nih-gov/www.ncbi.nlm.nih.gov/books/n/mlprobe/ml231/index.html?report=reader
2025-03-17 02:05:34 +00:00

1461 lines
334 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" class="no-js no-jr">
<head>
<!-- For pinger, set start time and add meta elements. -->
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- Logger begin -->
<meta name="ncbi_db" content="books">
<meta name="ncbi_pdid" content="book-part">
<meta name="ncbi_acc" content="NBK133439">
<meta name="ncbi_domain" content="mlprobe">
<meta name="ncbi_report" content="reader">
<meta name="ncbi_type" content="fulltext">
<meta name="ncbi_objectid" content="">
<meta name="ncbi_pcid" content="/NBK133439/?report=reader">
<meta name="ncbi_pagename" content="Profiling a Selective Probe for RTG Branch of Yeast TORC1 Signaling Pathway - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf">
<meta name="ncbi_bookparttype" content="chapter">
<meta name="ncbi_app" content="bookshelf">
<!-- Logger end -->
<!--component id="Page" label="meta"/-->
<script type="text/javascript" src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.boots.min.js"> </script><title>Profiling a Selective Probe for RTG Branch of Yeast TORC1 Signaling Pathway - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf</title>
<meta charset="utf-8">
<meta name="apple-mobile-web-app-capable" content="no">
<meta name="viewport" content="initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no">
<meta name="jr-col-layout" content="auto">
<meta name="jr-prev-unit" content="/books/n/mlprobe/ml232/?report=reader">
<meta name="jr-next-unit" content="/books/n/mlprobe/ml230/?report=reader">
<meta name="bk-toc-url" content="/books/n/mlprobe/?report=toc">
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE">
<meta name="citation_inbook_title" content="Probe Reports from the NIH Molecular Libraries Program [Internet]">
<meta name="citation_title" content="Profiling a Selective Probe for RTG Branch of Yeast TORC1 Signaling Pathway">
<meta name="citation_publisher" content="National Center for Biotechnology Information (US)">
<meta name="citation_date" content="2013/02/25">
<meta name="citation_author" content="Jun Chen">
<meta name="citation_author" content="Susan M. Young">
<meta name="citation_author" content="Chris Allen">
<meta name="citation_author" content="Anna Waller">
<meta name="citation_author" content="Oleg Ursu">
<meta name="citation_author" content="J. Jacob Strouse">
<meta name="citation_author" content="Tuanli Yao">
<meta name="citation_author" content="Jennifer E. Golden">
<meta name="citation_author" content="Blake R. Peterson">
<meta name="citation_author" content="Terry D. Foutz">
<meta name="citation_author" content="Stephanie E. Chavez">
<meta name="citation_author" content="Dominique Perez">
<meta name="citation_author" content="Annette M. Evangelisti">
<meta name="citation_author" content="Mathew J. Garcia">
<meta name="citation_author" content="Cristian G. Bologa">
<meta name="citation_author" content="Mark B. Carter">
<meta name="citation_author" content="Virginia M. Salas">
<meta name="citation_author" content="Tudor I. Oprea">
<meta name="citation_author" content="Bruce S. Edwards">
<meta name="citation_author" content="Nicolas Panchaud">
<meta name="citation_author" content="Claudio De Virgilio">
<meta name="citation_author" content="Andrew Seeber">
<meta name="citation_author" content="Robbie Loewith">
<meta name="citation_author" content="Elaine Manzanilla">
<meta name="citation_author" content="Margaret Werner-Washburne">
<meta name="citation_author" content="Jeffrey Aub&eacute;">
<meta name="citation_author" content="Larry A. Sklar">
<meta name="citation_pmid" content="23658946">
<meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK133439/">
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/">
<meta name="DC.Title" content="Profiling a Selective Probe for RTG Branch of Yeast TORC1 Signaling Pathway">
<meta name="DC.Type" content="Text">
<meta name="DC.Publisher" content="National Center for Biotechnology Information (US)">
<meta name="DC.Contributor" content="Jun Chen">
<meta name="DC.Contributor" content="Susan M. Young">
<meta name="DC.Contributor" content="Chris Allen">
<meta name="DC.Contributor" content="Anna Waller">
<meta name="DC.Contributor" content="Oleg Ursu">
<meta name="DC.Contributor" content="J. Jacob Strouse">
<meta name="DC.Contributor" content="Tuanli Yao">
<meta name="DC.Contributor" content="Jennifer E. Golden">
<meta name="DC.Contributor" content="Blake R. Peterson">
<meta name="DC.Contributor" content="Terry D. Foutz">
<meta name="DC.Contributor" content="Stephanie E. Chavez">
<meta name="DC.Contributor" content="Dominique Perez">
<meta name="DC.Contributor" content="Annette M. Evangelisti">
<meta name="DC.Contributor" content="Mathew J. Garcia">
<meta name="DC.Contributor" content="Cristian G. Bologa">
<meta name="DC.Contributor" content="Mark B. Carter">
<meta name="DC.Contributor" content="Virginia M. Salas">
<meta name="DC.Contributor" content="Tudor I. Oprea">
<meta name="DC.Contributor" content="Bruce S. Edwards">
<meta name="DC.Contributor" content="Nicolas Panchaud">
<meta name="DC.Contributor" content="Claudio De Virgilio">
<meta name="DC.Contributor" content="Andrew Seeber">
<meta name="DC.Contributor" content="Robbie Loewith">
<meta name="DC.Contributor" content="Elaine Manzanilla">
<meta name="DC.Contributor" content="Margaret Werner-Washburne">
<meta name="DC.Contributor" content="Jeffrey Aub&eacute;">
<meta name="DC.Contributor" content="Larry A. Sklar">
<meta name="DC.Date" content="2013/02/25">
<meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK133439/">
<meta name="description" content="In this report, we describe a high throughput flow cytometry based multiplexed screen for molecules that either functionally mimic rapamycin (e.g. those that are transducer of regulated CREB 1 [TORC1] pathway selective, but non-discriminating of TORC1 branchpoints) or compounds that selectively target individual branches of the yeast TORC1 pathway. The high throughput screening (HTS) and the subsequent follow-up structure activity relationship (SAR) studies identified a chemotype that contains analogs of both functional types. Obtaining structurally related analogs with differential selectivity assisted in the characterization of the probe and the pathway in which it operates. Here we report ML231 as a TORC1 Retrograde signaling (RTG) branch selective probe (CIT2 EC50 = 3.8 &mu;M). ML231 is selective on the RTG branch and only affects expression of a small subset of rapamycin-responsive genes. This selectivity appears unrelated to solubility as we showed that a more soluble analog was also selective on the RTG branch. ML231 and its analogs inhibited Sch9 phosphorylation, the major substrate and downstream effector of the TORC1 pathway. This result indicates that this chemotype affects TORC1 activity. ML231 inhibited TORC1 activity incompletely, as compared to a related analog, SID 96099781, which mimicked rapamycin and demonstrated complete TORC1 inhibition. This feature may be partially attributable to the branch selectivity of ML231. ML231 behaved very differently from SID 96099781 in the TORC1 bypass cell growth assay, showing that selective compounds may function downstream of TORC1 while SID 96099781 functions upstream or at the level of TORC1. This result suggests that the ML231 targets components downstream of TORC1, thus executing a partial function of TORC1. Collectively, this suggests that ML231 targets the RTG branch selectively. We further showed that ML231 induced the nuclear translocation of Rtg1p/Rtg3p transcription factors and the activity of ML231 on the CIT2 gene expression was dependent on the Rtg2 protein. These results further confirmed the activity of ML231 on the RTG branch. Although ML231 possesses structural and solubility challenges, this probe represents an achievement in target of rapamycin (TOR) selectivity that to our knowledge has not been previously described. ML231 will be used by investigators focusing on TORC1 signaling, RTG pathways and regulatory signaling between mitochondria and the nucleus.">
<meta name="og:title" content="Profiling a Selective Probe for RTG Branch of Yeast TORC1 Signaling Pathway">
<meta name="og:type" content="book">
<meta name="og:description" content="In this report, we describe a high throughput flow cytometry based multiplexed screen for molecules that either functionally mimic rapamycin (e.g. those that are transducer of regulated CREB 1 [TORC1] pathway selective, but non-discriminating of TORC1 branchpoints) or compounds that selectively target individual branches of the yeast TORC1 pathway. The high throughput screening (HTS) and the subsequent follow-up structure activity relationship (SAR) studies identified a chemotype that contains analogs of both functional types. Obtaining structurally related analogs with differential selectivity assisted in the characterization of the probe and the pathway in which it operates. Here we report ML231 as a TORC1 Retrograde signaling (RTG) branch selective probe (CIT2 EC50 = 3.8 &mu;M). ML231 is selective on the RTG branch and only affects expression of a small subset of rapamycin-responsive genes. This selectivity appears unrelated to solubility as we showed that a more soluble analog was also selective on the RTG branch. ML231 and its analogs inhibited Sch9 phosphorylation, the major substrate and downstream effector of the TORC1 pathway. This result indicates that this chemotype affects TORC1 activity. ML231 inhibited TORC1 activity incompletely, as compared to a related analog, SID 96099781, which mimicked rapamycin and demonstrated complete TORC1 inhibition. This feature may be partially attributable to the branch selectivity of ML231. ML231 behaved very differently from SID 96099781 in the TORC1 bypass cell growth assay, showing that selective compounds may function downstream of TORC1 while SID 96099781 functions upstream or at the level of TORC1. This result suggests that the ML231 targets components downstream of TORC1, thus executing a partial function of TORC1. Collectively, this suggests that ML231 targets the RTG branch selectively. We further showed that ML231 induced the nuclear translocation of Rtg1p/Rtg3p transcription factors and the activity of ML231 on the CIT2 gene expression was dependent on the Rtg2 protein. These results further confirmed the activity of ML231 on the RTG branch. Although ML231 possesses structural and solubility challenges, this probe represents an achievement in target of rapamycin (TOR) selectivity that to our knowledge has not been previously described. ML231 will be used by investigators focusing on TORC1 signaling, RTG pathways and regulatory signaling between mitochondria and the nucleus.">
<meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK133439/">
<meta name="og:site_name" content="NCBI Bookshelf">
<meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-mlprobe-lrg.png">
<meta name="twitter:card" content="summary">
<meta name="twitter:site" content="@ncbibooks">
<meta name="bk-non-canon-loc" content="/books/n/mlprobe/ml231/?report=reader">
<link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK133439/">
<link href="https://fonts.googleapis.com/css?family=Archivo+Narrow:400,700,400italic,700italic&amp;subset=latin" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/libs.min.css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/jr.min.css">
<meta name="format-detection" content="telephone=no">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css//books_print.min.css" type="text/css" media="print">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_reader.min.css" type="text/css">
<style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style>
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico">
<meta name="ncbi_phid" content="CE8E15057D65EB110000000000E900CA.m_5">
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3849091.css"></head>
<body>
<!-- Book content! -->
<div id="jr" data-jr-path="/corehtml/pmc/jatsreader/ptpmc_3.22/"><div class="jr-unsupported"><table class="modal"><tr><td><span class="attn inline-block"></span><br />Your browser does not support the NLM PubReader view.<br />Go to <a href="/pmc/about/pr-browsers/">this page</a> to see a list of supported browsers<br />or return to the <br /><a href="/books/NBK133439/?report=classic">regular view</a>.</td></tr></table></div><div id="jr-ui" class="hidden"><nav id="jr-head"><div class="flexh tb"><div id="jr-tb1"><a id="jr-links-sw" class="hidden" title="Links"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" x="0px" y="0px" viewBox="0 0 70.6 85.3" style="enable-background:new 0 0 70.6 85.3;vertical-align:middle" xml:space="preserve" width="24" height="24">
<style type="text/css">.st0{fill:#939598;}</style>
<g>
<path class="st0" d="M36,0C12.8,2.2-22.4,14.6,19.6,32.5C40.7,41.4-30.6,14,35.9,9.8"></path>
<path class="st0" d="M34.5,85.3c23.2-2.2,58.4-14.6,16.4-32.5c-21.1-8.9,50.2,18.5-16.3,22.7"></path>
<path class="st0" d="M34.7,37.1c66.5-4.2-4.8-31.6,16.3-22.7c42.1,17.9,6.9,30.3-16.4,32.5h1.7c-66.2,4.4,4.8,31.6-16.3,22.7 c-42.1-17.9-6.9-30.3,16.4-32.5"></path>
</g>
</svg> Books</a></div><div class="jr-rhead f1 flexh"><div class="head"><a href="/books/n/mlprobe/ml232/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="body"><div class="t">Profiling a Selective Probe for RTG Branch of Yeast TORC1 Signaling Pathway</div><div class="j">Probe Reports from the NIH Molecular Libraries Program [Internet]</div></div><div class="tail"><a href="/books/n/mlprobe/ml230/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></div><div id="jr-tb2"><a id="jr-bkhelp-sw" class="btn wsprkl hidden" title="Help with NLM PubReader">?</a><a id="jr-help-sw" class="btn wsprkl hidden" title="Settings and typography in NLM PubReader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" preserveAspectRatio="none"><path d="M462,283.742v-55.485l-29.981-10.662c-11.431-4.065-20.628-12.794-25.274-24.001 c-0.002-0.004-0.004-0.009-0.006-0.013c-4.659-11.235-4.333-23.918,0.889-34.903l13.653-28.724l-39.234-39.234l-28.72,13.652 c-10.979,5.219-23.68,5.546-34.908,0.889c-0.005-0.002-0.01-0.003-0.014-0.005c-11.215-4.65-19.933-13.834-24-25.273L283.741,50 h-55.484l-10.662,29.981c-4.065,11.431-12.794,20.627-24.001,25.274c-0.005,0.002-0.009,0.004-0.014,0.005 c-11.235,4.66-23.919,4.333-34.905-0.889l-28.723-13.653l-39.234,39.234l13.653,28.721c5.219,10.979,5.545,23.681,0.889,34.91 c-0.002,0.004-0.004,0.009-0.006,0.013c-4.649,11.214-13.834,19.931-25.271,23.998L50,228.257v55.485l29.98,10.661 c11.431,4.065,20.627,12.794,25.274,24c0.002,0.005,0.003,0.01,0.005,0.014c4.66,11.236,4.334,23.921-0.888,34.906l-13.654,28.723 l39.234,39.234l28.721-13.652c10.979-5.219,23.681-5.546,34.909-0.889c0.005,0.002,0.01,0.004,0.014,0.006 c11.214,4.649,19.93,13.833,23.998,25.271L228.257,462h55.484l10.595-29.79c4.103-11.538,12.908-20.824,24.216-25.525 c0.005-0.002,0.009-0.004,0.014-0.006c11.127-4.628,23.694-4.311,34.578,0.863l28.902,13.738l39.234-39.234l-13.66-28.737 c-5.214-10.969-5.539-23.659-0.886-34.877c0.002-0.005,0.004-0.009,0.006-0.014c4.654-11.225,13.848-19.949,25.297-24.021 L462,283.742z M256,331.546c-41.724,0-75.548-33.823-75.548-75.546s33.824-75.547,75.548-75.547 c41.723,0,75.546,33.824,75.546,75.547S297.723,331.546,256,331.546z"></path></svg></a><a id="jr-fip-sw" class="btn wsprkl hidden" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-rtoc-sw" class="btn wsprkl hidden" title="Table of Contents"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,20h10v8H20V20zM36,20h44v8H36V20zM20,37.33h10v8H20V37.33zM36,37.33h44v8H36V37.33zM20,54.66h10v8H20V54.66zM36,54.66h44v8H36V54.66zM20,72h10v8 H20V72zM36,72h44v8H36V72z"></path></svg></a></div></div></nav><nav id="jr-dash" class="noselect"><nav id="jr-dash" class="noselect"><div id="jr-pi" class="hidden"><a id="jr-pi-prev" class="hidden" title="Previous page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a><div class="pginfo">Page <i class="jr-pg-pn">0</i> of <i class="jr-pg-lp">0</i></div><a id="jr-pi-next" class="hidden" title="Next page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div><div id="jr-is-tb"><a id="jr-is-sw" class="btn wsprkl hidden" title="Switch between Figures/Tables strip and Progress bar"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><rect x="10" y="40" width="20" height="20"></rect><rect x="40" y="40" width="20" height="20"></rect><rect x="70" y="40" width="20" height="20"></rect></svg></a></div><nav id="jr-istrip" class="istrip hidden"><a id="jr-is-prev" href="#" class="hidden" title="Previous"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M80,40 60,65 80,90 70,90 50,65 70,40z M50,40 30,65 50,90 40,90 20,65 40,40z"></path><text x="35" y="25" textLength="60" style="font-size:25px">Prev</text></svg></a><a id="jr-is-next" href="#" class="hidden" title="Next"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,40 40,65 20,90 30,90 50,65 30,40z M50,40 70,65 50,90 60,90 80,65 60,40z"></path><text x="15" y="25" textLength="60" style="font-size:25px">Next</text></svg></a></nav><nav id="jr-progress"></nav></nav></nav><aside id="jr-links-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">NCBI Bookshelf</div></div><div class="cnt lol f1"><a href="/books/">Home</a><a href="/books/browse/">Browse All Titles</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/sharer/sharer.php?u=https://www.ncbi.nlm.nih.gov/books/NBK133439/"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24" preserveAspectRatio="none"><g><path d="M 17.996,32L 12,32 L 12,16 l-4,0 l0-5.514 l 4-0.002l-0.006-3.248C 11.993,2.737, 13.213,0, 18.512,0l 4.412,0 l0,5.515 l-2.757,0 c-2.063,0-2.163,0.77-2.163,2.209l-0.008,2.76l 4.959,0 l-0.585,5.514L 18,16L 17.996,32z"></path></g></svg> Share on Facebook</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://twitter.com/intent/tweet?url=https://www.ncbi.nlm.nih.gov/books/NBK133439/&amp;text=Profiling%20a%20Selective%20Probe%20for%20RTG%20Branch%20of%20Yeast%20TORC1%20Signaling%20Pathway"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24"><g><path d="M 32,6.076c-1.177,0.522-2.443,0.875-3.771,1.034c 1.355-0.813, 2.396-2.099, 2.887-3.632 c-1.269,0.752-2.674,1.299-4.169,1.593c-1.198-1.276-2.904-2.073-4.792-2.073c-3.626,0-6.565,2.939-6.565,6.565 c0,0.515, 0.058,1.016, 0.17,1.496c-5.456-0.274-10.294-2.888-13.532-6.86c-0.565,0.97-0.889,2.097-0.889,3.301 c0,2.278, 1.159,4.287, 2.921,5.465c-1.076-0.034-2.088-0.329-2.974-0.821c-0.001,0.027-0.001,0.055-0.001,0.083 c0,3.181, 2.263,5.834, 5.266,6.438c-0.551,0.15-1.131,0.23-1.73,0.23c-0.423,0-0.834-0.041-1.235-0.118 c 0.836,2.608, 3.26,4.506, 6.133,4.559c-2.247,1.761-5.078,2.81-8.154,2.81c-0.53,0-1.052-0.031-1.566-0.092 c 2.905,1.863, 6.356,2.95, 10.064,2.95c 12.076,0, 18.679-10.004, 18.679-18.68c0-0.285-0.006-0.568-0.019-0.849 C 30.007,8.548, 31.12,7.392, 32,6.076z"></path></g></svg> Share on Twitter</a></div></aside><aside id="jr-rtoc-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Table of Content</div></div><div class="cnt lol f1"><a href="/books/n/mlprobe/?report=reader">Title Information</a><a href="/books/n/mlprobe/toc/?report=reader">Table of Contents Page</a></div></aside><aside id="jr-help-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Settings</div></div><div class="cnt f1"><div id="jr-typo-p" class="typo"><div><a class="sf btn wsprkl">A-</a><a class="lf btn wsprkl">A+</a></div><div><a class="bcol-auto btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 100" preserveAspectRatio="none"><text x="10" y="70" style="font-size:60px;font-family: Trebuchet MS, ArialMT, Arial, sans-serif" textLength="180">AUTO</text></svg></a><a class="bcol-1 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M15,25 85,25zM15,40 85,40zM15,55 85,55zM15,70 85,70z"></path></svg></a><a class="bcol-2 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M5,25 45,25z M55,25 95,25zM5,40 45,40z M55,40 95,40zM5,55 45,55z M55,55 95,55zM5,70 45,70z M55,70 95,70z"></path></svg></a></div></div><div class="lol"><a class="" href="/books/NBK133439/?report=classic">Switch to classic view</a><a href="/books/NBK133439/pdf/Bookshelf_NBK133439.pdf">PDF (1.2M)</a><a href="/books/NBK133439/?report=printable">Print View</a></div></div></aside><aside id="jr-bkhelp-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Help</div></div><div class="cnt f1 lol"><a id="jr-helpobj-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/help.xml" href="">Help</a><a href="mailto:info@ncbi.nlm.nih.gov?subject=PubReader%20feedback%20%2F%20NBK133439%20%2F%20sid%3ACE8B5AF87C7FFCB1_0191SID%20%2F%20phid%3ACE8E15057D65EB110000000000E900CA.4">Send us feedback</a><a id="jr-about-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/about.xml" href="">About PubReader</a></div></aside><aside id="jr-objectbox" class="thidden hidden"><div class="jr-objectbox-close wsprkl">&#10008;</div><div class="jr-objectbox-inner cnt"><div class="jr-objectbox-drawer"></div></div></aside><nav id="jr-pm-left" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Previous Page</text></svg></nav><nav id="jr-pm-right" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Next Page</text></svg></nav><nav id="jr-fip" class="hidden"><nav id="jr-fip-term-p"><input type="search" placeholder="search this page" id="jr-fip-term" autocorrect="off" autocomplete="off" /><a id="jr-fip-mg" class="wsprkl btn" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-fip-done" class="wsprkl btn" title="Dismiss find">&#10008;</a></nav><nav id="jr-fip-info-p"><a id="jr-fip-prev" class="wsprkl btn" title="Jump to previuos match">&#9664;</a><button id="jr-fip-matches">no matches yet</button><a id="jr-fip-next" class="wsprkl btn" title="Jump to next match">&#9654;</a></nav></nav></div><div id="jr-epub-interstitial" class="hidden"></div><div id="jr-content"><article data-type="main"><div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><div class="fm-sec"><h1 id="_NBK133439_"><span class="title" itemprop="name">Profiling a Selective Probe for RTG Branch of Yeast TORC1 Signaling
Pathway</span></h1><p class="contribs">Chen J, Young SM, Allen C, et al.</p><p class="fm-aai"><a href="#_NBK133439_pubdet_">Publication Details</a></p></div></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="_abs_rndgid_" itemprop="description"><p>In this report, we describe a high throughput flow cytometry based multiplexed screen
for molecules that either functionally mimic rapamycin (e.g. those that are
transducer of regulated CREB 1 [TORC1] pathway selective, but
non-discriminating of TORC1 branchpoints) or compounds that selectively target
individual branches of the yeast TORC1 pathway. The high throughput screening (HTS)
and the subsequent follow-up structure activity relationship (SAR) studies
identified a chemotype that contains analogs of both functional types. Obtaining
structurally related analogs with differential selectivity assisted in the
characterization of the probe and the pathway in which it operates. Here we report
<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> as a TORC1 Retrograde signaling (RTG) branch selective probe
(CIT2 EC<sub>50</sub> = 3.8 &#x003bc;M). <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> is selective on the RTG branch and only affects expression of
a small subset of rapamycin-responsive genes. This selectivity appears unrelated to
solubility as we showed that a more soluble analog was also selective on the RTG
branch. <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> and its analogs inhibited Sch9
phosphorylation, the major substrate and downstream effector of the TORC1 pathway.
