nih-gov/www.ncbi.nlm.nih.gov/books/n/mlprobe/ml225/index.html
2025-03-17 02:05:34 +00:00

487 lines
No EOL
181 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK133429" /><meta name="ncbi_domain" content="mlprobe" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK133429/" /><meta name="ncbi_pagename" content="Optimization and characterization of a triazole urea inhibitor for platelet-activating factor acetylhydrolase type 2 (PAFAH2) - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="chapter" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Optimization and characterization of a triazole urea inhibitor for platelet-activating factor acetylhydrolase type 2 (PAFAH2) - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Probe Reports from the NIH Molecular Libraries Program [Internet]" /><meta name="citation_title" content="Optimization and characterization of a triazole urea inhibitor for platelet-activating factor acetylhydrolase type 2 (PAFAH2)" /><meta name="citation_publisher" content="National Center for Biotechnology Information (US)" /><meta name="citation_date" content="2013/03/07" /><meta name="citation_author" content="Alexander Adibekian" /><meta name="citation_author" content="Ku-Lung Hsu" /><meta name="citation_author" content="Anna E Speers" /><meta name="citation_author" content="Elizabeth S Monillas" /><meta name="citation_author" content="Steven J Brown" /><meta name="citation_author" content="Timothy Spicer" /><meta name="citation_author" content="Virneliz Fernandez-Vega" /><meta name="citation_author" content="Jill Ferguson" /><meta name="citation_author" content="Brian J Bahnson" /><meta name="citation_author" content="Benjamin F Cravatt" /><meta name="citation_author" content="Peter Hodder" /><meta name="citation_author" content="Hugh Rosen" /><meta name="citation_pmid" content="23658960" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK133429/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Optimization and characterization of a triazole urea inhibitor for platelet-activating factor acetylhydrolase type 2 (PAFAH2)" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="National Center for Biotechnology Information (US)" /><meta name="DC.Contributor" content="Alexander Adibekian" /><meta name="DC.Contributor" content="Ku-Lung Hsu" /><meta name="DC.Contributor" content="Anna E Speers" /><meta name="DC.Contributor" content="Elizabeth S Monillas" /><meta name="DC.Contributor" content="Steven J Brown" /><meta name="DC.Contributor" content="Timothy Spicer" /><meta name="DC.Contributor" content="Virneliz Fernandez-Vega" /><meta name="DC.Contributor" content="Jill Ferguson" /><meta name="DC.Contributor" content="Brian J Bahnson" /><meta name="DC.Contributor" content="Benjamin F Cravatt" /><meta name="DC.Contributor" content="Peter Hodder" /><meta name="DC.Contributor" content="Hugh Rosen" /><meta name="DC.Date" content="2013/03/07" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK133429/" /><meta name="description" content="Oxidative stress has been implicated as an underlying inflammatory factor in several disease pathologies, including cancer, atherosclerosis, aging, and various neurodegenerative disorders. Phospholipids in particular are susceptible to oxidative damage, and it is thought that the cytosolic enzyme type II platelet-activating factor acetylhydrolase (PAFAH2) may facilitate turnover of oxidized phospholipids via hydrolysis of their oxidatively truncated acyl chains. In support of this theory, over-expression of PAFAH2 has been shown to reduce oxidative stress-induced cell death [1]. However, no selective inhibitors of PAFAH2 are known for investigation of PAFAH2 biology. We initiated a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) HTS campaign to identify potential inhibitors of PAFAH2 (AIDs 492956 and 493030). The assay also served as a counterscreen for inhibitor discovery for the related enzyme, plasma PAFAH (pPAFAH; AIDs 463082, 463230)." /><meta name="og:title" content="Optimization and characterization of a triazole urea inhibitor for platelet-activating factor acetylhydrolase type 2 (PAFAH2)" /><meta name="og:type" content="book" /><meta name="og:description" content="Oxidative stress has been implicated as an underlying inflammatory factor in several disease pathologies, including cancer, atherosclerosis, aging, and various neurodegenerative disorders. Phospholipids in particular are susceptible to oxidative damage, and it is thought that the cytosolic enzyme type II platelet-activating factor acetylhydrolase (PAFAH2) may facilitate turnover of oxidized phospholipids via hydrolysis of their oxidatively truncated acyl chains. In support of this theory, over-expression of PAFAH2 has been shown to reduce oxidative stress-induced cell death [1]. However, no selective inhibitors of PAFAH2 are known for investigation of PAFAH2 biology. We initiated a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) HTS campaign to identify potential inhibitors of PAFAH2 (AIDs 492956 and 493030). The assay also served as a counterscreen for inhibitor discovery for the related enzyme, plasma PAFAH (pPAFAH; AIDs 463082, 463230)." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK133429/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-mlprobe-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/mlprobe/ml225/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK133429/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8D23307D65399100000000010F00F8.m_13" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="pubmed">PubMed</option><option value="clinvar">ClinVar</option><option value="refseq" class="last">RefSeq</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-. </p></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/mlprobe/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-mlprobe-lrg.png" alt="Cover of Probe Reports from the NIH Molecular Libraries Program" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>Probe Reports from the NIH Molecular Libraries Program [Internet].</h2><a data-jig="ncbitoggler" href="#__NBK133429_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK133429_dtls__"><div>Bethesda (MD): National Center for Biotechnology Information (US); 2010-.</div></div><div class="half_rhythm"><ul class="inline_list"><li style="margin-right:1em"><a class="bk_cntns" href="/books/n/mlprobe/">Contents</a></li></ul></div><div class="bk_noprnt"><form method="get" action="/books/n/mlprobe/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div><div class="icnblk_cntnt two_col"><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/mlprobe/ml226/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/mlprobe/ml221/" title="Next page in this title">Next &gt;</a></div></div></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK133429_"><span class="title" itemprop="name">Optimization and characterization of a triazole urea inhibitor for platelet-activating factor acetylhydrolase type 2 (PAFAH2)</span></h1><p class="contrib-group"><span itemprop="author">Alexander Adibekian</span>, <span itemprop="author">Ku-Lung Hsu</span>, <span itemprop="author">Anna E Speers</span>, <span itemprop="author">Elizabeth S Monillas</span>, <span itemprop="author">Steven J Brown</span>, <span itemprop="author">Timothy Spicer</span>, <span itemprop="author">Virneliz Fernandez-Vega</span>, <span itemprop="author">Jill Ferguson</span>, <span itemprop="author">Brian J Bahnson</span>, <span itemprop="author">Benjamin F Cravatt</span>, <span itemprop="author">Peter Hodder</span>, and <span itemprop="author">Hugh Rosen</span>.</p><a data-jig="ncbitoggler" href="#__NBK133429_ai__" style="border:0;text-decoration:none">Author Information and Affiliations</a><div style="display:none" class="ui-widget" id="__NBK133429_ai__"><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Alexander Adibekian</span>,<sup>*</sup> <span itemprop="author">Ku-Lung Hsu</span>,<sup>*</sup> <span itemprop="author">Anna E Speers</span>,<sup>*</sup> <span itemprop="author">Elizabeth S Monillas</span>,<sup>&#x02020;</sup> <span itemprop="author">Steven J Brown</span>,<sup>*</sup> <span itemprop="author">Timothy Spicer</span>,<sup>&#x02021;</sup> <span itemprop="author">Virneliz Fernandez-Vega</span>,<sup>&#x02021;</sup> <span itemprop="author">Jill Ferguson</span>,<sup>*</sup> <span itemprop="author">Brian J Bahnson</span>,<sup>&#x02020;</sup> <span itemprop="author">Benjamin F Cravatt</span>,<sup>*</sup> <span itemprop="author">Peter Hodder</span>,<sup>&#x02021;</sup> and <span itemprop="author">Hugh Rosen</span><sup>*</sup><sup>,a</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>*</sup>
The Scripps Research Institute, La Jolla CA</div><div class="affiliation"><sup>&#x02020;</sup>
University of Delaware, Newark, DE</div><div class="affiliation"><sup>&#x02021;</sup>
The Scripps Research Institute, Jupiter, FL</div><div class="affiliation"><sup>a</sup> Corresponding author:
<span class="before-email-separator"></span><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="ude.sppircs@nesorh" class="oemail">ude.sppircs@nesorh</a></div></div><p class="small">Received: <span itemprop="datePublished">March 31, 2011</span>; Last Update: <span itemprop="dateModified">March 7, 2013</span>.</p></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="_abs_rndgid_" itemprop="description"><p>Oxidative stress has been implicated as an underlying inflammatory factor in several disease pathologies, including cancer, atherosclerosis, aging, and various neurodegenerative disorders. Phospholipids in particular are susceptible to oxidative damage, and it is thought that the cytosolic enzyme type II platelet-activating factor acetylhydrolase (PAFAH2) may facilitate turnover of oxidized phospholipids via hydrolysis of their oxidatively truncated acyl chains. In support of this theory, over-expression of PAFAH2 has been shown to reduce oxidative stress-induced cell death [<a class="bk_pop" href="#ml225.r1">1</a>]. However, no selective inhibitors of PAFAH2 are known for investigation of PAFAH2 biology. We initiated a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) HTS campaign to identify potential inhibitors of PAFAH2 (AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492956" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">492956</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/493030" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">493030</a>). The assay also served as a counterscreen for inhibitor discovery for the related enzyme, plasma PAFAH (pPAFAH; AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/463082" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">463082</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/463230" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">463230</a>).</p><p>Interestingly, the triazole urea <a href="https://pubchem.ncbi.nlm.nih.gov/substance/7974398" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 7974398</a>&#x02014;a top lead in the lysophospholipase (LYPLA1) inhibitor screen from which we derived a dual inhibitor of LYPLA1/LYPLA2 (<a href="/pcsubstance/?term=ML211[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML211</a>) and inhibitor of ABHD11 (<a href="/pcsubstance/?term=ML226[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML226</a>)&#x02014;was also a top hit in the PAFAH2 HTS assay. Given that triazole ureas were previously found to have tunable potency and selectivity, low cytotoxicity, and good activity <i>in situ</i>, we endeavored to derive a PAFAH2-selective probe from the triazole urea scaffold. The medchem optimized probe (<a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>) is highly potent against its target enzyme (IC50 = 3 nM), and is active <i>in situ</i> at sub-nanomolar concentrations. <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> is at least 333-fold selective for all other serine hydrolases (~20) assessed by gel-based competitive activity-based protein profiling, and is selective for other PAFAH enzymes. <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> inhibits PAFAH2 by carbamoylating the active site serine. The complete properties, characterization, and synthesis of <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> are detailed in this Probe Report.</p></div><div class="h2"></div><p><b>Assigned Assay Grant #:</b> 1 R01 HL084366</p><p><b>Screening Center Name &#x00026; PI:</b> The Scripps Research Institute Molecular Screening Center (SRIMSC), H Rosen</p><p><b>Chemistry Center Name &#x00026; PI:</b> SRIMSC, H Rosen</p><p><b>Assay Submitter &#x00026; Institution:</b> BJ Bahnson, Univ. of DE; BF Cravatt, TSRI, La Jolla</p><p><b>PubChem Summary Bioassay Identifier (AID):</b>
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492969" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">492969</a></p><div id="ml225.s1"><h2 id="_ml225_s1_">Probe Structure &#x00026; Characteristics</h2><div id="ml225.fu1" class="figure"><div class="graphic"><img src="/books/NBK133429/bin/ml225fu1.jpg" alt="Image ml225fu1" /></div></div><div id="ml225.tu1" class="table"><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK133429/table/ml225.tu1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml225.tu1_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_ml225.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">CID/ML#</th><th id="hd_h_ml225.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Target Name</th><th id="hd_h_ml225.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Target IC50 (nM) [SID, AID]</th><th id="hd_h_ml225.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Anti-target Name(s)</th><th id="hd_h_ml225.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Anti-target IC50 (nM) [SID, AID]</th><th id="hd_h_ml225.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Fold Selective<sup><a class="bk_pop" href="#ml225.tfn3">&#x02020;</a></sup></th><th id="hd_h_ml225.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Secondary Assay(s) Name: IC50 (nM) [SID, AID]</th></tr></thead><tbody><tr><td headers="hd_h_ml225.tu1_1_1_1_1" rowspan="2" colspan="1" style="text-align:center;vertical-align:middle;">CID 56593029/<a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a></td><td headers="hd_h_ml225.tu1_1_1_1_2" rowspan="2" colspan="1" style="text-align:center;vertical-align:middle;">PAFAH2</td><td headers="hd_h_ml225.tu1_1_1_1_3" rowspan="2" colspan="1" style="text-align:center;vertical-align:middle;">3 [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504494" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504494</a>]</td><td headers="hd_h_ml225.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e;20 SHs<sup><a class="bk_pop" href="#ml225.tfn1">*</a></sup></td><td headers="hd_h_ml225.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e;1000 [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504513" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504513</a>]<sup><a class="bk_pop" href="#ml225.tfn2">**</a></sup></td><td headers="hd_h_ml225.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e;333</td><td headers="hd_h_ml225.tu1_1_1_1_7" rowspan="2" colspan="1" style="text-align:left;vertical-align:middle;"><b>Inhibition Assay</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504513" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504513</a>]<br /><b>Selectivity Assay</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, AIDs <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504513" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504513</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504527" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504527</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504483" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504483</a>, and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504531" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">504531</a>]<br /><b>SILAC Selectivity Assay</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504519" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504519</a>]<br /><b><i>In Situ</i></b>
