projections of melanopsin&#x02010;expressing retinal ganglion cells in the mouse. <span><span class="ref-journal">Journal of Comparative Neurology. </span>2006;<span class="ref-vol">497</span>(3):326349.</span> [<a href="/pmc/articles/PMC2885916/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2885916</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16736474" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16736474</span></a>]</div></dd><dt>36.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.36">Creel D., Hendrickson A.E., Leventhal A.G. Retinal projections in tyrosinase-negative albino cats. <span><span class="ref-journal">The Journal of Neuroscience. </span>1982;<span class="ref-vol">2</span>(7):907911.</span> [<a href="/pmc/articles/PMC6564394/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6564394</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6808091" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6808091</span></a>]</div></dd><dt>37.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.37">Hendrickson A.E., Wagoner N., Cowan W.M. An autoradiographic and electron microscopic study of retino-hypothalamic connections. <span><span class="ref-journal">Z Zellforsch Mikrosk Anat. </span>1972;<span class="ref-vol">135</span>(1):126.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4629413" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4629413</span></a>]</div></dd><dt>38.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.38">Sanderson K., Guillery R., Shackelford R. Congenitally abnormal visual pathways in mink (Mustela vison) with reduced retinal pigment. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1974;<span class="ref-vol">154</span>(3):225248.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4826094" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4826094</span></a>]</div></dd><dt>39.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.39">Creel D.J., Giolli R.A. Retinogeniculostriate projections in guinea pigs: albino and pigmented strains compared. <span><span class="ref-journal">Experimental neurology. </span>1972;<span class="ref-vol">36</span>(3):411425.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/5071805" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 5071805</span></a>]</div></dd><dt>40.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.40">Ault S.J., et al. Abnormal ipsilateral visual field representation in areas 17 and 18 of hypopigmented cats. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1995;<span class="ref-vol">354</span>(2):181192.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7782497" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7782497</span></a>]</div></dd><dt>41.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.41">Hoffmann M.B., et al. Assessment of cortical visual field representations with multifocal VEPs in control subjects, patients with albinism, and female carriers of ocular albinism. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2006;<span class="ref-vol">47</span>(7):31953201.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16799067" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16799067</span></a>]</div></dd><dt>42.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.42">Summers C.G. Albinism: classification, clinical characteristics, and recent findings. <span><span class="ref-journal">Optometry &#x00026; Vision Science. </span>2009;<span class="ref-vol">86</span>(6):659662.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19390472" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19390472</span></a>]</div></dd><dt>43.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.43">Neveu M.M., et al. Early midline interactions are important in mouse optic chiasm formation but are not critical in man: a significant distinction between man and mouse. <span><span class="ref-journal">European Journal of Neuroscience. </span>2006;<span class="ref-vol">23</span>(11):30343042.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16819992" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16819992</span></a>]</div></dd><dt>44.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.44">Dulai K.S., et al. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. <span><span class="ref-journal">Genome Research. </span>1999;<span class="ref-vol">9</span>(7):629638.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10413401" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10413401</span></a>]</div></dd><dt>45.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.45">Hendrickson A., Wilson J., Ogren M. The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. <span><span class="ref-journal">The Journal of comparative neurology. </span>1978;<span class="ref-vol">182</span>(1):123136.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/100530" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 100530</span></a>]</div></dd><dt>46.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.46">Oetting W., et al. Evolution of the tyrosinase related gene (TYRL) in primates. <span><span class="ref-journal">Pigment cell research. </span>1993;<span class="ref-vol">6</span>(3):171177.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8234203" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8234203</span></a>]</div></dd><dt>47.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.47">Azuma N. <span><span class="ref-journal">Nippon Ganka Gakkai Zasshi. </span>2000;<span class="ref-vol">104</span>(12):960985.</span> [Molecular cell biology on morphogenesis of the fovea and evolution of the central vision] [<a href="https://pubmed.ncbi.nlm.nih.gov/11193946" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11193946</span></a>]</div></dd><dt>48.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.48">Arendt D. Evolution of eyes and photoreceptor cell types. <span><span class="ref-journal">Int J Dev Biol. </span>2003;<span class="ref-vol">47</span>(7-8):56371.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14756332" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14756332</span></a>]</div></dd><dt>49.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.49">Kozmik Z. Pax genes in eye development and evolution. <span><span class="ref-journal">Current opinion in genetics &#x00026; development. </span>2005;<span class="ref-vol">15</span>(4):430438.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15950457" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15950457</span></a>]</div></dd><dt>50.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.50">Kozmik Z. The role of Pax genes in eye evolution. <span><span class="ref-journal">Brain research bulletin. </span>2008;<span class="ref-vol">75</span>(2):335339.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18331895" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18331895</span></a>]</div></dd><dt>51.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.51">Herbert S.P., Stainier D.Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. <span><span class="ref-journal">Nature reviews Molecular cell biology. </span>2011;<span class="ref-vol">12</span>(9):551564.</span> [<a href="/pmc/articles/PMC3319719/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3319719</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21860391" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21860391</span></a>]</div></dd><dt>52.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.52">Woolfe A., et al. Highly conserved non-coding sequences are associated with vertebrate development. <span><span class="ref-journal">PLoS biology. </span>2004;<span class="ref-vol">3</span>(1):e7.</span> [<a href="/pmc/articles/PMC526512/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC526512</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15630479" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15630479</span></a>]</div></dd><dt>53.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.53">Woolfe A., et al. Highly conserved non-coding sequences are associated with vertebrate development. <span><span class="ref-journal">PLoS Biol. </span>2005;<span class="ref-vol">3</span>(1):e7.</span> [<a href="/pmc/articles/PMC526512/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC526512</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15630479" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15630479</span></a>]</div></dd><dt>54.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.54">Jen J.C., et al. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. <span><span class="ref-journal">Science. </span>2004;<span class="ref-vol">304</span>(5676):15091513.</span> [<a href="/pmc/articles/PMC1618874/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1618874</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15105459" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15105459</span></a>]</div></dd><dt>55.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.55">Dimond A., Fraser P. Long Noncoding RNAs Xist in Three Dimensions. <span><span class="ref-journal">Science. </span>2013;<span class="ref-vol">341</span>(6147):720721.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/23950517" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23950517</span></a>]</div></dd><dt>56.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.56">Engreitz J.M., et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. <span><span class="ref-journal">Science. </span>2013;<span class="ref-vol">341</span>(6147):1237973.</span> [<a href="/pmc/articles/PMC3778663/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3778663</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23828888" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23828888</span></a>]</div></dd><dt>57.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.57">Dixon J.R., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. <span><span class="ref-journal">Nature. </span>2012;<span class="ref-vol">485</span>(7398):376380.</span> [<a href="/pmc/articles/PMC3356448/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3356448</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22495300" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22495300</span></a>]</div></dd><dt>58.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.58">Woolfe A., Elgar G. Organization of conserved elements near key developmental regulators in vertebrate genomes. <span><span class="ref-journal">Advances in genetics. </span>2008;<span class="ref-vol">61</span>:307338.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18282512" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18282512</span></a>]</div></dd><dt>59.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.59">Lee K.A. Molecular recognition by the EWS transcriptional activation domain. <span><span class="ref-journal">Adv Exp Med Biol. </span>2012;<span class="ref-vol">725</span>:10625.