This result indicates that this chemotype affects TORC1 activity. <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> inhibited TORC1 activity incompletely, as compared to a
related analog, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>, which mimicked rapamycin and
demonstrated complete TORC1 inhibition. This feature may be partially attributable
to the branch selectivity of <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a>. <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> behaved very differently from <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> in the TORC1 bypass cell growth assay, showing that
selective compounds may function downstream of TORC1 while <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> functions upstream or at the level of TORC1. This result
suggests that the <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> targets components downstream of TORC1,
thus executing a partial function of TORC1. Collectively, this suggests that
<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> targets the RTG branch selectively. We further showed that
<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> induced the nuclear translocation of Rtg1p/Rtg3p transcription
factors and the activity of <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> on the CIT2 gene expression was dependent
on the Rtg2 protein. These results further confirmed the activity of <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> on the RTG branch. Although <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> possesses structural and solubility challenges, this probe
represents an achievement in target of rapamycin (TOR) selectivity that to our
knowledge has not been previously described. <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> will be used by
investigators focusing on TORC1 signaling, RTG pathways and regulatory signaling
between mitochondria and the nucleus.</p></div><div class="h2"></div><p><b>Assigned Assay Grant #:</b> 1 R03 MH086450-01</p><p><b>Screening Center Name &#x00026; PI:</b> University of New Mexico Center for
Molecular Discovery (UNMCMD) formerly NM Molecular Libraries Screening Center (NMMLSC),
Larry Sklar</p><p><b>Chemistry Center Name &#x00026; PI:</b> University of Kansas Specialized
Chemistry Center (KU SCC), Jeffrey Aub&#x000e9;</p><p><b>Assay Submitter &#x00026; Institution:</b> Margaret Werner-Washburne, University
of New Mexico</p><p><b>PubChem Summary Bioassay Identifier (AID):</b>
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1908" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1908</a></p><div id="ml231.s1"><h2 id="_ml231_s1_">Probe Structure &#x00026; Characteristics</h2><div id="ml231.fu1" class="figure"><div class="graphic"><img src="/books/NBK133439/bin/ml231fu1.jpg" alt="Image ml231fu1" /></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml231tu1"><a href="/books/NBK133439/table/ml231.tu1/?report=objectonly" target="object" title="Table" class="img_link icnblk_img figpopup" rid-figpopup="figml231tu1" rid-ob="figobml231tu1"><img class="small-thumb" src="/books/NBK133439/table/ml231.tu1/?report=thumb" src-large="/books/NBK133439/table/ml231.tu1/?report=previmg" alt="Image " /></a><div class="icnblk_cntnt"><h4 id="ml231.tu1"><a href="/books/NBK133439/table/ml231.tu1/?report=objectonly" target="object" rid-ob="figobml231tu1">Table</a></h4></div></div></div><div id="ml231.s2"><h2 id="_ml231_s2_">Recommendations for Scientific Use of the Probe</h2><p><b>Limitations in current state of the art addressed by this probe</b>: The
goal of this project was to identify a branch selective probe for the yeast TORC1
pathway. There are only two types of TOR inhibitors available: one is the TORC1
selective inhibitor rapamycin and its analogs which do not discriminate between
TORC1 branches; the others are ATP-competitive TOR inhibitors which inhibit both
TORC1 and TORC2. Since we are searching for branch selective probes for the yeast
TORC1 pathway, we utilized rapamycin (TORC1 selective, but not branch selective) as
our comparator. Rapamycin, known as the first-generation TOR inhibitor, is a
valuable tool that has been used to characterize the TORC1 pathway in both mammals
and budding yeast [<a class="bibr" href="#ml231.r1" rid="ml231.r1">1</a>].
However, as an allosteric TOR inhibitor, rapamycin does not completely inhibit the
functions of mTORC1, nor does it block the activity of mTORC2 [<a class="bibr" href="#ml231.r2" rid="ml231.r2">2</a>]. The outcome of clinical trials
on rapamycin-based cancer therapies has been unpredictable, leading to combinational
trials to encompass resistance mechanisms or pathway redundancies. Moreover, as a
natural compound, rapamycin has limited pharmaceutical properties and has been hard
to improve by traditional structure-activity-relationship analysis. Since TOR
affects many aspects of cell function by regulating numerous, interdependent
signaling pathways, it would be advantageous to both basic and translational
research to singly interrogate a specific signaling branch. Due to
rapamycin&#x02019;s pleiotropic effects, it is not suitable for this purpose;
however, a compound that targets a specific branch of TOR signaling would be a very
useful chemical tool for dissecting the TOR pathways and may well serve as a
potential drug lead for diseases caused by the aberrant activity within specific TOR
branches.</p><p><b>Relevant Biology and Use of the Probe:</b> Retrograde signaling (RTG) is a
pathway of cellular communication from mitochondria to the nucleus that influences
many cellular and organismal activities under both normal and pathophysiological
conditions [<a class="bibr" href="#ml231.r3" rid="ml231.r3">3</a>]. In both
yeast and mammalian cells, RTG signaling is linked to TOR signaling but the precise
connections have been unclear. In this project, we identified a scaffold in which
the majority of the active constituents exhibit selectivity for the RTG branch of
the TOR pathway. The focus of this report, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID
3392161/<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a>), was identified as an RTG selective
probe and represents an unprecedented opportunity for deconvoluting TORC1 pathways
and identifying novel therapeutic targets. Compounds such as <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> that demonstrate an improved selectivity profile as compared
to rapamycin may possess increased therapeutic potential and fewer toxicological
side effects. RTG selective probes such as <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> will be used by
investigators focusing on TORC1 signaling, RTG pathways and regulatory signaling
between mitochondria and the nucleus.</p></div><div id="ml231.s3"><h2 id="_ml231_s3_">1. Introduction</h2><p>TOR proteins (Target of Rapamycin) are Ser/Thr protein kinases phylogenetically
conserved from yeast to man [<a class="bibr" href="#ml231.r1" rid="ml231.r1">1</a>,
<a class="bibr" href="#ml231.r4" rid="ml231.r4">4</a>, <a class="bibr" href="#ml231.r5" rid="ml231.r5">5</a>]. Yeast possesses two TOR proteins that
function in two distinct protein complexes, TOR complex 1 (TORC1) and TOR complex 2
(TORC2). The rapamycin-sensitive TORC1 signaling pathway affects many aspects of
cell function by regulating numerous signaling pathway branches [<a class="bibr" href="#ml231.r5" rid="ml231.r5">5</a>]. There are at least four
signaling pathway branches regulated by TORC1 complex: 1) the RTG signaling pathway
mediated by Rtg1p/Rtg3p that activates genes required for biosynthesis and
homeostasis of glutamate and glutamine [<a class="bibr" href="#ml231.r6" rid="ml231.r6">6</a>&#x02013;<a class="bibr" href="#ml231.r9" rid="ml231.r9">9</a>]; 2) the
nitrogen-discrimination pathway (NDP) mediated by Gln3p that activates genes
enabling the cells to import and catabolize poor nitrogen sources under nitrogen
limitations [<a class="bibr" href="#ml231.r10" rid="ml231.r10">10</a>, <a class="bibr" href="#ml231.r11" rid="ml231.r11">11</a>]; 3) the stress-response
pathway mediated by Msn2p and Msn4p that regulates the transcription response to a
wide range of stressors [<a class="bibr" href="#ml231.r12" rid="ml231.r12">12</a>], and 4) signaling that controls translation, such as ribosomal
protein synthesis, translation initiation and mRNA turnover [<a class="bibr" href="#ml231.r13" rid="ml231.r13">13</a>, <a class="bibr" href="#ml231.r14" rid="ml231.r14">14</a>]. These four signaling branches are not independent of each
other, but rather engage in substantial chemical cross-talk while also interacting
with other signaling pathways, thus constituting a very complicated regulatory
network. Therefore, the distinct advantage in identifying branch-selective compounds
that can specifically target an individual downstream signaling channel is that
these are chemical tools that can be used as in the dissection of the TOR pathway as
well as potential drug leads for diseases caused by the abnormal activity of
specific branches. Rapamycin is not suitable for this purpose due to its pleiotropic
effects. As a central controller of cell growth, the mammalian TOR cognate mTOR has
emerged as an attractive cancer target for drug discovery [<a class="bibr" href="#ml231.r15" rid="ml231.r15">15</a>&#x02013;<a class="bibr" href="#ml231.r19" rid="ml231.r19">19</a>]. Although the natural compound rapamycin has
been used as the first-generation mTOR inhibitor, the pharmacological studies on
rapamycin and its rapalogs reveal that many cancers are insensitive to rapamycin and
the clinical outcome is unpredictable, which leads to combinational trials with
other pathway inhibitors [<a class="bibr" href="#ml231.r2" rid="ml231.r2">2</a>]. Therefore, rationally designed, small molecule TOR inhibitors
that possess suitable physiochemical properties as compared to rapamycin are highly
desirable. A new generation of small molecule, ATP-competitive TOR inhibitors
targeting both TORC1 and TORC2 complexes have been developed, such as Torin1, PP242
and PP30, which may be more effective than rapamycin alone [<a class="bibr" href="#ml231.r20" rid="ml231.r20">20</a>&#x02013;<a class="bibr" href="#ml231.r22" rid="ml231.r22">22</a>]. However, there is great interest in
developing small molecules that selectively inhibit either TORC1 or TORC2, as these
are likely to unveil therapeutically relevant mechanisms. Prior to this work,
functional compounds of this type were unknown or undisclosed in the literature.
This report describes such a compound, <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a>, which has been shown
to selectively inhibit the CIT2 branch of the TORC1 pathway.</p><p>Using yeast as a model system, we identified ~100 GFP-tagged clones responsive to
rapamycin by screening the whole yeast GFP clone collection (unpublished data). We
subsequently conducted a multiplex high throughput flow cytometry screen of the
MLSMR using five GFP-tagged yeast clones that represent the readouts of four
branches of the TORC1 signaling pathway: 1) CIT2-GFP controlled by RTG signaling; 2)
AGP1-GFP and MEP2-GFP controlled by NDP signaling; 3) LAP4-GFP controlled by MSN2/4
stress response signaling and 4) RPL19A-GFP controlled by translational signaling.
Our goals were to identify molecules that mimic the function of rapamycin with
distinct structure as well as molecules selective for individual branches that could
target effectors of the TOR pathway or interfere with other non-TOR, cross-talk
signaling mechanisms. Both types of molecules are useful; in particular, the
branch-selective hits would represent an unprecedented finding. Such compounds that
demonstrated cellular potency of less than 10 &#x003bc;M, lacking reactive
functionality and possessing suitable physiochemical properties would be considered
a probe. It was anticipated that such probes could be utilized for delineation of
the complicated TOR network and as potential leads for therapeutic agents.</p><p>The HTS and subsequent follow-up experiments revealed a compound that behaves like
rapamycin in terms of altering GFP expression in all five GFP clones. Surprisingly,
the compounds selected for SAR exploration which also belong to the same structural
family as the hit did not demonstrate the same rapamycin-like profile. Instead, many
compounds in the series exhibited pathway selectivity for induction of CIT2-GFP
expression, which is primarily regulated by the RTG pathway. RTG, linked to TOR
signaling, is a pathway of communication from mitochondria to the nucleus by which
cells respond to changes in the functional state of mitochondria via changes in
nuclear gene expression. The RTG pathway influences many cellular and organismal
activities under both normal and pathophysiological conditions, such as maintenance
of glutamate homeostasis, regulation of mitochondrial DNA maintenance, and aging
[<a class="bibr" href="#ml231.r3" rid="ml231.r3">3</a>, <a class="bibr" href="#ml231.r23" rid="ml231.r23">23</a>].</p><p>In yeast, RTG signal induced CIT2 expression is controlled by two basic
helix-loop-helix-leucine zipper (bHLH-Zip) transcription factors: Rtg1p and Rtg3p
[<a class="bibr" href="#ml231.r24" rid="ml231.r24">24</a>&#x02013;<a class="bibr" href="#ml231.r26" rid="ml231.r26">26</a>]. When the RTG pathway is
inactive, Rtg3p is hyperphosphorylated at multiple sites and localized in the
cytoplasm together with Rtg1p. Upon activation of the RTG pathway (such as after
treatment with rapamycin), Rtg3p becomes partially dephosphorylated and enters the
nucleus, as does Rtg1p, where these proteins assemble at R box sites to activate
transcription of target genes [<a class="bibr" href="#ml231.r24" rid="ml231.r24">24</a>&#x02013;<a class="bibr" href="#ml231.r26" rid="ml231.r26">26</a>]. In
addition, numerous elegant genetic studies have also described other positive
regulators, Rtg2p and Grr1p as well as four negative regulators, Mks1p, Bmh1p, Bmh2p
and Lst8p that control RTG-induced CIT2 expression. Rtg2p is a novel cytoplasmic
protein with an N-terminal ATP binding domain that is required for the
relocalization of Rtg1p/rtg3p from the cytoplasm to the nucleus [<a class="bibr" href="#ml231.r27" rid="ml231.r27">27</a>, <a class="bibr" href="#ml231.r28" rid="ml231.r28">28</a>]. Grr1p mediates the ubiquitination of the negative regulator
Mks1p. Mks1p negatively regulates the RTG pathway by binding to 14-3-3 proteins
Bmh1p and BMH2p [<a class="bibr" href="#ml231.r28" rid="ml231.r28">28</a>].
Lst8p, a component of TORC1 complex with WD-40 repeats, regulates the RTG pathway
negatively by acting at two distinct sites, one upstream of RTG2 by affecting the
ability of cells to sense external glutamate, and the other downstream of RTG2 by an
unknown mechanism [<a class="bibr" href="#ml231.r9" rid="ml231.r9">9</a>].
In addition to the protein regulators, glutamate/glutamine and ammonia were also
demonstrated to regulate the RTG pathway [<a class="bibr" href="#ml231.r29" rid="ml231.r29">29</a>, <a class="bibr" href="#ml231.r30" rid="ml231.r30">30</a>]. However, the precise connections between the RTG pathway and
the TOR pathway are presently unknown. Moreover, a number of aspects of the RTG
pathway also remain unknown, such as the relevant kinase(s) or phosphatase(s) that
modify Rtg3p, the unique function of the novel protein Rtg2p and the dual functions
of Lst8p in both RTG and TOR pathways. The RTG branch selective probe identified
from this project will aid in addressing the above questions and provide, for the
first time, a useful chemical tool for dissecting the connections between RTG and
TORC1 signaling.</p></div><div id="ml231.s4"><h2 id="_ml231_s4_">2. Materials and Methods</h2><div id="ml231.s5"><h3>General information</h3><p>Yeast GFP clones, CIT2-GFP, AGP1-GFP, MEP2-GFP, LAP4-GFP and RPL19A-GFP were
identified from an HTS campaign against the yeast GFP clone collection
(Invitrogen) as the clones that respond to rapamycin. GFP clones were maintained
on synthetic complete media (SCD) agar plates and grown in SCD media (Clontech,
CA). S288C and BY4741 parental strains were obtained from stock cultures in our
lab and are maintained and grown on SCD or YPD media (Fisher Scientific). The
TORC1 bypass strain [<a class="bibr" href="#ml231.r31" rid="ml231.r31">31</a>] was provided by Dr. Virgilio and was maintained in synthetic
media lacking uracil (SD-Ura). The strain containing the CIT2-GFP reporter in
rtg3 knockout background (BY4741, CIT2-GFP; rtg3::KmMX) was provided by Dr.
Virgilio and was maintained on SCD or YPD plates. The CIT2-LacZ reporter strains
in rtg2 or lst8 knockout background [<a class="bibr" href="#ml231.r9" rid="ml231.r9">9</a>] were kindly provided by Dr. Liu and were
maintained on YPD plates. Rtg3-GFP and Gln3-GFP strains were revived from yeast
GFP clone collection and grown on YPD plate.</p><p>The fluorescent dyes Alexa Fluor&#x000ae; 405 and Alexa Fluor&#x000ae; 633 were
purchased from Invitrogen&#x02122; (Eugene, OR). Rapamycin was purchased from
TOCRIS Biosciences (Missouri, USA). Hyclone PBS buffer was purchased from
ThermoFisher Scientific (Logan, Utah). BSA powder was purchased from
Sigma-Aldrich (St. Louis, MO). Pluornic F-68 was purchased from Invitrogen.</p><p>Compounds ordered by UNM for SAR by commerce prior to involvement of the KU SCC
were purchased from ChemDiv (San Diego, CA) and Ryan Scientific (Mt. Pleasant,
SC). Unless otherwise indicated, all compound solutions were maintained and
diluted in DMSO prior to addition to assay wells. Final DMSO concentrations were
no more than 1% v/v. A Biomek&#x000ae; NX Multichannel (Beckman-Coulter,
Fullerton, CA) was used for all cell and compound solution transfers for volumes
greater than 1 &#x003bc;L. Low volume transfers (100 nL) were done via pintool
(V&#x00026;P Scientific, Inc., San Diego, CA). Compound dose response plates were
generated with the Biomek&#x000ae; NX Span-8 (Beckman-Coulter, Fullerton, CA).
The HyperCyt&#x000ae; high throughput flow cytometry platform
(IntelliCyt&#x02122;, Albuquerque, NM) was used to sequentially sample cells
from 384-well microplates (2 &#x003bc;L/sample) for flow cytometer presentation
at a rate of 40 samples per minute. Flow cytometric analysis was performed on a
CyAn&#x02122; flow cytometer (Beckman-Coulter, Fullerton, CA). The resulting
time-gated data files were analyzed with HyperView&#x000ae; software to
determine compound activity in each well [<a class="bibr" href="#ml231.r32" rid="ml231.r32">32</a>, <a class="bibr" href="#ml231.r33" rid="ml231.r33">33</a>]. Inhibition response curves were fitted by Prism&#x000ae;
software (GraphPad Software, Inc., San Diego, CA) using nonlinear least-squares
regression in a sigmoidal dose response model with variable slope, also known as
the four-parameter logistic equation.</p></div><div id="ml231.s6"><h3>2.1. Assays</h3><div id="ml231.s7"><h4>A. Primary Assay 1 (single point, 5-plex): multiplex HTS screen of TOR
pathway GFP-fusion proteins in <i>S. cerevisiae</i>. AIDs:
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1870" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1870</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1887" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1887</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1867" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1867</a>,<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1873" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1873</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1862" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1862</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2066" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2066</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2029" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2029</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2025" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2025</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2023" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2023</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2016" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2016</a></h4><p>This multiplex assay was conducted in a total volume of 10.1 &#x003bc;L in
384-well microtiter plates. The strains were grown separately overnight in
SCD media in a shaking incubator at 30 &#x000ba;C, and then stained for
multiplexing with the Alexa Fluor 405 and Alexa Fluor 633 (see <a class="figpopup" href="/books/NBK133439/figure/ml231.f10/?report=objectonly" target="object" rid-figpopup="figml231f10" rid-ob="figobml231f10">Figure 10</a> for staining scheme).
Following staining, the yeast were combined and diluted into fresh SCD media
at 0.5 OD<sub>600</sub>. 5 &#x003bc;L SCD media supplemented with
0.03% pluronic were loaded into 384-well microtiter plates and 100
nL compounds were pintool-transferred. DMSO control and rapamycin (220 nM)
controls were added to the first column and the second column respectively.
A volume of 5 &#x003bc;L mixed cells were transferred into 384-well
microtiter plates and incubated for 3 hours at 30 &#x000ba;C with
end-over-end rotation. The cells in the multiplex were interrogated for GFP
expression levels using established high-throughput flow cytometric
methodologies at the UNMCMD. Approximately 2 &#x003bc;L volumes from each
well were collected at a rate of approximately 40 samples per minute. This
results in analysis of approximately 1,000 cells of each cell type from each
well. Flow cytometric data of light scatter and fluorescence emission at
530&#x000b1;20 nm (488 nm excitation, FL1), 665&#x000b1;10 nm (633 nm
excitation, FL8) and 450&#x000b1;25 nm (405 nm excitation, FL6) were
collected.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f10" co-legend-rid="figlgndml231f10"><a href="/books/NBK133439/figure/ml231.f10/?report=objectonly" target="object" title="Figure 10" class="img_link icnblk_img figpopup" rid-figpopup="figml231f10" rid-ob="figobml231f10"><img class="small-thumb" src="/books/NBK133439/bin/ml231f10.gif" src-large="/books/NBK133439/bin/ml231f10.jpg" alt="Figure 10. TORC1 bypass cell growth analysis on the probe ML231 and SID 96099781." /></a><div class="icnblk_cntnt" id="figlgndml231f10"><h4 id="ml231.f10"><a href="/books/NBK133439/figure/ml231.f10/?report=objectonly" target="object" rid-ob="figobml231f10">Figure 10</a></h4><p class="float-caption no_bottom_margin">TORC1 bypass cell growth analysis on the probe ML231 and SID 96099781. 1:10 serial dilutions of BY4741 and TORC1 bypass cells were spotted
onto the YPD plates supplemented with 7.5&#x02013;60 &#x003bc;M
compounds respectively </p></div></div></div><div id="ml231.s8"><h4>B. Primary Assay 2 (single point, dose response, single-plex): Dose response
of TOR pathway GFP-fusion proteins in <i>S. cerevisiae.</i> AIDs:
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2643" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2643</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2624" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2624</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2623" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2623</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2622" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2622</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2621" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2621</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2274" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2274</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2273" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2273</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2272" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2272</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2271" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2271</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2270" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2270</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504321" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504321</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504334" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504334</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504336" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504336</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504338" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504338</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504340" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504340</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504458" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504458</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504461" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504461</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504468" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504468</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504469" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504469</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504470" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504470</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504463" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504463</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2744" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2744</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2743" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2743</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2742" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2742</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2740" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2740</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2745" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2745</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488812" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488812</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488790" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488790</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488814" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488814</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488823" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488823</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488825" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488825</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488792" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488792</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488795" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488795</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488801" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488801</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488808" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488808</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488827" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488827</a></h4><p>This dose response assay was conducted in a single-plex format. Six yeast GFP
clones including 5 clones used for the primary screen and a non-GFP parental
strain S288C or BY4741 were used for dose response analysis. This assay was
conducted in a total volume of 10.1 &#x003bc;L in 384-well microtiter
plates. The strains were grown overnight in SCD media in a shaking incubator
at 30 &#x000ba;C, and then diluted into fresh SCD media at 0.5
OD<sub>600</sub>. 5 &#x003bc;L SCD media supplemented with 0.03%
pluronic F-68 were loaded into 384-well microtiter plates and 100 nL
compounds were pintool-transferred. DMSO control and rapamycin (220nM)
controls were added to the first column and the second column respectively.
A volume of 5 &#x003bc;L cells were transferred into 384-well microtiter
plates and incubated for 3 hours at 30 &#x000ba;C with end-over-end
rotation. The yeast cells were interrogated for GFP expression levels using
established high-throughput flow cytometric methodologies at the UNMCMD.
Approximately 2 &#x003bc;L volumes from each well were collected at a rate
of approximately 40 samples per minute. This resulted in analysis of
approximately 5,000 cells of each cell type from each well. Flow cytometric
data of light scatter and fluorescence emission at 530&#x000b1;20 nm (388 nm
excitation, FL1) were collected.</p></div><div id="ml231.s9"><h4>C. Secondary Assay 1: Yeast TORC1 bypass cell growth assay. <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504456" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID:
504456</a></h4><p>This assay was conducted in 8-well square plates to test the cytotoxicity of
compounds and to test if the compounds behaved like rapamycin. YPD agar with
3&#x02013;30 &#x003bc;M compounds, DMSO and rapamycin were made in 8-well
square plates respectively. The TORC1 bypass and BY4741 cells were grown
overnight in SD-Ura and SCD media, respectively. The cells were diluted to
OD 0.25 followed by 1:10 serial dilution. 2.5 &#x003bc;l cells were spotted
onto the YPD/compound plates with multichannel pipettes. The plates were
incubated for 48&#x02013;72hrs and cell growth was photographed.</p></div><div id="ml231.s10"><h4>D. Secondary Assay 2: Sch9p phosphorylation assay. <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504478" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID:
504478</a></h4><p>This assay measures the <i>in vivo</i> phosphorylation of Sch9p by
chemical fragmentation analysis followed by western blot [<a class="bibr" href="#ml231.r31" rid="ml231.r31">31</a>, <a class="bibr" href="#ml231.r34" rid="ml231.r34">34</a>]. Briefly, yeast cells expressing
C-terminal HA-tagged Sch9p were treated with compounds in a dose-dependent
manner for 30 minutes. Cells were mixed with TCA (final concentration
6%) and put on ice for at least 5 minutes before cells were
pelleted, washed twice with cold acetone, and dried in a speed-vac. Cell
lysis was done in 100 mL of urea buffer (50 mM Tris [pH
7.5], 5 mM EDTA, 6 M urea, 1% SDS, 1 mM PMSF, and 0.53 mL
protease inhibitor) with glass beads in a bead beater with subsequent
heating for 10 min to 65 &#x000ba;C. For NTCB cleavage, 30 mL of 0.5 M CHES
(pH 10.5) and 20 mL of NTCB (7.5 mM in water) were added and samples
incubated over night at RT before 1 volume sample buffer (+20 mM
TCEP and 0.53 mL protease inhibitor) was added. Further analysis was done by
SDS-PAGE and immunoblotting using anti-HA antibody 12CA5 or anti-T570-P
antiserum. The band intensity was measured in arbitrary units.</p></div><div id="ml231.s11"><h4>E. Secondary assay 3: YPK1 phosphorylation assay</h4><p>This assay measures the <i>in vivo</i> phosphorylation of YPK1 by
western blot as described previously [<a class="bibr" href="#ml231.r35" rid="ml231.r35">35</a>].</p></div><div id="ml231.s12"><h4>F. Secondary Assay 4: RapaGFP clones screening. <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504473" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID:
504473</a></h4><p>This assay is conducted in 384-well plates. First, the whole yeast GFP
collections were screened against rapamycin and DMSO and ~106 GFP clones
were identified to respond to rapamycin (unpublished data). Second, 96
rapamycin-responsive GFP clones (called RapaGFP clones) were arrayed in a
96-well plate and used to screen against the active compounds in dose
response analysis. 1 &#x003bc;L yeast cells from the source 96-well plate
were transferred into a 96-well plate containing 150 &#x003bc;L SCD in each
well and grown overnight. The cultures were diluted 2 fold, and continued to
incubate for an additional 1 hr. A volume of 10 &#x003bc;L culture was added
to a 384-well assay plate by the Biomek Span-8 (Beckman Coulter, USA) in
triplicate. 10 &#x003bc;L SCD media supplemented with 0.03% pluronic
F-68 containing the appropriate concentration of compounds were added using
the Nanoquot (BioTek, USA) dispenser. The assay plates were incubated at 30
&#x000ba;C for 3hrs and read by HT flow cytometry.</p></div><div id="ml231.s13"><h4>G. Secondary Assay 5: CIT2-GFP expression in RTG3 mutant background</h4><p>This assay was conducted as described for the primary dose response assay.
