nih-gov/www.ncbi.nlm.nih.gov/books/n/mlprobe/ml308/index.html?report=reader

133 lines
121 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" class="no-js no-jr">
<head>
<!-- For pinger, set start time and add meta elements. -->
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- Logger begin -->
<meta name="ncbi_db" content="books">
<meta name="ncbi_pdid" content="book-part">
<meta name="ncbi_acc" content="NBK133427">
<meta name="ncbi_domain" content="mlprobe">
<meta name="ncbi_report" content="reader">
<meta name="ncbi_type" content="fulltext">
<meta name="ncbi_objectid" content="">
<meta name="ncbi_pcid" content="/NBK133427/?report=reader">
<meta name="ncbi_pagename" content="Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9 - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf">
<meta name="ncbi_bookparttype" content="chapter">
<meta name="ncbi_app" content="bookshelf">
<!-- Logger end -->
<!--component id="Page" label="meta"/-->
<script type="text/javascript" src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.boots.min.js"> </script><title>Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9 - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf</title>
<meta charset="utf-8">
<meta name="apple-mobile-web-app-capable" content="no">
<meta name="viewport" content="initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no">
<meta name="jr-col-layout" content="auto">
<meta name="jr-prev-unit" content="/books/n/mlprobe/ml309/?report=reader">
<meta name="jr-next-unit" content="/books/n/mlprobe/ml307/?report=reader">
<meta name="bk-toc-url" content="/books/n/mlprobe/?report=toc">
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE">
<meta name="citation_inbook_title" content="Probe Reports from the NIH Molecular Libraries Program [Internet]">
<meta name="citation_title" content="Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9">
<meta name="citation_publisher" content="National Center for Biotechnology Information (US)">
<meta name="citation_date" content="2013/02/28">
<meta name="citation_author" content="Melissa R. Miller">
<meta name="citation_author" content="Beiyan Zou">
<meta name="citation_author" content="Jie Shi">
<meta name="citation_author" content="Daniel P. Flaherty">
<meta name="citation_author" content="Denise S. Simpson">
<meta name="citation_author" content="Tuanli Yao">
<meta name="citation_author" content="Brooks E. Maki">
<meta name="citation_author" content="Victor W. Day">
<meta name="citation_author" content="Justin T. Douglas">
<meta name="citation_author" content="Meng Wu">
<meta name="citation_author" content="Owen B. McManus">
<meta name="citation_author" content="Jennifer E. Golden">
<meta name="citation_author" content="Jeffrey Aub&eacute;">
<meta name="citation_author" content="Min Li">
<meta name="citation_pmid" content="23658958">
<meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK133427/">
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/">
<meta name="DC.Title" content="Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9">
<meta name="DC.Type" content="Text">
<meta name="DC.Publisher" content="National Center for Biotechnology Information (US)">
<meta name="DC.Contributor" content="Melissa R. Miller">
<meta name="DC.Contributor" content="Beiyan Zou">
<meta name="DC.Contributor" content="Jie Shi">
<meta name="DC.Contributor" content="Daniel P. Flaherty">
<meta name="DC.Contributor" content="Denise S. Simpson">
<meta name="DC.Contributor" content="Tuanli Yao">
<meta name="DC.Contributor" content="Brooks E. Maki">
<meta name="DC.Contributor" content="Victor W. Day">
<meta name="DC.Contributor" content="Justin T. Douglas">
<meta name="DC.Contributor" content="Meng Wu">
<meta name="DC.Contributor" content="Owen B. McManus">
<meta name="DC.Contributor" content="Jennifer E. Golden">
<meta name="DC.Contributor" content="Jeffrey Aub&eacute;">
<meta name="DC.Contributor" content="Min Li">
<meta name="DC.Date" content="2013/02/28">
<meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK133427/">
<meta name="description" content="ML308 was identified as a novel inhibitor of the potassium channel, subfamily K, member 9 (KCNK9) two-pore domain potassium channel. Two-pore domain potassium channels provide a background leak conductance that is selectively permeable to potassium. These channels regulate cell membrane potential and excitability and thereby modulate a variety of processes including hormone secretion, proliferation, and central nervous system (CNS) function. A high throughput fluorescent screen measuring thallium influx through KCNK9 channels was used to identify bisamide and thiotriazole classes of inhibitors. Chemical modification of the thiotriazole scaffold yielded ML308 which displayed a potent block of KCNK9 channels in a thallium influx fluorescent assay (IC50 = 130 nM) and in an automated electrophysiology assay (IC50 = 413 nM). ML308 afforded &gt;50-fold selectivity for block of KCNK9 over the closely-related, two-pore domain potassium channel, KCNK3, in fluorescent assays and displayed little or no block at 10 &mu;M of the more distantly related potassium channels, Kir2.1, potassium voltage-gated channel, KQT-like subfamily, member 2 (KCNQ2), and human ether-a go-go-related gene (HERG). The potency and selectivity profile of ML308 makes it a useful pharmacological probe for in vitro studies of KCNK9 function and in further studies aimed at therapeutic intervention.">
<meta name="og:title" content="Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9">
<meta name="og:type" content="book">
<meta name="og:description" content="ML308 was identified as a novel inhibitor of the potassium channel, subfamily K, member 9 (KCNK9) two-pore domain potassium channel. Two-pore domain potassium channels provide a background leak conductance that is selectively permeable to potassium. These channels regulate cell membrane potential and excitability and thereby modulate a variety of processes including hormone secretion, proliferation, and central nervous system (CNS) function. A high throughput fluorescent screen measuring thallium influx through KCNK9 channels was used to identify bisamide and thiotriazole classes of inhibitors. Chemical modification of the thiotriazole scaffold yielded ML308 which displayed a potent block of KCNK9 channels in a thallium influx fluorescent assay (IC50 = 130 nM) and in an automated electrophysiology assay (IC50 = 413 nM). ML308 afforded &gt;50-fold selectivity for block of KCNK9 over the closely-related, two-pore domain potassium channel, KCNK3, in fluorescent assays and displayed little or no block at 10 &mu;M of the more distantly related potassium channels, Kir2.1, potassium voltage-gated channel, KQT-like subfamily, member 2 (KCNQ2), and human ether-a go-go-related gene (HERG). The potency and selectivity profile of ML308 makes it a useful pharmacological probe for in vitro studies of KCNK9 function and in further studies aimed at therapeutic intervention.">
<meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK133427/">
<meta name="og:site_name" content="NCBI Bookshelf">
<meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-mlprobe-lrg.png">
<meta name="twitter:card" content="summary">
<meta name="twitter:site" content="@ncbibooks">
<meta name="bk-non-canon-loc" content="/books/n/mlprobe/ml308/?report=reader">
<link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK133427/">
<link href="https://fonts.googleapis.com/css?family=Archivo+Narrow:400,700,400italic,700italic&amp;subset=latin" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/libs.min.css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/jr.min.css">
<meta name="format-detection" content="telephone=no">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css//books_print.min.css" type="text/css" media="print">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_reader.min.css" type="text/css">
<style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style>
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico">
<meta name="ncbi_phid" content="CE8E207C7D65F8410000000000D600B8.m_5">
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3849091.css"></head>
<body>
<!-- Book content! -->
<div id="jr" data-jr-path="/corehtml/pmc/jatsreader/ptpmc_3.22/"><div class="jr-unsupported"><table class="modal"><tr><td><span class="attn inline-block"></span><br />Your browser does not support the NLM PubReader view.<br />Go to <a href="/pmc/about/pr-browsers/">this page</a> to see a list of supported browsers<br />or return to the <br /><a href="/books/NBK133427/?report=classic">regular view</a>.</td></tr></table></div><div id="jr-ui" class="hidden"><nav id="jr-head"><div class="flexh tb"><div id="jr-tb1"><a id="jr-links-sw" class="hidden" title="Links"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" x="0px" y="0px" viewBox="0 0 70.6 85.3" style="enable-background:new 0 0 70.6 85.3;vertical-align:middle" xml:space="preserve" width="24" height="24">
<style type="text/css">.st0{fill:#939598;}</style>
<g>
<path class="st0" d="M36,0C12.8,2.2-22.4,14.6,19.6,32.5C40.7,41.4-30.6,14,35.9,9.8"></path>
<path class="st0" d="M34.5,85.3c23.2-2.2,58.4-14.6,16.4-32.5c-21.1-8.9,50.2,18.5-16.3,22.7"></path>
<path class="st0" d="M34.7,37.1c66.5-4.2-4.8-31.6,16.3-22.7c42.1,17.9,6.9,30.3-16.4,32.5h1.7c-66.2,4.4,4.8,31.6-16.3,22.7 c-42.1-17.9-6.9-30.3,16.4-32.5"></path>
</g>
</svg> Books</a></div><div class="jr-rhead f1 flexh"><div class="head"><a href="/books/n/mlprobe/ml309/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="body"><div class="t">Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9</div><div class="j">Probe Reports from the NIH Molecular Libraries Program [Internet]</div></div><div class="tail"><a href="/books/n/mlprobe/ml307/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></div><div id="jr-tb2"><a id="jr-bkhelp-sw" class="btn wsprkl hidden" title="Help with NLM PubReader">?</a><a id="jr-help-sw" class="btn wsprkl hidden" title="Settings and typography in NLM PubReader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" preserveAspectRatio="none"><path d="M462,283.742v-55.485l-29.981-10.662c-11.431-4.065-20.628-12.794-25.274-24.001 c-0.002-0.004-0.004-0.009-0.006-0.013c-4.659-11.235-4.333-23.918,0.889-34.903l13.653-28.724l-39.234-39.234l-28.72,13.652 c-10.979,5.219-23.68,5.546-34.908,0.889c-0.005-0.002-0.01-0.003-0.014-0.005c-11.215-4.65-19.933-13.834-24-25.273L283.741,50 h-55.484l-10.662,29.981c-4.065,11.431-12.794,20.627-24.001,25.274c-0.005,0.002-0.009,0.004-0.014,0.005 c-11.235,4.66-23.919,4.333-34.905-0.889l-28.723-13.653l-39.234,39.234l13.653,28.721c5.219,10.979,5.545,23.681,0.889,34.91 c-0.002,0.004-0.004,0.009-0.006,0.013c-4.649,11.214-13.834,19.931-25.271,23.998L50,228.257v55.485l29.98,10.661 c11.431,4.065,20.627,12.794,25.274,24c0.002,0.005,0.003,0.01,0.005,0.014c4.66,11.236,4.334,23.921-0.888,34.906l-13.654,28.723 l39.234,39.234l28.721-13.652c10.979-5.219,23.681-5.546,34.909-0.889c0.005,0.002,0.01,0.004,0.014,0.006 c11.214,4.649,19.93,13.833,23.998,25.271L228.257,462h55.484l10.595-29.79c4.103-11.538,12.908-20.824,24.216-25.525 c0.005-0.002,0.009-0.004,0.014-0.006c11.127-4.628,23.694-4.311,34.578,0.863l28.902,13.738l39.234-39.234l-13.66-28.737 c-5.214-10.969-5.539-23.659-0.886-34.877c0.002-0.005,0.004-0.009,0.006-0.014c4.654-11.225,13.848-19.949,25.297-24.021 L462,283.742z M256,331.546c-41.724,0-75.548-33.823-75.548-75.546s33.824-75.547,75.548-75.547 c41.723,0,75.546,33.824,75.546,75.547S297.723,331.546,256,331.546z"></path></svg></a><a id="jr-fip-sw" class="btn wsprkl hidden" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-rtoc-sw" class="btn wsprkl hidden" title="Table of Contents"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,20h10v8H20V20zM36,20h44v8H36V20zM20,37.33h10v8H20V37.33zM36,37.33h44v8H36V37.33zM20,54.66h10v8H20V54.66zM36,54.66h44v8H36V54.66zM20,72h10v8 H20V72zM36,72h44v8H36V72z"></path></svg></a></div></div></nav><nav id="jr-dash" class="noselect"><nav id="jr-dash" class="noselect"><div id="jr-pi" class="hidden"><a id="jr-pi-prev" class="hidden" title="Previous page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a><div class="pginfo">Page <i class="jr-pg-pn">0</i> of <i class="jr-pg-lp">0</i></div><a id="jr-pi-next" class="hidden" title="Next page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div><div id="jr-is-tb"><a id="jr-is-sw" class="btn wsprkl hidden" title="Switch between Figures/Tables strip and Progress bar"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><rect x="10" y="40" width="20" height="20"></rect><rect x="40" y="40" width="20" height="20"></rect><rect x="70" y="40" width="20" height="20"></rect></svg></a></div><nav id="jr-istrip" class="istrip hidden"><a id="jr-is-prev" href="#" class="hidden" title="Previous"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M80,40 60,65 80,90 70,90 50,65 70,40z M50,40 30,65 50,90 40,90 20,65 40,40z"></path><text x="35" y="25" textLength="60" style="font-size:25px">Prev</text></svg></a><a