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22399321" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22399321</span></a>]</div></dd><dt>60.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.60">Prabhakar S., et al. Accelerated evolution of conserved noncoding sequences in humans. <span><span class="ref-journal">Science. </span>2006;<span class="ref-vol">314</span>(5800):786786.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17082449" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17082449</span></a>]</div></dd><dt>61.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.61">Kioussis D. Gene regulation: kissing chromosomes. <span><span class="ref-journal">Nature. </span>2005;<span class="ref-vol">435</span>(7042):579580.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15931207" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15931207</span></a>]</div></dd><dt>62.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.62">Spitzweck B., Brankatschk M., Dickson B.J. Distinct protein domains and expression patterns confer divergent axon guidance functions for Drosophila Robo receptors. <span><span class="ref-journal">Cell. </span>2010;<span class="ref-vol">140</span>(3):409420.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20144763" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20144763</span></a>]</div></dd><dt>63.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.63">Creel D. Inappropriate use of albino animals as models in research. <span><span class="ref-journal">Pharmacology Biochemistry and Behavior. </span>1980;<span class="ref-vol">12</span>(6):969977.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7403210" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7403210</span></a>]</div></dd><dt>64.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.64">McCauley D.W., Hixon E., Jeffery W.R. Evolution of pigment cell regression in the cavefish Astyanax: a late step in melanogenesis. <span><span class="ref-journal">Evolution &#x00026; development. </span>2004;<span class="ref-vol">6</span>(4):209218.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15230961" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15230961</span></a>]</div></dd><dt>65.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.65">Plachetzki D.C., Fong C.R., Oakley T.H. Cnidocyte discharge is regulated by light and opsin-mediated phototransduction. <span><span class="ref-journal">BMC biology. </span>2012;<span class="ref-vol">10</span>(1):17.</span> [<a href="/pmc/articles/PMC3329406/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3329406</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22390726" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22390726</span></a>]</div></dd><dt>66.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.66">Arendt D., et al. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. <span><span class="ref-journal">Science. </span>2004;<span class="ref-vol">306</span>(5697):869871.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15514158" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15514158</span></a>]</div></dd><dt>67.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.67">Hanson, I.M. Mammalian homologues of the Drosophila eye specification genes. in Seminars in cell &#x00026; developmental biology. 2001: Elsevier. [<a href="https://pubmed.ncbi.nlm.nih.gov/11735383" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11735383</span></a>]</div></dd><dt>68.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.68">Kumar J.P., Moses K. EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. <span><span class="ref-journal">Cell. </span>2001;<span class="ref-vol">104</span>(5):687697.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11257223" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11257223</span></a>]</div></dd><dt>69.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.69">McAllister J.T., et al. Arrested development: high-resolution imaging of foveal morphology in albinism. <span><span class="ref-journal">Vision research. </span>2010;<span class="ref-vol">50</span>(8):810817.</span> [<a href="/pmc/articles/PMC2838989/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2838989</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20149815" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20149815</span></a>]</div></dd><dt>70.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.70">HOYT. W.F. and O. LUIS, The primate chiasm: details of visual fiber organization studied by silver impregnation techniques. <span><span class="ref-journal">Archives of ophthalmology. </span>1963;<span class="ref-vol">70</span>(1):6985.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/13955217" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 13955217</span></a>]</div></dd><dt>71.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.71">Jeffery G., Levitt J.B., Cooper H. Segregated hemispheric pathways through the optic chiasm distinguish primates from rodents. <span><span class="ref-journal">Neuroscience. </span>2008;<span class="ref-vol">157</span>(3):637643.</span> [<a href="/pmc/articles/PMC2736912/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2736912</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18854206" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18854206</span></a>]</div></dd><dt>72.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.72">Gargiulo A., et al. Molecular and clinical characterization of albinism in a large cohort of Italian patients. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2011;<span class="ref-vol">52</span>(3):12811289.</span> [<a href="/pmc/articles/PMC3101674/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3101674</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20861488" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20861488</span></a>]</div></dd><dt>73.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.73">Dorey S., et al. The clinical features of albinism and their correlation with visual evoked potentials. <span><span class="ref-journal">British journal of ophthalmology. </span>2003;<span class="ref-vol">87</span>(6):767772.</span> [<a href="/pmc/articles/PMC1771702/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1771702</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12770978" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12770978</span></a>]</div></dd><dt>74.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.74">Yuodelis C., Hendrickson A. A qualitative and quantitative analysis of the human fovea during development. <span><span class="ref-journal">Vision research. </span>1986;<span class="ref-vol">26</span>(6):847855.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3750868" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3750868</span></a>]</div></dd><dt>75.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.75">Kelly J.P., Weiss A.H. Topographical retinal function in oculocutaneous albinism. <span><span class="ref-journal">American journal of ophthalmology. </span>2006;<span class="ref-vol">141</span>(6):11561158.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16765699" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16765699</span></a>]</div></dd><dt>76.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.76">Hendrickson A., et al. Development of the neural retina and its vasculature in the marmoset Callithrix jacchus. <span><span class="ref-journal">Journal of Comparative Neurology. </span>2006;<span class="ref-vol">497</span>(2):270286.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16705674" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16705674</span></a>]</div></dd><dt>77.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.77">Jeffery G. The albino retina: an abnormality that provides insight into normal retinal development. <span><span class="ref-journal">Trends in neurosciences. </span>1997;<span class="ref-vol">20</span>(4):165169.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9106357" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9106357</span></a>]</div></dd><dt>78.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.78">Esteve J.V., Jeffery G. Reduced retinal deficits in an albino mammal with a cone rich retina: a study of the ganglion cell layer at the area centralis of pigmented and albino grey squirrels. <span><span class="ref-journal">Vision research. </span>1998;<span class="ref-vol">38</span>(6):937940.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9624442" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9624442</span></a>]</div></dd><dt>79.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.79">Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. <span><span class="ref-journal">Current topics in developmental biology. </span>2010;<span class="ref-vol">93</span>:61.</span> [<a href="/pmc/articles/PMC2958684/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2958684</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20959163" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20959163</span></a>]</div></dd><dt>80.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.80">Le Y.Z., et al. Temporal requirement of RPE&#x02010;derived VEGF in the development of choroidal vasculature. <span><span class="ref-journal">Journal of neurochemistry. </span>2010;<span class="ref-vol">112</span>(6):15841592.</span> [<a href="/pmc/articles/PMC2933813/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2933813</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20067573" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20067573</span></a>]</div></dd><dt>81.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.81">Marneros A.G., et al. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. <span><span class="ref-journal">The American journal of pathology. </span>2005;<span class="ref-vol">167</span>(5):14511459.</span> [<a href="/pmc/articles/PMC1603772/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1603772</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16251428" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16251428</span></a>]</div></dd><dt>82.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.82">Zhu, M., et al., Presence of RPE-produced VEGF in a timely manner is critical to choroidal vascular development, in Retinal Degenerative Diseases. 2012, Springer. p. 299-304. [<a href="https://pubmed.ncbi.nlm.nih.gov/22183346" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22183346</span></a>]</div></dd><dt>83.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.83">Kozulin P., et al. Differential expression of anti-angiogenic factors and guidance genes in the developing macula. <span><span class="ref-journal">Molecular vision. </span>2009;<span class="ref-vol">15</span>:45.