<b>Assay:</b> [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504495" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504495</a>]<br /><b>IC50 Assay (</b><b><i>in vitro</i></b><b>)</b>: 15 nM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504494" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504494</a>]<br /><b>IC50 Assay (</b><b><i>in situ</i></b><b>)</b>: 0.68 nM [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504496" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504496</a>]<br /><b>Cytox assay</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504511" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504511</a>]<br /><b>LC-MS/MS assay</b>: [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504486" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504486</a>]</td></tr><tr><td headers="hd_h_ml225.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">pPAFAH (closest homolog)</td><td headers="hd_h_ml225.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e;100 [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504483" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504483</a>]<sup><a class="bk_pop" href="#ml225.tfn2">**</a></sup></td><td headers="hd_h_ml225.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">&#x0003e;33</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt>*</dt><dd><div id="ml225.tfn1"><p class="no_margin">As assessed by gel-based competitive ABPP in a soluble proteome derived from murine T cells with the serine hydrolase probe FP-Rhodamine</p></div></dd><dt>**</dt><dd><div id="ml225.tfn2"><p class="no_margin">IC50 of the anti-target is defined as greater than the test compound concentration at which less than or equal to 50% inhibition of the anti-target is observed, which is reported in <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504513" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504513</a>. For <a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>, no anti-targets were observed for all serine hydrolases (SHs) assayed at 1000 nM concentration, so the IC50 is reported as &#x0003e;1000 nM.</p></div></dd><dt>&#x02020;</dt><dd><div id="ml225.tfn3"><p class="no_margin">Fold-selectivity was calculated as: &#x0003e;IC50 for anti-target/IC50 for target</p></div></dd></dl></div></div></div></div><div id="ml225.s2"><h2 id="_ml225_s2_">Recommendations for Scientific Use of the Probe</h2><p>Oxidative stress has been implicated as an underlying inflammatory factor in numerous disease pathologies, including cancer, atherosclerosis, aging, and neurodegenerative disorders [<a class="bk_pop" href="#ml225.r1">1</a>&#x02013;<a class="bk_pop" href="#ml225.r5">5</a>]. Phospholipids in particular are susceptible to oxidative damage, and it is thought that the cytosolic enzyme type II platelet-activating factor acetylhydrolase (PAFAH2) may facilitate turnover of oxidized phospholipids via hydrolysis of their oxidatively truncated acyl chains [<a class="bk_pop" href="#ml225.r1">1</a>, <a class="bk_pop" href="#ml225.r6">6</a>]. <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a>, described herein, is a potent and specific inhibitor of PAFAH2 both <i>in vitro</i> and <i>in situ</i>. As such, it is recommended for use in primary research studies aimed at elucidating the patho/physiological roles of PAFAH2 and its contribution to inflammatory disease processes.</p></div><div id="ml225.s3"><h2 id="_ml225_s3_">1. Introduction</h2><p>Oxidative stress has been implicated as an underlying inflammatory factor in several disease pathologies, including cancer, atherosclerosis, aging, and various neurodegenerative disorders [<a class="bk_pop" href="#ml225.r1">1</a>&#x02013;<a class="bk_pop" href="#ml225.r5">5</a>]. Phospholipids in particular are susceptible to oxidative damage, and (per)oxidized phospholipids can have deleterious effects, including disruption of membrane bilayers and production of toxic byproducts [<a class="bk_pop" href="#ml225.r7">1</a>, <a class="bk_pop" href="#ml225.r7">7</a>&#x02013;<a class="bk_pop" href="#ml225.r9">9</a>]. One hypothesized pathway for removal of oxidatively damaged lipids involves hydrolysis by phospholipase A2-type enzymes. Candidate hydrolytic enzymes include the platelet-activating factor acetylhydrolases (PAFAHs) [<a class="bk_pop" href="#ml225.r1">1</a>, <a class="bk_pop" href="#ml225.r6">6</a>]. The initial role assigned to the PAFAHs was the hydrolysis of platelet activating factor (PAF) [<a class="bk_pop" href="#ml225.r10">10</a>&#x02013;<a class="bk_pop" href="#ml225.r11">11</a>], a potent pro-inflammatory phospholipid signaling molecule [<a class="bk_pop" href="#ml225.r12">12</a>], which plays a role in myriad physiological processes including inflammation, anaphylaxis, fetal development, and reproduction [<a class="bk_pop" href="#ml225.r1">1</a>, <a class="bk_pop" href="#ml225.r13">13</a>]. The PAFAHs are subdivided into three classes: plasma (p)PAFAH, and intracellular types 1 and 2. In terms of sequence homology, pPAFAH and PAFAH2 are close homologs and show little similarity to type 1 enzymes.</p><p>PAFAH2 has been shown to play a role in inflammatory processes via hydrolysis of oxidized phospholipids. Over-expression of PAFAH2 has been shown to reduce oxidative stress-induced cell death [<a class="bk_pop" href="#ml225.r14">14</a>&#x02013;<a class="bk_pop" href="#ml225.r15">15</a>] and to mediate repair of oxidative-stress induced tissue injury [<a class="bk_pop" href="#ml225.r1">1</a>]. The enzyme also undergoes N-terminal myristoylation and subsequent translocation to the membrane under conditions of oxidative stress [<a class="bk_pop" href="#ml225.r14">14</a>&#x02013;<a class="bk_pop" href="#ml225.r15">15</a>]. This evidence suggests that PAFAH2 functions as an important, and perhaps primary, antioxidant enzyme in certain tissues [<a class="bk_pop" href="#ml225.r1">1</a>]; however, its substrate specificity and pathway involvement are far from being fully elucidated. Currently no suitable inhibitors exist for co-crystallization or biochemical studies of PAFAH2.</p><p>Chemical tools capable of interrogating enzyme architecture and providing precise temporal control over PAFAH activity are necessary for complete characterization of patho/physiological roles of the PAFAHs in phospholipid metabolism and inflammatory disease processes. Towards that goal, we developed a HTS assay for inhibitor discovery for four PAFAH enzymes: pPAFAH, PAFAH2, PAFAH1b2, and PAFAH1b3, based on their reactivity with the serine-hydrolase-specific fluorophosphonate (FP) [<a class="bk_pop" href="#ml225.r16">16</a>] activity-based protein profiling (ABPP) probe. This reactivity can be exploited for inhibitor discovery using a competitive-ABPP platform, whereby small molecule enzyme inhibition is assessed by the ability to out-compete ABPP probe labeling [<a class="bk_pop" href="#ml225.r17">17</a>]. Competitive ABPP has also been configured to operate in a high-throughput manner via fluorescence polarization readout, FluoPol-ABPP [<a class="bk_pop" href="#ml225.r18">18</a>]. Following the FluoPol-ABPP HTS campaign for PAFAH2, we identified a triazole urea hit compound with an IC50 of 1.4 &#x003bc;M. After several rounds of medchem optimization the derived probe <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913572" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913572</a>) is highly potent against its target enzyme (IC50 3 nM), and is active <i>in situ</i> at sub-nanomolar concentrations. <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> is at least 333-fold selective for all other serine hydrolases (SHs) (~20) assessed by gel-based competitive ABPP, and is selective for the counterscreening enzymes pPAFAH, PAFAH1b2, and PAFAH1b3. As with the other triazole urea probes (<a href="/pcsubstance/?term=ML211[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML211</a> and <a href="/pcsubstance/?term=ML226[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML226</a>; see also [<a class="bk_pop" href="#ml225.r19">19</a>]), <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> inhibits its target by carbamoylating the active site serine. This is the first reported selective inhibitor of PAFAH2.</p></div><div id="ml225.s4"><h2 id="_ml225_s4_">2. Materials and Methods</h2><p>All reagents for chemical synthesis were obtained from ThermoFisher or SigmaAldrich. All other protocols are summarized below.</p><div id="ml225.s5"><h3>2.1. Assays</h3><div id="ml225.s6"><h4>Probe Characterization Assays</h4><div id="ml225.s7"><h5>Solubility</h5><p>The solubility of compounds was tested in phosphate buffered saline, pH 7.4. Compounds were inverted for 24 hours in test tubes containing 1&#x02013;2 mg of compound with 1 mL of PBS. The samples were centrifuged and analyzed by HPLC (Agilent 1100 with diode-array detector). Peak area was compared to a standard of known concentration.</p></div><div id="ml225.s8"><h5>Stability</h5><p>Demonstration of stability in PBS was conducted under conditions likely to be experienced in a laboratory setting. The compound was dissolved in 1 mL of PBS at a concentration of 10 &#x003bc;M, unless its maximum solubility was insufficient to achieve this concentration. Low solubility compounds were tested between ten and fifty percent of their solubility limit. The solution was immediately aliquoted into seven standard polypropylene microcentrifuge tubes which were stored at ambient temperature in a block microcentrifuge tube holder. Individual tubes were frozen at &#x02212;80&#x000b0;C at 0, 1, 2, 4, 8, 24, and 48 hours. The frozen samples were thawed in a room temperature and an equal volume of acetonitrile was added prior to determination of concentration by LC-MS/MS.</p></div><div id="ml225.s9"><h5>LC-MS/MS for stability assay</h5><p>All analytical methods are in MRM mode where the parent ion is selected in Q1 of the mass spectrometer. The parent ion is fragmented and a characteristic fragment ion is monitored in Q3. MRM mass spectroscopy methods are particularly sensitive because additional time is spent monitoring the desired ions and not sweeping a large mass range. Methods will be rapidly set up using Automaton<sup>&#x000ae;</sup> (Applied Biosystems), where the compounds are listed with their name and mass in an Excel datasheet. Compounds are submitted in a 96-well plate to the HPLC autosampler and are slowly injected without a column present. A narrow range centered on the indicated mass is scanned to detect the parent ion. The software then evaluates a few pre-selected parameters to determine conditions that maximize the signal for the parent ion. The molecule is then fragmented in the collision cell of the mass spectrometer and fragments with m/z larger than 70 but smaller than the parent mass are determined. Three separate collision energies are evaluated to fragment the parent ion and the largest three ions are selected. Each of these three fragment ions is further optimized and the best fragment is chosen. The software then inserts the optimized masses and parameters into a template method and saves it with a unique name that indicates the individual compound being optimized. Spectra for the parent ion and the fragmentation pattern are saved and can be reviewed later.</p></div><div id="ml225.s10"><h5>Determination of glutathione reactivity</h5><p>One &#x003bc;L of a 10 mM compound stock solution was added to 1 mL of a freshly prepared solution of 100 &#x003bc;M reduced glutathione. Final compound concentration is 10 &#x003bc;M unless solubility limited. The solution was allowed to incubate at 37&#x000b0;C for two hours prior to being directly analyzed for glutathione adduct formation. LC-MS/MS analysis of GSH adducts was performed on an API 4000 Q-TrapTM mass spectrometer equipped with a Turboionspray source (Applied Biosystems, Foster City, CA). Two methodologies were utilized: a negative precursor ion (PI) scan of m/z 272, corresponding to GSH fragmenting at the thioether bond, and a neutral loss scan of &#x02212;129 AMU to detect GSH adducts. This triggered positive ion enhanced resolution and enhanced product ion scans [<a class="bk_pop" href="#ml225.r20">20</a>&#x02013;<a class="bk_pop" href="#ml225.r21">21</a>].</p></div></div><div id="ml225.s11"><h4>Primary Assays</h4><div id="ml225.s12"><h5>Primary uHTS assay to identify PAFAH2 inhibitors (AID 492956)</h5><p><b>Assay Overview:</b> The purpose of this assay is to identify compounds that act as inhibitors of the platelet activating factor acetylhydrolase 2 (PAFAH2). In this assay, recombinant PAFAH2 protein is incubated with test compounds and a Rh-conjugated activity-based probe. The reaction is excited with linear polarized light and the intensity of the emitted light is measured as the polarization value. The assay is performed by incubating test compounds with PAFAH2 for a defined period, followed by addition of the FP-rhodamine probe and measurement of fluorescence polarization at a specific time point. As designed, test compounds that act as PAFAH2 inhibitors will prevent PAFAH2-probe interactions, thereby increasing the proportion of free (unbound) fluorescent probe in the well, leading to low fluorescence polarization. Compounds are tested in singlicate at a final nominal concentration of 3.39 &#x003bc;M</p><p><b>Protocol Summary:</b> Prior to the start of the assay, 4.0 &#x003bc;L of Assay Buffer (0.01% pluronic acid, 50 mM Tris HCl pH 8.0, 150 mM NaCl, 1 mM DTT) containing 25 nM of PAFAH2 protein were dispensed into 1536 microtiter plates. Next, 17 nL of test compound in DMSO or DMSO alone (0.34% final concentration) were added to the appropriate wells and incubated for 30 minutes at 25 C. The assay was started by dispensing 1.0 &#x003bc;L of 250 nM FP-Rh probe in Assay Buffer to all wells. Plates were incubated for 35 minutes at 25 C. Fluorescence polarization was read on a Viewlux microplate reader (PerkinElmer, Turku, Finland) using a BODIPY TMR FP filter set and a BODIPY dichroic mirror (excitation = 525 nm, emission = 598 nm) for 15 seconds for each polarization plane (parallel and perpendicular). <b>Assay Cutoff:</b> Compounds that inhibited PAFAH2 greater than 29.65% were considered active.</p></div><div id="ml225.s13"><h5>Confirmation uHTS assay to identify PAFAH2 inhibitors (AID 493030)</h5><p><b>Assay Overview:</b> The purpose of this assay was to confirm activity of compounds identified as active in the primary uHTS screen (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492956" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 492956</a>). In this assay, the FP-Rh probe was used to label PAFAH2 in the presence of test compounds and analyzed as described above (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492956" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 492956</a>). Compounds were tested in triplicate at a nominal concentration of 3.39 &#x003bc;M.</p><p><b>Protocol Summary:</b> The assay was performed as described above (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492956" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 492956</a>), except that compounds were tested in triplicate. <b>Assay Cutoff:</b> Compounds that inhibited PAFAH2 greater than 29.65% were considered active.</p></div></div><div id="ml225.s14"><h4>Secondary Assays</h4><div id="ml225.s15"><h5>Inhibition and selectivity of triazole urea library members (AID 504513)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine whether powder samples of test compounds can inhibit PAFAH2 in a complex proteomic lysate and to estimate compound selectivity in an activity-based proteomic profiling (ABPP) assay. In this assay, a complex proteome is incubated with test compound followed by reaction with a rhodamine-conjugated fluorophosphonate (FP-Rh) activity-based probe. The reaction products are separated by SDS-PAGE and visualized in-gel using a flatbed fluorescence scanner. The percentage activity remaining is determined by measuring the integrated optical density (IOD) of the bands. As designed, test compounds that act as PAFAH2 inhibitors will prevent enzyme-probe interactions, thereby decreasing the proportion of bound fluorescent probe, giving lower fluorescence intensity in the band in the gel. Percent inhibition is calculated relative to a DMSO (no compound) control.</p><p><b>Protocol Summary:</b> Soluble proteome (1 mg/mL in DPBS) of BW5147-derived murine T cells was treated with 20 nM, 200 nM, or 1 &#x003bc;M test compound (1 &#x003bc;L of a 50&#x000d7; stock in DMSO). Test compounds were incubated for 30 minutes at 25 degrees Celsius (50 &#x003bc;L reaction volume). FP-Rh (1 &#x003bc;L of 50&#x000d7; stock in DMSO) was added to a final concentration of 2 &#x003bc;M. The reaction was incubated for 30 minutes at 25 degrees Celsius, quenched with 2&#x000d7; SDS-PAGE loading buffer, separated by SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage activity remaining was determined by measuring the integrated optical density of the target (PAFAH2) and anti-target (N-acylaminoacyl-peptide hydrolase [APEH], alpha/beta hydrolase domain-containing protein 11 [ABHD11], esterase D/formylglutathione hydrolase [ESD], and lysophospholipase 1 [LYPLA1]) bands relative to a DMSO-only (no compound) control. <b>Assay Cutoff:</b> Compounds with &#x02265;50% inhibition of PAFAH2 at 200 nM were considered active.