The CIT2-GFP strain and the CIT2-GFP strain in Rtg3p knockout background
were used in this assay to test against active compounds and rapamycin.</p></div><div id="ml231.s14"><h4>H. Secondary Assay 6: CIT2-LacZ expression in RTG2 mutant background</h4><p>This assay was conducted in 1.5 mL tubes by testing only active compounds.
The CIT2-LacZ strain and CIT2-LacZ in the rtg2p knockout background were
used in this assay. The cells were grown over night in SCD media and diluted
into 0.25 OD<sub>600</sub> in 1 mL fresh SCD media. The cells were treated
with DMSO, 220 nM rapamycin and 5 active compounds at a concentration of
5*EC50 for 3 hrs, respectively. Then LacZ enzyme activity was
measured as described previously [<a class="bibr" href="#ml231.r36" rid="ml231.r36">36</a>].</p></div><div id="ml231.s15"><h4>I. Secondary assay 7: RTG3-GFP localization assay. <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504471" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID:
504471</a></h4><p>The RTG3-GFP clone was grown in SCD media overnight and diluted into 0.25
OD600. 1 mL cells were treated for 3 hrs with 30 &#x003bc;M compounds as
well as 0.2 &#x003bc;M rapamycin and DMSO as controls, respectively. The
localization of GFP was observed using a fluorescent microscope.</p></div></div><div id="ml231.s16"><h3>2.2. Probe Chemical Characterization</h3><div id="ml231.s17"><h4>A. Probe Chemical Structure, Physical Parameters and Probe
Properties</h4><div id="ml231.f1" class="figure bk_fig"><div class="graphic"><img src="/books/NBK133439/bin/ml231f1.jpg" alt="Figure 1. Property summary of probe compound ML231 (SID 99300522, CID 3392161)." /></div><h3><span class="label">Figure 1</span><span class="title">Property summary of probe compound <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161)</span></h3></div></div><div id="ml231.s18"><h4>B. Structure Verification and Purity: <sup>1</sup>H NMR, <sup>13</sup>C NMR,
LCMS and HRMS</h4><p><b>Proton and carbon NMR data for <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> CID 3392161):</b> Detailed analytical methods
and instrumentation are described in <a href="#ml231.s23">section 2.3</a>, entitled &#x0201c;Probe Preparation&#x0201d; under
general experimental and analytical details. The numerical experimental
proton and carbon data are represented below. Associated spectra are also
included for reference (<a href="#ml231.app1">Appendix
A</a>, see <a class="figpopup" href="/books/NBK133439/figure/ml231.f17/?report=objectonly" target="object" rid-figpopup="figml231f17" rid-ob="figobml231f17">Figure A1</a> and
<a class="figpopup" href="/books/NBK133439/figure/ml231.f18/?report=objectonly" target="object" rid-figpopup="figml231f18" rid-ob="figobml231f18">A2</a> for <sup>1</sup>H NMR and
<sup>13</sup>C NMR respectively).</p><p><b><a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> CID 3392161): PROTON NMR
DATA:</b><sup>1</sup>H NMR (400 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1
ratio), &#x003b4; <sup>1</sup>H-NMR (400 MHz, &#x003b4; 11.39 (s, 1H), 11.24
(s, 1H), 8.69 (s, 1H), 8.49 (s, 1H), 8.32 (s, 1H), 8.18 (t,
<i>J</i> = 2.0 Hz, 1H), 8.01&#x02013;7.99 (m, 2H),
7.76&#x02013;7.72 (m, 1H), 7.65&#x02013;7.57 (m, 3H), 7.39 (t,
<i>J</i> = 8.1 Hz, 1H), 7.36 (t, <i>J</i>
= 8.1 Hz, 1H), 7.22&#x02013;7.16 (m, 2H), 2.84&#x02013;2.82 (m,
6H).</p><p><b><a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> CID 3392161): CARBON NMR
DATA:</b><sup>13</sup>C NMR (125 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1
ratio) &#x003b4; 159.9, 159.7, 159.38, 159.33, 155.8, 155.3, 139.7, 139.4,
133.0, 132.8, 130.1, 123.78, 123.75, 122.1, 121.8, 120.80, 120.78, 108.01,
107.98, 79.1, 27.9, 27.7</p><p><b>LCMS and HRMS data for <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> CID 3392161):</b> Detailed analytical methods
and instrumentation are described in <a href="#ml231.s23">section 2.3</a>, entitled &#x0201c;Probe Preparation&#x0201d; under
general experimental and analytical details. Purity assessment by LCMS at
214 nm for <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> CID 3392161) revealed a retention time of 3.09 min
and purity at 214 nm of 100%. HRMS
<i>m</i>/<i>z</i> was calculated for
C<sub>11</sub>H<sub>11</sub>ClN<sub>6</sub>O<sub>2</sub>
[M<sup>+</sup> + H]: 295.0705, found
295.0716. The experimental LCMS and HRMS spectra are included for reference
(<a class="figpopup" href="/books/NBK133439/figure/ml231.f19/?report=objectonly" target="object" rid-figpopup="figml231f19" rid-ob="figobml231f19">Appendix A, Figures A3</a> and
<a class="figpopup" href="/books/NBK133439/figure/ml231.f20/?report=objectonly" target="object" rid-figpopup="figml231f20" rid-ob="figobml231f20">A4</a> respectively).</p></div><div id="ml231.s19"><h4>C. Solubility</h4><p>Aqueous solubility of <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> was measured
in phosphate buffered saline (PBS) at room temperature (23 &#x000b0;C). PBS
by definition is 137 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate dibasic, 2
mM potassium phosphate monobasic and a pH of 7.4. The solubility of probe
<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> CID 3392161) in this system was determined to be
0.05 &#x003bc;g/mL. [<a class="bibr" href="#ml231.r37" rid="ml231.r37">37</a>]</p><p>The concentration of the probe (0.24 &#x003bc;M) is somewhat lower than the
determined CIT2 EC<sub>50</sub> (3.8 &#x003bc;M) (<a class="figpopup" href="/books/NBK133439/table/ml231.t1/?report=objectonly" target="object" rid-figpopup="figml231t1" rid-ob="figobml231t1">Table 1</a>). To test if <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> and selected analogs were more soluble under the assay
conditions, solubility was evaluated in yeast synthetic media containing
0.015% pluronic F-68 and 1% DMSO by counting solution
particle formation by flow cytometry at the UNMCMD [<a class="bibr" href="#ml231.r38" rid="ml231.r38">38</a>, <a class="bibr" href="#ml231.r39" rid="ml231.r39">39</a>] and independent results were obtained
using the same media employing methods comparable to those used for the PBS
buffer solubility determination. [<a class="bibr" href="#ml231.r37" rid="ml231.r37">37</a>]</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml231t1"><a href="/books/NBK133439/table/ml231.t1/?report=objectonly" target="object" title="Table 1" class="img_link icnblk_img figpopup" rid-figpopup="figml231t1" rid-ob="figobml231t1"><img class="small-thumb" src="/books/NBK133439/table/ml231.t1/?report=thumb" src-large="/books/NBK133439/table/ml231.t1/?report=previmg" alt="Table 1. Solubility experiments in various media with ML231 and analogs." /></a><div class="icnblk_cntnt"><h4 id="ml231.t1"><a href="/books/NBK133439/table/ml231.t1/?report=objectonly" target="object" rid-ob="figobml231t1">Table 1</a></h4><p class="float-caption no_bottom_margin">Solubility experiments in various media with ML231 and analogs. </p></div></div><p>These experiments revealed that the aqueous solubility of this series,
represented by 3&#x02013;4 examples shown in <a class="figpopup" href="/books/NBK133439/table/ml231.t1/?report=objectonly" target="object" rid-figpopup="figml231t1" rid-ob="figobml231t1">Table 1</a> which included the probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a>, is limited. Improved solubility in assay media as
compared to PBS buffer was observed; however, the limitations persisted.
Accumulation of <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> in cells to higher levels than
suggested by the solubility assays and solubility enhancement by reversible
binding to biomolecules in the intracellular environment may account for the
discrepancy between the EC<sub>50</sub> and apparent soluble concentration
in media alone. Additional work is necessary to substantiate this
hypothesis.</p></div><div id="ml231.s20"><h4>D. Stability</h4><p>Aqueous stability was measured at room temperature (23 &#x000ba;C) in PBS (no
antioxidants or other protectants and DMSO concentration below
0.1%). The stability of probe compound <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> CID
3392161), determined as the percent of compound remaining after 48 hours,
was 89% [<a class="bibr" href="#ml231.r37" rid="ml231.r37">37</a>]. Stability data are depicted as a graph showing the loss
of compound with time over a 48 hour period with a minimum of 6 time points
and provide the percent remaining compound at end of the 48 hours (<a class="figpopup" href="/books/NBK133439/figure/ml231.f2/?report=objectonly" target="object" rid-figpopup="figml231f2" rid-ob="figobml231f2">Figure 2</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f2" co-legend-rid="figlgndml231f2"><a href="/books/NBK133439/figure/ml231.f2/?report=objectonly" target="object" title="Figure 2" class="img_link icnblk_img figpopup" rid-figpopup="figml231f2" rid-ob="figobml231f2"><img class="small-thumb" src="/books/NBK133439/bin/ml231f2.gif" src-large="/books/NBK133439/bin/ml231f2.jpg" alt="Figure 2. Aqueous stability of compound ML231 (SID 99300522, CID 3392161)." /></a><div class="icnblk_cntnt" id="figlgndml231f2"><h4 id="ml231.f2"><a href="/books/NBK133439/figure/ml231.f2/?report=objectonly" target="object" rid-ob="figobml231f2">Figure 2</a></h4><p class="float-caption no_bottom_margin">Aqueous stability of compound ML231 (SID 99300522, CID 3392161). </p></div></div><p>Notably, the duration of the assays used in characterizing <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> and its analogs did not exceed 3 hours. As such it is
not anticipated that the observed activity associated with <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> is due to a reactive species. To further address if
the scaffold was susceptible to nucleophiles and forming a reactive
intermediate, <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> was treated with glutathione. In
each of four separate vials was added <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (5.0 mg, 0.017
mmol). L-Glutathione was added to each vial in the ratio of (<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a>:glutathione) 1:1, 1:2, 1:3 and 1:4, respectively. DMSO
(1 mL) was added to each vial and the reaction mixtures were stirred at room
temperature for 48 h. Each reaction was monitored by LCMS over the 48 h
period, and no change from starting material was observed in either the UV
or the MS spectroscopy. After the 48 h experiment, the reaction containing
the 1:1 ratio of <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> to L-glutathione was doped with
an additional 3 eq. of L-glutathione and heated at 80 &#x000b0;C for 2h. No
change in UV was observed. An additional minor peak was noted (&#x0003c;
1%) in the MS spectrum besides starting material; however, the mass
did not correlate to an identifiable displacement or addition product. The
<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> scaffold appears to be stable at
room temperature when exposed to an excess (4 eq.) of glutathione and even
under heating at high temperature.</p></div><div id="ml231.s21"><h4>E. Synthetic Route</h4><p>The probe compound <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> CID 3392161) was prepared in a one-pot procedure by
taking advantage of the differential reactivity of the three chlorine atoms
and sequential amination reactions (<a class="figpopup" href="/books/NBK133439/figure/ml231.f3/?report=objectonly" target="object" rid-figpopup="figml231f3" rid-ob="figobml231f3">Figure 3</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f3" co-legend-rid="figlgndml231f3"><a href="/books/NBK133439/figure/ml231.f3/?report=objectonly" target="object" title="Figure 3" class="img_link icnblk_img figpopup" rid-figpopup="figml231f3" rid-ob="figobml231f3"><img class="small-thumb" src="/books/NBK133439/bin/ml231f3.gif" src-large="/books/NBK133439/bin/ml231f3.jpg" alt="Figure 3. General synthetic route for probe and associated analogues." /></a><div class="icnblk_cntnt" id="figlgndml231f3"><h4 id="ml231.f3"><a href="/books/NBK133439/figure/ml231.f3/?report=objectonly" target="object" rid-ob="figobml231f3">Figure 3</a></h4><p class="float-caption no_bottom_margin">General synthetic route for probe and associated
analogues. </p></div></div></div><div id="ml231.s22"><h4>F. Submission of Five Related Analogues to the MLSMR</h4><p>Five analogues have been fully characterized and prepared in preparation for
submission to the MLSMR. The five selected analogs are shown in <a class="figpopup" href="/books/NBK133439/figure/ml231.f4/?report=objectonly" target="object" rid-figpopup="figml231f4" rid-ob="figobml231f4">Figure 4</a>.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f4" co-legend-rid="figlgndml231f4"><a href="/books/NBK133439/figure/ml231.f4/?report=objectonly" target="object" title="Figure 4" class="img_link icnblk_img figpopup" rid-figpopup="figml231f4" rid-ob="figobml231f4"><img class="small-thumb" src="/books/NBK133439/bin/ml231f4.gif" src-large="/books/NBK133439/bin/ml231f4.jpg" alt="Figure 4. Selected analogs to support probe ML231." /></a><div class="icnblk_cntnt" id="figlgndml231f4"><h4 id="ml231.f4"><a href="/books/NBK133439/figure/ml231.f4/?report=objectonly" target="object" rid-ob="figobml231f4">Figure 4</a></h4><p class="float-caption no_bottom_margin">Selected analogs to support probe ML231. </p></div></div></div></div><div id="ml231.s23"><h3>2.3. Probe Preparation</h3><p><b>General experimental and analytical details:</b><sup>1</sup>H and
<sup>13</sup>C NMR spectra were recorded on a Bruker AM 400 spectrometer
(operating at 400 and 101 MHz respectively) or Bruker AM 500 spectrometer
(operating at 500 and 125 MHz respectively) in CDCl<sub>3</sub> with
0.03% TMS as an internal standard or DMSO-d<sub>6</sub>. The chemical
shifts (&#x003b4;) reported are given in parts per million (ppm) and the
coupling constants (<i>J</i>) are in Hertz (Hz). The spin
multiplicities are reported as s = singlet, br. s = broad
singlet, d = doublet, t = triplet, q = quartet, dd
= doublet of doublet and m = multiplet. The LCMS analysis was
performed on an Agilent 1200 RRL chromatograph with photodiode array UV
detection and an Agilent 6224 TOF mass spectrometer. The chromatographic method
utilized the following parameters: a Waters Acquity BEH C-18 2.1 &#x000d7; 50mm,
1.7 &#x003bc;M column; UV detection wavelength = 214nm; flow rate
= 0.4 mL/min; gradient = 5 &#x02013; 100% acetonitrile
over 3 minutes with a hold of 0.8 minutes at 100% acetonitrile; the
aqueous mobile phase contained 0.15% ammonium hydroxide (v/v). The mass
spectrometer utilized the following parameters: an Agilent multimode source
which simultaneously acquires ESI+/APCI+; a reference mass
solution consisting of purine and hexakis (1H, 1H, 3H-tetrafluoropropoxy)
phosphazine; and a make-up solvent of 90:10:0.1 MeOH:Water: Formic Acid which
was introduced to the LC flow prior to the source to assist ionization. Melting
points were determined on a Stanford Research Systems OptiMelt apparatus.</p><p>The probe was synthesized by the route shown in <a class="figpopup" href="/books/NBK133439/figure/ml231.f3/?report=objectonly" target="object" rid-figpopup="figml231f3" rid-ob="figobml231f3">Figure 3</a> (<a href="#ml231.s21">section
2.2E</a>) and the following protocol: Probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161):
<i>N</i><sup>4</sup>-(3-chlorophenyl)-<i>N</i><sup>2</sup>-methyl-5-nitropyrimidine-2,4,6-triamine:
To a solution of 2,4,6-trichloro-5-nitropyrimidine (1.0 eq, 0.657 mmol, 0.150 g)
in EtOH (3.0 mL) at &#x02212;40 &#x000b0;C, was added dropwise a solution of
3-chloroaniline (1.0 eq, 0.657 mmol, 0.084 g) and DIPEA (3.0 eq, 1.97 mmol,
0.255 g) in EtOH (1.5 mL). After stirring for 0.5 h at &#x02212;40 &#x000b0;C,
ammonia (2.0 M in MeOH, 4.0 eq, 1.3 mL) was added and the mixture was slowly
warmed up to rt and stirred for 4h. Methylamine (33% wt. in absolute
ethanol, 4.0 eq, 0.36 mL) was added and the mixture was kept on stirring for 16
h. The reaction was diluted with CHCl<sub>3</sub> (20 mL) and washed with brine
(10 mL). The separated organic extracts were dried (MgSO<sub>4</sub>) and
concentrated. The residue was purified by chromatography (Biotage 50 g silica
gel column, EtOAc/Hexane) to afford
<i>N</i><sup>4</sup>-(3-chlorophenyl)-<i>N</i><sup>2</sup>-methyl-5-nitropyrimidine-2,4,6-triamine
(0.077 g, 40%) as a yellow solid.</p><div id="ml231.s24"><h4>Submitted Probe Analogs</h4><p>Experimental details and supporting information for the five submitted
analogues can be found in <a href="#ml231.app2">Appendix
B</a>.</p></div></div></div><div id="ml231.s25"><h2 id="_ml231_s25_">3. Results</h2><p>This project has revealed both rapamycin-like compound and branch selective
modulators. In this report, we focus on a chemotype whose analogs exhibit both
rapamycin-like and RTG branch selective activity. The subject of this report, probe
<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> CID 3392161), is reported as a potent
RTG branch selective probe.</p><div id="ml231.s26"><h3>3.1. Summary of Screening Results</h3><p>The primary screening results are summarized here with the flow chart (<a class="figpopup" href="/books/NBK133439/figure/ml231.f5/?report=objectonly" target="object" rid-figpopup="figml231f5" rid-ob="figobml231f5">Figure 5</a>) showing the overall workflow
for the project and the AIDs uploaded to date. The primary screening was carried
out in a 5-plex assay format in which CIT2, AGP1, MEP2, LAP4 and RPL19A GFP
fusion clones were color-coded with Alexa Fluor dyes and evaluated
simultaneously with respect to the alteration of GFP expression (<a class="figpopup" href="/books/NBK133439/figure/ml231.f6/?report=objectonly" target="object" rid-figpopup="figml231f6" rid-ob="figobml231f6">Figure 6</a>). Rapamycin was used as
positive control to ensure the GFP clones have the appropriate response. With
the treatment of rapamycin for 3 hrs, the GFP signal in CIT2, AGP1, MEP2 and
LAP4 clones were increased to 1.5-fold or greater whereas that in RPL19A clone
was decreased to 0.5 fold compared to the DMSO negative control. Compounds were
scored active if the median channel fluorescence (MCF) of GFP in each clone were
altered to the extent greater than 50% compared to the DMSO. The cut-off
values for each clone were as follows: CIT2, AGP1 and LAP4 (increased to 1.5
fold), MEP2 (increased to 1.75 fold) and RPL19A (decreased to 0.66 fold). The
primary screening results were uploaded as 10 AIDs: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1870" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1870</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2029" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2029</a>-multiplex HTS screen of TOR pathway GFP-fusion protein in
<i>S. cerevisiae_</i>specifically_CIT2; <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1887" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1887</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2066" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2066</a>- multiplex HTS screen of TOR pathway GFP-fusion protein in
<i>S. cerevisiae_</i>specifically_AGP1; <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1867" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1867</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2016" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2016</a>- multiplex HTS screen of TOR pathway GFP-fusion protein in
<i>S. cerevisiae_</i>specifically_MEP2; <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1873" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1873</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2023" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2023</a>- multiplex HTS screen of TOR pathway GFP-fusion protein in
<i>S. cerevisiae_</i>specifically_LAP4, and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1862" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1862</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2025" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2025</a>- multiplex HTS screen of TOR pathway GFP-fusion protein in
<i>S. cerevisiae_</i>specifically_RPL19A. A total of 320,000
compounds were tested with 73, 225, 1059, 443 and 64 actives in CIT2, AGP1,
MEP2, LAP4 and RPL19A clones respectively.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f5" co-legend-rid="figlgndml231f5"><a href="/books/NBK133439/figure/ml231.f5/?report=objectonly" target="object" title="Figure 5" class="img_link icnblk_img figpopup" rid-figpopup="figml231f5" rid-ob="figobml231f5"><img class="small-thumb" src="/books/NBK133439/bin/ml231f5.gif" src-large="/books/NBK133439/bin/ml231f5.jpg" alt="Figure 5. TOR compound triage and flow chart." /></a><div class="icnblk_cntnt" id="figlgndml231f5"><h4 id="ml231.f5"><a href="/books/NBK133439/figure/ml231.f5/?report=objectonly" target="object" rid-ob="figobml231f5">Figure 5</a></h4><p class="float-caption no_bottom_margin">TOR compound triage and flow chart. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f6" co-legend-rid="figlgndml231f6"><a href="/books/NBK133439/figure/ml231.f6/?report=objectonly" target="object" title="Figure 6" class="img_link icnblk_img figpopup" rid-figpopup="figml231f6" rid-ob="figobml231f6"><img class="small-thumb" src="/books/NBK133439/bin/ml231f6.gif" src-large="/books/NBK133439/bin/ml231f6.jpg" alt="Figure 6. Schematic of screen strategy." /></a><div class="icnblk_cntnt" id="figlgndml231f6"><h4 id="ml231.f6"><a href="/books/NBK133439/figure/ml231.f6/?report=objectonly" target="object" rid-ob="figobml231f6">Figure 6</a></h4><p class="float-caption no_bottom_margin">Schematic of screen strategy. A) Simplified yeast TORC1 signaling pathway showing the four signaling
branches probed in this project. B) Dot plot showing the multiplex
staining of 5 yeast GFP report clones using Alexa Flours 405 and
633. </p></div></div><p>Two subsequent SMR cherry picks resulted in single point confirmation of ~2400
compounds (AIDs: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2643" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2643</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2624" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2624</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2623" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2623</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2622" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2622</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2621" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2621</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2274" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2274</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2273" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2273</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2272" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2272</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2271" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2271</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2270" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2270</a>). The cherry pick single
point confirmation screens resulted in 613 compounds for further dose response
confirmation. The dose response confirmation dataset was uploaded as AIDs
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2744" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2744</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2743" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2743</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2742" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2742</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2740" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2740</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2745" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">2745</a> and resulted in 31, 28, 26, 228, 123 actives for CIT2,
AGP1, MEP2, LAP4 and RPL19A branches respectively. A set of counter screens for
488/530 nm fluorescent compounds using S288c parental none-GFP yeast strain was
also associated with the SMR cherry pick sets. These data were uploaded as
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2757" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
2757</a> where the 613 compounds were tested with a total of 21
compounds noted as green fluorescence. Autofluorescence was calculated on the
basis of MCF detected in the green fluorescence channel (530
+/&#x02212;20 nM) and the subtraction of the autofluorescence of the
cells, as shown in the following equation: Fluorescence = MCF_CMPD -
MCF_CELL where MCF_CMPD is the MCF of cells in the presence of test compound and
MCF_CELL is the MCF of cells in the presence of the DMSO control. The compound
was noted to be active if the fluorescence was greater than the average plus
three standard deviations of the control wells on the plate. The activity score
was calculated based on normalizing the fluorescence to the maximum
measured.</p><p>A total of 255 compounds were confirmed. While one compound altered GFP
expression in all five GFP clones as rapamycin does, some of the compounds were
found to be selective on individual branches. The data was analyzed as follows:
RawMCF values were converted to RawkMESF with the aid of calibration beads.