</span> [<a href="/pmc/articles/PMC2622716/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2622716</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19145251" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19145251</span></a>]</div></dd><dt>84.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.84">Kozulin P., et al. The cellular expression of antiangiogenic factors in fetal primate macula. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2010;<span class="ref-vol">51</span>(8):42984306.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20357200" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20357200</span></a>]</div></dd><dt>85.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.85">Creel D., O'Donnell F., Witkop C. Visual system anomalies in human ocular albinos. <span><span class="ref-journal">Science. </span>1978;<span class="ref-vol">201</span>(4359):931933.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/684419" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 684419</span></a>]</div></dd><dt>86.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.86">Taylor W. Edridge-Green Lecture, 1978. Visual disabilities of oculocutaneous albinism and their alleviation. <span><span class="ref-journal">Transactions of the ophthalmological societies of the United Kingdom. </span>1977;<span class="ref-vol">98</span>(4):423445.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/115122" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 115122</span></a>]</div></dd><dt>87.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.87">Coleman J., et al. Abnormal visual pathways in human albinos studied with visually evoked potentials. <span><span class="ref-journal">Experimental neurology. </span>1979;<span class="ref-vol">65</span>(3):667679.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/467566" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 467566</span></a>]</div></dd><dt>88.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.88">Guillery R. Why do albinos and other hypopigmented mutants lack normal binocular vision, and what else is abnormal in their central visual pathways? <span><span class="ref-journal">Eye. </span>1996;<span class="ref-vol">10</span>(2):217221.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8776451" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8776451</span></a>]</div></dd><dt>89.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.89">JASPER. H.H., The ten twenty electrode system of the international federation. <span><span class="ref-journal">Electroencephalography and clinical neurophysiology. </span>1958;<span class="ref-vol">10</span>:371375.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10590970" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10590970</span></a>]</div></dd><dt>90.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.90">Creel D., Spekreijse H., Reits D. Evoked potentials in albinos: efficacy of pattern stimuli in detecting misrouted optic fibers. <span><span class="ref-journal">Electroencephalography and clinical neurophysiology. </span>1981;<span class="ref-vol">52</span>(6):595603.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6172258" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6172258</span></a>]</div></dd><dt>91.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.91">Sutter, E., Noninvasive testing methods: multifocal electrophysiology. Encyclopedia of the Eye, 2010. 3: p. 142-160.</div></dd><dt>92.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.92">von dem Hagen E.A., Hoffmann M.B., Morland A.B. Identifying human albinism: a comparison of VEP and fMRI. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2008;<span class="ref-vol">49</span>(1):238249.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18172098" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18172098</span></a>]</div></dd><dt>93.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.93">Hoffmann M.B., et al. Plasticity and stability of the visual system in human achiasma. <span><span class="ref-journal">Neuron. </span>2012;<span class="ref-vol">75</span>(3):393401.</span> [<a href="/pmc/articles/PMC3427398/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3427398</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22884323" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22884323</span></a>]</div></dd><dt>94.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.94">Klemen, J., M.B. Hoffmann, and C.D. Chambers, Cortical plasticity in the face of congenitally altered input into V1. cortex, 2012. 48(10): p. 1362-1365. [<a href="https://pubmed.ncbi.nlm.nih.gov/22531550" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22531550</span></a>]</div></dd><dt>95.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.95">Kaule F.R., et al. Impact of chiasma opticum malformations on the organization of the human ventral visual cortex. <span><span class="ref-journal">Human brain mapping. </span>2014;<span class="ref-vol">35</span>(10):50935105.</span> [<a href="/pmc/articles/PMC6869407/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6869407</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24771411" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24771411</span></a>]</div></dd><dt>96.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.96">Hoffmann M.B., et al. Misrouting of the optic nerves in albinism: estimation of the extent with visual evoked potentials. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2005;<span class="ref-vol">46</span>(10):38923898.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16186379" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16186379</span></a>]</div></dd><dt>97.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.97">Apkarian P., et al. A decisive electrophysiological test for human albinism. <span><span class="ref-journal">Electroencephalography and clinical neurophysiology. </span>1983;<span class="ref-vol">55</span>(5):513531.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6187545" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6187545</span></a>]</div></dd><dt>98.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.98">Zhang B., et al. Effects of fixation instability on multifocal VEP (mfVEP) responses in amblyopes. <span><span class="ref-journal">Journal of vision. </span>2008;<span class="ref-vol">8</span>(3):16.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18484822" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18484822</span></a>]</div></dd><dt>99.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.99">Morland A.B., et al. Abnormal retinotopic representations in human visual cortex revealed by fMRI. <span><span class="ref-journal">Acta psychologica. </span>2001;<span class="ref-vol">107</span>(1):229247.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11388137" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11388137</span></a>]</div></dd><dt>100.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.100">Hoffmann M.B., Seufert P.S., Schmidtborn L.C. Perceptual relevance of abnormal visual field representations: static visual field perimetry in human albinism. <span><span class="ref-journal">British journal of ophthalmology. </span>2007;<span class="ref-vol">91</span>(4):509513.</span> [<a href="/pmc/articles/PMC1994751/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1994751</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17372340" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17372340</span></a>]</div></dd><dt>101.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.101">Wolynski B., et al. Self-organisation in the human visual system&#x02014;Visuo-motor processing with congenitally abnormal V1 input. <span><span class="ref-journal">Neuropsychologia. </span>2010;<span class="ref-vol">48</span>(13):38343845.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20863844" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20863844</span></a>]</div></dd><dt>102.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.102">Hagen E.A., et al. Retinal abnormalities in human albinism translate into a reduction of grey matter in the occipital cortex. <span><span class="ref-journal">European Journal of Neuroscience. </span>2005;<span class="ref-vol">22</span>(10):24752480.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16307590" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16307590</span></a>]</div></dd><dt>103.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.103">Neveu M.M., et al. Age&#x02010;related changes in the dynamics of human albino visual pathways. <span><span class="ref-journal">European Journal of Neuroscience. </span>2003;<span class="ref-vol">18</span>(7):19391949.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14622226" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14622226</span></a>]</div></dd><dt>104.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.104">Kinnear P., Jay B., Witkop C. Albinism. <span><span class="ref-journal">Survey of ophthalmology. </span>1985;<span class="ref-vol">30</span>(2):75101.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3934778" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3934778</span></a>]</div></dd><dt>105.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.105">Weiss A.H., Kelly J.P. Acuity development in infantile nystagmus. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2007;<span class="ref-vol">48</span>(9):40934099.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17724192" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17724192</span></a>]</div></dd><dt>106.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.106">Dijkstal J.M., et al. Change in visual acuity in albinism in the early school years. <span><span class="ref-journal">Journal of Pediatric Ophthalmology Strabismus. </span>2011:16.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21732575" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21732575</span></a>]</div></dd><dt>107.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.107">Summers C.G. Vision in albinism. <span><span class="ref-journal">Transactions of the American Ophthalmological Society. </span>1996;<span class="ref-vol">94</span>:1095.</span> [<a href="/pmc/articles/PMC1312119/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1312119</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8981720" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8981720</span></a>]</div></dd><dt>108.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.108">Guibal C., Baker G.E. Abnormal axons in the albino optic tract. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2009;<span class="ref-vol">50</span>(12):55165521.