nih-gov/www.ncbi.nlm.nih.gov/books/n/mlprobe/ml294/index.html?report=reader

1059 lines
144 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" class="no-js no-jr">
<head>
<!-- For pinger, set start time and add meta elements. -->
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- Logger begin -->
<meta name="ncbi_db" content="books">
<meta name="ncbi_pdid" content="book-part">
<meta name="ncbi_acc" content="NBK133443">
<meta name="ncbi_domain" content="mlprobe">
<meta name="ncbi_report" content="reader">
<meta name="ncbi_type" content="fulltext">
<meta name="ncbi_objectid" content="">
<meta name="ncbi_pcid" content="/NBK133443/?report=reader">
<meta name="ncbi_pagename" content="Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-&beta;) - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf">
<meta name="ncbi_bookparttype" content="chapter">
<meta name="ncbi_app" content="bookshelf">
<!-- Logger end -->
<!--component id="Page" label="meta"/-->
<script type="text/javascript" src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.boots.min.js"> </script><title>Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-&beta;) - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf</title>
<meta charset="utf-8">
<meta name="apple-mobile-web-app-capable" content="no">
<meta name="viewport" content="initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no">
<meta name="jr-col-layout" content="auto">
<meta name="jr-prev-unit" content="/books/n/mlprobe/ml296/?report=reader">
<meta name="jr-next-unit" content="/books/n/mlprobe/ml293/?report=reader">
<meta name="bk-toc-url" content="/books/n/mlprobe/?report=toc">
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE">
<meta name="citation_inbook_title" content="Probe Reports from the NIH Molecular Libraries Program [Internet]">
<meta name="citation_title" content="Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-&beta;)">
<meta name="citation_publisher" content="National Center for Biotechnology Information (US)">
<meta name="citation_date" content="2013/02/25">
<meta name="citation_author" content="Ku-Lung Hsu">
<meta name="citation_author" content="Katsunori Tsuboi">
<meta name="citation_author" content="Anna E Speers">
<meta name="citation_author" content="Steven J Brown">
<meta name="citation_author" content="Timothy Spicer">
<meta name="citation_author" content="Virneliz Fernandez-Vega">
<meta name="citation_author" content="Jill Ferguson">
<meta name="citation_author" content="Benjamin F Cravatt">
<meta name="citation_author" content="Peter Hodder">
<meta name="citation_author" content="Hugh Rosen">
<meta name="citation_pmid" content="23658950">
<meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK133443/">
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/">
<meta name="DC.Title" content="Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-&beta;)">
<meta name="DC.Type" content="Text">
<meta name="DC.Publisher" content="National Center for Biotechnology Information (US)">
<meta name="DC.Contributor" content="Ku-Lung Hsu">
<meta name="DC.Contributor" content="Katsunori Tsuboi">
<meta name="DC.Contributor" content="Anna E Speers">
<meta name="DC.Contributor" content="Steven J Brown">
<meta name="DC.Contributor" content="Timothy Spicer">
<meta name="DC.Contributor" content="Virneliz Fernandez-Vega">
<meta name="DC.Contributor" content="Jill Ferguson">
<meta name="DC.Contributor" content="Benjamin F Cravatt">
<meta name="DC.Contributor" content="Peter Hodder">
<meta name="DC.Contributor" content="Hugh Rosen">
<meta name="DC.Date" content="2013/02/25">
<meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK133443/">
<meta name="description" content="Endocannabinoids (ECs) are a unique group of lipids that function as chemical messengers in the nervous system. The two principle ECs thus far identified in mammals are N-arachidonoyl-ethanolamine (anandamide) and 2-arachidonoyl-glycerol (2-AG). These compounds have been implicated in various physiological and pathological functions including appetite, pain, sensation, memory, and addiction. Because ECs are synthesized and released on demand and then rapidly degraded to terminate signaling, the metabolic pathways that govern EC turnover directly influence the magnitude and duration of neuronal signaling events. There is strong evidence that two serine hydrolases, diacylglycerol lipase-alpha and -beta (DAGL-&alpha; and -&beta;) function as 2-AG synthetic enzymes both in vitro and in vivo. However, because constitutive gene disruption, the only currently available means to investigate DAGL-&alpha;/&beta; biology due to a lack of selective chemical inhibitors, can result in compensatory effects and network-wide changes, there is still uncertainty surrounding the extent to which DAGL-&alpha;/&beta; contribute to 2-AG-mediated signaling. In an effort to provide chemical tools for manipulation of DAGL-&beta; activity, we initiated a competitive activity-based protein profiling (ABPP) screen of triazole urea compounds to identify selective enzyme inhibitors. This campaign, made possible by previous inhibitor development efforts for LYPLA1/2 (ML211), PAFAH2 (ML225), and ABHD11 (ML226) based on the triazole urea scaffold, yielded the medchem optimized probe ML294 (SID 125269120). ML294 is highly potent against its target enzyme (IC50 = 56 nM in vitro; 12 nM in situ), and is active in vivo, showing both oral bioavailability and blood-brain barrier penetration. Out of more than 20 serine hydrolases (SHs) profiled by gel-based competitive ABPP, ML294 is observed to have one anti-target, alpha/beta hydrolase domain-containing protein 6 (ABHD6). Otherwise, ML294 is at least 35-fold selective for all other brain SHs (approximately 20) assessed by gel-based competitive ABPP and 7-fold selective vs. its closest homolog, DAGL-&alpha;. To control for ABHD6-directed activity in biological studies, we also developed a structurally related ABHD6-selective control &ldquo;anti-probe&rdquo;, ML295, also based on the triazole urea scaffold. The complete properties, characterization, and synthesis of ML294 are detailed in this report, and full details of ABHD6 inhibitors are detailed in the Probe Report for ML295 and ML296.">
<meta name="og:title" content="Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-&beta;)">
<meta name="og:type" content="book">
<meta name="og:description" content="Endocannabinoids (ECs) are a unique group of lipids that function as chemical messengers in the nervous system. The two principle ECs thus far identified in mammals are N-arachidonoyl-ethanolamine (anandamide) and 2-arachidonoyl-glycerol (2-AG). These compounds have been implicated in various physiological and pathological functions including appetite, pain, sensation, memory, and addiction. Because ECs are synthesized and released on demand and then rapidly degraded to terminate signaling, the metabolic pathways that govern EC turnover directly influence the magnitude and duration of neuronal signaling events. There is strong evidence that two serine hydrolases, diacylglycerol lipase-alpha and -beta (DAGL-&alpha; and -&beta;) function as 2-AG synthetic enzymes both in vitro and in vivo. However, because constitutive gene disruption, the only currently available means to investigate DAGL-&alpha;/&beta; biology due to a lack of selective chemical inhibitors, can result in compensatory effects and network-wide changes, there is still uncertainty surrounding the extent to which DAGL-&alpha;/&beta; contribute to 2-AG-mediated signaling. In an effort to provide chemical tools for manipulation of DAGL-&beta; activity, we initiated a competitive activity-based protein profiling (ABPP) screen of triazole urea compounds to identify selective enzyme inhibitors. This campaign, made possible by previous inhibitor development efforts for LYPLA1/2 (ML211), PAFAH2 (ML225), and ABHD11 (ML226) based on the triazole urea scaffold, yielded the medchem optimized probe ML294 (SID 125269120). ML294 is highly potent against its target enzyme (IC50 = 56 nM in vitro; 12 nM in situ), and is active in vivo, showing both oral bioavailability and blood-brain barrier penetration. Out of more than 20 serine hydrolases (SHs) profiled by gel-based competitive ABPP, ML294 is observed to have one anti-target, alpha/beta hydrolase domain-containing protein 6 (ABHD6). Otherwise, ML294 is at least 35-fold selective for all other brain SHs (approximately 20) assessed by gel-based competitive ABPP and 7-fold selective vs. its closest homolog, DAGL-&alpha;. To control for ABHD6-directed activity in biological studies, we also developed a structurally related ABHD6-selective control &ldquo;anti-probe&rdquo;, ML295, also based on the triazole urea scaffold. The complete properties, characterization, and synthesis of ML294 are detailed in this report, and full details of ABHD6 inhibitors are detailed in the Probe Report for ML295 and ML296.">
<meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK133443/">
<meta name="og:site_name" content="NCBI Bookshelf">
<meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-mlprobe-lrg.png">
<meta name="twitter:card" content="summary">
<meta name="twitter:site" content="@ncbibooks">
<meta name="bk-non-canon-loc" content="/books/n/mlprobe/ml294/?report=reader">
<link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK133443/">
<link href="https://fonts.googleapis.com/css?family=Archivo+Narrow:400,700,400italic,700italic&amp;subset=latin" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/libs.min.css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/jr.min.css">
<meta name="format-detection" content="telephone=no">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css//books_print.min.css" type="text/css" media="print">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_reader.min.css" type="text/css">
<style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style>
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico">
<meta name="ncbi_phid" content="CE8CB7477D6695C100000000002C0022.m_5">
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3849091.css"></head>
<body>
<!-- Book content! -->
<div id="jr" data-jr-path="/corehtml/pmc/jatsreader/ptpmc_3.22/"><div class="jr-unsupported"><table class="modal"><tr><td><span class="attn inline-block"></span><br />Your browser does not support the NLM PubReader view.<br />Go to <a href="/pmc/about/pr-browsers/">this page</a> to see a list of supported browsers<br />or return to the <br /><a href="/books/NBK133443/?report=classic">regular view</a>.</td></tr></table></div><div id="jr-ui" class="hidden"><nav id="jr-head"><div class="flexh tb"><div id="jr-tb1"><a id="jr-links-sw" class="hidden" title="Links"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" x="0px" y="0px" viewBox="0 0 70.6 85.3" style="enable-background:new 0 0 70.6 85.3;vertical-align:middle" xml:space="preserve" width="24" height="24">
<style type="text/css">.st0{fill:#939598;}</style>
<g>
<path class="st0" d="M36,0C12.8,2.2-22.4,14.6,19.6,32.5C40.7,41.4-30.6,14,35.9,9.8"></path>
<path class="st0" d="M34.5,85.3c23.2-2.2,58.4-14.6,16.4-32.5c-21.1-8.9,50.2,18.5-16.3,22.7"></path>
<path class="st0" d="M34.7,37.1c66.5-4.2-4.8-31.6,16.3-22.7c42.1,17.9,6.9,30.3-16.4,32.5h1.7c-66.2,4.4,4.8,31.6-16.3,22.7 c-42.1-17.9-6.9-30.3,16.4-32.5"></path>
</g>
</svg> Books</a></div><div class="jr-rhead f1 flexh"><div class="head"><a href="/books/n/mlprobe/ml296/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="body"><div class="t">Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-&#x003b2;)</div><div class="j">Probe Reports from the NIH Molecular Libraries Program [Internet]</div></div><div class="tail"><a href="/books/n/mlprobe/ml293/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></div><div id="jr-tb2"><a id="jr-bkhelp-sw" class="btn wsprkl hidden" title="Help with NLM PubReader">?</a><a id="jr-help-sw" class="btn wsprkl hidden" title="Settings and typography in NLM PubReader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" preserveAspectRatio="none"><path d="M462,283.742v-55.485l-29.981-10.662c-11.431-4.065-20.628-12.794-25.274-24.001 c-0.002-0.004-0.004-0.009-0.006-0.013c-4.659-11.235-4.333-23.918,0.889-34.903l13.653-28.724l-39.234-39.234l-28.72,13.652 c-10.979,5.219-23.68,5.546-34.908,0.889c-0.005-0.002-0.01-0.003-0.014-0.005c-11.215-4.65-19.933-13.834-24-25.273L283.741,50 h-55.484l-10.662,29.981c-4.065,11.431-12.794,20.627-24.001,25.274c-0.005,0.002-0.009,0.004-0.014,0.005 c-11.235,4.66-23.919,4.333-34.905-0.889l-28.723-13.653l-39.234,39.234l13.653,28.721c5.219,10.979,5.545,23.681,0.889,34.91 c-0.002,0.004-0.004,0.009-0.006,0.013c-4.649,11.214-13.834,19.931-25.271,23.998L50,228.257v55.485l29.98,10.661 c11.431,4.065,20.627,12.794,25.274,24c0.002,0.005,0.003,0.01,0.005,0.014c4.66,11.236,4.334,23.921-0.888,34.906l-13.654,28.723 l39.234,39.234l28.721-13.652c10.979-5.219,23.681-5.546,34.909-0.889c0.005,0.002,0.01,0.004,0.014,0.006 c11.214,4.649,19.93,13.833,23.998,25.271L228.257,462h55.484l10.595-29.79c4.103-11.538,12.908-20.824,24.216-25.525 c0.005-0.002,0.009-0.004,0.014-0.006c11.127-4.628,23.694-4.311,34.578,0.863l28.902,13.738l39.234-39.234l-13.66-28.737 c-5.214-10.969-5.539-23.659-0.886-34.877c0.002-0.005,0.004-0.009,0.006-0.014c4.654-11.225,13.848-19.949,25.297-24.021 L462,283.742z M256,331.546c-41.724,0-75.548-33.823-75.548-75.546s33.824-75.547,75.548-75.547 c41.723,0,75.546,33.824,75.546,75.547S297.723,331.546,256,331.546z"></path></svg></a><a id="jr-fip-sw" class="btn wsprkl hidden" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-rtoc-sw" class="btn wsprkl hidden" title="Table of Contents"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,20h10v8H20V20zM36,20h44v8H36V20zM20,37.33h10v8H20V37.33zM36,37.33h44v8H36V37.33zM20,54.66h10v8H20V54.66zM36,54.66h44v8H36V54.66zM20,72h10v8 H20V72zM36,72h44v8H36V72z"></path></svg></a></div></div></nav><nav id="jr-dash" class="noselect"><nav id="jr-dash" class="noselect"><div id="jr-pi" class="hidden"><a id="jr-pi-prev" class="hidden" title="Previous page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a><div class="pginfo">Page <i class="jr-pg-pn">0</i> of <i class="jr-pg-lp">0</i></div><a id="jr-pi-next" class="hidden" title="Next