167 lines
128 KiB
Text
167 lines
128 KiB
Text
<!DOCTYPE html>
|
|
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" class="no-js no-jr">
|
|
<head>
|
|
<!-- For pinger, set start time and add meta elements. -->
|
|
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
|
|
|
<!-- Logger begin -->
|
|
<meta name="ncbi_db" content="books">
|
|
<meta name="ncbi_pdid" content="book-part">
|
|
<meta name="ncbi_acc" content="NBK259192">
|
|
<meta name="ncbi_domain" content="mlprobe">
|
|
<meta name="ncbi_report" content="reader">
|
|
<meta name="ncbi_type" content="fulltext">
|
|
<meta name="ncbi_objectid" content="">
|
|
<meta name="ncbi_pcid" content="/NBK259192/?report=reader">
|
|
<meta name="ncbi_pagename" content="Inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf">
|
|
<meta name="ncbi_bookparttype" content="chapter">
|
|
<meta name="ncbi_app" content="bookshelf">
|
|
<!-- Logger end -->
|
|
|
|
<!--component id="Page" label="meta"/-->
|
|
<script type="text/javascript" src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.boots.min.js"> </script><title>Inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf</title>
|
|
<meta charset="utf-8">
|
|
<meta name="apple-mobile-web-app-capable" content="no">
|
|
<meta name="viewport" content="initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no">
|
|
<meta name="jr-col-layout" content="auto">
|
|
<meta name="jr-prev-unit" content="/books/n/mlprobe/ml390/?report=reader">
|
|
<meta name="jr-next-unit" content="/books/n/mlprobe/ml395/?report=reader">
|
|
<meta name="bk-toc-url" content="/books/n/mlprobe/?report=toc">
|
|
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE">
|
|
<meta name="citation_inbook_title" content="Probe Reports from the NIH Molecular Libraries Program [Internet]">
|
|
<meta name="citation_title" content="Inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase">
|
|
<meta name="citation_publisher" content="National Center for Biotechnology Information (US)">
|
|
<meta name="citation_date" content="2014/09/18">
|
|
<meta name="citation_author" content="Frank J. Schoenen">
|
|
<meta name="citation_author" content="David Whipple">
|
|
<meta name="citation_author" content="Pierre Baillargeon">
|
|
<meta name="citation_author" content="Christopher L. Brown">
|
|
<meta name="citation_author" content="Peter Chase">
|
|
<meta name="citation_author" content="Jill Ferguson">
|
|
<meta name="citation_author" content="Virneliz Fernandez-Vega">
|
|
<meta name="citation_author" content="Peter Hodder">
|
|
<meta name="citation_author" content="Rency Mathew">
|
|
<meta name="citation_author" content="Benjamin Neuenswander">
|
|
<meta name="citation_author" content="Patrick Porubsky">
|
|
<meta name="citation_author" content="Steven Rogers">
|
|
<meta name="citation_author" content="Tina Skinner-Adams">
|
|
<meta name="citation_author" content="Melinda Sosa">
|
|
<meta name="citation_author" content="Timothy Spicer">
|
|
<meta name="citation_author" content="Joyce To">
|
|
<meta name="citation_author" content="Nichole A. Tower">
|
|
<meta name="citation_author" content="Katharine R. Trenholme">
|
|
<meta name="citation_author" content="Jenna Wang">
|
|
<meta name="citation_author" content="Warren S. Weiner">
|
|
<meta name="citation_author" content="Jeffrey Aubé">
|
|
<meta name="citation_author" content="Hugh Rosen">
|
|
<meta name="citation_author" content="E. Lucile White">
|
|
<meta name="citation_author" content="Donald L. Gardiner">
|
|
<meta name="citation_author" content="John P. Dalton">
|
|
<meta name="citation_pmid" content="25506973">
|
|
<meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK259192/">
|
|
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/">
|
|
<meta name="DC.Title" content="Inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase">
|
|
<meta name="DC.Type" content="Text">
|
|
<meta name="DC.Publisher" content="National Center for Biotechnology Information (US)">
|
|
<meta name="DC.Contributor" content="Frank J. Schoenen">
|
|
<meta name="DC.Contributor" content="David Whipple">
|
|
<meta name="DC.Contributor" content="Pierre Baillargeon">
|
|
<meta name="DC.Contributor" content="Christopher L. Brown">
|
|
<meta name="DC.Contributor" content="Peter Chase">
|
|
<meta name="DC.Contributor" content="Jill Ferguson">
|
|
<meta name="DC.Contributor" content="Virneliz Fernandez-Vega">
|
|
<meta name="DC.Contributor" content="Peter Hodder">
|
|
<meta name="DC.Contributor" content="Rency Mathew">
|
|
<meta name="DC.Contributor" content="Benjamin Neuenswander">
|
|
<meta name="DC.Contributor" content="Patrick Porubsky">
|
|
<meta name="DC.Contributor" content="Steven Rogers">
|
|
<meta name="DC.Contributor" content="Tina Skinner-Adams">
|
|
<meta name="DC.Contributor" content="Melinda Sosa">
|
|
<meta name="DC.Contributor" content="Timothy Spicer">
|
|
<meta name="DC.Contributor" content="Joyce To">
|
|
<meta name="DC.Contributor" content="Nichole A. Tower">
|
|
<meta name="DC.Contributor" content="Katharine R. Trenholme">
|
|
<meta name="DC.Contributor" content="Jenna Wang">
|
|
<meta name="DC.Contributor" content="Warren S. Weiner">
|
|
<meta name="DC.Contributor" content="Jeffrey Aubé">
|
|
<meta name="DC.Contributor" content="Hugh Rosen">
|
|
<meta name="DC.Contributor" content="E. Lucile White">
|
|
<meta name="DC.Contributor" content="Donald L. Gardiner">
|
|
<meta name="DC.Contributor" content="John P. Dalton">
|
|
<meta name="DC.Date" content="2014/09/18">
|
|
<meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK259192/">
|
|
<meta name="description" content="Malaria is one of the most prevalent human parasitic diseases and is a global health issue accounting for >600,000 deaths annually. For survival, the Plasmodium falciparum (Pf) malaria parasite requires the action of a number of metallo-aminopeptidases, including PfM1MAA (membrane alanine aminopeptidase), PfM17LAP (leucine aminopeptidase), and PfM18AAP (aspartyl aminopeptidase). Each enzyme displays restricted amino acid specificity, and they are thought to act in concert to degrade proteins (i.e., host erythrocyte hemoglobin) that the parasite uses to generate a pool of amino acids which are employed as building blocks for the synthesis of its own proteins. Since there were very few small-molecule inhibitors of PfM17LAP and no selective inhibitors relative to PfM1AAP (or PfM18AAP), we set out to identify new potent and selective small-molecule inhibitors of this enzyme. Biochemical assays employing enzymatically active recombinant PfM17LAP (rPfM17LAP), as well as recombinant Fasciola hepatica cathepsin L1 (rFhCTSL1), rPfM1MAA, rPfM18AAP, and human M17LAP (rhuM17), and cell-based parasite growth inhibition and cytotoxicity assays were used to identify CID 2466 (from the NIH MLSMR) as a viable starting point for SAR analysis. Three rounds of structure-activity relationship studies were performed to generate a panel of probe candidate compounds. Ultimately, the compound hit, CID 2466, also known as bufexamac, was nominated as the probe ML392. When the probe and analogues are used as recommended, they are “fit-for-purpose” and should be useful for advancing the search for new antimalarial drugs directed at PfM17LAP.">
|
|
<meta name="og:title" content="Inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase">
|
|
<meta name="og:type" content="book">
|
|
<meta name="og:description" content="Malaria is one of the most prevalent human parasitic diseases and is a global health issue accounting for >600,000 deaths annually. For survival, the Plasmodium falciparum (Pf) malaria parasite requires the action of a number of metallo-aminopeptidases, including PfM1MAA (membrane alanine aminopeptidase), PfM17LAP (leucine aminopeptidase), and PfM18AAP (aspartyl aminopeptidase). Each enzyme displays restricted amino acid specificity, and they are thought to act in concert to degrade proteins (i.e., host erythrocyte hemoglobin) that the parasite uses to generate a pool of amino acids which are employed as building blocks for the synthesis of its own proteins. Since there were very few small-molecule inhibitors of PfM17LAP and no selective inhibitors relative to PfM1AAP (or PfM18AAP), we set out to identify new potent and selective small-molecule inhibitors of this enzyme. Biochemical assays employing enzymatically active recombinant PfM17LAP (rPfM17LAP), as well as recombinant Fasciola hepatica cathepsin L1 (rFhCTSL1), rPfM1MAA, rPfM18AAP, and human M17LAP (rhuM17), and cell-based parasite growth inhibition and cytotoxicity assays were used to identify CID 2466 (from the NIH MLSMR) as a viable starting point for SAR analysis. Three rounds of structure-activity relationship studies were performed to generate a panel of probe candidate compounds. Ultimately, the compound hit, CID 2466, also known as bufexamac, was nominated as the probe ML392. When the probe and analogues are used as recommended, they are “fit-for-purpose” and should be useful for advancing the search for new antimalarial drugs directed at PfM17LAP.">
|
|
<meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK259192/">
|
|
<meta name="og:site_name" content="NCBI Bookshelf">
|
|
<meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-mlprobe-lrg.png">
|
|
<meta name="twitter:card" content="summary">
|
|
<meta name="twitter:site" content="@ncbibooks">
|
|
<meta name="bk-non-canon-loc" content="/books/n/mlprobe/ml392/?report=reader">
|
|
<link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK259192/">
|
|
<link href="https://fonts.googleapis.com/css?family=Archivo+Narrow:400,700,400italic,700italic&subset=latin" rel="stylesheet" type="text/css">
|
|
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/libs.min.css">
|
|
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/jr.min.css">
|
|
<meta name="format-detection" content="telephone=no">
|
|
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css">
|
|
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css//books_print.min.css" type="text/css" media="print">
|
|
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_reader.min.css" type="text/css">
|
|
<style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style>
|
|
|
|
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico">
|
|
<meta name="ncbi_phid" content="CE8D0A0A7D66810100000000002E0028.m_5">
|
|
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3849091.css"></head>
|
|
<body>
|
|
<!-- Book content! -->
|
|
|
|
|
|
<div id="jr" data-jr-path="/corehtml/pmc/jatsreader/ptpmc_3.22/"><div class="jr-unsupported"><table class="modal"><tr><td><span class="attn inline-block"></span><br />Your browser does not support the NLM PubReader view.<br />Go to <a href="/pmc/about/pr-browsers/">this page</a> to see a list of supported browsers<br />or return to the <br /><a href="/books/NBK259192/?report=classic">regular view</a>.</td></tr></table></div><div id="jr-ui" class="hidden"><nav id="jr-head"><div class="flexh tb"><div id="jr-tb1"><a id="jr-links-sw" class="hidden" title="Links"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" x="0px" y="0px" viewBox="0 0 70.6 85.3" style="enable-background:new 0 0 70.6 85.3;vertical-align:middle" xml:space="preserve" width="24" height="24">
|
|
<style type="text/css">.st0{fill:#939598;}</style>
|
|
<g>
|
|
<path class="st0" d="M36,0C12.8,2.2-22.4,14.6,19.6,32.5C40.7,41.4-30.6,14,35.9,9.8"></path>
|
|
<path class="st0" d="M34.5,85.3c23.2-2.2,58.4-14.6,16.4-32.5c-21.1-8.9,50.2,18.5-16.3,22.7"></path>
|
|
<path class="st0" d="M34.7,37.1c66.5-4.2-4.8-31.6,16.3-22.7c42.1,17.9,6.9,30.3-16.4,32.5h1.7c-66.2,4.4,4.8,31.6-16.3,22.7 c-42.1-17.9-6.9-30.3,16.4-32.5"></path>
|
|
</g>
|
|