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19628745" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19628745</span></a>]</div></dd><dt>109.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.109">St John R., Timney B. Sensitivity deficits consistent with aberrant crossed visual pathways in human albinos. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>1981;<span class="ref-vol">21</span>(6):873877.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7309439" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7309439</span></a>]</div></dd><dt>110.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.110">Witkop C.J. Jr, et al. Optic and otic neurologic abnormalities in oculocutaneous and ocular albinism. <span><span class="ref-journal">Birth Defects Orig Artic Ser. </span>1982;<span class="ref-vol">18</span>(6):299318.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6756499" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6756499</span></a>]</div></dd><dt>111.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.111">Distefano M., et al. Lack of binocular activation of cells in area 19 of the Siamese cat. <span><span class="ref-journal">Brain research. </span>1984;<span class="ref-vol">303</span>(2):391395.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6744031" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6744031</span></a>]</div></dd><dt>112.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.112">Leventhal A.G., Creel D.J. Retinal projections and functional architecture of cortical areas 17 and 18 in the tyrosinase-negative albino cat. <span><span class="ref-journal">The Journal of neuroscience. </span>1985;<span class="ref-vol">5</span>(3):795807.</span> [<a href="/pmc/articles/PMC6565025/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6565025</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2983049" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2983049</span></a>]</div></dd><dt>113.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.113">Kalberlah C., Distler C., Hoffmann K.-P. Sensitivity to relative disparity in early visual cortex of pigmented and albino ferrets. <span><span class="ref-journal">Experimental brain research. </span>2009;<span class="ref-vol">192</span>(3):379389.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18726091" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18726091</span></a>]</div></dd><dt>114.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.114">Lee K.A., King R.A., Summers C.G. Stereopsis in patients with albinism: clinical correlates. <span><span class="ref-journal">Journal of American Association for Pediatric Ophthalmology and Strabismus. </span>2001;<span class="ref-vol">5</span>(2):98104.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11304818" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11304818</span></a>]</div></dd><dt>115.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.115">Bacon B.A., et al. Spatial disparity sensitivity in area PMLS of the Siamese cat. <span><span class="ref-journal">Brain research. </span>2001;<span class="ref-vol">906</span>(1):149156.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11430872" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11430872</span></a>]</div></dd><dt>116.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.116">Antonini A., et al. Differences in binocular interactions between cortical areas 17 and 18 and superior colliculus of Siamese cats. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1981;<span class="ref-vol">200</span>(4):597611.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7263961" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7263961</span></a>]</div></dd><dt>117.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.117">Berlucchi G., Gazzaniga M., Rizzolatti G. Microelectrode analysis of transfer of visual information by the corpus callosum. <span><span class="ref-journal">Archives italiennes de biologie. </span>1967;<span class="ref-vol">105</span>(4):583596.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/5585725" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 5585725</span></a>]</div></dd><dt>118.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.118">Shatz C.J. Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1977;<span class="ref-vol">173</span>(3):497518.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/856894" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 856894</span></a>]</div></dd><dt>119.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.119">Marzi C., et al. Callosum-dependent binocular interactions in the lateral suprasylvian area of Siamese cats which lack binocular neurons in areas 17 and 18. <span><span class="ref-journal">Brain research. </span>1980;<span class="ref-vol">197</span>(1):230235.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7397556" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7397556</span></a>]</div></dd><dt>120.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.120">Zeki S., Fries W. A function of the corpus callosum in the Siamese cat. <span><span class="ref-journal">Proceedings of the Royal Society of London. Series B. Biological Sciences. </span>1980;<span class="ref-vol">207</span>(1167):249258.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6102767" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6102767</span></a>]</div></dd><dt>121.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.121">Schmolesky M.T., et al. Abnormal retinotopic organization of the dorsal lateral geniculate nucleus of the tyrosinase&#x02010;negative albino cat. <span><span class="ref-journal">Journal of Comparative Neurology. </span>2000;<span class="ref-vol">427</span>(2):209219.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11054689" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11054689</span></a>]</div></dd><dt>122.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.122">Schmitz B., et al. Configuration of the optic chiasm in humans with albinism as revealed by magnetic resonance imaging. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2003;<span class="ref-vol">44</span>(1):1621.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12506050" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12506050</span></a>]</div></dd><dt>123.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.123">Westbroek W., et al. Cellular defects in Chediak-Higashi syndrome correlate with the molecular genotype and clinical phenotype. <span><span class="ref-journal">The Journal of investigative dermatology. </span>2007;<span class="ref-vol">127</span>(11):2674.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17554367" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17554367</span></a>]</div></dd><dt>124.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.124">Montoliu L., et al. Increasing the complexity: new genes and new types of albinism. <span><span class="ref-journal">Pigment cell &#x00026; melanoma research. </span>2014;<span class="ref-vol">27</span>(1):1118.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/24066960" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24066960</span></a>]</div></dd><dt>125.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.125">Vici C.D., et al. Agenesis of the corpus callosum, combined immunodeficiency, bilateral cataract, and hypopigmentation in two brothers. <span><span class="ref-journal">American journal of medical genetics. </span>1988;<span class="ref-vol">29</span>(1):18.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3344762" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3344762</span></a>]</div></dd><dt>126.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.126">Cullup T., et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. <span><span class="ref-journal">Nature genetics. </span>2013;<span class="ref-vol">45</span>(1):8387.</span> [<a href="/pmc/articles/PMC4012842/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4012842</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23222957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23222957</span></a>]</div></dd><dt>127.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.127">Filloux F.M., et al. Ophthalmologic features of vici syndrome. <span><span class="ref-journal">Journal of pediatric ophthalmology and strabismus. </span>2014;<span class="ref-vol">51</span>(4):214220.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/24779424" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24779424</span></a>]</div></dd><dt>128.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.128">Summers C.G., et al. Variable expression of vision in sibs with albinism. <span><span class="ref-journal">American journal of medical genetics. </span>1991;<span class="ref-vol">40</span>(3):327331.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1951438" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1951438</span></a>]</div></dd><dt>129.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.129">Cheong P., King R., Bateman J. Oculocutaneous albinism: variable expressivity of nystagmus in a sibship. <span><span class="ref-journal">Journal of pediatric ophthalmology and strabismus. </span>1991;<span class="ref-vol">29</span>(3):185188.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1432506" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1432506</span></a>]</div></dd><dt>130.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.130">Oetting W.S., et al. Oculocutaneous albinism type 1: the last 100 years. <span><span class="ref-journal">Pigment cell research. </span>2003;<span class="ref-vol">16</span>(3):307311.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12753405" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12753405</span></a>]</div></dd><dt>131.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.131">Poulter J.A., et al. Recessive mutations in SLC38A8 cause foveal hypoplasia and optic nerve misrouting without albinism. <span><span class="ref-journal">The American Journal of Human Genetics. </span>2013;<span class="ref-vol">93</span>(6):11431150.</span> [<a href="/pmc/articles/PMC3853409/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3853409</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24290379" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24290379</span></a>]</div></dd><dt>132.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.132">Al-Araimi M., et al. A new recessively inherited disorder composed of foveal hypoplasia, optic nerve decussation defects and anterior segment dysgenesis maps to chromosome 16q23. 3-24.1. <span><span class="ref-journal">Molecular vision. </span>2013;<span class="ref-vol">19</span>:2165.</span> [<a href="/pmc/articles/PMC3816992/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3816992</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24194637" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24194637</span></a>]</div></dd><dt>133.