page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div><div id="jr-is-tb"><a id="jr-is-sw" class="btn wsprkl hidden" title="Switch between Figures/Tables strip and Progress bar"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><rect x="10" y="40" width="20" height="20"></rect><rect x="40" y="40" width="20" height="20"></rect><rect x="70" y="40" width="20" height="20"></rect></svg></a></div><nav id="jr-istrip" class="istrip hidden"><a id="jr-is-prev" href="#" class="hidden" title="Previous"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M80,40 60,65 80,90 70,90 50,65 70,40z M50,40 30,65 50,90 40,90 20,65 40,40z"></path><text x="35" y="25" textLength="60" style="font-size:25px">Prev</text></svg></a><a id="jr-is-next" href="#" class="hidden" title="Next"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,40 40,65 20,90 30,90 50,65 30,40z M50,40 70,65 50,90 60,90 80,65 60,40z"></path><text x="15" y="25" textLength="60" style="font-size:25px">Next</text></svg></a></nav><nav id="jr-progress"></nav></nav></nav><aside id="jr-links-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">NCBI Bookshelf</div></div><div class="cnt lol f1"><a href="/books/">Home</a><a href="/books/browse/">Browse All Titles</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/sharer/sharer.php?u=https://www.ncbi.nlm.nih.gov/books/NBK133443/"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24" preserveAspectRatio="none"><g><path d="M 17.996,32L 12,32 L 12,16 l-4,0 l0-5.514 l 4-0.002l-0.006-3.248C 11.993,2.737, 13.213,0, 18.512,0l 4.412,0 l0,5.515 l-2.757,0 c-2.063,0-2.163,0.77-2.163,2.209l-0.008,2.76l 4.959,0 l-0.585,5.514L 18,16L 17.996,32z"></path></g></svg> Share on Facebook</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://twitter.com/intent/tweet?url=https://www.ncbi.nlm.nih.gov/books/NBK133443/&amp;text=Optimization%20and%20characterization%20of%20a%20triazole%20urea%20inhibitor%20for%20diacylglycerol%20lipase%20beta%20(DAGL-%003B2)"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24"><g><path d="M 32,6.076c-1.177,0.522-2.443,0.875-3.771,1.034c 1.355-0.813, 2.396-2.099, 2.887-3.632 c-1.269,0.752-2.674,1.299-4.169,1.593c-1.198-1.276-2.904-2.073-4.792-2.073c-3.626,0-6.565,2.939-6.565,6.565 c0,0.515, 0.058,1.016, 0.17,1.496c-5.456-0.274-10.294-2.888-13.532-6.86c-0.565,0.97-0.889,2.097-0.889,3.301 c0,2.278, 1.159,4.287, 2.921,5.465c-1.076-0.034-2.088-0.329-2.974-0.821c-0.001,0.027-0.001,0.055-0.001,0.083 c0,3.181, 2.263,5.834, 5.266,6.438c-0.551,0.15-1.131,0.23-1.73,0.23c-0.423,0-0.834-0.041-1.235-0.118 c 0.836,2.608, 3.26,4.506, 6.133,4.559c-2.247,1.761-5.078,2.81-8.154,2.81c-0.53,0-1.052-0.031-1.566-0.092 c 2.905,1.863, 6.356,2.95, 10.064,2.95c 12.076,0, 18.679-10.004, 18.679-18.68c0-0.285-0.006-0.568-0.019-0.849 C 30.007,8.548, 31.12,7.392, 32,6.076z"></path></g></svg> Share on Twitter</a></div></aside><aside id="jr-rtoc-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Table of Content</div></div><div class="cnt lol f1"><a href="/books/n/mlprobe/?report=reader">Title Information</a><a href="/books/n/mlprobe/toc/?report=reader">Table of Contents Page</a></div></aside><aside id="jr-help-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Settings</div></div><div class="cnt f1"><div id="jr-typo-p" class="typo"><div><a class="sf btn wsprkl">A-</a><a class="lf btn wsprkl">A+</a></div><div><a class="bcol-auto btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 100" preserveAspectRatio="none"><text x="10" y="70" style="font-size:60px;font-family: Trebuchet MS, ArialMT, Arial, sans-serif" textLength="180">AUTO</text></svg></a><a class="bcol-1 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M15,25 85,25zM15,40 85,40zM15,55 85,55zM15,70 85,70z"></path></svg></a><a class="bcol-2 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M5,25 45,25z M55,25 95,25zM5,40 45,40z M55,40 95,40zM5,55 45,55z M55,55 95,55zM5,70 45,70z M55,70 95,70z"></path></svg></a></div></div><div class="lol"><a class="" href="/books/NBK133443/?report=classic">Switch to classic view</a><a href="/books/NBK133443/?report=printable">Print View</a></div></div></aside><aside id="jr-bkhelp-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Help</div></div><div class="cnt f1 lol"><a id="jr-helpobj-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/help.xml" href="">Help</a><a href="mailto:info@ncbi.nlm.nih.gov?subject=PubReader%20feedback%20%2F%20NBK133443%20%2F%20sid%3ACE8B5AF87C7FFCB1_0191SID%20%2F%20phid%3ACE8CB7477D6695C100000000002C0022.4">Send us feedback</a><a id="jr-about-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/about.xml" href="">About PubReader</a></div></aside><aside id="jr-objectbox" class="thidden hidden"><div class="jr-objectbox-close wsprkl">&#10008;</div><div class="jr-objectbox-inner cnt"><div class="jr-objectbox-drawer"></div></div></aside><nav id="jr-pm-left" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Previous Page</text></svg></nav><nav id="jr-pm-right" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Next Page</text></svg></nav><nav id="jr-fip" class="hidden"><nav id="jr-fip-term-p"><input type="search" placeholder="search this page" id="jr-fip-term" autocorrect="off" autocomplete="off" /><a id="jr-fip-mg" class="wsprkl btn" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-fip-done" class="wsprkl btn" title="Dismiss find">&#10008;</a></nav><nav id="jr-fip-info-p"><a id="jr-fip-prev" class="wsprkl btn" title="Jump to previuos match">&#9664;</a><button id="jr-fip-matches">no matches yet</button><a id="jr-fip-next" class="wsprkl btn" title="Jump to next match">&#9654;</a></nav></nav></div><div id="jr-epub-interstitial" class="hidden"></div><div id="jr-content"><article data-type="main"><div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><div class="fm-sec"><h1 id="_NBK133443_"><span class="title" itemprop="name">Optimization and characterization of a triazole urea inhibitor for diacylglycerol
lipase beta (DAGL-&#x003b2;)</span></h1><p class="contribs">Hsu KL, Tsuboi K, Speers AE, et al.</p><p class="fm-aai"><a href="#_NBK133443_pubdet_">Publication Details</a></p></div></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="_abs_rndgid_" itemprop="description"><p>Endocannabinoids (ECs) are a unique group of lipids that function as chemical
messengers in the nervous system. The two principle ECs thus far identified in
mammals are <i>N</i>-arachidonoyl-ethanolamine (anandamide) and
2-arachidonoyl-glycerol (2-AG). These compounds have been implicated in various
physiological and pathological functions including appetite, pain, sensation,
memory, and addiction. Because ECs are synthesized and released on demand and then
rapidly degraded to terminate signaling, the metabolic pathways that govern EC
turnover directly influence the magnitude and duration of neuronal signaling events.
There is strong evidence that two serine hydrolases, diacylglycerol lipase-alpha and
-beta (DAGL-&#x003b1; and -&#x003b2;) function as 2-AG synthetic enzymes both
<i>in vitro</i> and <i>in vivo</i>. However, because
constitutive gene disruption, the only currently available means to investigate
DAGL-&#x003b1;/&#x003b2; biology due to a lack of selective chemical inhibitors, can
result in compensatory effects and network-wide changes, there is still uncertainty
surrounding the extent to which DAGL-&#x003b1;/&#x003b2; contribute to 2-AG-mediated
signaling. In an effort to provide chemical tools for manipulation of DAGL-&#x003b2;
activity, we initiated a competitive activity-based protein profiling (ABPP) screen
of triazole urea compounds to identify selective enzyme inhibitors. This campaign,
made possible by previous inhibitor development efforts for LYPLA1/2 (<a href="/pcsubstance/?term=ML211[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML211</a>), PAFAH2 (<a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a>), and ABHD11
(<a href="/pcsubstance/?term=ML226[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML226</a>) based on the triazole urea scaffold, yielded the medchem
optimized probe <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>). <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> is highly potent against its target enzyme (IC50 = 56
nM <i>in vitro</i>; 12 nM <i>in situ</i>), and is active
<i>in vivo</i>, showing both oral bioavailability and blood-brain
barrier penetration. Out of more than 20 serine hydrolases (SHs) profiled by
gel-based competitive ABPP, <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> is observed to have one anti-target,
alpha/beta hydrolase domain-containing protein 6 (ABHD6). Otherwise, <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> is at least 35-fold selective for all other brain SHs
(approximately 20)
assessed by gel-based competitive ABPP and 7-fold selective vs. its closest homolog,
DAGL-&#x003b1;. To control for ABHD6-directed activity in biological studies, we
also developed a structurally related ABHD6-selective control
&#x0201c;anti-probe&#x0201d;, <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a>, also based on the
triazole urea scaffold. The complete properties, characterization, and synthesis of
<a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> are detailed in this report, and full details of ABHD6
inhibitors are detailed in the Probe Report for <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> and <a href="/pcsubstance/?term=ML296[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML296</a>.</p></div><div class="h2"></div><p><b>Assigned Assay Grant #:</b> 1 R01 DA025285</p><p><b>Screening Center Name &#x00026; PI:</b> The Scripps Research Institute Molecular
Screening Center (SRIMSC), H Rosen</p><p><b>Chemistry Center Name &#x00026; PI:</b> SRIMSC, H Rosen</p><p><b>Assay Submitter &#x00026; Institution:</b> BF Cravatt, TSRI, La Jolla</p><p><b>PubChem Summary Bioassay Identifier (AID):</b>
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504420" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504420</a></p><div id="ml294.s1"><h2 id="_ml294_s1_">Probe Structure &#x00026; Characteristics</h2><div id="ml294.fu1" class="figure"><div class="graphic"><img src="/books/NBK133443/bin/ml294fu1.jpg" alt="Image ml294fu1" /></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml294tu1"><a href="/books/NBK133443/table/ml294.tu1/?report=objectonly" target="object" title="Table" class="img_link icnblk_img figpopup" rid-figpopup="figml294tu1" rid-ob="figobml294tu1"><img class="small-thumb" src="/books/NBK133443/table/ml294.tu1/?report=thumb" src-large="/books/NBK133443/table/ml294.tu1/?report=previmg" alt="Image " /></a><div class="icnblk_cntnt"><h4 id="ml294.tu1"><a href="/books/NBK133443/table/ml294.tu1/?report=objectonly" target="object" rid-ob="figobml294tu1">Table</a></h4></div></div></div><div id="ml294.s2"><h2 id="_ml294_s2_">1. Recommendations for Scientific Use of the Probe</h2><p>The endocannabinoid 2-arachidonoylglycerol (2-AG) plays a pivotal role in synaptic
signaling events and has been postulated to function as a retrograde messenger that
suppresses neurotransmitter release. 2-AG has been implicated in various
physiological and pathological functions including appetite, pain, sensation,
memory, and addiction [<a class="bibr" href="#ml294.r1" rid="ml294.r1">1</a>]. Upon activation of postsynaptic neurons, ECs are produced from
membrane-derived lipid precursors, traverse the synaptic cleft, and activate
specific G-protein-coupled cannabinoid receptors present on presynaptic termini. The
activated cannabinoid receptors initiate a series of signal transduction cascades
that ultimately leads to the suppression of neurotransmitter release. Depending on
the type of neurotransmitter released (excitatory vs. inhibitory), this feedback
mechanism can attenuate or prolong neurotransmission, and is hypothesized to
modulate both short- and long-term synaptic plasticity [<a class="bibr" href="#ml294.r2" rid="ml294.r2">2</a>].</p><p>Unlike traditional neurotransmitters, which are stored in vesicles, ECs are
synthesized and released on demand, and then rapidly degraded to terminate
signaling. Thus, the metabolic pathways that govern EC turnover are critical in
determining the magnitude and duration of neuronal signaling events [<a class="bibr" href="#ml294.r3" rid="ml294.r3">3</a>]. The development of both
genetic knockouts and selective inhibitors has facilitated our understanding of EC
degradation at the molecular level, and allowed the principle anandamide- and
2-AG-degrading enzymes (fatty acid amide hydrolase, FAAH [<a class="bibr" href="#ml294.r4" rid="ml294.r4">4</a>] and monoacylglycerol lipase
[MAGL], respectively [<a class="bibr" href="#ml294.r5" rid="ml294.r5">5</a>]) to be characterized <i>in vivo.</i> In contrast,
our understanding of EC biosynthesis has lagged considerably and the identities of
the enzymes responsible for 2-AG biosynthesis remained uncertain. Recently, two
serine hydrolases, DAGL-&#x003b1; and -&#x003b2; were cloned and found to
selectively cleave <i>sn</i>-1 acyl chains from diacylglycerols (DAG) to
generate 2-AG <i>in vitro</i>[<a class="bibr" href="#ml294.r6" rid="ml294.r6">6</a>]. Their function in the nervous system was validated
<i>in vivo</i> by the generation of DAGL-&#x003b1; and -&#x003b2;
knock-out mice [<a class="bibr" href="#ml294.r7" rid="ml294.r7">7</a>, <a class="bibr" href="#ml294.r8" rid="ml294.r8">8</a>]. These studies identified the
key 2-AG biosynthetic enzymes and represent a major step towards advancing our
understanding of EC biosynthesis in the nervous system. However, constitutive gene
disruption can result in compensatory effects and network-wide changes that
complicate direct interpretation of enzyme function. Thus, it is still unclear to
what extent DAGL-&#x003b1;/&#x003b2; catalytic activity contributes to 2-AG-mediated
signaling. The development of potent and selective inhibitors would offer a means to
perturb DAGL-&#x003b1;/&#x003b2; activity in a selective, reversible, and
temporally-controlled manner. Given the non-selective nature of current
DAGL-&#x003b1;/&#x003b2; inhibitors [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>], specific chemical probes would serve as invaluable tools to
delineate DAGL-&#x003b1;/&#x003b2; function in 2-AG signaling networks of the brain.