id="jr-is-next" href="#" class="hidden" title="Next"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,40 40,65 20,90 30,90 50,65 30,40z M50,40 70,65 50,90 60,90 80,65 60,40z"></path><text x="15" y="25" textLength="60" style="font-size:25px">Next</text></svg></a></nav><nav id="jr-progress"></nav></nav></nav><aside id="jr-links-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">NCBI Bookshelf</div></div><div class="cnt lol f1"><a href="/books/">Home</a><a href="/books/browse/">Browse All Titles</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/sharer/sharer.php?u=https://www.ncbi.nlm.nih.gov/books/NBK133427/"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24" preserveAspectRatio="none"><g><path d="M 17.996,32L 12,32 L 12,16 l-4,0 l0-5.514 l 4-0.002l-0.006-3.248C 11.993,2.737, 13.213,0, 18.512,0l 4.412,0 l0,5.515 l-2.757,0 c-2.063,0-2.163,0.77-2.163,2.209l-0.008,2.76l 4.959,0 l-0.585,5.514L 18,16L 17.996,32z"></path></g></svg> Share on Facebook</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://twitter.com/intent/tweet?url=https://www.ncbi.nlm.nih.gov/books/NBK133427/&amp;text=Development%20of%20a%20Selective%20Chemical%20Inhibitor%20for%20the%20Two-Pore%20Potassium%20Channel%2C%20KCNK9"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24"><g><path d="M 32,6.076c-1.177,0.522-2.443,0.875-3.771,1.034c 1.355-0.813, 2.396-2.099, 2.887-3.632 c-1.269,0.752-2.674,1.299-4.169,1.593c-1.198-1.276-2.904-2.073-4.792-2.073c-3.626,0-6.565,2.939-6.565,6.565 c0,0.515, 0.058,1.016, 0.17,1.496c-5.456-0.274-10.294-2.888-13.532-6.86c-0.565,0.97-0.889,2.097-0.889,3.301 c0,2.278, 1.159,4.287, 2.921,5.465c-1.076-0.034-2.088-0.329-2.974-0.821c-0.001,0.027-0.001,0.055-0.001,0.083 c0,3.181, 2.263,5.834, 5.266,6.438c-0.551,0.15-1.131,0.23-1.73,0.23c-0.423,0-0.834-0.041-1.235-0.118 c 0.836,2.608, 3.26,4.506, 6.133,4.559c-2.247,1.761-5.078,2.81-8.154,2.81c-0.53,0-1.052-0.031-1.566-0.092 c 2.905,1.863, 6.356,2.95, 10.064,2.95c 12.076,0, 18.679-10.004, 18.679-18.68c0-0.285-0.006-0.568-0.019-0.849 C 30.007,8.548, 31.12,7.392, 32,6.076z"></path></g></svg> Share on Twitter</a></div></aside><aside id="jr-rtoc-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Table of Content</div></div><div class="cnt lol f1"><a href="/books/n/mlprobe/?report=reader">Title Information</a><a href="/books/n/mlprobe/toc/?report=reader">Table of Contents Page</a></div></aside><aside id="jr-help-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Settings</div></div><div class="cnt f1"><div id="jr-typo-p" class="typo"><div><a class="sf btn wsprkl">A-</a><a class="lf btn wsprkl">A+</a></div><div><a class="bcol-auto btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 100" preserveAspectRatio="none"><text x="10" y="70" style="font-size:60px;font-family: Trebuchet MS, ArialMT, Arial, sans-serif" textLength="180">AUTO</text></svg></a><a class="bcol-1 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M15,25 85,25zM15,40 85,40zM15,55 85,55zM15,70 85,70z"></path></svg></a><a class="bcol-2 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M5,25 45,25z M55,25 95,25zM5,40 45,40z M55,40 95,40zM5,55 45,55z M55,55 95,55zM5,70 45,70z M55,70 95,70z"></path></svg></a></div></div><div class="lol"><a class="" href="/books/NBK133427/?report=classic">Switch to classic view</a><a href="/books/NBK133427/?report=printable">Print View</a></div></div></aside><aside id="jr-bkhelp-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Help</div></div><div class="cnt f1 lol"><a id="jr-helpobj-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/help.xml" href="">Help</a><a href="mailto:info@ncbi.nlm.nih.gov?subject=PubReader%20feedback%20%2F%20NBK133427%20%2F%20sid%3ACE8B5AF87C7FFCB1_0191SID%20%2F%20phid%3ACE8E207C7D65F8410000000000D600B8.4">Send us feedback</a><a id="jr-about-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/about.xml" href="">About PubReader</a></div></aside><aside id="jr-objectbox" class="thidden hidden"><div class="jr-objectbox-close wsprkl">&#10008;</div><div class="jr-objectbox-inner cnt"><div class="jr-objectbox-drawer"></div></div></aside><nav id="jr-pm-left" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Previous Page</text></svg></nav><nav id="jr-pm-right" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Next Page</text></svg></nav><nav id="jr-fip" class="hidden"><nav id="jr-fip-term-p"><input type="search" placeholder="search this page" id="jr-fip-term" autocorrect="off" autocomplete="off" /><a id="jr-fip-mg" class="wsprkl btn" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-fip-done" class="wsprkl btn" title="Dismiss find">&#10008;</a></nav><nav id="jr-fip-info-p"><a id="jr-fip-prev" class="wsprkl btn" title="Jump to previuos match">&#9664;</a><button id="jr-fip-matches">no matches yet</button><a id="jr-fip-next" class="wsprkl btn" title="Jump to next match">&#9654;</a></nav></nav></div><div id="jr-epub-interstitial" class="hidden"></div><div id="jr-content"><article data-type="main"><div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><div class="fm-sec"><h1 id="_NBK133427_"><span class="title" itemprop="name">Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9</span></h1><p class="contribs">Miller MR, Zou B, Shi J, et al.</p><p class="fm-aai"><a href="#_NBK133427_pubdet_">Publication Details</a></p></div></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="_abs_rndgid_" itemprop="description"><p><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was identified as a novel inhibitor of the potassium channel, subfamily K, member 9 (KCNK9) two-pore domain potassium channel. Two-pore domain potassium channels provide a background leak conductance that is selectively permeable to potassium. These channels regulate cell membrane potential and excitability and thereby modulate a variety of processes including hormone secretion, proliferation, and central nervous system (CNS) function. A high throughput fluorescent screen measuring thallium influx through KCNK9 channels was used to identify bisamide and thiotriazole classes of inhibitors. Chemical modification of the thiotriazole scaffold yielded <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> which displayed a potent block of KCNK9 channels in a thallium influx fluorescent assay (IC<sub>50</sub> = 130 nM) and in an automated electrophysiology assay (IC<sub>50</sub> = 413 nM). <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> afforded &#x0003e;50-fold selectivity for block of KCNK9 over the closely-related, two-pore domain potassium channel, KCNK3, in fluorescent assays and displayed little or no block at 10 &#x003bc;M of the more distantly related potassium channels, Kir2.1, potassium voltage-gated channel, KQT-like subfamily, member 2 (KCNQ2), and human ether-a go-go-related gene (HERG). The potency and selectivity profile of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> makes it a useful pharmacological probe for <i>in vitro</i> studies of KCNK9 function and in further studies aimed at therapeutic intervention.</p></div><div class="h2"></div><p><b>Assigned Assay Grant #:</b> R03 MH090849-01</p><p><b>Screening Center Name &#x00026; PI:</b> Johns Hopkins Ion Channel Center, Min Li</p><p><b>Chemistry Center Name &#x00026; PI:</b> University of Kansas Specialized Chemistry Center, Jeffrey Aub&#x000e9;</p><p><b>Assay Submitter &#x00026; Institution:</b> Meng Wu, Ph.D., Johns Hopkins University, School of Medicine</p><p><b>PubChem Summary Bioassay Identifier (AID):</b>
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488964" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488964</a></p><div id="ml308.s1"><h2 id="_ml308_s1_">Probe Structure &#x00026; Characteristics</h2><div id="ml308.fu1" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu1.jpg" alt="Image ml308fu1" /></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml308tu1"><a href="/books/NBK133427/table/ml308.tu1/?report=objectonly" target="object" title="Table" class="img_link icnblk_img figpopup" rid-figpopup="figml308tu1" rid-ob="figobml308tu1"><img class="small-thumb" src="/books/NBK133427/table/ml308.tu1/?report=thumb" src-large="/books/NBK133427/table/ml308.tu1/?report=previmg" alt="Image " /></a><div class="icnblk_cntnt"><h4 id="ml308.tu1"><a href="/books/NBK133427/table/ml308.tu1/?report=objectonly" target="object" rid-ob="figobml308tu1">Table</a></h4></div></div></div><div id="ml308.s2"><h2 id="_ml308_s2_">1. Recommendations for Scientific Use of the Probe</h2><p><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> is a pharmacological probe that can be used to examine the role of KCNK9 channels in a diverse set of biological functions. Two-pore domain potassium channels are involved in regulating a variety of physiological processes including chemosensation, hormone secretion, immune function, proliferation, and cardiac and neuronal excitability.<sup><a class="bibr" href="#ml308.r1" rid="ml308.r1">1</a>,<a class="bibr" href="#ml308.r2" rid="ml308.r2">2</a></sup> The related TASK channels KCNK9 and KCNK3 are inhibited by extracellular protons. Biophysical experiments and studies with knockout animals suggest a specific role of these channels in oxygen sensing in carotid body glomus cells, aldosterone secretion from adrenal glomerulosa cells in response to angiotensin II and potassium, and carcinoma cell proliferation.<sup><a class="bibr" href="#ml308.r3" rid="ml308.r3">3</a></sup> Investigations into the physiological functions of these channels using genetic manipulations can be limited by species differences in expression patterns and by compensatory and other changes that may occur in knockout animals. For instance, in KCNK3&#x02212;/&#x02212; mice, efforts to identify the specific role for these channels in aldosterone secretion from adrenal glomerulosa cells is complicated by changes in the expression pattern of aldosterone synthase in the adrenal gland.<sup><a class="bibr" href="#ml308.r4" rid="ml308.r4">4</a></sup> Specific pharmacological modulation of KCNK9 and KCNK3 (TASK1 and TASK3 respectively) will provide important information on the roles of these channels in aldosterone secretion and salt and fluid balance. <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> will also be used for <i>in vitro</i> studies of the pharmacological properties of leak potassium currents and their specific roles in aldosterone secretion using a combination of electrophysiological analysis and biochemical measures of hormone secretion.</p><p>KCNK9 knockout mice display alterations in sleep patterns and sensitivity to antidepressant drugs.<sup><a class="bibr" href="#ml308.r5" rid="ml308.r5">5</a></sup> The development of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> provides a pharmacological tool to investigate the cellular basis of these behavioral changes using <i>in vitro</i> electrophysiological techniques. <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> can also be used to investigate the roles of KCNK9 channels in chemosensory control of respiration via central chemosensory neurons and carotid body cells and also in the responses of pulmonary vascular cells to hypoxia. <i>In vitro</i> studies with <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> may support mechanistic studies of the cellular basis of these processes. Genetic studies using a dominant negative mutant of KCNK9 implicate a role for these channels in tumor growth.<sup><a class="bibr" href="#ml308.r3" rid="ml308.r3">3</a></sup>