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.133">van Genderen M.M., et al. Chiasmal misrouting and foveal hypoplasia without albinism. <span><span class="ref-journal">British journal of ophthalmology. </span>2006;<span class="ref-vol">90</span>(9):10981102.</span> [<a href="/pmc/articles/PMC1857410/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1857410</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16707527" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16707527</span></a>]</div></dd><dt>134.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.134">Creel D.J., et al. Abnormalities of the central visual pathways in Prader&#x02013;Willi syndrome associated with hypopigmentation. <span><span class="ref-journal">New England Journal of Medicine. </span>1986;<span class="ref-vol">314</span>(25):16061609.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3713758" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3713758</span></a>]</div></dd><dt>135.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.135">Hoffmann M.B., et al. Optic nerve projections in patients with primary ciliary dyskinesia. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>2011;<span class="ref-vol">52</span>(7):46174625.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21508109" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21508109</span></a>]</div></dd><dt>136.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.136">Tremblay F., et al. Visual evoked potentials with crossed asymmetry in incomplete congenital stationary night blindness. <span><span class="ref-journal">Investigative ophthalmology &#x00026; visual science. </span>1996;<span class="ref-vol">37</span>(9):17831792.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8759345" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8759345</span></a>]</div></dd><dt>137.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.137">Ung, T., et al., Is optic nerve fibre mis-routing a feature of congenital stationary night blindness? Documenta ophthalmologica, 2005. 111(3): p. 169-178. [<a href="https://pubmed.ncbi.nlm.nih.gov/16523234" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16523234</span></a>]</div></dd><dt>138.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.138">Gal A., et al. Gene of X-chromosomal congenital stationary night blindness is closely linked to DXS7 on Xp. <span><span class="ref-journal">Human genetics. </span>1989;<span class="ref-vol">81</span>(4):315318.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2564836" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2564836</span></a>]</div></dd><dt>139.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.139">Ilia M., Jeffery G. Retinal mitosis is regulated by dopa, a melanin precursor that may influence the time at which cells exit the cell cycle: analysis of patterns of cell production in pigmented and albino retinae. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1999;<span class="ref-vol">405</span>(3):394405.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10076934" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10076934</span></a>]</div></dd><dt>140.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.140">Giordano F., Simoes S., Raposo G. The ocular albinism type 1 (OA1) GPCR is ubiquitinated and its traffic requires endosomal sorting complex responsible for transport (ESCRT) function. <span><span class="ref-journal">Proceedings of the National Academy of Sciences. </span>2011;<span class="ref-vol">108</span>(29):1190611911.</span> [<a href="/pmc/articles/PMC3141971/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3141971</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21730137" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21730137</span></a>]</div></dd><dt>141.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.141">Roffler-Tarlov S., et al. L-Dopa and the albino riddle: content of L-Dopa in the developing retina of pigmented and albino mice. <span><span class="ref-journal">PloS one. </span>2013;<span class="ref-vol">8</span>(3):e57184.</span> [<a href="/pmc/articles/PMC3602463/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3602463</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23526936" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23526936</span></a>]</div></dd><dt>142.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.142">Lopez V.M., et al. L-DOPA is an endogenous ligand for OA1. <span><span class="ref-journal">PLoS biology. </span>2008;<span class="ref-vol">6</span>(9):e236.</span> [<a href="/pmc/articles/PMC2553842/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2553842</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18828673" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18828673</span></a>]</div></dd><dt>143.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.143">Jeffery G., Erskine L. Variations in the architecture and development of the vertebrate optic chiasm. <span><span class="ref-journal">Progress in retinal and eye research. </span>2005;<span class="ref-vol">24</span>(6):721753.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16027026" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16027026</span></a>]</div></dd><dt>144.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.144">Deiner M.S., et al. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. <span><span class="ref-journal">Neuron. </span>1997;<span class="ref-vol">19</span>(3):575589.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9331350" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9331350</span></a>]</div></dd><dt>145.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.145">Plump A.S., et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. <span><span class="ref-journal">Neuron. </span>2002;<span class="ref-vol">33</span>(2):219232.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11804570" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11804570</span></a>]</div></dd><dt>146.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.146">Oster S.F., et al. Invariant Sema5A inhibition serves an ensheathing function during optic nerve development. <span><span class="ref-journal">Development. </span>2003;<span class="ref-vol">130</span>(4):775784.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12506007" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12506007</span></a>]</div></dd><dt>147.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.147">Trousse F., et al. Control of retinal ganglion cell axon growth: a new role for Sonic hedgehog. <span><span class="ref-journal">Development. </span>2001;<span class="ref-vol">128</span>(20):39273936.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11641217" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11641217</span></a>]</div></dd><dt>148.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.148">Petros T.J., Rebsam A., Mason C.A. Retinal axon growth at the optic chiasm: to cross or not to cross. <span><span class="ref-journal">Annu. Rev. Neurosci. </span>2008;<span class="ref-vol">31</span>:295315.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18558857" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18558857</span></a>]</div></dd><dt>149.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.149">Rebsam A., Bhansali P., Mason C.A. Eye-specific projections of retinogeniculate axons are altered in albino mice. <span><span class="ref-journal">The Journal of Neuroscience. </span>2012;<span class="ref-vol">32</span>(14):48214826.</span> [<a href="/pmc/articles/PMC3329942/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3329942</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22492037" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22492037</span></a>]</div></dd><dt>150.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.150">Williams S.E., et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. <span><span class="ref-journal">Neuron. </span>2003;<span class="ref-vol">39</span>(6):919935.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12971893" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12971893</span></a>]</div></dd><dt>151.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.151">Zou C., Levine E.M. Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding. <span><span class="ref-journal">PLoS genetics. </span>2012;<span class="ref-vol">8</span>(9):e1002924.</span> [<a href="/pmc/articles/PMC3447932/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3447932</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23028343" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23028343</span></a>]</div></dd><dt>152.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.152">Phillips M.J., et al. Modeling Human Retinal Development with Patient&#x02010;Specific Induced Pluripotent Stem Cells Reveals Multiple Roles for Visual System Homeobox 2. <span><span class="ref-journal">Stem Cells. </span>2014;<span class="ref-vol">32</span>(6):14801492.</span> [<a href="/pmc/articles/PMC4037340/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4037340</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24532057" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24532057</span></a>]</div></dd><dt>153.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.153">Piatigorsky J., Kozmik Z. Cubozoan jellyfish: an Evo/Devo model for eyes and other sensory systems. <span><span class="ref-journal">Int J Dev Biol. </span>2004;<span class="ref-vol">48</span>(8-9):719729.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15558464" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15558464</span></a>]</div></dd><dt>154.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.154">Fritzsch B., Piatigorsky J. Ancestry of photic and mechanic sensation? <span><span class="ref-journal">Science. </span>2005;<span class="ref-vol">308</span>(5725):11131114.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15912599" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15912599</span></a>]</div></dd><dt>155.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.155">Yang, J., Usher syndrome: genes, proteins, models, molecular mechanisms, and therapies. 2012: INTECH Open Access Publisher.</div></dd><dt>156.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.156">Cosgrove D., Zallocchi M. Usher protein functions in hair cells and photoreceptors. <span><span class="ref-journal">The international journal of biochemistry &#x00026; cell biology. </span>2014;<span class="ref-vol">46</span>:8089.</span> [<a href="/pmc/articles/PMC3971483/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3971483</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24239741" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24239741</span></a>]</div></dd><dt>157.