SubkMESF were calculated by subtracting the baseline fluorescence measured from
the S288c parental strain. Percent response was calculated by using the span of
rapamycin response collected on the same plate. %Response=
(SubkMESF@Conc&#x02013;SubkMESF@DMSO)/(
SubkMESF@Rap0.4&#x003bc;M&#x02013; SubkMESF@DMSO). Note that for
RPL19A, the absolute value of (
SubkMESF@Rap0.4&#x003bc;M&#x02013; SubkMESF@DMSO) was used for
calculation of the GFP decrease in RPL19A clone.</p><p>A total of 82 powder compounds of the 255 dose response confirmed hits were
ordered by KU SCC on the basis of chemistry tractability and availability. These
compounds were tested in the dose response confirmation (AIDs: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488792" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488792</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488795" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488795</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488801" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488801</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488808" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488808</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488827" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488827</a>). The 488/530 nm fluorescence profiling
using the S288c parental non-GFP yeast strain was also performed in a dose
response assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488829" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 488829</a>). The dose response confirmed the
activity of 79 compounds. As one of the original goals of the project was to
identify compounds with rapamycin-like activity with improved physiochemical
behavior, the team was pleased to identify and confirm compound CID 3528206
(SIDs <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">96099781</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/26664184" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">26664184</a>) that altered GFP
expression in all five yeast clones, as seen with rapamycin (<a class="figpopup" href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-figpopup="figml231f7" rid-ob="figobml231f7">Figure 7A</a>). This compound was further
characterized in secondary assays, the outcomes of which are described in <a class="figpopup" href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-figpopup="figml231f7" rid-ob="figobml231f7">Figure 7</a>.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f7" co-legend-rid="figlgndml231f7"><a href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" title="Figure 7" class="img_link icnblk_img figpopup" rid-figpopup="figml231f7" rid-ob="figobml231f7"><img class="small-thumb" src="/books/NBK133439/bin/ml231f7.gif" src-large="/books/NBK133439/bin/ml231f7.jpg" alt="Figure 7. Characterization of CID 3528206 (SID 96099781) as a TORC1 specific inhibitor." /></a><div class="icnblk_cntnt" id="figlgndml231f7"><h4 id="ml231.f7"><a href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-ob="figobml231f7">Figure 7</a></h4><p class="float-caption no_bottom_margin">Characterization of CID 3528206 (SID 96099781) as a
TORC1 specific inhibitor. A) Dose response analysis of CID 3528206 (SID
96099781) on five GFP clones. B) Structure of CID 3528206
(SID 96099781). C) TORC1 bypass cell
growth assay on CID 3528206 (SID <a href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-ob="figobml231f7">(more...)</a></p></div></div><p>The first secondary assay was aimed at determining cytotoxicity of the compound
in the TORC1 bypass cell growth assay (<a class="figpopup" href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-figpopup="figml231f7" rid-ob="figobml231f7">Figure 7C</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504456" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID: 504456</a>). Compound CID 3528206 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>) inhibited wild-type cell growth but not TORC1 bypass
cell growth at 15&#x02013;30 &#x003bc;M, suggesting that it may be not toxic to
yeast. Otherwise, it would have inhibited both wild-type and TORC1 bypass cell
growth.</p><p>The second assay was used to determine the impact on the TORC1 complex in the
TORC1 bypass cell growth assay (<a class="figpopup" href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-figpopup="figml231f7" rid-ob="figobml231f7">Figure
7C</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504456" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID: 504456</a>). Compound CID 3528206 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>), behaved like rapamycin and inhibited wild-type cell
growth but not TORC1 bypass cell growth at 15&#x02013;30 &#x003bc;M, suggesting
that it is functional at the level of TORC1 or upstream, as is rapamycin. This
is in agreement with the dose response analysis by which only CID 3528206
(<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>) was shown to be active in all 5 GFP clones in an
analogous way as rapamycin.</p><p>The third assay of interest was used to determine the impact on inhibition of
TORC1 activity by measuring Sch9p (a direct TORC1 substrate) phosphorylation
(<a class="figpopup" href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-figpopup="figml231f7" rid-ob="figobml231f7">Figure 7D</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504478" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID:
504478</a>). CID 3528206 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>) inhibited
Sch9p phosphorylation with an IC<sub>50</sub> of ~ 4 &#x003bc;M indicating that
it inhibits TORC1 activity on the phosphorylation of Sch9p.</p><p>The fourth assay was used to determine the impact on inhibition of TORC2 activity
by measuring phosphorylation of YPK1 (a direct TORC2 substrate (<a class="figpopup" href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-figpopup="figml231f7" rid-ob="figobml231f7">Figure 7E</a>). CID 3528206 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>) did not appear to inhibit YPK1 phosphorylation
associated with TORC2.</p><p>Taken together, compound CID 3528206 <b>(</b>SIDs <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">96099781</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/26664184" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">26664184</a>) may function as a
specific small molecule inhibitor of TORC1 like rapamycin.</p><p>To gain preliminary SAR data for the scaffold on which CID 3528206
<b>(</b>SIDs <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">96099781</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/26664184" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">26664184</a>) is based, a
series of 30 structurally related compounds were picked from the DPI chemical
library and included in the final round of cherry pick which contained 112
compounds. This final cherry pick compound set was tested in single-point
conformation and dose response confirmation assay. Eleven AIDs were uploaded: 5
AIDs for single point confirmation (AIDs: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504321" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504321</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504334" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504334</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504336" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504336</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504338" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504338</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504340" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504340</a>), 5 AIDs for dose response confirmation (AIDs: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488812" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488812</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488790" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488790</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488814" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488814</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488823" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488823</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488825" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488825</a>) and an AID for the fluorescent counter
screen (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488818" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 488818</a>).</p><p>Of those compounds tested, one (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/26671376" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 26671376</a>, CID 3528206
&#x02013; an early batch of the probe compound) stood out in its activity
profile as an exclusive inhibitor of the CIT2 GFP clone even though the
selective compound differed structurally from the rapamycin-like hit CID 3528206
by only the exchange of a 3-fluorophenyl group for a 3-chlorophenyl group at the
same position (<a class="figpopup" href="/books/NBK133439/figure/ml231.f8/?report=objectonly" target="object" rid-figpopup="figml231f8" rid-ob="figobml231f8">Figure 8</a>). This result
indicated that the nascent SAR on this single chemotype contained analogs
exhibiting both rapamycin-like activity and branch selective activity. This
interesting finding permitted the development of a branch selective probe and
the determination of the structural and biological basis for the selectivity as
compared to the rapamycin-like hit, CID 3528206.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f8" co-legend-rid="figlgndml231f8"><a href="/books/NBK133439/figure/ml231.f8/?report=objectonly" target="object" title="Figure 8" class="img_link icnblk_img figpopup" rid-figpopup="figml231f8" rid-ob="figobml231f8"><img class="small-thumb" src="/books/NBK133439/bin/ml231f8.gif" src-large="/books/NBK133439/bin/ml231f8.jpg" alt="Figure 8. Dose response analysis of probe compound ML231." /></a><div class="icnblk_cntnt" id="figlgndml231f8"><h4 id="ml231.f8"><a href="/books/NBK133439/figure/ml231.f8/?report=objectonly" target="object" rid-ob="figobml231f8">Figure 8</a></h4><p class="float-caption no_bottom_margin">Dose response analysis of probe compound ML231. </p></div></div><p>To date, 57 SAR compounds have been resupplied and assessed in dose response
confirmation. The raw MCF data and % response data were plotted.
Compounds were claimed as actives if two thresholds were met: 1) observation of
the same fold-change of GFP expression cut-off value in the primary screen; for
CIT2, AGP1 and LAP4 (increased to 1.5 fold or greater), for MEP2 (increased to
1.75 fold or greater) and for RPL19A (decreased to 0.66 fold or less), and 2)
percent response (relative to rapamycin) at 100 &#x003bc;M was greater than
20%. A total of 9 compounds in this series were active in dose response
(AIDs: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488792" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488792</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488795" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488795</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488801" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488801</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488808" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488808</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488827" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">488827</a>) (<a class="figpopup" href="/books/NBK133439/figure/ml231.f9/?report=objectonly" target="object" rid-figpopup="figml231f9" rid-ob="figobml231f9">Figure 9</a> and <a href="#ml231.s29">section 3.4</a>
SAR tables). Compound <b>(</b>CID 3528206 <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>) was the only compound that alters GFP expression in all
five GFP clones.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f9" co-legend-rid="figlgndml231f9"><a href="/books/NBK133439/figure/ml231.f9/?report=objectonly" target="object" title="Figure 9" class="img_link icnblk_img figpopup" rid-figpopup="figml231f9" rid-ob="figobml231f9"><img class="small-thumb" src="/books/NBK133439/bin/ml231f9.gif" src-large="/books/NBK133439/bin/ml231f9.jpg" alt="Figure 9. Dose response curves for the active compounds." /></a><div class="icnblk_cntnt" id="figlgndml231f9"><h4 id="ml231.f9"><a href="/books/NBK133439/figure/ml231.f9/?report=objectonly" target="object" rid-ob="figobml231f9">Figure 9</a></h4><p class="float-caption no_bottom_margin">Dose response curves for the active compounds. Dose response analysis was performed at least 3 times for all these
compounds except SID 99300546 (CID 3739601). The data from
one experiment are used as examples. </p></div></div><p>Compound (CID 50904403 <a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923093" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 110923093</a>) alters GFP expression in CIT2,
AGP1, MEP2 and RPL19A clones, but not in the LAP4 clone. A total of seven
compounds (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300541</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300546" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300546</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300549" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300549</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300550" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300550</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923089" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923089</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923090" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923090</a>) are exclusively active on CIT2 expression. Among the
7 CIT2 branch selective compounds, CID 3392161 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a>) induces the second strongest response (91.7%)
with the second best EC<sub>50</sub> (3.8 &#x003bc;M). CID 50904400 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923089" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
110923089</a>) is the most potent compound (EC<sub>50</sub>=
0.6 &#x003bc;M), but induces the weakest response (% response:
24.0%). CID 3449329 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300541</a>) induces the
strongest response (97.7%) with a lower EC<sub>50</sub> (8.8
&#x003bc;M). All 57 SAR compounds were assessed in the TORC1 cell growth
secondary assays for evaluation of cytotoxicity and activity on TORC1 complex
(AIDs: <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504456" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504456</a>). One compound (CID 46864179 <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300521" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300521</a>) among these 57 compounds inhibits both wild-type and
TORC1 bypass cell growth at 30 &#x003bc;M, suggesting it is toxic to yeast cells
at this concentration, and only compound (CID 3528206 <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>) was confirmed to inhibit wild-type cell growth but not
the TORC1 bypass cell growth. The compound (CID 50904403 <a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923093" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
110923093</a>) targeting 4 GFP clones did not inhibit wild-type yeast
cell. None of CIT2 selective compounds inhibited wild-type cell growth up to 60
&#x003bc;M (<a class="figpopup" href="/books/NBK133439/figure/ml231.f10/?report=objectonly" target="object" rid-figpopup="figml231f10" rid-ob="figobml231f10">Figure 10</a> and data not
shown). These data suggest that the CIT2 selective analogs may have a common
mechanism of action but distinct from that of compound CID 3528206 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>).</p><p>To investigate if the CIT2 selective compounds inhibit the phosphorylation of
Sch9p as <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206) does (<a class="figpopup" href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-figpopup="figml231f7" rid-ob="figobml231f7">Figure 7D</a>), we evaluated the activity of <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> (CID 3392161), <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300541</a> (CID 3449329)
and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300549" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300549</a> (CID 4359574) in the Sch9p phosphorylation assay (<a class="figpopup" href="/books/NBK133439/figure/ml231.f11/?report=objectonly" target="object" rid-figpopup="figml231f11" rid-ob="figobml231f11">Figure 11</a>). All three compounds
inhibited Sch9p phosphorylation. Compound <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161)
is shown to be the most potent inhibitor in this assay with IC<sub>50</sub> 2.3
&#x003bc;M. The IC<sub>50</sub>s of <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300541</a> (CID 3449329)
and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300549" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300549</a> (CID 4359574) were 14.7 &#x003bc;M and 5.9 &#x003bc;M,
respectively. However, compared to <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206),
which completely inhibited Sch9p phosphorylation, none of the CIT2 selective
compounds fully inhibited Sch9p phosphorylation. <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> (CID 3392161) inhibited the Sch9p phosphorylation up to
89% while <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300541</a> (CID 3449329) and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300549" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300549</a> (CID 4359574) only inhibited
70%&#x02013;75% (<a class="figpopup" href="/books/NBK133439/figure/ml231.f11/?report=objectonly" target="object" rid-figpopup="figml231f11" rid-ob="figobml231f11">Figure
11</a>, and <a href="#ml231.s29">section 3.4</a> SAR
tables). With respect to its selectivity, amplitude and potency, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> (CID 3392161) was chosen as the probe in this probe
report.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f11" co-legend-rid="figlgndml231f11"><a href="/books/NBK133439/figure/ml231.f11/?report=objectonly" target="object" title="Figure 11" class="img_link icnblk_img figpopup" rid-figpopup="figml231f11" rid-ob="figobml231f11"><img class="small-thumb" src="/books/NBK133439/bin/ml231f11.gif" src-large="/books/NBK133439/bin/ml231f11.jpg" alt="Figure 11. Sch9 phosphorylation assay on active compounds." /></a><div class="icnblk_cntnt" id="figlgndml231f11"><h4 id="ml231.f11"><a href="/books/NBK133439/figure/ml231.f11/?report=objectonly" target="object" rid-ob="figobml231f11">Figure 11</a></h4><p class="float-caption no_bottom_margin">Sch9 phosphorylation assay on active compounds. A) Western blot showing the phosphorylated Sch9p (top band) in yeast
cells treated with compounds at different concentrations
(0.1&#x02013;100&#x003bc;M). B) The intensity of top band was quantified
to show <a href="/books/NBK133439/figure/ml231.f11/?report=objectonly" target="object" rid-ob="figobml231f11">(more...)</a></p></div></div><p>One key regulatory step in RTG pathway is the nuclear localization of Rtg1/3p
[<a class="bibr" href="#ml231.r6" rid="ml231.r6">6</a>, <a class="bibr" href="#ml231.r8" rid="ml231.r8">8</a>]. To investigate if the probe induces
nuclear translocation of Rtg1/3p, we tested the probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> (CID 3392161), <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206),
<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300541</a> (CID 3449329) and rapamycin in the Rtg3p-GFP
localization assay (<a class="figpopup" href="/books/NBK133439/figure/ml231.f12/?report=objectonly" target="object" rid-figpopup="figml231f12" rid-ob="figobml231f12">Figure 12</a>).
Compared to the treatment with DMSO, Rtg3p-GFP was translocated into the nucleus
after treatment with the probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161),
<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> (CID 3528206) and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300541</a> (CID 3449329).
Rapamycin also induced the nuclear translocation of Rtg3p-GFP. This result shows
that the probe and its analogs can induce nuclear translocation of Rtg3p by
which the CIT2 expression is induced.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f12" co-legend-rid="figlgndml231f12"><a href="/books/NBK133439/figure/ml231.f12/?report=objectonly" target="object" title="Figure 12" class="img_link icnblk_img figpopup" rid-figpopup="figml231f12" rid-ob="figobml231f12"><img class="small-thumb" src="/books/NBK133439/bin/ml231f12.gif" src-large="/books/NBK133439/bin/ml231f12.jpg" alt="Figure 12. Rtg3p-GFP translocation assay." /></a><div class="icnblk_cntnt" id="figlgndml231f12"><h4 id="ml231.f12"><a href="/books/NBK133439/figure/ml231.f12/?report=objectonly" target="object" rid-ob="figobml231f12">Figure 12</a></h4><p class="float-caption no_bottom_margin">Rtg3p-GFP translocation assay. Rtg3p-GFP cells were grown in SCD media and treated with 30&#x003bc;M
compounds for 3hrs. The GFP localization was observed under the
fluorescent microscope. </p></div></div><p>To further confirm the activity of the probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161)
on the RTG pathway and investigate its point of action, we carried out genetic
analysis to measure CIT2 expression in the knockout background of RTG proteins
and the Lst8p mutants, which are the key components of the RTG pathway (<a class="figpopup" href="/books/NBK133439/figure/ml231.f13/?report=objectonly" target="object" rid-figpopup="figml231f13" rid-ob="figobml231f13">Figure 13A</a>). First, we measured
CIT2-GFP expression in the Rtg3p knock out mutant with the treatment of the
probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161), <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206)
and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300541</a> (CID 3449329) as well as rapamycin and DMSO as controls
(<a class="figpopup" href="/books/NBK133439/figure/ml231.f13/?report=objectonly" target="object" rid-figpopup="figml231f13" rid-ob="figobml231f13">Figure 13B</a>). In contrast to the
CIT2-GFP expression in the wild-type background, the activity of the probe
<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> (CID 3392161) and its analogs on CIT2-GFP expression is
completely lost in Rtg3p mutant, as it is with rapamycin, suggesting that the
activity of the chemotype is dependent on the Rtg3p protein and may function
upstream of Rtg3p. Second, we measured CIT2-LacZ expression in both the
wild-type background and the Rtg2p knockout background after treatment with the
same set of compounds. The probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161)
and its analogs did not increase LacZ activity significantly in the Rtg2p mutant
as rapamycin does (<a class="figpopup" href="/books/NBK133439/figure/ml231.f13/?report=objectonly" target="object" rid-figpopup="figml231f13" rid-ob="figobml231f13">Figure 13C</a>).
These data suggest that the activity of the chemotype is dependent on the Rtg2p
protein and may function upstream of Rtg2p. We also measured CIT2-LacZ
expression in lst8-5 and lst8-1 mutants after treatment with the same set of
compounds. None of these compounds could further increase LacZ expression in
either lst8 mutants (data not shown), suggesting that the probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> (CID 3392161) and its analogs may function upstream of
Lst8p. Taken together, this activity of the probe and its analogs on induction
of CIT2 expression is dependent on RTG3 and RTG2 proteins, suggesting that the
probe functions at the level of Rtg2p or upstream in the RTG pathway.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f13" co-legend-rid="figlgndml231f13"><a href="/books/NBK133439/figure/ml231.f13/?report=objectonly" target="object" title="Figure 13" class="img_link icnblk_img figpopup" rid-figpopup="figml231f13" rid-ob="figobml231f13"><img class="small-thumb" src="/books/NBK133439/bin/ml231f13.gif" src-large="/books/NBK133439/bin/ml231f13.jpg" alt="Figure 13. Chemical genetic analysis of active compounds on RTG pathway." /></a><div class="icnblk_cntnt" id="figlgndml231f13"><h4 id="ml231.f13"><a href="/books/NBK133439/figure/ml231.f13/?report=objectonly" target="object" rid-ob="figobml231f13">Figure 13</a></h4><p class="float-caption no_bottom_margin">Chemical genetic analysis of active compounds on RTG pathway. A) RTG pathway in yeast (From Liu and Butow, 2006 [23]). B) Flow
cytometry analysis of CIT2-GFP expression in the rtg3 knockout mutant
with the treatment of 30&#x003bc;M compounds as well as <a href="/books/NBK133439/figure/ml231.f13/?report=objectonly" target="object" rid-ob="figobml231f13">(more...)</a></p></div></div><p>We have attempted to uncover the cellular targets of this chemotype by profiling
their gene expression through the screening of yeast GFP clones. The probe
<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> (CID 3392161), analog <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206),
rapamycin and DMSO were used to screen a set of 96 GFP clones (called RapaGFP
clones) that were identified initially to be responsive to rapamycin from the
yeast GFP collection (unpublished data). After the treatment of the GFP clones
with the compounds for 3 hrs, the GFP signal of each clone was measured by flow
cytometry. Compared to the GFP signal with the treatment of DMSO, the GFP clones
treated with the compounds in which the GFP signal was increased to greater than
1.5-fold or decreased to 0.66-fold or less were claimed to be responsive. 53 GFP
clones were confirmed to be responsive to rapamycin among which 41 clones were
up-regulated and 12 were down-regulated (<a class="figpopup" href="/books/NBK133439/figure/ml231.f14/?report=objectonly" target="object" rid-figpopup="figml231f14" rid-ob="figobml231f14">Figure 14</a>). Note that 11 of the down-regulated clones encode
ribosomal proteins, which is in agreement with the fact that rapamycin inhibits
protein synthesis. The other 43 GFP clones did not respond to rapamycin or to
any other compounds tested. In the presence of <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206),
31 out of 41 rapamycin-up-regulated clones were up-regulated. Four of the
rapamycin-down-regulated clones were down-regulated. Note that the rest of the 8
clones encoding ribosomal proteins also decreased ~20% by <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> (CID 3528206) (data not shown). This piece of data
suggests that <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206) exhibits a very
similar pattern as rapamycin. This is consistent with the results from dose
response confirmation and the secondary assays (<a class="figpopup" href="/books/NBK133439/figure/ml231.f7/?report=objectonly" target="object" rid-figpopup="figml231f7" rid-ob="figobml231f7">Figure 7</a>). Interestingly, the probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> (CID 3392161) just increased GFP expression in 6 clones
and decreased GFP expression in ADE17 clone only (<a class="figpopup" href="/books/NBK133439/figure/ml231.f15/?report=objectonly" target="object" rid-figpopup="figml231f15" rid-ob="figobml231f15">Figure 15</a>). None of the clones encoding the ribosomal
proteins were responsive to the probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161)
treatment, suggesting that the probe may not regulate the protein translation
branch of TOR pathway. Among the 6 up-regulated clones, CIT2, DLD3
[<a class="bibr" href="#ml231.r40" rid="ml231.r40">40</a>] and PYC1
[<a class="bibr" href="#ml231.r41" rid="ml231.r41">41</a>, <a class="bibr" href="#ml231.r42" rid="ml231.r42">42</a>] are known to be regulated
by the RTG pathway as well as nitrogen sources. PTR2 (Peptide Transport), BAT2
(Branched-chain Amino acid Transaminase) and DIP5 (DIcarboxylic amino acid
Permease) play roles in maintaining amino acid homeostasis, suggesting that the
probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161) may regulate amino acid metabolism
and/or affect the extracellular sensing of amino acid, which is controlled by
the yeast plasma membrane SPS nutrient sensor. The SPS nutrient sensor has been
reported to affect the RTG pathway upstream of Rtg2p [<a class="bibr" href="#ml231.r23" rid="ml231.r23">23</a>, <a class="bibr" href="#ml231.r43" rid="ml231.r43">43</a>] via an unknown mechanism. Taken together
with the observation that the probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161)
also acts upstream of Rtg2p, it will be very interesting to test if the probe
targets the SPS pathway in the future.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f14" co-legend-rid="figlgndml231f14"><a href="/books/NBK133439/figure/ml231.f14/?report=objectonly" target="object" title="Figure 14" class="img_link icnblk_img figpopup" rid-figpopup="figml231f14" rid-ob="figobml231f14"><img class="small-thumb" src="/books/NBK133439/bin/ml231f14.gif" src-large="/books/NBK133439/bin/ml231f14.jpg" alt="Figure 14. RapaGFP clone screening." /></a><div class="icnblk_cntnt" id="figlgndml231f14"><h4 id="ml231.f14"><a href="/books/NBK133439/figure/ml231.f14/?report=objectonly" target="object" rid-ob="figobml231f14">Figure 14</a></h4><p class="float-caption no_bottom_margin">RapaGFP clone screening. 96 RapaGFP clones were treated with 0.22&#x003bc;M rapamycin(Rapa),
30&#x003bc;M SID 96099781 (CID 3528206, TC1) &#x02013;
or 30&#x003bc;M SID 99300522 (CID 3392161, probe) for
3hrs. The genes with altered gene expression are <a href="/books/NBK133439/figure/ml231.f14/?report=objectonly" target="object" rid-ob="figobml231f14">(more...)</a></p></div></div></div><div id="ml231.s27"><h3>3.2. Dose Response Curves for Probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a></h3><div id="ml231.f15" class="figure bk_fig"><div class="graphic"><img src="/books/NBK133439/bin/ml231f15.jpg" alt="Figure 15. Overlay of dose response curves for probe ML231 (SID 99300522, CID 3392161)." /></div><h3><span class="label">Figure 15</span><span class="title">Overlay of dose response curves for probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID
3392161)</span></h3><div class="caption"><p>The mean percent of response of each GFP clone to the probe treatment in
6 independent experiments was used to fit by Prism 5.</p></div></div></div><div id="ml231.s28"><h3>3.3. Scaffold/Moiety Chemical Liabilities</h3><p>The 2,4,6-triamino-5-nitropyrimidine scaffold and its derivatives have been
easily handled in terms of stability to reaction conditions, exposure to acid or
base, heating, and general manipulation. We have not observed decomposition nor
have we experienced any chemical liability with these compounds. The structure
does not contain moieties that are known generally to be reactive. Stability
assessment was performed in 1&#x000d7; PBS buffer at pH 7.4 and room
temperature. After 48 hours, it was determined that 89 percent of the parent
probe compound remained, thus indicating reasonable stability under these
conditions.</p></div><div id="ml231.s29"><h3>3.4. SAR Tables</h3><p>Of the hits that were evaluated and validated, only one compound (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>, CID 3528206) resulted in an activity profile that
altered GFP expression in all five GFP clones as seen with rapamycin. A
chemistry effort was then undertaken to expand the underlying structure activity
relationships associated with this scaffold (<a class="figpopup" href="/books/NBK133439/figure/ml231.f16/?report=objectonly" target="object" rid-figpopup="figml231f16" rid-ob="figobml231f16">Figure 16</a>). The preliminary SAR plan focused on four
regions of the scaffold, predominately on the substitutions of the pyrimidine
core. Those compounds that could be obtained commercially were purchased while
unavailable analogs were synthesized in parallel. We synthesized 27 compounds
and purchased 37 additional analogs that were purified and analyzed prior to
assay. Interestingly, these compounds, all predicated on the validated hit, did
not demonstrate an analogous effect on GFP expression as that seen with
rapamycin and the hit itself. Instead, nearly all active analogs in this series
exhibited pathway selectivity for induction of the CIT2-GFP expression. This
finding, while unexpected for compounds so closely related to the hit structure,
was rigorously validated and then supported with the identification of
additional analogs in the series with analogous selectivity profiles.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml231f16" co-legend-rid="figlgndml231f16"><a href="/books/NBK133439/figure/ml231.f16/?report=objectonly" target="object" title="Figure 16" class="img_link icnblk_img figpopup" rid-figpopup="figml231f16" rid-ob="figobml231f16"><img class="small-thumb" src="/books/NBK133439/bin/ml231f16.gif" src-large="/books/NBK133439/bin/ml231f16.jpg" alt="Figure 16. Validated hit and SAR strategy." /></a><div class="icnblk_cntnt" id="figlgndml231f16"><h4 id="ml231.f16"><a href="/books/NBK133439/figure/ml231.f16/?report=objectonly" target="object" rid-ob="figobml231f16">Figure 16</a></h4><p class="float-caption no_bottom_margin">Validated hit and SAR strategy. </p></div></div><p>The largest group of analogs that was studied resulted from systematic changes of
the 3-fluorophenyl moiety of <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (<a class="figpopup" href="/books/NBK133439/table/ml231.t2/?report=objectonly" target="object" rid-figpopup="figml231t2" rid-ob="figobml231t2">Table 2</a>). Consistently, 4-halo or
4-alkoxy substituted phenyl rings in the R1 position resulted in loss of
activity on all 5 clones (entries 2, 7, and 10&#x02013;11). A similar story
emerged for 2-substituted phenyl rings (entries 3 and 5). Some CIT2 inhibition
registered for the 2-MeO-phenyl substituent (~4 &#x003bc;M, entry 8); however,
the compound was not very effective, as a low response was associated with this
result (33%).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml231t2"><a href="/books/NBK133439/table/ml231.t2/?report=objectonly" target="object" title="Table 2" class="img_link icnblk_img figpopup" rid-figpopup="figml231t2" rid-ob="figobml231t2"><img class="small-thumb" src="/books/NBK133439/table/ml231.t2/?report=thumb" src-large="/books/NBK133439/table/ml231.t2/?report=previmg" alt="Table 2. Summary of modifications to R1." /></a><div class="icnblk_cntnt"><h4 id="ml231.t2"><a href="/books/NBK133439/table/ml231.t2/?report=objectonly" target="object" rid-ob="figobml231t2">Table 2</a></h4><p class="float-caption no_bottom_margin">Summary of modifications to R<sub>1</sub>. </p></div></div><p>Installation of 3-substituted phenyl rings revealed CIT2 selective potency for
3-chloro-, 3-bromo- and 3-MeO-phenyl substituents, although low responses
plagued the latter two examples (entries 1, 4 and 9, respectively). The
3-chlorophenyl moiety (entry 1) imparted a reasonable CIT2 potency of 3.8
&#x003bc;M, response (92%), and lack of activity on the other four
clones. The 3-fluorophenyl analog (entry 6, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>) was the
original validated hit with effects observed on all 5 GFP clones. As the data in
<a href="#ml231.s26">section 3.1</a> indicated, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> was the only analog in the pyrimidine series that
inhibited wild-type cell growth but not the TORC1 bypass cell growth, suggesting
it acts at the level of TORC1 or upstream as rapamycin does. This is in contrast
to the remaining analogs which appear to act downstream of TORC1. This
differential site of action can account for the observation that <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> does not fit within the SAR profile surrounding this set
of compounds. Compounds in this series were also evaluated for their effect on
cell growth. All compounds in the series but the validated hit (entry 6)
resulted in good wild-type cell growth, indicating lack of cytotoxicity.</p><p>The effect of slightly increasing the steric bulk or replacing the hydrogen of
the methylamine appendage was investigated (<a class="figpopup" href="/books/NBK133439/table/ml231.t3/?report=objectonly" target="object" rid-figpopup="figml231t3" rid-ob="figobml231t3">Table 3</a>). Introduction of an ethyl substituent in
place of the methyl group at R2 (entry 2) resulted in enhanced potency on CIT2,
AGP1, MEP2 and RPL19A as compared to the probe (entry 1). No activity on LAP4
was observed, but the potency across the remaining clones amounted to pan
inhibition, though the response levels on AGP1 and MEP2 were low. Installation
of an additional methyl group on the amine (entry 3) resulted in complete loss
of activity across all clones, indicating the possible importance of the
hydrogen in this position or as a participant in an active tautomeric
structure.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml231t3"><a href="/books/NBK133439/table/ml231.t3/?report=objectonly" target="object" title="Table 3" class="img_link icnblk_img figpopup" rid-figpopup="figml231t3" rid-ob="figobml231t3"><img class="small-thumb" src="/books/NBK133439/table/ml231.t3/?report=thumb" src-large="/books/NBK133439/table/ml231.t3/?report=previmg" alt="Table 3. SAR summary for modification at R2." /></a><div class="icnblk_cntnt"><h4 id="ml231.t3"><a href="/books/NBK133439/table/ml231.t3/?report=objectonly" target="object" rid-ob="figobml231t3">Table 3</a></h4><p class="float-caption no_bottom_margin">SAR summary for modification at R<sub>2</sub>. </p></div></div><p>Attempts were made to modify the nitro group of the hit scaffold, as this
particular functionality can contribute to poor solubility. One of the first
structural amendments involved removal of the nitro group (entry 2, <a class="figpopup" href="/books/NBK133439/table/ml231.t4/?report=objectonly" target="object" rid-figpopup="figml231t4" rid-ob="figobml231t4">Table 4</a>). In this case, the presence
of the hydrogen was not a beneficial change, resulting in loss of activity on
CIT2 as compared to the probe (entry 1) and suggesting that the electron
withdrawing effects imparted by the nitro group might be important to activity.