<a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a>, along with control probe <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a><b>,</b> is recommended for use in primary research
studies aimed at elucidating the patho/physiological roles of DAGL-&#x003b2; and its
contribution to 2-AG-mediated signaling, as well as other structurally related lipid
transmitters such as eicosanoids and diacylglycerols.</p></div><div id="ml294.s3"><h2 id="_ml294_s3_">2. Materials and Methods</h2><p>All reagents for chemical synthesis were obtained from ThermoFisher or SigmaAldrich.
All other protocols are summarized below.</p><div id="ml294.s4"><h3>2.1. Assays</h3><div id="ml294.s5"><h4>Probe Characterization Assays</h4><p><b>Solubility in PBS:</b> The solubility of compounds are tested in
triplicate in phosphate buffered saline (PBS), pH 7.4. per well, 198
&#x003bc;l PBS is added to a Millipore Solvinert Hydrophilic PTFE 96 well
filter plate: pore size: 0.45&#x003bc;m (MSRLN0450). Test compounds are
introduced from 10 mM DMSO stock solutions (2 &#x003bc;l). The final
concentration of DMSO was 1 percent. Samples are allowed to incubate at
22&#x000b0;C for 18 hours. In the morning the plate is centrifuged where the
soluble portion passes through the filter and is collected in a capture
plate. Clotrimazole is included as a control to assure the assay is working
properly. The samples are analyzed by HPLC. Peak area is compared to a
standard of known concentration. In cases when the concentration was too low
for UV analysis or when the compound did not possess a good chromophore,
LC-MS-MS analysis is used.</p><p><b>Solubility in Media:</b> The solubility of compounds are tested in
triplicate in complete media (DMEM + 10% FBS). Per well, 198
&#x003bc;l PBS is added to a Millipore Solvinert Hydrophilic PTFE 96 well
filter plate: pore size: 0.45&#x003bc;m (MSRLN0450). Test compounds are
introduced from 10 mM DMSO stock solutions (2 &#x003bc;l). The final
concentration of DMSO was 1 percent. Samples are allowed to incubate at
22&#x000b0;C for 18 hours. In the morning the plate is centrifuged where the
soluble portion passes through the filter and is collected in a capture
plate. The samples are analyzed by HPLC (Agilent 1100 with diode-array
detector). Peak area is compared to a standard of known concentration. In
cases when the concentration was too low for UV analysis or when the
compound did not possess a good chromophore, LC-MS-MS analysis is used.</p><p><b>Stability in PBS:</b> Demonstration of stability in PBS was
conducted by addition of 10 &#x003bc;M compound from a DMSO stock to PBS in
HPLC autosampler vials. Samples are held in the HPLC autosampler at ambient
temperature. At approximately 0, 1, 2, 4, 8, 24, and 48 hours the samples
are injected on the HPLC. Peak area and retention time are compared between
injections. Data is log transformed and represented as half-life. DMSO is
added as a co-solvent as needed for solubility.</p><p><b>Determination of Glutathione reactivity:</b> Compound (10
&#x003bc;M) is incubated at 37&#x000b0;C for 6 hours in the presence of 50
&#x003bc;M freshly prepared reduced glutathione. At 0 and 6 hours the
samples are injected on the HPLC. Peak area and retention time are compared
between injections. Samples are evaluated for a glutathione dependent
decrease in compound concentration. DMSO is added as a co-solvent as needed
for solubility.</p></div><div id="ml294.s6"><h4>Primary Assays</h4><div id="ml294.s7"><h5>Primary uHTS assay to identify DAGL-&#x003b2; inhibitors (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504411" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
504411</a>)</h5><p><b>Assay Overview:</b> The purpose of this assay is to identify
compounds that inhibit the activity of human diacylglycerol lipase-beta
(DAGL-&#x003b2;). In this assay, compounds are preincubated with
membranes derived from mouse DAGL-&#x003b2;-transfected HEK293T cells
(Open Biosystems Accession <a href="/nuccore/16359288" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">BC016105</a>), followed by incubation with the
fluorogenic lipase substrate EnzChek. Fluorescence is determined at a
specific time point. As designed, compounds that act as DAGL-&#x003b2;
inhibitors will slow the rate of substrate hydrolysis, resulting in a
decrease in well fluorescence. Compounds are tested in singlicate at a
final nominal concentration of 5.17 &#x003bc;M.</p><p><b>Protocol Summary:</b> Prior to the start of the assay,
DAGL-&#x003b2; membrane lysate was sonicated three times for 5 seconds,
1 minute between each pulse using a microtip. Then, 4.0 &#x003bc;L of
Assay Buffer (50 mM HEPES pH7.2, 100 mM NaCl, 5 mM CaCl2, 0.1%
Triton X-100, 10% DMSO and 0.5 mM DTT) containing 0.375 mg/mL of
DAGL-&#x003b2; membrane lysate were dispensed into 1536 microtiter
plates. Next, 26 nL of test compound in DMSO or DMSO alone
(0.52% final concentration) were added to the appropriate wells
and incubated for 60 minutes at 25&#x000b0;C. The assay was started by
dispensing 1.0 &#x003bc;L of 5 &#x003bc;M EnzChek lipase substrate in
Assay Buffer to all wells. Plates were centrifuged and incubated for 60
minutes at 25&#x000b0;C. Fluorescence was read on a Viewlux microplate
reader (PerkinElmer, Turku, Finland) using a FITC filter set (excitation
= 480 nm, emission = 540 nm) and a FITC dichroic mirror
for 1 second. <b>Assay Cutoff:</b> Compounds that inhibited
DAGL-&#x003b2; &#x02265;34.1% were considered active.</p></div><div id="ml294.s8"><h5>Confirmation uHTS assay to identify DAGL-&#x003b2; inhibitors
(<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504445" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504445</a>)</h5><p><b>Assay Overview:</b> The purpose of this assay is to confirm
activity of compounds identified as active in the primary uHTS pPAFAH
screen (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504411" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504411</a>). In this assay, the
fluorogenic lipase substrate EnzChek is used to assess inhibition of
DAGL-&#x003b2; in a complex membrane preparation as described above
(<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504411" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504411</a>). Compounds were tested in
singlicate at a final nominal concentration of 5.17 &#x003bc;M.</p><p><b>Protocol Summary:</b> The assay was performed as described above
(<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504411" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504411</a>), except that compounds were
tested in triplicate. <b>Assay Cutoff:</b> Compounds that
inhibited DAGL-&#x003b2; &#x02265;34.1% were considered
active.</p></div></div><div id="ml294.s9"><h4>Secondary Assays</h4><div id="ml294.s10"><h5>Gel-based competitive ABPP inhibition of overexpressed DAGL-&#x003b2;
<i>in vitro</i>: triazole urea library (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602303</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
whether test compounds belonging to the triazole urea scaffold can
inhibit DAGL-&#x003b2; in a complex proteome lysate using a gel-based
competitive activity-based proteomic profiling (ABPP) assay. In this
assay, the target enzyme DAGL-&#x003b2; is incubated with test compound
followed by reaction with a fluorescently-tagged serine-hydrolase
specific activity-based probe, fluorophosphonate-rhodamine (FP-Rh,
Thermo #88318). For this assay and all other gel-based ABPP
assays described below, the reaction products are separated by SDS-PAGE
and visualized in-gel using a flatbed fluorescence scanner. The
percentage activity remaining is determined by measuring the integrated
optical density (IOD) of the bands. As designed, test compounds that act
as DAGL-&#x003b2; inhibitors will prevent enzyme-probe interactions,
thereby decreasing the proportion of bound fluorescent probe, giving
lower fluorescence intensity in the band in the gel. See also ref.
[<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>]</p><p><b>Protocol Summary</b>: Membrane proteome of transiently
transfected 293T Hek cells overexpressing mouse DAGL-&#x003b2; (25
&#x003bc;L of 0.3 mg/mL) in Dulbecco&#x02019;s PBS (DPBS) was treated
with test compound (0.5 &#x003bc;L of a 50&#x000d7; stock in DMSO; 500
nM final concentration) or DMSO (0.5 &#x003bc;L) for 30 minutes at
37&#x000b0;C. The activity-based probe FP-Rh (0.5 &#x003bc;L of a
50&#x000d7; stock in DMSO; 5 &#x003bc;M final concentration) was added,
and the reaction was incubated for 30 minutes at 37&#x000b0;C, quenched
with an equal volume of 2&#x000d7; SDS-PAGE loading buffer (reducing),
separated by SDS-PAGE, and visualized by in-gel fluorescent scanning.
The percentage of DAGL-&#x003b2; activity remaining was determined by
measuring the integrated optical density of the individual protein bands
relative to the DMSO-only (no compound) control. <b>Assay
Cutoff</b>: Compounds with greater than or equal to 50%
inhibition were considered active.</p></div><div id="ml294.s11"><h5>Gel-based competitive ABPP inhibition of overexpressed DAGL-&#x003b2;
<i>in vitro</i>: SAR compounds in Table 3.4-1 (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602302" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602302</a>) and Table 3.4-2 (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602299" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602299</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
whether test compounds can inhibit DAGL-&#x003b2; in a complex proteome
lysate using a gel-based ABPP assay. In this assay, the target enzyme
DAGL-&#x003b2; is incubated with test compound followed by reaction with
a fluorescently-labeled activity-based probe, HT-01 [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>], which selectively
labels several serine hydrolases including DAGL-&#x003b2;. The reaction
products are analyzed as described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602303</a>.</p><p><b>Protocol Summary</b>: Membrane proteome of transiently
transfected 293T Hek cells overexpressing mouse DAGL-&#x003b2; (25
&#x003bc;L of 0.3 mg/mL) in Dulbecco&#x02019;s PBS (DPBS) was treated
with test compound (0.5 &#x003bc;L of a 50&#x000d7; stock in DMSO; 100
nM [<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602302" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602302</a>] or 10 &#x003bc;M
[<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602299" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602299</a>] final concentration)
or DMSO (0.5 &#x003bc;L) for 30 minutes at 37&#x000b0;C. The
activity-based probe HT-01 (0.5 &#x003bc;L of a 50&#x000d7; stock in
DMSO; 1 &#x003bc;M final concentration) was added, and the reaction was
incubated for 30 minutes at 37&#x000b0;C, quenched with an equal volume
of 2&#x000d7; SDS-PAGE loading buffer (reducing), separated by SDS-PAGE,
and visualized by in-gel fluorescent scanning. The percentage of
DAGL-&#x003b2; activity remaining was determined by measuring the
integrated optical density of the individual protein bands relative to
the DMSO-only (no compound) control. <b>Assay Cutoff</b>:
Compounds with greater than or equal to 50% inhibition were
considered active.</p></div><div id="ml294.s12"><h5>Gel-based competitive ABPP inhibition of DAGL-&#x003b2; and ABHD6
<i>in vitro</i>: assessment of enantiomeric potency of
KT116 (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/624472" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 624472</a>)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine
whether test compounds can inhibit DAGL-&#x003b2; and ABHD6 in a
gel-based competitive activity-based proteomic profiling (ABPP) assay.
In this assay, a complex proteome containing DAGL-&#x003b2; and ABHD6 is
incubated with test compound followed by reaction with a
fluorescently-labeled activity-based probe, HT-01 [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>], which selectively
labels several serine hydrolases including DAGL-&#x003b2; and ABHD6. The
reaction products are analyzed as described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602303</a>.</p><p><b>Protocol Summary:</b> Membrane proteome of Neuro-2A murine
neuroblastoma cells (25 &#x003bc;L of 1 mg/mL) in Dulbecco&#x02019;s PBS
(DPBS) was treated with test compound (0.5 &#x003bc;L of a 50&#x000d7;
stock in DMSO; 1 nM, 10 nM, 100 nM, 1000 nM, or 10000 nM final
concentration) or DMSO (0.5 &#x003bc;L) for 30 minutes at 37 degrees
Celsius. The activity-based probe HT-01 (0.5 &#x003bc;L of a 50&#x000d7;
stock in DMSO; 1 &#x003bc;M final concentration) was added and the
reaction was incubated for 30 minutes at 37 degrees Celsius, quenched
with an equal volume of 2&#x000d7; SDS-PAGE loading buffer (reducing),
separated by SDS-PAGE, and visualized by in-gel fluorescent scanning.
The percentage of DAGL-&#x003b2; and ABHD6 activity remaining was
determined by measuring the integrated optical density of the individual
protein bands relative to the DMSO-only (no compound) control.</p></div><div id="ml294.s13"><h5>Gel-based competitive ABPP inhibition of overexpressed ABHD11
<i>in vitro</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602301" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602301</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
whether test compounds can inhibit anti-target ABHD11 in a complex
proteome lysate using a gel-based competitive ABPP assay. In this assay,
the anti-target enzyme ABHD11 is spiked into a complex proteome and
incubated with test compound followed by reaction with the ABPP probe
FP-Rh. The reaction products are analyzed as described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602303</a>.</p><p><b>Protocol Summary</b>: Membrane proteome of transiently
transfected 293T Hek cells overexpressing mouse DAGL-&#x003b2; (25
&#x003bc;L of 0.3 mg/mL; Open Biosystems Accession <a href="/nuccore/16359288" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">BC016105</a>) with added
recombinant mouse ABHD11 (0.050 &#x003bc;M, Open Biosystems Accession
<a href="/nuccore/47682715" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">BC069866</a>) in Dulbecco&#x02019;s PBS (DPBS) was treated with test
compound (0.5 &#x003bc;L of a 50&#x000d7; stock in DMSO; 10 &#x003bc;M
final concentration) or DMSO (0.5 &#x003bc;L) for 30 minutes at
37&#x000b0;C. The activity-based probe FP-Rh (0.5 &#x003bc;L of a
50&#x000d7; stock in DMSO; 5 &#x003bc;M final concentration) was added,
and the reaction was incubated for 30 minutes at 37&#x000b0;C, quenched
with an equal volume of 2&#x000d7; SDS-PAGE loading buffer (reducing),
separated by SDS-PAGE, and visualized by in-gel fluorescent scanning.
The percentage of ABHD11 activity remaining was determined by measuring
the integrated optical density of the individual protein bands relative
to the DMSO-only (no compound) control. Note: DAGL-&#x003b2; inhibition
was not quantified in this experiment do to an overlapping protein band.