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.157">Nouvian R., et al. Structure and function of the hair cell ribbon synapse. <span><span class="ref-journal">The Journal of membrane biology. </span>2006;<span class="ref-vol">209</span>(2-3):153165.</span> [<a href="/pmc/articles/PMC1764598/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1764598</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16773499" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16773499</span></a>]</div></dd><dt>158.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.158">Conlee J.W., et al. Comparative anatomy of melanin pigment in the stria vascularis. Evidence for a distinction between melanocytes and intermediate cells in the cat. <span><span class="ref-journal">Acta Otolaryngol. </span>1989;<span class="ref-vol">107</span>(1-2):4858.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2929316" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2929316</span></a>]</div></dd><dt>159.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.159">Conlee J.W., et al. Pigment-dependent differences in the stria vascularis of albino and pigmented guinea pigs and rats. <span><span class="ref-journal">Hearing research. </span>1994;<span class="ref-vol">72</span>(1):108124.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8150728" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8150728</span></a>]</div></dd><dt>160.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.160">Heffner R.S., Heffner H.E. Visual factors in sound localization in mammals. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1992;<span class="ref-vol">317</span>(3):219232.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1577997" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1577997</span></a>]</div></dd><dt>161.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.161">Feng W., et al. Sounds activate visual cortex and improve visual discrimination. <span><span class="ref-journal">J Neurosci. </span>2014;<span class="ref-vol">34</span>(29):981724.</span> [<a href="/pmc/articles/PMC4099554/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4099554</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25031419" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25031419</span></a>]</div></dd><dt>162.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.162">Grothe B., Pecka M., McAlpine D. Mechanisms of sound localization in mammals. <span><span class="ref-journal">Physiological Reviews. </span>2010;<span class="ref-vol">90</span>(3):9831012.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20664077" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20664077</span></a>]</div></dd><dt>163.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.163">Thaler L., Arnott S.R., Goodale M.A. Neural correlates of natural human echolocation in early and late blind echolocation experts. <span><span class="ref-journal">PLoS One. </span>2011;<span class="ref-vol">6</span>(5):e20162.</span> [<a href="/pmc/articles/PMC3102086/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3102086</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21633496" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21633496</span></a>]</div></dd><dt>164.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.164">Gottesberge A. Physiology and pathophysiology of inner ear melanin. <span><span class="ref-journal">Pigment Cell Research. </span>1988;<span class="ref-vol">1</span>(4):238249.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3070525" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3070525</span></a>]</div></dd><dt>165.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.165">Murillo&#x02010;Cuesta S., et al. Melanin precursors prevent premature age&#x02010;related and noise&#x02010;induced hearing loss in albino mice. <span><span class="ref-journal">Pigment cell &#x00026; melanoma research. </span>2010;<span class="ref-vol">23</span>(1):7283.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19843244" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19843244</span></a>]</div></dd><dt>166.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.166">Garber S.R., et al. Auditory system abnormalities in human albinos. <span><span class="ref-journal">Ear Hear. </span>1982;<span class="ref-vol">3</span>(4):20710.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7117717" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7117717</span></a>]</div></dd><dt>167.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.167">Conlee J.W., et al. Differential susceptibility to noise-induced permanent threshold shift between albino and pigmented guinea pigs. <span><span class="ref-journal">Hearing research. </span>1986;<span class="ref-vol">23</span>(1):8191.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3733554" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3733554</span></a>]</div></dd><dt>168.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.168">Barren&#x000e4;s M.-L., Lindgren F. The influence of inner ear melanin on susceptibility to TTS in humans. <span><span class="ref-journal">Scandinavian audiology. </span>1990;<span class="ref-vol">19</span>(2):97102.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2371541" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2371541</span></a>]</div></dd><dt>169.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.169">Conlee J.W., et al. Auditory brainstem anomalies in albino cats: II. Neuronal atrophy in the superior olive. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1984;<span class="ref-vol">225</span>(1):141148.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6725637" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6725637</span></a>]</div></dd><dt>170.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.170">Yin T., Carney L., Joris P. Interaural time sensitivity in the inferior colliculus of the albino cat. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1990;<span class="ref-vol">295</span>(3):438448.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2351762" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2351762</span></a>]</div></dd><dt>171.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.171">Moore D.R., Kowalchuk N.E. Auditory brainstem of the ferret: effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. <span><span class="ref-journal">Journal of Comparative Neurology. </span>1988;<span class="ref-vol">272</span>(4):503515.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2843582" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2843582</span></a>]</div></dd><dt>172.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.172">Creel D., et al. Auditory brainstem anomalies in human albinos. <span><span class="ref-journal">Science. </span>1980;<span class="ref-vol">209</span>(4462):12535.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7403883" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7403883</span></a>]</div></dd><dt>173.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.173">Giolli R.A., Creel D.J. The primary optic projections in pigmented and albino guinea pigs: an experimental degeneration study. <span><span class="ref-journal">Brain Res. </span>1973;<span class="ref-vol">55</span>(1):2539.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4123355" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4123355</span></a>]</div></dd><dt>174.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.174">Gayer N.S., Horsburgh G.M., Dreher B. Developmental changes in the pattern of retinal projections in pigmented and albino rabbits. <span><span class="ref-journal">Brain Res Dev Brain Res. </span>1989;<span class="ref-vol">50</span>(1):3354.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2582607" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2582607</span></a>]</div></dd><dt>175.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.175">Zhang H.Y., Hoffmann K.P. Retinal projections to the pretectum, accessory optic system and superior colliculus in pigmented and albino ferrets. <span><span class="ref-journal">Eur J Neurosci. </span>1993;<span class="ref-vol">5</span>(5):486500.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8261124" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8261124</span></a>]</div></dd><dt>176.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.176">Wassle H., Illing R.B. The retinal projection to the superior colliculus in the cat: a quantitative study with HRP. <span><span class="ref-journal">J Comp Neurol. </span>1980;<span class="ref-vol">190</span>(2):33356.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7381061" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7381061</span></a>]</div></dd><dt>177.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.177">Koontz M.A., Rodieck R.W., Farmer S.G. The retinal projection to the cat pretectum. <span><span class="ref-journal">J Comp Neurol. </span>1985;<span class="ref-vol">236</span>(1):4259.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4056090" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4056090</span></a>]</div></dd><dt>178.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.178">Collewijn H., Apkarian P., Spekreijse H. The oculomotor behaviour of human albinos. <span><span class="ref-journal">Brain. </span>1985;<span class="ref-vol">108</span>(1):128.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3978393" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3978393</span></a>]</div></dd><dt>179.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.179">Collewijn H., Winterson B.J., Dubois M.F. Optokinetic eye movements in albino rabbits: inversion in anterior visual field. <span><span class="ref-journal">Science. </span>1978;<span class="ref-vol">199</span>(4335):13511353.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/628845" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 628845</span></a>]</div></dd><dt>180.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.180">Huber-Reggi S.P., et al. Severity of infantile nystagmus syndrome-like ocular motor phenotype is linked to the extent of the underlying optic nerve projection defect in zebrafish belladonna mutant. <span><span class="ref-journal">J Neurosci. </span>2012;<span class="ref-vol">32</span>(50):1807986.</span> [<a href="/pmc/articles/PMC6621732/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6621732</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23238723" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23238723</span></a>]</div></dd><dt>181.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.181">Giolli R.A., Blanks R.H., Lui F. The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. <span><span class="ref-journal">Prog Brain Res. </span>2006;<span class="ref-vol">151</span>:40740.