<a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> will be a valuable tool for <i>in vitro</i> studies of the roles of these channels in growth of a wider variety of tumor cell types.</p></div><div id="ml308.s3"><h2 id="_ml308_s3_">2. Materials and Methods</h2><ol><li class="half_rhythm"><div>Cell Lines: KCNK9-expressing HEK293 Cells, KCNK3-expressing CHO cells (provided by D. Bayliss, University of Virginia), hERG-expressing CHO cells, KCNQ2-expressing CHO cells, Kir2.1-expressing HEK293 cells</div></li><li class="half_rhythm"><div>Cell Culture Media: Dulbecco&#x02019;s Modified Eagle Medium (D-MEM) (1X), liquid (high glucose) w/L-Glut (Mediatech, Cat#10-013-CV), DMEM/F12 50/50 (Mediatech, Cat#15-090-CV), Hams F-12 Nutrient Mixture (1X), liquid w/L-Glut (Mediatech, Cat#10-080-CV)</div></li><li class="half_rhythm"><div>Fetal Bovine Serum: Gibco Cat #26140, Gemini, Cat#100-106</div></li><li class="half_rhythm"><div>L-Glutamine (Invitrogen, Cat#25030081)</div></li><li class="half_rhythm"><div>100&#x000d7; Penicillin-Streptomycin (Mediatech, Cat#30-001-CI)</div></li><li class="half_rhythm"><div>CellStripper (Mediatech, Cat#25-056-Cl)</div></li><li class="half_rhythm"><div>Antibiotics: Blasticidin S (Research Products International Corp., Cat#<a href="/nuccore/2093270" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">B12150</a>), Hygromycin (Mediatech, Cat#30-240-CR), Geneticin: (Gibco, Cat#11811-031)</div></li><li class="half_rhythm"><div>Compounds: <a href="https://pubchem.ncbi.nlm.nih.gov/substance/17386958" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 17386958</a> (Chembridge, Cat#8926102), XE-991 (Tocris, Cat#2000), Dofetilide (Fisher, Cat#NC9753685), Chlorpromazine hydrochloride (Sigma, Cat#C8138)</div></li><li class="half_rhythm"><div>HEPES (Sigma, Cat#H4034)</div></li><li class="half_rhythm"><div>10XHBSS (Invitrogen, Cat#14065056)</div></li><li class="half_rhythm"><div>Tetracycline (Sigma, Cat# T7660)</div></li><li class="half_rhythm"><div>QPlate16 (Sophion Bioscience, Ballerup, Denmark)</div></li><li class="half_rhythm"><div>FluxOR detection kit (Invitrogen, Cat #<a href="/nuccore/682550" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">F10017</a>)</div></li><li class="half_rhythm"><div>Triple-layer flask (VWR, Cat #62407-082)</div></li><li class="half_rhythm"><div>BD Biocoat 384-well plates (BD, Cat# (35)4663 and Lot #7346273)</div></li><li class="half_rhythm"><div>Detachin (Genlantis, Cat#T100110)</div></li></ol><div id="ml308.s4"><h3>2.1. Assays</h3><ol><li class="half_rhythm"><div>Summary of probe development for inhibitors of the two-pore domain potassium channel KCNK9: Summary <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488964" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 488964</a>.</div></li><li class="half_rhythm"><div>Primary cell-based screen for identification of compounds that inhibit the two-pore domain potassium channel KCNK9: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488922" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 488922</a>.</div></li><li class="half_rhythm"><div>Confirmatory assays for the identification of compounds that inhibit the two-pore domain potassium channel KCNK9: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 492997</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492992" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 492992</a>.</div></li><li class="half_rhythm"><div>Selectivity assays for the identification of selective inhibitors of KCNK9 using parental cells: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/540324" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 540324</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/540324" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 540324</a>. <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588759" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588759</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623884" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623884</a></div></li><li class="half_rhythm"><div>Selectivity assay for the identification of compounds that inhibit the two-pore domain potassium channel KCNK9 using KCNK3 expressing cells: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588776" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588776</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623894" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623894</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623912" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623912</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623915" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623915</a></div></li><li class="half_rhythm"><div>Selectivity assays for the identification of compounds that inhibit the two-pore domain potassium channel KCNK9 using cells expressing non-K2P potassium channels: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492993" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 492993</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/540323" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 540323</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/540321" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 540321</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504920" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504920</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504922" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504922</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588741" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588741</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588760" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588760</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588761" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588761</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588800" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588800</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588798" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588798</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623883" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623883</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623881" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623881</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623886" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623886</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623914" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623914</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623913" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623913</a></div></li><li class="half_rhythm"><div>SAR assays for compounds that inhibit the two-pore domain potassium channel KCNK9: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/540322" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 540322</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504846" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504846</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504902" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504902</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588724" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588724</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623887" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623887</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588724" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588724</a></div></li><li class="half_rhythm"><div>KCNK9 validation assays using Automated Electrophysiology: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623898" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623898</a></div></li><li class="half_rhythm"><div>Manual Patch Clamp test for KCNK9 inhibitors: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/624121" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 624121</a></div></li></ol></div><div id="ml308.s5"><h3>2.2. Probe Chemical Characterization</h3><div id="ml308.s6"><h4>Probe compound name, structure and physiochemical data</h4><p>The IUPAC name of the probe <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> is 4-((<i>S</i>)-1-((<i>1R, 2R, 4S</i>)-bicyclo[2.2.1]heptan-2-yl)ethyl)-5-(furan-2-yl)-4H-1,2,4-triazole-3-thiol.</p><div id="ml308.fu2" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu2.jpg" alt="Image ml308fu2" /></div></div></div><div id="ml308.s7"><h4>Structure Verification and Purity: <sup>1</sup>H NMR, <sup>13</sup>C NMR, LCMS, and HRMS Data</h4><p><b>Proton and carbon NMR data for <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>, CID 56928204:</b> Detailed analytical methods and instrumentation are described in <a href="#ml308.s11">section 2.3</a>, entitled &#x0201c;Probe Preparation&#x0201d; under general experimental and analytical details. The numerical experimental proton and carbon data are represented below for <a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>.</p><p><b>Proton NMR Data for <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>, CID 56928204:</b>
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 10.90 (s, 1H), 7.63 (s, 1H), 6.87 (s, 1H), 6.57 (apparent dd, <i>J</i> = 1.8, 3.4 Hz, 1H), 4.76 (br. s, 1H), 4.08 (br. s, 0.5H), 3.24 (br. s, 0.5H), 2.23 (s, 1H), 1.70&#x02013;1.50 (m, 4H), 1.45&#x02013;1.29 (m, 4H), 1.20&#x02013;1.11 (m, 1H), 1.09&#x02013;0.97 (m, 2H), 0.81&#x02013;0.63 (m, 1H).</p><p><b>Carbon NMR Data for <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>, CID 56928204:</b>
<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) &#x003b4; 169.24, 144.81, 143.47, 140.15, 114.87, 112.07, 57.74, 46.05, 38.57, 37.24, 36.83, 36.02, 29.60, 28.65, 16.79.</p><p><b>LCMS and HRMS Data for <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>, CID 56928204:</b> Detailed analytical methods and instrumentation are described in <a href="#ml308.s11">section 2.3</a>, entitled &#x0201c;Probe Preparation&#x0201d; under general experimental and analytical details. The numerical experimental LCMS and HRMS data are represented as follows: LCMS retention time: 3.320 min. LCMS purity at 214 nm: 91.8%. HRMS: <i>m/z</i> calcd for C<sub>15</sub>H<sub>20</sub>N<sub>3</sub>OS (M + H<sup>+</sup>) 290.1322, found 290.1321.</p><p><b>Optical rotation</b> was determined for <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> as a single diastereomer: [&#x003b1;]<sub>D</sub><sup>24</sup> = +10.2 (c 0.173, CHCl<sub>3</sub>).</p><div id="ml308.s8"><h5>Aqueous solubility</h5><p>Solubility was measured in phosphate buffered saline (PBS) at room temperature (23 &#x000b0;C). PBS by definition is 137 &#x003bc;M NaCl, 2.7 &#x003bc;M KCl, 10 mM sodium phosphate dibasic, 2 mM potassium phosphate monobasic and a pH of 7.4.<sup><a class="bibr" href="#ml308.r6" rid="ml308.r6">6</a></sup> Probe <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was found to have a solubility measurement of 9.5 mg/mL, or 31.8 mM, under these conditions. Solubility was also assessed in thallium flux (FDSS) assay media (1&#x000d7; HBSS pH 7.4) and in stimulus buffer (2.8 mM thallium and 10 mM potassium sulfate). Probe <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was determined to have a thallium flux (FDSS) assay media solubility of 4.7 &#x003bc;g/mL, or 16.2 &#x003bc;M, and a stimulus buffer solubility of 6.4 &#x003bc;g/mL, or 22.1 &#x003bc;M. Aqueous solubility in pION buffer was determined at three pH levels: pH 5.0/6.2/7.4, and <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> solubility under these conditions was found to be 2.1/2.4/9.8 &#x003bc;g/mL, respectively. In each of the three tested media, the solubility of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was determined to be significantly higher than the IC<sub>50</sub> value of the probe on channels for which it was active.</p></div><div id="ml308.s9"><h5>Stability</h5><p><b><u>Aqueous Stability</u></b>: Stability was measured under two distinct conditions with <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> (CID 56928204, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>, <a class="figpopup" href="/books/NBK133427/figure/ml308.f1/?report=objectonly" target="object" rid-figpopup="figml308f1" rid-ob="figobml308f1">Figure 1</a>). Aqueous stability, represented by closed circles, was assessed at room temperature (23 &#x000b0;C) in PBS (no antioxidants or other protectants and DMSO concentration below 0.1%). Aqueous stability, illustrated with closed triangles in the graph, was also assessed with 50% acetonitrile added to account for challenges with solubility of the compound in PBS alone. Stability data in each case is depicted as a graph showing the loss of compound with time over a 48 hr period with a minimum of 6 time points and providing the percent remaining compound at the end of the 48 hr.<sup><a class="bibr" href="#ml308.r6" rid="ml308.r6">6</a></sup> With no additives (closed circles), 58.38% of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> remains after 48 hours; however, this data is dependent on and misleading due to the solubility limitations in PBS buffer. With the addition of 50% acetonitrile to account for solubility (closed triangles), 100% of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> remained after 48 hours.