</svg> Books</a></div><div class="jr-rhead f1 flexh"><div class="head"><a href="/books/n/mlprobe/ml390/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="body"><div class="t">Inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase</div><div class="j">Probe Reports from the NIH Molecular Libraries Program [Internet]</div></div><div class="tail"><a href="/books/n/mlprobe/ml395/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></div><div id="jr-tb2"><a id="jr-bkhelp-sw" class="btn wsprkl hidden" title="Help with NLM PubReader">?</a><a id="jr-help-sw" class="btn wsprkl hidden" title="Settings and typography in NLM PubReader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" preserveAspectRatio="none"><path d="M462,283.742v-55.485l-29.981-10.662c-11.431-4.065-20.628-12.794-25.274-24.001 c-0.002-0.004-0.004-0.009-0.006-0.013c-4.659-11.235-4.333-23.918,0.889-34.903l13.653-28.724l-39.234-39.234l-28.72,13.652 c-10.979,5.219-23.68,5.546-34.908,0.889c-0.005-0.002-0.01-0.003-0.014-0.005c-11.215-4.65-19.933-13.834-24-25.273L283.741,50 h-55.484l-10.662,29.981c-4.065,11.431-12.794,20.627-24.001,25.274c-0.005,0.002-0.009,0.004-0.014,0.005 c-11.235,4.66-23.919,4.333-34.905-0.889l-28.723-13.653l-39.234,39.234l13.653,28.721c5.219,10.979,5.545,23.681,0.889,34.91 c-0.002,0.004-0.004,0.009-0.006,0.013c-4.649,11.214-13.834,19.931-25.271,23.998L50,228.257v55.485l29.98,10.661 c11.431,4.065,20.627,12.794,25.274,24c0.002,0.005,0.003,0.01,0.005,0.014c4.66,11.236,4.334,23.921-0.888,34.906l-13.654,28.723 l39.234,39.234l28.721-13.652c10.979-5.219,23.681-5.546,34.909-0.889c0.005,0.002,0.01,0.004,0.014,0.006 c11.214,4.649,19.93,13.833,23.998,25.271L228.257,462h55.484l10.595-29.79c4.103-11.538,12.908-20.824,24.216-25.525 c0.005-0.002,0.009-0.004,0.014-0.006c11.127-4.628,23.694-4.311,34.578,0.863l28.902,13.738l39.234-39.234l-13.66-28.737 c-5.214-10.969-5.539-23.659-0.886-34.877c0.002-0.005,0.004-0.009,0.006-0.014c4.654-11.225,13.848-19.949,25.297-24.021 L462,283.742z M256,331.546c-41.724,0-75.548-33.823-75.548-75.546s33.824-75.547,75.548-75.547 c41.723,0,75.546,33.824,75.546,75.547S297.723,331.546,256,331.546z"></path></svg></a><a id="jr-fip-sw" class="btn wsprkl hidden" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-rtoc-sw" class="btn wsprkl hidden" title="Table of Contents"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,20h10v8H20V20zM36,20h44v8H36V20zM20,37.33h10v8H20V37.33zM36,37.33h44v8H36V37.33zM20,54.66h10v8H20V54.66zM36,54.66h44v8H36V54.66zM20,72h10v8 H20V72zM36,72h44v8H36V72z"></path></svg></a></div></div></nav><nav id="jr-dash" class="noselect"><nav id="jr-dash" class="noselect"><div id="jr-pi" class="hidden"><a id="jr-pi-prev" class="hidden" title="Previous page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a><div class="pginfo">Page <i class="jr-pg-pn">0</i> of <i class="jr-pg-lp">0</i></div><a id="jr-pi-next" class="hidden" title="Next page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div><div id="jr-is-tb"><a id="jr-is-sw" class="btn wsprkl hidden" title="Switch between Figures/Tables strip and Progress bar"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><rect x="10" y="40" width="20" height="20"></rect><rect x="40" y="40" width="20" height="20"></rect><rect x="70" y="40" width="20" height="20"></rect></svg></a></div><nav id="jr-istrip" class="istrip hidden"><a id="jr-is-prev" href="#" class="hidden" title="Previous"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M80,40 60,65 80,90 70,90 50,65 70,40z M50,40 30,65 50,90 40,90 20,65 40,40z"></path><text x="35" y="25" textLength="60" style="font-size:25px">Prev</text></svg></a><a id="jr-is-next" href="#" class="hidden" title="Next"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,40 40,65 20,90 30,90 50,65 30,40z M50,40 70,65 50,90 60,90 80,65 60,40z"></path><text x="15" y="25" textLength="60" style="font-size:25px">Next</text></svg></a></nav><nav id="jr-progress"></nav></nav></nav><aside id="jr-links-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">NCBI Bookshelf</div></div><div class="cnt lol f1"><a href="/books/">Home</a><a href="/books/browse/">Browse All Titles</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/sharer/sharer.php?u=https://www.ncbi.nlm.nih.gov/books/NBK259192/"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24" preserveAspectRatio="none"><g><path d="M 17.996,32L 12,32 L 12,16 l-4,0 l0-5.514 l 4-0.002l-0.006-3.248C 11.993,2.737, 13.213,0, 18.512,0l 4.412,0 l0,5.515 l-2.757,0 c-2.063,0-2.163,0.77-2.163,2.209l-0.008,2.76l 4.959,0 l-0.585,5.514L 18,16L 17.996,32z"></path></g></svg> Share on Facebook</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://twitter.com/intent/tweet?url=https://www.ncbi.nlm.nih.gov/books/NBK259192/&text=Inhibitors%20of%20the%20Plasmodium%20falciparum%20M17%20Leucine%20Aminopeptidase"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24"><g><path d="M 32,6.076c-1.177,0.522-2.443,0.875-3.771,1.034c 1.355-0.813, 2.396-2.099, 2.887-3.632 c-1.269,0.752-2.674,1.299-4.169,1.593c-1.198-1.276-2.904-2.073-4.792-2.073c-3.626,0-6.565,2.939-6.565,6.565 c0,0.515, 0.058,1.016, 0.17,1.496c-5.456-0.274-10.294-2.888-13.532-6.86c-0.565,0.97-0.889,2.097-0.889,3.301 c0,2.278, 1.159,4.287, 2.921,5.465c-1.076-0.034-2.088-0.329-2.974-0.821c-0.001,0.027-0.001,0.055-0.001,0.083 c0,3.181, 2.263,5.834, 5.266,6.438c-0.551,0.15-1.131,0.23-1.73,0.23c-0.423,0-0.834-0.041-1.235-0.118 c 0.836,2.608, 3.26,4.506, 6.133,4.559c-2.247,1.761-5.078,2.81-8.154,2.81c-0.53,0-1.052-0.031-1.566-0.092 c 2.905,1.863, 6.356,2.95, 10.064,2.95c 12.076,0, 18.679-10.004, 18.679-18.68c0-0.285-0.006-0.568-0.019-0.849 C 30.007,8.548, 31.12,7.392, 32,6.076z"></path></g></svg> Share on Twitter</a></div></aside><aside id="jr-rtoc-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Table of Content</div></div><div class="cnt lol f1"><a href="/books/n/mlprobe/?report=reader">Title Information</a><a href="/books/n/mlprobe/toc/?report=reader">Table of Contents Page</a></div></aside><aside id="jr-help-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Settings</div></div><div class="cnt f1"><div id="jr-typo-p" class="typo"><div><a class="sf btn wsprkl">A-</a><a class="lf btn wsprkl">A+</a></div><div><a class="bcol-auto btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 100" preserveAspectRatio="none"><text x="10" y="70" style="font-size:60px;font-family: Trebuchet MS, ArialMT, Arial, sans-serif" textLength="180">AUTO</text></svg></a><a class="bcol-1 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M15,25 85,25zM15,40 85,40zM15,55 85,55zM15,70 85,70z"></path></svg></a><a class="bcol-2 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M5,25 45,25z M55,25 95,25zM5,40 45,40z M55,40 95,40zM5,55 45,55z M55,55 95,55zM5,70 45,70z M55,70 95,70z"></path></svg></a></div></div><div class="lol"><a class="" href="/books/NBK259192/?report=classic">Switch to classic view</a><a href="/books/NBK259192/?report=printable">Print View</a></div></div></aside><aside id="jr-bkhelp-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Help</div></div><div class="cnt f1 lol"><a id="jr-helpobj-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/help.xml" href="">Help</a><a href="mailto:info@ncbi.nlm.nih.gov?subject=PubReader%20feedback%20%2F%20NBK259192%20%2F%20sid%3ACE8B5AF87C7FFCB1_0191SID%20%2F%20phid%3ACE8D0A0A7D66810100000000002E0028.4">Send us feedback</a><a id="jr-about-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/about.xml" href="">About PubReader</a></div></aside><aside id="jr-objectbox" class="thidden hidden"><div class="jr-objectbox-close wsprkl">✘</div><div class="jr-objectbox-inner cnt"><div class="jr-objectbox-drawer"></div></div></aside><nav id="jr-pm-left" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Previous Page</text></svg></nav><nav id="jr-pm-right" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Next Page</text></svg></nav><nav id="jr-fip" class="hidden"><nav id="jr-fip-term-p"><input type="search" placeholder="search this page" id="jr-fip-term" autocorrect="off" autocomplete="off" /><a id="jr-fip-mg" class="wsprkl btn" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-fip-done" class="wsprkl btn" title="Dismiss find">✘</a></nav><nav id="jr-fip-info-p"><a id="jr-fip-prev" class="wsprkl btn" title="Jump to previuos match">◀</a><button id="jr-fip-matches">no matches yet</button><a id="jr-fip-next" class="wsprkl btn" title="Jump to next match">▶</a></nav></nav></div><div id="jr-epub-interstitial" class="hidden"></div><div id="jr-content"><article data-type="main"><div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><div class="fm-sec"><h1 id="_NBK259192_"><span class="title" itemprop="name">Inhibitors of the <i>Plasmodium falciparum</i> M17 Leucine Aminopeptidase</span></h1><p class="contribs">Schoenen FJ, Whipple D, Baillargeon P, et al.</p><p class="fm-aai"><a href="#_NBK259192_pubdet_">Publication Details</a></p></div></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="_abs_rndgid_" itemprop="description"><p>Malaria is one of the most prevalent human parasitic diseases and is a global health issue accounting for >600,000 deaths annually. For survival, the <i>Plasmodium falciparum</i> (<i>Pf</i>) malaria parasite requires the action of a number of metallo-aminopeptidases, including <i>Pf</i>M1MAA (membrane alanine aminopeptidase), <i>Pf</i>M17LAP (leucine aminopeptidase), and <i>Pf</i>M18AAP (aspartyl aminopeptidase). Each enzyme displays restricted amino acid specificity, and they are thought to act in concert to degrade proteins (i.e., host erythrocyte hemoglobin) that the parasite uses to generate a pool of amino acids which are employed as building blocks for the synthesis of its own proteins. Since there were very few small-molecule inhibitors of <i>Pf</i>M17LAP and no selective inhibitors relative to <i>Pf</i>M1AAP (or <i>Pf</i>M18AAP), we set out to identify new potent and selective small-molecule inhibitors of this enzyme. Biochemical assays employing enzymatically active recombinant <i>Pf</i>M17LAP (rPfM17LAP), as well as recombinant <i>Fasciola hepatica</i> cathepsin L1 (r<i>Fh</i>CTSL1), r<i>Pf</i>M1MAA, r<i>Pf</i>M18AAP, and human M17LAP (rhuM17), and cell-based parasite growth inhibition and cytotoxicity assays were used to identify CID 2466 (from the NIH MLSMR) as a viable starting point for SAR analysis. Three rounds of structure-activity relationship studies were performed to generate a panel of probe candidate compounds. Ultimately, the compound hit, CID 2466, also known as bufexamac, was nominated as the probe <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=abstract&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a>. When the probe and analogues are used as recommended, they are “fit-for-purpose” and should be useful for advancing the search for new antimalarial drugs directed at <i>Pf</i>M17LAP.</p></div><div class="h2"></div><p><b>Assigned Assay Grant #:</b> 1 R03 MH082342-01A1</p><p><b>Screening Center Name & PI:</b> Scripps Research Institute Molecular Screening Center, Hugh Rosen; Southern Research Specialized Biocontainment Screening Center, E. Lucile White</p><p><b>Chemistry Center Name & PI:</b> University of Kansas Specialized Chemistry Center, Jeffrey Aubé</p><p><b>Assay Submitter & Institution:</b> John P. Dalton, Institute of Parasitology, McGill University, Quebec, Canada; Institute for Biotechnology of Infectious Diseases (IBID), University of Technology Sydney (UTS), Sydney, Australia; Donald L. Gardiner, Malaria Biology Laboratory, The Queensland Institute of Medical Research, Brisbane, Australia</p><p><b>PubChem Summary Bioassay Identifier (AID):</b>
|
|
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/434965" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">434965</a></p><div id="ml392.s1"><h2 id="_ml392_s1_">Probe Structure & Characteristics</h2><div id="ml392.fu1" class="figure bk_fig"><div class="graphic"><img src="/books/NBK259192/bin/ml392fu1.jpg" alt="ML392." /></div><h3><span class="title">ML392</span></h3></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml392tu1"><a href="/books/NBK259192/table/ml392.tu1/?report=objectonly" target="object" title="Table" class="img_link icnblk_img figpopup" rid-figpopup="figml392tu1" rid-ob="figobml392tu1"><img class="small-thumb" src="/books/NBK259192/table/ml392.tu1/?report=thumb" src-large="/books/NBK259192/table/ml392.tu1/?report=previmg" alt="Image " /></a><div class="icnblk_cntnt"><h4 id="ml392.tu1"><a href="/books/NBK259192/table/ml392.tu1/?report=objectonly" target="object" rid-ob="figobml392tu1">Table</a></h4></div></div></div><div id="ml392.s2"><h2 id="_ml392_s2_">1. Recommendations for Scientific Use of the Probe</h2><p>Using this probe and analogues, researchers may evaluate the <i>Pf</i>M17LAP enzyme as a target in culture for developing small-molecule anti-malaria drugs. Moreover, a more detailed understanding of the enzyme’s function in the parasite may be elucidated specifically and its putative role alongside other aminopeptidases (e.g. <i>Pf</i>M1AAP and <i>Pf</i>M18AAP) may be determined. Eventually, this could contribute to the development of multi-drug therapies targeting several malaria enzymes, therapies for which there might be a lower prospect of drug resistance developing.</p><p>More specifically, in live-cell morphological screening studies using light microscopy, parasitologists might use the compounds reported here to study when and where the <i>Pf</i>M17LAP enzyme functions within malaria cells. Chemical biologists might use the compounds to design biotin, photo-affinity or fluorescent conjugates as an approach to illuminating the distinct biological roles for <i>Pf</i>M17LAP, as has been demonstrated using bestatin-based conjugates. Crystallographers might use the highly soluble and selective compounds reported here for co-crystallization studies with the recombinant <i>Pf</i>M17LAP and <i>Pf</i>M1AAP enzymes, for which the X-ray crystal structures have been reported.</p><p>When the probe and analogues are used as recommended previously, they are “fit-for-purpose” [<a class="bibr" href="#ml392.r1" rid="ml392.r1">1</a>] and should be useful for advancing the field.</p></div><div id="ml392.s3"><h2 id="_ml392_s3_">2. Materials and Methods</h2><p>See subsections for a detailed description of the materials and methods used for each assay.</p><div id="ml392.s4"><h3>Recombinant enzymes</h3><p>Recombinant <i>Pf</i>M17LAP, <i>Pf</i>M18AAP, <i>Pf</i>M1AAP, and human M17 were prepared at the University of Technology, Sydney, as described previously [<a class="bibr" href="#ml392.r2" rid="ml392.r2">2</a>, <a class="bibr" href="#ml392.r3" rid="ml392.r3">3</a>]. Recombinant cathepsin L of the parasitic helminth <i>Fasciola hepatica</i> was prepared in the same laboratory as described previously [<a class="bibr" href="#ml392.r4" rid="ml392.r4">4</a>].