With this in mind, an electron-withdrawing nitrile group was introduced at the
R3 position (entry 3) and an aryl ketone (entry 4) that was commercially
available was also assessed. Unfortunately, these changes did not restore CIT2
activity, leading to an inactive profile across all five clones. These
alterations represent a modest survey of changing the nitro group, and initial
assessments indicate that the nitro group, a very polarizing functionality as
compared to most complimentary replacements, is important to retaining CIT2
activity.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml231t4"><a href="/books/NBK133439/table/ml231.t4/?report=objectonly" target="object" title="Table 4" class="img_link icnblk_img figpopup" rid-figpopup="figml231t4" rid-ob="figobml231t4"><img class="small-thumb" src="/books/NBK133439/table/ml231.t4/?report=thumb" src-large="/books/NBK133439/table/ml231.t4/?report=previmg" alt="Table 4. SAR summary for modification of the nitro group at R3." /></a><div class="icnblk_cntnt"><h4 id="ml231.t4"><a href="/books/NBK133439/table/ml231.t4/?report=objectonly" target="object" rid-ob="figobml231t4">Table 4</a></h4><p class="float-caption no_bottom_margin">SAR summary for modification of the nitro group at
R<sub>3</sub>. </p></div></div><p>The importance of the aniline portion of the scaffold was studied by introducing
small alkyl substituents in place of the (<i>N</i>-H) hydrogen atoms
(<a class="figpopup" href="/books/NBK133439/table/ml231.t5/?report=objectonly" target="object" rid-figpopup="figml231t5" rid-ob="figobml231t5">Table 5</a>). Replacement of one
hydrogen with a methyl group or both hydrogen atoms with methyl groups (entries
2 and 3, <a class="figpopup" href="/books/NBK133439/table/ml231.t5/?report=objectonly" target="object" rid-figpopup="figml231t5" rid-ob="figobml231t5">Table 5</a>, respectively)
resulted in no activity on any of the 5 clones, thus stressing the importance of
the hydrogen atoms in any of several scenarios of an active analog: (a)
participants in hydrogen bonding and/or (b) participants in an active tautomeric
structure and/or (c) intolerance of steric bulk in this binding region.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml231t5"><a href="/books/NBK133439/table/ml231.t5/?report=objectonly" target="object" title="Table 5" class="img_link icnblk_img figpopup" rid-figpopup="figml231t5" rid-ob="figobml231t5"><img class="small-thumb" src="/books/NBK133439/table/ml231.t5/?report=thumb" src-large="/books/NBK133439/table/ml231.t5/?report=previmg" alt="Table 5. SAR summary for modification of the R4 substituent." /></a><div class="icnblk_cntnt"><h4 id="ml231.t5"><a href="/books/NBK133439/table/ml231.t5/?report=objectonly" target="object" rid-ob="figobml231t5">Table 5</a></h4><p class="float-caption no_bottom_margin">SAR summary for modification of the R<sub>4</sub> substituent. </p></div></div></div><div id="ml231.s30"><h3>3.5. Cellular Activity</h3><p>The primary screen assay, TORC1 bypass cell growth assay and the chemical genetic
assays in RTG mutants are all direct indication of cellular activity. The
results of the primary screen assay and the chemical genetic assays indicate
that the probe acts at the level of Rtg2p or upstream in the RTG pathway. The
result from TORC1 bypass cell growth assay indicates that the probe is not toxic
to the wild-type yeast cell growth at 60 &#x003bc;M. Note that the synthetic
media used in the primary screen and the dose response analysis contains
0.015% pluronic F-68 that is required for the activity of rapamycin. But
the probe showed the similar activity in the synthetic media without the
addition of pluronic F-68, suggesting it is permeable to yeast cells.</p></div><div id="ml231.s31"><h3>3.6. Profiling Assays</h3><p>The probe has been profiled against 50 kinases at a single concentration of 10
&#x003bc;M to assess promiscuity of the chemotype (<a class="figpopup" href="/books/NBK133439/table/ml231.t6/?report=objectonly" target="object" rid-figpopup="figml231t6" rid-ob="figobml231t6">Table 6</a>). [<a class="bibr" href="#ml231.r44" rid="ml231.r44">44</a>] Probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> was dissolved in DMSO and tested at a final concentration
of 10 &#x003bc;M. Prior to initiating a profiling campaign, the compound was
evaluated for false positive against split-luciferase. Profiling was done in
duplicate for <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> against each kinase. The Percent
Inhibition and Percent Activity Remaining were calculated using the following
equation:</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml231t6"><a href="/books/NBK133439/table/ml231.t6/?report=objectonly" target="object" title="Table 6" class="img_link icnblk_img figpopup" rid-figpopup="figml231t6" rid-ob="figobml231t6"><img class="small-thumb" src="/books/NBK133439/table/ml231.t6/?report=thumb" src-large="/books/NBK133439/table/ml231.t6/?report=previmg" alt="Table 6. Percent of activity remaining for various kinases when inhibited by ML231." /></a><div class="icnblk_cntnt"><h4 id="ml231.t6"><a href="/books/NBK133439/table/ml231.t6/?report=objectonly" target="object" rid-ob="figobml231t6">Table 6</a></h4><p class="float-caption no_bottom_margin">Percent of activity remaining for various kinases when inhibited by
ML231. </p></div></div><div class="pmc_disp_formula whole_rhythm clearfix" id="ml231.eq1"><div class="inline_block pmc_inline_block pmc_va_middle pmc_hide_overflow twelve_col">% Inhibition = ALUControl &#x02212;
ALUSample &#x000d7; 100<br />ALUControl<br />% Activity Remaining
= 100 &#x02212; % Inhibition</div><div class="inline_block pmc_inline_block pmc_va_middle pmc_hide_overflow last bk_equ_label "><div><span class="nowrap"></span></div></div></div><p>It is noteworthy that a PubChem search revealed that the probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (and analog <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>) both are
reported to inhibit mammalian GSK3&#x003b2; activity (AID <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/434954" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">434954</a>). This particular kinase was not offered as part of the
profiling panel; however, the most potently inhibited kinase in this panel was
GSK3a at 35.3%. Other kinases that were inhibited by the probe included
CLK1 (28.3%), CLK2 (20.6%), AURKA (17.9%), RPS6KA1
(14.5%), STE (9.9%), SNARK (9.4%), and others less than
5%.</p><p>The team has also submitted the probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a> CID 3392161) to the NIH National Cancer Institute to
elucidate the effect of the probe on the cancer cell line panel.</p></div></div><div id="ml231.s32"><h2 id="_ml231_s32_">4. Discussion</h2><p>There are five pieces of evidence showing that probe compound <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161) is a RTG branch selective
probe: 1) dose response data showed that it is a potent, selective and strong
inducer of CIT2-GFP expression in this scaffold series. This indicates that the
probe affects a subset of functions of TORC1 signaling, which is in agreement with
the result from the TORC1 bypass cell growth assay where the probe candidate did not
affect the cell growth of either wild-type or TORC1 bypass cell growth at 60
&#x003bc;M. 2) The screening of RapaGFP clones showed that probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161) only changed GFP
expression in 7 out of 53 rapamycin-responsive GFP clones, 3 of which are known to
be regulated by the RTG pathway and nitrogen sources. This data further supports the
notion that probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161)
executes a partial function of rapamycin and is more selective on the RTG pathway
than its analog <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206). 3) <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> and its analogs inhibited Sch9 phosphorylation, the major
substrate and downstream effector of the TORC1 pathway (<a class="figpopup" href="/books/NBK133439/figure/ml231.f11/?report=objectonly" target="object" rid-figpopup="figml231f11" rid-ob="figobml231f11">Figure 11</a>). This result indicates that this chemotype
affects TORC1 activity. However, the RTG selective compounds (<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300541</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300549" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300549</a>) could not
completely inhibit TORC1 activity while the rapamycin mimic compound <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> could. This may be partially attributable to the
selectivity. 4) The RTG3-GFP localization assay shows that probe compound <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161) induces the nuclear
localization of RTG3-GFP, indicating that it regulates CIT2 expression through
activation of the RTG pathway. 5) Chemical genetic analysis further shows that the
induction of CIT2-GFP expression by probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a>, CID 3392161) is dependent on Rtg3p and Rtg2p proteins,
suggesting it acts at the level of RTG2 or upstream in the RTG pathway.</p><p><a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> (CID 3528206) behaves more like rapamycin than other analogs
in the dose response analysis, TORC1 bypass cell growth assay and RapaGFP clone
screening assay. The analogs of this scaffold, with very minor modification, such as
changing from a 3-fluorophenyl moiety (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>, CID 3528206) to a
3-chlorophenyl group (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161) completely abolished the
activity on the AGP1, MEP2, LAP4 and RPL19A clones. The TORC1 bypass cell growth
assay suggests that <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206) may act at the level of
TOR or upstream whereas structurally similar compounds, including the probe compound
<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161) may act downstream of TOR
(<a class="figpopup" href="/books/NBK133439/figure/ml231.f10/?report=objectonly" target="object" rid-figpopup="figml231f10" rid-ob="figobml231f10">Figure 10</a>). If we assume that these
analogs have the same cellular target(s) on the basis of their similar molecular
structure, how could they act both downstream and upstream of TOR? There could be
some possibilities: 1) They act at the level of TOR or upstream, but some compounds
have stronger effect on the activity of TOR, as does rapamycin whereas other
compounds just affect the function of TORC1 complex partially, such that the probe
affects the RTG pathway selectively. This hypothesis is supported by the observation
that the probe compound <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161)
partially inhibits the Sch9p phosphorylation whereas <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> (CID 3528206) completely inhibits Sch9p phosphorylation. 2)
The compounds indeed act both upstream and downstream of TORC1 by targeting the same
cellular proteins, which functions both downstream and upstream of TORC1. Lst8p is
such a candidate protein [<a class="bibr" href="#ml231.r9" rid="ml231.r9">9</a>,
<a class="bibr" href="#ml231.r45" rid="ml231.r45">45</a>&#x02013;<a class="bibr" href="#ml231.r47" rid="ml231.r47">47</a>]. Lst8p has multiple acting sites which can
lead to bidirectional action in the RTG and TOR pathways. Lst8p regulates TOR
activity as a component of both TORC1 and TORC2 complex, but also it regulates the
activity and assembly of SPS system sensing external glutamate that acts upstream of
Rtg2p in the RTG pathway (see <a class="figpopup" href="/books/NBK133439/figure/ml231.f13/?report=objectonly" target="object" rid-figpopup="figml231f13" rid-ob="figobml231f13">Figure
13A</a>). Lst8p can also act downstream of Rtg2p by an unknown mechanism. The
chemical genetic assay showed that all the compounds act upstream of Rtg2p,
suggesting that the compounds may target Lst8p that acts upstream of Rtg2p or acts
as a component of the TOR complexes. If this is the case, these compounds may also
affect TORC2 activity because Lst8 is also a component of TORC2 complex. However,
the Ypk1/2 phosphorylation assay [<a class="bibr" href="#ml231.r35" rid="ml231.r35">35</a>] for evaluation of TORC2 activity in yeast showed that
<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> (CID 3528206) does not inhibit TORC2 activity. 3) The growth
media may affect the response of these GFP clones to the probe and its analogs
because TOR signaling senses the nutrient and adapts the cell metabolism to the
growth condition. It will be worthwhile to test the compounds in rich YPD media as
well as in the synthetic media with different sole nitrogen sources, such as
proline, urea and histidine. In these media, the probe and the SAR series may have a
similar pattern in altering GFP expression in the GFP clones. The future planned
studies aimed at the mechanism of action will aid in elucidating these possibilities
and provide new clues on the integration of RTG and TOR signaling.</p><p>Lastly, the nitropyrimidine series features structural elements that impact
solubility, as several compounds described here have been shown to possess
diminished solubility in aqueous media (see <a href="#ml231.s19">section 2.2 C</a>). Replacement of the nitro group was investigated to
address the physiochemical properties and any long-term, post-project interest in
using the probe as an in vivo tool. Initial attempts down this road led to inactive
compounds; however, the team is following up on analogs containing amide or
sulfonamide salt moieties in place of the nitro group. The probe is reported here,
however, a first-in-class tool and represents a significant milestone for the
selective exploration of the TORC1 pathway.</p><div id="ml231.s33"><h3>4.1. Comparison to Existing Art and How the New Probe is an Improvement</h3><p>To our best knowledge, this is the first report of the RTG pathway selective
probe. It will allow probing of the RTG branch without affecting other branches
regulated by TORC1 signaling.</p></div><div id="ml231.s34"><h3>4.2. Mechanism of Action Studies</h3><p>We have attempted to reveal its mechanism of action by searching for genes whose
expression are changed upon the treatment of probe compound by screening 96
RapaGFP clones and microarray analysis.</p><p>We have performed two experiments to search for genes whose mRNA/protein
expression is altered with the treatment of the probe. First, we screened 96
RapaGFP clones (see <a class="figpopup" href="/books/NBK133439/figure/ml231.f14/?report=objectonly" target="object" rid-figpopup="figml231f14" rid-ob="figobml231f14">Figure 14</a>) and
identified not only the GFP clones regulated by the RTG pathway, as well as GFP
clones encoding the genes involved in amino acid homeostasis, such as DIP5, BAT2
and PTR2 clones. These genes are up-regulated by the yeast membrane SPS
(Ssy1-Ptr3-Ssy5) nutrient sensor for extracellular amino acids [<a class="bibr" href="#ml231.r48" rid="ml231.r48">48</a>]. This suggests that the
probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161)
may affect the SPS nutrient sensing pathway. Note that RTG pathway is regulated
by glutamine, an amino acid that is also sensed by the SPS pathway (<a class="figpopup" href="/books/NBK133439/figure/ml231.f13/?report=objectonly" target="object" rid-figpopup="figml231f13" rid-ob="figobml231f13">Figure 13A</a>). The three RTG- regulated
GFP clones (CIT2, DLD3 and PYC1) responsive to the probe may also be indirectly
regulated by the SPS pathway. A key effector of the SPS pathway, Stp1p, is
demonstrated to be regulated by the Tap42-Sit4p phosphatases complex, which is a
well-known target of the TORC1 complex [<a class="bibr" href="#ml231.r49" rid="ml231.r49">49</a>]. This finding suggests the connection
between the TORC1 and the SPS signaling pathways [<a class="bibr" href="#ml231.r49" rid="ml231.r49">49</a>]. Taken together, the potential cellular
targets of the probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161)
may play roles in all the RTG, SPS and TORC1 pathways. It will be interesting to
test whether the probe affects the Tap42-Sit4p phosphatases and regulates Stp1p.