<b>Assay Cutoff</b>: Compounds with &#x02265;50%
inhibition were considered active.</p></div><div id="ml294.s14"><h5>Gel-based competitive ABPP inhibition of overexpressed DAGL-&#x003b1;
<i>in vitro</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602403" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602403</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
whether test compounds can inhibit anti-target DAGL-&#x003b1; in a
complex proteome lysate using a gel-based competitive ABPP assay. In
this assay, the anti-target overexpressed DAGL-&#x003b1; is incubated
with test compound followed by reaction with the ABPP probe HT-01. The
reaction products are analyzed as described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602303</a>.</p><p><b>Protocol Summary</b>: Membrane proteome of transiently
transfected 293T Hek cells overexpressing mouse DAGL-&#x003b1; (50
&#x003bc;L of 2 mg/mL; Open Biosystems Accession <a href="/nuccore/159155871" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">BC148308</a>) in
Dulbecco&#x02019;s PBS (DPBS) was treated with test compound (1
&#x003bc;L of a 50&#x000d7; stock in DMSO; 10 &#x003bc;M, 2 &#x003bc;M,
0.4 &#x003bc;M, 0.08 &#x003bc;M, or 0.016 &#x003bc;M final
concentration) or DMSO (1 &#x003bc;L) for 30 minutes at 37&#x000b0;C.
The activity-based probe HT-01 (1 &#x003bc;L of a 50&#x000d7; stock in
DMSO; 1 &#x003bc;M final concentration) was added, and the reaction was
incubated for 30 minutes at 37&#x000b0;C, quenched with an equal volume
of 2&#x000d7; SDS-PAGE loading buffer (reducing), separated by SDS-PAGE,
and visualized by in-gel fluorescent scanning. The percentage of
DAGL-&#x003b1; activity remaining was determined by measuring the
integrated optical density of the individual protein bands relative to
the DMSO-only (no compound) control. <b>Assay Cutoff</b>:
Compounds with less than or equal to 50% inhibition at 0.4
&#x003bc;M compound concentration were considered active.</p></div><div id="ml294.s15"><h5>Gel-based competitive ABPP inhibition of SHs in mouse brain membrane
with FP-Rh (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602311" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602311</a>) and HT-01 (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602323" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602323</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to assay test
compound inhibition of serine hydrolases (SHs) in a complex proteome
lysate using a gel-based competitive ABPP assay. In this assay, a
complex proteome is incubated with test compound followed by reaction
with the ABPP probe FP-Rh or HT-01. The reaction products are analyzed
as described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602303</a>.</p><p><b>Protocol Summary</b>: Mouse brain membrane proteome (25
&#x003bc;L of 1 mg/mL in Dulbecco&#x02019;s PBS [DPBS])
was treated with test compound (0.5 &#x003bc; of a 50&#x000d7; stock in
DMSO; 10 &#x003bc;M final concentration for FP-Rh assay
[<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602311" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602311</a>], 1 &#x003bc;M final
concentration for HT-01 assay [<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602323" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602323</a>])
or DMSO (0.5 &#x003bc;L) for 30 minutes at 37&#x000b0;C. The
activity-based probe FP-Rh (0.5 &#x003bc;L of a 50&#x000d7; stock in
DMSO; 1 &#x003bc;M final concentration) or HT-01 (0.5 &#x003bc;L of a
50&#x000d7; stock in DMSO; 1 &#x003bc;M final concentration) was added,
and the reaction was incubated for 30 minutes at 37&#x000b0;C, quenched
with an equal volume of 2&#x000d7; SDS-PAGE loading buffer (reducing),
separated by SDS-PAGE, and visualized by in-gel fluorescent scanning.
The percentage activity remaining for each SH was determined by
measuring the integrated optical density of the individual protein bands
relative to the DMSO-only (no compound) control. SHs with at least
50% inhibition by one or more compounds (FP-Rh: ABHD6, APEH,
FAAH, KIAA1363, ABHD12, MAGL, LYPLA1, and LYPLA2; HT-01: DAGL-&#x003b2;,
ABHD6, PLA2G7, and a SH with MW of 80kDa) are reported. <b>Assay
Cutoff</b>: Compounds with greater than or equal to 50%
inhibition for a given SH were considered active.</p></div><div id="ml294.s16"><h5>Gel-based competitive ABPP inhibition of DAGL-&#x003b2; for IC50
determination <i>in vitro</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602320" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602320</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
the IC50 values of powder samples of test compounds for DAGL-&#x003b2;
inhibition in a complex proteome lysate using a competitive ABPP assay.
In this assay, the ABPP probe HT-01 is used to label DAGL-&#x003b2; in
the presence of test compounds. The reaction products are analyzed as
described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602303</a>.</p><p><b>Protocol Summary</b>: Membrane proteome of transiently
transfected 293T Hek cells overexpressing mouse DAGL-&#x003b2; (25
&#x003bc;L of 0.3 mg/mL; Open Biosystems Accession <a href="/nuccore/16359288" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">BC016105</a>) in
Dulbecco&#x02019;s PBS (DPBS) was treated with test compound (0.5
&#x003bc;L of a 50&#x000d7; stock in DMSO) or DMSO (0.5 &#x003bc;L) for
30 minutes at 37&#x000b0;C. The activity-based probe HT-01 (0.5
&#x003bc;L of a 50&#x000d7; stock in DMSO; 1 &#x003bc;M final
concentration) was added, and the reaction was incubated for 30 minutes
at 37&#x000b0;C, quenched with an equal volume of 2&#x000d7; SDS-PAGE
loading buffer (reducing), separated by SDS-PAGE, and visualized by
in-gel fluorescent scanning. The percentage activity remaining for
DAGL-&#x003b2; was determined by measuring the integrated optical
density of the individual protein bands relative to the DMSO-only (no
compound) control. IC50 values for inhibition of DAGL-&#x003b2; were
determined from dose-response curves from three replicates at each
inhibitor concentration (10,000 nM and 8-point 1:3 dilution series from
1000 nM to 0.33 nM). <b>Assay Cutoff</b>: Compounds with an IC50
less than or equal to 500 nM were considered active.</p></div><div id="ml294.s17"><h5>Gel-based competitive ABPP inhibition of ABHD6 for IC50 determination
<i>in vitro</i> (AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602322" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602322</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/624039" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">624039</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
the IC50 values of powder samples of test compounds for anti-target
ABHD6 inhibition in a complex proteome lysate using a competitive ABPP
assay. In this assay, the ABPP probe HT-01 is used to label ABHD6 in the
presence of test compounds. The reaction products are analyzed as
described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602303</a>.</p><p><b>Protocol Summary</b>: Membrane proteome of Neuro-2A murine
neuroblastoma cells (25 &#x003bc;L of 1 mg/mL) in Dulbecco&#x02019;s PBS
(DPBS) was treated with test compound (0.5 &#x003bc;L of a 50&#x000d7;
stock in DMSO) or DMSO (0.5 &#x003bc;L) for 30 minutes at 37&#x000b0;C.
The activity-based probe HT-01 (0.5 &#x003bc;L of a 50&#x000d7; stock in
DMSO; 1 &#x003bc;M final concentration) was added, and the reaction was
incubated for 30 minutes at 37&#x000b0;C, quenched with an equal volume
of 2&#x000d7; SDS-PAGE loading buffer (reducing), separated by SDS-PAGE,
and visualized by in-gel fluorescent scanning. The percentage activity
remaining for anti-target ABHD6 was determined by measuring the
integrated optical density of the individual protein bands relative to
the DMSO-only (no compound) control. IC50 values were determined from
dose-response curves from three replicates at each inhibitor
concentration (7-point 1:3 dilution series from either 3333 nM to 3.3
nM, 100 nM to 0.1 nM, or 33 nM to 0.033 nM). Note: inhibition of
DAGL-&#x003b2; at each test concentration is also reported. <b>Assay
Cutoff</b>: Compounds with an IC50 for ABHD6 less than or equal
to 50 nM were considered active.</p></div><div id="ml294.s18"><h5>Gel-based competitive ABPP inhibition of SHs anti-targets <i>in
vitro</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602355" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602355</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to assay test
compound inhibition of SHs in a complex proteome using a gel-based
competitive ABPP assay. In this assay, a complex proteome is incubated
with test compound followed by reaction with the ABPP probe FP-Rh or
HT-01. The reaction products are analyzed as described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602303</a>.</p><p><b>Protocol Summary</b>: The following proteome sources, prepared
in Dulbecco&#x02019;s PBS (DPBS), were used:
<b>DAGL-&#x003b2;</b>: Membrane proteome of transiently
transfected 293T Hek cells overexpressing mouse DAGL-&#x003b2; (25
&#x003bc;L of 0.3 mg/mL; Open Biosystems Accession <a href="/nuccore/16359288" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">BC016105</a>).
<b>ABHD11</b>: recombinant mouse ABHD11 (0.050 &#x003bc;M,
Open Biosystems Accession <a href="/nuccore/47682715" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">BC069866</a>) doped into membrane proteome of 293T
Hek cells (0.3 mg/mL). <b>PAFAH2</b>: Soluble proteome (1 mg/mL)
of BW5147-derived murine T-cells. <b>FAAH, MAGL, ABHD6, ABHD12,
LYPLA1, LYPLA2, PLA2G7, PNPLA6</b>: Mouse brain membrane proteome
(1 mg/mL). Proteome (25 &#x003bc;L) was treated with test compound (0.5
&#x003bc;L of a 50&#x000d7; stock in DMSO, 10, 2, 0.4, 0.08, 0.016, or
0.003 &#x003bc;M final concentration) or DMSO (0.5 &#x003bc;L) for 30
minutes at 37&#x000b0;C. The activity-based probe FP-Rh (0.5 &#x003bc;L
of a 50&#x000d7; stock in DMSO; 1 &#x003bc;M final concentration) or
HT-01 (0.5 &#x003bc;L of a 50&#x000d7; stock in DMSO; 1 &#x003bc;M final
concentration) was added. HT-01 was utilized to detect DAGL-&#x003b2;
and PLA2G7, for all other proteins, FP-Rh was used. The reaction was
incubated for 30 minutes at 37&#x000b0;C, quenched with an equal volume
of 2&#x000d7; SDS-PAGE loading buffer (reducing), separated by SDS-PAGE,
and visualized by in-gel fluorescent scanning. The percentage activity
remaining for each SH was determined by measuring the integrated optical
density of the individual protein bands relative to the DMSO-only (no
compound) control. <b>Assay Cutoff</b>: Compounds with greater
than or equal to 50% inhibition for a given SH at 2 &#x003bc;M
test compound concentration were considered active.</p></div><div id="ml294.s19"><h5>Gel-based competitive ABPP inhibition of DAGL-&#x003b2; and ABHD6 for
IC50 determination <i>in situ</i> (AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602354" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602354</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602335" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602335</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
the IC50 values of powder samples of test compounds for DAGL-&#x003b2;
and anti-target ABHD6 inhibition <i>in situ</i> using a
competitive ABPP assay. In this assay, the ABPP probe HT-01 is used to
label DAGL-&#x003b2; and ABHD6 in the presence of test compounds. The
reaction products are analyzed as described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602303</a>.</p><p><b>Protocol Summary</b>: Cultured Neuro-2A murine neuroblastoma
cells (5 mL DMEM medium with 10% FCS) were treated with test
compound (1 &#x003bc;L of 5000&#x000d7; stock in DMSO) or DMSO only (1
&#x003bc;L) and incubated for 4 hours at 37&#x000b0;C. Cells were washed
with DPBS (4x), harvested, and homogenized by sonication. The protein
concentration was adjusted to 2 mg/mL with Dulbecco&#x02019;s PBS
(DPBS), and an aliquot (50 &#x003bc;L) was reacted with HT-01 (1
&#x003bc;L of a 50&#x000d7; stock in DMSO; 1 &#x003bc;M final
concentration) for 30 minutes at 37&#x000b0;C. Samples were quenched
with an equal volume of 2&#x000d7; SDS-PAGE loading buffer, separated by
SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage
activity remaining was determined by measuring the integrated optical
density of the DAGL-&#x003b2; and anti-target ABHD6 bands relative to
the DMSO-only (no compound) control. IC50 values were determined from
dose-response curves from three replicates at each inhibitor
concentration (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602354" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602354</a>: 9-point 1:3 dilution series
from 333 nM to 0.033 nM; <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602335" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602335</a>: 8-point
1:3 dilution series from 100 nM to 0.033 nM). <b>Assay Cutoff</b>:
Compounds with an IC50 less than or equal to 50 nM were considered
active.</p></div><div id="ml294.s20"><h5>LCMS-based DAGL-&#x003b2; substrate (SAG) assay for IC50
determination <i>in vitro</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/624468" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
624468</a>)</h5><p><b>Assay Overview:</b> This substrate-based IC50 assay is based on
hydrolysis of an endogenous DAG substrate,
1-stearoyl-2-arachidonoylglycerol (SAG), and quantification of
2-arachidonoylglycerol (2-AG) production by LC-MS. In this assay,
compounds are preincubated with DAGL-&#x003b2;-transfected HEK293T cell
membranes for 30 min, followed by incubation with SAG substrate for 30
min. The production of 2-AG is quantified by LC-MS. As designed,
compounds that act as DAGL-&#x003b2; inhibitors will slow the rate of
enzyme hydrolysis, resulting in a decreased production of 2-AG.</p><p><b>Protocol Summary:</b> Membrane proteome of transiently
transfected 293T Hek cells overexpressing mouse DAGL-&#x003b2; (70
&#x003bc;L of 0.3 mg/mL; Open Biosystems Accession <a href="/nuccore/16359288" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=nuccore">BC016105</a>) in DAGL
buffer (5 mM CaCl2, 100 mM NaCl, 50 mM HEPES) was treated with test
compound (1.4 &#x003bc;L of a 50&#x000d7; stock in DMSO; 10 &#x003bc;M
final concentration) or DMSO (1.4 &#x003bc;L) for 30 minutes at 37
degrees Celsius. The diglyceride substrate, SAG, was added to sample
reaction (30 &#x003bc;L, 500 &#x003bc;M final [SAG]) and
incubated for 30 minutes at 37 degrees Celsius. The reaction was
quenched with 2:1 chloroform/methanol doped with C15:0 monoacylglycerol
(MAG) lipid standard (1 nmol per 300 &#x003bc;L of quenching solution).