</p></div><div id="ml225.s16"><h5>Inhibition of PAFAH2 <i>in situ</i> (AID 504495)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine whether or not powder samples of test compounds can inhibit PAFAH2 activity <i>in situ</i>. In this assay, cultured BW5147-derived murine T-cells are incubated with test compound. Cells are harvested and the soluble fraction is isolated and reacted with a rhodamine-conjugated fluorophosphonate (FP-Rh) activity-based probe. The reaction products are separated by SDS-PAGE and visualized in-gel using a flatbed fluorescence scanner. The percentage activity remaining is determined by measuring the integrated optical density (IOD) of the bands. As designed, test compounds that act as PAFAH2 inhibitors will prevent enzyme-probe interactions, thereby decreasing the proportion of bound fluorescent probe, giving lower fluorescence intensity in the band in the gel.</p><p><b>Protocol Summary:</b> BW5147-derived murine T cells (5 mL total volume; supplemented with FCS) were treated with 30 nM test compound (5 &#x003bc;L of a 1000&#x000d7; stock in DMSO) for 4 hours at 37 degrees Celsius. Cells were harvested, washed 4 times with 10 mL DPBS, and homogenized by sonication in DPBS. The soluble fraction was isolated by centrifugation (100K &#x000d7; g, 45 minutes) and the protein concentration was adjusted to 1 mg/mL with DPBS. FP-Rh (1 &#x003bc;L of 50&#x000d7; stock in DMSO) was added to a final concentration of 2 &#x003bc;M in 50 &#x003bc;L total reaction volume. The reaction was incubated for 30 minutes at 25 degrees Celsius, quenched with 2&#x000d7; SDS-PAGE loading buffer, separated by SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage activity remaining was determined by measuring the integrated optical density of the PAFAH2 band relative to a DMSO-only (no compound) control. <b>Assay Cutoff:</b> Compounds with &#x02265;90% inhibition of PAFAH2 were considered active.</p></div><div id="ml225.s17"><h5>Determination of IC50 values against PAFAH2 <i>in vitro</i> (AID 504494)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine the IC50 values of powder samples of test compounds for PAFAH2 inhibition in a complex proteome. In this assay, a fluorophosphonate-conjugated rhodamine (FP-Rh) activity-based probe is used to label PAFAH2 in the presence of test compounds. The reaction products are separated by SDS-PAGE and visualized in-gel using a flatbed fluorescence scanner. The percentage activity remaining is determined by measuring the integrated optical density of the bands. As designed, test compounds that act as PAFAH2 inhibitors will prevent enzyme-probe interactions, thereby decreasing the proportion of bound fluorescent probe, giving lower fluorescence intensity in the band in the gel.</p><p><b>Protocol Summary:</b> Soluble proteome (1 mg/mL in DPBS) of BW5147-derived murine T cells was incubated with DMSO or compound for 30 minutes at 37 degrees Celsius before the addition of FP-Rh at a final concentration of 2 &#x003bc;M in 50 &#x003bc;L total reaction volume. The reaction was incubated for 30 minutes at 25 degrees Celsius, quenched with 2&#x000d7; SDS-PAGE loading buffer, separated by SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage activity remaining was determined by measuring the integrated optical density of the bands. IC50 values for inhibition of PAFAH2 were determined from dose-response curves from three replicates at each inhibitor concentration (6-point series from 5000 nM to 1 nM). <b>Assay Cutoff:</b> Compounds with an IC50 &#x0003c;100 nM were considered active.</p></div><div id="ml225.s18"><h5>Determination of IC50 values against PAFAH2 <i>in situ</i> (AID 504496)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine the IC50 values of powder samples of test compounds for PAFAH2 inhibition <i>in situ</i>. In this assay, cultured cells are incubated with test compound. Cells are harvested and the soluble fraction is isolated and reacted with a rhodamine-conjugated fluorophosphonate (FP-Rh) activity-based probe. The reaction products are separated by SDS-PAGE and visualized in-gel using a flatbed fluorescence scanner. The percentage activity remaining is determined by measuring the integrated optical density of the bands. As designed, test compounds that act as PAFAH2 inhibitors will prevent enzyme-probe interactions, thereby decreasing the proportion of bound fluorescent probe, giving lower fluorescence intensity in the band in the gel.</p><p><b>Protocol Summary:</b> BW5147-derived murine T-cells (5 mL total volume; supplemented with 10% FCS) were treated with DMSO or test compound (5 &#x003bc;L of a 1000&#x000d7; stock in DMSO) for 4 hours at 37 degrees Celsius. Cells were harvested, washed 4 times with 10 mL DPBS, and homogenized by sonication in DPBS. The soluble fraction was isolated by centrifugation (100K &#x000d7; g, 45 minutes) and the protein concentration was adjusted to 1 mg/mL with DPBS. FP-Rh (1 &#x003bc;L of 50&#x000d7; stock in DMSO) was added to a final concentration of 2 &#x003bc;M in 50 &#x003bc;L total reaction volume. The reaction was incubated for 30 minutes at 25 degrees Celsius, quenched with 2&#x000d7; SDS-PAGE loading buffer, separated by SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage activity remaining was determined by measuring the integrated optical density of the PAFAH2 band relative to a DMSO-only (no compound) control. IC50 values for inhibition of PAFAH2 were determined from dose-response curves from three replicates at each inhibitor concentration (4-point 1:3 dilution series from 2.5 nM to 75 pM). <b>Assay Cutoff</b>: Compounds with an IC50 &#x0003c;100 nM were considered active</p></div><div id="ml225.s19"><h5>Analysis of Cytotoxicity (AID 504511)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine cytotoxicity of inhibitor compounds belonging to the urea triazole scaffold. In this assay, BW5147-derived murine T-cells in either serum-free media (<b>Assay 1</b>) or media containing FCS (<b>Assay 2</b>) are incubated with test compounds, followed by determination of cell viability. The assay utilizes the WST-1 substrate that is converted into colorimetric formazan dye by the metabolic activity of viable cells. The amount of formed formazan directly correlates to the number of metabolically active cells in the culture. As designed, compounds that reduce cell viability will result in decreased absorbance of the dye. Compounds were tested in quadruplicate in a 7-point 1:5 dilution series starting at a nominal test concentration of 50 &#x003bc;M.</p><p><b>Protocol Summary:</b> This assay was started by dispensing BW5147-derived murine T cells in RPMI media (100 &#x003bc;L, 10E4 cells/well) into a 96-well plate. Both serum-free media (<b>Assay 1</b>) and media supplemented with fetal calf serum (FCS) (<b>Assay 2</b>) were tested. Compound (5 &#x003bc;L of 0&#x02013;1000 &#x003bc;M in media containing 5% DMSO) was added to each well, giving final compound concentrations of 0&#x02013;50 &#x003bc;M. Cells were incubated for 48 hours at 37 degrees Celsius in a humidified incubator and cell viability was determined by the WST-1 assay (Roche) according to manufacturer instructions. <b>Assay Cutoff:</b> Compounds with a CC50 value of &#x0003c;5 &#x003bc;M were considered active (cytotoxic).</p></div><div id="ml225.s20"><h5>LC-MS/MS Analysis of Inhibitor Binding Mode (AID 504486)</h5><p><b>Assay Overview:</b> The purpose of this assay is to assess the covalent nature of an inhibitor compound belonging to the urea triazole scaffold and determine whether or not it labels the active site serine of PAFAH2. In this assay, purified enzyme is reacted with inhibitor compound, digested with trypsin, and the resulting peptides are analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The resulting data are analyzed to identify sites of covalent labeling.</p><p><b>Protocol Summary:</b> Two aliquots (25 &#x003bc;L) of 50 &#x003bc;M PAFAH2 were prepared. To one aliquot was added inhibitor (0.5 &#x003bc;L of 10 mM in DMSO), giving a final concentration of 200 &#x003bc;M. To the second (control) aliquot was added DMSO (0.5 &#x003bc;L). Reactions were gently vortexed and incubated at room temperature for 30 minutes. To each reaction was added solid urea (50 mg), followed by freshly prepared aqueous ammonium bicarbonate (75 &#x003bc;L of 25 mM). The reactions were vortexed until the urea was dissolved. Final urea concentration was approximately 8 M. To each reaction was added freshly prepared TCEP (5 &#x003bc;L of 100 mM in water), and the reactions were incubated at 30 degrees C for 30 minutes. To each reaction was then added freshly prepared IAA (10 &#x003bc;L of 100 mM in water), and the reactions were incubated for 30 min at room temperature in the dark. Aqueous ammonium bicarbonate (375 &#x003bc;L of 25 mM) was added to reduce the urea concentration to 2 M. To each reaction was added sequencing grade modified trypsin (1 &#x003bc;g), and reactions were incubated at 37 degrees C for 12 hours. Formic acid was added to 5% (v/v) final.</p><p>An Agilent 1200 series quaternary HPLC pump and Thermo Scientific LTQ-Orbitrap mass spectrometer were used for sample analysis. A fraction (10 &#x003bc;L) of the protein digest for each sample was pressure-loaded onto a 100 micron fused-silica column (with a 5 micron in-house pulled tip) packed with 10 cm of Aqua C18 reversed-phase packing material. Chromatography was carried out using an increasing gradient of aqueous acetonitrile containing 0.1% formic acid over 125 minutes. Mass spectra were acquired in a data-dependent mode with dynamic exclusion enabled.</p><p>The MS/MS spectra generated for each run were searched against a human protein database concatenated to a reversed decoy database using Sequest. A static modification of +57.021 was specified cysteine, and a variable modification of +97.053 was specified for serine to account for possible probe labeling by AA39-2. The resulting peptide identifications were assembled into protein identifications using DTASelect, and filters were adjusted to maintain a false discovery rate (as determined by number of hits against the reversed database) of &#x0003c;1%. Any modified peptides identified in the DMSO-treated sample were discarded as spurious hits. <b>Assay Cutoff:</b> Compounds observed to covalently modify the active site serine of PAFAH2 were considered active.</p></div><div id="ml225.s21"><h5>SILAC-ABPP Analysis of Inhibition and Selectivity (AID 504519)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine the selectivity profile of powder samples of test compounds using stable isotope labeling with amino acids in cell culture (SILAC) ABPP. In this assay, cultured BW5147-derived murine T-cells are metabolically labeled with light or heavy amino acids. Light and heavy cells are treated with inhibitor and DMSO, respectively, <i>in situ</i>. Cells are lysed, proteomes are treated with FP-biotin, and combined in a 1:1 (w/w) ratio. Biotinylated proteins are enriched, trypsinized, and analyzed by LC/LC-MS/MS (MudPIT). Inhibition of target and anti-target activity is quantified by comparing intensities of light and heavy peptide peaks. As designed, compounds that act as inhibitors will block FP-biotin labeling, reducing enrichment in the inhibitor-treated (light) sample relative to the DMSO-treated (heavy) sample, giving a smaller light/heavy ratio for each protein. Proteins not targeted by inhibitors would be expected to have a ratio of ~1.</p><div id="ml225.s22"><h5>Protocol Summary</h5><p><i><u>Stable isotope labeling with amino acids in cell culture (SILAC)</u>.</i> BW5147-derived murine T-cell hybridoma cells were initially grown for 6 passages in either light or heavy SILAC RPMI 1640 media supplemented with 10% dialyzed FCS and 1&#x000d7; PenStrep Glutamine. Light media was supplemented with 100 &#x003bc;g/mL L-arginine (Sigma) and 100 &#x003bc;g/mL L-lysine (Sigma). Heavy media was supplemented with 100 &#x003bc;g/mL [<sup>13</sup>C<sub>6</sub><sup>15</sup>N<sub>4</sub>]-L-Arginine (Isotek) and 100 &#x003bc;g/mL [<sup>13</sup>C<sub>6</sub><sup>15</sup>N<sub>2</sub>]-L-Lysine (Isotek). Cells were treated with 3 nM test compound (5 &#x003bc;L of a 1000&#x000d7; stock in DMSO) for 4 hours at 37 degrees Celsius. Cells were harvested, washed 4 times with 10 mL DPBS, and homogenized by sonication in DPBS. The soluble and membrane fractions were isolated by centrifugation (100K &#x000d7; g, 45 minutes) and the protein concentration was adjusted to 1 mg/mL with DPBS.</p><p><i>Sample preparation for ABPP-SILAC.</i> The light and heavy proteomes were labeled with 7 &#x003bc;M of FP-biotin (500 &#x003bc;L total reaction volume) for 1.5 hours at 25 degrees Celsius. After incubation, light and heavy proteomes were mixed in 1:1 ratio, and the membrane proteomes were additionally solubilized with 1% Triton-X100. The proteomes were desalted over PD-10 desalting columns (GE Healthcare) and FP-labeled proteins were enriched with streptavidin beads. The beads were washed with 1% SDS in PBS (1x), PBS (3x), and H<sub>2</sub>O (3x), then resuspended in 6 M urea, reduced with DTT for 15 minutes at 60 degrees Celsius, and alkylated with iodoacetamide for 30 minutes at 25 degrees Celsius in the dark. On-bead digestions were performed for 12 hours at 37 degrees Celsius with trypsin (Promega; 4 &#x003bc;L of 0.5 &#x003bc;g/&#x003bc;L) in the presence of 2 mM CaCl<sub>2</sub>. Peptide samples were acidified to a final concentration of 5% formic acid, pressure-loaded on to a biphasic (strong cation exchange/reverse phase) capillary column and analyzed as described below.</p><p><i>LC-MS/MS analysis.</i> Digested and acidified peptide mixtures were analyzed by two-dimensional liquid chromatography (2D-LC) separation in combination with tandem mass spectrometry using an Agilent 1100-series quaternary pump and Thermo Scientific LTQ Orbitrap ion trap mass spectrometer. Peptides were eluted in a 5-step MudPIT experiment using 0%, 25%, 50%, 80%, and 100% salt bumps of 500 mM aqueous ammonium acetate and data were collected in data-dependent acquisition mode with dynamic exclusion turned on (60 s, repeat of 1). Specifically, one full MS (MS1) scan (400&#x02013;1800 m/z) was followed by 7 MS2 scans of the most abundant ions. The MS2 spectra data were extracted from the raw file using RAW Xtractor (version 1.9.1; publicly available at <a href="http://fields.scripps.edu/?q=content/download" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://fields.scripps.edu/?q=content/download</a>). MS2 spectra data were searched using the SEQUEST algorithm (Version 3.0) against the latest version of the mouse IPI database concatenated with the reversed database for assessment of false-discovery rates. SEQUEST searches allowed for variable oxidation of methionine (+16), static modification of cysteine residues (+57 due to alkylation), and no enzyme specificity. The resulting MS2 spectra matches were assembled into protein identifications and filtered using DTASelect (version 2.0.41) using the --trypstat option, which applies different statistical models for the analysis of tryptic, half-tryptic, non-tryptic peptides. DTASelect 2.0 uses a quadratic discriminant analysis to achieve a user-defined maximum peptide false positive rate; the default parameters (maximum false positive rate of 2%) was used for the search; however, the actual false positive rate was much lower (1%). Ratios of Light/Heavy peaks were calculated using in-house software; reported ratios represent the mean of all unique, quantified peptides per protein. <b>Assay Cutoff:</b> A compound was considered active for a particular target/anti-target with a light/heavy ratio of &#x02264;0.5</p></div></div><div id="ml225.s23"><h5>Analysis of General Serine Hydrolase Inhibition and Selectivity (AID 504527)</h5><p><b>Assay Overview:</b> The purpose of this assay is to assess the general inhibition profiles of powder samples of test compounds in a complex proteome by competitive activity-based proteomic profiling (ABPP). In <b>Assay 1</b>, a complex proteome is incubated with test compound followed by reaction with a rhodamine-conjugated fluorophosphonate (FP-Rh) activity-based probe. The reaction products are separated by SDS-PAGE and visualized in-gel using a flatbed fluorescence scanner. The percentage activity remaining is determined by measuring the integrated optical density (IOD) of the bands. As designed, test compounds that act as inhibitors will prevent enzyme-probe interactions, thereby decreasing the proportion of bound fluorescent probe, giving lower fluorescence intensity in the band in the gel. Percent inhibition is calculated relative to a DMSO (no compound) control. In <b>Assay 2</b>, the role of competitor and probe is reversed. A complex proteome is incubated with FP-biotin followed by reaction with test compound. Click chemistry is then used to append a fluorophore-azide to the alkyne-functionalized test compounds. As designed, labeling that is successfully competed by the FP-biotin probe is indicative of serine hydrolase targets. Bands that are not competed represent non-serine hydrolase targets of test compounds.