The screening assays for RapaGFP clones (<a class="figpopup" href="/books/NBK133439/figure/ml231.f14/?report=objectonly" target="object" rid-figpopup="figml231f14" rid-ob="figobml231f14">Figure 14</a>) allows us to evaluate several compounds with a limited
amount (less than 1mg) at current stage, but it is a biased screen where the
clones not responsive to rapamycin are missing. We plan to screen the whole GFP
collection with the probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300522</a>, CID 3392161) in the future. This would generate more
comprehensive information for the probe. Second, we have performed microarray
analysis on the probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161),
rapamycin, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206) and 2 other CIT2
selective compounds. The data is being analyzed. The microarray data may provide
very useful information on the possible cellular targets of the probe with the
comprehensive comparison of the gene list of the probe and its analogs as well
as rapamycin. We are going to do cluster/gene function analysis and
promoter/transcription factor binding analysis to determine the possible
biological pathway(s) that the probe candidate acts on. The data from the GFP
collection screen and the microarray analysis would shed light on the cellular
targets.</p><p>We also plan to test the probe in extended secondary assays to determine its
mechanism of action (see details in <a href="#ml231.s35">section
4.3</a>).</p></div><div id="ml231.s35"><h3>4.3. Planned Future Studies</h3><p>In addition to the large-scale analysis of gene expression experiments, the probe
<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> will be further tested in extended
secondary assays for revealing the mechanism of action and chemistry will be
working to improve solubility.</p><ol><li class="half_rhythm"><div>Screen the whole yeast GFP collection with probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID
3528206), rapamycin and DMSO. This screen will be done in 96-well plates
at UNMCMD. The data will be analyzed as previously [<a class="bibr" href="#ml231.r50" rid="ml231.r50">50</a>].</div></li><li class="half_rhythm"><div>Analyze microarray data and confirm gene expression by RT-PCR. The
microarray data will be analyzed by principle component analysis and
two-dimensional hierarchical clustering. This two unsupervised data
analysis will suggest relationship among the probe, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a> (CID 3528206), rapamycin and the active SAR
analogs. The genes shared by these compounds will be used for pathway
analysis with Genego systems to reveal the signaling pathways that may
be regulated by the probe. The subsequent genetic and biochemical assays
will be performed accordingly.</div></li><li class="half_rhythm"><div>Stp1 localization assay. The GFP localization of Stp1p-GFP will be
evaluated after treatment with the probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> and its analogs as well as rapamycin. This
experiment will test if <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a>affects the
SPS signaling pathway.</div></li><li class="half_rhythm"><div>Test probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> and active SAR compounds in
the rich YPD media as well as in the synthetic media with different sole
nitrogen sources, such as glutamate, glutamine, proline, urea and
histidine. This experiment will suggest whether the probe candidate
affects the regulation of glutamine and ammonia in the RTG pathway,
which would aid in understanding the integration of the RTG, NCR and
TORC1 pathways.</div></li><li class="half_rhythm"><div>Extend research into mammalian cells. The active compounds, including the
probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML 231</a> and compounds <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300541</a> and
<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300549" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300549</a> as well as two inactive
compounds <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300529" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300529</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300530" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
99300530</a> are being profiled in human gene expression
chips in collaboration with the Broad Institute. Extended secondary
assays in mammalian cells may be employed accordingly.</div></li><li class="half_rhythm"><div>Chemistry will be done to improve the solubility and drug-likeness
properties of the probe. Selective priorities include the identification
of an isostere for the nitro group, the introduction of solubilizing
groups on the R1 arene, more extensive revision of this component of the
scaffold (aliphatic solubilizing groups) and modification of the central
pyrimidine core.</div></li></ol></div></div><div id="ml231.s36"><h2 id="_ml231_s36_">5. References</h2><dl class="temp-labeled-list"><dl class="bkr_refwrap"><dt>1.</dt><dd><div class="bk_ref" id="ml231.r1">De Virgilio C, Loewith R. The TOR signalling network from yeast to
man. <span><span class="ref-journal">Int J Biochem Cell
Biol. </span>2006;<span class="ref-vol">38</span>(9):1476&ndash;81.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16647875" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16647875</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>2.</dt><dd><div class="bk_ref" id="ml231.r2">Guertin DA, Sabatini DM. The pharmacology of mTOR
inhibition. <span><span class="ref-journal">Sci
Signal. </span>2009;<span class="ref-vol">2</span>(67):pe24.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19383975" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19383975</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>3.</dt><dd><div class="bk_ref" id="ml231.r3">Butow RA, Avadhani NG. Mitochondrial signaling: the retrograde
response. <span><span class="ref-journal">Mol
Cell. </span>2004;<span class="ref-vol">14</span>(1):1&ndash;15.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15068799" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15068799</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>4.</dt><dd><div class="bk_ref" id="ml231.r4">Oldham S. Obesity and nutrient sensing TOR pathway in
flies and vertebrates: Functional conservation of genetic
mechanisms. <span><span class="ref-journal">Trends Endocrinol
Metab. </span>2011;<span class="ref-vol">22</span>(2):45&ndash;52.</span> [<a href="/pmc/articles/PMC3035994/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3035994</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21216618" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21216618</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>5.</dt><dd><div class="bk_ref" id="ml231.r5">De Virgilio C, Loewith R. Cell growth control: little eukaryotes make
big
contributions. <span><span class="ref-journal">Oncogene. </span>2006;<span class="ref-vol">25</span>(48):6392&ndash;415.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17041625" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17041625</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>6.</dt><dd><div class="bk_ref" id="ml231.r6">Sekito T, Thornton J, Butow RA. Mitochondria-to-nuclear signaling is regulated
by the subcellular localization of the transcription factors Rtg1p and
Rtg3p. <span><span class="ref-journal">Mol Biol
Cell. </span>2000;<span class="ref-vol">11</span>(6):2103&ndash;15.</span> [<a href="/pmc/articles/PMC14906/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC14906</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10848632" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10848632</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>7.</dt><dd><div class="bk_ref" id="ml231.r7">Giannattasio S, et al. Retrograde response to mitochondrial
dysfunction is separable from TOR1/2 regulation of retrograde gene
expression. <span><span class="ref-journal">J Biol
Chem. </span>2005;<span class="ref-vol">280</span>(52):42528&ndash;35.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16253991" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16253991</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>8.</dt><dd><div class="bk_ref" id="ml231.r8">Sekito T, et al. RTG-dependent mitochondria-to-nucleus
signaling is regulated by MKS1 and is linked to formation of yeast prion
[URE3] <span><span class="ref-journal">Mol Biol
Cell. </span>2002;<span class="ref-vol">13</span>(3):795&ndash;804.</span> [<a href="/pmc/articles/PMC99599/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC99599</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11907262" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11907262</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>9.</dt><dd><div class="bk_ref" id="ml231.r9">Liu Z, et al. RTG-dependent mitochondria to nucleus
signaling is negatively regulated by the seven WD-repeat protein
Lst8p. <span><span class="ref-journal">EMBO
J. </span>2001;<span class="ref-vol">20</span>(24):7209&ndash;19.</span> [<a href="/pmc/articles/PMC125777/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC125777</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11742997" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11742997</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>10.</dt><dd><div class="bk_ref" id="ml231.r10">Crespo JL, et al. The GATA transcription factors GLN3 and GAT1
link TOR to salt stress in Saccharomyces
cerevisiae. <span><span class="ref-journal">J Biol
Chem. </span>2001;<span class="ref-vol">276</span>(37):34441&ndash;4.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11457832" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11457832</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>11.</dt><dd><div class="bk_ref" id="ml231.r11">Bertram PG, et al. Tripartite regulation of Gln3p by TOR, Ure2p,
and phosphatases. <span><span class="ref-journal">J Biol
Chem. </span>2000;<span class="ref-vol">275</span>(46):35727&ndash;33.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10940301" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10940301</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>12.</dt><dd><div class="bk_ref" id="ml231.r12">Beck T, Hall MN. The TOR signalling pathway controls nuclear
localization of nutrient-regulated transcription
factors. <span><span class="ref-journal">Nature. </span>1999;<span class="ref-vol">402</span>(6762):689&ndash;92.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10604478" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10604478</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>13.</dt><dd><div class="bk_ref" id="ml231.r13">Xiao L, Grove A. Coordination of Ribosomal Protein and
Ribosomal RNA Gene Expression in Response to TOR
Signaling. <span><span class="ref-journal">Curr
Genomics. </span>2009;<span class="ref-vol">10</span>(3):198&ndash;205.</span> [<a href="/pmc/articles/PMC2705853/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2705853</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19881913" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19881913</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>14.</dt><dd><div class="bk_ref" id="ml231.r14">Powers T, Walter P. Regulation of ribosome biogenesis by the
rapamycin-sensitive TOR-signaling pathway in Saccharomyces
cerevisiae. <span><span class="ref-journal">Mol Biol
Cell. </span>1999;<span class="ref-vol">10</span>(4):987&ndash;1000.</span> [<a href="/pmc/articles/PMC25225/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC25225</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10198052" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10198052</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>15.</dt><dd><div class="bk_ref" id="ml231.r15">Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to
cancer, diabetes and ageing. <span><span class="ref-journal">Nat Rev Mol Cell
Biol. </span>2011;<span class="ref-vol">12</span>(1):21&ndash;35.</span> [<a href="/pmc/articles/PMC3390257/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3390257</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21157483" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21157483</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>16.</dt><dd><div class="bk_ref" id="ml231.r16">Ciuffreda L, et al. The mTOR pathway: a new target in cancer
therapy. <span><span class="ref-journal">Curr Cancer Drug
Targets. </span>2010;<span class="ref-vol">10</span>(5):484&ndash;95.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20384580" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20384580</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>17.</dt><dd><div class="bk_ref" id="ml231.r17">Hall MN. mTOR-what does it
do? <span><span class="ref-journal">Transplant
Proc. </span>2008;<span class="ref-vol">40</span>(10
Suppl):S5&ndash;8.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19100909" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19100909</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>18.</dt><dd><div class="bk_ref" id="ml231.r18">Guertin DA, Sabatini DM. Defining the role of mTOR in
cancer. <span><span class="ref-journal">Cancer
Cell. </span>2007;<span class="ref-vol">12</span>(1):9&ndash;22.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17613433" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17613433</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>19.</dt><dd><div class="bk_ref" id="ml231.r19">Guertin DA, Sabatini DM. An expanding role for mTOR in
cancer. <span><span class="ref-journal">Trends Mol
Med. </span>2005;<span class="ref-vol">11</span>(8):353&ndash;61.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16002336" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16002336</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>20.</dt><dd><div class="bk_ref" id="ml231.r20">Liu Q, et al. mTOR Mediated Anti-Cancer Drug
Discovery. <span><span class="ref-journal">Drug Discov Today Ther
Strateg. </span>2009;<span class="ref-vol">6</span>(2):47&ndash;55.</span> [<a href="/pmc/articles/PMC2901551/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2901551</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20622997" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20622997</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>21.</dt><dd><div class="bk_ref" id="ml231.r21">Thoreen CC, et al. An ATP-competitive mammalian target of
rapamycin inhibitor reveals rapamycin-resistant functions of
mTORC1. <span><span class="ref-journal">J Biol
Chem. </span>2009;<span class="ref-vol">284</span>(12):8023&ndash;32.</span> [<a href="/pmc/articles/PMC2658096/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2658096</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19150980" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19150980</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>22.</dt><dd><div class="bk_ref" id="ml231.r22">Feldman ME, et al. Active-site inhibitors of mTOR target
rapamycin-resistant outputs of mTORC1 and
mTORC2. <span><span class="ref-journal">PLoS
Biol. </span>2009;<span class="ref-vol">7</span>(2):e38.</span> [<a href="/pmc/articles/PMC2637922/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2637922</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19209957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19209957</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>23.</dt><dd><div class="bk_ref" id="ml231.r23">Liu Z, Butow RA. Mitochondrial retrograde
signaling. <span><span class="ref-journal">Annu Rev
Genet. </span>2006;<span class="ref-vol">40</span>:159&ndash;85.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16771627" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16771627</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>24.</dt><dd><div class="bk_ref" id="ml231.r24">Rothermel BA, Thornton JL, Butow RA. Rtg3p, a basic helix-loop-helix/leucine zipper
protein that functions in mitochondrial-induced changes in gene
expression, contains independent activation
domains. <span><span class="ref-journal">J Biol
Chem. </span>1997;<span class="ref-vol">272</span>(32):19801&ndash;7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9242640" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9242640</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>25.</dt><dd><div class="bk_ref" id="ml231.r25">Jia Y, et al. A basic helix-loop-helix-leucine zipper
transcription complex in yeast functions in a signaling pathway from
mitochondria to the nucleus. <span><span class="ref-journal">Mol Cell
Biol. </span>1997;<span class="ref-vol">17</span>(3):1110&ndash;7.</span> [<a href="/pmc/articles/PMC231836/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC231836</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9032238" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9032238</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>26.</dt><dd><div class="bk_ref" id="ml231.r26">Rothermel BA, et al. Transactivation by Rtg1p, a basic
helix-loop-helix protein that functions in communication between
mitochondria and the nucleus in yeast. <span><span class="ref-journal">J Biol
Chem. </span>1995;<span class="ref-vol">270</span>(49):29476&ndash;82.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7493987" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7493987</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>27.</dt><dd><div class="bk_ref" id="ml231.r27">Ferreira JR Junior. Interaction between Rtg2p and Mks1p in the
regulation of the RTG pathway of Saccharomyces
cerevisiae. <span><span class="ref-journal">Gene. </span>2005;<span class="ref-vol">354</span>:2&ndash;8.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15967597" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15967597</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>28.</dt><dd><div class="bk_ref" id="ml231.r28">Liu Z, et al. Retrograde signaling is regulated by the
dynamic interaction between Rtg2p and Mks1p. <span><span class="ref-journal">Mol
Cell. </span>2003;<span class="ref-vol">12</span>(2):401&ndash;11.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14536080" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14536080</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>29.</dt><dd><div class="bk_ref" id="ml231.r29">Crespo JL, et al. The TOR-controlled transcription activators
GLN3, RTG1, and RTG3 are regulated in response to intracellular levels
of glutamine. <span><span class="ref-journal">Proc Natl Acad Sci U S
A. </span>2002;<span class="ref-vol">99</span>(10):6784&ndash;9.</span> [<a href="/pmc/articles/PMC124480/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC124480</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11997479" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11997479</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>30.</dt><dd><div class="bk_ref" id="ml231.r30">Tate JJ, Cooper TG. Tor1/2 regulation of retrograde gene
expression in Saccharomyces cerevisiae derives indirectly as a
consequence of alterations in ammonia
metabolism. <span><span class="ref-journal">J Biol
Chem. </span>2003;<span class="ref-vol">278</span>(38):36924&ndash;33.</span> [<a href="/pmc/articles/PMC4384470/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4384470</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12851403" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12851403</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>31.</dt><dd><div class="bk_ref" id="ml231.r31">Urban J, et al. Sch9 is a major target of TORC1 in
Saccharomyces cerevisiae. <span><span class="ref-journal">Mol
Cell. </span>2007;<span class="ref-vol">26</span>(5):663&ndash;74.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17560372" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17560372</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>32.</dt><dd><div class="bk_ref" id="ml231.r32">Edwards BS, et al. High-content screening: flow cytometry
analysis. <span><span class="ref-journal">Methods Mol
Biol. </span>2009;<span class="ref-vol">486</span>:151&ndash;65.</span> [<a href="/pmc/articles/PMC4476789/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4476789</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19347622" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19347622</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>33.</dt><dd><div class="bk_ref" id="ml231.r33">Young SM, et al. High-throughput screening with HyperCyt flow
cytometry to detect small molecule formylpeptide receptor
ligands. <span><span class="ref-journal">J Biomol
Screen. </span>2005;<span class="ref-vol">10</span>(4):374&ndash;82.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15964939" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15964939</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>34.</dt><dd><div class="bk_ref" id="ml231.r34">Binda M, et al. The Vam6 GEF controls TORC1 by activating the
EGO complex. <span><span class="ref-journal">Mol
Cell. </span>2009;<span class="ref-vol">35</span>(5):563&ndash;73.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19748353" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19748353</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>35.</dt><dd><div class="bk_ref" id="ml231.r35">Kamada Y, et al. Tor2 directly phosphorylates the AGC kinase
Ypk2 to regulate actin polarization. <span><span class="ref-journal">Mol Cell
Biol. </span>2005;<span class="ref-vol">25</span>(16):7239&ndash;48.</span> [<a href="/pmc/articles/PMC1190227/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1190227</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16055732" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16055732</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>36.</dt><dd><div class="bk_ref" id="ml231.r36">Burke D, Dawson DS, Steams T. <span class="ref-journal">Methods in Yeast Genetics.</span> 2000
Edition. 2000. pp. 123&ndash;127. (A Cold
Spring Harbor Laboratory Course
Manual).</div></dd></dl><dl class="bkr_refwrap"><dt>37.</dt><dd><div class="bk_ref" id="ml231.r37">Solubility and stability data assessment was
outsourced to and data was collected by the Sanford-Burnham Center, under
the direction of Dr Layton Smith.</div></dd></dl><dl class="bkr_refwrap"><dt>38.</dt><dd><div class="bk_ref" id="ml231.r38">Goodwin, J. Poor Aqueous Solubility and Compound
Aggregation: Detection, Differences, and Impact on In-Vitro Screens. BD
Gentest Solubility Scanner, BD Biosciences Company, Woburn, MA
01801.</div></dd></dl><dl class="bkr_refwrap"><dt>39.</dt><dd><div class="bk_ref" id="ml231.r39">Crespi, et al. Aqueous Solubility by Flow
Cytometry II: New Prototypes Optimized for Drug Solubility Testing. Poster
Presentation. BD Gentest, A BD Biosciences Company, Woburn, MA
01801.</div></dd></dl><dl class="bkr_refwrap"><dt>40.</dt><dd><div class="bk_ref" id="ml231.r40">Tate JJ, et al. Mks1p is required for negative regulation of
retrograde gene expression in Saccharomyces cerevisiae but does not
affect nitrogen catabolite repression-sensitive gene
expression. <span><span class="ref-journal">J Biol
Chem. </span>2002;<span class="ref-vol">277</span>(23):20477&ndash;82.</span> [<a href="/pmc/articles/PMC4384460/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4384460</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11923302" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11923302</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>41.</dt><dd><div class="bk_ref" id="ml231.r41">Huet C, et al. Regulation of pyc1 encoding pyruvate
carboxylase isozyme I by nitrogen sources in Saccharomyces
cerevisiae. <span><span class="ref-journal">Eur J
Biochem. </span>2000;<span class="ref-vol">267</span>(23):6817&ndash;23.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11082192" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11082192</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>42.</dt><dd><div class="bk_ref" id="ml231.r42">Menendez J, Gancedo C. Regulatory regions in the promoters of the
Saccharomyces cerevisiae PYC1 and PYC2 genes encoding isoenzymes of
pyruvate carboxylase. <span><span class="ref-journal">FEMS Microbiol
Lett. </span>1998;<span class="ref-vol">164</span>(2):345&ndash;52.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9682484" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9682484</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>43.</dt><dd><div class="bk_ref" id="ml231.r43">Liu Z, et al. Activation of the SPS amino acid-sensing
pathway in Saccharomyces cerevisiae correlates with the phosphorylation
state of a sensor component, Ptr3. <span><span class="ref-journal">Mol Cell
Biol. </span>2008;<span class="ref-vol">28</span>(2):551&ndash;63.</span> [<a href="/pmc/articles/PMC2223413/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2223413</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17984223" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17984223</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>44.</dt><dd><div class="bk_ref" id="ml231.r44">Jester BW, et al. A coiled-coil enabled split-luciferase
three-hybrid system: applied toward profiling inhibitors of protein
kinases. <span><span class="ref-journal">J Am Chem
Soc. </span>2010;<span class="ref-vol">132</span>(33):11727&ndash;35.</span> [<a href="/pmc/articles/PMC2966823/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2966823</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20669947" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20669947</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>45.</dt><dd><div class="bk_ref" id="ml231.r45">Diaz-Troya S, Florencio FJ, Crespo JL. Target of rapamycin and LST8 proteins
associate with membranes from the endoplasmic reticulum in the
unicellular green alga Chlamydomonas
reinhardtii. <span><span class="ref-journal">Eukaryot
Cell. </span>2008;<span class="ref-vol">7</span>(2):212&ndash;22.</span> [<a href="/pmc/articles/PMC2238169/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2238169</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18039939" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18039939</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>46.</dt><dd><div class="bk_ref" id="ml231.r46">Chen EJ, Kaiser CA. LST8 negatively regulates amino acid
biosynthesis as a component of the TOR pathway. <span><span class="ref-journal">J
Cell
Biol. </span>2003;<span class="ref-vol">161</span>(2):333&ndash;47.</span> [<a href="/pmc/articles/PMC2172900/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2172900</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12719473" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12719473</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>47.</dt><dd><div class="bk_ref" id="ml231.r47">Loewith R, et al. Two TOR complexes, only one of which is
rapamycin sensitive, have distinct roles in cell growth
control. <span><span class="ref-journal">Mol
Cell. </span>2002;<span class="ref-vol">10</span>(3):457&ndash;68.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12408816" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12408816</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>48.</dt><dd><div class="bk_ref" id="ml231.r48">Forsberg H, et al. The role of the yeast plasma membrane SPS
nutrient sensor in the metabolic response to extracellular amino
acids. <span><span class="ref-journal">Mol
Microbiol. </span>2001;<span class="ref-vol">42</span>(1):215&ndash;28.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11679080" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11679080</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>49.</dt><dd><div class="bk_ref" id="ml231.r49">Shin CS, Kim SY, Huh WK. TORC1 controls degradation of the
transcription factor Stp1, a key effector of the SPS amino-acid-sensing
pathway in Saccharomyces cerevisiae. <span><span class="ref-journal">J Cell
Sci. </span>2009;<span class="ref-vol">122</span>(Pt
12):2089&ndash;99.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19494127" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19494127</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>50.</dt><dd><div class="bk_ref" id="ml231.r50">Davidson GS, et al. The proteomics of quiescent and non-quiescent
cell differentiation in yeast stationary-phase
cultures. <span><span class="ref-journal">Mol Biol
Cell. </span>2011</span> [<a href="/pmc/articles/PMC3069023/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3069023</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21289090" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21289090</span></a>]</div></dd></dl></dl></div><div id="ml231.app1"><h2 id="_ml231_app1_">APPENDIX A. NMR Data and LCMS Data for Probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID
3392161)</h2><p id="ml231.f17"><a href="/books/NBK133439/figure/ml231.f17/?report=objectonly" target="object" rid-ob="figobml231f17" class="figpopup">Figure A1. Proton data for SID 99300522 (CID
3392161)</a></p><p id="ml231.f18"><a href="/books/NBK133439/figure/ml231.f18/?report=objectonly" target="object" rid-ob="figobml231f18" class="figpopup">Figure A2. Carbon data for SID 99300522 (CID
3392161)</a></p><p id="ml231.f19"><a href="/books/NBK133439/figure/ml231.f19/?report=objectonly" target="object" rid-ob="figobml231f19" class="figpopup">Figure A3. LCMS purity data at 214 nm for SID 99300522 (CID
3392161)</a></p><p id="ml231.f20"><a href="/books/NBK133439/figure/ml231.f20/?report=objectonly" target="object" rid-ob="figobml231f20" class="figpopup">Figure A4. HRMS data for SID 99300522 (CID 3392161)</a></p></div><div id="ml231.app2"><h2 id="_ml231_app2_">APPENDIX B. Supporting Information for Analogs of Probe <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID
3392161)</h2><div id="ml231.fu2" class="figure"><div class="graphic"><img src="/books/NBK133439/bin/ml231fu6.jpg" alt="Image ml231fu6" /></div></div><p><b><i>N</i></b><b><sup>4</sup>-(3-chlorophenyl)-</b><b><i>N</i></b><b><sup>2</sup>-ethyl-5-nitropyrimidine-2,4,6-triamine:</b>
Prepared in a similar manner as described for the probe. Yellow solid,
36% yield. <sup>1</sup>H-NMR (400 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
&#x003b4; 11.35 (s, 1H), 11.25 (s, 1H), 8.65 (s, 1H), 8.48 (s, 1H), 8.27 (s,
1H), 8.17 (d, <i>J</i> = 2.0 Hz, 1H), 7.98-7.96 (m, 2H), 7.81
(t, <i>J</i> = 6.0 Hz, 1H), 7.71 (t, <i>J</i>
= 6.0 Hz, 1H), 7.66 (d, <i>J</i> = 8.4 Hz, 1H), 7.50
(d, <i>J</i> = 8.0 Hz, 1H), 7.40-7.32 (m, 2H), 7.21-7.14 (m,
2H), 3.36-3.25 (m, 4H), 1.13 (t, <i>J</i> = 7.2 Hz, 3H), 1.12
(t, <i>J</i> = 7.2 Hz, 3H). <sup>13</sup>C NMR (125 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
<i>&#x003b4;</i> 159.9, 159.5, 159.0, 158.8, 155.4, 139.7, 139.4,
133.0, 132.8, 130.11, 130.08, 129.90, 123.8, 123.7, 122.0, 121.8, 120.80, 120.7,
108.02, 107.97, 35.7, 35.4, 14.9, 14.8. LCMS retention time 3.22 min, LCMS
purity = 95%. HRMS <i>m/z</i> calculated for
C<sub>12</sub>H<sub>13</sub>ClN<sub>6</sub>O<sub>2</sub>
([M+H]<sup>+</sup>): 309.0861, found
309.0882.</p><div id="ml231.fu3" class="figure"><div class="graphic"><img src="/books/NBK133439/bin/ml231fu7.jpg" alt="Image ml231fu7" /></div></div><p><b><i>N</i></b><b><sup>4</sup>-(3-methoxyphenyl)-</b><b><i>N</i></b><b><sup>2</sup>-methyl-5-nitropyrimidine-2,4,6-triamine:</b>
Prepared in a similar manner as described for the probe. Yellow solid,
30% yield. <sup>1</sup>H-NMR (400 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
&#x003b4; 11.44 (s, 1H), 11.22 (s, 1H), 8.69 (s, 1H), 8.49 (s, 1H), 8.26 (s,
1H), 7.94 (s, 1H), 7.64-7.60 (m, 2H), 7.53 (d, <i>J</i> = 4.8
Hz, 1H), 7.44 (m, 1H), 7.28-7.18 (m, 4H), 6.73-6.68 (m, 2H), 3.77 (s, 3H), 3.76
(s, 3H), 2.83 (d, <i>J</i> = 4.8 Hz, 3H), 2.81 (d,
<i>J</i> = 4.8 Hz, 3H). <sup>13</sup>C NMR (125 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
<i>&#x003b4;</i> 160.1, 159.9, 159.60, 159.56, 159.52, 155.8,
155.4, 139.4, 139.3, 129.5, 114.6, 114.4, 110.3, 109.9, 108.11, 108.09, 108.03,
107.66, 55.23, 28.2, 27.9. LCMS retention time 2.83 min. LCMS purity =
89% purity. HRMS <i>m/z</i> calculated for
C<sub>12</sub>H<sub>15</sub>N<sub>6</sub>O<sub>3</sub>
([M+H]<sup>+</sup>): 291.1200, found
291.1207.</p><div id="ml231.fu4" class="figure"><div class="graphic"><img src="/books/NBK133439/bin/ml231fu8.jpg" alt="Image ml231fu8" /></div></div><p><b><i>N</i></b><b><sup>4</sup>-(3-bromophenyl)-</b><b><i>N</i></b><b><sup>2</sup>-methyl-5-nitropyrimidine-2,4,6-triamine:</b>
Prepared in a similar manner as described for the probe. Yellow solid,
54% yield. <sup>1</sup>H-NMR (400 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
&#x003b4; 11.3 (s, 1H), 11.1 (s, 1H), 8.67 (s, 1H), 8.48 (s, 1H), 8.33 (s, 1H),
8.28 (s, 1H), 8.05 (m, 1H), 7.97 (s, 1H), 7.71-7.67 (m, 2H), 7.61-7.56 (m, 2H),
7.33-7.27 (m, 4H), 2.83-2.81 (m, 6H). <sup>13</sup>C NMR (125 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
<i>&#x003b4;</i> 165.6, 165.0, 162.0, 161.9, 161.6, 161.2, 141.4,
141.3, 132.6, 132.5, 129.76, 129.72, 122.0, 121.9, 120.9, 120.8, 119.8, 119.6,
117.2, 117.1, 27.7. LCMS retention time 3.119 min. LCMS purity =
90%. HRMS <i>m/z</i> calculated for
C<sub>11</sub>H<sub>11</sub>BrN<sub>6</sub>O<sub>2</sub>
([M+H]<sup>+</sup>): 339.0200, found
339.0211.</p><div id="ml231.fu5" class="figure"><div class="graphic"><img src="/books/NBK133439/bin/ml231fu9.jpg" alt="Image ml231fu9" /></div></div><p><b><i>N</i></b><b><sup>4</sup>-(phenyl)-</b><b><i>N</i></b><b><sup>2</sup>-methyl-5-nitropyrimidine-2,4,6-triamine:</b>
Prepared in a similar manner as described for the probe. Yellow solid,
47% yield. <sup>1</sup>H-NMR (400 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
&#x003b4; 11.39 (s, 1H), 11.23 (s, 1H), 8.71 (s, 1H), 8.50 (s, 1H), 8.29 (s,
1H), 7.96 (s, 1H), 7.80-7.75 (m, 4H), 7.65 (m, 1H), 7.52 (m, 1H), 7.41-7.33 (m,
4H), 7.17-7.11 (m, 2H), 2.82 (d, <i>J</i> = 1.5 Hz, 3H), 2.81
(d, <i>J</i> = 1.4 Hz, 3H). <sup>13</sup>C NMR (125 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
<i>&#x003b4;</i> 160.1, 160.0, 159.5, 159.5, 155.8, 155.3, 138.3,
138.0, 128.74, 128.70, 124.4, 124.2, 122.42, 122.36, 108.0, 28.0, 27.8. LCMS
retention time 2.835 min. LCMS purity = 100%. HRMS
<i>m/z</i> calculated for
C<sub>11</sub>H<sub>13</sub>N<sub>6</sub>O<sub>2</sub>
([M+H]<sup>+</sup>): 261.1095, found
261.1110.</p><div id="ml231.fu6" class="figure"><div class="graphic"><img src="/books/NBK133439/bin/ml231fu10.jpg" alt="Image ml231fu10" /></div></div><p><b><i>N</i></b><b><sup>4</sup>-cyclohexyl-</b><b><i>N</i></b><b><sup>2</sup>-methyl-5-nitropyrimidine-2,4,6-triamine:</b>
Prepared in a similar manner as described for the probe. Yellow solid,
53% yield. <sup>1</sup>H-NMR (400 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
&#x003b4; 9.31 (d, <i>J</i> = 7.2 Hz, 1H), 9.20 (d,
<i>J</i> = 7.9 Hz, 1H), 8.63 (s, 1H), 8.43 (s, 1H), 8.10
(s, 1H), 7.78 (s, 1H), 7.34 (m, 1H), 7.27 (m, 1H), 4.08-4.02 (m, 2H), 2.80 (d,
<i>J</i> = 4.8 Hz, 3H), 2.78 (d, <i>J</i>
= 4.8 Hz, 3H), 1.96-1.87 (m, 4H), 1.70-1.65 (m, 4H), 1.61-1.54 (m, 2H),
1.39-1.20 (m, 10H). <sup>13</sup>C NMR (125 MHz,
DMSO-<i>d</i><sub>6</sub>, mixture of 2 tautomers in 1:1 ratio)
<i>&#x003b4;</i>160.10, 160.05, 159.9, 159.5, 156.7, 156.2,
107.77, 107.74, 49.2, 48.4, 32.0, 31.7, 27.8, 27.6, 25.2, 25.1, 24.34, 24.26.