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml308f1" co-legend-rid="figlgndml308f1"><a href="/books/NBK133427/figure/ml308.f1/?report=objectonly" target="object" title="Figure 1" class="img_link icnblk_img figpopup" rid-figpopup="figml308f1" rid-ob="figobml308f1"><img class="small-thumb" src="/books/NBK133427/bin/ml308f1.gif" src-large="/books/NBK133427/bin/ml308f1.jpg" alt="Figure 1. Graph depicting stability of ML308 after 48 h in PBS and with PBS/ACN." /></a><div class="icnblk_cntnt" id="figlgndml308f1"><h4 id="ml308.f1"><a href="/books/NBK133427/figure/ml308.f1/?report=objectonly" target="object" rid-ob="figobml308f1">Figure 1</a></h4><p class="float-caption no_bottom_margin">Graph depicting stability of ML308 after 48 h in PBS and with PBS/ACN. </p></div></div><p><b><u>Chemical Stability</u></b>: <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was also evaluated for susceptibility to nucleophilic addition and formation of conjugates by treatment with glutathione (GSH) or dithiothreitol (DTT). <a class="figpopup" href="/books/NBK133427/figure/ml308.f2/?report=objectonly" target="object" rid-figpopup="figml308f2" rid-ob="figobml308f2">Figure 2</a> represents the time course experiment with <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> under various conditions. <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was dissolved at 10 &#x003bc;M in PBS at pH 7.4 (1% DMSO) and independently incubated at room temperature with no nucleophile present, 50 &#x003bc;M glutathione (GSH), or 50 &#x003bc;M dithiothreitol (DTT). The test reactions were sampled every hour for eight hours and analyzed by LCMS. The analytical LCMS system utilized for the analysis was a Waters Acquity system with UV-detection and mass-detection (Waters LCT Premier). The analytical method conditions included a Waters Acquity HSS T3 C18 column (2.1 &#x000d7; 50mm, 1.8 &#x003bc;m) and elution with a linear gradient of 1% water to 100% CH<sub>3</sub>CN at 0.6 mL/min flow rate. Peaks on the 214 nm chromatographs were integrated using the Waters OpenLynx software. Absolute areas under the curve were compared at each time point to determine relative percent parent remaining. The masses of potential adducts and dimers of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> were searched for in the final samples to determine if any detectable adduct formed or dimerization had occurred. All samples were prepared in duplicate. Ethacrynic acid, a known Michael acceptor, was used as a positive control. In the case of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>, no adducts or dimers were detected at any time point using LCMS detection.<sup><a class="bibr" href="#ml308.r7" rid="ml308.r7">7</a></sup></p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml308f2" co-legend-rid="figlgndml308f2"><a href="/books/NBK133427/figure/ml308.f2/?report=objectonly" target="object" title="Figure 2" class="img_link icnblk_img figpopup" rid-figpopup="figml308f2" rid-ob="figobml308f2"><img class="small-thumb" src="/books/NBK133427/bin/ml308f2.gif" src-large="/books/NBK133427/bin/ml308f2.jpg" alt="Figure 2. Chemical stability of ML308 over 8 h in the presence of 5-fold glutathione or dithiothreitol." /></a><div class="icnblk_cntnt" id="figlgndml308f2"><h4 id="ml308.f2"><a href="/books/NBK133427/figure/ml308.f2/?report=objectonly" target="object" rid-ob="figobml308f2">Figure 2</a></h4><p class="float-caption no_bottom_margin">Chemical stability of ML308 over 8 h in the presence of 5-fold glutathione or dithiothreitol. </p></div></div><p><a class="figpopup" href="/books/NBK133427/table/ml308.t1/?report=objectonly" target="object" rid-figpopup="figml308t1" rid-ob="figobml308t1">Table 1</a> summarizes the percent remaining of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> at the endpoints of each run in each experiment. It was noted that the addition of nucleophile generally led to a greater percentage of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> remaining at the end of the 8-hour experiment, as compared to controls lacking any nucleophile. It is unclear at this time if this is due to standard deviation in measurement, solubility differences in the experiments, or other contributors.<sup><a class="bibr" href="#ml308.r7" rid="ml308.r7">7</a></sup></p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml308t1"><a href="/books/NBK133427/table/ml308.t1/?report=objectonly" target="object" title="Table 1" class="img_link icnblk_img figpopup" rid-figpopup="figml308t1" rid-ob="figobml308t1"><img class="small-thumb" src="/books/NBK133427/table/ml308.t1/?report=thumb" src-large="/books/NBK133427/table/ml308.t1/?report=previmg" alt="Table 1. Percent remaining of ML308 at the conclusion of the experiment (8h)." /></a><div class="icnblk_cntnt"><h4 id="ml308.t1"><a href="/books/NBK133427/table/ml308.t1/?report=objectonly" target="object" rid-ob="figobml308t1">Table 1</a></h4><p class="float-caption no_bottom_margin">Percent remaining of ML308 at the conclusion of the experiment (8h). </p></div></div><p>In separate experiments, <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was treated with a range of equivalents of L-glutathione (GSH) in DMSO for 72 h at 37 &#x000b0;C. The three experiments were monitored by LCMS at each of the following time points: 1 h, 2 h, 4 h, 24 h, 48 h, and 72 h. <i>Procedure: To a solution of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> (1.0 mg, 1 eq) in DMSO (1.0 mL) was added:</i></p><ol class="lower-alpha"><li class="half_rhythm"><div><i>L</i>-glutathione (1.3 mg, 4.15 &#x003bc;mol, 1.2 eq) and the mixture stirred at 37 &#x000b0;C for 72 h</div></li><li class="half_rhythm"><div><i>L</i>-glutathione (2.1 mg, 6.92 &#x003bc;mol, 2.0 eq) and the mixture stirred at 37 &#x000b0;C for 72 h</div></li><li class="half_rhythm"><div><i>L</i>-glutathione (3.2 mg, 10.38 &#x003bc;mol, 3.0 eq) and the mixture stirred at 37 &#x000b0;C for 72 h</div></li></ol><p>LCMS analysis of each reaction vial, taken after time (t) = 1 h, 2 h, 4 h, 24 h, 48 h, and 72 h, showed only the presence of starting material. No glutathione conjugate or other peaks were observed. These results suggest that the compound is not generally electrophilic or susceptible to protein-derived nucleophiles. No dimerization of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was detected.<sup><a class="bibr" href="#ml308.r7" rid="ml308.r7">7</a></sup></p></div><div id="ml308.s10"><h5><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> Synthetic Route</h5><p>The probe <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was synthesized by the method shown (<a class="figpopup" href="/books/NBK133427/figure/ml308.f3/?report=objectonly" target="object" rid-figpopup="figml308f3" rid-ob="figobml308f3">Figure 3</a>). An enantioselective Diels-Alder reaction<sup><a class="bibr" href="#ml308.r8" rid="ml308.r8">8</a>,<a class="bibr" href="#ml308.r9" rid="ml308.r9">9</a></sup> was employed to produce, after
olefin reduction, a mixture of endo/exo cycloadducts <b>1</b> and <b>2</b> in a ratio of
95:5 as determined by <sup>1</sup>H NMR. These products were found to have optical rotations nearly identical to reported values.<sup><a class="bibr" href="#ml308.r9" rid="ml308.r9">9</a>,<a class="bibr" href="#ml308.r10a" rid="ml308.r10a">10a</a>&#x02013;<a class="bibr" href="#ml308.r10b" rid="ml308.r10b">b</a></sup> Conversion of the mixture to the Weinreb amide, followed by methyl Grignard addition afforded the corresponding mixture of methyl ketones, <b>3</b> and <b>4</b>. Reductive amination of combined <b>3</b> and <b>4</b>, followed by subsequent Fmoc protection generated four diastereomeric amides (<b>5a&#x02013;b, 6a&#x02013;b</b>) which were separated by chiral HPLC. FMOC protection was used to assist with handling a volatile amine during optimization of chemistry, to provide a suitable chromophore for separation, and for aiding in crystallization. Amide <b>6b</b> was isolated as 15% of the mixture of four diastereomers, <b>5a&#x02013;b</b> and <b>6a&#x02013;b</b>. Desired amide <b>6b</b>, whose stereochemistry was established by X-ray crystallography, was treated with a piperazine resin to remove the Fmoc protecting group, and the resulting amine was converted to an HBr salt for ease of handling, as the free amine is unexpectedly volatile. Treatment of salt <b>7</b> with thiophosgene generated isothiocyanate <b>8</b>,<sup><a class="bibr" href="#ml308.r11" rid="ml308.r11">11</a></sup> which was heated with the preferred acyl hydrazide to generate, after reaction with base and acidic workup,<sup><a class="bibr" href="#ml308.r12" rid="ml308.r12">12</a></sup> the desired probe, <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>. The probe was isolated in 5% overall yield, as a single pure diastereomer as determined by LCMS and <sup>1</sup>H NMR. Specific experimental details for the probe are detailed in <a href="#ml308.s11">section 2.3</a>, entitled, &#x0201c;Probe Preparation&#x0201d;.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml308f3" co-legend-rid="figlgndml308f3"><a href="/books/NBK133427/figure/ml308.f3/?report=objectonly" target="object" title="Figure 3" class="img_link icnblk_img figpopup" rid-figpopup="figml308f3" rid-ob="figobml308f3"><img class="small-thumb" src="/books/NBK133427/bin/ml308f3.gif" src-large="/books/NBK133427/bin/ml308f3.jpg" alt="Figure 3. General synthetic route to probe ML308." /></a><div class="icnblk_cntnt" id="figlgndml308f3"><h4 id="ml308.f3"><a href="/books/NBK133427/figure/ml308.f3/?report=objectonly" target="object" rid-ob="figobml308f3">Figure 3</a></h4><p class="float-caption no_bottom_margin">General synthetic route to probe ML308. </p></div></div></div></div></div><div id="ml308.s11"><h3>2.3. Probe Preparation</h3><p><b>General experimental and analytical details:</b><sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker AM 400 spectrometer (operating at 400 and 101 MHz respectively) or a Bruker AVIII spectrometer (operating at 500 and 126 MHz respectively) in CDCl<sub>3</sub> with 0.03% TMS as an internal standard or DMSO-<i>d<sub>6</sub></i>. The chemical shifts (&#x003b4;) reported are given in parts per million (ppm) and the coupling constants (<i>J</i>) are in Hertz (Hz). The spin multiplicities are reported as s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet and m = multiplet. The LCMS analysis was performed on an Agilent 1200 RRL chromatograph with photodiode array UV detection and an Agilent 6224 TOF mass spectrometer. The chromatographic method utilized the following parameters: a Waters Acquity BEH C-18 2.1 &#x000d7; 50mm, 1.7 &#x003bc;m column; UV detection wavelength = 214 nm; flow rate = 0.4ml/min; gradient = 5 &#x02212; 100% acetonitrile over 3 minutes with a hold of 0.8 minutes at 100% acetonitrile; the aqueous mobile phase contained 0.15% ammonium hydroxide (v/v). The mass spectrometer utilized the following parameters: an Agilent multimode source which simultaneously acquires ESI+/APCI+; a reference mass solution consisting of purine and hexakis(1H, 1H, 3H-tetrafluoropropoxy) phosphazine; and a make-up solvent of 90:10:0.1 MeOH:Water:Formic Acid which was introduced to the LC flow prior to the source to assist ionization. Melting points were determined on a Stanford Research Systems OptiMelt apparatus. Optical rotations were measured on a Rudolph Research Analytical Autopol IV polarimeter.</p><p>The probe was prepared using the following protocols:</p><div id="ml308.fu3" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu3.jpg" alt="Image ml308fu3" /></div></div><p><b>3-((1</b><b><i>R</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>R</i></b><b>)-Bicyclo[2.2.1]hept-5-ene-2-carbonyl)oxazolidin-2-one (endo); 3-((1</b><b><i>S</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>S</i></b><b>)-Bicyclo[2.2.1]hept-5-ene-2-carbonyl)oxazolidin-2-one (exo).</b> To an argon cooled, flame dried vial containing activated 4 &#x000c5; molecular sieves was added (4<i>R</i>,4&#x02032;<i>R</i>)-2,2&#x02032;-(propane-2,2-diyl)bis(4-(<i>tert</i>-butyl)-4,5-dihydrooxazole, D-L Chiral Chemicals LLC, Chengdu, China (cat # WK05-1005)) (0.19 g, 0.64 mmol) and Cu(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub> (0.209 g, 0.58 mmol). The vial was evacuated with argon 3 times and diluted with anhydrous CH<sub>2</sub>Cl<sub>2</sub> (15 mL). The resulting green-colored reaction was stirred for 1 h at rt. The 3-acryloyloxazolidin-2-one (0.82 g, 5.8 mmol) was then added, and the reaction was cooled to &#x02212;72 &#x000b0;C. Freshly cracked cyclopentadiene (1.14 g, 17.3 mmol) was added and the reaction stirred for 1 h at &#x02212;72 &#x000b0;C, warmed to &#x02212;50 &#x000b0;C and stirred for 17 h at this temperature, and then warmed to 0 &#x000b0;C and stirred for 2 h until completion was determined, as monitored by NMR. The reaction was diluted with 1:1 EtOAc:Hex, filtered through silica and concentrated to produce a mixture of <b>endo</b>, 3-((1<i>R</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]hept-5-ene-2-carbonyl)oxazolidin-2-one and <b>exo</b>, 3-((1<i>S</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]hept-5-ene-2-carbonyl)oxazolidin-2-one (0.79 g, 3.8 mmol, 66% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 95:5 <i>endo:exo</i> by NMR):<i>&#x003b4;</i> 6.26 (dd, <i>J</i><sub>1</sub> = 5.7 Hz, <i>J</i><sub>2</sub> = 3.1 Hz, 1H, <i>endo</i>), 6.18 (s, 0.1H, <i>exo</i>), 5.88 (dd, <i>J</i><sub>1</sub> = 5.7 Hz, <i>J</i><sub>2</sub> = 3.1 Hz, 1H, <i>endo</i>), 4.45&#x02013;4.35 (m, 2.2H), 4.06&#x02013;3.90 (m, 3.22 H), 3.31 (br s, 1H, <i>endo</i>), 3.28 (br d, <i>J</i> = 8.8 Hz, 0.05H, <i>exo</i>), 3.01 (s, 0.05, <i>exo</i>), 2.94 (br s, 1H, <i>endo</i>), 1.99&#x02013;1.92 (m, 1H), 1.56&#x02013;1.39 (m, 3.20H).</p><div id="ml308.fu4" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu4.jpg" alt="Image ml308fu4" /></div></div><p><b>3-((1</b><b><i>S</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>R</i></b><b>)-Bicyclo[2.2.1]heptane-2-carbonyl)oxazolidin-2-one (endo); 3-((1</b><b><i>R</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>S</i></b><b>)-Bicyclo[2.2.1]heptane-2-carbonyl)oxazolidin-2-one (exo).