</p><div id="ml225.s24"><h5>Protocol Summary</h5><p><b>Assay 1:</b> Soluble proteome (1 mg/mL in DPBS) of mouse brain soluble proteome was treated with 20 &#x003bc;M of test compound (1 &#x003bc;L of a 50&#x000d7; stock in DMSO). Test compounds were incubated for 30 minutes at 25 degrees Celsius (50 &#x003bc;L reaction volume). FP-Rh (1 &#x003bc;L of 50&#x000d7; stock in DMSO) was added to a final concentration of 2 &#x003bc;M. The reaction was incubated for 30 minutes at 25 degrees Celsius, quenched with 2&#x000d7; SDS-PAGE loading buffer, separated by SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage activity remaining was determined by measuring the integrated optical density of the bands relative to a DMSO-only (no compound) control. <b>Assay Cutoff:</b> Compounds with &#x02265;50% inhibition of two or more bands were considered &#x0201c;active&#x0201d;.</p><p><b>Assay 2</b>: Mouse brain soluble proteome (1 mg/mL in DPBS) was treated with 20 &#x003bc;M of FP-biotin (1 &#x003bc;L of a 50&#x000d7; stock in DMSO) for 30 minutes at 25 degrees Celsius (50 &#x003bc;L reaction volume). Test compound (1 &#x003bc;L of 50&#x000d7; stock in DMSO) was added to a final concentration of 20 &#x003bc;M for 30 minutes at 25 degrees Celsius. Click chemistry with a rhodamine-azide tag (Rh-N3; 50&#x003bc;M) was carried out under standard conditions (1mM TCEP, 100&#x003bc;M TBTA ligand, 1mM Cu(II)sulfate) to append the rhodamine fluorophore to the alkyne-functionalized test compounds for visualization. Reactions were quenched with 2&#x000d7; SDS-PAGE loading buffer, separated by SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage activity remaining was determined by measuring the integrated optical density of the bands relative to a DMSO-only (no compound) control. <b>Assay Cutoff:</b> Compounds with &#x02265;50% inhibition by FP-biotin of all target bands were considered &#x0201c;active&#x0201d; (showing only reactivity within the serine hydrolase enzyme class).</p></div></div><div id="ml225.s25"><h5>Analysis of pPAFAH Selectivity <i>In vitro</i> (AID 504483)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine whether or not powder samples of test compounds can inhibit the anti-target pPAFAH, a serine hydrolase with high sequence homology to the target enzyme PAFAH2, <i>in vitro</i>. In this assay, soluble proteome of COS-7 cells over-expressing recombinant murine pPAFAH are incubated with test compound and reacted with a rhodamine-conjugated fluorophosphonate (FP-Rh) activity-based probe. The reaction products are separated by SDS-PAGE and visualized in-gel using a flatbed fluorescence scanner. The percentage activity remaining is determined by measuring the integrated optical density (IOD) of the bands. As designed, test compounds that act as pPAFAH inhibitors will prevent enzyme-probe interactions, thereby decreasing the proportion of bound fluorescent probe, giving lower fluorescence intensity in the band in the gel.</p><p><b>Protocol Summary:</b> COS-7 soluble proteome (1 mg/mL in DPBS, containing recombinantly expressed murine pPAFAH) was treated with 3, 10, 30, 100, or 1000 nM test compound (1 &#x003bc;L of a 50&#x000d7; stock in DMSO) for 30 minutes at 25 degrees Celsius. FP-Rh (1 &#x003bc;L of 50&#x000d7; stock in DMSO) was added to a final concentration of 2 &#x003bc;M in 50 &#x003bc;L total reaction volume. The reaction was incubated for 30 minutes at 25 degrees Celsius, quenched with 2&#x000d7; SDS-PAGE loading buffer, separated by SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage activity remaining was determined by measuring the integrated optical density of the pPAFAH band relative to a DMSO-only (no compound) control. <b>Assay Cutoff:</b> Compounds with &#x02265;50% inhibition of pPAFAH at 100 nM were considered active.</p></div><div id="ml225.s26"><h5>Analysis of pPAFAH Selectivity <i>In situ</i> (AID 504531)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine whether or not powder samples of test compounds can inhibit the anti-target pPAFAH, a serine hydrolase with high sequence homology to the target enzyme PAFAH2, <i>in situ</i>. In this assay, cultured murine mast cells are incubated with test compound. Cells are harvested and the soluble fraction is isolated and reacted with a rhodamine-conjugated fluorophosphonate (FP-Rh) activity-based probe. The reaction products are separated by SDS-PAGE and visualized in-gel using a flatbed fluorescence scanner. The percentage activity remaining is determined by measuring the integrated optical density (IOD) of the bands. As designed, test compounds that act as PAFAH2 or pPAFAH inhibitors will prevent enzyme-probe interactions, thereby decreasing the proportion of bound fluorescent probe, giving lower fluorescence intensity in the band in the gel.</p><p><b>Protocol Summary:</b> Murine mast cells (5 mL total volume; supplemented with FCS) were treated with 10 nM test compound (5 &#x003bc;L of a 1000&#x000d7; stock in DMSO) for 4 hours at 37 degrees Celsius. Cells were harvested, washed 4 times with 10 mL DPBS, and homogenized by sonication in DPBS. The soluble fraction was isolated by centrifugation (100K &#x000d7; g, 45 minutes) and the protein concentration was adjusted to 1 mg/mL with DPBS. FP-Rh (1 &#x003bc;L of 50&#x000d7; stock in DMSO) was added to a final concentration of 2 &#x003bc;M in 50 &#x003bc;L total reaction volume. The reaction was incubated for 30 minutes at 25 degrees Celsius, quenched with 2&#x000d7; SDS-PAGE loading buffer, separated by SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage activity remaining was determined by measuring the integrated optical density of the PAFAH2 and pPAFAH bands relative to a DMSO-only (no compound) control. <b>Assay Cutoff:</b> Compounds with &#x02265;50% inhibition were considered active.</p></div><div id="ml225.s27"><h5>Analysis of Carbamate vs. Triazole Urea Compound Activity (AID 504491)</h5><p><b>Assay Overview:</b> The purpose of this assay is to determine whether powder samples of test compounds of different chemotypes&#x02014;carbamate and triazole urea&#x02014;can inhibit PAFAH2 in a complex proteomic lysate and to estimate compound selectivity in an activity-based proteomic profiling (ABPP) assay. In this assay, a complex proteome is incubated with test compound followed by reaction with a rhodamine-conjugated fluorophosphonate (FP-Rh) activity-based probe. The reaction products are separated by SDS-PAGE and visualized in-gel using a flatbed fluorescence scanner. The percentage activity remaining is determined by measuring the integrated optical density (IOD) of the bands. As designed, test compounds that act as PAFAH2 inhibitors will prevent enzyme-probe interactions, thereby decreasing the proportion of bound fluorescent probe, giving lower fluorescence intensity in the band in the gel.</p><p><b>Protocol Summary:</b> Soluble proteome (1 mg/ml in DPBS) of BW5147-derived murine T cells was treated with 20 &#x003bc;M test compound (1 &#x003bc;L of a 50&#x000d7; stock in DMSO). Test compounds were incubated for 30 minutes at 25 degrees Celsius (50 &#x003bc;L reaction volume). FP-Rh (1 &#x003bc;L of 50&#x000d7; stock in DMSO) was added to a final concentration of 2 &#x003bc;M. The reaction was incubated for 30 minutes at 25 degrees Celsius, quenched with 2&#x000d7; SDS-PAGE loading buffer, separated by SDS-PAGE and visualized by in-gel fluorescent scanning. The percentage activity remaining was determined by measuring the integrated optical density of the target (PAFAH2) and anti-target (N-acylaminoacyl-peptide hydrolase [APEH], alpha/beta hydrolase domain-containing protein 11 [ABHD11], esterase D/formylglutathione hydrolase [ESD], lysophospholipase 1 [LYPLA1], and lysophospholipase 2 [LYPLA2]) bands relative to a DMSO-only (no compound) control. <b>Assay Cutoff:</b> Compounds with &#x02265;50% inhibition were considered active.</p></div></div></div><div id="ml225.s28"><h3>2.2. Probe Chemical Characterization</h3><div id="ml225.fu2" class="figure bk_fig"><div class="graphic"><img src="/books/NBK133429/bin/ml225fu2.jpg" alt="CID 56593029, SID 103913572, ML225." /></div><h3><span class="title">CID 56593029, SID 103913572, ML225</span></h3></div><p>The probe structure was verified by <sup>1</sup>H NMR (see <a href="#ml225.s29">section 2.3</a>) and high resolution MS (<i>m/z</i> calculated for C<sub>19</sub>H<sub>19</sub>N<sub>4</sub>O [M+H]<sup>+</sup>: 319.1553; found: 319.1556). Purity was assessed to be greater than 95% by NMR. The 2,4-regiostereochemistry was assigned by NMR by comparison with NMR shifts of triazole urea compounds of known 1,4 and 2,4 triazole substitution based on crystal structure data [<a class="bk_pop" href="#ml225.r19">19</a>]. Solubility in PBS at room temperature was determined by UV trace to be 1.7 &#x003bc;M and stability in PBS was determined by LC-MS to be &#x0003e;48 hours.</p><p><a class="figpopup" href="/books/NBK133429/table/ml225.t1/?report=objectonly" target="object" rid-figpopup="figml225t1" rid-ob="figobml225t1">Table 1</a> lists the compounds submitted to the SMR collection.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml225t1"><a href="/books/NBK133429/table/ml225.t1/?report=objectonly" target="object" title="Table 1" class="img_link icnblk_img figpopup" rid-figpopup="figml225t1" rid-ob="figobml225t1"><img class="small-thumb" src="/books/NBK133429/table/ml225.t1/?report=thumb" src-large="/books/NBK133429/table/ml225.t1/?report=previmg" alt="Table 1. Compounds submitted to the SMR collection." /></a><div class="icnblk_cntnt"><h4 id="ml225.t1"><a href="/books/NBK133429/table/ml225.t1/?report=objectonly" target="object" rid-ob="figobml225t1">Table 1</a></h4><p class="float-caption no_bottom_margin">Compounds submitted to the SMR collection. </p></div></div></div><div id="ml225.s29"><h3>2.3. Probe Preparation</h3><div id="ml225.fu3" class="figure"><div class="graphic"><img src="/books/NBK133429/bin/ml225fu3.jpg" alt="Image ml225fu3" /></div></div><p><i>Synthesis of pyrrolidine-1-carbonyl chloride (B):</i> pyrrolidine <b>A</b> (1 equiv) was dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (10 mL/mmol) and cooled to 0 degrees Celsius. Triphosgene (0.6 equiv) was added and the reaction was stirred for 10 minutes at 0 degrees Celsius and for a further 15 minutes at room temperature. The reaction was carefully quenched by dropwise addition of saturated aqueous NaHCO<sub>3</sub>, diluted with CH<sub>2</sub>Cl<sub>2</sub>, and washed with brine. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed under reduced pressure (water bath temperature &#x0003c;30 degrees Celsius). The crude carbamoyl chloride <b>B</b> was used for the next step without further purification. <b><i>CAUTION</i></b><i>: Triphosgene is very toxic. This reaction should be performed in a well-ventilated fume hood. Any object that comes into contact with triphosgene should be rinsed with 10% NaOH solution.</i></p><p><i>Synthesis of 4-([1,1&#x02032;-biphenyl]-4-yl)-1H-1,2,3-triazole (D):</i> NH-1,2,3-triazole <b>D</b> was prepared following a slightly modified procedure of Fokin <i>et al.</i> [<a class="bk_pop" href="#ml225.r22">22</a>]. A mixture of 37% HCHO (10 equiv), glacial AcOH (1.5 equiv), and THF (1 mL/mmol <b>C</b>) was stirred for 15 minutes. Sodium azide was added (1.5 equiv), followed by (4-phenyl)phenyl acetylene <b>C</b> (481 mg, 2.7 mmol, 1 equiv). The mixture was stirred for 10 minutes and sodium ascorbate (0.2 equiv) was added, followed by CuSO<sub>4</sub> solution (200 mg/mL H<sub>2</sub>O; 5 mol %). The reaction was stirred for 24 hours at 25 degrees Celsius. The solvents were removed and the residue was re-dissolved in 3:1 MeOH/2N NaOH (1 mL/mmol <b>C</b>). After stirring for 24 hours at room temperature, the solvents were azeotropically removed and the residue was purified by silica gel chromatography (15:85:1 MeOH/CH<sub>2</sub>Cl<sub>2</sub>/NEt<sub>3</sub>) to yield NH-1,2,3-triazole <b>D</b> (525 mg, 2.4 mmol, 88%). <sup>1</sup>H-NMR (400 MHz, <i>d<sub>6</sub></i>-DMSO): &#x003b4; = 8.26 (s, 1H), 7.88-7.27 (m, 9H). HRMS: <i>m/z</i> calculated for C<sub>14</sub>H<sub>12</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 222.1026; found: 222.1028. <b><i>CAUTION:</i></b><i>This reaction may result in the formation of hydrazoic acid and should be performed in a well-ventilated fume hood and behind a blast shield. Sodium azide should not be mixed with strong acids.</i></p><p><i>Synthesis of (4-([1,1&#x02032;-biphenyl]-4-yl)-2H-1,2,3-triazol-2-yl)(pyrrolidin-1-yl)methanone (<a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a>):</i> A mixture of carbonyl chloride <b>B</b> (40 mg, 0.3 mmol, 1 equiv), NH-1,2,3-triazole <b>D</b> (80 mg, 0.36 mmol, 1.2 equiv), and 4-DMAP (cat) in 5:1 THF/NEt<sub>3</sub> (2 mL/mmol <b>B</b>) was stirred for 10 hours at 60 degrees Celsius. The solvents were removed to yield the crude triazole urea <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> as a 3:1 mixture of <i>N2</i>- and <i>N1</i>-carbamoylated regioisomers. Regioisomers were easily distinguishable by <sup>1</sup>H-NMR shift of the triazole ring proton by comparison to NMRs for triazole ureas of known regiochemistry based on solved crystal structures [<a class="bk_pop" href="#ml225.r19">19</a>]. The <i>N2</i>-carbamoyl triazole was isolated by silica gel chromatography (3:1 hexanes/ethyl acetate &#x02192; ethyl acetate) to afford pure <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> (83 mg, 0.26 mmol, 87%). <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): &#x003b4; = 8.10 (s, 1H), 7.90-7.29 (m, 9H), 4.07 (m, 1H), 3.94 (m, 1H), 3.73 (m, 2H), 2.01 (m, 4H), purity &#x0003e; 95%. HRMS: <i>m/z</i> calculated for C<sub>19</sub>H<sub>19</sub>N<sub>4</sub>O [M+H]<sup>+</sup>: 319.1553; found: 319.1556.</p></div></div><div id="ml225.s30"><h2 id="_ml225_s30_">3. Results</h2><p>Probe <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> (Compound <b>29</b>, SAR Table 5) has an IC50 value of 3 nM (<a href="#ml225.s32">section 3.2</a>) vs. PAFAH2 and selectivity of &#x0003e;333 fold vs. more than 20 SHs and selectivity of &#x0003e;33-fold vs. pPAFAH (see <a href="#ml225.s36">section 3.6</a>). Selectivity against pPAFAH was confirmed by gel-based ABPP both <i>in vitro</i> and <i>in situ</i>, and selectivity was confirmed for PAFAH1b2 and PAFAH1b3 by SILAC-ABPP (see <a href="#ml225.s36">section 3.6</a>). <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> was also shown to be highly active <i>in situ</i> against PAFAH2, with an IC50 of 170 pM (see <a href="#ml225.s35">section 3.5</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504496" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504496</a>).