LCMS retention time 3.11 min. LCMS purity = 99%. HRMS
<i>m/z</i> calculated for
C<sub>11</sub>H<sub>19</sub>N<sub>6</sub>O<sub>2</sub>
([M+H]<sup>+</sup>): 267.1564, found
267.1584.</p></div><div style="display:none"><div style="display:none" id="figml231f15"><img alt="Image ml231f15" src-large="/books/NBK133439/bin/ml231f15.jpg" /></div><div style="display:none" id="figml231f17"><img alt="Image ml231f17" src-large="/books/NBK133439/bin/ml231f17.jpg" /></div><div style="display:none" id="figml231f18"><img alt="Image ml231f18" src-large="/books/NBK133439/bin/ml231f18.jpg" /></div><div style="display:none" id="figml231f19"><img alt="Image ml231f19" src-large="/books/NBK133439/bin/ml231f19.jpg" /></div><div style="display:none" id="figml231f20"><img alt="Image ml231f20" src-large="/books/NBK133439/bin/ml231f20.jpg" /></div></div><div id="bk_toc_contnr"></div></div></div><div class="fm-sec"><h2 id="_NBK133439_pubdet_">Publication Details</h2><h3>Author Information and Affiliations</h3><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Jun Chen</span>,<sup>1,3</sup> <span itemprop="author">Susan M. Young</span>,<sup>1,3</sup> <span itemprop="author">Chris Allen</span>,<sup>1,3</sup> <span itemprop="author">Anna Waller</span>,<sup>1,3</sup> <span itemprop="author">Oleg Ursu</span>,<sup>1,3,4</sup> <span itemprop="author">J. Jacob Strouse</span>,<sup>1,3</sup> <span itemprop="author">Tuanli Yao</span>,<sup>6</sup> <span itemprop="author">Jennifer E. Golden</span>,<sup>6</sup> <span itemprop="author">Blake R. Peterson</span>,<sup>6</sup> <span itemprop="author">Terry D. Foutz</span>,<sup>1,3</sup> <span itemprop="author">Stephanie E. Chavez</span>,<sup>1,3</sup> <span itemprop="author">Dominique Perez</span>,<sup>1,3</sup> <span itemprop="author">Annette M. Evangelisti</span>,<sup>1,3</sup> <span itemprop="author">Mathew J. Garcia</span>,<sup>1,3</sup> <span itemprop="author">Cristian G. Bologa</span>,<sup>1,3,4</sup> <span itemprop="author">Mark B. Carter</span>,<sup>1,3</sup> <span itemprop="author">Virginia M. Salas</span>,<sup>1,3</sup> <span itemprop="author">Tudor I. Oprea</span>,<sup>1,3,4</sup> <span itemprop="author">Bruce S. Edwards</span>,<sup>1,2,3</sup> <span itemprop="author">Nicolas Panchaud</span>,<sup>8</sup> <span itemprop="author">Claudio De Virgilio</span>,<sup>8</sup> <span itemprop="author">Andrew Seeber</span>,<sup>9</sup> <span itemprop="author">Robbie Loewith</span>,<sup>9</sup> <span itemprop="author">Elaine Manzanilla</span>,<sup>5</sup> <span itemprop="author">Margaret Werner-Washburne</span>,<sup>5</sup> <span itemprop="author">Jeffrey Aub&#x000e9;</span>,<sup>6,7</sup> and <span itemprop="author">Larry A. Sklar</span><sup>1,2,3</sup><sup>,*</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup>
Center for Molecular Discovery, University of New Mexico, Albuquerque,
NM.</div><div class="affiliation"><sup>2</sup>
Department of Pathology, University of New Mexico, Albuquerque,
NM.</div><div class="affiliation"><sup>3</sup>
Cancer Research and Treatment Center, University of New Mexico,
Albuquerque, NM.</div><div class="affiliation"><sup>4</sup>
Division of Biocomputing, University of New Mexico, Albuquerque,
NM.</div><div class="affiliation"><sup>5</sup>
Department of Biology, University of New Mexico, Albuquerque, NM.</div><div class="affiliation"><sup>6</sup>
University of Kansas Specialized Chemistry Center, University of Kansas,
Lawrence, KS.</div><div class="affiliation"><sup>7</sup>
Department of Medicinal Chemistry, University of Kansas, Lawrence,
KS.</div><div class="affiliation"><sup>8</sup>
Department of Biology, Biochemistry, University of Fribourg, Fribourg,
CH</div><div class="affiliation"><sup>9</sup>
Dept. of Molecular Biology, Sciences III, University of Geneva, Geneva
4, CH.</div><div class="affiliation">
<sup>*</sup> Corresponding author: Larry A. Sklar, Ph.D. &#x02013; E-mail
<a href="mailto:dev@null" data-email="ude.mnu.dulas@ralksl" class="oemail">ude.mnu.dulas@ralksl</a></div><h3>Publication History</h3><p class="small">Received: <span itemprop="datePublished">April 15, 2011</span>; Last Update: <span itemprop="dateModified">February 25, 2013</span>.</p><h3>Copyright</h3><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div></div><h3>Publisher</h3><p>National Center for Biotechnology Information (US), Bethesda (MD)</p><h3>NLM Citation</h3><p>Chen J, Young SM, Allen C, et al. Profiling a Selective Probe for RTG Branch of Yeast TORC1 Signaling Pathway. 2011 Apr 15 [Updated 2013 Feb 25]. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-. <span class="bk_cite_avail"></span></p></div><div class="small-screen-prev"><a href="/books/n/mlprobe/ml232/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="small-screen-next"><a href="/books/n/mlprobe/ml230/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></article><article data-type="fig" id="figobml231fu1"><div id="ml231.fu1" class="figure"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231fu1.jpg" alt="Image ml231fu1" /></div></div></article><article data-type="table-wrap" id="figobml231tu1"><div id="ml231.tu1" class="table"><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133439/table/ml231.tu1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml231.tu1_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_ml231.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CID/ML#<sup>**</sup></th><th id="hd_h_ml231.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Target Name<sup>&#x02021;</sup></th><th id="hd_h_ml231.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">EC<sub>50</sub> (nM)
[SID,AID]<sup>&#x02020;</sup></th><th id="hd_h_ml231.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Anti-target Name(s)</th><th id="hd_h_ml231.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">EC<sub>50</sub> (&#x003bc;M) [SID,
AID]<sup>&#x02020;</sup></th><th id="hd_h_ml231.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Fold Selective<sup>*</sup></th><th id="hd_h_ml231.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Secondary Assay(s) Name: IC<sub>50</sub>
(nM) [SID, AID]<sup>&#x000a7;</sup></th></tr></thead><tbody><tr><td headers="hd_h_ml231.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CID 3392161 <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a></td><td headers="hd_h_ml231.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TOR/CIT2</td><td headers="hd_h_ml231.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">3800 nM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488827" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
488827</a>]</td><td headers="hd_h_ml231.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TOR/AGP1</td><td headers="hd_h_ml231.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x0003e;100 &#x003bc;M [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488792" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
488792</a>]</td><td headers="hd_h_ml231.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x0003e;100</td><td headers="hd_h_ml231.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Sch9 Phosphorylation: 2300
nM<br />[<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504478" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504478</a>]</td></tr><tr><td headers="hd_h_ml231.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CID 3392161 <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a></td><td headers="hd_h_ml231.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TOR/CIT2</td><td headers="hd_h_ml231.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">3800nM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488827" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
488827</a>]</td><td headers="hd_h_ml231.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TOR/MEP2</td><td headers="hd_h_ml231.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x0003e;100 &#x003bc;M [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488801" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
488801</a>]</td><td headers="hd_h_ml231.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x0003e;100</td><td headers="hd_h_ml231.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Sch9 Phosphorylation: 2300
nM<br />[<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504478" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504478</a>]</td></tr><tr><td headers="hd_h_ml231.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CID 3392161/<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a></td><td headers="hd_h_ml231.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TOR/CIT2</td><td headers="hd_h_ml231.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">3800 nM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488827" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
488827</a>]</td><td headers="hd_h_ml231.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TOR/LAP4</td><td headers="hd_h_ml231.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x0003e;100 &#x003bc;M [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488795" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
488795</a>]</td><td headers="hd_h_ml231.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x0003e;100</td><td headers="hd_h_ml231.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Sch9 Phosphorylation: 2300
nM<br />[<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504478" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504478</a>]</td></tr><tr><td headers="hd_h_ml231.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CID 3392161/<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a></td><td headers="hd_h_ml231.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TOR/CIT2</td><td headers="hd_h_ml231.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">3800 nM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488827" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
488827</a>]</td><td headers="hd_h_ml231.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TOR/RPL19A</td><td headers="hd_h_ml231.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x0003e;100 &#x003bc;M [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488808" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID
488808</a>]</td><td headers="hd_h_ml231.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x0003e;100</td><td headers="hd_h_ml231.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Sch9 Phosphorylation: 2300
nM<br />[<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>,
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504478" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504478</a>]</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>&#x02021;</dt><dd><div id="ml231.tfn1"><p class="no_margin">Short descriptive name of target or pathway (similar for antitarget, if
applicable).</p></div></dd></dl><dl class="bkr_refwrap"><dt>&#x02020;</dt><dd><div id="ml231.tfn2"><p class="no_margin">IC50/EC50 value in nM along with the PubChem SID and AID where this value
can be found.</p></div></dd></dl><dl class="bkr_refwrap"><dt>&#x000a7;</dt><dd><div id="ml231.tfn3"><p class="no_margin">For secondary assay provide the following information: Name, IC50/EC50
[SID, AID].</p></div></dd></dl><dl class="bkr_refwrap"><dt>*</dt><dd><div id="ml231.tfn4"><p class="no_margin">Selectivity = anti-target IC50/target IC50.</p></div></dd></dl><dl class="bkr_refwrap"><dt>**</dt><dd><div id="ml231.tfn5"><p class="no_margin">Provide the PubChem CID for the probe and the ML# obtained from
NIH for the probe.</p></div></dd></dl></dl></div></div></div></article><article data-type="fig" id="figobml231f10"><div id="ml231.f10" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231f10.jpg" alt="Figure 10. TORC1 bypass cell growth analysis on the probe ML231 and SID 96099781." /></div><h3><span class="label">Figure 10</span><span class="title">TORC1 bypass cell growth analysis on the probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a></span></h3><div class="caption"><p>1:10 serial dilutions of BY4741 and TORC1 bypass cells were spotted
onto the YPD plates supplemented with 7.5&#x02013;60 &#x003bc;M
compounds respectively</p></div></div></article><article data-type="fig" id="figobml231f1"><div id="ml231.f1" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231f1.jpg" alt="Figure 1. Property summary of probe compound ML231 (SID 99300522, CID 3392161)." /></div><h3><span class="label">Figure 1</span><span class="title">Property summary of probe compound <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161)</span></h3></div></article><article data-type="table-wrap" id="figobml231t1"><div id="ml231.t1" class="table"><h3><span class="label">Table 1</span><span class="title">Solubility experiments in various media with <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> and analogs</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133439/table/ml231.t1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml231.t1_lrgtbl__"><table class="no_margin"><thead><tr><th id="hd_h_ml231.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Entry</th><th id="hd_h_ml231.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Pubchem SID</th><th id="hd_h_ml231.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">PBS Solubility
(&#x003bc;g/mL)<sup>a</sup></th><th id="hd_h_ml231.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Assay Media Solubility
(&#x003bc;g/mL)<sup>b</sup></th><th id="hd_h_ml231.t1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Conc. in Assay Media
(&#x003bc;M)<sup>c</sup></th><th id="hd_h_ml231.t1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Assay Media Solubility
(&#x003bc;M)<sup>d</sup></th><th id="hd_h_ml231.t1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CIT2 EC<sub>50</sub>
&#x003bc;M<sup>e</sup> (% resp)<sup>f</sup></th><th id="hd_h_ml231.t1_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">AGP1 EC<sub>50</sub>
&#x003bc;M (% resp)</th><th id="hd_h_ml231.t1_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MEP2 EC<sub>50</sub>
&#x003bc;M (% resp)</th><th id="hd_h_ml231.t1_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">LAP4 EC<sub>50</sub>
&#x003bc;M (% resp)</th><th id="hd_h_ml231.t1_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">RPL19A EC<sub>50</sub>
&#x003bc;M (% resp)</th></tr></thead><tbody><tr><td headers="hd_h_ml231.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">1</td><td headers="hd_h_ml231.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300522</a> (<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a>)</td><td headers="hd_h_ml231.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.05</td><td headers="hd_h_ml231.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.07</td><td headers="hd_h_ml231.t1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.24</td><td headers="hd_h_ml231.t1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4&#x02013;6</td><td headers="hd_h_ml231.t1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.8
(91.7%)</td><td headers="hd_h_ml231.t1_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100
(6.7%)</td><td headers="hd_h_ml231.t1_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100
(16.0%)</td><td headers="hd_h_ml231.t1_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100
(12.2%)</td><td headers="hd_h_ml231.t1_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100
(18.4%)</td></tr><tr><td headers="hd_h_ml231.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2</td><td headers="hd_h_ml231.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">96099781</a></td><td headers="hd_h_ml231.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2.1</td><td headers="hd_h_ml231.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4.1</td><td headers="hd_h_ml231.t1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">14.74</td><td headers="hd_h_ml231.t1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">10&#x02013;20</td><td headers="hd_h_ml231.t1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.36
(94.7%)</td><td headers="hd_h_ml231.t1_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">11.33
(39.2%)</td><td headers="hd_h_ml231.t1_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">12.68
(77.2%)</td><td headers="hd_h_ml231.t1_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">9.06
(59.1%)</td><td headers="hd_h_ml231.t1_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6.36
(69.9%)</td></tr><tr><td headers="hd_h_ml231.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">3</td><td headers="hd_h_ml231.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923093" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923093</a></td><td headers="hd_h_ml231.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td><td headers="hd_h_ml231.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.99</td><td headers="hd_h_ml231.t1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.21</td><td headers="hd_h_ml231.t1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4&#x02013;10</td><td headers="hd_h_ml231.t1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.77
(95.5%)</td><td headers="hd_h_ml231.t1_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.72
(30.5%)</td><td headers="hd_h_ml231.t1_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.68
(24.6%)</td><td headers="hd_h_ml231.t1_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100
(18.2%)</td><td headers="hd_h_ml231.t1_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.51
(64.9%)</td></tr><tr><td headers="hd_h_ml231.t1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">4</td><td headers="hd_h_ml231.t1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300541</a></td><td headers="hd_h_ml231.t1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.2</td><td headers="hd_h_ml231.t1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6.1</td><td headers="hd_h_ml231.t1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">23.43</td><td headers="hd_h_ml231.t1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td><td headers="hd_h_ml231.t1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">8.82
(97.7%)</td><td headers="hd_h_ml231.t1_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100
(5.8%)</td><td headers="hd_h_ml231.t1_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100
(4.4%)</td><td headers="hd_h_ml231.t1_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100
(8.1%)</td><td headers="hd_h_ml231.t1_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100
(18.2%)</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="ml231.tfn6"><p class="no_margin">Conditions: 1&#x000d7; PBS buffer, pH 7.4; Data collected by
Sanford-Burnham</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="ml231.tfn7"><p class="no_margin">Conditions: SCD medium with 0.03% Pluronic F-6; Data
collected by Sanford-Burnham</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="ml231.tfn8"><p class="no_margin">Concentration calc&#x02019;d from assay media
solubility<sup>b</sup> data from Sanford Burnham and
compound mol. wt</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="ml231.tfn9"><p class="no_margin">Conditions as in footnote b; Data collected by UNMCMD using Flow
Cytometry, range shown</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="ml231.tfn10"><p class="no_margin">EC<sub>50</sub> reported as greater than 100 for inactive
compound. The actual EC<sub>50</sub> for inactive compounds is
not shown.</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="ml231.tfn11"><p class="no_margin">maximum % response compared to rapamycin. Compound scored
inactive if % response was &#x0003c; 20%.</p></div></dd></dl><dl class="bkr_refwrap"><dt></dt><dd><div id="ml231.tfn12"><p class="no_margin">NA = data not available</p></div></dd></dl></dl></div></div></div></article><article data-type="fig" id="figobml231f2"><div id="ml231.f2" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231f2.jpg" alt="Figure 2. Aqueous stability of compound ML231 (SID 99300522, CID 3392161)." /></div><h3><span class="label">Figure 2</span><span class="title">Aqueous stability of compound <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID 3392161)</span></h3></div></article><article data-type="fig" id="figobml231f3"><div id="ml231.f3" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231f3.jpg" alt="Figure 3. General synthetic route for probe and associated analogues." /></div><h3><span class="label">Figure 3</span><span class="title">General synthetic route for probe and associated
analogues</span></h3></div></article><article data-type="fig" id="figobml231f4"><div id="ml231.f4" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%204.%20Selected%20analogs%20to%20support%20probe%20ML231.&amp;p=BOOKS&amp;id=133439_ml231f4.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f4.jpg" alt="Figure 4. Selected analogs to support probe ML231." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 4</span><span class="title">Selected analogs to support probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a></span></h3></div></article><article data-type="fig" id="figobml231f5"><div id="ml231.f5" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%205.%20TOR%20compound%20triage%20and%20flow%20chart.&amp;p=BOOKS&amp;id=133439_ml231f5.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f5.jpg" alt="Figure 5. TOR compound triage and flow chart." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 5</span><span class="title">TOR compound triage and flow chart</span></h3></div></article><article data-type="fig" id="figobml231f6"><div id="ml231.f6" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%206.%20Schematic%20of%20screen%20strategy.&amp;p=BOOKS&amp;id=133439_ml231f6.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f6.jpg" alt="Figure 6. Schematic of screen strategy." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 6</span><span class="title">Schematic of screen strategy</span></h3><div class="caption"><p>A) Simplified yeast TORC1 signaling pathway showing the four signaling
branches probed in this project. B) Dot plot showing the multiplex
staining of 5 yeast GFP report clones using Alexa Flours 405 and
633.</p></div></div></article><article data-type="fig" id="figobml231f7"><div id="ml231.f7" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%207.%20Characterization%20of%20CID%203528206%20(SID%2096099781)%20as%20a%20TORC1%20specific%20inhibitor.&amp;p=BOOKS&amp;id=133439_ml231f7.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f7.jpg" alt="Figure 7. Characterization of CID 3528206 (SID 96099781) as a TORC1 specific inhibitor." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 7</span><span class="title">Characterization of CID 3528206 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>) as a
TORC1 specific inhibitor</span></h3><div class="caption"><p>A) Dose response analysis of CID 3528206 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID
96099781</a>) on five GFP clones. B) Structure of CID 3528206
(<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>). C) TORC1 bypass cell
growth assay on CID 3528206 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>. 1:10
fold serial dilution of TORC1 bypass cells and BY4741 cells were spotted
onto YPD plate supplemented with DMSO, 0.22&#x003bc;M and 30&#x003bc;M
CID 3528206 (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>). The plate was incubated
for 48&#x02013;72 hrs. D) Sch9p phosphorylation assay on CID 3528206
(<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>) to measure the inhibition
on TORC1 activity. E) YPK1 phosphorylation assay on CID 3528206
(<a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a>) to measure the inhibition
on TORC2 activity.</p></div></div></article><article data-type="fig" id="figobml231f8"><div id="ml231.f8" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231f8.jpg" alt="Figure 8. Dose response analysis of probe compound ML231." /></div><h3><span class="label">Figure 8</span><span class="title">Dose response analysis of probe compound <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a></span></h3></div></article><article data-type="fig" id="figobml231f9"><div id="ml231.f9" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%209.%20Dose%20response%20curves%20for%20the%20active%20compounds.&amp;p=BOOKS&amp;id=133439_ml231f9.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f9.jpg" alt="Figure 9. Dose response curves for the active compounds." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 9</span><span class="title">Dose response curves for the active compounds</span></h3><div class="caption"><p>Dose response analysis was performed at least 3 times for all these
compounds except <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300546" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300546</a> (CID 3739601). The data from
one experiment are used as examples.</p></div></div></article><article data-type="fig" id="figobml231f11"><div id="ml231.f11" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%2011.%20Sch9%20phosphorylation%20assay%20on%20active%20compounds.&amp;p=BOOKS&amp;id=133439_ml231f11.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f11.jpg" alt="Figure 11. Sch9 phosphorylation assay on active compounds." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 11</span><span class="title">Sch9 phosphorylation assay on active compounds</span></h3><div class="caption"><p>A) Western blot showing the phosphorylated Sch9p (top band) in yeast
cells treated with compounds at different concentrations
(0.1&#x02013;100&#x003bc;M). B) The intensity of top band was quantified
to show the IC<sub>50</sub> of the compounds, designated here by
SID.</p></div></div></article><article data-type="fig" id="figobml231f12"><div id="ml231.f12" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231f12.jpg" alt="Figure 12. Rtg3p-GFP translocation assay." /></div><h3><span class="label">Figure 12</span><span class="title">Rtg3p-GFP translocation assay</span></h3><div class="caption"><p>Rtg3p-GFP cells were grown in SCD media and treated with 30&#x003bc;M
compounds for 3hrs. The GFP localization was observed under the
fluorescent microscope.</p></div></div></article><article data-type="fig" id="figobml231f13"><div id="ml231.f13" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%2013.%20Chemical%20genetic%20analysis%20of%20active%20compounds%20on%20RTG%20pathway.&amp;p=BOOKS&amp;id=133439_ml231f13.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f13.jpg" alt="Figure 13. Chemical genetic analysis of active compounds on RTG pathway." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 13</span><span class="title">Chemical genetic analysis of active compounds on RTG pathway</span></h3><div class="caption"><p>A) RTG pathway in yeast (From Liu and Butow, 2006 [<a class="bibr" href="#ml231.r23" rid="ml231.r23">23</a>]). B) Flow
cytometry analysis of CIT2-GFP expression in the rtg3 knockout mutant
with the treatment of 30&#x003bc;M compounds as well as 0.22&#x003bc;M
rapamycin. The GFP fold change was calculated using DMSO treatment as
negative control. C) LacZ enzyme activity analysis of CIT2-LacZ fold
change was calculated using DMSO treatment as negative control.</p></div></div></article><article data-type="fig" id="figobml231f14"><div id="ml231.f14" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231f14.jpg" alt="Figure 14. RapaGFP clone screening." /></div><h3><span class="label">Figure 14</span><span class="title">RapaGFP clone screening</span></h3><div class="caption"><p>96 RapaGFP clones were treated with 0.22&#x003bc;M rapamycin(Rapa),
30&#x003bc;M <a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 96099781</a> (CID 3528206, TC1) &#x02013;
or 30&#x003bc;M <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161, probe) for
3hrs. The genes with altered gene expression are marked as green
(down-regulated) or red (up-regulated) compared to that of DMSO
treatment.</p></div></div></article><article data-type="fig" id="figobml231f15"><div id="ml231.f15" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231f15.jpg" alt="Figure 15. Overlay of dose response curves for probe ML231 (SID 99300522, CID 3392161)." /></div><h3><span class="label">Figure 15</span><span class="title">Overlay of dose response curves for probe <a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a>, CID
3392161)</span></h3><div class="caption"><p>The mean percent of response of each GFP clone to the probe treatment in
6 independent experiments was used to fit by Prism 5.</p></div></div></article><article data-type="fig" id="figobml231f16"><div id="ml231.f16" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%2016.%20Validated%20hit%20and%20SAR%20strategy.&amp;p=BOOKS&amp;id=133439_ml231f16.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f16.jpg" alt="Figure 16. Validated hit and SAR strategy." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 16</span><span class="title">Validated hit and SAR strategy</span></h3></div></article><article data-type="table-wrap" id="figobml231t2"><div id="ml231.t2" class="table"><h3><span class="label">Table 2</span><span class="title">Summary of modifications to R<sub>1</sub></span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133439/table/ml231.t2/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml231.t2_lrgtbl__"><table class="no_margin"><thead><tr><th id="hd_h_ml231.t2_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_ml231.t2_1_1_1_1" style="text-align:center;vertical-align:middle;">Entry</th><th id="hd_h_ml231.t2_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_ml231.t2_1_1_1_2" style="text-align:center;vertical-align:middle;">SID</th><th id="hd_h_ml231.t2_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_ml231.t2_1_1_1_3" style="text-align:center;vertical-align:middle;">CID</th><th id="hd_h_ml231.t2_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_ml231.t2_1_1_1_4" style="text-align:center;vertical-align:middle;"><sup>*</sup></th><th id="hd_h_ml231.t2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
<div class="graphic"><img src="/books/NBK133439/bin/ml231fu2.jpg" alt="Image ml231fu2.jpg" /></div></th><th id="hd_h_ml231.t2_1_1_1_6" colspan="6" rowspan="1" style="text-align:center;vertical-align:middle;">Potency of GFP Clone
in Yeast Assay n = # replicates</th><th id="hd_h_ml231.t2_1_1_1_7" rowspan="2" colspan="1" headers="hd_h_ml231.t2_1_1_1_7" style="text-align:center;vertical-align:middle;">Cytotoxicity in
Wildtype<sup>b</sup></th><th id="hd_h_ml231.t2_1_1_1_8" rowspan="2" colspan="1" headers="hd_h_ml231.t2_1_1_1_8" style="text-align:center;vertical-align:middle;">IC<sub>50</sub>