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16221596" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16221596</span></a>]</div></dd><dt>182.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.182">ten Tusscher M.P. Does dominance of crossing retinal ganglion cells make the eyes cross? The temporal retina in the origin of infantile esotropia&#x02013;a neuroanatomical and evolutionary analysis. <span><span class="ref-journal">Acta ophthalmologica. </span>2014;<span class="ref-vol">92</span>(6):e419e423.</span> [<a href="/pmc/articles/PMC4329333/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4329333</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25259397" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25259397</span></a>]</div></dd><dt>183.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.183">Pietrasanta M., Restani L., Caleo M. The corpus callosum and the visual cortex: plasticity is a game for two. <span><span class="ref-journal">Neural Plast. </span>2012;<span class="ref-vol">2012</span>:838672.</span> [<a href="/pmc/articles/PMC3388387/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3388387</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22792494" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22792494</span></a>]</div></dd><dt>184.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.184">Brodsky M.C., Dell'Osso L.F. A unifying neurologic mechanism for infantile nystagmus. <span><span class="ref-journal">JAMA Ophthalmol. </span>2014;<span class="ref-vol">132</span>(6):7618.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/24525626" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24525626</span></a>]</div></dd><dt>185.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.185">Christoff A., et al. DVD--a conceptual, clinical, and surgical overview. <span><span class="ref-journal">J AAPOS. </span>2014;<span class="ref-vol">18</span>(4):37884.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/25173903" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25173903</span></a>]</div></dd><dt>186.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.186">Brodsky M.C. The accessory optic system: the fugitive visual control system in infantile strabismus. <span><span class="ref-journal">Arch Ophthalmol. </span>2012;<span class="ref-vol">130</span>(8):10558.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22893078" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22893078</span></a>]</div></dd><dt>187.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.187">Brodsky M.C. An expanded view of infantile esotropia: bottoms up! <span><span class="ref-journal">Arch Ophthalmol. </span>2012;<span class="ref-vol">130</span>(9):1199202.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22965598" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22965598</span></a>]</div></dd><dt>188.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.188">ten Tusscher M.P. A neural model for cyclovertical eye movements and their disorders. <span><span class="ref-journal">Strabismus. </span>2011;<span class="ref-vol">19</span>(4):162165.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22107122" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22107122</span></a>]</div></dd><dt>189.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.189">ten Tusscher M.P. Dissociated deviation in the infantile strabismus syndrome. <span><span class="ref-journal">Strabismus. </span>2012;<span class="ref-vol">20</span>(1):3334.</span></div></dd><dt>190.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.190">ten Tusscher M.P., van Rijn R.J. A hypothetical mechanism for DVD: unbalanced cortical input to subcortical pathways. <span><span class="ref-journal">Strabismus. </span>2010;<span class="ref-vol">18</span>(3):98103.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20843186" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20843186</span></a>]</div></dd><dt>191.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.191">ten Tusscher M.P., van Rijn R.J. There is nothing fishy about the cerebral cortex. <span><span class="ref-journal">Strabismus. </span>2011;<span class="ref-vol">19</span>(2):6970.</span></div></dd><dt>192.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.192">Carroll, R.L., Vertebrate paleontology and evolution. 1988.</div></dd><dt>193.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.193">Husband, S. and T. Shimizu. Evolution of the avian visual system. . Avian visual cognition 2001 [cited 2001.</div></dd><dt>194.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.194">Aboitiz F., et al. Fiber composition of the human corpus callosum. <span><span class="ref-journal">Brain Res. </span>1992;<span class="ref-vol">598</span>(1-2):14353.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1486477" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1486477</span></a>]</div></dd><dt>195.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.195">Atkinson, J., Development of optokinetic nystagmus in the human infant and monkey infant: an analogue to development in kittens, in Developmental neurobiology of vision. 1979, Springer. p. 277-287.</div></dd><dt>196.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.196">Hoffmann K.P., Distler C., Ilg U. Callosal and superior temporal sulcus contributions to receptive field properties in the macaque monkey's nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract. <span><span class="ref-journal">J Comp Neurol. </span>1992;<span class="ref-vol">321</span>(1):15062.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1377205" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1377205</span></a>]</div></dd><dt>197.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.197">Mustari M.J., Ono S., Vitorello K.C. How disturbed visual processing early in life leads to disorders of gaze-holding and smooth pursuit. <span><span class="ref-journal">Prog Brain Res. </span>2008;<span class="ref-vol">171</span>:48795.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18718344" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18718344</span></a>]</div></dd><dt>198.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.198">Van Rijn L.J., Simonsz H.J., Tusscher M.P. Dissociated vertical deviation and eye torsion: Relation to disparity-induced vertical vergence. <span><span class="ref-journal">Strabismus. </span>1997;<span class="ref-vol">5</span>(1):1320.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21314389" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21314389</span></a>]</div></dd><dt>199.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.199">Ibbotson M.R., Marotte L.R., Mark R.F. Investigations into the source of binocular input to the nucleus of the optic tract in an Australian marsupial, the wallaby Macropus eugenii. <span><span class="ref-journal">Experimental brain research. </span>2002;<span class="ref-vol">147</span>(1):8088.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12373372" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12373372</span></a>]</div></dd><dt>200.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.200">Berman N., Murphy E.H. The critical period for alteration in cortical binocularity resulting from divergent and convergent strabismus. <span><span class="ref-journal">Brain Res. </span>1981;<span class="ref-vol">254</span>(2):181202.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7272776" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7272776</span></a>]</div></dd><dt>201.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.201">Goyal R., Watts P., Hourihan M. Ocular findings in pediatric patients with partial agenesis of corpus callosum. <span><span class="ref-journal">J Pediatr Ophthalmol Strabismus. </span>2010;<span class="ref-vol">47</span>(4):23641.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19791713" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19791713</span></a>]</div></dd><dt>202.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.202">Koenraads Y., et al. Visual function and compensatory mechanisms for hemianopia after hemispherectomy in children. <span><span class="ref-journal">Epilepsia. </span>2014;<span class="ref-vol">55</span>(6):90917.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/24754334" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24754334</span></a>]</div></dd><dt>203.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.203">Fukuda Y., et al. Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). <span><span class="ref-journal">J Neurosci. </span>1989;<span class="ref-vol">9</span>(7):235373.</span> [<a href="/pmc/articles/PMC6569753/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6569753</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2545836" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2545836</span></a>]</div></dd><dt>204.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.204">Bisti S., Carmignoto G. Monocular deprivation in kittens differently affects crossed and uncrossed visual pathways. <span><span class="ref-journal">Vision Res. </span>1986;<span class="ref-vol">26</span>(6):87584.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3750870" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3750870</span></a>]</div></dd><dt>205.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.205">Klier E.M., Wang H., Crawford J.D. Interstitial nucleus of cajal encodes three-dimensional head orientations in Fick-like coordinates. <span><span class="ref-journal">J Neurophysiol. </span>2007;<span class="ref-vol">97</span>(1):60417.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17079347" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17079347</span></a>]</div></dd><dt>206.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.206">Opitz J.M. 2011 William Allan Award: Development and Evolution. <span><span class="ref-journal">Am J Hum Genet. </span>2012;<span class="ref-vol">90</span>(3):392404.</span> [<a href="/pmc/articles/PMC3309190/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3309190</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22405084" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22405084</span></a>]</div></dd><dt>207.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.207">Meckel, J., Handbuch der Pathologischen Anatomie. 1812: Halle:Kummer.</div></dd><dt>208.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.208">Smukler S.R., et al. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. <span><span class="ref-journal">The Journal of cell biology. </span>2006;<span class="ref-vol">172</span>(1):7990.