</p><div id="ml225.s31"><h3>3.1. Summary of Screening Results</h3><p>In the Primary FluoPol HTS Assay for PAFAH2 (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/492956" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 492956</a>), ~337K compounds were tested for inhibition of PAFAH2 labeling by the SH-specific activity-based probe FP-Rh [<a class="bk_pop" href="#ml225.r16">16</a>]. The assay was conducted in singlicate at 3.39 &#x003bc;M compound concentration using purified, recombinant enzyme. A total of 3,330 compounds (0.99%) were active, passing the set threshold of 29.65% inhibition. The HTS Primary Assay for pPAFAH served as a counterscreen for PAFAH2. <i>In silico</i> comparison yielded 2,412 selective compounds for PAFAH2 and 915 overlapping hits with the other PAFAH assays. Of the 2,412 compounds, 2,341 were available to be tested in the Confirmation Assay. In the Confirmation Assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/493030" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 493030</a>), compounds were tested at a single concentration (3.39 &#x003bc;M) in triplicate and 1,510 compounds (65%) were confirmed as active (<a class="figpopup" href="/books/NBK133429/figure/ml225.f1/?report=objectonly" target="object" rid-figpopup="figml225f1" rid-ob="figobml225f1">Figure 1</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f1" co-legend-rid="figlgndml225f1"><a href="/books/NBK133429/figure/ml225.f1/?report=objectonly" target="object" title="Figure 1" class="img_link icnblk_img figpopup" rid-figpopup="figml225f1" rid-ob="figobml225f1"><img class="small-thumb" src="/books/NBK133429/bin/ml225f1.gif" src-large="/books/NBK133429/bin/ml225f1.jpg" alt="Figure 1. Flow chart describing HTS results." /></a><div class="icnblk_cntnt" id="figlgndml225f1"><h4 id="ml225.f1"><a href="/books/NBK133429/figure/ml225.f1/?report=objectonly" target="object" rid-ob="figobml225f1">Figure 1</a></h4><p class="float-caption no_bottom_margin">Flow chart describing HTS results. </p></div></div><p>Of the 3,330 compounds that were considered active in the Primary Assay, 327 inhibited the target enzyme by at least 80.0%. Of those 327 compounds, 149 exhibited at least 2.5% activity in all bioassays tested and were removed. A further 13 compounds were removed because they registered as inactive in the Confirmation Assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/493030" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 493030</a>). Of the remaining 165 compounds, 150 were discarded as having unwanted functional groups (esters, oximes, Michael acceptors, hydrazines, hydroxylamines, etc.), the vast majority (129) being esters. Interestingly, the trizole urea (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/7974398" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 7974398</a>, CID 735660; Compound <b>1</b> in <a class="figpopup" href="/books/NBK133429/table/ml225.t2/?report=objectonly" target="object" rid-figpopup="figml225t2" rid-ob="figobml225t2">Table 2</a>) was a top lead in a previous screen for LYPLA1 inhibitors (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2174" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 2174</a>), and was used as a starting point to derive two successful probe compounds (<a href="/pcsubstance/?term=ML211[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML211</a> and <a href="/pcsubstance/?term=ML226[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML226</a>). As a class, the triazole ureas were found to have tunable potency and selectivity, low cytotoxicity, and good activity <i>in situ</i>. Two other urea compounds (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/26729517" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 26729517</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/substance/24832496" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 24832496</a>) and a structurally related bis-aryl compound (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/49732109" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 49732109</a>) (see <a class="figpopup" href="/books/NBK133429/table/ml225.t2/?report=objectonly" target="object" rid-figpopup="figml225t2" rid-ob="figobml225t2">Table 2</a>) were also potent PAFAH2 inhibitors, suggesting that the urea triazole scaffold could likely be a promising starting point for inhibitor optimization for this enzyme as well. It is worth noting that <a href="https://pubchem.ncbi.nlm.nih.gov/substance/7974398" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 7974398</a> also inhibits anti-target pPAFAH; however, given past medchem success with the triazole urea scaffold, we thought it should be possible to improve selectivity via structural modification.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml225t2"><a href="/books/NBK133429/table/ml225.t2/?report=objectonly" target="object" title="Table 2" class="img_link icnblk_img figpopup" rid-figpopup="figml225t2" rid-ob="figobml225t2"><img class="small-thumb" src="/books/NBK133429/table/ml225.t2/?report=thumb" src-large="/books/NBK133429/table/ml225.t2/?report=previmg" alt="Table 2. Most promising leads from HTS Campaign for PAFAH2 inhibitor discovery." /></a><div class="icnblk_cntnt"><h4 id="ml225.t2"><a href="/books/NBK133429/table/ml225.t2/?report=objectonly" target="object" rid-ob="figobml225t2">Table 2</a></h4><p class="float-caption no_bottom_margin">Most promising leads from HTS Campaign for PAFAH2 inhibitor discovery. </p></div></div><p>Additionally, as discussed in ref. [<a class="bk_pop" href="#ml225.r19">19</a>], while previously characterizing agents that perturb endocannabinoid uptake and metabolism, we discovered that the tetrazole urea LY2183240 (<b>92</b>, <a class="figpopup" href="/books/NBK133429/figure/ml225.f2/?report=objectonly" target="object" rid-figpopup="figml225f2" rid-ob="figobml225f2">Figure 2</a>) [<a class="bk_pop" href="#ml225.r23">23</a>] was a potent inhibitor of numerous SHs [<a class="bk_pop" href="#ml225.r24">24</a>], including the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL or MGLL), and alpha/beta-hydrolase 6 (ABHD6), and have confirmed that <b>92</b> inhibits FAAH by covalent, carbamoylation of the enzyme&#x02019;s serine nucleophile [<a class="bk_pop" href="#ml225.r24">24</a>]. There are a handful of other reports of N-heterocyclic ureas as SH inhibitors, including the isoxazolonyl urea <b>93</b> [<a class="bk_pop" href="#ml225.r25">25</a>], and 1,2,4-triazole urea <b>94</b> [<a class="bk_pop" href="#ml225.r26">26</a>], which are potent inhibitors of hormone-sensitive lipase (LIPE); however, selectivity profiles have not been reported. Taken together, these data indicate that the triazole urea scaffold might be tolerant to modification without complete loss of binding efficiency, and would yield a probe with good <i>in vitro</i> and <i>in situ</i> properties.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f2" co-legend-rid="figlgndml225f2"><a href="/books/NBK133429/figure/ml225.f2/?report=objectonly" target="object" title="Figure 2" class="img_link icnblk_img figpopup" rid-figpopup="figml225f2" rid-ob="figobml225f2"><img class="small-thumb" src="/books/NBK133429/bin/ml225f2.gif" src-large="/books/NBK133429/bin/ml225f2.jpg" alt="Figure 2. N-Heterocyclic urea SH inhibitors." /></a><div class="icnblk_cntnt" id="figlgndml225f2"><h4 id="ml225.f2"><a href="/books/NBK133429/figure/ml225.f2/?report=objectonly" target="object" rid-ob="figobml225f2">Figure 2</a></h4><p class="float-caption no_bottom_margin">N-Heterocyclic urea SH inhibitors. </p></div></div><p>Because the FluoPol-ABPP assay was conducted with purified, recombinant enzyme, we first confirmed that the triazole urea <b>1</b> (CID 735660 resynthesized as <a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913565" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913565</a>, Table 4) could inhibit endogenous PAFAH2 in a complex proteome by gel-based competitive ABPP. In this assay, a complex proteome containing endogenous PAFAH2 is incubated with test compound followed by reaction with the FP-Rh activity-based probe [<a class="bk_pop" href="#ml225.r16">16</a>]. The reaction products are separated by SDS-PAGE and visualized in-gel using a flatbed fluorescence scanner. Test compounds that act as PAFAH2 inhibitors will prevent enzyme-probe interactions, thereby decreasing the fluorescence intensity of the protein bands. As reported in <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504494" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504494</a>, we determined that the triazole urea <b>1</b> (CID 735660, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913565" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913565</a>) had an IC50 of 1.4 &#x003bc;M for PAFAH2 using this method. Following confirmation, we embarked on a medchem campaign to improve the potency of compound <b>1</b>, as detailed in <a href="#ml225.s34">section 3.4</a>.</p></div><div id="ml225.s32"><h3>3.2. Dose Response Curves for Probe</h3><p>An IC50 value was obtained from gel-based competitive-ABPP data (<a class="figpopup" href="/books/NBK133429/figure/ml225.f3/?report=objectonly" target="object" rid-figpopup="figml225f3" rid-ob="figobml225f3">Figure 3</a>) as described in <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504494" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504494</a>.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f3" co-legend-rid="figlgndml225f3"><a href="/books/NBK133429/figure/ml225.f3/?report=objectonly" target="object" title="Figure 3" class="img_link icnblk_img figpopup" rid-figpopup="figml225f3" rid-ob="figobml225f3"><img class="small-thumb" src="/books/NBK133429/bin/ml225f3.gif" src-large="/books/NBK133429/bin/ml225f3.jpg" alt="Figure 3. IC50 curve for probe ML225 (compound 29, SID 103913572) as determined by gel-based competitive-ABPP with FP-Rh (AID 504494) against target PAFAH2 in a complex proteome lysate." /></a><div class="icnblk_cntnt" id="figlgndml225f3"><h4 id="ml225.f3"><a href="/books/NBK133429/figure/ml225.f3/?report=objectonly" target="object" rid-ob="figobml225f3">Figure 3</a></h4><p class="float-caption no_bottom_margin">IC50 curve for probe ML225 (compound 29, SID 103913572) as determined by gel-based competitive-ABPP with FP-Rh (AID 504494) against target PAFAH2 in a complex proteome lysate. IC50 = 3 nM </p></div></div></div><div id="ml225.s33"><h3>3.3. Scaffold/Moiety Chemical Liabilities</h3><p>The probe compound was determined to covalently modify the catalytic serine (Ser236) of PAFAH2 by LC-MS/MS analysis (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504486" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504486</a>). The observed mass shift of the active site peptide corresponds to the adduct depicted in <a class="figpopup" href="/books/NBK133429/figure/ml225.f4/?report=objectonly" target="object" rid-figpopup="figml225f4" rid-ob="figobml225f4">Figure 4</a>, formed by serine nucleophilic attack at the carbonyl followed by loss of the triazole moiety to carbamoylate the enzyme.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f4" co-legend-rid="figlgndml225f4"><a href="/books/NBK133429/figure/ml225.f4/?report=objectonly" target="object" title="Figure 4" class="img_link icnblk_img figpopup" rid-figpopup="figml225f4" rid-ob="figobml225f4"><img class="small-thumb" src="/books/NBK133429/bin/ml225f4.gif" src-large="/books/NBK133429/bin/ml225f4.jpg" alt="Figure 4. Covalent modification of PAFAH2 by probe ML225 (Compound 29, SID 103913572)." /></a><div class="icnblk_cntnt" id="figlgndml225f4"><h4 id="ml225.f4"><a href="/books/NBK133429/figure/ml225.f4/?report=objectonly" target="object" rid-ob="figobml225f4">Figure 4</a></h4><p class="float-caption no_bottom_margin">Covalent modification of PAFAH2 by probe ML225 (Compound <i>29</i>, SID 103913572). Active Site Peptide: R.VAVMGHS<sub>236</sub>FGGATAILALAK.E</p></div></div><p>The probe compound showed no reactivity with glutathione (100 &#x003bc;M), indicating that it is not generally cysteine reactive, but rather has a tempered electrophilicity and specific structural elements that direct reactivity towards PAFAH2.</p><p>An irreversible probe has some distinct advantages over reversible analogs. Targets can be readily characterized by methods such as mass spectrometry and click chemistry-ABPP, required dosing is often lower, irreversible compounds are not as sensitive to pharmacokinetic parameters, and administration can induce long-lasting inhibition [<a class="bk_pop" href="#ml225.r27">27</a>]. In the case of the EGFR inhibitor PD 0169414, its irreversibility and high selectivity were credited with producing prolonged inhibition of the target, alleviating concerns over short plasma half-lives and reducing the need for high peak plasma levels, thus minimizing potential nonspecific toxic effects [<a class="bk_pop" href="#ml225.r28">28</a>].</p><p>Indeed, over a third of enzymatic drug targets are irreversibly inhibited by currently marketed drugs [<a class="bk_pop" href="#ml225.r29">29</a>]. Examples of covalent enzyme-inhibitor pairs include serine type D-Ala-D-Ala carboxypeptidase, which is covalently modified by all B-lactam antibiotics, acetylcholinesterase, whose active site serine undergoes covalent modification by pyridostigmine, prostaglandin-endoperoxide synthase, which is the target of the ubiquitously prescribed aspirin, aromatase, which is irreversibly modified by exemestane, monoamine oxidase, which is covalently modified by L-deprenyl, thymidylate synthase, which is covalently modified by floxuridine, H<sup>+</sup>/K<sup>+</sup> ATPase, which undergoes covalent modification by omeprazole, esmoeprazole, and lansoprazole, and triacylglycerol lipase, whose serine nucleophile is targeted by orlistat [<a class="bk_pop" href="#ml225.r29">29</a>].</p></div><div id="ml225.s34"><h3>3.4. SAR Tables</h3><p>We first wanted to compare different <i>N</i>-heterocyclic ureas for their potential to act as SH inhibitors, as the electrophilicity of different compound would likely affect both reactivity with members of the SH superfamily as well as potential cross-reactivity with other classes of proteins. We synthesized alkyne-modified agents <b>6</b>&#x02013;<b>10</b> (AA6-10, <a class="figpopup" href="/books/NBK133429/table/ml225.t3/?report=objectonly" target="object" rid-figpopup="figml225t3" rid-ob="figobml225t3">Table 3</a>), which differ in electrophilicity due to variations in the leaving group. We then performed a competitive ABPP experiment by treating a mouse brain membrane proteome with <b>6</b>&#x02013;<b>10</b> (20 &#x003bc;M, 30 min), followed by the SH-directed activity-based probe FP-Rh (2 &#x003bc;M, 30 min) [<a class="bk_pop" href="#ml225.r16">16</a>], separation by SDS-PAGE, and detection of FP-Rh-labeled proteins by in-gel fluorescence scanning (<a class="figpopup" href="/books/NBK133429/figure/ml225.f3/?report=objectonly" target="object" rid-figpopup="figml225f3" rid-ob="figobml225f3">Figure 3A</a>, see also <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504527" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504527</a> and ref. [<a class="bk_pop" href="#ml225.r19">19</a>]). The carbamate <b>6</b> (AA6) and imidazole <b>7</b> (AA7) showed little to no detectable inhibition of SHs, whereas 1,2,3-triazoles <b>8</b>&#x02013;<b>10</b> (AA8-AA10) blocked the FP-Rh-labeling of several proteins. As expected, the reactivity of these compounds followed the trend of electrophilicity imparted by their leaving groups, with the pyridyl triazole <b>10</b> (AA10) being the most acidic and reactive <i>N</i>-heterocyclic urea.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml225t3"><a href="/books/NBK133429/table/ml225.t3/?report=objectonly" target="object" title="Table 3" class="img_link icnblk_img figpopup" rid-figpopup="figml225t3" rid-ob="figobml225t3"><img class="small-thumb" src="/books/NBK133429/table/ml225.t3/?report=thumb" src-large="/books/NBK133429/table/ml225.t3/?report=previmg" alt="Table 3. N-heterocyclic urea compounds tested for general SH inhibition." /></a><div class="icnblk_cntnt"><h4 id="ml225.t3"><a href="/books/NBK133429/table/ml225.t3/?report=objectonly" target="object" rid-ob="figobml225t3">Table 3</a></h4><p class="float-caption no_bottom_margin"><i>N</i>-heterocyclic urea compounds tested for general SH inhibition. </p></div></div><p>To assess the cross-reactivity of 1,2,3-triazole ureas <b>8</b>&#x02013;<b>10</b> (AA8&#x02013;AA10) with other protein classes, we performed a second, complementary competitive ABPP experiment (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504527" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504527</a> and ref. [<a class="bk_pop" href="#ml225.r19">19</a>]). Here, we used the <i>N</i>-heterocyclic ureas themselves as probes and asked whether their proteome reactivity profiles could be blocked by pre-incubation with the non-fluorescent SH-directed activity based probe FP-biotin [<a class="bk_pop" href="#ml225.r30">30</a>] (20 &#x003bc;M). Visualization of labeled proteins was achieved by click chemistry conjugation of the alkyne-functionalized triazole urea probes to an azide-Rh reporter tag [<a class="bk_pop" href="#ml225.r31">31</a>]. FP-biotin competed the labeling of all proteins modified by triazoles <b>8</b> (AA8) and <b>9</b> (AA9) (<a class="figpopup" href="/books/NBK133429/figure/ml225.f5/?report=objectonly" target="object" rid-figpopup="figml225f5" rid-ob="figobml225f5">Figure 5B</a>), whereas several of the protein targets of the most electrophilic compound <b>10</b> (AA10) were not sensitive to FP-biotin competition (<a class="figpopup" href="/books/NBK133429/figure/ml225.f5/?report=objectonly" target="object" rid-figpopup="figml225f5" rid-ob="figobml225f5">Figure 5B</a>, red boxes), suggesting that they were not SH proteins. These data designated the monocyclic triazole ureas <b>8</b> (AA8) and <b>9</b> (AA9) as possessing the desired degree of electrophilicity to inhibit a number of SHs in proteomes, but, at the same time, avoid modification of proteins outside of the SH class.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f5" co-legend-rid="figlgndml225f5"><a href="/books/NBK133429/figure/ml225.f5/?report=objectonly" target="object" title="Figure 5" class="img_link icnblk_img figpopup" rid-figpopup="figml225f5" rid-ob="figobml225f5"><img class="small-thumb" src="/books/NBK133429/bin/ml225f5.gif" src-large="/books/NBK133429/bin/ml225f5.jpg" alt="Figure 5. Competitive ABPP with clickable N-heterocyclic urea activity-based probes 6&#x02013;10 (AA6&#x02013;AA10) to assess general SH reactivity." /></a><div class="icnblk_cntnt" id="figlgndml225f5"><h4 id="ml225.f5"><a href="/books/NBK133429/figure/ml225.f5/?report=objectonly" target="object" rid-ob="figobml225f5">Figure 5</a></h4><p class="float-caption no_bottom_margin">Competitive ABPP with clickable N-heterocyclic urea activity-based probes <i>6</i>&#x02013;<i>10</i> (AA6&#x02013;AA10) to assess general SH reactivity. <i>A.</i> Competitive ABPP of compounds <i>6</i>&#x02013;<i>10</i> (AA6&#x02013;AA10) in the mouse brain membrane proteome with FP-Rh. <a href="/books/NBK133429/figure/ml225.f5/?report=objectonly" target="object" rid-ob="figobml225f5">(more...)</a></p></div></div><p>The SAR <a class="figpopup" href="/books/NBK133429/table/ml225.t4/?report=objectonly" target="object" rid-figpopup="figml225t4" rid-ob="figobml225t4">Tables 4</a> and <a class="figpopup" href="/books/NBK133429/table/ml225.t5/?report=objectonly" target="object" rid-figpopup="figml225t5" rid-ob="figobml225t5">5</a> include 25 triazole urea analogs, including the resynthesized top triazole