The organic (bottom) layer was extracted 30 &#x003bc;l of the organic
phase was injected onto an Agilent 1100 series LC-MSD SL instrument for
analysis. LC separation was achieved with a Gemini reversed-phase C18
column (5 &#x003bc;m, 4.6 mm &#x000d7; 50 mm). Mobile phase A was
composed of 95:5 v/v H2O:MeOH, and mobile phase B was composed of
60:35:5 v/v/v i-PrOH:MeOH:H2O, each containing 0.1% formic acid.
The flow rate was 0.5 ml/min and the gradient consisted of 5 min
0% B, a linear increase to 100% B over 15 min, followed
by an isocratic gradient of 100% B for 12 min before
equilibrating for 5 min at 0% B (37 min total). MS analysis, in
scanning mode from scanning from m/z = 200&#x02013;1200, was
performed with a positive electrospray ionization (ESI) source. The
hydrolysis product 2-AG (379 m/z) was quantified by measuring the area
under the peak in comparison with the C15:0 MAG standard (317 m/z). The
specific activity was calculated by measuring the pmoles of product 2-AG
formed per minute per mg of HEK293T-DAGL-&#x003b2; proteome used for
analysis. The % inhibition for each compound was determined by
comparing the specific activity of inhibitor-treated proteomes with
DMSO-treated proteomes. IC50 values were determined from two replicates
at each compound concentration (6 point dilution series starting at a
nominal concentration of 10 &#x003bc;M). <b>Assay Cutoff</b>:
Compounds with an IC50 less than or equal to 500 nM were considered
active.</p></div><div id="ml294.s21"><h5>Analysis of triazole urea cytotoxicity (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602337" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602337</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
cytotoxicity of powder samples of synthetic inhibitor compounds
belonging to the triazole urea scaffold. In this assay, Neuro-2A murine
neuroblastoma cells in either serum-free medium (Assay 1) or medium
containing fetal calf serum (FCS) (Assay 2) are incubated with test
compounds, followed by determination of cell viability. The assay
utilizes the WST-1 substrate which is converted into colorimetric
formazan dye by the metabolic activity of viable cells. The amount of
formed formazan directly correlates to the number of metabolically
active cells in the culture. As designed, compounds that reduce cell
viability will result in decreased absorbance of the dye.</p><p><b>Protocol Summary</b>: This assay was started by dispensing
Neuro-2A murine neuroblastoma cells in DMEM medium supplemented with
10% FCS (100 &#x003bc;L, 15,000 cells/well) into a 96-well
plate. Cells were incubated for 24 hours at 37&#x000b0;C in a humidified
incubator, medium was removed, and 100 &#x003bc;L of fresh, serum-free
medium (Assay 1) or medium supplemented with 10% FCS (Assay 2)
was added. Compound (10 &#x003bc;L of 11&#x000d7; stocks in medium
containing 10% DMSO) or an equal volume medium containing
10% DMSO only was added to each well. Cells were incubated for
48 hours at 37&#x000b0;C in a humidified incubator and cell viability
was determined by the WST-1 assay (Roche) according to manufacturer
instructions. CC50 values were determined from dose-response curves from
six replicates at each inhibitor concentration (100, 50, 10, 1, 0.1, and
0.01 &#x003bc;M). <b>Assay Cutoff</b>: Compounds with CC50 values
less than or equal to 1 &#x003bc;M were considered active
(cytotoxic).</p></div><div id="ml294.s22"><h5>LC-MS/MS-based ABPP-SILAC analysis of selectivity <i>in
situ</i> for <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602339" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602339</a>) and <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602341" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602341</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
the selectivity profile of powder samples of test compounds using ABPP
in combination with stable isotope labeling with amino acids in cell
culture (SILAC) [<a class="bibr" href="#ml294.r10" rid="ml294.r10">10</a>] as described [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>, <a class="bibr" href="#ml294.r11" rid="ml294.r11">11</a>]. In this assay, cultured Neuro-2A cells are
metabolically labeled with heavy or light amino acids. Heavy and light
cells are treated with test compound and DMSO, respectively, <i>in
situ</i>. Cells are lysed, proteomes are treated with the
serine-hydrolase-specific activity-based fluorophosphonate-biotin
(FP-biotin, [<a class="bibr" href="#ml294.r12" rid="ml294.r12">12</a>]) affinity probe, and combined in a 1:1 (w/w) ratio.
Biotinylated proteins are enriched, trypsinized, and analyzed by
multi-dimensional liquid chromatography tandem mass spectrometery
LC/LC-MS/MS (MudPIT) [<a class="bibr" href="#ml294.r13" rid="ml294.r13">13</a>, <a class="bibr" href="#ml294.r14" rid="ml294.r14">14</a>]. Inhibition of target and anti-target activity is
quantified by comparing intensities of light and heavy peptide peaks. As
designed, compounds that act as inhibitors will block FP-biotin
labeling, reducing enrichment in the inhibitor-treated (heavy) sample
relative to the DMSO-treated (light) sample, giving a smaller
heavy/light ratio for each protein. Proteins not targeted by inhibitors
would be expected to have a ratio of 1.</p><p><b>Protocol Summary</b>: <i>Sample Preparation</i>.
Neuro-2A murine neuroblastoma cells were initially grown for 10 passages
in either light or heavy SILAC DMEM medium supplemented with 10%
dialyzed FCS and 2 mM L-glutamine. Light medium was supplemented with
100 &#x003bc;g/mL L-arginine and 100 ug/mL L-lysine. Heavy medium was
supplemented with 100 &#x003bc;g/mL
[<sup>13</sup>C<sub>6</sub><sup>15</sup>N<sub>4</sub>]-L-Arginine
and 100 &#x003bc;g/mL
[<sup>13</sup>C<sub>6</sub><sup>15</sup>N<sub>2</sub>]-L-Lysine.
Heavy cells (in 10 mL medium) were treated with test compound (10
&#x003bc;L of a 1000&#x000d7; stock in DMSO; 25 nM final concentration)
and light cells were treated with DMSO (10 &#x003bc;L) for 4 hours at
37&#x000b0;C. Cells were washed with DPBS (4x), harvested, and
homogenized by sonication in DPBS. The soluble and membrane fractions
were isolated by centrifugation (100K &#x000d7; g, 45 minutes) and the
protein concentration for each fraction was adjusted to 2 mg/mL with
DPBS. The light and heavy proteomes were labeled with the activity-based
affinity probe FP-biotin (500 &#x003bc;L total reaction volume, 10
&#x003bc;M final concentration) for 2 hours at 25&#x000b0;C. After
incubation, light and heavy proteomes were mixed in 1:1 ratio, and the
membrane proteomes were additionally solubilized with 1%
Triton-X100. Samples were desalted over PD10 columns (GE Healthcare) in
DPBS, and biotinylated proteins enriched with streptavidin beads (50
&#x003bc;L beads; conditions: 1 hour, 25&#x000b0;C 0.5% SDS in
DPBS). The beads were washed with 1% SDS in DPBS (1x), 6 M urea
(1x), and DPBS (2x), then resuspended in in 6 M urea (150 &#x003bc;L),
reduced with 5 mM TCEP for 20 minutes, and alkylated with 10 mM
iodoacetamide for 30 minutes at 25&#x000b0;C in the dark. The urea
concentration was reduced to 2 M with 2&#x000d7; volume DPBS. On-bead
digestions were performed for 12 hours at 37&#x000b0;C with
sequence-grade modified trypsin (Promega; 2 &#x003bc;g) in the presence
of 2 mM CaCl<sub>2</sub>. Peptide samples were acidified to a final
concentration of 5% (v/v) formic acid and stored at
&#x02212;80&#x000b0;C prior to analysis.</p><p><i>LC-MS/MS analysis</i>. Samples were analyzed by
multidimensional liquid chromatography tandem mass spectrometry (MudPIT)
using an Agilent 1200-series quaternary pump and Thermo Scientific
LTQ-Orbitrap Velos ion trap mass spectrometer. Peptides were eluted in a
5-step MudPIT experiment using 0%, 25%, 50%,
80%, and 100% salt bumps of 500 mM aqueous ammonium
acetate and data were collected in data-dependent acquisition mode with
dynamic exclusion turned on (20 seconds, repeat of 1). Specifically, one
full MS (MS1) scan (400&#x02013;1800 m/z) was followed by 30 MS2 scans
of the most abundant ions. The MS2 spectra data were extracted from the
raw file using RAW Xtractor (version 1.9.9.2; publicly available at
<a href="http://fields.scripps.edu/researchtools.php" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://fields.scripps.edu/researchtools.php</a>). MS2
spectra data were searched using the ProLuCID algorithm (publicly
available at <a href="http://fields.scripps.edu/downloads.php" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://fields.scripps.edu/downloads.php</a>) against the
latest version of the mouse IPI database concatenated with the reversed
database for assessment of false-discovery rates. ProLucid searches
allowed for static modification of cysteine residues (+57.02146
due to alkylation), methionine oxidation (+15.9949), mass shifts
of labeled amino acids (+10.0083 R, +8.0142 K) and no
enzyme specificity. The resulting MS2 spectra matches were assembled
into protein identifications and filtered using DTASelect (version
2.0.41, <a href="http://fields.scripps.edu/researchtools.php" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://fields.scripps.edu/researchtools.php</a>) using the
--modstat, --mass, and --trypstat options (applies different statistical
models for the analysis of high resolution masses, peptide digestion
state, and methionine oxidation state respectively). Ratios of
heavy/light (test compound/DMSO) peaks were calculated using in-house
software and normalized at the peptide level to the average ratio of all
non-serine hydrolase peptides. Reported ratios represent the mean of all
unique, quantified peptides per protein and do not include peptides that
were &#x0003e;3 standard deviations from the median peptide value.
Proteins with less than three peptides per protein ID were not included
in the analysis. <b>Assay Cutoff</b>: A compound was considered
active for a particular target/anti-target with a light/heavy ratio of
less than or equal to 0.5.</p></div><div id="ml294.s23"><h5>Gel-based competitive ABPP inhibition of DAGL-&#x003b2; and ABHD6
<i>in vivo</i> (AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602347" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602347</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602345" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602345</a>, and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602343" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602343</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
whether or not powder samples of test compounds are active <i>in
vivo</i> (brain [<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602347" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602347</a>]
and macrophages [<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602345" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602345</a>])
using a competitive ABPP assay. In this assay, test compounds are
administered to mice. Mice are sacrificed, and their brain tissue and
peritoneal macrophages harvested, homogenized, and the membrane fraction
isolated and reacted with either the ABPP probe FP-Rh or HT-01. The
reaction products are analyzed as described for <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602303" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602303</a> and in ref. [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>].</p><p><b>Protocol Summary</b>: Purpose-bred C57-black laboratory mice
were administered test compound either by intraperitonial injection
(i.p.) (AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602347" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602347</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602345" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602345</a>; 20, 10, or 5 mg/kg; n = 2 per group) or
oral administration (p.o.) (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602343" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602343</a>; 20, 10,
or 5 mg/kg; n = 1 per group) or vehicle only (18:1:1
saline:PEG300:EtOH). Note: for macrophage analysis, mice were injected 4
days prior with thioglycollate. After 4 hours, mice were humanely
sacrificed (anesthetized with isoflurane and decapitated) and tissue
(brain or peritoneal macrophages) was removed and snap frozen in liquid
nitrogen. Tissues were homogenized and the membrane fraction isolated by
centrifugation (45 min, 100K &#x000d7; g) and adjusted to 1 mg/mL in
DPBS. Aliquots (50 &#x003bc;L) were reacted with the activity-based
probes HT-01 or FP-Rh (1 &#x003bc;L of a 50&#x000d7; stock in DMSO, 1
&#x003bc;M final concentration) for 30 minutes at 37&#x000b0;C. The
reactions were quenched with an equal volume of 2&#x000d7; SDS-PAGE
loading buffer (reducing), separated by SDS-PAGE and visualized by
in-gel fluorescent scanning. The percentage activity remaining was
determined by measuring the integrated optical density of test compound
bands relative to vehicle bands. For this assay, anti-target ABHD6 was
used as a diagnostic for observing inhibition due to the weak and
diffuse nature of the DAGL-&#x003b2; band. To assess selectivity, the
number of other anti-targets (with at least 50% inhibition) for
each ABPP probe is reported. <b>Assay Cutoff</b>: Compounds with
greater than or equal to 50% inhibition at 5 mg/kg compound
(i.p. or 10 mg/kg compound (p.o.) and fewer than 2 other anti-targets
were considered active.</p></div><div id="ml294.s24"><h5>LC-MS/MS-based ABPP-MudPIT analysis of selectivity <i>in
vivo</i> for <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602353" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602353</a>) and <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602351" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602351</a>)</h5><p><b>Assay Overview</b>: The purpose of this assay is to determine
the selectivity profile of powder samples of test compounds <i>in
vivo</i> by ABPP in combination with the multidimensional
protein identification technology (MudPIT) liquid chromatography tandem
mass spectrometry (LC-M/MS) analysis platform [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>, <a class="bibr" href="#ml294.r15" rid="ml294.r15">15</a>]. In this assay, mice are
administered test compound or vehicle only. Mice are sacrificed, and
peritoneal macrophages removed, lysed, and reacted with the serine
hydrolase specific activity-based fluorophosphonate-biotin (FP-biotin)
affinity probe. Biotinylated proteins are enriched, trypsinized, and
analyzed by MudPIT. Inhibition of target and anti-target activity is
quantified by comparing spectra counts between the test compound- and
DMSO-treated samples. As designed, compounds that act as inhibitors will
block FP-biotin labeling, reducing enrichment in the inhibitor-treated
sample relative to the DMSO-treated sample, thus giving a lower number
of smaller spectra counts in the inhibitor treated sample. Proteins not
targeted by inhibitors would be expected to have a spectra count ratio
similar to DMSO control.</p><p><b>Protocol Summary</b>: <i>Sample Preparation.</i>
Purpose-bred C57-black laboratory mice, injected 4 days prior with
thioglycollate, were administered test compound (5 mg/kg in 18:1:1
saline:PEG300:EtOH vehicle solution, i.p.) or vehicle only (n=3
per group). After 4 hours, mice were humanely sacrificed (anesthetized
with isoflurane and decapitated) and peritoneal macrophages were removed
and snap frozen in liquid nitrogen. Tissues were homogenized and the
protein concentration for each lysate was adjusted to 2 mg/mL with DPBS.