</p></div><div id="ml392.s5"><h3>2.1. Assays</h3><div id="ml392.s6"><h4>Inhibitors of <i>Plasmodium falciparum</i> M17- Family Leucine Aminopeptidase (<i>Pf</i>M17LAP) (Primary Assay AID 1619)</h4><p>The purpose of this assay is to identify compounds that inhibit the activity of M17 aminopeptidase of the malaria parasite <i>Plasmodium falciparum</i> (<i>Pf</i>M17LAP). In this simple biochemical assay a fluorogenic peptide substrate (H-Leu-NHMec) was used for quantifying the activity of M17LAP. The rate of hydrolysis of this substrate was measured by monitoring the release of the -NHMec fluorogenic leaving group at an excitation wavelength of 370 nm and an emission wavelength of 460 nm. A kinetic assay was chosen to minimize interference by compounds that fluoresce at these wavelengths. As designed, compounds that inhibit <i>Pf</i>M17LAP will block r<i>Pf</i>M17LAP-mediated cleavage of H-Leu-NHMec and liberation of the NHMec leaving group from the substrate, resulting in decreased well fluorescence. For the primary screen, test compounds were assayed in singlicate at a final nominal concentration of 30 micromolar. For concentration-response confirmatory screening, the most potent inhibitors were tested using a 8-point dilution series starting at 100 micromolar. This assay was performed at the Southern Research Specialized Biocontainment Screening Center.</p></div><div id="ml392.s7"><h4>Inhibitors of <i>Plasmodium falciparum</i> M1-Family Alanyl Aminopeptidase (<i>Pf</i>M1AAP) (Primary Assay AID 1445)</h4><p>The purpose of this assay is to identify compounds that inhibit the activity of <i>Pf</i>M1AAP aminopeptidase of the malaria parasite <i>Plasmodium falciparum</i> (<i>Pf</i>M1AAP). This assay also serves as a counterscreen for the experiment titled, “Inhibitors of <i>Plasmodium falciparum</i> M17- Family Leucine Aminopeptidase (<i>Pf</i>M17LAP, Primary Assay AID No. <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1619" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">1619</a>)”. In this biochemical assay a fluorogenic peptide substrate (H-Leu-NHMec) was used for quantifying the activity of M1AAP. The rate of hydrolysis of this substrate was measured by monitoring the release of the -NHMec fluorogenic leaving group at an excitation wavelength of 370 nm and an emission wavelength of 460 nm. A kinetic assay was chosen to minimize interference by compounds that fluoresce at these wavelengths. As designed, compounds that inhibit <i>Pf</i>M1AAP will block r<i>Pf</i>M1AAP-mediated cleavage of H-Leu-NHMec and liberation of the NHMec leaving group from the substrate, resulting in decreased well fluorescence. For the primary screen, test compounds were assayed in singlicate at a final nominal concentration of 30 micromolar. For concentration-response confirmatory screening, the most potent inhibitors were tested using a 8-point dilution series starting at 100 micromolar. This assay was performed at the Southern Research Specialized Biocontainment Screening Center.</p></div><div id="ml392.s8"><h4>Counterscreen for inhibitors of M1 and M17 aminopeptidases: QFRET-based biochemical high throughput dose response assay for inhibitors of the Cathepsin L proteinase (CTSL1) (Counterscreen Assay AID 2214)</h4><p>The purpose of this assay is to determine cathepsin L1 dose response curves for compounds identified as active in one of the following set of experiments titled, “Inhibitors of <i>Plasmodium falciparum</i> M1-Family Alanyl Aminopeptidase (M1AAP)” (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1445" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 1445</a>), or “Inhibitors of <i>Plasmodium falciparum</i> M17-Family Leucine Aminopeptidase (M17LAP)” (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1619" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 1619</a>). This assay serves as a counterscreen to determine whether compounds are nonselective due to inhibition of cathepsin L1. In this biochemical assay, a commercially available N-terminally blocked fluorogenic peptide substrate (Z-Leu-Arg-NHMec) is incubated with purified recombinant cathepsin L1 protein in the presence of test compounds. Cleavage of the substrate by cathepsin L1 releases the fluorogenic NHMec leaving group, leading to an increase in well fluorescence. As designed, compounds that inhibit cathepsin L1 will prevent substrate cleavage and liberation of the fluorescent leaving group, resulting in decreased well fluorescence. Test compounds were assayed in triplicate in a 10-point 1:3 dilution series starting at a nominal test concentration of 59.6 micromolar. This assay was performed at the Scripps Research Institute Molecular Screening Center.</p></div><div id="ml392.s9"><h4>Counterscreen for inhibitors of M1 and M17 aminopeptidases: QFRET-based biochemical high throughput dose response assay for inhibitors of the <i>Plasmodium falciparum</i> M18 Aspartyl Aminopeptidase (<i>Pf</i>M18AAP) (Counterscreen Assay AID 2215)</h4><p>The purpose of this assay is to determine r<i>Pf</i>M18AAP dose response curves for compounds identified as active in the following set of experiments entitled, “Inhibitors of <i>Plasmodium falciparum</i> M1-Family Alanyl Aminopeptidase (M1AAP)” (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1445" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 1445</a>), or “Inhibitors of <i>Plasmodium falciparum</i> M17-Family Leucine Aminopeptidase (M17LAP)” (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1619" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 1619</a>). This assay serves as a counterscreen to determine whether compounds are nonselective due to inhibition of M18. In this biochemical assay, a commercially available fluorogenic peptide substrate (H-Glu-NHMec) is incubated with purified recombinant <i>Pf</i>M18AAP enzyme (r<i>Pf</i>M18AAP) in the presence of test compounds. Cleavage of the substrate by rPfM18AAP enzyme liberates the NHMec leaving group from the peptide, leading to increased well fluorescence. As designed, compounds that inhibit <i>Pf</i>M18AAP will block r<i>Pf</i>M18AAP-mediated cleavage of H-Glu-NHMec and liberation of the NHMec leaving group from the substrate, resulting in decreased well fluorescence as measured at 340 nm excitation and 450 nm emission. Test compounds were assayed in triplicate in a 10-point 1:3 dilution series starting at a nominal test concentration of 73.5 micromolar. This assay was performed at the Scripps Research Institute Molecular Screening Center.</p></div><div id="ml392.s10"><h4>Late stage assay provider results from the probe development effort to identify inhibitors of the <i>Plasmodium falciparum</i> M17 Leucine Aminopeptidase (<i>Pf</i>M17LAP): fluorescence-based assay to identify inhibitors of r<i>Pf</i>M17LAP (Hit Validation Assay AID 492977)</h4><p>The purpose of this assay is to determine inhibitory activity of powder samples of compounds for recombinant <i>P. falciparum</i> M17LAP. In this assay, a fluorogenic peptide substrate (H-Leu-NHMec) that binds to the active site of r<i>Pf</i>M17LAP was used to quantify the activity of r<i>Pf</i>M17LAP in the presence of inhibitor compounds. The rate of hydrolysis of this substrate in the presence of 5 μM inhibitor compounds was measured by monitoring the release of the -NHMec fluorogenic leaving group at an excitation wavelength of 370 nm and an emission wavelength of 460 nm. As designed, compounds that bind to r<i>Pf</i>M17LAP will compete with binding of the fluorogenic peptide substrate, resulting in a decrease in the release of the fluorogenic leaving group and a decrease in well fluorescence. This assay was performed in the labs of the assay provider, John P. Dalton.</p></div><div id="ml392.s11"><h4>Late stage assay provider results from the probe development effort to identify inhibitors of the <i>Plasmodium falciparum</i> M17 Leucine Aminopeptidase (M17LAP): radiolabel-based cell-based assay to identify compounds that inhibit <i>P. falciparum</i> growth in RBCs (Hit Validation Assay AID 492955)</h4><p>The purpose of this assay is to determine the ability of powder samples of inhibitor compounds to inhibit the growth of <i>Plasmodium falciparum</i> in its asexual erythrocytic stage. In this assay, compounds are incubated with red blood cells (RBC) infected with <i>P. falciparum</i> parasites in hypoxanthine-free media. <sup>3</sup>H-hypoxanthine is added, cells incubated 48 hours, and incorporation of <sup>3</sup>H determined. As designed, compounds that inhibit the growth of <i>P. falciparum</i> in RBC will decrease the level of <sup>3</sup>H incorporated. Three replicates at 10 μM were performed for each compound tested in each experiment, and each compound was tested in two or three experiments. This assay was performed in the labs of the assay provider, Donald L. Gardiner.</p></div><div id="ml392.s12"><h4>Late stage assay provider results from the probe development effort to identify inhibitors of the <i>Plasmodium falciparum</i> M17 Leucine Aminopeptidase (M17LAP): radiolabel-based cell-based dose response assay to identify compounds that inhibit <i>P. falciparum</i> growth in RBCs (Hit Validation Assay AID 489016)</h4><p>The purpose of this assay is to determine the potency of a powder sample of an inhibitor compound identified in a previous assay to inhibit the growth of <i>Plasmodium falciparum</i> in its asexual erythrocytic stage. In this assay, compounds are incubated with red blood cells (RBC) infected with <i>P. falciparum</i> parasites in hypoxanthine-free media. <sup>3</sup>H-hypoxanthine is added, cells incubated 48 hours, and incorporation of <sup>3</sup>H determined. As designed, compounds that inhibit the growth of <i>P. falciparum</i> in RBC will decrease the level of <sup>3</sup>H incorporated. Compounds were tested in triplicate using a 5-point dilution series starting at a nominal concentration of 25 μM. This assay was performed in the labs of the assay provider, Donald L. Gardiner.</p></div><div id="ml392.s13"><h4>QFRET-based biochemical high throughput dose response assay for inhibitors of the <i>Plasmodium falciparum</i> M17 Leucine Aminopeptidase (<i>Pf</i>M17LAP) (SAR Assay AID 588688, AID 602216, AID 602309)</h4><p>The purpose of this assay is to determine dose response curves for compounds identified as active. In this biochemical assay, a commercially available fluorogenic peptide substrate (H-Leu-NHMec) is incubated with purified recombinant <i>Pf</i>M17LAP enzyme (r<i>Pf</i>M17LAP) in the presence of test compounds. Cleavage of the substrate by r<i>Pf</i>M17LAP enzyme liberates the NHMec leaving group from the peptide, leading to increased well fluorescence. As designed, compounds that inhibit <i>Pf</i>M17LAP will block r<i>Pf</i>M17LAP-mediated cleavage of H-Leu-NHMec and liberation of the NHMec leaving group from the substrate, resulting in decreased well fluorescence as measured at 340 nm excitation and 450 nm emission. Test compounds were assayed in triplicate in a 10-point 1:2 dilution series starting at a nominal test concentration of 100 micromolar. This assay was performed at the Southern Research Specialized Biocontainment Screening Center.</p></div><div id="ml392.s14"><h4>Counterscreen for inhibitors of <i>Pf</i>M17LAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the <i>Plasmodium falciparum</i> M1AAP (<i>Pf</i>M1AAP) (Counterscreen Assay AID 588698, AID 602223, AID 602315)</h4><p>The purpose of this assay is to determine dose response curves for compounds identified as active. In this biochemical assay, a commercially available fluorogenic peptide substrate (H-Leu-NHMec) is incubated with purified recombinant <i>Pf</i>M1AAP enzyme (r<i>Pf</i>M1AAP) in the presence of test compounds. Cleavage of the substrate by r<i>Pf</i>M1AAP enzyme liberates the NHMec leaving group from the peptide, leading to increased well fluorescence. As designed, compounds that inhibit <i>Pf</i>M1AAP will block r<i>Pf</i>M1AAP-mediated cleavage of H-Leu-NHMec and liberation of the NHMec leaving group from the substrate, resulting in decreased well fluorescence as measured at 340 nm excitation and 450 nm emission. Test compounds were assayed in triplicate in a 10-point 1:2 dilution series starting at a nominal test concentration of 100 micromolar. This assay was performed at the Southern Research Specialized Biocontainment Screening Center.</p></div><div id="ml392.s15"><h4>Counterscreen for inhibitors of <i>Pf</i>M17LAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the <i>Plasmodium falciparum</i> M18 Aspartyl Aminopeptidase (<i>Pf</i>M18AAP) (Counterscreen Assay AID 588697, AID 602218, AID 602316)</h4><p>The purpose of this assay is to determine dose response curves for compounds identified as active in a <i>Pf</i>M17LAP screen. In this biochemical assay, a commercially available fluorogenic peptide substrate (H-Glu-NHMec) is incubated with purified recombinant <i>Pf</i>M18AAP enzyme (r<i>Pf</i>M18AAP) in the presence of test compounds. Cleavage of the substrate by r<i>Pf</i>M18AAP enzyme liberates the NHMec leaving group from the peptide, leading to increased well fluorescence. As designed, compounds that inhibit <i>Pf</i>M18AAP will block r<i>Pf</i>M18AAP-mediated cleavage of H-Glu-NHMec and liberation of the NHMec leaving group from the substrate, resulting in decreased well fluorescence as measured at 340 nm excitation and 450 nm emission. Test compounds were assayed in triplicate in a 10-point 1:2 dilution series starting at a nominal test concentration of 100 micromolar. This assay was performed at the Southern Research Specialized Biocontainment Screening Center.