hit compound <b>1</b> (CID 735660, <a class="figpopup" href="/books/NBK133429/table/ml225.t2/?report=objectonly" target="object" rid-figpopup="figml225t2" rid-ob="figobml225t2">Table 2</a>) as <a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913565" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913565</a>. The analogs are variable at three positions: the substituents of the urea nitrogen (<b>R<sub>1</sub></b> and <b>R<sub>2</sub></b>) and the substituent at 4-position of the triazole (<b>R<sub>3</sub></b>). (Note: when the substituent of the urea nitrogen is a ring system, the group is denoted <b>R<sub>1</sub></b>/<b>R<sub>2</sub></b> in the SAR <a class="figpopup" href="/books/NBK133429/table/ml225.t4/?report=objectonly" target="object" rid-figpopup="figml225t4" rid-ob="figobml225t4">Tables 4</a> and <a class="figpopup" href="/books/NBK133429/table/ml225.t5/?report=objectonly" target="object" rid-figpopup="figml225t5" rid-ob="figobml225t5">5</a>, and the nomenclature includes the urea nitrogen). The synthetic compounds were subject to gel-based competitive ABPP profiling to assess both potency and selectivity against several dozen FP-sensitive SHs. Compounds <b>1</b> and <b>11</b>&#x02013;<b>30</b> were tested at 20, 200, and 1000 nM concentration as outlined in <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/404513" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 404513</a> (see <a class="figpopup" href="/books/NBK133429/table/ml225.t4/?report=objectonly" target="object" rid-figpopup="figml225t4" rid-ob="figobml225t4">Tables 4</a> and <a class="figpopup" href="/books/NBK133429/table/ml225.t5/?report=objectonly" target="object" rid-figpopup="figml225t5" rid-ob="figobml225t5">5</a> and <a class="figpopup" href="/books/NBK133429/figure/ml225.f8/?report=objectonly" target="object" rid-figpopup="figml225f8" rid-ob="figobml225f8">Figure 8</a>) and compounds <b>31</b>&#x02013;<b>34</b> were tested at 30, 150, 750 nM concentration as outlined in <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504520" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504520</a> (see <a class="figpopup" href="/books/NBK133429/table/ml225.t6/?report=objectonly" target="object" rid-figpopup="figml225t6" rid-ob="figobml225t6">Table 6</a> in this report and Figure 9 of the <a href="/pcsubstance/?term=ML226[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML226</a> probe report). The only observed anti-targets up to 1000 nM (indicated by disappearance of band in compound treated lane relative to the DMSO control) were N-acylaminoacyl-peptide hydrolase (APEH), alpha/beta hydrolase domain containing protein 11 (ABHD11), esterase D/formylglutathione hydrolase (ESD), and lysophospholipase 1 (LYPLA1). Compounds <b>11</b>&#x02013;<b>14, 16, 17, 20</b> are inactive (0% inhibition) at all concentrations tested.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml225t4"><a href="/books/NBK133429/table/ml225.t4/?report=objectonly" target="object" title="Table 4" class="img_link icnblk_img figpopup" rid-figpopup="figml225t4" rid-ob="figobml225t4"><img class="small-thumb" src="/books/NBK133429/table/ml225.t4/?report=thumb" src-large="/books/NBK133429/table/ml225.t4/?report=previmg" alt="Table 4. Target SAR Analysis." /></a><div class="icnblk_cntnt"><h4 id="ml225.t4"><a href="/books/NBK133429/table/ml225.t4/?report=objectonly" target="object" rid-ob="figobml225t4">Table 4</a></h4><p class="float-caption no_bottom_margin">Target SAR Analysis. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml225t5"><a href="/books/NBK133429/table/ml225.t5/?report=objectonly" target="object" title="Table 5" class="img_link icnblk_img figpopup" rid-figpopup="figml225t5" rid-ob="figobml225t5"><img class="small-thumb" src="/books/NBK133429/table/ml225.t5/?report=thumb" src-large="/books/NBK133429/table/ml225.t5/?report=previmg" alt="Table 5. Target SAR Analysis." /></a><div class="icnblk_cntnt"><h4 id="ml225.t5"><a href="/books/NBK133429/table/ml225.t5/?report=objectonly" target="object" rid-ob="figobml225t5">Table 5</a></h4><p class="float-caption no_bottom_margin">Target SAR Analysis. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f8" co-legend-rid="figlgndml225f8"><a href="/books/NBK133429/figure/ml225.f8/?report=objectonly" target="object" title="Figure 8" class="img_link icnblk_img figpopup" rid-figpopup="figml225f8" rid-ob="figobml225f8"><img class="small-thumb" src="/books/NBK133429/bin/ml225f8a.gif" src-large="/books/NBK133429/bin/ml225f8a.jpg" alt="Figure 8. Potency and selectivity of triazole urea synthetic library compounds at three compound concentrations." /></a><div class="icnblk_cntnt" id="figlgndml225f8"><h4 id="ml225.f8"><a href="/books/NBK133429/figure/ml225.f8/?report=objectonly" target="object" rid-ob="figobml225f8">Figure 8</a></h4><p class="float-caption no_bottom_margin">Potency and selectivity of triazole urea synthetic library compounds at three compound
concentrations. 1 &#x003bc;M (<i>A</i>), 200 nM (<i>B</i>), and 20 nM
(<i>C</i>). Gel-based competitive ABPP assay conducted as described in AID 504513. Control = DMSO only (no compound). <a href="/books/NBK133429/figure/ml225.f8/?report=objectonly" target="object" rid-ob="figobml225f8">(more...)</a></p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml225t6"><a href="/books/NBK133429/table/ml225.t6/?report=objectonly" target="object" title="Table 6" class="img_link icnblk_img figpopup" rid-figpopup="figml225t6" rid-ob="figobml225t6"><img class="small-thumb" src="/books/NBK133429/table/ml225.t6/?report=thumb" src-large="/books/NBK133429/table/ml225.t6/?report=previmg" alt="Table 6. Target SAR Analysis." /></a><div class="icnblk_cntnt"><h4 id="ml225.t6"><a href="/books/NBK133429/table/ml225.t6/?report=objectonly" target="object" rid-ob="figobml225t6">Table 6</a></h4><p class="float-caption no_bottom_margin">Target SAR Analysis. </p></div></div><p><i>First Round SAR (variation of R<sub>1</sub>/R<sub>2</sub>):</i> The initial round of SAR preserved the triazole urea core of the HTS hit structure <b>1</b> (<a href="https://pubchem.ncbi.nlm.nih.gov/substance/103913565" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID 103913565</a>) and maintained <b>R<sub>3</sub></b> as a hydrogen, varying only the substituents at <b>R<sub>1</sub></b> and <b>R<sub>2</sub></b>. Of the 10 new compounds synthesized (<b>11</b>&#x02013;<b>20</b> in SAR <a class="figpopup" href="/books/NBK133429/table/ml225.t4/?report=objectonly" target="object" rid-figpopup="figml225t4" rid-ob="figobml225t4">Table 4</a>), only compounds with small ring systems at <b>R<sub>1</sub>/R<sub>2</sub></b> &#x02013; morpholine (compound <b>15</b>), pyrrolidine (compound <b>18</b>), and, to a lesser extent, piperidine (compound <b>19</b>) showed any potency for PAFAH2, as judged by percent inhibition.</p><p><i>Second Round SAR (variation of R<sub>3</sub>)</i>: Based on results of the first round of SAR, for second generation compounds, we synthesized analogs bearing either morpholine (compounds <b>21</b>&#x02013;<b>24</b>) or pyrrolidine (compounds <b>25</b>&#x02013;<b>30</b>) at <b>R<sub>1</sub>/R<sub>2</sub></b> and introduced a series of (substituted) phenyl and diphenyl moieties at <b>R<sub>3</sub></b>. As a class, the pyrrolidine compounds were more potent than their morpholine analogs (e.g., compare inhibition of <b>27</b> vs. <b>24; 26</b> vs. <b>23</b>), and included two ultrapotent derivatives, compounds <b>28</b> and <b>29</b>, with 4-phenoxyphenyl and 4-biphenyl substituents, respectively, at <b>R<sub>3</sub></b>. While compound <b>28</b> showed evidence of anti-target reactivity with APEH, compound <b>29</b> (<a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a>) showed no evidence of anti-target activity at up to 1000 nM, giving &#x0003e;333-fold selectivity vs. more than 20 SH targets (IC50 vs. PAFAH2 = 3 nM) as analyzed by gel-based ABPP (see <a href="#ml225.s36">section 3.6</a>).</p><p><i>Third Round of SAR (second iteration variation of R<sub>1</sub>/R<sub>2</sub>)</i>: To test the inter-dependence of the <b>R<sub>1</sub>/R<sub>2</sub></b> and <b>R<sub>3</sub></b> functional groups, we evaluated analogs bearing four of the most potent <b>R<sub>3</sub></b> groups identified in the second round of SAR and phenyl substituents at <b>R<sub>1</sub></b> and <b>R<sub>2</sub></b>. As expected from the results with compound <b>13</b> (round 1), these derivatives (compounds <b>31</b>&#x02013;<b>34</b>) showed significantly reduced potency as compared to the pyrrolidine and morpholine series (e.g., compare inhibition of <b>31</b> vs. <b>22; 32</b> vs. <b>28; 33</b> vs. <b>29; 34</b> vs. <b>30</b>).</p><p><i>Summary:</i> The SAR around PAFAH2 inhibition is observed to be rather steep, with several of the library members (i.e., <b>11</b>&#x02013;<b>14</b>, <b>16</b>, <b>17</b>, <b>20</b>) showing no inhibition of the target enzyme up to 1 &#x003bc;M compound concentration. This is likely a property unique to the target, rather than the inhibitor class, as triazole urea inhibitors of similar structure developed for LYPLA1/2 (<a href="/pcsubstance/?term=ML211[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML211</a>) and ABHD11 (<a href="/pcsubstance/?term=ML226[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML226</a>) do not evince this steep SAR profile. As compared to the initial HTS hit (compound <b>1</b>) with an IC50 of 1400 nM for PAFAH2, probe <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> (IC50 3 nM) represents more than a 450-fold improvement in potency. As assessed by gel-based ABPP (see <a href="#ml225.s36">section 3.6</a>), <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> shows no evidence of anti-target reactivity up to 1 &#x003bc;M, giving a fold-selectivity vs. FP-sensitive SHs of more than 333-fold.</p></div><div id="ml225.s35"><h3>3.5. Cellular Activity</h3><p><b><i>In Situ Inhibition:</i></b> Probe <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> (compound <b>29</b>, AA39-2) is highly active against PAFAH2 <i>in situ</i> (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504495" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504495</a>), completely inhibiting enzymatic activity at 30 nM compound concentration after 4 hours (media + 10% fetal calf serum) as assayed by gel-based competitive ABPP (<a class="figpopup" href="/books/NBK133429/figure/ml225.f6/?report=objectonly" target="object" rid-figpopup="figml225f6" rid-ob="figobml225f6">Figure 6</a>). Further analysis revealed complete inhibition at 10 nM (<a class="figpopup" href="/books/NBK133429/figure/ml225.f9/?report=objectonly" target="object" rid-figpopup="figml225f9" rid-ob="figobml225f9">Figure 9B</a>) and an IC50 of 170 pM for <i>in situ</i> inhibition of PAFAH2 (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504496" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504496</a>). These results indicate that <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> is free to cross cell membranes and inhibit its target in the cytoplasm of cells, even in the presence of serum-containing medium.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f6" co-legend-rid="figlgndml225f6"><a href="/books/NBK133429/figure/ml225.f6/?report=objectonly" target="object" title="Figure 6" class="img_link icnblk_img figpopup" rid-figpopup="figml225f6" rid-ob="figobml225f6"><img class="small-thumb" src="/books/NBK133429/bin/ml225f6.gif" src-large="/books/NBK133429/bin/ml225f6.jpg" alt="Figure 6. Selective inhibition of PAFAH2 activity in situ by probe ML225 (compound 29, band.)." /></a><div class="icnblk_cntnt" id="figlgndml225f6"><h4 id="ml225.f6"><a href="/books/NBK133429/figure/ml225.f6/?report=objectonly" target="object" rid-ob="figobml225f6">Figure 6</a></h4><p class="float-caption no_bottom_margin">Selective inhibition of PAFAH2 activity <i>in situ</i> by probe ML225 (compound <i>29</i>, band.). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f9" co-legend-rid="figlgndml225f9"><a href="/books/NBK133429/figure/ml225.f9/?report=objectonly" target="object" title="Figure 9" class="img_link icnblk_img figpopup" rid-figpopup="figml225f9" rid-ob="figobml225f9"><img class="small-thumb" src="/books/NBK133429/bin/ml225f9.gif" src-large="/books/NBK133429/bin/ml225f9.jpg" alt="Figure 9. Potency and selectivity of ML225 against anti-target pPAFAH." /></a><div class="icnblk_cntnt" id="figlgndml225f9"><h4 id="ml225.f9"><a href="/books/NBK133429/figure/ml225.f9/?report=objectonly" target="object" rid-ob="figobml225f9">Figure 9</a></h4><p class="float-caption no_bottom_margin">Potency and selectivity of ML225 against anti-target pPAFAH. <i>A.</i><i>In Vitro</i>: recombinant pPAFAH expressed in COS-7 cells; ML225 has an IC50 &#x02265;100 nM for pPAFAH, corresponding to &#x0003e;33-fold selectivity. <i>B.</i><i>In Situ</i>: endogenous pPAFAH in compound-treated <a href="/books/NBK133429/figure/ml225.f9/?report=objectonly" target="object" rid-ob="figobml225f9">(more...)</a></p></div></div><p><b><i>Cytotoxicity:</i></b> The probe <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> (compound <b>29, AA39-2</b>) and analog <b>28</b> (<b>AA39-1</b>) were evaluated for cytotoxicity (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504511" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504511</a>) using both serum-free and serum-supplemented media. As shown in <a class="figpopup" href="/books/NBK133429/figure/ml225.f7/?report=objectonly" target="object" rid-figpopup="figml225f7" rid-ob="figobml225f7">Figure 7</a>, both compounds have a CC50 of at least 35 &#x003bc;M, which is five orders of magnitude greater than the <i>in situ</i> IC50 value of 170 pM (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504496" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504496</a>). It should be noted, however, that based on the solubility calculation of 1.7 &#x003bc;M for <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> (<a href="#ml225.s28">section 2.2</a>), the CC50 number may not be accurate. However, even if a strict lower limit of 1.7 &#x003bc;M is imposed on the CC50 value, there is still a &#x0003e;10,000-fold difference between the active and cytotoxic <i>in situ</i> concentrations.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f7" co-legend-rid="figlgndml225f7"><a href="/books/NBK133429/figure/ml225.f7/?report=objectonly" target="object" title="Figure 7" class="img_link icnblk_img figpopup" rid-figpopup="figml225f7" rid-ob="figobml225f7"><img class="small-thumb" src="/books/NBK133429/bin/ml225f7.gif" src-large="/books/NBK133429/bin/ml225f7.jpg" alt="Figure 7. Cytotoxicity of probe ML225 and analog 28." /></a><div class="icnblk_cntnt" id="figlgndml225f7"><h4 id="ml225.f7"><a href="/books/NBK133429/figure/ml225.f7/?report=objectonly" target="object" rid-ob="figobml225f7">Figure 7</a></h4><p class="float-caption no_bottom_margin">Cytotoxicity of probe ML225 and analog <i>28</i>. In serum-free (<i>A</i>) and serum-supplemented (<i>B</i>) media. See AID 504511 for details. </p></div></div></div><div id="ml225.s36"><h3>3.6. Profiling Assays</h3><p><b><i>HTS Analysis:</i></b> To date, the HTS hit (Compound <b>1</b>, CID 735660) has been tested in 504 other cell-based and non-cell based bioassays deposited in PubChem, and has shown activity in only 11 of those assays, giving a hit rate of 2.0%. This low hit rate indicates that this compound class may not be generally active. No HTS activity data is yet available for probe <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> or any of the synthetic analogs, nor has compound <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> been submitted for commercial or non-commercial broad panel screening.</p><p><b><i>Gel-based Competitive ABPP:</i></b> Probe <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> and analogs listed in <a href="#ml225.s34">Section 3.4</a> have been subject to gel-based competitive ABPP screening to assess SH reactivity (see <a href="#ml225.s34">Section 3.4</a> for summary of data below). Competitive ABPP (<a class="figpopup" href="/books/NBK133429/figure/ml225.f8/?report=objectonly" target="object" rid-figpopup="figml225f8" rid-ob="figobml225f8">Figure 8</a>) was utilized for medchem optimization, allowing rapid assessment of anti-target inhibition (as visualized by disappearance of bands in compound-treated lanes) of analogs against &#x0003e;20 distinct SHs. The optimized probe <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> shows &#x0003e;333-fold selectivity against all other FP-sensitive SHs (<a class="figpopup" href="/books/NBK133429/figure/ml225.f8/?report=objectonly" target="object" rid-figpopup="figml225f8" rid-ob="figobml225f8">Figure 8A</a>, compound <b>AA39-2</b>, see also <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504513" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504513</a>).</p><p><b><i>Selectivity vs. pPAFAH:</i></b>