The macrophage proteomes were labeled with the activity-based affinity
probe FP-biotin (500 &#x003bc;L total reaction volume, 10 &#x003bc;M
final concentration) for 2 hours at 25&#x000b0;C. After incubation, the
proteomes were additionally solubilized with 1% Triton-X100.
Samples were desalted over PD10 columns (GE Healthcare) in DPBS, and
biotinylated proteins enriched with streptavidin beads (50 &#x003bc;L
beads; conditions: 1 hour, 25&#x000b0;C 0.5% SDS in DPBS). The
beads were washed with 1% SDS in DPBS (1x), 6 M urea (1x), and
DPBS (2x), then resuspended in 6 M urea (150 &#x003bc;L), reduced with 5
mM TCEP for 20 minutes, and alkylated with 10 mM iodoacetamide for 30
minutes at 25&#x000b0;C in the dark. The urea concentration was reduced
to 2 M with 2&#x000d7; volume DPBS. On-bead digestions were performed
for 12 hours at 37&#x000b0;C with sequence-grade modified trypsin
(Promega; 2 &#x003bc;g) in the presence of 2 mM CaCl<sub>2</sub>.
Peptide samples were acidified to a final concentration of 5%
(v/v) formic acid and stored at &#x02212;80&#x000b0;C prior to
analysis.</p><p><i>LC-MS/MS analysis.</i> Digested and acidified peptide
mixtures were analyzed by two-dimensional liquid chromatography/tandem
mass spectrometry (MudPIT) using an Agilent 1200-series quaternary pump
and Thermo Scientific LTQ ion trap mass spectrometer. Peptides were
eluted in a 5-step MudPIT experiment using 0%, 25%,
50%, 80%, and 100% salt bumps of 500 mM aqueous
ammonium acetate, with chromatographic elution following each salt pulse
accomplished using an increasing gradient of aqueous acetonitrile
containing 0.1% formic acid over 125 minutes. Data were
collected in data-dependent acquisition mode with dynamic exclusion
turned on (90 s, repeat of 1). Specifically, one full MS (MS1) scan
(400&#x02013;1800 m/z) was followed by 7 MS2 scans of the most abundant
ions. The MS2 spectra data were extracted from the raw file using RAW
Xtractor (version 1.9.1; publically available at <a href="http://fields.scripps.edu/downloads.php" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://fields.scripps.edu/downloads.php</a>). MS2 spectra
data were searched using the PROLUCID algorithm (publically available at
<a href="http://fields.scripps.edu/downloads.php" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://fields.scripps.edu/downloads.php</a>) against the
latest version of the mouse UniProt database concatenated with the
reversed database for assessment of false-discovery rates. PROLUCID
searches allowed for variable oxidation of methionine (+16),
static modification of cysteine (+57 due to alkylation), and no
enzyme specificity. The resulting MS2 spectra matches were assembled
into protein identifications and filtered using DTASelect (version
2.0.41) using the &#x02013;trypstat and &#x02013;modstat options, which
apply different statistical models for the analysis of tryptic,
half-tryptic, non-tryptic, and modified peptides. Spectra count
abundance ratios (test compound/DMSO) were calculated for all serine
hydrolases with an average of 10 or more spectra counts in the DMSO
control samples, as well as for anti-target ABHD6, which had fewer
spectra counts than the 10-count cutoff. A Student&#x02019;s T-test
(unpaired, equal variances) was utilized to determine statistical
significance between the average spectra counts in compound vs. DMSO
samples. <b>Assay Cutoff</b>: A compound was considered active for
a particular target/anti-target if there was a statistical difference
between the average spectra counts in the test compound- and
DMSO-treated samples (P &#x0003c; 0.01).</p></div></div></div><div id="ml294.s25"><h3>2.2. Probe Chemical Characterization</h3><div id="ml294.fu2" class="figure bk_fig"><div class="graphic"><img src="/books/NBK133443/bin/ml294fu2.jpg" alt="ML294 SID 125269120 CID 53364485." /></div><h3><span class="title"><a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a><br /><a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
125269120</a><br />CID 53364485</span></h3></div><p>The probe structure was verified by <sup>1</sup>H NMR (see <a href="#ml294.s26">Section 2.3</a>) and high resolution MS
(<i>m/z</i> calculated for
C<sub>28</sub>H<sub>29</sub>N<sub>4</sub>O<sub>2</sub>
[M+H]<sup>+</sup>: 453.2285, found
453.2297). Purity was assessed to be greater than 95% by NMR. See
<a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> Report for synthesis and structural
characterization of the anti-probe <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a>.</p><p>It should be noted that <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> was synthesized in racemic form, and
the independent activity of each enantiomer has not yet been tested. However, we
have resolved by chiral HPLC the respective enantiomers of the related analog
KT116 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269114" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269114</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/624472" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 624472</a>). Independent
assessment of potency revealed the (&#x02212;)enantiomer (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/136946704" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
136946704</a>) to be approximately 100&#x000d7; more potent than the
(+)enantiomer (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/136946703" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 136946703</a>) (~50% inhibition of
DAGL-&#x003b2; achieved at 100 nM vs. 10 &#x003bc;M compound concentration). As
expected, the racemic form (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269114" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269114</a>) is slightly
less potent (~2-fold) than (&#x02212;)KT116, suggesting that the combination of
the two enantiomers does not give rise to any synergistic or antagonistic
inhibitory effects. Given the structural similarity of KT116 and <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a>, it is anticipated that the respective enantiomers of the
Probe will have analogous properties.</p><p>Solubility (room temperature) for <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> and <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> was determined to be &#x0003c;1 &#x003bc;M in PBS and DMEM
medium alone, but much higher (6.4 &#x003bc;M and 3.2 &#x003bc;M, respectively)
in DMEM medium containing 10% fetal calf serum. The latter buffer
conditions are more relevant to biological experiments (complex proteome or
cell-based studies in serum-containing medium), and we have not found the modest
solubility to be a hindrance for biological application. Stability in PBS for
<a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> and <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> was determined to be &#x0003e;48 hours.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml294t1"><a href="/books/NBK133443/table/ml294.t1/?report=objectonly" target="object" title="Table 1" class="img_link icnblk_img figpopup" rid-figpopup="figml294t1" rid-ob="figobml294t1"><img class="small-thumb" src="/books/NBK133443/table/ml294.t1/?report=thumb" src-large="/books/NBK133443/table/ml294.t1/?report=previmg" alt="Table 1. Compounds submitted to the SMR collection (04-09-2012)." /></a><div class="icnblk_cntnt"><h4 id="ml294.t1"><a href="/books/NBK133443/table/ml294.t1/?report=objectonly" target="object" rid-ob="figobml294t1">Table 1</a></h4><p class="float-caption no_bottom_margin">Compounds submitted to the SMR collection (04-09-2012). </p></div></div></div><div id="ml294.s26"><h3>2.3. Probe Preparation</h3><div id="ml294.fu3" class="figure"><div class="graphic"><img src="/books/NBK133443/bin/ml294fu3.jpg" alt="Image ml294fu3" /></div></div><p><b>Synthesis of Compound 8 (KT116):</b> A solution of racemic 2-benzyl
piperidine (<b>A</b>, 0.32 g, 1.8 mmol) in THF (15 ml) was treated with
iPr<sub>2</sub>NEt (0.95 ml, 5.4 mmol) and triphosgene (0.27 g, 0.9 mmol),
and the reaction mixture was stirred for 30 minutes at 4&#x000b0;C. The mixture
was poured into water and extracted with ethyl acetate. The organic layer was
washed with water and brine, dried over Na<sub>2</sub>SO<sub>4</sub> and
concentrated under reduced pressure. The intermediate was dissolved in THF (20
ml), and iPr<sub>2</sub>NEt (0.95 ml, 5.4 mmol), DMAP (218 mg, 1.8 mmol) and
4-(4-bromophenyl)-1H-1,2,3-triazole (0.40 g, 1.8 mmol) were added to the
solution. The mixture was stirred for 2 hours at 60&#x000b0;C and poured into
saturated aqueous NH<sub>4</sub>Cl solution. The mixture was extracted with
ethyl acetate, washed with water and brine, dried over
Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure.
Chromatography (70 g, ethyl acetate:hexane=1:6~1:5) afforded KT116 (320
mg, 42%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) &#x003b4;
7.72-7.54 (m, 4H), 7.45-6.89 (m, 6H), 5.29 (br, 1H), 4.34 (brd, 1H, J =
13.5 Hz), 3.42-3.10 (m, 2H), 2.67 (br, 1H), 2.04-1.60 (m, 6H). HRMS calculated
for C<sub>21</sub>H<sub>22</sub>BrN<sub>4</sub>O
[M+H]<sup>+</sup> 425.0971, found 425.0976.
The triazole substitution of KT116 as the 1,4-isomer was determined by X-ray
crystallography, as reported in ref. [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>].</p><div id="ml294.fu4" class="figure"><div class="graphic"><img src="/books/NBK133443/bin/ml294fu4.jpg" alt="Image ml294fu4" /></div></div><p><b>Synthesis of <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (KT172):</b> A solution of
KT116 (30 mg, 0.071 mmol) in dioxane (2 ml) and water (0.1 ml) was treated with
phenyl bronic acid (17 mg, 0.13 mmol), K<sub>2</sub>CO<sub>3</sub> (30 mg, 0.22
mmol) and PdCl<sub>2</sub>(dppf) (8 mg, 0.011mmol), and the reaction mixture was
stirred for 2 hours at 80&#x000b0;C under N<sub>2</sub>. The mixture was poured
into water and extracted with ethyl acetate. The organic layer was washed with
water and brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under
reduced pressure. The residue was purified by pTLC (ethyl
acetate:hexane=1:4) to afford <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (27 mg,
85%).<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) &#x003b4; 7.84
(br, 2H), 7.63 (d, 2H, J = 8.4 Hz), 7.50-6.95 (m, 9H), 4.87 (br, 1H),
4.37 (brd, 1H, J = 13.8 Hz), 3.42-3.10 (m, 2H), 2.71 (br, 1H), 2.03-1.65
(m, 6H). Purity &#x0003e; 95% by NMR. HRMS calculated for
C<sub>28</sub>H<sub>29</sub>N<sub>4</sub>O<sub>2</sub>
[M+H]<sup>+</sup> 453.2285, found
453.2297.</p></div></div><div id="ml294.s27"><h2 id="_ml294_s27_">3. Results</h2><div id="ml294.s28"><h3>3.1. Dose Response Curves for Probe</h3><p>Target and anti-target IC50 values for <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> and anti-probe
<a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> were obtained from gel-based
competitive-ABPP data using the HT-01 activity-based probe [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>] both <i>in
vitro</i> and <i>in situ</i> (<a class="figpopup" href="/books/NBK133443/figure/ml294.f1/?report=objectonly" target="object" rid-figpopup="figml294f1" rid-ob="figobml294f1">Figure 1</a>; see caption for AID list). <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> showed high potency for both DAGL-&#x003b2; and
anti-target ABHD6 <i>in vitro</i> (IC50 values of 56 nM and ~1 nM,
respectively) and <i>in situ</i> (IC50 values of 12 nM and 0.48 nM,
respectively). In comparison, anti-probe <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> has IC50 values
for ABHD6 of 38 nM <i>in vitro</i> and 1.3 nM <i>in situ</i>
and high selectivity vs. DAGL-&#x003b2; (&#x0003e;75-fold). One of the primary
reasons <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> was chosen as the ABHD6 control
anti-probe was its similar potency for ABHD6 as compared to that of <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> for DAGL-&#x003b2; (IC50s of 38 vs. 56 nM <i>in
vitro</i>, 1.3 vs. 12 nM <i>in situ</i>). This property
allows administration of the compounds at comparable doses in biological
experiments, thus controlling for variables related to the overall amount of
compound introduced to the system.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml294f1" co-legend-rid="figlgndml294f1"><a href="/books/NBK133443/figure/ml294.f1/?report=objectonly" target="object" title="Figure 1" class="img_link icnblk_img figpopup" rid-figpopup="figml294f1" rid-ob="figobml294f1"><img class="small-thumb" src="/books/NBK133443/bin/ml294f1.gif" src-large="/books/NBK133443/bin/ml294f1.jpg" alt="Figure 1. IC50 curves for probe ML294 (SID 125269120) and anti-probe ML295 (SID 125269138)." /></a><div class="icnblk_cntnt" id="figlgndml294f1"><h4 id="ml294.f1"><a href="/books/NBK133443/figure/ml294.f1/?report=objectonly" target="object" rid-ob="figobml294f1">Figure 1</a></h4><p class="float-caption no_bottom_margin">IC50 curves for probe ML294 (SID
125269120) and anti-probe ML295 (SID 125269138). As
determined by gel-based competitive-ABPP with the activity-based probe
HT-01 against overexpressed DAGL-&#x003b2; in a complex proteome lysate
(left panels) and in cultured <a href="/books/NBK133443/figure/ml294.f1/?report=objectonly" target="object" rid-ob="figobml294f1">(more...)</a></p></div></div></div><div id="ml294.s29"><h3>3.2. Cellular Activity</h3><p><b><i>In situ Inhibition:</i></b> Probe <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>) and anti-probe <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269138" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269138</a>) are active <i>in
situ</i> (AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602354" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602354</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602335" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602335</a>) as assessed by
gel-based competitive ABPP following 4 hours of compound incubation with
Neuro-2A murine neuroblastoma cells (cultured in medium containing 10%
fetal calf serum) [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>].</p><p><b><i>In vivo Inhibition:</i></b> We also assessed the <i>in
vivo</i> inhibitory activity of probe <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>). For this experiment, mice
(n=2 per group) were administered test compound (5, 10 or 20 mg/kg,
i.p.) or vehicle only. After 4 hours, mice were sacrificed and their brain
tissue removed. The membrane fraction was isolated and subject to gel-based
competitive ABPP with either HT-01 or FP-Rh. The DAGL-&#x003b2; target band is
not visible under these conditions, as such, inhibition of anti-target ABHD6 a
key diagnostic of <i>in vivo</i> inhibitory activity in the brain. A
near-complete inhibition of ABHD6 is observed for <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> at all test concentrations.</p><p><b><i>Cytotoxicity:</i></b> The probe <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>) and anti-probe <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269138" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269138</a>) were evaluated for cytotoxicity
(<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602337" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602337</a>) in Neuro-2A murine neuroblastoma cells cultured in both
serum-free and serum-supplemented medium. The results of the two experiments
were quite different, with the serum-free conditions yielding 20-fold elevated
values (CC50s &#x0003e;100 &#x003bc;M) vs. the serum-supplemented experiment
(CC50s of 3&#x02013;6 &#x003bc;M). Solubility for all compounds was determined
to be &#x0003c;1 &#x003bc;M in DMEM medium alone, but markedly improved in medium
supplemented with 10% serum (6.4 &#x003bc;M for <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> and 3.2 &#x003bc;M for <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a>).</p></div><div id="ml294.s30"><h3>3.3. Profiling Assays</h3><p><b>Gel-based Competitive ABPP:</b> This medium-throughput proteome-wide
screening technique was instrumental in our medchem optimization of the probe
compound, allowing rapid assessment of potency and selectivity among SHs
(including lipases, esterases, proteases, and uncharacterized hydrolases), as
visualized by disappearance of bands in compound-treated lanes relative to the
DMSO-only control. It should be noted that gel-based profiling gives us access
to fairly low abundant proteins. For example, we have previously determined that
we could detect the SH fatty acid amide hydrolase (FAAH) at concentrations as
low as 0.0005% of the total proteome (~200 copies per cell) by gel-based
ABPP [<a class="bibr" href="#ml294.r16" rid="ml294.r16">16</a>].</p><p><b>HTS Analysis.</b> No HTS activity data are yet available for probe
<a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> or any of the synthetic analogs, nor
have the probe compounds and analogs been submitted for commercial or
non-commercial broad panel screening. Rather, the reactivity of the triazole
urea compound class has been extensively characterized using competitive ABPP
methods, as described below.</p><p><b>Reactivity of triazole
ureas</b><b><i>outside</i></b><b>the SH enzyme
class.</b> As detailed in the Probe Report for <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> and in ref. [<a class="bibr" href="#ml294.r11" rid="ml294.r11">11</a>], we previously completed an analysis of triazole urea
reactivity outside of the SH class by gel-based competitive ABPP using
alkyne-functionalized triazole urea compounds. For these experiments, we
assessed whether or not the proteome reactivity profiles of the alkynyl triazole
ureas of moderate electrophilicity (akin to the SAR series in Section 3.4) could
be blocked by pre-incubation with the non-fluorescent SH-directed activity based
probe FP-biotin [<a class="bibr" href="#ml294.r12" rid="ml294.r12">12</a>] with visualization of labeled proteins achieved by click
chemistry conjugation of the alkyne-functionalized triazole ureas to an
azido-conjugated rhodamine reporter tag [<a class="bibr" href="#ml294.r17" rid="ml294.r17">17</a>]. FP-biotin was found to successfully
compete all proteins modified by the triazole ureas, indicating that the latter
reacted exclusively with members of the SH class; as such, anti-targets outside
of the SH class are not a primary concern for <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> and <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a>.</p><p><b>Reactivity of triazole
ureas</b><b><i>within</i></b><b>the SH enzyme
class.</b> Probe <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>) and analogs
have been subject to gel-based competitive ABPP screening to assess SH
reactivity against more than 20 FP-sensitive SHs visible by 1D SDS-PAGE
separation and fluorescent detection in the mouse brain membrane proteome
(<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602311" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602311</a>). This proteome was chosen due to its relevance for future
study of DAGL-&#x003b2; in the nervous system as well as its diversity of SHs.