</p></div><div id="ml392.s16"><h4>Counterscreen for inhibitors of <i>Pf</i>M17LAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Human M17LAP (huM17LAP) (Counterscreen Assay AID 602214, AID 602407)</h4><p>The purpose of this assay is to determine dose response curves for compounds identified as active. In this biochemical assay, a commercially available fluorogenic peptide substrate (H-Leu-NHMec) is incubated with purified recombinant huM17LAP enzyme (rhuM17LAP) in the presence of test compounds. Cleavage of the substrate by rhuM17LAP enzyme liberates the NHMec leaving group from the peptide, leading to increased well fluorescence. As designed, compounds that inhibit huM17LAP will block rhuM17LAP-mediated cleavage of H-Leu-NHMec and liberation of the NHMec leaving group from the substrate, resulting in decreased well fluorescence as measured at 340 nm excitation and 450 nm emission. Test compounds were assayed in triplicate in a 10-point 1:2 dilution series starting at a nominal test concentration of 100 micromolar. This assay was performed at the Southern Research Specialized Biocontainment Screening Center<b>.</b></p></div><div id="ml392.s17"><h4>Late stage assay provider results from the probe development effort to identify inhibitors of the <i>Plasmodium falciparum</i> M17 Leucine Aminopeptidase (M17LAP): radiolabel-based cell-based assay to identify compounds that inhibit <i>P. falciparum</i> growth in RBCs (Hit Validation Assay AID 743274)</h4><p>The purpose of this assay is to determine the ability of powder samples of inhibitor compounds to inhibit the growth of <i>Plasmodium falciparum</i> in its asexual erythrocytic stage. In this assay, compounds are incubated with red blood cells (RBC) infected with <i>P. falciparum</i> parasites in hypoxanthine-free media. <sup>3</sup>H-hypoxanthine is added, cells incubated 48 hours, and incorporation of <sup>3</sup>H determined. As designed, compounds that inhibit the growth of <i>P. falciparum</i> in RBC will decrease the level of <sup>3</sup>H incorporated. Three replicates at 10 μM were performed for each compound tested in each experiment, and each compound was tested in two or three experiments. This assay was performed in the labs of the assay provider, Donald L. Gardiner.</p></div><div id="ml392.s18"><h4>Late stage assay provider results from the probe development effort to identify inhibitors of the <i>Plasmodium falciparum</i> M17 Leucine Aminopeptidase (M17LAP): radiolabel-based cell-based dose response assay to identify compounds that inhibit <i>P. falciparum</i> growth in RBCs (Hit Validation Assay AID 743273)</h4><p>The purpose of this assay is to determine the potency of a powder sample of an inhibitor compound identified in a previous assay to inhibit the growth of <i>Plasmodium falciparum</i> in its asexual erythrocytic stage. In this assay, compounds are incubated with red blood cells (RBC) infected with <i>P. falciparum</i> parasites in hypoxanthine-free media. <sup>3</sup>H-hypoxanthine is added, cells incubated 48 hours, and incorporation of <sup>3</sup>H determined. As designed, compounds that inhibit the growth of <i>P. falciparum</i> in RBC will decrease the level of <sup>3</sup>H incorporated. Compounds were tested in triplicate using a 5-point dilution series starting at a nominal concentration of 25 μM. This assay was performed in the labs of the assay provider, Donald L. Gardiner.</p></div><div id="ml392.s19"><h4>Vero Cytoxicity Assay: A Cell Based Secondary Assay To Explore Cytotoxicity of Compounds that Inhibit <i>Plasmodium falciparum</i> M17 Leucine Aminopeptidase (<i>Pf</i>M17LAP) (Counterscreen Assay AID 588707, AID 602227, AID 602317)</h4><p>In this assay, we treated Vero E6 cells with compounds selected as hits in the <i>Pf</i>M17LAP assay for 72 hours over a 10 point 2-fold dilution series, ranging from 0.19 μM to 100 μM. Following 72 hours of treatment, relative viable cell number was determined using Cell Titer Glo from Promega. Each plate contained 64 replicates of vehicle treated cells which served as negative controls. This assay was performed at the Southern Research Specialized Biocontainment Screening Center.</p></div></div><div id="ml392.s20"><h3>2.2. Probe Chemical Characterization</h3><p><a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> was purchased from Sigma-Aldrich or Fluka. Analytical characterization data (<sup>1</sup>H NMR, <sup>13</sup>C NMR, HRMS, and elemental combustion analysis) were all consistent with the structure. The compound samples were 100% pure as measured on the basis of peak integration (area under the curve) from UV-Vis absorbance at 214 nm as determined using RP HPLC/UV/MS.</p><div id="ml392.s21"><h4>Probe Chemical Structure and Properties</h4><div id="ml392.fu2" class="figure"><div class="graphic"><img src="/books/NBK259192/bin/ml392fu2.jpg" alt="Image ml392fu2" /></div></div></div><div id="ml392.s22"><h4>Aqueous Solubility</h4><p>The aqueous solubility for the probe was measured in phosphate-buffered saline (PBS) at room temperature (23 °C). PBS by definition is 137 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate dibasic, 2 mM potassium phosphate monobasic at a pH 7.4. The probe compound <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> was found to have a solubility of 76 μg/mL, or 340 μM, under these conditions, which is 829X and 62X the IC<sub>50</sub>s in the biochemical and cell-based inhibition assays (r<i>Pf</i>M17LAP and <i>Pf</i>M17LAP, respectively).</p></div><div id="ml392.s23"><h4>Aqueous Stability & Thiol Stability</h4><p>The aqueous stability for the probe compound was assessed in PBS (no antioxidants or other protectants, DMSO concentration 1%, room temperature) and the results are reported in <a class="figpopup" href="/books/NBK259192/figure/ml392.f1/?report=objectonly" target="object" rid-figpopup="figml392f1" rid-ob="figobml392f1">Figure 2.2.1</a>. The probe compound <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> was found to be stable in PBS, whereby 100% of the compound remained after 88 hours, which is well-beyond the 72 hour timeframe for the assay with the longest duration, the Vero cell cytotoxicity assay (<a class="figpopup" href="/books/NBK259192/figure/ml392.f1/?report=objectonly" target="object" rid-figpopup="figml392f1" rid-ob="figobml392f1">Figure 2.2.1, A</a>). See the</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml392f1" co-legend-rid="figlgndml392f1"><a href="/books/NBK259192/figure/ml392.f1/?report=objectonly" target="object" title="Figure 2.2.1" class="img_link icnblk_img figpopup" rid-figpopup="figml392f1" rid-ob="figobml392f1"><img class="small-thumb" src="/books/NBK259192/bin/ml392f1.gif" src-large="/books/NBK259192/bin/ml392f1.jpg" alt="Figure 2.2.1. Stability of ML392 in PBS & DTT Stability Assay." /></a><div class="icnblk_cntnt" id="figlgndml392f1"><h4 id="ml392.f1"><a href="/books/NBK259192/figure/ml392.f1/?report=objectonly" target="object" rid-ob="figobml392f1">Figure 2.2.1</a></h4><p class="float-caption no_bottom_margin">Stability of ML392 in PBS & DTT Stability Assay. ML392 (CID 2466, SID 93577810) was tested over a time course in an aqueous stability assay and thiol stability assays. (A) Stability of the probe over 88 hours in PBS; (B) Stability of the probe <a href="/books/NBK259192/figure/ml392.f1/?report=objectonly" target="object" rid-ob="figobml392f1">(more...)</a></p></div></div><p>The thiol stability for the probe compound was assessed in PBS and the results are reported in <a class="figpopup" href="/books/NBK259192/figure/ml392.f1/?report=objectonly" target="object" rid-figpopup="figml392f1" rid-ob="figobml392f1">Figure 2.2.1</a>. The probe compound <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> was found to be stable to DTT, whereby 100% of the compound remained after 8 hours (<a class="figpopup" href="/books/NBK259192/figure/ml392.f1/?report=objectonly" target="object" rid-figpopup="figml392f1" rid-ob="figobml392f1">Figure 2.2.1, B</a>).</p></div><div id="ml392.s24"><h4>Submission of the Probe and Analogues to the NIH MLSMR</h4><p>Samples of the probe and five analogues were submitted to the NIH MLSMR compound collection on November 25, 2013.</p></div></div><div id="ml392.s25"><h3>2.3. Probe Preparation</h3><p><a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> was purchased from Sigma-Aldrich and was processed through a Model 00 Jet-O-Mizer jet mill (Fluid Energy Processing and Equipment Company, Telford, PA). The RP-UPLC purity was 100% (214 nm) and the <sup>1</sup>H and <sup>13</sup>C NMR spectra were consistent with the structure. Satisfactory elemental analysis results were also obtained.</p></div></div><div id="ml392.s26"><h2 id="_ml392_s26_">3. Results</h2><div id="ml392.s27"><h3>3.1. Dose Response Curves for Probe</h3><div id="ml392.f2" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%203.1.1.%20Concentration-response%20Curves%20for%20the%20Probe%20ML392.&p=BOOKS&id=259192_ml392f2.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK259192/bin/ml392f2.jpg" alt="Figure 3.1.1. Concentration-response Curves for the Probe ML392." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 3.1.1</span><span class="title">Concentration-response Curves for the Probe ML392</span></h3><div class="caption"><p><a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> (CID 2466, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID 93577810</a>) was tested across a range of concentrations up to 100 μM in the primary and several secondary assays. Concentration response data was analyzed using a four parameter logistic fit to the data (GraphPad Prism). From these curves IC<sub>50</sub> values were calculated. (A) r<i>Pf</i>M17LAP biochemical assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1619" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 1619</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602216" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">602216</a>), IC<sub>50</sub> = 0.41 μM; (B) r<i>Pf</i>M1AAP biochemical assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602223" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602223</a>), IC<sub>50</sub> = 14 μM; (C) r<i>Pf</i>M18AAP biochemical assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602218" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602218</a>), IC<sub>50</sub> = 10; (D) rhuM17LAP biochemical assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602214" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602214</a>) IC<sub>50</sub> = 0.31 μM; (E) Red blood cell parasite growth assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/489016" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 489016</a>) EC<sub>50</sub> = 1.7 μM; (F) Vero cell cytotoxicity assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602317" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602317</a>) EC<sub>50</sub> > 50 μM</p></div></div></div><div id="ml392.s28"><h3>3.2. Cellular Activity</h3><p>The malaria parasite growth inhibition assay and the Vero cell cytotoxicity assay are cell-based assays. Many of the compound analogues screened were active in the malaria parasite killing assay and were inactive in the Vero cell cytotoxicity assay. The cellular permeability (PAMPA) for <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> was measured and was determined to be good. Specifically, the cellular permeability for the probe was determined to be approximately 187 × 10<sup>−6</sup> cm/s, 182 × 10<sup>−6</sup> cm/s, and 175 × 10<sup>−6</sup> cm/s at pH 7.4, 6.2, and 5.0, respectively.</p></div><div id="ml392.s29"><h3>3.3. Profiling Assays</h3><p>According to a search of PubChem as of February 13, 2014, the probe has been screened in 990 assays. For the 72 assays for which the probe was reported to be active, only 19 of the assays are unrelated to the current project or to activity against <i>Plasmodium falciparum</i> or malaria. As a result, the maximum “off-target” activity for the probe is in the neighborhood of 19/990 assays, or 1.9% of the assays.</p><p>Regarding off-target activity for the probe, with respect to the recently reported class II HDAC inhibitory activity for the probe, in the article published by Drewes [<a class="bibr" href="#ml392.r5" rid="ml392.r5">5</a>], the probe (i.e., bufexamac) is reported to inhibit the HDACs 1, 2, 3, 6, 8, and 10, with Kd<sup>app</sup> of NI (no inhibition), NI, 341 μM, 10.7 μM, 235 μM, and 12.3 μM, respectively, using a chemoproteomics binding assay. While it is true that the probe is “active” against HDACs 6 and 10, the reported potencies of 10.7 μM and 12.3 μM, respectively, are 764X and 878X less potent than the 14 nM activity against the r<i>Pf</i>M17LAP (vide infra, <a href="#ml392.s31">Section 4.1</a>, mechanism of action). Within the MLPCN, the probe was screened against the Histone Deacetylase 3 (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2718" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 2718</a>), and negative results were reported, which is consistent with the observations of Drewes.</p><p>With respect to the reported activity of the probe against cyclooxygenases (see PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/7184" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 7184</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/7185" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 7185</a>), the probe is reported to inhibit 5-lipoxygenase with an IC<sub>50</sub> of 27 μM in an in vitro assay. While it is true that the probe is “active” against 5-lipoxygenase, the reported potency of 27 μM is 1,928X less than the 14 nM activity against the r<i>Pf</i>M17LAP.