(&#x003bc;M) of Sch9<br />Phosphoryl-ation<sup>c</sup></th></tr><tr><th headers="hd_h_ml231.t2_1_1_1_5" id="hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">R<sub>1</sub></th><th headers="hd_h_ml231.t2_1_1_1_6" id="hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">n</th><th headers="hd_h_ml231.t2_1_1_1_6" id="hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CIT2 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t2_1_1_1_6" id="hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">AGP1 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t2_1_1_1_6" id="hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MEP2 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t2_1_1_1_6" id="hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">LAP4 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t2_1_1_1_6" id="hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">RPL19A EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th></tr></thead><tbody><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300522</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3392161</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3-Cl-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.8 (91.7%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2.3</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300530" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300530</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">5132371</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4-Cl-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923091" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923091</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">50904401</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2-Br-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923089" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923089</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">50904400</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3-Br-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.58 (22.6%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">5</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923094" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923094</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4362325</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2-F-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/96099781" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">96099781</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3528206</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3-F-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">7</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.36 (94.7%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">11.33 (39.2%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">12.68 (77.2%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">9.06 (59.1%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6.36 (69.9%)</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4.5</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">7</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300546" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300546</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3739601</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4-F-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">56.11 (76.2%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">8</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300549" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300549</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4359574</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2-MeO-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.99 (32.6%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">5.9</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">9</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923090" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923090</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">50904405</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3-MeO-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.85 (29.8%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">10</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300544" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300544</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3309841</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4-MeO-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">11</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300526" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300526</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3254938</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4-OEt-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">12</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300538" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300538</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3563227</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2,5-di-MeO-phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">13</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300541" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300541</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3449329</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">phenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">8.82 (97.7%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">14.7</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">14</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300550" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300550</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4293401</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">cyclohexyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.75 (29.7%)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">15</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300545" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300545</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3359998</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CH<sub>2</sub>(2-furyl)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">16</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300531" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300531</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3290758</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CH<sub>2</sub>(2-tetrahydrofuranyl)</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">17</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300525" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300525</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3787451</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">P</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">benzyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">18</td><td headers="hd_h_ml231.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923092" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923092</a></td><td headers="hd_h_ml231.t2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">50904397</td><td headers="hd_h_ml231.t2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t2_1_1_1_5 hd_h_ml231.t2_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3-phenoxyphenyl</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_6 hd_h_ml231.t2_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>*</dt><dd><div id="ml231.tfn13"><p class="no_margin">S = Synthesized, P = Purchased;</p></div></dd></dl><dl class="bkr_refwrap"><dt>a</dt><dd><div id="ml231.tfn14"><p class="no_margin">Percent Response at 100 &#x003bc;M test compound;</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="ml231.tfn15"><p class="no_margin">Scale of cell growth (0 = no growth; 3 = good
growth);</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="ml231.tfn16"><p class="no_margin">NA: No data Available</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobml231t3"><div id="ml231.t3" class="table"><h3><span class="label">Table 3</span><span class="title">SAR summary for modification at R<sub>2</sub></span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133439/table/ml231.t3/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml231.t3_lrgtbl__"><table class="no_margin"><thead><tr><th id="hd_h_ml231.t3_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_ml231.t3_1_1_1_1" style="text-align:center;vertical-align:middle;">Entry</th><th id="hd_h_ml231.t3_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_ml231.t3_1_1_1_2" style="text-align:center;vertical-align:middle;">SID</th><th id="hd_h_ml231.t3_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_ml231.t3_1_1_1_3" style="text-align:center;vertical-align:middle;">CID</th><th id="hd_h_ml231.t3_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_ml231.t3_1_1_1_4" style="text-align:center;vertical-align:middle;"><sup>*</sup></th><th id="hd_h_ml231.t3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
<div class="graphic"><img src="/books/NBK133439/bin/ml231fu3.jpg" alt="Image ml231fu3.jpg" /></div></th><th id="hd_h_ml231.t3_1_1_1_6" colspan="6" rowspan="1" style="text-align:center;vertical-align:middle;">Potency of GFP Clone
in Yeast Assay n = # replicates</th><th id="hd_h_ml231.t3_1_1_1_7" rowspan="2" colspan="1" headers="hd_h_ml231.t3_1_1_1_7" style="text-align:center;vertical-align:middle;">Cytotoxicity in
Wildtype<sup>b</sup></th><th id="hd_h_ml231.t3_1_1_1_8" rowspan="2" colspan="1" headers="hd_h_ml231.t3_1_1_1_8" style="text-align:center;vertical-align:middle;">IC<sub>50</sub>
(&#x003bc;M) of Sch9<br />Phosphoryl-ation<sup>c</sup></th></tr><tr><th headers="hd_h_ml231.t3_1_1_1_5" id="hd_h_ml231.t3_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">R2</th><th headers="hd_h_ml231.t3_1_1_1_6" id="hd_h_ml231.t3_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">n</th><th headers="hd_h_ml231.t3_1_1_1_6" id="hd_h_ml231.t3_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CIT2 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t3_1_1_1_6" id="hd_h_ml231.t3_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">AGP1 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t3_1_1_1_6" id="hd_h_ml231.t3_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MEP2 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t3_1_1_1_6" id="hd_h_ml231.t3_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">LAP4 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t3_1_1_1_6" id="hd_h_ml231.t3_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">RPL19A EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th></tr></thead><tbody><tr><td headers="hd_h_ml231.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">1</td><td headers="hd_h_ml231.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300522</a></td><td headers="hd_h_ml231.t3_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3392161</td><td headers="hd_h_ml231.t3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t3_1_1_1_5 hd_h_ml231.t3_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NHMe</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.8 (91.7%)</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2.3</td></tr><tr><td headers="hd_h_ml231.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2</td><td headers="hd_h_ml231.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923093" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923093</a></td><td headers="hd_h_ml231.t3_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">50904403</td><td headers="hd_h_ml231.t3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t3_1_1_1_5 hd_h_ml231.t3_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NHEt</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.77 (95.5%)</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.72 (30.5%)</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.68 (24.6%)</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">0.51 (64.9%)</td><td headers="hd_h_ml231.t3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">3</td><td headers="hd_h_ml231.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/113234492" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">113234492</a></td><td headers="hd_h_ml231.t3_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4637004</td><td headers="hd_h_ml231.t3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t3_1_1_1_5 hd_h_ml231.t3_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NMe<sub>2</sub></td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_6 hd_h_ml231.t3_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>*</dt><dd><div id="ml231.tfn17"><p class="no_margin">S = Synthesized, P = Purchased;</p></div></dd></dl><dl class="bkr_refwrap"><dt>a</dt><dd><div id="ml231.tfn18"><p class="no_margin">Percent Response at 100 &#x003bc;M test compound;</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="ml231.tfn19"><p class="no_margin">Scale of cell growth (0 = no growth; 3 = good
growth);</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="ml231.tfn20"><p class="no_margin">NA: No data Available</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobml231t4"><div id="ml231.t4" class="table"><h3><span class="label">Table 4</span><span class="title">SAR summary for modification of the nitro group at
R<sub>3</sub></span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133439/table/ml231.t4/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml231.t4_lrgtbl__"><table class="no_margin"><thead><tr><th id="hd_h_ml231.t4_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_ml231.t4_1_1_1_1" style="text-align:center;vertical-align:middle;">Entry</th><th id="hd_h_ml231.t4_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_ml231.t4_1_1_1_2" style="text-align:center;vertical-align:middle;">SID</th><th id="hd_h_ml231.t4_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_ml231.t4_1_1_1_3" style="text-align:center;vertical-align:middle;">CID</th><th id="hd_h_ml231.t4_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_ml231.t4_1_1_1_4" style="text-align:center;vertical-align:middle;"><sup>*</sup></th><th id="hd_h_ml231.t4_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
<div class="graphic"><img src="/books/NBK133439/bin/ml231fu4.jpg" alt="Image ml231fu4.jpg" /></div></th><th id="hd_h_ml231.t4_1_1_1_6" colspan="6" rowspan="1" style="text-align:center;vertical-align:middle;">Potency of GFP Clone
in Yeast Assay n = # replicates</th><th id="hd_h_ml231.t4_1_1_1_7" rowspan="2" colspan="1" headers="hd_h_ml231.t4_1_1_1_7" style="text-align:center;vertical-align:middle;">Cytotoxicity in
Wildtype<sup>b</sup></th><th id="hd_h_ml231.t4_1_1_1_8" rowspan="2" colspan="1" headers="hd_h_ml231.t4_1_1_1_8" style="text-align:center;vertical-align:middle;">IC<sub>50</sub>
(&#x003bc;M) of Sch9<br />Phosphoryl-ation<sup>c</sup></th></tr><tr><th headers="hd_h_ml231.t4_1_1_1_5" id="hd_h_ml231.t4_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">R3</th><th headers="hd_h_ml231.t4_1_1_1_6" id="hd_h_ml231.t4_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">n</th><th headers="hd_h_ml231.t4_1_1_1_6" id="hd_h_ml231.t4_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CIT2 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t4_1_1_1_6" id="hd_h_ml231.t4_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">AGP1 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t4_1_1_1_6" id="hd_h_ml231.t4_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MEP2 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t4_1_1_1_6" id="hd_h_ml231.t4_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">LAP4 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t4_1_1_1_6" id="hd_h_ml231.t4_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">RPL19A EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th></tr></thead><tbody><tr><td headers="hd_h_ml231.t4_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t4_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300522</a></td><td headers="hd_h_ml231.t4_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3392161</td><td headers="hd_h_ml231.t4_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t4_1_1_1_5 hd_h_ml231.t4_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NO<sub>2</sub></td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.8 (91.7%)</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t4_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2.3</td></tr><tr><td headers="hd_h_ml231.t4_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2</td><td headers="hd_h_ml231.t4_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/104169534" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">104169534</a></td><td headers="hd_h_ml231.t4_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">49842886</td><td headers="hd_h_ml231.t4_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t4_1_1_1_5 hd_h_ml231.t4_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">H</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t4_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t4_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t4_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/113234490" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">113234490</a></td><td headers="hd_h_ml231.t4_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">50918545</td><td headers="hd_h_ml231.t4_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t4_1_1_1_5 hd_h_ml231.t4_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CN</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t4_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t4_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t4_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923095" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923095</a></td><td headers="hd_h_ml231.t4_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">50904404</td><td headers="hd_h_ml231.t4_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t4_1_1_1_5 hd_h_ml231.t4_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CO(3,4-dimethyl-phenyl)</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_6 hd_h_ml231.t4_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t4_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t4_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>*</dt><dd><div id="ml231.tfn21"><p class="no_margin">S = Synthesized, P = Purchased;</p></div></dd></dl><dl class="bkr_refwrap"><dt>a</dt><dd><div id="ml231.tfn22"><p class="no_margin">Percent Response at 100 &#x003bc;M test compound;</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="ml231.tfn23"><p class="no_margin">Scale of cell growth (0 = no growth; 3 = good
growth);</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="ml231.tfn24"><p class="no_margin">NA: No data Available</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobml231t5"><div id="ml231.t5" class="table"><h3><span class="label">Table 5</span><span class="title">SAR summary for modification of the R<sub>4</sub> substituent</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133439/table/ml231.t5/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml231.t5_lrgtbl__"><table class="no_margin"><thead><tr><th id="hd_h_ml231.t5_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_ml231.t5_1_1_1_1" style="text-align:center;vertical-align:middle;">Entry</th><th id="hd_h_ml231.t5_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_ml231.t5_1_1_1_2" style="text-align:center;vertical-align:middle;">SID</th><th id="hd_h_ml231.t5_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_ml231.t5_1_1_1_3" style="text-align:center;vertical-align:middle;">CID</th><th id="hd_h_ml231.t5_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_ml231.t5_1_1_1_4" style="text-align:center;vertical-align:middle;"><sup>*</sup></th><th id="hd_h_ml231.t5_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
<div class="graphic"><img src="/books/NBK133439/bin/ml231fu5.jpg" alt="Image ml231fu5.jpg" /></div></th><th id="hd_h_ml231.t5_1_1_1_6" colspan="6" rowspan="1" style="text-align:center;vertical-align:middle;">Potency of GFP Clone
in Yeast Assay n = # replicates</th><th id="hd_h_ml231.t5_1_1_1_7" rowspan="2" colspan="1" headers="hd_h_ml231.t5_1_1_1_7" style="text-align:center;vertical-align:middle;">Cytotoxicity in
Wildtype<sup>b</sup></th><th id="hd_h_ml231.t5_1_1_1_8" rowspan="2" colspan="1" headers="hd_h_ml231.t5_1_1_1_8" style="text-align:center;vertical-align:middle;">IC<sub>50</sub>
(&#x003bc;M) of Sch9<br />Phosphoryl-ation<sup>c</sup></th></tr><tr><th headers="hd_h_ml231.t5_1_1_1_5" id="hd_h_ml231.t5_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">R4</th><th headers="hd_h_ml231.t5_1_1_1_6" id="hd_h_ml231.t5_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">n</th><th headers="hd_h_ml231.t5_1_1_1_6" id="hd_h_ml231.t5_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CIT2<br />EC<sub>50</sub>
&#x003bc;M (% Res)<sup>a</sup></th><th headers="hd_h_ml231.t5_1_1_1_6" id="hd_h_ml231.t5_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">AGP1 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t5_1_1_1_6" id="hd_h_ml231.t5_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">MEP2 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t5_1_1_1_6" id="hd_h_ml231.t5_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">LAP4 EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th><th headers="hd_h_ml231.t5_1_1_1_6" id="hd_h_ml231.t5_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">RPL19A EC<sub>50</sub> &#x003bc;M
(% Res)<sup>a</sup></th></tr></thead><tbody><tr><td headers="hd_h_ml231.t5_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">1</td><td headers="hd_h_ml231.t5_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">99300522</a></td><td headers="hd_h_ml231.t5_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3392161</td><td headers="hd_h_ml231.t5_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t5_1_1_1_5 hd_h_ml231.t5_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NH<sub>2</sub></td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">6</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3.8 (91.7%)</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t5_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2.3</td></tr><tr><td headers="hd_h_ml231.t5_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2</td><td headers="hd_h_ml231.t5_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/110923086" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">110923086</a></td><td headers="hd_h_ml231.t5_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">50904398</td><td headers="hd_h_ml231.t5_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t5_1_1_1_5 hd_h_ml231.t5_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NHMe</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t5_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr><tr><td headers="hd_h_ml231.t5_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t5_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><a href="https://pubchem.ncbi.nlm.nih.gov/substance/113234493" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">113234493</a></td><td headers="hd_h_ml231.t5_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">50918546</td><td headers="hd_h_ml231.t5_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">S</td><td headers="hd_h_ml231.t5_1_1_1_5 hd_h_ml231.t5_1_1_2_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NMe<sub>2</sub></td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">2</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_6 hd_h_ml231.t5_1_1_2_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e; 100</td><td headers="hd_h_ml231.t5_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">3</td><td headers="hd_h_ml231.t5_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">NA</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>*</dt><dd><div id="ml231.tfn25"><p class="no_margin">S = Synthesized, P = Purchased;</p></div></dd></dl><dl class="bkr_refwrap"><dt>a</dt><dd><div id="ml231.tfn26"><p class="no_margin">Percent Response at 100 &#x003bc;M test compound;</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="ml231.tfn27"><p class="no_margin">Scale of cell growth (0 = no growth; 3 = good
growth);</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="ml231.tfn28"><p class="no_margin">NA: No data Available</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobml231t6"><div id="ml231.t6" class="table"><h3><span class="label">Table 6</span><span class="title">Percent of activity remaining for various kinases when inhibited by
<a href="/pcsubstance/?term=ML231[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML231</a></span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133439/table/ml231.t6/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml231.t6_lrgtbl__"><table class="no_top_margin"><thead><tr><th id="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Entry</th><th id="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Kinase</th><th id="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Family</th><th id="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">% Activity Remaining</th><th id="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Entry</th><th id="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Kinase</th><th id="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Family</th><th id="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">% Activity Remaining</th></tr></thead><tbody><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">1</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AKT1(Full Length)</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">26</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">p38-g</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CMGC</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">2</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AKT2</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">27</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PAK1</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">STE</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">3</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AKT3</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">28</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PDGFRB</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">4</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AMPK-a1</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">29</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PDK1</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">5</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AURKA</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Other</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">82.1</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">30</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PIM1</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">95.1</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">6</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AURKB</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Other</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">31</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PIM2</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">7</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">BLK</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">32</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PKA</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">8</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK1</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">33</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PKC-e</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">9</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK1G</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">34</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PKC-g</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">10</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK2B</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">96.4</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">35</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PKC-h</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">11</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMKK1</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Other</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">36</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PRKD2</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">93.1</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">12</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CHEK1</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">37</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PKG1</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">13</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CLK1</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CMGC</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">71.7</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">38</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PLK4</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Other</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">14</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CLK2</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CMGC</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">79.4</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">39</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PTK2</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">99.1</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">15</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">DDR2</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">40</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">PTK2B</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">16</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">FLT1</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">41</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">RPS6KA1</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">86.5</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">17</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">FLT3</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">42</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">RPS6KA4</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">AGC</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">18</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">FYN</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">43</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">SIK1</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">19</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">GSK3-a</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CMGC</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">64.7</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">44</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">SIK2</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">20</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">IGFR1</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">45</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">SLK</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">STE</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">90.1</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">21</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">MARK1</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">46</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">SNARK</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CAMK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">90.6</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">22</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">MET</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">47</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">SYK</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">23</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">MLK1</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TKL</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">48</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TNK2</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">24</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">MLK3</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TKL</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">49</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">VEGFR2</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">TK</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">97.7</td></tr><tr><td headers="hd_h_ml231.t6_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">25</td><td headers="hd_h_ml231.t6_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">MST2</td><td headers="hd_h_ml231.t6_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">STE</td><td headers="hd_h_ml231.t6_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td><td headers="hd_h_ml231.t6_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">50</td><td headers="hd_h_ml231.t6_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">YSK1</td><td headers="hd_h_ml231.t6_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">STE</td><td headers="hd_h_ml231.t6_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">100.0</td></tr></tbody></table></div></div></article><article data-type="fig" id="figobml231f17"><div id="ml231.f17" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%20A1.%20Proton%20data%20for%20SID%2099300522%20(CID%203392161).&amp;p=BOOKS&amp;id=133439_ml231f17.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f17.jpg" alt="Figure A1. Proton data for SID 99300522 (CID 3392161)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure A1</span><span class="title">Proton data for <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID
3392161)</span></h3></div></article><article data-type="fig" id="figobml231f18"><div id="ml231.f18" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%20A2.%20Carbon%20data%20for%20SID%2099300522%20(CID%203392161).&amp;p=BOOKS&amp;id=133439_ml231f18.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f18.jpg" alt="Figure A2. Carbon data for SID 99300522 (CID 3392161)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure A2</span><span class="title">Carbon data for <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID
3392161)</span></h3></div></article><article data-type="fig" id="figobml231f19"><div id="ml231.f19" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%20A3.%20LCMS%20purity%20data%20at%20214%20nm%20for%20SID%2099300522%20(CID%203392161).&amp;p=BOOKS&amp;id=133439_ml231f19.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f19.jpg" alt="Figure A3. LCMS purity data at 214 nm for SID 99300522 (CID 3392161)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure A3</span><span class="title">LCMS purity data at 214 nm for <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID
3392161)</span></h3><div class="caption"><p>LCMS retention time: 3.09 min; purity at 214 nm =
100%</p></div></div></article><article data-type="fig" id="figobml231f20"><div id="ml231.f20" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%20A4.%20HRMS%20data%20for%20SID%2099300522%20(CID%203392161).&amp;p=BOOKS&amp;id=133439_ml231f20.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK133439/bin/ml231f20.jpg" alt="Figure A4. HRMS data for SID 99300522 (CID 3392161)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure A4</span><span class="title">HRMS data for <a href="https://pubchem.ncbi.nlm.nih.gov/substance/99300522" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 99300522</a> (CID 3392161)</span></h3><div class="caption"><p>HRMS <i>m</i>/<i>z</i> calculated for
C<sub>11</sub>H<sub>11</sub>ClN<sub>6</sub>O<sub>2</sub>
[M<sup>+</sup> + H]: 295.0705, found
295.0716</p></div></div></article><article data-type="fig" id="figobml231fu2"><div id="ml231.fu2" class="figure"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231fu6.jpg" alt="Image ml231fu6" /></div></div></article><article data-type="fig" id="figobml231fu3"><div id="ml231.fu3" class="figure"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231fu7.jpg" alt="Image ml231fu7" /></div></div></article><article data-type="fig" id="figobml231fu4"><div id="ml231.fu4" class="figure"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231fu8.jpg" alt="Image ml231fu8" /></div></div></article><article data-type="fig" id="figobml231fu5"><div id="ml231.fu5" class="figure"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231fu9.jpg" alt="Image ml231fu9" /></div></div></article><article data-type="fig" id="figobml231fu6"><div id="ml231.fu6" class="figure"><div class="graphic"><img data-src="/books/NBK133439/bin/ml231fu10.jpg" alt="Image ml231fu10" /></div></div></article></div><div id="jr-scripts"><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/libs.min.js"> </script><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.min.js"> </script></div></div>
<!-- Book content -->
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal107 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3968615.js" snapshot="books"></script></body>
</html>