</b> To a vial was added the mixture of <b>endo</b>, 3-((1<i>R</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]hept-5-ene-2-carbonyl)oxazolidin-2-one and <b>exo</b>, 3-((1<i>S</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]hept-5-ene-2-carbonyl)oxazolidin-2-one and diluted with EtOAc (15 mL). The cyclohexene (2.20 g, 26.8 mmol) and Pd/C (0.16 g, 1.5 mmol) was added and the reaction stirred at 70 &#x000b0;C for 18 h. The reaction was filtered through Celite and concentrated to produce 3-((1<i>S</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]heptane-2-carbonyl) oxazolidin-2-one (<b>endo</b>) and 3-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptane-2-carbonyl)oxazolidin-2-one (<b>exo</b>) (0.79 g, 3.8 mmol, 99% yield). (400 MHz, CDCl<sub>3</sub>): <i>&#x003b4;</i> 4.39 (t, <i>J</i> = 8.0 Hz, 2H), 4.10 &#x02013; 3.96 (m, 2H), 3.86 &#x02013; 3.81 (m, 1H), 2.70 (brs, 1H), 2.43 (br s, 0.05H), 2.34 (t, <i>J</i> = 6.7 Hz, 0.2H), 2.29 (br s, 1H), 1.83&#x02013;1.78 (m, 1.05H), 1.64&#x02013;1.48 (m, 3.3H), 1.39&#x02013;1.30 (m, 3.1H), 1.23&#x02013;1.17 (m, 1.05H).</p><div id="ml308.fu5" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu5.jpg" alt="Image ml308fu5" /></div></div><p><b>(1</b><b><i>S</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>R</i></b><b>)-</b><b><i>N</i></b><b>-Methoxy-</b><b><i>N</i></b><b>-methylbicyclo[2.2.1]heptane-2-carboxamide (endo); (1</b><b><i>R</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>S</i></b><b>)-</b><b><i>N</i></b><b>-Methoxy-</b><b><i>N</i></b><b>-methylbicyclo[2.2.1]heptane-2-carboxamide (exo).</b> To a vial was added the <i>N,O</i>-dimethylhydroxylamine hydrochloride (0.88 g, 9.0 mmol) and dry THF (10 mL). The reaction was lowered to &#x02212;10 &#x000b0;C and 2.0 M trimethylaluminum in toluene (4.52 mL, 9.0 mmol) was added dropwise. After addition of trimethylaluminum the reaction was warmed to rt and stirred for 30 minutes. The reaction was cooled again to &#x02212;10 &#x000b0;C and the mixture of 3-((1<i>S</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]heptane-2-carbonyl) oxazolidin-2-one and 3-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptane-2-carbonyl)oxazolidin-2-one (0.79 g, 3.8 mmol) in dry THF (10 mL) was added dropwise. The reaction then warmed to 0 &#x000b0;C and stirred for 4 h after which 1 N HCl (10 mL) was added to the mixture and continued stirring for 1 h. The mixture was then extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 &#x000d7; 15 mL) and the organic layer was separated from the aqueous layer, dried with MgSO<sub>4</sub>, filtered, adsorbed to silica and purified by ISCO Combiflash flash chromatography (0&#x02013;40% EtOAc:Hex) to produce a mixture of (1<i>S</i>,2<i>R</i>,4<i>R</i>)-<i>N</i>-methoxy-<i>N</i>-methylbicyclo [2.2.1]heptane-2-carboxamide (<b>endo</b>); (1<i>R</i>,2<i>R</i>,4<i>S</i>)-<i>N</i>-methoxy-<i>N</i>-methylbicyclo[2.2.1]heptane-2-carboxamide (<b>exo</b>) (0.67 g, 3.7 mmol, 97%). (400 MHz, CDCl<sub>3</sub>): <i>&#x003b4;</i> 4.46 (t, <i>J</i> = 7.8 Hz, 0.5H), 4.35 (t, <i>J</i> = 7.8 Hz, 0.07H), 3.79 (t, <i>J</i> = 7.8 Hz, 0.08H), 3.68 (s, 3H), 3.64 (t, <i>J</i> = 7.8 Hz, 0.5H), 3.59 (s, 0.28H), 3.19 (s, 3.0H), 3.18 (s, 0.25H), 3.02 (br s, 1H), 2.62 (s, 0.30H), 2.55, (br s, 1H), 2.25 (br s, 1H), 1.80&#x02013;1.75 (m, 1.07H), 1.60&#x02013;1.33 (m, 6.50H).</p><div id="ml308.fu6" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu6.jpg" alt="Image ml308fu6" /></div></div><p><b>1-((1</b><b><i>S</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>R</i></b><b>)-Bicyclo[2.2.1]heptan-2-yl)ethanone (endo); 1-((1</b><b><i>R</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>S</i></b><b>)-Bicyclo[2.2.1]heptan-2-yl)ethanone (exo)</b>. Methylmagnesium bromide (3.0 M in ether, 1.83 mL, 5.48 mmol, 1.5 equiv) was added dropwise to a &#x02212;10 &#x000b0;C mixture of (1<i>S</i>,2<i>R</i>,4<i>R</i>)-<i>N</i>-methoxy-<i>N</i>-methylbicyclo[2.2.1]heptane-2-carboxamide and (1<i>S</i>,2<i>R</i>,4<i>R</i>)-<i>N</i>-methoxy-<i>N</i>-methylbicyclo[2.2.1]heptane-2-carboxamide (669 mg, 3.65 mmol, 1 equiv) in THF (6 mL). The mixture was stirred at &#x02212;10 &#x000b0;C for 3 h then allowed to warm to room temp. TLC (10% EtOAc/Hexanes) showed consumption of starting material and a single spot (Rf = 0.65, KMnO<sub>4</sub> stain) as the product. The reaction was quenched by addition of sat. aq. NH<sub>4</sub>Cl, and the resulting mixture was extracted with EtOAc. The organic layers were combined, dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated to give a mixture of 1-((1<i>S</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]heptan-2-yl)ethanone (<b>endo</b>); 1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethanone (<b>exo</b>) (443 mg, 3.21 mmol, 88 % yield) as a colorless oil.</p><div id="ml308.fu7" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu7.jpg" alt="Image ml308fu7" /></div></div><p><b>1-((1</b><b><i>S</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>R</i></b><b>)-Bicyclo[2.2.1]heptan-2-yl)ethanamine (endo) and 1-((1</b><b><i>R</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>S</i></b><b>)-Bicyclo[2.2.1]heptan-2-yl)ethanamine (exo)</b>. Ammonium acetate (2.47 g, 32.1 mmol, 10 equiv) was added to a mixture of 1-((1<i>S</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]heptan-2-yl)ethanone, 1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethanone (443 mg, 3.21 mmol) and sodium cyanoborohydride (604 mg, 9.62 mmol, 3 equiv) in MeOH (12 mL) and the mixture stirred for 16 h at room temperature. IR showed consumption of the starting ketone. The reaction mixture was acidified to pH 2 with 12N HCl. The solution was then basified to pH 10 with solid KOH. The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (5 &#x000d7; 10 mL) and the combined organic layer dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated to give a mixture of 1-((1<i>S</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]heptan-2-yl)ethanamine (<b>endo</b>) and 1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethanamine (<b>exo</b>) (378 mg, 2.71 mmol, 85% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 2.66&#x02013;1.85 (m, 5H), 1.68&#x02013;0.46 (m, 12H).</p><div id="ml308.fu8" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu8.jpg" alt="Image ml308fu8" /></div></div><p><b>(9</b><b><i>H</i></b><b>-Fluoren-9-yl)methyl (1-((1</b><b><i>S</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>R</i></b><b>)-bicyclo[2.2.1]heptan-2-yl)ethyl)carbamate (endo) and (9</b><b><i>H</i></b><b>-Fluoren-9-yl)methyl (1-((1</b><b><i>R</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>S</i></b><b>)-bicyclo[2.2.1]heptan-2-yl)ethyl)carbamate (exo)</b>. To a vial containing a mixture of 1-((1<i>S</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]heptan-2-yl)ethanamine and 1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethanamine (378 mg, 2.71 mmol, 1 equiv) and <i>N</i>-ethyl-<i>N</i>-isopropylpropan-2-amine (1.18 mL, 6.79 mmol, 2.5 equiv) in dry THF (5 mL) at 0 &#x000b0;C was added a solution of (9<i>H</i>-fluoren-9-yl)methyl carbonochloridate (1756 mg, 6.79 mmol, 2.5 equiv) in dry THF (5 mL) dropwise. Once the addition was completed the mixture was warmed to room temperature and then heated at 60 &#x000b0;C for 16 h. The mixture was diluted with EtOAc and washed sequentially with NaHCO<sub>3</sub> (3 &#x000d7; 10 mL), 1N HCl (2 &#x000d7; 10 mL), water (10 mL), and brine (10 mL). The organic extract was separated, dried (Na<sub>2</sub>SO<sub>4</sub>), and filtered. The solvent was evaporated, and the residue subjected to reversed-phase Combiflash (0&#x02013;100% ACN-H<sub>2</sub>O) to yield a mixture of (9<i>H</i>-fluoren-9-yl)methyl (1-((1<i>S</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]heptan-2-yl)ethyl)carbamate (<b>endo</b>) and (9<i>H</i>-fluoren-9-yl)methyl (1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethyl)carbamate (<b>exo</b>) (637 mg, 1.762 mmol, 64.9% yield) as a white foam. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 7.75 (d, <i>J</i> = 7.6 Hz, 2H), 7.57 (apparent dd, <i>J</i> = 2.4, 7.3 Hz, 2H), 7.38 (apparent t, <i>J</i> = 7.5 Hz, 2H), 7.29 (apparent td, <i>J</i> = 1.1, 7.4 Hz, 2H), 4.60&#x02013;4.14 (m, 4H), 3.50 (br s, 0.4H), 3.42 &#x02013; 3.25 (m, 0.4H), 3.12 (br s, 0.2H), 2.26&#x02013;2.04 (m, 2H), 1.78&#x02013;1.41 (m, 3H), 1.41&#x02013;0.61 (m, 9H).</p><div id="ml308.fu9" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu9.jpg" alt="Image ml308fu9" /></div></div><p><b>(9H-Fluoren-9-yl)methyl((</b><b><i>S</i></b><b>)-1-((1</b><b><i>R</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>S</i></b><b>)-bicyclo[2.2.1]heptan-2-yl)ethyl)carbamate.</b> The mixture of (9<i>H</i>-fluoren-9-yl)methyl (1-((1<i>S</i>,2<i>R</i>,4<i>R</i>)-bicyclo[2.2.1]heptan-2-yl)ethyl)carbamate (<b>endo</b>) and (9<i>H</i>-fluoren-9-yl)methyl (1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethyl)carbamate (<b>exo</b>) was dissolved in 100% isopropanol (100 mg/mL). The mixture was injected into the preparatory chiral OD-H HPLC system (1000 &#x003bc;L, 100 mg loading) and separated with 3% isopropanol in hexanes. The desired product eluted at 27.70 min and was collected and concentrated to yield pure (9H-Fluoren-9-yl)methyl((<i>S</i>)-1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethyl)carbamate which is carried directly into the next reaction. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 7.75 (d, <i>J</i> = 7.5 Hz, 2H), 7.59 (d, <i>J</i> = 7.4 Hz, 2H), 7.38 (apparent t, <i>J</i> = 7.5 Hz, 2H), 7.30 (apparent t, <i>J</i> = 7.4 Hz, 2H), 4.54 (d, <i>J</i> = 8.5 Hz, 1H), 4.48 &#x02013; 4.34 (m, 2H), 4.21 (t, <i>J</i> = 6.7 Hz, 1H), 3.37&#x02013;3.26 (m, 1H), 3.14 (br s, 0.1H), 2.22 (s, 1H), 2.12 (s, 1H), 1.41&#x02013;0.92 (m, 12H). Stereochemical assignment was unambiguously confirmed by X-ray crystallography. Crystals were obtained by dissolving purified compound in 100% isopropanol (approximately 10 mg per 0.10 mL), and gently heating to dissolve the compound. The solution was allowed to cool to room temperature and rest, undisturbed. X-ray quality crystals were obtained after 24h.</p><div id="ml308.fu10" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu10.jpg" alt="Image ml308fu10" /></div></div><p><b>(</b><b><i>S</i></b><b>)-1-((1</b><b><i>R</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>S</i></b><b>)-Bicyclo[2.2.1]heptan-2-yl)ethanaminium bromide</b>: To a vial was added (9H-Fluoren-9-yl)methyl (1-(-bicyclo[2.2.1]heptan-2-yl)ethyl)carbamate (94 mg, 0.260 mmol, 1 equiv) and dioxane (1 mL). Piperazine (224 mg, 2.60 mmol, 10 equiv) on resin (Aldrich #547549, 0.520 g, 5 mmol/g loading) was then added, and the mixture stirred at 60 &#x000b0;C overnight. The reaction mixture was diluted with MeOH and filtered. The filtrate was treated with HBr in acetic acid (30% w/v, 91 &#x003bc;L, 0.520 mmol, 2 equiv) and concentrated. The residue was triturated with ether/hexane (1:1) and dried under vacuum to afford (<i>S</i>)-1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethanaminium bromide (41 mg, 0.186 mmol, 72% yield) as a pale yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.08 (br s, 2H), 3.06&#x02013;2.93 (m, 1H), 2.55 (d, <i>J</i> = 3.6 Hz, 1H), 2.25 (s, 1H), 1.80&#x02013;1.68 (m, 1H), 1.60&#x02013;1.31 (m, 6H), 1.30&#x02013;1.01 (m, 5H).</p><div id="ml308.fu11" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu11.jpg" alt="Image ml308fu11" /></div></div><p><b>(1</b><b><i>R</i></b><b>,2</b><b><i>R</i></b><b>,4</b><b><i>S</i></b><b>)-2-((</b><b><i>S</i></b><b>)-1-Isothiocyanatoethyl)bicyclo[2.2.1]heptane</b>: A saturated solution of aqueous NaHCO<sub>3</sub> (2.2 mL) was added to a solution of (<i>S</i>)-1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethanaminium bromide (41.2 mg, 0.187 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (2.2 mL) at 0 &#x000b0;C. The mixture was stirred for 10 minutes, stirring stopped, and thiophosgene (0.021 mL, 0.197 mmol, 1.05 equiv) was added to the CH<sub>2</sub>Cl<sub>2</sub> layer in one portion via syringe. The mixture was stirred (~500 rpm) for 30 minutes at 0 &#x000b0;C. The reaction mixture was then diluted with CH<sub>2</sub>Cl<sub>2,</sub> and the organic layer was separated. The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> and the combined organic extracts were dried (Na<sub>2</sub>SO<sub>4</sub>). Following filtration, the solvent was removed <i>in vacuo</i> to afford (1<i>R</i>,2<i>R</i>,4<i>S</i>)-2-((<i>S</i>)-1-isothiocyanatoethyl)-bicyclo[2.2.1]heptane (33 mg, 0.182 mmol, 97% yield) as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 3.34&#x02013;3.26 (m, 1H), 2.34 (d, <i>J</i> = 3.7, 1H), 2.23 (s, 1H), 1.61&#x02013;1.43 (m, 3H), 1.42&#x02013;1.31 (m, 1H), 1.27&#x02013;1.20 (m, 4H), 1.19&#x02013;1.08 (m, 3H), 0.99&#x02013;0.91 (m, 1H).