nih-gov/www.ncbi.nlm.nih.gov/books/n/mlprobe/ml190/index.html

489 lines
No EOL
194 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK66151" /><meta name="ncbi_domain" content="mlprobe" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK66151/" /><meta name="ncbi_pagename" content="Antagonist for the Kappa Opioid Receptor - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="chapter" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Antagonist for the Kappa Opioid Receptor - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Probe Reports from the NIH Molecular Libraries Program [Internet]" /><meta name="citation_title" content="Antagonist for the Kappa Opioid Receptor" /><meta name="citation_publisher" content="National Center for Biotechnology Information (US)" /><meta name="citation_date" content="2011/05/26" /><meta name="citation_author" content="Michael P Hedrick" /><meta name="citation_author" content="Palak Gosalia" /><meta name="citation_author" content="Kelin Li" /><meta name="citation_author" content="Kevin J Frankowski" /><meta name="citation_author" content="Shenghua Shi" /><meta name="citation_author" content="Thomas E Prisinzano" /><meta name="citation_author" content="Frank Schoenen" /><meta name="citation_author" content="Jeffrey Aubé" /><meta name="citation_author" content="Ying Su" /><meta name="citation_author" content="Derek Stonich" /><meta name="citation_author" content="Stefan Vasile" /><meta name="citation_author" content="Eduard Sergienko" /><meta name="citation_author" content="Wilson Gray" /><meta name="citation_author" content="Santosh Hariharan" /><meta name="citation_author" content="Loribelle Milan" /><meta name="citation_author" content="Susanne Heynen-Genel" /><meta name="citation_author" content="Michael Vicchiarelli" /><meta name="citation_author" content="Arianna Mangravita-Novo" /><meta name="citation_author" content="John M Streicher" /><meta name="citation_author" content="Layton H Smith" /><meta name="citation_author" content="Thomas DY Chung" /><meta name="citation_author" content="Marc Caron" /><meta name="citation_author" content="Laura M Bohn" /><meta name="citation_author" content="Lawrence S Barak" /><meta name="citation_pmid" content="22091479" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK66151/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Antagonist for the Kappa Opioid Receptor" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="National Center for Biotechnology Information (US)" /><meta name="DC.Contributor" content="Michael P Hedrick" /><meta name="DC.Contributor" content="Palak Gosalia" /><meta name="DC.Contributor" content="Kelin Li" /><meta name="DC.Contributor" content="Kevin J Frankowski" /><meta name="DC.Contributor" content="Shenghua Shi" /><meta name="DC.Contributor" content="Thomas E Prisinzano" /><meta name="DC.Contributor" content="Frank Schoenen" /><meta name="DC.Contributor" content="Jeffrey Aubé" /><meta name="DC.Contributor" content="Ying Su" /><meta name="DC.Contributor" content="Derek Stonich" /><meta name="DC.Contributor" content="Stefan Vasile" /><meta name="DC.Contributor" content="Eduard Sergienko" /><meta name="DC.Contributor" content="Wilson Gray" /><meta name="DC.Contributor" content="Santosh Hariharan" /><meta name="DC.Contributor" content="Loribelle Milan" /><meta name="DC.Contributor" content="Susanne Heynen-Genel" /><meta name="DC.Contributor" content="Michael Vicchiarelli" /><meta name="DC.Contributor" content="Arianna Mangravita-Novo" /><meta name="DC.Contributor" content="John M Streicher" /><meta name="DC.Contributor" content="Layton H Smith" /><meta name="DC.Contributor" content="Thomas DY Chung" /><meta name="DC.Contributor" content="Marc Caron" /><meta name="DC.Contributor" content="Laura M Bohn" /><meta name="DC.Contributor" content="Lawrence S Barak" /><meta name="DC.Date" content="2011/05/26" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK66151/" /><meta name="description" content="In this probe report, we describe the discovery and optimization of a novel more potent antagonist (120 nM by DiscoveRx) for the kappa-(κ) opioid (KOP) receptor that is &gt;267-fold selective over the mu-(μ) (MOP) and the delta-(δ) (DOP) opioid receptors. Importantly, this probe and its analogs represent a novel chemical class compared to current literature antagonists and our previously submitted probe, ML140. Accordingly, this probe and its analogues may serve as interesting tools to advance addiction research. Additionally, this new chemotype is less complicated compared to known KOP receptor antagonist compounds. The structure contains no stereochemical centers and the short, versatile synthetic route enables both the synthesis of potential analogs and the production of the compound on larger scale." /><meta name="og:title" content="Antagonist for the Kappa Opioid