</p><p>With respect to potential off-target metalloprotease activity for the probe, as of February 13, 2014, the probe <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> is reported in PubChem to have been screened in a total of 990 assays. Within this set of 990 assays, negative results were reported for the following five metalloproteases: (1) matrix metalloproteinase 13 (MMP13) (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/570" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 570</a>), (2) ADAM17 (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/720648" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 720648</a>), (3) matrix metalloproteinase 1 (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/618" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 618</a>), (4) metallo-beta-lactamase IMP-1 (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1556" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 1556</a>), and (5) VIM-2 metallo-beta-lactamase (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1527" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 1527</a>), suggesting that the probe compound is selective versus metalloproteases.</p><p>Finally, with respect to general off-target protease activity for the probe, also within the set of 990 PubChem assays, negative results were reported for the following eleven proteases (excluding the metalloproteases above): (1) 3C-like protease (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1706" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 1706</a>), (2) cysteine protease ATG4B isoform (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504462" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 504462</a>), (3) Ubiquitin-specific Protease USP2a (PubChem AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/927" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">927</a>), (4) Sentrin-specific protease 8 (SENP8) (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2540" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 2540</a>), (5) membrane-associated serine protease Rv3671c in <i>M. tuberculosis</i> (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2606" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 2606</a>), (6) Botulinum neurotoxin light chain F protease (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588459" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 588459</a>), (7) Sentrin-specific protease 7 (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/434973" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 434973</a>), (8) Lethal Factor Protease (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588461" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 588461</a>), (9) Sentrin-specific protease 6 (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2599" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 2599</a>), (10) <i>Escherichia coli</i> DNA-binding ATP-dependent protease La (eLon) (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602123" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602123</a>), and (11) SUMO protease, SENP1 (PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/624204" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 624204</a>), suggesting that the probe compound is selective versus a range of general proteases..</p><p>The probe compound was submitted to the Sanford-Burnham Medical Research Institute for various levels of exploratory pharmacology profiling (i.e., aqueous solubility in Pion’s buffer (pH 5.0, 6.2, and 7.4), aqueous solubility in 1x PBS, cell permeability, (PAMPA), plasma stability (human and mouse), plasma protein binding (human and mouse), hepatic microsome stability (human and mouse), and toxicity towards Fa2N-4 immortalized human hepatocytes). Overall, the probe showed good aqueous solubility (76 μg/mL, 340 μM; at pH 7.4), good permeability that is consistent across the pH range for which measurements were collected (187 × 10<sup>−6</sup> cm/s, 182 × 10<sup>−6</sup> cm/s, 175 × 10<sup>−6</sup> cm/s at pH 7.4, 6.2, 5.0, respectively), good stability to human/mouse plasma (67%, 71% remaining after 3 h; human, mouse), moderate binding to human/mouse plasma proteins (82%, 74% of bound compound at 10 μM; human, mouse), very good/moderate stability to human/mouse hepatic microsomes (80%, 30% remaining after 1 h; human, mouse), and no toxicity toward immortalized human hepatocytes (LC<sub>50</sub> > 50 μM against Fa2N-4 immortalized human hepatocytes).</p></div></div><div id="ml392.s30"><h2 id="_ml392_s30_">4. Discussion</h2><div id="ml392.s31"><h3>4.1. Comparison to Existing Art and How the New Probe is an Improvement</h3><p>The prior art was investigated by searching the Chemical Abstracts database using the SciFinder software. Abstracts were obtained for all references returned from the search and were analyzed for relevance to the current project. For all references that were deemed relevant, the articles were analyzed and the results are summarized. The search results are current as of December 2, 2013. The structures for reported inhibitors of <i>Pf</i>M17LAP along with their reported activities are shown in the <a class="figpopup" href="/books/NBK259192/figure/ml392.f3/?report=objectonly" target="object" rid-figpopup="figml392f3" rid-ob="figobml392f3">Figure 4.1.1</a> and <a class="figpopup" href="/books/NBK259192/table/ml392.t1/?report=objectonly" target="object" rid-figpopup="figml392t1" rid-ob="figobml392t1">Table 4.1.1</a>.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml392f3" co-legend-rid="figlgndml392f3"><a href="/books/NBK259192/figure/ml392.f3/?report=objectonly" target="object" title="Figure 4.1.1" class="img_link icnblk_img figpopup" rid-figpopup="figml392f3" rid-ob="figobml392f3"><img class="small-thumb" src="/books/NBK259192/bin/ml392f3.gif" src-large="/books/NBK259192/bin/ml392f3.jpg" alt="Figure 4.1.1. Reported inhibitors of rPfM17LAP." /></a><div class="icnblk_cntnt" id="figlgndml392f3"><h4 id="ml392.f3"><a href="/books/NBK259192/figure/ml392.f3/?report=objectonly" target="object" rid-ob="figobml392f3">Figure 4.1.1</a></h4><p class="float-caption no_bottom_margin">Reported inhibitors of r<i>Pf</i>M17LAP. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml392t1"><a href="/books/NBK259192/table/ml392.t1/?report=objectonly" target="object" title="Table 4.1.1" class="img_link icnblk_img figpopup" rid-figpopup="figml392t1" rid-ob="figobml392t1"><img class="small-thumb" src="/books/NBK259192/table/ml392.t1/?report=thumb" src-large="/books/NBK259192/table/ml392.t1/?report=previmg" alt="Table 4.1.1. Compounds reported in the literature to inhibit PfM17LAP or hM17LAP." /></a><div class="icnblk_cntnt"><h4 id="ml392.t1"><a href="/books/NBK259192/table/ml392.t1/?report=objectonly" target="object" rid-ob="figobml392t1">Table 4.1.1</a></h4><p class="float-caption no_bottom_margin">Compounds reported in the literature to inhibit <i>Pf</i>M17LAP or hM17LAP. </p></div></div><p>Using the recombinant <i>Pf</i>M1AAP and <i>Pf</i>M17LAP enzymes, bestatin, a natural Phe-Leu dipeptide analog isolated from the fungus <i>Streptomyces olivoretticuli</i> and a known aminopeptidase inhibitor, was shown to be a potent inhibitor of both <i>P. falciparum</i> r<i>Pf</i>M17LAP (0.025 μM) and r<i>Pf</i>M1AAP (0.478 μM) [<a class="bibr" href="#ml392.r2" rid="ml392.r2">2</a>, <a class="bibr" href="#ml392.r6" rid="ml392.r6">6</a>].</p><p>During studies aimed at using a bestatin-based chemical biology strategy to investigate the distinct roles for malaria M1- and M17-family aminopeptidases, one probe, PNAP (Phe-Napthyl), showed some selectivity for <i>Pf</i>M17LAP over <i>Pf</i>M1AAP (i.e., Ki’s of 29 nM versus 330 nM, respectively) [<a class="bibr" href="#ml392.r7" rid="ml392.r7">7</a>]. These <i>in vitro</i> potency results were consistent with the phenotypes observed using live-cell morphological screening.</p><p>The diasteromeric and racemic phosphinate dipeptide compound mixtures, LeuP[CH<sub>2</sub>]Leu, hPheP[CH<sub>2</sub>]Gly, hPheP[CH<sub>2</sub>]Phe, and hPheP[CH<sub>2</sub>]Tyr, known inhibitors of mammalian aminopeptidase N, were shown to be double- and triple-digit nanomolar inhibitors of r<i>Pf</i>M17LAP [<a class="bibr" href="#ml392.r9" rid="ml392.r9">9</a>], although these compounds were reported to also inhibit r<i>Pf</i>M1AAP [<a class="bibr" href="#ml392.r8" rid="ml392.r8">8</a>]. The compound mixtures hPheP[CH<sub>2</sub>]Phe and hPheP[CH<sub>2</sub>]Tyr were also reported to reduce parasite growth in culture (Dd2 and 3D7 <i>P. falciparum</i> parasites) with IC<sub>50</sub>s ranging between 13 and 75 μM. The compound mixture hPheP[CH<sub>2</sub>]Phe was assessed for anti-malarial activity <i>in vivo</i> using the rodent <i>P. c. chabaudi</i> model, and, at a dose of 100 mg/kg twice a day, the compound significantly reduced parasite burdens in mice, although the researchers state that there is a curious discrepancy between the activity observed for the compound in cell culture and <i>in vivo</i>.</p><p>Approximately 35 α-aminoalkylphosphonate compounds showed a range of activities against cultured <i>P. falciparum</i> parasites with the most potent (1-amino-4-cyclohexylbutyl)phosphonic acid) showing 98% inhibition at 10 μM and approximately 30% inhibition at 0.1 μM against <i>Pf</i>M17LAP and <i>Pf</i>M1AAP [<a class="bibr" href="#ml392.r11" rid="ml392.r11">11</a>].</p><p>During research around phosphonic arginine mimetics as inhibitors of the r<i>Pf</i>M17LAP and r<i>Pf</i>M1AAP aminopeptidases, studies directed at understanding the interactions necessary for a dual inhibitor, the phosphonic acid arginine mimetics 6 and 8 showed good potency and selectivity for r<i>Pf</i>M17LAP over r<i>Pf</i>M1AAP (i.e., <i>K</i><sub>i</sub>’s of 11 nM versus 104 μM, and 160 nM versus >1000 μM, respectively) [<a class="bibr" href="#ml392.r10" rid="ml392.r10">10</a>]. Cell-based activity for these compounds is not disclosed.</p><p>Starting with tosedostat, also known as CHR-2797, a potent inhibitor of a number of intracellular mammalian aminopeptidases [<a class="bibr" href="#ml392.r12" rid="ml392.r12">12</a>], Skinner-Adams identified CHR-2863 and CHR-6768 as potent and selective inhibitors of r<i>Pf</i>M17LAP over r<i>Pf</i>M1AAP (i.e., <i>K</i><sub>i</sub>’s of 76 nM versus 1413 nM, and 26 nM versus 2409 nM, respectively) which kill <i>P. falciparum</i> parasites in culture and showed that the former is efficacious against rodent malaria <i>in vivo</i> [<a class="bibr" href="#ml392.r13" rid="ml392.r13">13</a>].</p><p>At the start of the project, the only prior art that had been reported was for bestatin, the phosphinate dipeptide compound mixtures, and the α-aminoalkylphoshonate class. All of these compounds were non-selective for <i>Pf</i>M17LAP versus <i>Pf</i>M1AAP. The <i>Pf</i>M17LAP-selective PNAP, phosphonic acid arginine mimetics, and CHR-2863/CHR-6768 were disclosed after initiating the present work on the compound hit and analogues. With respect to the prior art, in all cases, the compounds are not selective relative to human M17. For most of the prior art compounds, activity against the human M17 was the impetus for testing the compound classes for activity against the <i>Plasmodium falciparum</i> parasite.</p><p>Based on the previous analysis, the compounds bestatin and tosedostat/CHR-2797 were chosen as benchmark compounds against which to compare the activity and selectivity for <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a>. <a class="figpopup" href="/books/NBK259192/table/ml392.t2/?report=objectonly" target="object" rid-figpopup="figml392t2" rid-ob="figobml392t2">Table 4.1.2</a> captures the results, and supports the best-in-class status for <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml392t2"><a href="/books/NBK259192/table/ml392.t2/?report=objectonly" target="object" title="Table 4.1.2" class="img_link icnblk_img figpopup" rid-figpopup="figml392t2" rid-ob="figobml392t2"><img class="small-thumb" src="/books/NBK259192/table/ml392.t2/?report=thumb" src-large="/books/NBK259192/table/ml392.t2/?report=previmg" alt="Table 4.1.2. Activity and selectivity for ML392 compared to select benchmark compounds." /></a><div class="icnblk_cntnt"><h4 id="ml392.t2"><a href="/books/NBK259192/table/ml392.t2/?report=objectonly" target="object" rid-ob="figobml392t2">Table 4.1.2</a></h4><p class="float-caption no_bottom_margin">Activity and selectivity for ML392 compared to select benchmark compounds. </p></div></div><p>Moreover, based on the Ki data collected in the Dalton labs (summarized for comparison purposes in the <a class="figpopup" href="/books/NBK259192/table/ml392.t1/?report=objectonly" target="object" rid-figpopup="figml392t1" rid-ob="figobml392t1">Tables 4.1.1</a> and <a class="figpopup" href="/books/NBK259192/table/ml392.t2/?report=objectonly" target="object" rid-figpopup="figml392t2" rid-ob="figobml392t2">4.1.2</a>), the key advantages of <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> compared to the prior art compounds are that <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> is: (1) equally as potent against r<i>Pf</i>M17LAP (Ki = 14 nM) as any prior art compound, (2) more selective versus r<i>Pf</i>M1AAP (Ki = 48 μM) than all but two of the most recent prior art compounds (the phosphonic acid arginine mimetic compounds for which no “cell-based” data was reported), (3) more selective versus r<i>Pf</i>M18AAP (Ki could not be obtained since the probe compound does not significantly inhibit the enzyme and V<sub>max</sub> could not be measured), and (4) more selective versus the rhuM17LAP (Ki = 420 nM).