</p><div id="ml308.fu12" class="figure"><div class="graphic"><img src="/books/NBK133427/bin/ml308fu12.jpg" alt="Image ml308fu12" /></div></div><p><b>4-((<i>S</i>)-1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-Bicyclo[2.2.1]heptan-2-yl)ethyl)-5-(furan-2-yl)-4<i>H</i>-1,2,4-triazole-3-thiol: <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>; <a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>; CID 56928204.</b> To a solution of furan-2-carbohydrazide (10.16 mg, 0.081 mmol, 1 equiv) in ethanol (2.0 mL) was added (1<i>R</i>,2<i>R</i>,4<i>S</i>)-2-((<i>S</i>)-1-isothiocyanatoethyl)bicyclo[2.2.1]heptane (14.6 mg, 0.081 mmol, 1 equiv). The mixture was heated at 90 &#x000b0;C for 16 h and the solvent evaporated <i>in vacuo</i>. Sodium hydroxide (2N, 0.403 mL, 0.805 mmol, 10 equiv) was added to the resulting solid and the solution heated at 95 &#x000b0;C for 16 h. The solution was cooled to room temperature, acidified to pH 3 with 6N HCl, extracted with EtOAc (4 &#x000d7; 10 mL), and washed with brine (10 mL). The organic extracts were separated, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated to afford a residue. The residue was chromatographed using RP-MPLC (0&#x02013;100% ACN-H<sub>2</sub>O) to give 4-((<i>S</i>)-1-((1<i>R</i>,2<i>R</i>,4<i>S</i>)-bicyclo[2.2.1]heptan-2-yl)ethyl)-5-(furan-2-yl)-4H-1,2,4-triazole-3-thiol (11.2 mg, 0.039 mmol, 48% yield) as an off-white solid. Mp: 206.8&#x02013;209.8 &#x000b0;C; [&#x003b1;]<sub>D</sub><sup>24</sup> = +10.2 (<i>c</i> 0.173, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 10.90 (s, 1H), 7.63 (s, 1H), 6.87 (s, 1H), 6.57 (apparent dd, <i>J</i> = 1.8, 3.4 Hz, 1H), 4.76 (br s, 1H), 4.08 (br s, 0.5H), 3.24 (br s, 0.5H), 2.23 (s, 1H), 1.70&#x02013;1.50 (m, 4H), 1.45&#x02013;1.29 (m, 4H), 1.20&#x02013;1.11 (m, 1H), 1.09&#x02013;0.97 (m, 2H), 0.81&#x02013;0.63 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) &#x003b4; 169.24, 144.81, 143.47, 140.15, 114.87, 112.07, 57.74, 46.05, 38.57, 37.24, 36.83, 36.02, 29.60, 28.65, 16.79. Purity: 91.8%. LCMS retention time: 3.320 min. HRMS <i>m</i>/<i>z</i> calculated for C<sub>15</sub>H<sub>20</sub>N<sub>3</sub>OS [M<sup>+</sup>+H]: 290.1322, found 290.1321.</p></div></div><div id="ml308.s12"><h2 id="_ml308_s12_">3. Results</h2><div id="ml308.s13"><h3>3.1. Dose Response Curves for Probe</h3><p>The effect of KCNK9 inhibitors were titrated in a thallium flux assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504846" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504846</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/540322" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 540322</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/588724" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 588724</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623887" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623887</a>) similar to that used in the primary high-throughput screen (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488922" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 488922</a>) and further examined in automated electrophysiology experiments (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623898" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623898</a>).</p><div id="ml308.s14"><h4>Fluorescent assay</h4><p>The primary HTS assay utilized a thallium sensitive dye to measure potassium channel activity in a HEK293 cell line expressing KCNK9 (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492992" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 492992</a>). An extracellular solution containing both thallium and potassium was added triggering thallium influx into the cells. The electrochemical gradient drives the net inflow of thallium down its concentration gradient and the accumulation of intracellular thallium increases the fluorescence of the FluxOR&#x02122; dye (Invitrogen). <a class="figpopup" href="/books/NBK133427/figure/ml308.f4/?report=objectonly" target="object" rid-figpopup="figml308f4" rid-ob="figobml308f4">Figure 4</a> illustrates the typical titratable inhibition of KCNK9-mediated thallium influx by <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>. After normalization to buffer controls (0% inhibition) and KCNK9-independent thallium signal (100% inhibition) the resulting dose depended curve was fit with an IC<sub>50</sub> value of 0.128 &#x003bc;M. In replicate experiments (n=4), the mean &#x000b1; SD of the determined IC<sub>50</sub> values were 0.128 &#x000b1; 0.040 &#x003bc;M.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml308f4" co-legend-rid="figlgndml308f4"><a href="/books/NBK133427/figure/ml308.f4/?report=objectonly" target="object" title="Figure 4" class="img_link icnblk_img figpopup" rid-figpopup="figml308f4" rid-ob="figobml308f4"><img class="small-thumb" src="/books/NBK133427/bin/ml308f4.gif" src-large="/books/NBK133427/bin/ml308f4.jpg" alt="Figure 4. Inhibition of thallium signal in KCNK9-expressing cells by ML308." /></a><div class="icnblk_cntnt" id="figlgndml308f4"><h4 id="ml308.f4"><a href="/books/NBK133427/figure/ml308.f4/?report=objectonly" target="object" rid-ob="figobml308f4">Figure 4</a></h4><p class="float-caption no_bottom_margin">Inhibition of thallium signal in KCNK9-expressing cells by ML308. Left panel (A) displays fluorescent signals in individual wells in the presence of different concentrations of ML308. Concentration response curve normalized to controls showing inhibition <a href="/books/NBK133427/figure/ml308.f4/?report=objectonly" target="object" rid-ob="figobml308f4">(more...)</a></p></div></div></div><div id="ml308.s15"><h4>Automated Electrophysiological assay</h4><p>To further validate the compound effect on KCNK9 channels, an electrophysiological assay was developed on the Qpatch 16&#x000d7; automated electrophysiology instrument (Sophion) (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623898" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623898</a>). Whole cell voltage clamp recordings were made using the same KCNK9 expressing HEK293 cells used in the primary screen.</p><p>Concentration response curves were generated from data collected at &#x02212;30 mV and normalized to 100% inhibition determined through the application of 2 mM barium in 140 mM potassium solution at pH 5.8. This protocol was used to evaluate select compounds and the data has been collected. <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> effect on the KCNK9 channel was evaluated using this method. <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> inhibited KCNK9 currents with an IC<sub>50</sub> of 0.41 &#x000b1; 0.05 &#x003bc;M in multiple experiments (n=8).</p></div></div><div id="ml308.s16"><h3>3.2. Cellular Activity</h3><p>The primary HTS assay and all secondary assays are cell-based assays, indicating that <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> can gain access to its molecular target when applied to cells. The compound did not exhibit acute toxicity in cell-based assays at concentrations up to 30 &#x003bc;M.</p></div><div id="ml308.s17"><h3>3.3. Profiling Assays</h3><p><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> (CID 3745727) is a new chemical entity and has not yet been tested in other MLPCN assays as a pure diastereomer. To more fully characterize this novel KCNK9 inhibitor, <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was tested on Ricerca&#x02019;s (formerly MDS Pharma&#x02019;s) Lead Profiling Screen which includes a binding assay panel of 68 GPCRs, ion channels and transporters screened at 10 &#x003bc;M. <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was found to displace radioligand binding, leading to &#x0003e; 50% inhibition on 4 of the 68 targets assessed (<a class="figpopup" href="/books/NBK133427/table/ml308.t2/?report=objectonly" target="object" rid-figpopup="figml308t2" rid-ob="figobml308t2">Table 2</a>). Included in the Ricerca screening panel are a number of ion channels (Calcium Channel, L-Type and N-Type; Potassium channel [K<sub>ATP</sub>]; Potassium channel [hERG]) showing the selectivity profile for <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml308t2"><a href="/books/NBK133427/table/ml308.t2/?report=objectonly" target="object" title="Table 2" class="img_link icnblk_img figpopup" rid-figpopup="figml308t2" rid-ob="figobml308t2"><img class="small-thumb" src="/books/NBK133427/table/ml308.t2/?report=thumb" src-large="/books/NBK133427/table/ml308.t2/?report=previmg" alt="Table 2. Targets from Ricerca profiling that showed &#x0003e; 50% inhibition." /></a><div class="icnblk_cntnt"><h4 id="ml308.t2"><a href="/books/NBK133427/table/ml308.t2/?report=objectonly" target="object" rid-ob="figobml308t2">Table 2</a></h4><p class="float-caption no_bottom_margin">Targets from Ricerca profiling that showed &#x0003e; 50% inhibition. </p></div></div><p><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> was determined to inhibit endothelin (ET<sub>A</sub>), melatonin, and kappa opioid receptors, all members of the G-protein superfamily (66%, 64%. and 67% inhibition, respectively). Of the ion channels screened against, only significant inhibition was determined against the calcium channel L-Type (79% inhibition). The significance of these will be assessed by determining individual IC<sub>50</sub> values in future work.</p></div></div><div id="ml308.s18"><h2 id="_ml308_s18_">4. Discussion</h2><div id="ml308.s19"><h3>4.1. Comparison to Existing Art and How the New Probe is an Improvement</h3><p>Compounds with known KCNK9 inhibitory activity at the start and for the better duration of this MLPCN project were lacking in significant KCNK9 potency and/or practical selectivity that limits them as tools for independently investigating the role of KCNK9 across an array of pharmacological processes. The development of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> represents a significant improvement over these compounds as it possesses submicromolar potency for KCNK9 and demonstrates selectivity over hERG, Kir2.1, KCNQ2, and the related channel, KCNK3. <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> is a best in class probe in this context.</p><p>In the late stages of this MLPCN project, two articles were published that described compounds with reported KCNK9 and KCNK3 inhibition data. The Streit, et al. (2011) compound, <b>A1899</b>,<sup><a class="bibr" href="#ml308.r13" rid="ml308.r13">13</a></sup> possessed striking similarity to compounds appearing in a Sanofi-Aventis patent<sup><a class="bibr" href="#ml308.r14" rid="ml308.r14">14</a></sup> describing voltage-gated potassium channel inhibitors and was determined to have 10-fold selectivity for KCNK3 over KCNK9. The Coburn/Merck compound, <b>C23</b>, was published in January 2012 and had a reported KCNK9 potency of 35 nM, representing a 10-fold selectivity over KCNK3.<sup><a class="bibr" href="#ml308.r15" rid="ml308.r15">15</a></sup> The reported data for this compound was obtained using a different automated electrophysiology assay system at Merck. These two compounds were synthesized by the KU SCC for comparison to the probe <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> described herein. Using a fluorescent thallium influx assay for KCNK9 (human) activity, A1899 exhibited an IC<sub>50</sub> value of 3.2 &#x003bc;M while the measured IC<sub>50</sub> for C23 was 190 nM. Selectivity versus the closely related two-pore-domain potassium channel, KCNK3 (rat), was also determined using a thallium influx assay. A1899 and C23 inhibited KCNK3 channels with observed IC<sub>50</sub> values of 200 nM and 4 nM, respectively. Thus, both A1899 and C23 preferentially blocked KCNK3, rather than KCNK9 channels. In contrast, <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> preferentially blocked KCNK9 channels, inhibited KCNK9 with potency similar to C23 and displayed more than 20-fold better IC<sub>50</sub> for KCNK9 than what is observed for A1899.</p><p><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> is a small molecule with submicromolar potency for KCNK9, ~ 8-fold selectivity over KCNK3, and with little-to-no liability on Kir2.1, hERG, and KCNQ2. Moreover, the SAR effort has revealed some intriguing promise for future analogs: (1) simplification of the ethyl norbornyl system is acceptable (<i>e.g.</i> (<i>R</i>)-methyl-CH<sub>2</sub>-cyclohexyl), thus permitting a more streamlined synthesis; (2) of the diastereomerically-pure, norbornyl amines surveyed so far, the (R)-exo, (S)-methyl CH<sub>2</sub>-norbornyl system has emerged as an important moiety in tuning the selectivity between KCNK9 and KCNK3 without engaging other channels. Late isolated, related, diasteromerically-pure norbornyl amines have been generated and are being assessed for their effects; (3)<i>N</i>-alkylated thiotriazoles may represent a powerful combination of obtaining the desired KCNK9 profile and eliminating the potential liabilities of a thiol-containing thiotriazole.</p></div></div><div id="ml308.s20"><h2 id="_ml308_s20_">5. References</h2><dl class="temp-labeled-list"><dl class="bkr_refwrap"><dt>1.