<a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> was shown to selectively inhibit PAFAH2 over its closest sequence homologue pPAFAH, showing &#x0003e;33-fold selectivity <i>in vitro</i> (<a class="figpopup" href="/books/NBK133429/figure/ml225.f9/?report=objectonly" target="object" rid-figpopup="figml225f9" rid-ob="figobml225f9">Figure 9A</a>, IC50 3 nM for PAFAH2, ~100 nM for pPAFAH) and <i>in situ</i>, where 10 nM compound shows complete inhibition of PAFAH2 and no inhibition of pPAFAH (<a class="figpopup" href="/books/NBK133429/figure/ml225.f9/?report=objectonly" target="object" rid-figpopup="figml225f9" rid-ob="figobml225f9">Figure 9B</a>).</p><p><b><i>SILAC-ABPP:</i></b> To more comprehensively identify potential anti-targets, we utilized an advanced quantitative mass spectrometry (MS)-based platform termed competitive ABPP-SILAC (<a class="figpopup" href="/books/NBK133429/figure/ml225.f10/?report=objectonly" target="object" rid-figpopup="figml225f10" rid-ob="figobml225f10">Figure 10A</a>). Competitive ABPP-SILAC is a merger of ABPP-MudPIT method [<a class="bk_pop" href="#ml225.r32">32</a>] with the stable isotope labeling of amino acids in culture (SILAC) technique [<a class="bk_pop" href="#ml225.r33">33</a>]. Competitive ABPP-SILAC allows for precise quantitation of inhibited enzymes by calculating the isotopic ratios of peptides from control- and inhibitor-treated cells. As described in <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504519" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504519</a> and ref. [<a class="bk_pop" href="#ml225.r19">19</a>], mouse T cells were cultured in &#x02018;light&#x02019; medium (with <sup>12</sup>C<sub>6</sub><sup>14</sup>N<sub>2</sub>-lysine and <sup>12</sup>C<sub>6</sub><sup>14</sup>N<sub>4</sub>-arginine) or &#x02018;heavy&#x02019; medium (with <sup>13</sup>C<sub>6</sub><sup>15</sup>N<sub>2</sub>-lysine and <sup>13</sup>C<sub>6</sub><sup>15</sup>N<sub>4</sub>-arginine). After 6 passages, near-complete (&#x0003e;97%) enrichment was achieved. Light and heavy cells were treated with 3 nM of <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> and DMSO, respectively, for four hours and then harvested, lysed, separated into soluble and membrane fractions, and treated with the affinity-tagged FP-biotin activity-based probe (5 &#x003bc;M, 90 min) [<a class="bk_pop" href="#ml225.r31">31</a>]. Light and heavy fractions were then mixed (1:1 w/w), enriched with avidin, digested on-bead with trypsin, and analyzed by MudPIT [<a class="bk_pop" href="#ml225.r34">34</a>&#x02013;<a class="bk_pop" href="#ml225.r35">35</a>] LC/LC-MS/MS using an LTQ-Orbitrap instrument. Light and heavy signals were quantified from parent ion peaks (MS1) and the corresponding proteins identified from product ion profiles (MS2) using the SEQUEST [<a class="bk_pop" href="#ml225.r36">36</a>] search algorithm and filtered using DTASelect [<a class="bk_pop" href="#ml225.r37">37</a>]. The depicted bar graphs represent the average ratios of light/heavy tryptic peptides for each of the SHs identified in mouse T cells. Enzymes susceptible to inhibition upon compound treatment would be expected to have light/heavy ratios significantly less than one, while unaffected enzymes would have a ratio close to one. The results (<a class="figpopup" href="/books/NBK133429/figure/ml225.f10/?report=objectonly" target="object" rid-figpopup="figml225f10" rid-ob="figobml225f10">Figure 10B</a>) demonstrate that <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> exhibits significant selectivity for PAFAH2, blocking &#x0003e;95% of activity while not affecting any of the other 40 SHs detected in T cells, with the exception of 40% inhibition of ABHD6. The PAFAH enzymes PAFAH1b2 and PAFAH1b3 also showed no evidence of <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> inhibition.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml225f10" co-legend-rid="figlgndml225f10"><a href="/books/NBK133429/figure/ml225.f10/?report=objectonly" target="object" title="Figure 10" class="img_link icnblk_img figpopup" rid-figpopup="figml225f10" rid-ob="figobml225f10"><img class="small-thumb" src="/books/NBK133429/bin/ml225f10a.gif" src-large="/books/NBK133429/bin/ml225f10a.jpg" alt="Figure 10. Potency and selectivity of ML225 assessed by SILAC-ABPP." /></a><div class="icnblk_cntnt" id="figlgndml225f10"><h4 id="ml225.f10"><a href="/books/NBK133429/figure/ml225.f10/?report=objectonly" target="object" rid-ob="figobml225f10">Figure 10</a></h4><p class="float-caption no_bottom_margin">Potency and selectivity of ML225 assessed by SILAC-ABPP. <i>A</i>) Overview of the SILAC-ABPP method. <i>B</i>) Inhibition profile of ML225 shows significant inhibition of only PAFAH2 and 40% inhibition of ABHD6. See AID 504519 and ref. [19] for more details. </p></div></div></div></div><div id="ml225.s37"><h2 id="_ml225_s37_">4. Discussion</h2><p>Probe <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> (Compound <b>29</b>) was identified as a highly potent and selective covalent dual inhibitor of the target enzyme PAFAH2. The reported probe has an IC50 of 3 nM, &#x0003e;33-fold selectivity against the close homologue pPAFAH, and &#x0003e;333-fold selectivity against all other SH anti-targets surveyed by gel-based competitive ABPP (<a href="#ml225.s36">section 3.6</a>). A more in-depth SILAC-ABPP analysis revealed no anti-target reactivity for more than 40 SHs, with the exception of ABHD6, for which <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> showed some modest cross-reactivity (<a href="#ml225.s36">section 3.6</a>). In the event that this property proves problematic, our previously reported ABHD6-selective inhibitor, <b>WWL70</b> [<a class="bk_pop" href="#ml225.r38">38</a>] (IC50 70 nM, selective for ABHD6 over other SHs by SILAC ABPP) could be used as a control. <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> is active <i>in situ</i> (<a href="#ml225.s35">sections 3.5</a> and <a href="#ml225.s36">3.6</a>) with an IC50 of 170 pM<b>,</b> shows no evidence of cytotoxicity up to 35 &#x003bc;M, and is stable in PBS for more than 48 hours. Taken together, these findings suggest that it is very possible to develop potent and selective probes based on tempered electrophilic scaffolds, and that <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> will be a highly successful probe for investigation of PAFAH2 biology.</p><div id="ml225.s38"><h3>4.1. Comparison to Existing Art and How the New Probe is an Improvement</h3><p>No selective PAFAH2 inhibitors have been reported.</p></div><div id="ml225.s39"><h3>4.2. Mechanism of Action Studies</h3><p>As determined from LC-MS/MS analysis (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/504486" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 504486</a>), the probe is an activity-based inhibitor that covalently labels the active site serine nucleophile, Ser236, of PAFAH2 (<a href="#ml225.s33">section 3.3</a>). The observed mass shift of the active site peptide suggests that reaction occurs via serine nucleophilic attack on the carbonyl followed by loss of the triazole to carbamoylate the enzyme (<a class="figpopup" href="/books/NBK133429/figure/ml225.f1/?report=objectonly" target="object" rid-figpopup="figml225f1" rid-ob="figobml225f1">Figure 1</a>).</p></div><div id="ml225.s40"><h3>4.3. Planned Future Studies</h3><p>Given the success of the triazole urea library, we plan to expand the library for identification of additional PAFAH2 and other SH probes. Additionally, we plan to more comprehensively establish parameters for <i>in situ</i> and <i>in vivo</i> use and explore the target specificity of <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> via application of more homologous alkyne analogs. For biological application, we plan to use <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> as a probe for investigation of the potential role of PAFAH2 in inflammatory processes by global proteomic and metabolomic profiling of cells cultured under conditions of oxidative stress to identify potential metabolic pathway involvement. We will also use <a href="/pcsubstance/?term=ML225[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML225</a> as a tool for structural studies&#x02014;to date, a three-dimensional structure of PAFAH2 has not been solved.</p></div></div><div id="ml225.s41"><h2 id="_ml225_s41_">5. References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="ml225.r1">Kono N, et al. Protection against oxidative stress-induced hepatic injury by intracellular type II platelet-activating factor acetylhydrolase by metabolism of oxidized phospholipids in vivo. <span><span class="ref-journal">J. Biol. Chem. </span>2008;<span class="ref-vol">283</span>(3):162836.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18024956" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18024956</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="ml225.r2">Ames BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. <span><span class="ref-journal">Science. </span>1983;<span class="ref-vol">221</span>(4617):125664.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6351251" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6351251</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="ml225.r3">Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. <span><span class="ref-journal">Methods Enzymol. </span>1990;<span class="ref-vol">186</span>:185.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2172697" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2172697</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="ml225.r4">Harman D. The aging process. <span><span class="ref-journal">Proc. Natl. Acad. Sci. U. S. A. </span>1981;<span class="ref-vol">78</span>(11):71248.</span> [<a href="/pmc/articles/PMC349208/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC349208</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6947277" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6947277</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="ml225.r5">Southorn PA, Powis G. Free radicals in medicine. II. Involvement in human disease. <span><span class="ref-journal">Mayo. Clin. Proc. </span>1988;<span class="ref-vol">63</span>(4):390408.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3280885" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3280885</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="ml225.r6">Nigam S, Schewe T. Phospholipase A(2)s and lipid peroxidation. <span><span class="ref-journal">Biochim. Et Biophys. Acta. </span>2000;<span class="ref-vol">1488</span>(1&#x02013;2):16781.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11080686" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11080686</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="ml225.r7">Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: from molecular properties to disease. <span><span class="ref-journal">Biochim. Et Biophys. Acta. </span>2007;<span class="ref-vol">1772</span>(7):71836.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17570293" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17570293</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="ml225.r8">Kinnunen PK. On the principles of functional ordering in biological membranes. <span><span class="ref-journal">Chem. Phys. Lipids. </span>1991;<span class="ref-vol">57</span>(2&#x02013;3):37599.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2054913" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2054913</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="ml225.r9">Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. <span><span class="ref-journal">Prog. Lipid Res. </span>2003;<span class="ref-vol">42</span>(4):31843.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12689622" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12689622</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="ml225.r10">Blank ML, et al. A specific acetylhydrolase for 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid). <span><span class="ref-journal">J. Biol. Chem. </span>1981;<span class="ref-vol">256</span>(1):1758.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7451433" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7451433</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="ml225.r11">Farr RS, et al. Preliminary studies of an acid-labile factor (ALF) in human sera that inactivates platelet-activating factor (PAF). <span><span class="ref-journal">Clin. Immunol. Immunopathol. </span>1980;<span class="ref-vol">15</span>(3):318330.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7371225" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7371225</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="ml225.r12">Zimmerman GA, et al. The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. <span><span class="ref-journal">Crit. Care Med. </span>2002;<span class="ref-vol">30</span>(5 Suppl):S294301.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12004251" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12004251</span></a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="ml225.r13">Prescott SM, et al. Platelet-activating factor and related lipid mediators. <span><span class="ref-journal">Annu. Rev. Biochem. </span>2000;<span class="ref-vol">69</span>:41945.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10966465" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10966465</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="ml225.r14">Marques M, et al. Identification of platelet-activating factor acetylhydrolase II in human skin. <span><span class="ref-journal">J. Invest. Dermatol. </span>2002;<span class="ref-vol">119</span>(4):9139.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12406338" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12406338</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="ml225.r15">Matsuzawa A, et al. Protection against oxidative stress-induced cell death by intracellular platelet-activating factor-acetylhydrolase II. <span><span class="ref-journal">J. Biol. Chem. </span>1997;<span class="ref-vol">272</span>(51):3231520.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9405438" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9405438</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="ml225.r16">Jessani N, et al. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. <span><span class="ref-journal">Proc. Natl. Acad. Sci. U. S. A. </span>2002;<span class="ref-vol">99</span>(16):1033540.</span> [<a href="/pmc/articles/PMC124915/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC124915</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12149457" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12149457</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="ml225.r17">Leung D, et al. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. <span><span class="ref-journal">Nat. Biotechnol. </span>2003;<span class="ref-vol">21</span>(6):68791.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12740587" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12740587</span></a>]</div></dd><dt>18.</dt><dd><div class="bk_ref" id="ml225.r18">Bachovchin DA, et al. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. <span><span class="ref-journal">Nat. Biotechnol. </span>2009;<span class="ref-vol">27</span>(4):38794.</span> [<a href="/pmc/articles/PMC2709489/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2709489</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19329999" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19329999</span></a>]</div></dd><dt>19.</dt><dd><div class="bk_ref" id="ml225.r19">Adibekian A, et al. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. <span><span class="ref-journal">Nat. Chem. Biol. </span>2011;<span class="ref-vol">7</span>(7):46978.</span> [<a href="/pmc/articles/PMC3118922/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3118922</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21572424" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21572424</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="ml225.r20">Li X, et al. Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. <span><span class="ref-journal">Drug Metab. Dispos. </span>2009;<span class="ref-vol">37</span>(6):124250.