Anti-target hits are identified by &#x02265;50% disappearance of the
band in the gel relative to the DMSO control. (Note: DAGL-&#x003b2; is not
visible in these gels due to overlapping SH bands). Proteins are listed as
anti-targets if at least 50% inhibition is observed as quantified
relative to the DMSO control. For additional selectivity analysis, compounds
were also evaluated using the HT-01 probe in the mouse brain membrane proteome
by gel-based competitive ABPP (1 &#x003bc;M compound). <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> shows a clean selectivity profile by this analysis.</p><p><b>ABPP-SILAC:</b> To more comprehensively identify potential anti-targets,
we utilized an advanced quantitative mass spectrometry (MS)-based platform
termed competitive ABPP-SILAC. Competitive ABPP-SILAC [<a class="bibr" href="#ml294.r9" rid="ml294.r9">9</a>, <a class="bibr" href="#ml294.r11" rid="ml294.r11">11</a>] combines competitive ABPP [<a class="bibr" href="#ml294.r18" rid="ml294.r18">18</a>] with stable isotope
labeling of cells (SILAC) [<a class="bibr" href="#ml294.r10" rid="ml294.r10">10</a>], and allows for precise quantitation of enzyme
inhibition by calculating the isotopic ratios of peptides from inhibitor-treated
and control cells. We estimate that the sensitivity of a standard LC-MS/MS based
assay (ABPP-SILAC, ABPP-MudPIT) is at least 10-fold higher than our gel-based
assays (0.00005% of the total cell proteome, or 20 copies per cell). As
such, this method offers more sensitive detection of low abundance SHs for a
comprehensive selectivity analysis. The results demonstrate that both <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> and <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> display high
selectivity for their targets in Neuro-2A murine neuroblastoma cells <i>in
situ</i>, blocking &#x0003e;90% of activity of
DAGL-&#x003b2;/ABHD6 (<a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a>) and ABHD6 (<a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a>), while not affecting activity of 40+ other SHs.
These clean selectivity profiles highlight the value of specific chemotypes,
like the triazole ureas, from which it is possible to derive potent and
selective chemical probes for multiple enzyme targets.</p><p><b>ABPP-MudPIT:</b> To more comprehensively identify potential anti-targets
<i>in vivo</i>, we utilized a quantitative LC-MS/MS-based platform
termed competitive ABPP-MudPIT [<a class="bibr" href="#ml294.r15" rid="ml294.r15">15</a>]. ABPP-MudPIT allows for semi-quantitative determination
of enzyme inhibition via comparison of the spectra counts of peptides from
control vs. inhibitor-treated samples. Mice were administered <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602353" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602353</a>) or <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602351" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602351</a>). The results demonstrate that both
<a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> and <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> exhibit significant selectivity for their target enzymes
(P&#x0003c;0.01).</p></div></div><div id="ml294.s31"><h2 id="_ml294_s31_">4. Discussion</h2><div id="ml294.s32"><h3>4.1. Comparison to Existing Art and How the New Probe is an Improvement</h3><p><a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> is the first reported inhibitor with selectivity for
DAGL-&#x003b2; vs. DAGL-&#x003b1;. Dual DAGL-&#x003b1;/&#x003b2; inhibitors
tetrahydrolipstatin (THL) and <a href="/protein/1470879788/?report=GenPept" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=genpept">RHC80267</a> (see <a class="figpopup" href="/books/NBK133443/figure/ml294.f2/?report=objectonly" target="object" rid-figpopup="figml294f2" rid-ob="figobml294f2">Figure 2</a> for structures) have been reported in the literature;
however, anti-target assessment of these compounds by competitive ABPP revealed
that both compounds block several brain SHs with greater or equivalent potency
vs. the DAGL enzymes [<a class="bibr" href="#ml294.r19" rid="ml294.r19">19</a>]. In contrast, <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> has one
anti-target, ABHD6, and an available control &#x0201c;anti-probe&#x0201d;
<a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a>, making these Probes, in concert, a
significant improvement over prior art DAGL-&#x003b2; inhibitors and crucial
chemical tools for the biological investigation of DAGL-&#x003b2;.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml294f2" co-legend-rid="figlgndml294f2"><a href="/books/NBK133443/figure/ml294.f2/?report=objectonly" target="object" title="Figure 2" class="img_link icnblk_img figpopup" rid-figpopup="figml294f2" rid-ob="figobml294f2"><img class="small-thumb" src="/books/NBK133443/bin/ml294f2.gif" src-large="/books/NBK133443/bin/ml294f2.jpg" alt="Figure 2. Structures of prior art dual DAGL-&#x003b1;/&#x003b2; inhibitors THL and RHC80267 and DAGL-b inhibitor ML294." /></a><div class="icnblk_cntnt" id="figlgndml294f2"><h4 id="ml294.f2"><a href="/books/NBK133443/figure/ml294.f2/?report=objectonly" target="object" rid-ob="figobml294f2">Figure 2</a></h4><p class="float-caption no_bottom_margin">Structures of prior art dual DAGL-&#x003b1;/&#x003b2; inhibitors THL
and RHC80267 and DAGL-b inhibitor ML294. </p></div></div></div></div><div id="ml294.s33"><h2 id="_ml294_s33_">5. References</h2><dl class="temp-labeled-list"><dl class="bkr_refwrap"><dt>1.</dt><dd><div class="bk_ref" id="ml294.r1">Di Marzo V. Targeting the endocannabinoid system: to
enhance or reduce? <span><span class="ref-journal">Nat. Rev. Drug
Discov. </span>2008;<span class="ref-vol">7</span>(5):438&ndash;55.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18446159" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18446159</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>2.</dt><dd><div class="bk_ref" id="ml294.r2">Chevaleyre V, Takahashi KA, Castillo PE. Endocannabinoid-mediated synaptic plasticity
in the CNS. <span><span class="ref-journal">Annu. Rev.
Neurosci. </span>2006;<span class="ref-vol">29</span>:37&ndash;76.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16776579" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16776579</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>3.</dt><dd><div class="bk_ref" id="ml294.r3">Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate
endocannabinoid signaling in the nervous
system. <span><span class="ref-journal">Chem.
Rev. </span>2008;<span class="ref-vol">108</span>(5):1687&ndash;707.</span> [<a href="/pmc/articles/PMC3150828/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3150828</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18429637" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18429637</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>4.</dt><dd><div class="bk_ref" id="ml294.r4">Ahn K, et al. Mechanistic and pharmacological
characterization of PF-04457845: a highly potent and selective fatty
acid amide hydrolase inhibitor that reduces inflammatory and
noninflammatory pain. <span><span class="ref-journal">J. Pharmacol Exp.
Ther. </span>2011;<span class="ref-vol">338</span>(1):114&ndash;24.</span> [<a href="/pmc/articles/PMC3126636/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3126636</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21505060" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21505060</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>5.</dt><dd><div class="bk_ref" id="ml294.r5">Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that
hydrolyze the endocannabinoid
2-arachidonoylglycerol. <span><span class="ref-journal">Chem.
Biol. </span>2007;<span class="ref-vol">14</span>(12):1347&ndash;56.</span> [<a href="/pmc/articles/PMC2692834/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2692834</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18096503" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18096503</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>6.</dt><dd><div class="bk_ref" id="ml294.r6">Bisogno T, et al. Cloning of the first sn1-DAG lipases points to
the spatial and temporal regulation of endocannabinoid signaling in the
brain. <span><span class="ref-journal">J. Cell
Biol. </span>2003;<span class="ref-vol">163</span>(3):463&ndash;8.</span> [<a href="/pmc/articles/PMC2173631/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2173631</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14610053" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14610053</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>7.</dt><dd><div class="bk_ref" id="ml294.r7">Gao Y, et al. Loss of retrograde endocannabinoid signaling
and reduced adult neurogenesis in diacylglycerol lipase knock-out
mice. <span><span class="ref-journal">J.
Neurosci. </span>2010;<span class="ref-vol">30</span>(6):2017&ndash;24.</span> [<a href="/pmc/articles/PMC6634037/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6634037</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20147530" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20147530</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>8.</dt><dd><div class="bk_ref" id="ml294.r8">Tanimura A, et al. The endocannabinoid 2-arachidonoylglycerol
produced by diacylglycerol lipase alpha mediates retrograde suppression
of synaptic
transmission. <span><span class="ref-journal">Neuron. </span>2010;<span class="ref-vol">65</span>(3):320&ndash;7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20159446" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20159446</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>9.</dt><dd><div class="bk_ref" id="ml294.r9">Hsu KL, et al. DAGLB Regulates an Endocannabinoid-Eicosanoid
Network Involved in Macrophage Inflammatory
Responses. Submitted 2012.</div></dd></dl><dl class="bkr_refwrap"><dt>10.</dt><dd><div class="bk_ref" id="ml294.r10">Ong SE, et al. Stable isotope labeling by amino acids in cell
culture, SILAC, as a simple and accurate approach to expression
proteomics. <span><span class="ref-journal">Mol. Cell
Proteomics. </span>2002;<span class="ref-vol">1</span>(5):376&ndash;86.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12118079" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12118079</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>11.</dt><dd><div class="bk_ref" id="ml294.r11">Adibekian A, et al. Click-generated triazole ureas as ultrapotent
in vivo-active serine hydrolase inhibitors. <span><span class="ref-journal">Nat.
Chem.
Biol. </span>2011;<span class="ref-vol">7</span>(7):469&ndash;78.</span> [<a href="/pmc/articles/PMC3118922/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3118922</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21572424" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21572424</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>12.</dt><dd><div class="bk_ref" id="ml294.r12">Liu Y, Patricelli MP, Cravatt BF. Activity-based protein profiling: the serine
hydrolases. <span><span class="ref-journal">Proc. Natl. Acad. Sci. U. S.
A. </span>1999;<span class="ref-vol">96</span>(26):14694&ndash;9.</span> [<a href="/pmc/articles/PMC24710/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC24710</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10611275" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10611275</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>13.</dt><dd><div class="bk_ref" id="ml294.r13">Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by
multidimensional protein identification
technology. <span><span class="ref-journal">Nat.
Biotechnol. </span>2001;<span class="ref-vol">19</span>(3):242&ndash;7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11231557" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11231557</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>14.</dt><dd><div class="bk_ref" id="ml294.r14">Wolters DA, Washburn MP, Yates JR 3rd. An automated multidimensional protein
identification technology for shotgun
proteomics. <span><span class="ref-journal">Anal.
Chem. </span>2001;<span class="ref-vol">73</span>(23):5683&ndash;90.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11774908" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11774908</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>15.</dt><dd><div class="bk_ref" id="ml294.r15">Jessani N, et al. A streamlined platform for high-content
functional proteomics of primary human
specimens. <span><span class="ref-journal">Nat.