</p><div id="ml392.s32"><h4>Mechanism of Action Studies</h4><p>The assays used in this project included a combination of on- and off-target biochemical and cell-based assays. Recombinant <i>Pf</i>M17LAP was used for the biochemical target assay, while recombinant <i>Fh</i>CTSL1, <i>Pf</i>M1AAP, <i>Pf</i>M18AAP, and human M17LAP were used for the biochemical anti-target assays. Malaria parasite growth inhibition in red blood cells and cytotoxicity against Vero cells were used as the cell-based target and anti-target assays, respectively. The probe <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> and compound analogues (data not shown) show activity across this suite of assays that is consistent with an on-target mechanism of action. In general, the correlation between activity against r<i>Pf</i>M17LAP in the biochemical assay and activity in the RBC-based parasite growth assay is quite good. For the few compounds for which activity against r<i>Pf</i>M17LAP in the biochemical assay and activity in the RBC-based parasite growth assay does not correlate (data not shown), cytotoxicity is observed in the Vero cell assay, suggesting a plausible explanation for the discrepancy.</p><p><a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> and 19 select analogues were further characterized in the Dalton labs for molecular mechanism of action, by the method of Dixon, and <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> was found to be a competitive inhibitor. Furthermore, <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> was found to be a quite potent and selective inhibitor for r<i>Pf</i>M17LAP compared to r<i>Pf</i>M1AAP and rhuM17LAP, exhibiting <i>K</i><sub>i</sub>’s of 14 nM, 48 μM, and 420 nM, respectively, equating to selectivity of 3,357X and 30X, respectively (see <a class="figpopup" href="/books/NBK259192/figure/ml392.f4/?report=objectonly" target="object" rid-figpopup="figml392f4" rid-ob="figobml392f4">Figure 4.1.2</a> for the Dixon plots).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml392f4" co-legend-rid="figlgndml392f4"><a href="/books/NBK259192/figure/ml392.f4/?report=objectonly" target="object" title="Figure 4.1.2" class="img_link icnblk_img figpopup" rid-figpopup="figml392f4" rid-ob="figobml392f4"><img class="small-thumb" src="/books/NBK259192/bin/ml392f4.gif" src-large="/books/NBK259192/bin/ml392f4.jpg" alt="Figure 4.1.2. Dixon Plots for the Probe ML392." /></a><div class="icnblk_cntnt" id="figlgndml392f4"><h4 id="ml392.f4"><a href="/books/NBK259192/figure/ml392.f4/?report=objectonly" target="object" rid-ob="figobml392f4">Figure 4.1.2</a></h4><p class="float-caption no_bottom_margin">Dixon Plots for the Probe ML392. Inhibition of r<i>Pf</i>M17LAP, r<i>Pf</i>M1AAP, and rhM17LAP by ML392 (CID2466, SID93577810) was performed at pH 7.5 using the substrate L-Leu-NHMec. Dixon plots were generated using the SigmaPlot software, where the reciprocal of <a href="/books/NBK259192/figure/ml392.f4/?report=objectonly" target="object" rid-ob="figobml392f4">(more...)</a></p></div></div><p>There is still considerable debate regarding the exact role of <i>Pf</i>M17LAP in the parasite. One reason for nominating the compound hit (CID 2466, <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a>, bufexamac) as the probe is that there are two reports in PubChem, and one in the primary scientific literature, for phenotypic high-throughput malaria parasite killing assays where bufexamac was identified as an active compound. In conjunction with the biochemical assay information presented here, this additional information could help to illuminate the exact role for <i>Pf</i>M17LAP. The nature of these three assays will be described briefly.</p><p>In PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504834" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 504834</a>, “Primary qHTS for delayed death inhibitors of the malarial parasite plastid, 96 hour incubation”, a cell-based assay that measures parasite growth based on the expression of an integrated copy of a firefly luciferase reporter, which detects small molecules that cause the “delayed death” phenotype, where erythrocytes infected with the luciferase-expressing parasites were incubated with compounds for either one or two generations, corresponding to 48 and 96 hours, respectively, compounds that inhibit parasite growth in the second generation, but not the first, should be enriched in antimalarials that target the apicoplast, and bufexamac is reported to be an approximately 0.2 μM inhibitor.</p><p>In PubChem <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504749" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 504749</a>, “qHTS profiling for inhibitors of <i>Plasmodium falciparum</i> proliferation”, to profile malarial isolates for differential chemical responses and to identify inhibitors of malarial growth, an assay that measured <i>P. falciparum</i> growth and replication within erythrocytes was employed. The assay used a DNA-binding fluorescent dye (SYBR Green) to detect parasite DNA following cell lysis. Because mature erythrocytes lack DNA, only <i>Plasmodium</i>-derived DNA is detected. Bufexamac was reported as active in this assay [<a class="bibr" href="#ml392.r14" rid="ml392.r14">14</a>].</p><p>From a phenotypic screen using <i>P. falciparum</i> parasites that stably express cytoplasmic firefly luciferase, Lucimi [<a class="bibr" href="#ml392.r15" rid="ml392.r15">15</a>] identified bufexamac as a 2.77 μM inhibitor of parasite growth.</p></div></div></div><div id="ml392.s33"><h2 id="_ml392_s33_">5. References</h2><dl class="temp-labeled-list"><dl class="bkr_refwrap"><dt>1.</dt><dd><div class="bk_ref" id="ml392.r1">Workman P, Collins I. Probing the Probes: Fitness Factors for Small Molecule Tools. <span><span class="ref-journal">Chemistry & Biology. </span>2010;<span class="ref-vol">17</span>:561–577.</span> [<a href="/pmc/articles/PMC2905514/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC2905514</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20609406" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 20609406</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>2.</dt><dd><div class="bk_ref" id="ml392.r2">McGowan S, Porter CJ, Lowther J, Stack CM, Golding SJ, Skinner-Adams TS, Trenholme KR, Teuscher F, Donnelly SM, Grembecka J, Mucha A, Kafarski P, DeGori R, Buckle AM, Gardiner DL, Whisstock JC, Dalton JP. Structural basis for inhibition of the essential <em>Plasmodium falciparum</em> M1 neutral aminopeptidase. <span><span class="ref-journal">Proc. Natl. Acad. Sci. USA. </span>2009;<span class="ref-vol">106</span>:2537–2542.</span> [<a href="/pmc/articles/PMC2636733/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC2636733</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19196988" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 19196988</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>3.</dt><dd><div class="bk_ref" id="ml392.r3">McGowan S, Oellig CA, Birrul WA, Cardoc-Davies TT, Stack CM, Lowther J, Skinner-Adams T, Mucha A, Kafarski P, Grembecka J, Trenholme KR, Buckle AM, Gardiner DL, Dalton JP, Whisstock JC. Structure of the <em>Plasmodium falciparum</em> M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidasesProc. <span><span class="ref-journal">Natl. Acad. Sci. USA. </span>2010;<span class="ref-vol">107</span>:2449–2454.</span> [<a href="/pmc/articles/PMC2809755/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC2809755</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20133789" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 20133789</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>4.</dt><dd><div class="bk_ref" id="ml392.r4">Collins PR, Stack CM, O’Neill SM, Doyle S, Ryan T, Brennan GP, Mousley A, Stewart M, Maule AG, Dalton JP, Donnelly S. Cathepsin L1, the major protease involved in liver fluke (<em>Fasciola hepatica</em>) virulence: propeptide cleavage sites and autoactivation of the zymogen secreted from gastrodermal cells. <span><span class="ref-journal">J. Biol. Chem. </span>2004;<span class="ref-vol">279</span>:17038–17046.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14754899" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 14754899</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>5.</dt><dd><div class="bk_ref" id="ml392.r5">Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon A-M, Schlegl J, Abraham Y, Becher I, Bergamini G, Boesche M, Delling M, Dumpelfeld B, Eberhard D, Huthmacher C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G, Kruse U, Neunauer G, Ramsden NG, Drewes G. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. <span><span class="ref-journal">Nature Biotechnology. </span>2011;<span class="ref-vol">29</span>:255–265.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21258344" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21258344</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>6.</dt><dd><div class="bk_ref" id="ml392.r6">Stack CM, Lowther J, Cunningham E, Donnelly S, Gardiner DL, Trenholme KR, Skinner-Adams TS, Teuscher F, Grembecka J, Mucha A, Kafarski P, Lua L, Bell A, Dalton JP. Characterization of the <em>Plasmodium falciparum</em> M17 Leucyl aminopeptidase. <span><span class="ref-journal">J. Biol. Chem. </span>2007;<span class="ref-vol">282</span>:2069–2080.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17107951" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17107951</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>7.</dt><dd><div class="bk_ref" id="ml392.r7">Harbut MB, Velmourougane G, Dalal S, Reiss G, Whisstock JC, Onder O, Brisson D, McGowan S, Klemba M, Greenbaum DC. Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. <span><span class="ref-journal">Proc. Natl. Acad. Sci. USA. </span>2011;<span class="ref-vol">108</span>:526–534.</span> [<a href="/pmc/articles/PMC3161592/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3161592</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21844374" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21844374</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>8.</dt><dd><div class="bk_ref" id="ml392.r8">Skinner-Adams TS, Lowther J, Teuscher F, Stack CM, Grembecka J, Mucha A, Kafarski P, Trenholme KR, Dalton JP, Gardiner DL. Identification of phosphinate inhibitors directed against the <em>Plasmodium falciparum</em> M17 leucine aminopeptidase. <span><span class="ref-journal">J. Med. Chem. </span>2007;<span class="ref-vol">50</span>:6024–6031.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17960925" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17960925</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>9.</dt><dd><div class="bk_ref" id="ml392.r9">Grembecka J, Mucha A, Cierpicki T, Kafarski P. The most potent organophosphorous inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity. <span><span class="ref-journal">J. Med. Chem. </span>2003;<span class="ref-vol">46</span>:2641–2655.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12801228" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 12801228</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>10.</dt><dd><div class="bk_ref" id="ml392.r10">Sivaraman KK, Paiardini A, Sienczyk M, Ruggeri C, Oellig CA, Dalton JP, Scammells PJ, Drag M, McGowan S. Synthesis and structure-activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from <em>Plasmodium falciparum</em>. <span><span class="ref-journal">J. Med. Chem. </span>2013;<span class="ref-vol">56</span>:5213–5217.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/23713488" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23713488</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>11.</dt><dd><div class="bk_ref" id="ml392.r11">Cunningham E, Drag M, Kafarski P, Bell A. Chemical target validation studies of aminopeptidase in malaria parasites using α-aminoalkylphosphonate and phosphonopeptide inhibitors. <span><span class="ref-journal">Antimicrob. Agents Chemother. </span>2008;<span class="ref-vol">52</span>:3221–3228.</span> [<a href="/pmc/articles/PMC2533478/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC2533478</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18458130" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 18458130</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>12.</dt><dd><div class="bk_ref" id="ml392.r12">Krige D, Needham LA, Bawden LJ, Flores N, Farmer H, Miles LEC, Stone E, Callaghan J, Chandler S, Clark VL, Kirwin-Jones P, Lergis V, Owen J, Patel T, Wood S, Box G, Laber D, Odedra R, Wright A, Wood LM, Eccles SA, Bone EA, Ayscough A, Drummond AH. CHR-2797: An antiproliferative aminopeptidase inhibitor that leads to amino acid depravation in human leukemic cells. <span><span class="ref-journal">Cancer Res. </span>2008;<span class="ref-vol">66</span>:6669–6678.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18701491" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 18701491</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>13.</dt><dd><div class="bk_ref" id="ml392.r13">Skinner-Adams TS, Peatey CL, Anderson K, Trenholme KR, Krige D, Brown CL, Stack C, Nsangou DMM, Mathews RT, Thivierge K, Dalton JP, Gardiner DL. The aminopeptidase inhibitor CHR-2863 is an orally bioavailable inhibitor of murine malaria. <span><span class="ref-journal">Antimicrobial Agents and Chemotherapy. </span>2012;<span class="ref-vol">56</span>:3244–3249.