Receptor" /><meta name="og:type" content="book" /><meta name="og:description" content="In this probe report, we describe the discovery and optimization of a novel more potent antagonist (120 nM by DiscoveRx) for the kappa-(κ) opioid (KOP) receptor that is &gt;267-fold selective over the mu-(μ) (MOP) and the delta-(δ) (DOP) opioid receptors. Importantly, this probe and its analogs represent a novel chemical class compared to current literature antagonists and our previously submitted probe, ML140. Accordingly, this probe and its analogues may serve as interesting tools to advance addiction research. Additionally, this new chemotype is less complicated compared to known KOP receptor antagonist compounds. The structure contains no stereochemical centers and the short, versatile synthetic route enables both the synthesis of potential analogs and the production of the compound on larger scale." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK66151/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-mlprobe-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/mlprobe/ml190/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK66151/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8D20887D66A3E1000000000011000F.m_13" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="pubmed">PubMed</option><option value="clinvar">ClinVar</option><option value="refseq" class="last">RefSeq</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-. </p></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/mlprobe/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-mlprobe-lrg.png" alt="Cover of Probe Reports from the NIH Molecular Libraries Program" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>Probe Reports from the NIH Molecular Libraries Program [Internet].</h2><a data-jig="ncbitoggler" href="#__NBK66151_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK66151_dtls__"><div>Bethesda (MD): National Center for Biotechnology Information (US); 2010-.</div></div><div class="half_rhythm"><ul class="inline_list"><li style="margin-right:1em"><a class="bk_cntns" href="/books/n/mlprobe/">Contents</a></li></ul></div><div class="bk_noprnt"><form method="get" action="/books/n/mlprobe/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div><div class="icnblk_cntnt two_col"><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/mlprobe/ml193/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/mlprobe/ml189/" title="Next page in this title">Next &gt;</a></div></div></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK66151_"><span class="title" itemprop="name">Antagonist for the Kappa Opioid Receptor</span></h1><p class="contrib-group"><span itemprop="author">Michael P Hedrick</span>, <span itemprop="author">Palak Gosalia</span>, <span itemprop="author">Kelin Li</span>, <span itemprop="author">Kevin J Frankowski</span>, <span itemprop="author">Shenghua Shi</span>, <span itemprop="author">Thomas E Prisinzano</span>, <span itemprop="author">Frank Schoenen</span>, <span itemprop="author">Jeffrey Aub&#x000e9;</span>, <span itemprop="author">Ying Su</span>, <span itemprop="author">Derek Stonich</span>, <span itemprop="author">Stefan Vasile</span>, <span itemprop="author">Eduard Sergienko</span>, <span itemprop="author">Wilson Gray</span>, <span itemprop="author">Santosh Hariharan</span>, <span itemprop="author">Loribelle Milan</span>, <span itemprop="author">Susanne Heynen-Genel</span>, <span itemprop="author">Michael Vicchiarelli</span>, <span itemprop="author">Arianna Mangravita-Novo</span>, <span itemprop="author">John M Streicher</span>, <span itemprop="author">Layton H Smith</span>, <span itemprop="author">Thomas DY Chung</span>, <span itemprop="author">Marc Caron</span>, <span itemprop="author">Laura M Bohn</span>, and <span itemprop="author">Lawrence S Barak</span>.</p><p class="small">Received: <span itemprop="datePublished">October 31, 2010</span>; Last Update: <span itemprop="dateModified">May 26, 2011</span>.</p></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="_abs_rndgid_" itemprop="description"><p>In this probe report, we describe the discovery and optimization of a novel more potent antagonist (120 nM by DiscoveRx) for the kappa-(&#x003ba;) opioid (KOP) receptor that is &#x0003e;267-fold selective over the mu-(&#x003bc;) (MOP) and the delta-(&#x003b4;) (DOP) opioid receptors. Importantly, this probe and its analogs represent a novel chemical class compared to current literature antagonists and our previously submitted probe, <a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=abstract&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a>. Accordingly, this probe and its analogues may serve as interesting tools to advance addiction research. Additionally, this new chemotype is less complicated compared to known KOP receptor antagonist compounds. The structure contains no stereochemical centers and the short, versatile synthetic route enables both the synthesis of potential analogs and the production of the compound on larger scale.