</span> [<a href="/pmc/articles/PMC2063536/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2063536</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16390999" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16390999</span></a>]</div></dd><dt>209.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.209">Charles, D., The variation of animals and plants under domestication, Volume 2. 1868: John Murray.</div></dd><dt>210.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.210">Gehring W.J. New perspectives on eye development and the evolution of eyes and photoreceptors. <span><span class="ref-journal">Journal of Heredity. </span>2005;<span class="ref-vol">96</span>(3):171184.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15653558" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15653558</span></a>]</div></dd><dt>211.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.211">Creel D., Hendrickson A.E., Leventhal A.G. Retinal projections in tyrosinase-negative albino cats. <span><span class="ref-journal">J Neurosci. </span>1982;<span class="ref-vol">2</span>(7):90711.</span> [<a href="/pmc/articles/PMC6564394/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6564394</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6808091" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6808091</span></a>]</div></dd><dt>212.</dt><dd><div class="bk_ref" id="CreelAlbinism.REF.212">Creel D.J., Summers C.G., King R.A. Visual anomalies associated with albinism. <span><span class="ref-journal">Ophthalmic Paediatr Genet. </span>1990;<span class="ref-vol">11</span>(3):193200.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2280977" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2280977</span></a>]</div></dd></dl></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a>: © 2025 Webvision .<p class="small">All copyright for chapters belongs to the individual authors who created them. However, for non-commercial, academic purposes, images and content from the chapters portion of Webvision may be used with a non-exclusive rights under a Attribution, <a href="https://creativecommons.org/licenses/by-nc/4.0/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Noncommercial 4.0 International (CC BY-NC) Creative Commons license</a>. Cite Webvision, http://webvision.med.utah.edu/ as the source. Commercial applications need to obtain license permission from the administrator of Webvision and are generally declined unless the copyright owner can/wants to donate or license material. Use online should be accompanied by a link back to the original source of the material. All imagery or content associated with blog posts belong to the authors of said posts, except where otherwise noted.</p></div><div class="small"><span class="label">Bookshelf ID: NBK303985</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/26131546" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">26131546</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/webvision/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/webvision/ch36clinicalerg/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/webvision/diseases/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK303985&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK303985/?report=reader">PubReader</a></li><li><a href="/books/NBK303985/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK303985" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK303985" style="display:none" title="Cite this Page"><div class="bk_tt">Creel DJ. Visual and Auditory Anomalies Associated with Albinism. 2015 Jun 18. In: Kolb H, Fernandez E, Jones B, et al., editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. <span class="bk_cite_avail"></span></div></div></li><li><a href="/books/NBK303985/pdf/Bookshelf_NBK303985.pdf">PDF version of this page</a> (5.6M)</li><li><a href="/books/n/webvision/pdf/">PDF version of this title</a> (235M)</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#CreelAlbinism.Introduction" ref="log$=inpage&amp;link_id=inpage"> Introduction</a></li><li><a href="#CreelAlbinism.Visual_learning_studies" ref="log$=inpage&amp;link_id=inpage"> Visual learning studies</a></li><li><a href="#CreelAlbinism.Siamese_cats" ref="log$=inpage&amp;link_id=inpage"> Siamese cats</a></li><li><a href="#CreelAlbinism.Albino_animal_studies" ref="log$=inpage&amp;link_id=inpage"> Albino animal studies</a></li><li><a href="#CreelAlbinism.Genetic_mechanisms" ref="log$=inpage&amp;link_id=inpage"> Genetic mechanisms</a></li><li><a href="#CreelAlbinism.Melanin_pigment" ref="log$=inpage&amp;link_id=inpage"> Melanin pigment</a></li><li><a href="#CreelAlbinism.Human_albinos" ref="log$=inpage&amp;link_id=inpage"> Human albinos</a></li><li><a href="#CreelAlbinism.Scalprecorded_VEPs_in_huma" ref="log$=inpage&amp;link_id=inpage"> Scalp-recorded VEPs in human beings</a></li><li><a href="#CreelAlbinism.Visual_perception" ref="log$=inpage&amp;link_id=inpage"> Visual perception</a></li><li><a href="#CreelAlbinism.Genetic_classifications_of" ref="log$=inpage&amp;link_id=inpage"> Genetic classifications of forms of human albinism</a></li><li><a href="#CreelAlbinism.Exceptions_to_direct_assoc" ref="log$=inpage&amp;link_id=inpage"> Exceptions to direct association with albinism</a></li><li><a href="#CreelAlbinism.Underlying_mechanisms" ref="log$=inpage&amp;link_id=inpage"> Underlying mechanisms</a></li><li><a href="#CreelAlbinism.Vision_and_hearing" ref="log$=inpage&amp;link_id=inpage"> Vision and hearing</a></li><li><a href="#CreelAlbinism.Eye_Movement_Albinism_Diss" ref="log$=inpage&amp;link_id=inpage"> Eye Movement: Albinism, Dissociated Vertical Deviation, Latent Nystagmus</a></li><li><a href="#CreelAlbinism.Creel_theory" ref="log$=inpage&amp;link_id=inpage"> Creel theory</a></li><li><a href="#CreelAlbinism.About_the_Authors" ref="log$=inpage&amp;link_id=inpage">About the Authors</a></li><li><a href="#CreelAlbinism.References" ref="log$=inpage&amp;link_id=inpage">References</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related Items in Bookshelf</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="source-links" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="https://www.ncbi.nlm.nih.gov/books?term=%22reference%20works%22%5BResource%20Type%5D" ref="pagearea=source-links&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">All Reference Works</a></li><li><a href="https://www.ncbi.nlm.nih.gov/books?term=&quot;textbooks&quot;%5BResource%20Type%5D" ref="pagearea=source-links&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">All Textbooks</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related information</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="discovery_db_links" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pmc&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pmc_refs&amp;IdsFromResult=4080882" ref="log$=recordlinks">PMC</a><div class="brieflinkpop offscreen_noflow">PubMed Central citations</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pubmed&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pubmed_refs&amp;IdsFromResult=4080882" ref="log$=recordlinks">PubMed</a><div class="brieflinkpop offscreen_noflow">Links to PubMed</div></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/32119275" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Histology, Axon.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">Histology, Axon.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Muzio MR, Fakoya AO, Cascella M. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/28613595" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Transient Loss of Vision.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">Transient Loss of Vision.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Feroze KB, Gurnani B, O'Rourke MC. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/21413382" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Bipolar Cell Pathways in the Vertebrate Retina.</a><span class="source">[Webvision: The Organization of...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Bipolar Cell Pathways in the Vertebrate Retina.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Nelson R, Connaughton V. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Webvision: The Organization of the Retina and Visual System. 1995</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/36256778" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedarticles&amp;logdbfrom=pubmed">EMS Management of Eye Injuries.</a><span class="source">[StatPearls. 2025]</span><div class="brieflinkpop offscreen_noflow">EMS Management of Eye Injuries.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Walsh A, Lewis K. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">StatPearls. 2025 Jan</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/36137063" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.</a><span class="source">[The Time of Anthropology: Stud...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Salisbury L, Baraitser L. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">The Time of Anthropology: Studies of Contemporary Chronopolitics. 2020</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=26131546" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=26131546" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67c9a771b15b832ebc7a17fd">Visual and Auditory Anomalies Associated with Albinism - Webvision</a><div class="ralinkpop offscreen_noflow">Visual and Auditory Anomalies Associated with Albinism - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=2" href="/portal/utils/pageresolver.fcgi?recordid=67c9a770a68b6b5afcdfa0bb">The Electroretinogram and Electro-oculogram: Clinical Applications - Webvision</a><div class="ralinkpop offscreen_noflow">The Electroretinogram and Electro-oculogram: Clinical Applications - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=3" href="/portal/utils/pageresolver.fcgi?recordid=67c9a76eb15b832ebc7a05ac">The Electroretinogram: ERG - Webvision</a><div class="ralinkpop offscreen_noflow">The Electroretinogram: ERG - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=4" href="/portal/utils/pageresolver.fcgi?recordid=67c9a76db15b832ebc79f6a2">VISUALLY EVOKED POTENTIALS - Webvision</a><div class="ralinkpop offscreen_noflow">VISUALLY EVOKED POTENTIALS - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=5" href="/portal/utils/pageresolver.fcgi?recordid=67c9a76ca68b6b5afcdf85ce">Part XI: Electrophysiology - Webvision</a><div class="ralinkpop offscreen_noflow">Part XI: Electrophysiology - Webvision<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK303985&amp;ncbi_domain=webvision&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK303985/&amp;ncbi_pagename=Visual and Auditory Anomalies Associated with Albinism - Webvision - NCBI Bookshelf&amp;ncbi_bookparttype=chapter&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal107 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>