</dt><dd><div class="bk_ref" id="ml308.r1">Bayliss DA, Barrett PQ. Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. <span><span class="ref-journal">Trends Pharmacol Sci. </span>2008;<span class="ref-vol">29</span>:566&ndash;75.</span> [<a href="/pmc/articles/PMC2777628/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2777628</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18823665" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18823665</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>2.</dt><dd><div class="bk_ref" id="ml308.r2">Es-Salah-Lamoureux Z, Steele DF, Fedida D. Research into the therapeutic roles of two-pore-domain potassium channels. <span><span class="ref-journal">Trends Pharmacol Sci. </span>2010;<span class="ref-vol">12</span>:587&ndash;95.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20951446" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20951446</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>3.</dt><dd><div class="bk_ref" id="ml308.r3">Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T. Oncogenic potential of TASK3 (KCNK9) depends on K+ channel function. <span><span class="ref-journal">Proc Natl Acad Sci USA. </span>2003;<span class="ref-vol">100</span>:7803&ndash;7.</span> [<a href="/pmc/articles/PMC164668/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC164668</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12782791" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12782791</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>4.</dt><dd><div class="bk_ref" id="ml308.r4">Heitzmann D, Derand R, Jungbauer S, Bandulik S, Sterner C, Schweda F, El Wakil A, Lalli E, Guy N, Mengual R, Reichold M, Tegtmeier I, Bendahhou S, Gomez-Sanchez CE, Aller MI, Wisden W, Weber A, Lesage F, Warth R, Barhanin J. Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. <span><span class="ref-journal">EMBO J. </span>2008;<span class="ref-vol">27</span>:179&ndash;187.</span> [<a href="/pmc/articles/PMC2206116/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2206116</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18034154" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18034154</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>5.</dt><dd><div class="bk_ref" id="ml308.r5">Gotter AL, Santarelli VP, Doran SM, Tannenbaum PL, Kraus RL, Rosahl TW, Meziane H, Montial M, Reiss DR, Wessner K, McCampbell A, Stevens J, Brunner J, Fox SV, Uebele VN, Bayliss DA, Winrow CJ, Renger JJ. TASK-3 as a potential antidepressant target. <span><span class="ref-journal">Brain Res. </span>2011;<span class="ref-vol">1416</span>:69&ndash;79.</span> [<a href="/pmc/articles/PMC3179828/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3179828</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21885038" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21885038</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>6.</dt><dd><div class="bk_ref" id="ml308.r6">Experiments performed by and data obtained from Sanford Burnham, Layton Smith&#x02019;s laboratory.</div></dd></dl><dl class="bkr_refwrap"><dt>7.</dt><dd><div class="bk_ref" id="ml308.r7">Experiments performed by and data obtained from the KU SCC.</div></dd></dl><dl class="bkr_refwrap"><dt>8.</dt><dd><div class="bk_ref" id="ml308.r8">Desimoni G, Faita G, Guala M, Pratelli C. An efficient catalyst for highly enantioselective exo-Diels-Alder reaction between alkenoyl-1,3-oxazolidin-2-ones and cyclopentadiene. <span><span class="ref-journal">Tetrahedron. </span>2002;<span class="ref-vol">58</span>:2929&ndash;2935.</span></div></dd></dl><dl class="bkr_refwrap"><dt>9.</dt><dd><div class="bk_ref" id="ml308.r9">Evans David A, Miller Scott J, Lectka Thomas, von Matt Peter. Chiral Bis(oxazoline)copper(II) Complexes as Lewis Acid Catalysts for the Enantioselective Diels&#x02013;Alder Reaction. <span><span class="ref-journal">JACS. </span>1999;<span class="ref-vol">121</span>:7559&ndash;7573.</span></div></dd></dl><dl class="bkr_refwrap"><dt>10a.</dt><dd><div class="bk_ref" id="ml308.r10a">Optical rotation was determined for the endo
cycloadduct: [&#x003b1;]<sub>D</sub><sup>20</sup> = 153.2 (c = 0.83
in CHCl<sub>3</sub>); the optical rotation of the enantiomer has been reported: [&#x003b1;]<sub>D</sub><sup>20</sup> = &#x02212;160 (c = 0.83 in CHCl<sub>3</sub>.</div></dd></dl><dl class="bkr_refwrap"><dt>10b.</dt><dd><div class="bk_ref" id="ml308.r10b">Optical rotation was determined for the exo cycloadduct: [&#x003b1;]<sub>D</sub><sup>20</sup> = &#x02212;17.8 (c = 0.54 in CHCl<sub>3</sub>), Lit. [&#x003b1;]<sub>D</sub><sup>25</sup> = &#x02212;17.3 (c = 0.54 in CHCl<sub>3</sub>).</div></dd></dl><dl class="bkr_refwrap"><dt>11.</dt><dd><div class="bk_ref" id="ml308.r11">Fuerst Douglas E, Jacobsen Eric N. <span><span class="ref-journal">J. Am. Chem. Soc. </span>2005;<span class="ref-vol">127</span>:8964&ndash;8965.</span> [<a href="/pmc/articles/PMC3166885/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3166885</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15969569" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15969569</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>12.</dt><dd><div class="bk_ref" id="ml308.r12">Jonsson D, Warrington BH, Ladlow M. Automated Flow-Through Synthesis of Heterocyclic Thioethers. <span><span class="ref-journal">J. Comb. Chem. </span>2004;<span class="ref-vol">6</span>:584&ndash;595.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15244420" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15244420</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>13.</dt><dd><div class="bk_ref" id="ml308.r13">Streit AK, Netter MF, Kempf F, Walecki M, Rinne S, Bollepalli MK, Renigunta V, Daut T, Baukrowitz T, Sansom MSP, Stansfeld PJ, Decher N. A Specific Two-pore Domain Potassium Channel Blocker Defines the Structure of the TASK-1 Open Pore. <span><span class="ref-journal">J Biol Chem. </span>2011;<span class="ref-vol">286</span>:13977&ndash;13994.</span> [<a href="/pmc/articles/PMC3077598/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3077598</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21362619" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21362619</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>14.</dt><dd><div class="bk_ref" id="ml308.r14">Brendel J, Goegelein H, Wirth K, Kamm W. Inhibitors of the TASK1 and TASK3 Ion Channel. US20090149496. <span>2009</span> (Sanofi-Aventis)</div></dd></dl><dl class="bkr_refwrap"><dt>15.</dt><dd><div class="bk_ref" id="ml308.r15">Coburn CA, Luo Y, Cui M, Wang J, Soll R, Dong J, Hu B, Lyon MA, Santarelli VP, Kraus RL, Gregan Y, Wang Y, Fox SV, Binns J, Doran SM, Reiss DR, Tannenbaum PL, Gotter AL, Meinke PT, Renger JJ. Discovery of a pharmacologically active antagonist of the two-pore-domain potassium channel K2P9.1 (TASK-3). <span><span class="ref-journal">ChemMedChem. </span>2012;<span class="ref-vol">7</span>:123&ndash;133.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21916012" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21916012</span></a>]</div></dd></dl></dl></div><div id="bk_toc_contnr"></div></div></div><div class="fm-sec"><h2 id="_NBK133427_pubdet_">Publication Details</h2><h3>Author Information and Affiliations</h3><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Melissa R. Miller</span>,<sup>1</sup> <span itemprop="author">Beiyan Zou</span>,<sup>1</sup> <span itemprop="author">Jie Shi</span>,<sup>1</sup> <span itemprop="author">Daniel P. Flaherty</span>,<sup>2</sup> <span itemprop="author">Denise S. Simpson</span>,<sup>2</sup> <span itemprop="author">Tuanli Yao</span>,<sup>2</sup> <span itemprop="author">Brooks E. Maki</span>,<sup>2</sup> <span itemprop="author">Victor W. Day</span>,<sup>3</sup> <span itemprop="author">Justin T. Douglas</span>,<sup>4</sup> <span itemprop="author">Meng Wu</span>,<sup>1,5</sup> <span itemprop="author">Owen B. McManus</span>,<sup>1,5</sup> <span itemprop="author">Jennifer E. Golden</span>,<sup>2</sup> <span itemprop="author">Jeffrey Aub&#x000e9;</span>,<sup>2,6</sup> and <span itemprop="author">Min Li</span><sup>1,5</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup>
Johns Hopkins University, School of Medicine, <i>Department of Neuroscience</i>, Baltimore, MD 21205</div><div class="affiliation"><sup>2</sup>
University of Kansas Specialized Chemistry Center, Delbert M. Shankel Structural Biology Center, Lawrence KS 66047</div><div class="affiliation"><sup>3</sup>
University of Kansas, X-ray Crystallography Laboratory, Malott Hall, Lawrence, KS 66045</div><div class="affiliation"><sup>4</sup>
University of Kansas, Nuclear Magnetic Resonance Laboratory, Malott Hall, Lawrence, KS 66045</div><div class="affiliation"><sup>5</sup>
Johns Hopkins Ion Channel Center, Baltimore, MD 21205</div><div class="affiliation"><sup>6</sup>
University of Kansas, Department of Medicinal Chemistry, Malott Hall, Lawrence, KS 66045</div><h3>Publication History</h3><p class="small">Received: <span itemprop="datePublished">April 16, 2012</span>; Last Update: <span itemprop="dateModified">February 28, 2013</span>.</p><h3>Copyright</h3><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div></div><h3>Publisher</h3><p>National Center for Biotechnology Information (US), Bethesda (MD)</p><h3>NLM Citation</h3><p>Miller MR, Zou B, Shi J, et al. Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9. 2012 Apr 16 [Updated 2013 Feb 28]. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-. <span class="bk_cite_avail"></span></p></div><div class="small-screen-prev"><a href="/books/n/mlprobe/ml309/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="small-screen-next"><a href="/books/n/mlprobe/ml307/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></article><article data-type="fig" id="figobml308fu1"><div id="ml308.fu1" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu1.jpg" alt="Image ml308fu1" /></div></div></article><article data-type="table-wrap" id="figobml308tu1"><div id="ml308.tu1" class="table"><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133427/table/ml308.tu1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml308.tu1_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_ml308.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CID/ML#</th><th id="hd_h_ml308.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Target Name</th><th id="hd_h_ml308.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Thallium flux assay IC<sub>50</sub> (nM) [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623887" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623887</a>]</th><th id="hd_h_ml308.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Anti-target Names</th><th id="hd_h_ml308.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Anti-target percent inhibition at 10 &#x003bc;M</th><th id="hd_h_ml308.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Anti-target thallium assay IC<sub>50</sub> (&#x003bc;M) [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623894" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623894</a>]</th><th id="hd_h_ml308.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Thallium assay flux (FDSS)<br />Fold Selectivity<sup>*</sup></th><th id="hd_h_ml308.tu1_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">KCNK9 Qpatch: IC<sub>50</sub> (nM) [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623898" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623898</a>]</th><th id="hd_h_ml308.tu1_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">KCNK3 Qpatch: IC<sub>50</sub> (nM) [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/134418982" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 134418982</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/623915" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 623915</a>]</th><th id="hd_h_ml308.tu1_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Qpatch Fold Selectivity</th></tr></thead><tbody><tr><td headers="hd_h_ml308.tu1_1_1_1_1" rowspan="5" colspan="1" style="text-align:center;vertical-align:middle;">CID 56928204<br /><br /><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a></td><td headers="hd_h_ml308.tu1_1_1_1_2" rowspan="5" colspan="1" style="text-align:center;vertical-align:middle;">KCNK9</td><td headers="hd_h_ml308.tu1_1_1_1_3" rowspan="5" colspan="1" style="text-align:center;vertical-align:middle;">130 nM</td><td headers="hd_h_ml308.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Kir2.1</td><td headers="hd_h_ml308.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">20.55</td><td headers="hd_h_ml308.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">ND</td><td headers="hd_h_ml308.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td><td headers="hd_h_ml308.tu1_1_1_1_8" rowspan="5" colspan="1" style="text-align:center;vertical-align:middle;">413</td><td headers="hd_h_ml308.tu1_1_1_1_9" rowspan="5" colspan="1" style="text-align:center;vertical-align:middle;">3200</td><td headers="hd_h_ml308.tu1_1_1_1_10" rowspan="5" colspan="1" style="text-align:center;vertical-align:middle;">7.7</td></tr><tr><td headers="hd_h_ml308.