</span> [<a href="/pmc/articles/PMC3202349/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3202349</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19282395" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19282395</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="ml225.r21">Li X, Kamenecka TM, Cameron MD. Bioactivation of the epidermal growth factor receptor inhibitor gefitinib: implications for pulmonary and hepatic toxicities. <span><span class="ref-journal">Chem. Res. Toxicol. </span>2009;<span class="ref-vol">22</span>(10):173642.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19803472" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19803472</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="ml225.r22">Kalisiak J, Sharpless KB, Fokin VV. Efficient synthesis of 2-substituted-1,2,3-triazoles. <span><span class="ref-journal">Org. Lett. </span>2008;<span class="ref-vol">10</span>(15):31714.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18597477" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18597477</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="ml225.r23">Moore SA, et al. Identification of a high-affinity binding site involved in the transport of endocannabinoids. <span><span class="ref-journal">Proc. Natl. Acad. Sci. U. S. A. </span>2005;<span class="ref-vol">102</span>(49):178527.</span> [<a href="/pmc/articles/PMC1295594/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1295594</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16314570" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16314570</span></a>]</div></dd><dt>24.</dt><dd><div class="bk_ref" id="ml225.r24">Alexander JP, Cravatt BF. The putative endocannabinoid transport blocker LY2183240 is a potent inhibitor of FAAH and several other brain serine hydrolases. <span><span class="ref-journal">J. Am. Chem. Soc. </span>2006;<span class="ref-vol">128</span>(30):9699704.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16866524" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16866524</span></a>]</div></dd><dt>25.</dt><dd><div class="bk_ref" id="ml225.r25">Lowe DB, et al. In vitro SAR of (5-(2H)-isoxazolonyl) ureas, potent inhibitors of hormone-sensitive lipase. <span><span class="ref-journal">Bioorg. Med. Chem. Lett. </span>2004;<span class="ref-vol">14</span>(12):31559.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15149665" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15149665</span></a>]</div></dd><dt>26.</dt><dd><div class="bk_ref" id="ml225.r26">Ebdrup S, et al. Synthesis and structure-activity relationship for a novel class of potent and selective carbamoyl-triazole based inhibitors of hormone sensitive lipase. <span><span class="ref-journal">J. Med. Chem. </span>2004;<span class="ref-vol">47</span>(2):40010.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14711311" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14711311</span></a>]</div></dd><dt>27.</dt><dd><div class="bk_ref" id="ml225.r27">Johnson DS, Weerapana E, Cravatt BF. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. <span><span class="ref-journal">Future Med. Chem. </span>2010;<span class="ref-vol">2</span>(6):949964.</span> [<a href="/pmc/articles/PMC2904065/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2904065</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20640225" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20640225</span></a>]</div></dd><dt>28.</dt><dd><div class="bk_ref" id="ml225.r28">Vincent PW, et al. Anticancer efficacy of the irreversible EGFr tyrosine kinase inhibitor PD 0169414 against human tumor xenografts. <span><span class="ref-journal">Cancer Chemother. Pharmacol. </span>2000;<span class="ref-vol">45</span>(3):2318.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10663641" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10663641</span></a>]</div></dd><dt>29.</dt><dd><div class="bk_ref" id="ml225.r29">Robertson JG. Mechanistic basis of enzyme-targeted drugs. <span><span class="ref-journal">Biochemistry. </span>2005;<span class="ref-vol">44</span>(15):556171.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15823014" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15823014</span></a>]</div></dd><dt>30.</dt><dd><div class="bk_ref" id="ml225.r30">Liu Y, Patricelli MP, Cravatt BF. Activity-based protein profiling: the serine hydrolases. <span><span class="ref-journal">Proc. Natl. Acad. Sci. U. S. A. </span>1999;<span class="ref-vol">96</span>(26):146949.</span> [<a href="/pmc/articles/PMC24710/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC24710</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10611275" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10611275</span></a>]</div></dd><dt>31.</dt><dd><div class="bk_ref" id="ml225.r31">Speers AE, Cravatt BF. Profiling enzyme activities in vivo using click chemistry methods. <span><span class="ref-journal">Chem. Biol. </span>2004;<span class="ref-vol">11</span>(4):53546.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15123248" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15123248</span></a>]</div></dd><dt>32.</dt><dd><div class="bk_ref" id="ml225.r32">Jessani N, et al. A streamlined platform for high-content functional proteomics of primary human specimens. <span><span class="ref-journal">Nat. Methods. </span>2005;<span class="ref-vol">2</span>(9):6917.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16118640" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16118640</span></a>]</div></dd><dt>33.</dt><dd><div class="bk_ref" id="ml225.r33">Mann M. Functional and quantitative proteomics using SILAC. <span><span class="ref-journal">Nat. Rev. Mol. Cell Biol. </span>2006;<span class="ref-vol">7</span>(12):9528.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17139335" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17139335</span></a>]</div></dd><dt>34.</dt><dd><div class="bk_ref" id="ml225.r34">Washburn MP, Wolters D, Yates, JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. <span><span class="ref-journal">Nat. Biotechnol. </span>2001;<span class="ref-vol">19</span>(3):2427.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11231557" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11231557</span></a>]</div></dd><dt>35.</dt><dd><div class="bk_ref" id="ml225.r35">Wolters DA, Washburn MP, Yates JR 3rd. An automated multidimensional protein identification technology for shotgun proteomics. <span><span class="ref-journal">Anal. Chem. </span>2001;<span class="ref-vol">73</span>(23):568390.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11774908" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11774908</span></a>]</div></dd><dt>36.</dt><dd><div class="bk_ref" id="ml225.r36">MacCoss MJ, Wu CC, Yates JR 3rd. Probability-based validation of protein identifications using a modified SEQUEST algorithm. <span><span class="ref-journal">Anal. Chem. </span>2002;<span class="ref-vol">74</span>(21):55939.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12433093" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12433093</span></a>]</div></dd><dt>37.</dt><dd><div class="bk_ref" id="ml225.r37">Cociorva D, LTD, Yates JR. Validation of tandem mass spectrometry database search results using DTASelect. <span><span class="ref-journal">Curr. Protoc. Bioinformatics. </span>2007;<span class="ref-vol">Chapter 13</span></span> Unit 134. [<a href="https://pubmed.ncbi.nlm.nih.gov/18428785" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18428785</span></a>]</div></dd><dt>38.</dt><dd><div class="bk_ref" id="ml225.r38">Li W, Blankman JL, Cravatt BF. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. <span><span class="ref-journal">J. Am. Chem. Soc. </span>2007;<span class="ref-vol">129</span>(31):95945.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17629278" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17629278</span></a>]</div></dd></dl></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div><div class="small"><span class="label">Bookshelf ID: NBK133429</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/23658960" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">23658960</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/mlprobe/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/mlprobe/ml226/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/mlprobe/ml221/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK133429&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK133429/?report=reader">PubReader</a></li><li><a href="/books/NBK133429/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK133429" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK133429" style="display:none" title="Cite this Page"><div class="bk_tt">Adibekian A, Hsu KL, Speers AE, et al. Optimization and characterization of a triazole urea inhibitor for platelet-activating factor acetylhydrolase type 2 (PAFAH2) 2011 Mar 31 [Updated 2013 Mar 7]. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-. <span class="bk_cite_avail"></span></div></div></li><li><a href="/books/NBK133429/pdf/Bookshelf_NBK133429.pdf">PDF version of this page</a> (933K)</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#ml225.s1" ref="log$=inpage&amp;link_id=inpage">Probe Structure &amp; Characteristics</a></li><li><a href="#ml225.s2" ref="log$=inpage&amp;link_id=inpage">Recommendations for Scientific Use of the Probe</a></li><li><a href="#ml225.s3" ref="log$=inpage&amp;link_id=inpage">Introduction</a></li><li><a href="#ml225.s4" ref="log$=inpage&amp;link_id=inpage">Materials and Methods</a></li><li><a href="#ml225.s30" ref="log$=inpage&amp;link_id=inpage">Results</a></li><li><a href="#ml225.s37" ref="log$=inpage&amp;link_id=inpage">Discussion</a></li><li><a href="#ml225.s41" ref="log$=inpage&amp;link_id=inpage">References</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related information</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="discovery_db_links" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pmc&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pmc_refs&amp;IdsFromResult=3025210" ref="log$=recordlinks">PMC</a><div class="brieflinkpop offscreen_noflow">PubMed Central citations</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pcassay&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pcassay_probe&amp;IdsFromResult=3025210" ref="log$=recordlinks">PubChem BioAssay for Chemical Probe</a><div class="brieflinkpop offscreen_noflow">PubChem BioAssay records reporting screening data for the development of the chemical probe(s) described in this book chapter</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pcsubstance&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pcsubstance&amp;IdsFromResult=3025210" ref="log$=recordlinks">PubChem Substance</a><div class="brieflinkpop offscreen_noflow">Related PubChem Substances</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pubmed&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pubmed_refs&amp;IdsFromResult=3025210" ref="log$=recordlinks">PubMed</a><div class="brieflinkpop offscreen_noflow">Links to PubMed</div></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/23658952" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of a carbamate inhibitor for plasma platelet-activating factor acetylhydrolase (pPAFAH).</a><span class="source">[Probe Reports from the NIH Mol...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of a carbamate inhibitor for plasma platelet-activating factor acetylhydrolase (pPAFAH).<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Nagano JMG, Hsu KL, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Bahnson BJ, Cravatt BF, Hodder P, et al. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Probe Reports from the NIH Molecular Libraries Program. 2010</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/23658953" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of a triazole urea inhibitor for alpha/beta hydrolase domain-containing protein 11 (ABHD11): anti-probe for LYPLA1/LYPLA2 dual inhibitor ML211.</a><span class="source">[Probe Reports from the NIH Mol...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of a triazole urea inhibitor for alpha/beta hydrolase domain-containing protein 11 (ABHD11): anti-probe for LYPLA1/LYPLA2 dual inhibitor ML211.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Adibekian A, Hsu KL, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Cravatt BF, Hodder P, Rosen H. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Probe Reports from the NIH Molecular Libraries Program. 2010</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/23658950" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-β).</a><span class="source">[Probe Reports from the NIH Mol...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-β).<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Hsu KL, Tsuboi K, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Cravatt BF, Hodder P, Rosen H. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Probe Reports from the NIH Molecular Libraries Program. 2010</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/23658947" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of a triazole urea dual inhibitor for lysophospholipase 1 (LYPLA1) and lysophospholipase 2 (LYPLA2).</a><span class="source">[Probe Reports from the NIH Mol...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of a triazole urea dual inhibitor for lysophospholipase 1 (LYPLA1) and lysophospholipase 2 (LYPLA2).<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Adibekian A, Martin BR, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Cravatt BF, Hodder P, Rosen H. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Probe Reports from the NIH Molecular Libraries Program. 2010</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/23762934" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of triazole urea inhibitors for abhydrolase domain containing protein 6 (ABHD6).</a><span class="source">[Probe Reports from the NIH Mol...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Optimization and characterization of triazole urea inhibitors for abhydrolase domain containing protein 6 (ABHD6).<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Hsu KL, Tsuboi K, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Cravatt BF, Hodder P, Rosen H. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Probe Reports from the NIH Molecular Libraries Program. 2010</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=23658960" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=23658960" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67d66bbe84f3725e592c9d38">Optimization and characterization of a triazole urea inhibitor for platelet-acti...</a><div class="ralinkpop offscreen_noflow">Optimization and characterization of a triazole urea inhibitor for platelet-activating factor acetylhydrolase type 2 (PAFAH2) - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=2" href="/portal/utils/pageresolver.fcgi?recordid=67d66bbd67c23b31e0b26c92">Optimization and characterization of a triazole urea inhibitor for alpha/beta hy...</a><div class="ralinkpop offscreen_noflow">Optimization and characterization of a triazole urea inhibitor for alpha/beta hydrolase domain-containing protein 11 (ABHD11): anti-probe for LYPLA1/LYPLA2 dual inhibitor ML211 - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=3" href="/portal/utils/pageresolver.fcgi?recordid=67d66bbc67c23b31e0b26a50">Discovery of a Small Molecule Activator of the Hypoxia Inducible Factor Pathway ...</a><div class="ralinkpop offscreen_noflow">Discovery of a Small Molecule Activator of the Hypoxia Inducible Factor Pathway - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=4" href="/portal/utils/pageresolver.fcgi?recordid=67d66bba67c23b31e0b264fb">Identification of Small Molecules that Selectively Inhibit Fluconazole-Resistant...</a><div class="ralinkpop offscreen_noflow">Identification of Small Molecules that Selectively Inhibit Fluconazole-Resistant Candida Albicans in the Presence of Fluconazole but not in its Absence - Probe 3 - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=5" href="/portal/utils/pageresolver.fcgi?recordid=67d66bb92f30673f7bf76f2d">Selective Efflux Inhibition of ATP-binding Cassette Sub-family G Member 2 - Prob...</a><div class="ralinkpop offscreen_noflow">Selective Efflux Inhibition of ATP-binding Cassette Sub-family G Member 2 - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK133429&amp;ncbi_domain=mlprobe&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK133429/&amp;ncbi_pagename=Optimization and characterization of a triazole urea inhibitor for platelet-activating factor acetylhydrolase type 2 (PAFAH2) - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf&amp;ncbi_bookparttype=chapter&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>