Methods. </span>2005;<span class="ref-vol">2</span>(9):691&ndash;7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16118640" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16118640</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>16.</dt><dd><div class="bk_ref" id="ml294.r16">Jessani N, et al. Enzyme activity profiles of the secreted and
membrane proteome that depict cancer cell
invasiveness. <span><span class="ref-journal">Proc. Natl. Acad. Sci. U. S.
A. </span>2002;<span class="ref-vol">99</span>(16):10335&ndash;40.</span> [<a href="/pmc/articles/PMC124915/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC124915</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12149457" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12149457</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>17.</dt><dd><div class="bk_ref" id="ml294.r17">Speers AE, Cravatt BF. Profiling enzyme activities in vivo using
click chemistry methods. <span><span class="ref-journal">Chem.
Biol. </span>2004;<span class="ref-vol">11</span>(4):535&ndash;46.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15123248" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15123248</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>18.</dt><dd><div class="bk_ref" id="ml294.r18">Leung D, et al. Discovering potent and selective reversible
inhibitors of enzymes in complex proteomes. <span><span class="ref-journal">Nat.
Biotechnol. </span>2003;<span class="ref-vol">21</span>(6):687&ndash;91.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12740587" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12740587</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>19.</dt><dd><div class="bk_ref" id="ml294.r19">Hoover HS, et al. Selectivity of inhibitors of endocannabinoid
biosynthesis evaluated by activity-based protein
profiling. <span><span class="ref-journal">Bioorg. Med. Chem.
Lett. </span>2008;<span class="ref-vol">18</span>(22):5838&ndash;41.</span> [<a href="/pmc/articles/PMC2634297/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2634297</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18657971" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18657971</span></a>]</div></dd></dl></dl></div><div id="bk_toc_contnr"></div></div></div><div class="fm-sec"><h2 id="_NBK133443_pubdet_">Publication Details</h2><h3>Author Information and Affiliations</h3><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Ku-Lung Hsu</span>,<sup>1</sup> <span itemprop="author">Katsunori Tsuboi</span>,<sup>1</sup> <span itemprop="author">Anna E Speers</span>,<sup>1</sup> <span itemprop="author">Steven J Brown</span>,<sup>1</sup> <span itemprop="author">Timothy Spicer</span>,<sup>2</sup> <span itemprop="author">Virneliz Fernandez-Vega</span>,<sup>2</sup> <span itemprop="author">Jill Ferguson</span>,<sup>1</sup> <span itemprop="author">Benjamin F Cravatt</span>,<sup>1</sup> <span itemprop="author">Peter Hodder</span>,<sup>2</sup> and <span itemprop="author">Hugh Rosen</span><sup>1</sup><sup>,*</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup>
The Scripps Research Institute, La Jolla CA</div><div class="affiliation"><sup>2</sup>
The Scripps Research Institute, Jupiter, FL.</div><div class="affiliation"><sup>*</sup> Corresponding author:
<span class="before-email-separator"></span><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="ude.sppircs@nesorh" class="oemail">ude.sppircs@nesorh</a></div><h3>Publication History</h3><p class="small">Received: <span itemprop="datePublished">April 16, 2012</span>; Last Update: <span itemprop="dateModified">February 25, 2013</span>.</p><h3>Copyright</h3><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div></div><h3>Publisher</h3><p>National Center for Biotechnology Information (US), Bethesda (MD)</p><h3>NLM Citation</h3><p>Hsu KL, Tsuboi K, Speers AE, et al. Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-&#x003b2;) 2012 Apr 16 [Updated 2013 Feb 25]. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-. <span class="bk_cite_avail"></span></p></div><div class="small-screen-prev"><a href="/books/n/mlprobe/ml296/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="small-screen-next"><a href="/books/n/mlprobe/ml293/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></article><article data-type="fig" id="figobml294fu1"><div id="ml294.fu1" class="figure"><div class="graphic"><img data-src="/books/NBK133443/bin/ml294fu1.jpg" alt="Image ml294fu1" /></div></div></article><article data-type="table-wrap" id="figobml294tu1"><div id="ml294.tu1" class="table"><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133443/table/ml294.tu1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml294.tu1_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_ml294.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CID/ML#</th><th id="hd_h_ml294.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Target Name</th><th id="hd_h_ml294.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Target IC50<sup>*</sup> (nM) [SID,
AID]</th><th id="hd_h_ml294.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Anti-target Name(s)</th><th id="hd_h_ml294.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Anti-target IC50<sup>*</sup> (nM)
[SID, AID]</th><th id="hd_h_ml294.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Fold Selective<sup>&#x02020;</sup></th><th id="hd_h_ml294.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Secondary Assay(s) Name:
[SID, AID]</th></tr></thead><tbody><tr><td headers="hd_h_ml294.tu1_1_1_1_1" rowspan="3" colspan="1" style="text-align:center;vertical-align:middle;">CID 53364485/<a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a></td><td headers="hd_h_ml294.tu1_1_1_1_2" rowspan="3" colspan="1" style="text-align:center;vertical-align:middle;">DAGL-&#x003b2;</td><td headers="hd_h_ml294.tu1_1_1_1_3" rowspan="3" colspan="1" style="text-align:center;vertical-align:middle;">56 [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602320" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602320</a>]</td><td headers="hd_h_ml294.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">ABHD6</td><td headers="hd_h_ml294.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">~1 [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/624039" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
624039</a>]</td><td headers="hd_h_ml294.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0</td><td headers="hd_h_ml294.tu1_1_1_1_7" rowspan="3" colspan="1" style="text-align:left;vertical-align:middle;"><b>Inhibition
Assay</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602320" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602320</a>]<br /><b>Selectivity Assay
ABHD6</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/624039" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
624039</a>]<br /><b>Selectivity Assay
SHs</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602355" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602355</a>]<br /><b>Selectivity Assay
DAGL-</b>&#x003b1;: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>, AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602403" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602403</a><b>]</b><br /><b>Selectivity
Assay ABPP-SILAC:</b> [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602339" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602339</a>]<br /><b>Selectivity Assay
ABPP-MudPIT</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602353" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602353</a>]<br /><b><i>In
situ</i></b><b>Assay</b>: IC50 = 12 nM
[<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602354" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602354</a>]<br /><b><i>In
vivo</i></b><b>Assays</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>, AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602347" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602347</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602345" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602345</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602343" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">602343</a>]<br /><b>Cytotox assay</b>:
[<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602337" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602337</a>]</td></tr><tr><td headers="hd_h_ml294.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">20+ SH targets, including
FAAH, MAGL, ABHD11, ABHD12, LYPLA1, LYPLA2, PLA2G7, PAFAH2</td><td headers="hd_h_ml294.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 2000<sup>**</sup> [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602355" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602355</a>]</td><td headers="hd_h_ml294.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e;35</td></tr><tr><td headers="hd_h_ml294.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">DAGL-&#x003b1; (closest homolog)</td><td headers="hd_h_ml294.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e;400<sup>**</sup> [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602403" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602403</a>]</td><td headers="hd_h_ml294.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">7</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>*</dt><dd><div id="ml294.tfn1"><p class="no_margin">As assessed by gel-based competitive ABPP</p></div></dd></dl><dl class="bkr_refwrap"><dt>**</dt><dd><div id="ml294.tfn2"><p class="no_margin">IC50 of the anti-target is defined as greater than the test compound
concentration at which less than or equal to 50% inhibition of
the anti-target is observed, which is reported in <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602355" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602355</a>. For <a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 125269120</a>, no
anti-targets were observed for all serine hydrolases (SHs) assayed at
2000 nM concentration, so the IC50 is reported as &#x0003e;2000 nM.</p></div></dd></dl><dl class="bkr_refwrap"><dt>&#x02020;</dt><dd><div id="ml294.tfn3"><p class="no_margin">Fold-selectivity was calculated as: &#x0003e;IC50 for anti-target/IC50 for
DAGL-&#x003b2;</p></div></dd></dl></dl></div></div></div></article><article data-type="fig" id="figobml294fu2"><div id="ml294.fu2" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK133443/bin/ml294fu2.jpg" alt="ML294 SID 125269120 CID 53364485." /></div><h3><span class="title"><a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a><br /><a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
125269120</a><br />CID 53364485</span></h3></div></article><article data-type="table-wrap" id="figobml294t1"><div id="ml294.t1" class="table"><h3><span class="label">Table 1</span><span class="title">Compounds submitted to the SMR collection (04-09-2012)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133443/table/ml294.t1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml294.t1_lrgtbl__"><table class="no_top_margin"><tbody><tr><th id="hd_b_ml294.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Designation</th><th id="hd_b_ml294.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CID</th><th id="hd_b_ml294.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">SID</th><th id="hd_b_ml294.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">SRID</th><th id="hd_b_ml294.t1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MLS</th></tr><tr><th id="hd_b_ml294.t1_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Probe</th><td headers="hd_b_ml294.t1_1_1_2_1 hd_b_ml294.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">53364485</td><td headers="hd_b_ml294.t1_1_1_2_1 hd_b_ml294.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">125269120</a></td><td headers="hd_b_ml294.t1_1_1_2_1 hd_b_ml294.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">SR-02000001756-1</td><td headers="hd_b_ml294.t1_1_1_2_1 hd_b_ml294.t1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MLS004256809</td></tr><tr><th id="hd_b_ml294.t1_1_1_3_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Analog 1</th><td headers="hd_b_ml294.t1_1_1_3_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">53364509</td><td headers="hd_b_ml294.t1_1_1_3_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269102" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">125269102</a></td><td headers="hd_b_ml294.t1_1_1_3_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">SR-02000001738-1</td><td headers="hd_b_ml294.t1_1_1_3_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MLS004256810</td></tr><tr><th id="hd_b_ml294.t1_1_1_4_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Analog 2</th><td headers="hd_b_ml294.t1_1_1_4_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">56643167</td><td headers="hd_b_ml294.t1_1_1_4_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/134420265" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">134420265</a></td><td headers="hd_b_ml294.t1_1_1_4_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">SR-02000002085-1</td><td headers="hd_b_ml294.t1_1_1_4_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MLS004256811</td></tr><tr><th id="hd_b_ml294.t1_1_1_5_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Analog 3</th><td headers="hd_b_ml294.t1_1_1_5_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">53364486</td><td headers="hd_b_ml294.t1_1_1_5_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269106" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">125269106</a></td><td headers="hd_b_ml294.t1_1_1_5_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">SR-02000001742-1</td><td headers="hd_b_ml294.t1_1_1_5_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MLS004256812</td></tr><tr><th id="hd_b_ml294.t1_1_1_6_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Analog 4</th><td headers="hd_b_ml294.t1_1_1_6_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">53364540</td><td headers="hd_b_ml294.t1_1_1_6_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269108" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">125269108</a></td><td headers="hd_b_ml294.t1_1_1_6_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">SR-02000001744-1</td><td headers="hd_b_ml294.t1_1_1_6_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MLS004256813</td></tr><tr><th id="hd_b_ml294.t1_1_1_7_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Analog 5</th><td headers="hd_b_ml294.t1_1_1_7_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">53364489</td><td headers="hd_b_ml294.t1_1_1_7_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/125269114" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">125269114</a></td><td headers="hd_b_ml294.t1_1_1_7_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">SR-02000001750-1</td><td headers="hd_b_ml294.t1_1_1_7_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MLS004256814</td></tr></tbody></table></div></div></article><article data-type="fig" id="figobml294fu3"><div id="ml294.fu3" class="figure"><div class="graphic"><img data-src="/books/NBK133443/bin/ml294fu3.jpg" alt="Image ml294fu3" /></div></div></article><article data-type="fig" id="figobml294fu4"><div id="ml294.fu4" class="figure"><div class="graphic"><img data-src="/books/NBK133443/bin/ml294fu4.jpg" alt="Image ml294fu4" /></div></div></article><article data-type="fig" id="figobml294f1"><div id="ml294.f1" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%201.%20IC50%20curves%20for%20probe%20ML294%20(SID%20125269120)%20and%20anti-probe%20ML295%20(SID%20125269138).&amp;p=BOOKS&amp;id=133443_ml294f1.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133443/bin/ml294f1.jpg" alt="Figure 1. IC50 curves for probe ML294 (SID 125269120) and anti-probe ML295 (SID 125269138)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 1</span><span class="title">IC50 curves for probe ML294 (SID
125269120) and anti-probe ML295 (SID 125269138)</span></h3><div class="caption"><p>As
determined by gel-based competitive-ABPP with the activity-based probe
HT-01 against overexpressed DAGL-&#x003b2; in a complex proteome lysate
(left panels) and in cultured neuro-2A murine neuroblastoma cells grown
in medium supplemented with 10% FCS (right panels). Data are presented as means + s.e.m. for 3 independent
experiments. <i>AID information</i>: <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> vs. DAGL-&#x003b2; <i>in vitro</i>
(<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602320" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 602320</a>); <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> vs. ABHD6 <i>in vitro</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/624039" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
624039</a>); <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a> vs.
DAGL-&#x003b2; and ABHD6 <i>in situ</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602354" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602354</a>); <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> vs.
DAGL-&#x003b2; and ABHD6 <i>in vitro</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602322" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602322</a>); <a href="/pcsubstance/?term=ML295[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML295</a> vs.
DAGL-&#x003b2; and ABHD6 <i>in situ</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/602335" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
602335</a>).</p></div></div></article><article data-type="fig" id="figobml294f2"><div id="ml294.f2" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%202.%20Structures%20of%20prior%20art%20dual%20DAGL-%003B1%2F%003B2%20inhibitors%20THL%20and%20RHC80267%20and%20DAGL-b%20inhibitor%20ML294.&amp;p=BOOKS&amp;id=133443_ml294f2.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133443/bin/ml294f2.jpg" alt="Figure 2. Structures of prior art dual DAGL-&#x003b1;/&#x003b2; inhibitors THL and RHC80267 and DAGL-b inhibitor ML294." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 2</span><span class="title">Structures of prior art dual DAGL-&#x003b1;/&#x003b2; inhibitors THL
and RHC80267 and DAGL-b inhibitor <a href="/pcsubstance/?term=ML294[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML294</a></span></h3></div></article></div><div id="jr-scripts"><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/libs.min.js"> </script><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.min.js"> </script></div></div>
<!-- Book content -->
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal105 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3968615.js" snapshot="books"></script></body>
</html>