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">hERG</td><td headers="hd_h_ml308.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">9.04</td><td headers="hd_h_ml308.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">ND</td><td headers="hd_h_ml308.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml308.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">KCNQ2</td><td headers="hd_h_ml308.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x02212;3.99</td><td headers="hd_h_ml308.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">ND</td><td headers="hd_h_ml308.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml308.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">KCNK3</td><td headers="hd_h_ml308.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">57.50</td><td headers="hd_h_ml308.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6.6</td><td headers="hd_h_ml308.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">51</td></tr><tr><td headers="hd_h_ml308.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">KCNK9 non-induced (parental)</td><td headers="hd_h_ml308.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6.94</td><td headers="hd_h_ml308.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">ND</td><td headers="hd_h_ml308.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>*</dt><dd><div id="ml308.tfn1"><p class="no_margin">Selectivity = anti-target IC<sub>50</sub>/KCNK9 IC<sub>50</sub></p></div></dd></dl><dl class="bkr_refwrap"><dt></dt><dd><div id="ml308.tfn2"><p class="no_margin">ND = not determined due to insufficient inhibition to generate a valid IC<sub>50</sub> value</p></div></dd></dl><dl class="bkr_refwrap"><dt></dt><dd><div id="ml308.tfn3"><p class="no_margin">NA = not applicable</p></div></dd></dl></dl></div></div></div></article><article data-type="fig" id="figobml308fu2"><div id="ml308.fu2" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu2.jpg" alt="Image ml308fu2" /></div></div></article><article data-type="fig" id="figobml308f1"><div id="ml308.f1" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%201.%20Graph%20depicting%20stability%20of%20ML308%20after%2048%20h%20in%20PBS%20and%20with%20PBS%2FACN.&amp;p=BOOKS&amp;id=133427_ml308f1.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133427/bin/ml308f1.jpg" alt="Figure 1. Graph depicting stability of ML308 after 48 h in PBS and with PBS/ACN." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 1</span><span class="title">Graph depicting stability of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> after 48 h in PBS and with PBS/ACN</span></h3></div></article><article data-type="fig" id="figobml308f2"><div id="ml308.f2" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%202.%20Chemical%20stability%20of%20ML308%20over%208%20h%20in%20the%20presence%20of%205-fold%20glutathione%20or%20dithiothreitol.&amp;p=BOOKS&amp;id=133427_ml308f2.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133427/bin/ml308f2.jpg" alt="Figure 2. Chemical stability of ML308 over 8 h in the presence of 5-fold glutathione or dithiothreitol." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 2</span><span class="title">Chemical stability of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> over 8 h in the presence of 5-fold glutathione or dithiothreitol</span></h3></div></article><article data-type="table-wrap" id="figobml308t1"><div id="ml308.t1" class="table"><h3><span class="label">Table 1</span><span class="title">Percent remaining of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> at the conclusion of the experiment (8h)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133427/table/ml308.t1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml308.t1_lrgtbl__"><table class="no_top_margin"><thead><tr><th id="hd_h_ml308.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Test Condition</th><th id="hd_h_ml308.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Run</th><th id="hd_h_ml308.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Percent <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> Remaining after 8 h</th><th id="hd_h_ml308.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Averaged Percent<br /><br /><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> Remaining after 8 h</th></tr></thead><tbody><tr><td headers="hd_h_ml308.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> without nucleophile (control)</td><td headers="hd_h_ml308.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">1</td><td headers="hd_h_ml308.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">87.05</td><td headers="hd_h_ml308.t1_1_1_1_4" rowspan="2" colspan="1" style="text-align:center;vertical-align:middle;">84.78</td></tr><tr><td headers="hd_h_ml308.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> without nucleophile (control)</td><td headers="hd_h_ml308.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">2</td><td headers="hd_h_ml308.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">82.50</td></tr><tr><td headers="hd_h_ml308.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> with 5X GSH</td><td headers="hd_h_ml308.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">1</td><td headers="hd_h_ml308.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">89.76</td><td headers="hd_h_ml308.t1_1_1_1_4" rowspan="2" colspan="1" style="text-align:center;vertical-align:middle;">91.35</td></tr><tr><td headers="hd_h_ml308.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> with 5X GSH</td><td headers="hd_h_ml308.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">2</td><td headers="hd_h_ml308.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">92.93</td></tr><tr><td headers="hd_h_ml308.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> with 5X DTT</td><td headers="hd_h_ml308.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">1</td><td headers="hd_h_ml308.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">94.26</td><td headers="hd_h_ml308.t1_1_1_1_4" rowspan="2" colspan="1" style="text-align:center;vertical-align:middle;">93.88</td></tr><tr><td headers="hd_h_ml308.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"><a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> with 5X DTT</td><td headers="hd_h_ml308.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">2</td><td headers="hd_h_ml308.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">93.50</td></tr></tbody></table></div></div></article><article data-type="fig" id="figobml308f3"><div id="ml308.f3" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%203.%20General%20synthetic%20route%20to%20probe%20ML308.&amp;p=BOOKS&amp;id=133427_ml308f3.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133427/bin/ml308f3.jpg" alt="Figure 3. General synthetic route to probe ML308." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 3</span><span class="title">General synthetic route to probe <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a></span></h3></div></article><article data-type="fig" id="figobml308fu3"><div id="ml308.fu3" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu3.jpg" alt="Image ml308fu3" /></div></div></article><article data-type="fig" id="figobml308fu4"><div id="ml308.fu4" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu4.jpg" alt="Image ml308fu4" /></div></div></article><article data-type="fig" id="figobml308fu5"><div id="ml308.fu5" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu5.jpg" alt="Image ml308fu5" /></div></div></article><article data-type="fig" id="figobml308fu6"><div id="ml308.fu6" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu6.jpg" alt="Image ml308fu6" /></div></div></article><article data-type="fig" id="figobml308fu7"><div id="ml308.fu7" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu7.jpg" alt="Image ml308fu7" /></div></div></article><article data-type="fig" id="figobml308fu8"><div id="ml308.fu8" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu8.jpg" alt="Image ml308fu8" /></div></div></article><article data-type="fig" id="figobml308fu9"><div id="ml308.fu9" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu9.jpg" alt="Image ml308fu9" /></div></div></article><article data-type="fig" id="figobml308fu10"><div id="ml308.fu10" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu10.jpg" alt="Image ml308fu10" /></div></div></article><article data-type="fig" id="figobml308fu11"><div id="ml308.fu11" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu11.jpg" alt="Image ml308fu11" /></div></div></article><article data-type="fig" id="figobml308fu12"><div id="ml308.fu12" class="figure"><div class="graphic"><img data-src="/books/NBK133427/bin/ml308fu12.jpg" alt="Image ml308fu12" /></div></div></article><article data-type="fig" id="figobml308f4"><div id="ml308.f4" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%204.%20Inhibition%20of%20thallium%20signal%20in%20KCNK9-expressing%20cells%20by%20ML308.&amp;p=BOOKS&amp;id=133427_ml308f4.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133427/bin/ml308f4.jpg" alt="Figure 4. Inhibition of thallium signal in KCNK9-expressing cells by ML308." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 4</span><span class="title">Inhibition of thallium signal in KCNK9-expressing cells by <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a></span></h3><div class="caption"><p>Left panel (A) displays fluorescent signals in individual wells in the presence of different concentrations of <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a>. Concentration response curve normalized to controls showing inhibition of thallium influx by <a href="/pcsubstance/?term=ML308[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML308</a> is shown in (B).</p></div></div></article><article data-type="table-wrap" id="figobml308t2"><div id="ml308.t2" class="table"><h3><span class="label">Table 2</span><span class="title">Targets from Ricerca profiling that showed &#x0003e; 50% inhibition</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133427/table/ml308.t2/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml308.t2_lrgtbl__"><table class="no_top_margin"><thead><tr><th id="hd_h_ml308.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Cat #</th><th id="hd_h_ml308.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Assay Name</th><th id="hd_h_ml308.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Species</th><th id="hd_h_ml308.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Conc.</th><th id="hd_h_ml308.t2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">% Inh.</th></tr></thead><tbody><tr><td headers="hd_h_ml308.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">214600</td><td headers="hd_h_ml308.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Calcium Channel L-Type, Digydropyridine</td><td headers="hd_h_ml308.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Rat</td><td headers="hd_h_ml308.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">10&#x003bc;M</td><td headers="hd_h_ml308.t2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">79</td></tr><tr><td headers="hd_h_ml308.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">224010</td><td headers="hd_h_ml308.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Edothelin ET<sub>A</sub></td><td headers="hd_h_ml308.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Hum</td><td headers="hd_h_ml308.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">10&#x003bc;M</td><td headers="hd_h_ml308.t2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">66</td></tr><tr><td headers="hd_h_ml308.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">251600</td><td headers="hd_h_ml308.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Melatonin MT<sub>1</sub></td><td headers="hd_h_ml308.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Hum</td><td headers="hd_h_ml308.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">10&#x003bc;M</td><td headers="hd_h_ml308.t2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">64</td></tr><tr><td headers="hd_h_ml308.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">260210</td><td headers="hd_h_ml308.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Opiate k(OP2, KOP)</td><td headers="hd_h_ml308.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Hum</td><td headers="hd_h_ml308.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">10&#x003bc;M</td><td headers="hd_h_ml308.t2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">67</td></tr></tbody></table></div></div></article></div><div id="jr-scripts"><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/libs.min.js"> </script><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.min.js"> </script></div></div>
<!-- Book content -->
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal107 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3968615.js" snapshot="books"></script></body>
</html>