</span> [<a href="/pmc/articles/PMC3370795/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3370795</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22450967" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22450967</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>14.</dt><dd><div class="bk_ref" id="ml392.r14">Yuan J, Cheng KC-C, Johnson RL, Huang R, Pattaradilokrat S, Liu A, Guha R, Fidock DA, Inglese J, Wellems TE, Austin CP, Su X-Z. Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets. <span><span class="ref-journal">Science. </span>2011;<span class="ref-vol">333</span>:724–729.</span> [<a href="/pmc/articles/PMC3396183/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3396183</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21817045" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21817045</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>15.</dt><dd><div class="bk_ref" id="ml392.r15">Lucumi E, Darling C, Jo H, Napper AD, Chandramohanadas R, Fisher N, Shone AE, Jing H, Ward SA, Biagini GA, DeGrado WF, Diamond SL, Greenbaum DC. Discovery of potent small-molecule inhibitors of multidrug-resistant <em>Plasmodium falciparum</em> using a novel miniaturized high-throughput luciferase-based assay. <span><span class="ref-journal">Antimicrobial Agents and Chemotherapy. </span>2010;<span class="ref-vol">54</span>:3597–3604.</span> [<a href="/pmc/articles/PMC2934977/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC2934977</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20547797" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 20547797</span></a>]</div></dd></dl></dl></div><div id="bk_toc_contnr"></div></div></div><div class="fm-sec"><h2 id="_NBK259192_pubdet_">Publication Details</h2><h3>Author Information and Affiliations</h3><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Frank J. Schoenen</span>,<sup>6</sup><sup>,*</sup> <span itemprop="author">David Whipple</span>,<sup>6</sup> <span itemprop="author">Pierre Baillargeon</span>,<sup>1</sup> <span itemprop="author">Christopher L. Brown</span>,<sup>5</sup> <span itemprop="author">Peter Chase</span>,<sup>1</sup> <span itemprop="author">Jill Ferguson</span>,<sup>11</sup> <span itemprop="author">Virneliz Fernandez-Vega</span>,<sup>1</sup> <span itemprop="author">Peter Hodder</span>,<sup>1,7</sup> <span itemprop="author">Rency Mathew</span>,<sup>3</sup> <span itemprop="author">Benjamin Neuenswander</span>,<sup>6</sup> <span itemprop="author">Patrick Porubsky</span>,<sup>6</sup> <span itemprop="author">Steven Rogers</span>,<sup>6</sup> <span itemprop="author">Tina Skinner-Adams</span>,<sup>2</sup> <span itemprop="author">Melinda Sosa</span>,<sup>8</sup> <span itemprop="author">Timothy Spicer</span>,<sup>1</sup> <span itemprop="author">Joyce To</span>,<sup>4</sup> <span itemprop="author">Nichole A. Tower</span>,<sup>8</sup> <span itemprop="author">Katharine R. Trenholme</span>,<sup>2</sup> <span itemprop="author">Jenna Wang</span>,<sup>6</sup> <span itemprop="author">Warren S. Weiner</span>,<sup>6</sup> <span itemprop="author">Jeffrey Aubé</span>,<sup>6,9</sup> <span itemprop="author">Hugh Rosen</span>,<sup>1,7</sup> <span itemprop="author">E. Lucile White</span>,<sup>8</sup> <span itemprop="author">Donald L. Gardiner</span>,<sup>2</sup> and <span itemprop="author">John P. Dalton</span><sup>3,4</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup>
|
|
The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, Florida</div><div class="affiliation"><sup>2</sup>
|
|
Malaria Biology Laboratory, The Queensland Institute of Medical Research, Brisbane, Australia</div><div class="affiliation"><sup>3</sup>
|
|
Institute of Parasitology, McGill University, Quebec, Canada</div><div class="affiliation"><sup>4</sup>
|
|
Institute for Biotechnology of Infectious Diseases (IBID), University of Technology Sydney (UTS), Sydney, Australia</div><div class="affiliation"><sup>5</sup>
|
|
School of Biomolecular and Physical Sciences, Griffith University, Brisbane, Australia</div><div class="affiliation"><sup>6</sup>
|
|
The University of Kansas Specialized Chemistry Center (KU SCC), Lawrence, Kansas</div><div class="affiliation"><sup>7</sup>
|
|
Department of Molecular Therapeutics, Scripps Florida, Jupiter, Florida</div><div class="affiliation"><sup>8</sup>
|
|
Southern Research Specialized Biocontainment Screening Center, Birmingham, AL</div><div class="affiliation"><sup>9</sup>
|
|
Department of Medicinal Chemistry, University of Kansas, Lawrence, KS</div><div class="affiliation"><sup>10</sup>
|
|
Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS</div><div class="affiliation"><sup>11</sup>
|
|
The Scripps Research Institute Molecular Screening Center, La Jolla, CA.</div><div class="affiliation">
|
|
<sup>*</sup> Corresponding author email:
|
|
<a href="mailto:dev@null" data-email="ude.uk@neneohcs" class="oemail">ude.uk@neneohcs</a></div><h3>Publication History</h3><p class="small">Received: <span itemprop="datePublished">December 12, 2013</span>; Last Update: <span itemprop="dateModified">September 18, 2014</span>.</p><h3>Copyright</h3><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div></div><h3>Publisher</h3><p>National Center for Biotechnology Information (US), Bethesda (MD)</p><h3>NLM Citation</h3><p>Schoenen FJ, Whipple D, Baillargeon P, et al. Inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase. 2013 Dec 12 [Updated 2014 Sep 18]. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-. <span class="bk_cite_avail"></span></p></div><div class="small-screen-prev"><a href="/books/n/mlprobe/ml390/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="small-screen-next"><a href="/books/n/mlprobe/ml395/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></article><article data-type="fig" id="figobml392fu1"><div id="ml392.fu1" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK259192/bin/ml392fu1.jpg" alt="ML392." /></div><h3><span class="title">ML392</span></h3></div></article><article data-type="table-wrap" id="figobml392tu1"><div id="ml392.tu1" class="table"><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK259192/table/ml392.tu1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml392.tu1_lrgtbl__"><table><thead><tr><th id="hd_h_ml392.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CID/ML#</th><th id="hd_h_ml392.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Target Name</th><th id="hd_h_ml392.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">IC<sub>50</sub> [SID, AID]</th><th id="hd_h_ml392.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Anti-target Name(s)</th><th id="hd_h_ml392.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">IC<sub>50</sub> [SID, AID]</th><th id="hd_h_ml392.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Fold Selective</th><th id="hd_h_ml392.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Secondary Assay(s) Name: EC<sub>50</sub> [SID, AID]</th></tr></thead><tbody><tr><td headers="hd_h_ml392.tu1_1_1_1_1" rowspan="3" colspan="1" style="text-align:center;vertical-align:middle;">CID 2466/<a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a></td><td headers="hd_h_ml392.tu1_1_1_1_2" rowspan="3" colspan="1" style="text-align:center;vertical-align:middle;">r<i>Pf</i>M17LAP</td><td headers="hd_h_ml392.tu1_1_1_1_3" rowspan="3" colspan="1" style="text-align:center;vertical-align:middle;">0.41 μM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID 93577810</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602216" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602216</a>]</td><td headers="hd_h_ml392.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">r<i>Pf</i>M1AAP</td><td headers="hd_h_ml392.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">14 μM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID 93577810</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602223" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602223</a>]</td><td headers="hd_h_ml392.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">34x</td><td headers="hd_h_ml392.tu1_1_1_1_7" rowspan="3" colspan="1" style="text-align:center;vertical-align:middle;">RBC Parasite Growth Inhibition 1.7 μM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID 93577810</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/489016" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 489016</a>]<br /><br />Vero Cell Cytotoxicity >50 μM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID 93577810</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602317" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602317</a>]</td></tr><tr><td headers="hd_h_ml392.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">r<i>Pf</i>M18AAP</td><td headers="hd_h_ml392.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">10 μM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID 93577810</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602218" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602218</a>]</td><td headers="hd_h_ml392.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">24x</td></tr><tr><td headers="hd_h_ml392.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">rhM17</td><td headers="hd_h_ml392.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.31 μM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID 93577810</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602214" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602214</a>]</td><td headers="hd_h_ml392.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.8x</td></tr></tbody></table></div></div></article><article data-type="fig" id="figobml392fu2"><div id="ml392.fu2" class="figure"><div class="graphic"><img data-src="/books/NBK259192/bin/ml392fu2.jpg" alt="Image ml392fu2" /></div></div></article><article data-type="fig" id="figobml392f1"><div id="ml392.f1" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%202.2.1.%20Stability%20of%20ML392%20in%20PBS%20%26%20DTT%20Stability%20Assay.&p=BOOKS&id=259192_ml392f1.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK259192/bin/ml392f1.jpg" alt="Figure 2.2.1. Stability of ML392 in PBS & DTT Stability Assay." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 2.2.1</span><span class="title">Stability of ML392 in PBS & DTT Stability Assay</span></h3><div class="caption"><p><a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> (CID 2466, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID 93577810</a>) was tested over a time course in an aqueous stability assay and thiol stability assays. (A) Stability of the probe over 88 hours in PBS; (B) Stability of the probe to DTT over 8 hours; (C) Stability of Ethacrynic Acid (positive control for the thiol reaction) in the absence (blue) and presence (red) of DTT.</p></div></div></article><article data-type="fig" id="figobml392f2"><div id="ml392.f2" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%203.1.1.%20Concentration-response%20Curves%20for%20the%20Probe%20ML392.&p=BOOKS&id=259192_ml392f2.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK259192/bin/ml392f2.jpg" alt="Figure 3.1.1. Concentration-response Curves for the Probe ML392." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 3.1.1</span><span class="title">Concentration-response Curves for the Probe ML392</span></h3><div class="caption"><p><a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> (CID 2466, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID 93577810</a>) was tested across a range of concentrations up to 100 μM in the primary and several secondary assays. Concentration response data was analyzed using a four parameter logistic fit to the data (GraphPad Prism). From these curves IC<sub>50</sub> values were calculated. (A) r<i>Pf</i>M17LAP biochemical assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1619" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 1619</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602216" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">602216</a>), IC<sub>50</sub> = 0.41 μM; (B) r<i>Pf</i>M1AAP biochemical assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602223" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602223</a>), IC<sub>50</sub> = 14 μM; (C) r<i>Pf</i>M18AAP biochemical assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602218" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602218</a>), IC<sub>50</sub> = 10; (D) rhuM17LAP biochemical assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602214" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602214</a>) IC<sub>50</sub> = 0.31 μM; (E) Red blood cell parasite growth assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/489016" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 489016</a>) EC<sub>50</sub> = 1.7 μM; (F) Vero cell cytotoxicity assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602317" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">AID 602317</a>) EC<sub>50</sub> > 50 μM</p></div></div></article><article data-type="fig" id="figobml392f3"><div id="ml392.f3" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%204.1.1.%20Reported%20inhibitors%20of%20rPfM17LAP.&p=BOOKS&id=259192_ml392f3.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK259192/bin/ml392f3.jpg" alt="Figure 4.1.1. Reported inhibitors of rPfM17LAP." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 4.1.1</span><span class="title">Reported inhibitors of r<i>Pf</i>M17LAP</span></h3></div></article><article data-type="table-wrap" id="figobml392t1"><div id="ml392.t1" class="table"><h3><span class="label">Table 4.1.1</span><span class="title">Compounds reported in the literature to inhibit <i>Pf</i>M17LAP or hM17LAP</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK259192/table/ml392.t1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml392.t1_lrgtbl__"><table class="no_margin"><thead><tr><th id="hd_h_ml392.t1_1_1_1_1" colspan="2" rowspan="1" style="text-align:center;vertical-align:middle;"></th><th id="hd_h_ml392.t1_1_1_1_2" colspan="3" rowspan="1" style="text-align:center;vertical-align:middle;">Biochemical Anti-target</th><th id="hd_h_ml392.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Biochemical Target</th><th id="hd_h_ml392.t1_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_ml392.t1_1_1_1_4" style="text-align:center;vertical-align:middle;">Ref.</th></tr><tr><th headers="hd_h_ml392.t1_1_1_1_1" id="hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Name</th><th headers="hd_h_ml392.t1_1_1_1_1" id="hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Structure</th><th headers="hd_h_ml392.t1_1_1_1_2" id="hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">r<i>Pf</i>M1AAP Activity</th><th headers="hd_h_ml392.t1_1_1_1_2" id="hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">r<i>Pf</i>M18AAP Activity</th><th headers="hd_h_ml392.t1_1_1_1_2" id="hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">rhuM17 Activity</th><th headers="hd_h_ml392.t1_1_1_1_3" id="hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">r<i>Pf</i>M17LAP Activity</th></tr></thead><tbody><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">bestatin</td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu3.jpg" alt="Image ml392fu3.jpg" /></div></td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 478 nM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">IC<sub>50</sub> = 4 nM</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 25 nM</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a class="bibr" href="#ml392.r4" rid="ml392.r4">4</a>, <a class="bibr" href="#ml392.r6" rid="ml392.r6">6</a>, <a class="bibr" href="#ml392.r10" rid="ml392.r10">10</a></td></tr><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">PNAP</td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">PNAP</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 330 nM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 29 nM</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a class="bibr" href="#ml392.r7" rid="ml392.r7">7</a></td></tr><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Phosphinate dipeptide</td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu4.jpg" alt="Image ml392fu4.jpg" /></div></td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> double- to triple-digit nM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> double- to triple-digit nM</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a class="bibr" href="#ml392.r8" rid="ml392.r8">8</a>, <a class="bibr" href="#ml392.r9" rid="ml392.r9">9</a></td></tr><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">α-amino alkyl phosphonate</td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu5.jpg" alt="Image ml392fu5.jpg" /></div></td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">%I = 97% at 10 μM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">%I = 97% at 10 μM</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a class="bibr" href="#ml392.r11" rid="ml392.r11">11</a></td></tr><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Phosphonic acid arginine mimetic 6</td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu6.jpg" alt="Image ml392fu6.jpg" /></div></td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 104 μM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 11 nM</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a class="bibr" href="#ml392.r10" rid="ml392.r10">10</a></td></tr><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Phosphonic acid arginine mimetic 8</td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu7.jpg" alt="Image ml392fu7.jpg" /></div></td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> > 1000 μM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 160 nM</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a class="bibr" href="#ml392.r10" rid="ml392.r10">10</a></td></tr><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Tosedostat/CHR-2797</td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu8.jpg" alt="Image ml392fu8.jpg" /></div></td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">IC<sub>50</sub> = 100 nM</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a class="bibr" href="#ml392.r12" rid="ml392.r12">12</a></td></tr><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CHR-2863</td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu9.jpg" alt="Image ml392fu9.jpg" /></div></td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 1413 nM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 76 nM</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a class="bibr" href="#ml392.r13" rid="ml392.r13">13</a></td></tr><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CHR-6768</td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu10.jpg" alt="Image ml392fu10.jpg" /></div></td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 2409 nM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NR</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 35 nM</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a class="bibr" href="#ml392.r13" rid="ml392.r13">13</a></td></tr><tr><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a></td><td headers="hd_h_ml392.t1_1_1_1_1 hd_h_ml392.t1_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu11.jpg" alt="Image ml392fu11.jpg" /></div></td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 48 μM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> > 50 μM</td><td headers="hd_h_ml392.t1_1_1_1_2 hd_h_ml392.t1_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 420 nM</td><td headers="hd_h_ml392.t1_1_1_1_3 hd_h_ml392.t1_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">K<sub>i</sub> = 14 nM</td><td headers="hd_h_ml392.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">vide infra, <a class="figpopup" href="/books/NBK259192/figure/ml392.f4/?report=objectonly" target="object" rid-figpopup="figml392f4" rid-ob="figobml392f4">Figure 4.1.2</a></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div id="ml392.tfn1"><p class="no_margin">NR = Not Reported</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobml392t2"><div id="ml392.t2" class="table"><h3><span class="label">Table 4.1.2</span><span class="title">Activity and selectivity for ML392 compared to select benchmark compounds</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK259192/table/ml392.t2/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml392.t2_lrgtbl__"><table class="no_margin"><thead><tr><th id="hd_h_ml392.t2_1_1_1_1" colspan="2" rowspan="1" style="text-align:center;vertical-align:middle;"></th><th id="hd_h_ml392.t2_1_1_1_2" colspan="3" rowspan="1" style="text-align:center;vertical-align:middle;">Biochemical Anti-target</th><th id="hd_h_ml392.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Biochemical Target</th><th id="hd_h_ml392.t2_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_ml392.t2_1_1_1_4" style="text-align:center;vertical-align:middle;">Ref.</th></tr><tr><th headers="hd_h_ml392.t2_1_1_1_1" id="hd_h_ml392.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Name</th><th headers="hd_h_ml392.t2_1_1_1_1" id="hd_h_ml392.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Structure</th><th headers="hd_h_ml392.t2_1_1_1_2" id="hd_h_ml392.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><sup>*</sup>r<i>Pf</i>M1AAP Ki (units)</th><th headers="hd_h_ml392.t2_1_1_1_2" id="hd_h_ml392.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><sup>*</sup>r<i>Pf</i>M18AAP Ki (units)</th><th headers="hd_h_ml392.t2_1_1_1_2" id="hd_h_ml392.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><sup>*</sup>rhuM17 Ki (units)</th><th headers="hd_h_ml392.t2_1_1_1_3" id="hd_h_ml392.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><sup>*</sup>r<i>Pf</i>M17LAP Ki (units)</th></tr></thead><tbody><tr><td headers="hd_h_ml392.t2_1_1_1_1 hd_h_ml392.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">bestatin</td><td headers="hd_h_ml392.t2_1_1_1_1 hd_h_ml392.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu3.jpg" alt="Image ml392fu3.jpg" /></div></td><td headers="hd_h_ml392.t2_1_1_1_2 hd_h_ml392.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">927 nM</td><td headers="hd_h_ml392.t2_1_1_1_2 hd_h_ml392.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">> 50 μM</td><td headers="hd_h_ml392.t2_1_1_1_2 hd_h_ml392.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">5 nM</td><td headers="hd_h_ml392.t2_1_1_1_3 hd_h_ml392.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">147nM</td><td headers="hd_h_ml392.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">This work</td></tr><tr><td headers="hd_h_ml392.t2_1_1_1_1 hd_h_ml392.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Tosedostat/CHR-2797</td><td headers="hd_h_ml392.t2_1_1_1_1 hd_h_ml392.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu8.jpg" alt="Image ml392fu8.jpg" /></div></td><td headers="hd_h_ml392.t2_1_1_1_2 hd_h_ml392.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1.2 μM</td><td headers="hd_h_ml392.t2_1_1_1_2 hd_h_ml392.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">> 50 μM</td><td headers="hd_h_ml392.t2_1_1_1_2 hd_h_ml392.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">232 nM</td><td headers="hd_h_ml392.t2_1_1_1_3 hd_h_ml392.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">30 nM</td><td headers="hd_h_ml392.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">This work</td></tr><tr><td headers="hd_h_ml392.t2_1_1_1_1 hd_h_ml392.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a></td><td headers="hd_h_ml392.t2_1_1_1_1 hd_h_ml392.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
|
|
<div class="graphic"><img src="/books/NBK259192/bin/ml392fu11.jpg" alt="Image ml392fu11.jpg" /></div></td><td headers="hd_h_ml392.t2_1_1_1_2 hd_h_ml392.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">48 μM</td><td headers="hd_h_ml392.t2_1_1_1_2 hd_h_ml392.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">> 50 μM</td><td headers="hd_h_ml392.t2_1_1_1_2 hd_h_ml392.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">420 nM</td><td headers="hd_h_ml392.t2_1_1_1_3 hd_h_ml392.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">14 nM</td><td headers="hd_h_ml392.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">vide infra, <a class="figpopup" href="/books/NBK259192/figure/ml392.f4/?report=objectonly" target="object" rid-figpopup="figml392f4" rid-ob="figobml392f4">Figure 4.1.2</a></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>*</dt><dd><div id="ml392.tfn2"><p class="no_margin">All biochemical assay activity values are reported as the K<sub>i</sub> measured in the Dalton lab</p></div></dd></dl></dl></div></div></div></article><article data-type="fig" id="figobml392f4"><div id="ml392.f4" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%204.1.2.%20Dixon%20Plots%20for%20the%20Probe%20ML392.&p=BOOKS&id=259192_ml392f4.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK259192/bin/ml392f4.jpg" alt="Figure 4.1.2. Dixon Plots for the Probe ML392." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 4.1.2</span><span class="title">Dixon Plots for the Probe ML392</span></h3><div class="caption"><p>Inhibition of r<i>Pf</i>M17LAP, r<i>Pf</i>M1AAP, and rhM17LAP by <a href="/pcsubstance/?term=ML392[synonym]" ref="pagearea=body&targetsite=entrez&targetcat=term&targettype=pubchem">ML392</a> (CID2466, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/93577810" ref="pagearea=body&targetsite=entrez&targetcat=link&targettype=pubchem">SID93577810</a>) was performed at pH 7.5 using the substrate L-Leu-NHMec. Dixon plots were generated using the SigmaPlot software, where the reciprocal of initial velocity was plotted against inhibitor concentration for two concentrations of the substrate. <i>K</i><sub>i</sub> was obtained from the points at which the two curves intersected. (A) r<i>Pf</i>M17LAP assay, <i>V</i><sub><i>max</i></sub> = 571, <i>K</i><sub><i>m</i></sub> = 38, <i>K</i><sub>i</sub> = 14 nM; (B) r<i>Pf</i>M1AAP assay, <i>V</i><sub><i>max</i></sub> = 2369, <i>K</i><sub><i>m</i></sub> = 474, <i>K</i><sub>i</sub> = 48 μM; (C) rhuM17LAP assay, <i>V</i><sub><i>max</i></sub> = 103, <i>K</i><sub><i>m</i></sub> = 1035, <i>K</i><sub>i</sub> = 420 nM (note: <i>K</i><sub>i</sub> could not be obtained for r<i>Pf</i>M18AAP since the probe compound does not significantly inhibit this enzyme and <i>V</i><sub><i>max</i></sub> could not be measured)</p></div></div></article></div><div id="jr-scripts"><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/libs.min.js"> </script><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.min.js"> </script></div></div>
|
|
|
|
|
|
|
|
|
|
<!-- Book content -->
|
|
|
|
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
|
|
|
|
|
|
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
|
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
|
|
|
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3968615.js" snapshot="books"></script></body>
|
|
</html>
|