</p></div><div class="h2"></div><p><b>Assigned Assay Grant #:</b> 1X01 DA026208-01 [in CARS] (<i>formerly 1X01MH084153-01</i>)</p><p><b>Screening Center Name &#x00026; PI:</b> Burnham Center for Chemical Genomics (BCCG) &#x00026; John C. Reed</p><p><b>Chemistry Center Name &#x00026; PI:</b> Kansas Specialized Chemistry Center (KSCC) &#x00026; Jeffrey Aub&#x000e9;</p><p><b>Assay Submitter &#x00026; Institution:</b> Lawrence Barak, Duke University Medical Center</p><p><b>Collaborating PI:</b> Laura M. Bohn, The Scripps Research Institute, FL</p><p><b>PubChem Summary Bioassay Identifier (AID):</b>
<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1785" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">1785</a></p><p><b>Acknowledgement:</b></p><p>We thank Bryan L. Roth, Jon Evans and Vincent Setola of the Psychoactive Drug Screening Program at the University of North Carolina, Chapel Hill (National Institute of Mental Health's Psychoactive Drug Screening Program, Contract # HHSN-271-2008-00025-C (NIMH PDSP)) for conducting receptor profiling and Ki determinations.</p><div id="ml190.s1"><h2 id="_ml190_s1_">Probe Structure &#x00026; Characteristics</h2><p><i>This Center Probe Report describes a 2<sup>nd</sup> improved selective antagonist for the KOP receptor compared to</i>
<i><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></i><i>, CID3342390 that was previously disclosed in a probe report &#x0201c;Selective KOP receptor antagonists&#x0201d; (<a href="/books/NBK50689/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://www.ncbi.nlm.nih.gov/books/NBK50689/</a>), which had an 850 nM potency against KOP receptor with &#x0003e; 25 &#x02013; 40X selectivity over the MOP and DOP receptors</i></p><div id="ml190.fu1" class="figure bk_fig"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu1.jpg" alt="ML190." /></div><h3><span class="title"><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></span></h3></div><div id="ml190.tu1" class="table"><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK66151/table/ml190.tu1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml190.tu1_lrgtbl__"><table><thead><tr><th id="hd_h_ml190.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">CID MLS#</th><th id="hd_h_ml190.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Target Name</th><th id="hd_h_ml190.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">IC50 (nM) [SID, AID]</th><th id="hd_h_ml190.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Anti-target Name(s)</th><th id="hd_h_ml190.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">IC50(&#x003bc;M) [SID, AID]</th><th id="hd_h_ml190.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Selectivity</th><th id="hd_h_ml190.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Secondary Assay(s) Name: IC50 (nM) [SID, AID]</th></tr></thead><tbody><tr><td headers="hd_h_ml190.tu1_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">44665680<br /><br /><b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b></td><td headers="hd_h_ml190.tu1_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">KOP &#x003ba;-opioid receptor (Dx)</td><td headers="hd_h_ml190.tu1_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">120 nM IC50<br /><a href="https://pubchem.ncbi.nlm.nih.gov/substance/88442997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID88442997</a><br /><b><a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488935" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID488935</a></b></td><td headers="hd_h_ml190.tu1_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MOP &#x003bc;-opioid receptor (HCS)<br /><br />DOP &#x003b4;-opioid Receptor (HCS)</td><td headers="hd_h_ml190.tu1_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">&#x0003e;32 &#x003bc;M IC50<br /><a href="https://pubchem.ncbi.nlm.nih.gov/substance/88442997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID88442997</a><br /><a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2420" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID2420</a><br /><br />&#x0003e;32 &#x003bc;M IC50<br /><a href="https://pubchem.ncbi.nlm.nih.gov/substance/88442997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID88442997</a><br /><a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2357" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID2357</a></td><td headers="hd_h_ml190.tu1_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">&#x0003e; 267X (Dx/HCS)<br />&#x0003e;10,700X (HCS/HCS)<br /><br />&#x0003e; 267X (Dx/HCS)<br />&#x0003e; 10,700X (HCS/HCS)</td><td headers="hd_h_ml190.tu1_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">KOP Receptor Transfluor (HCS)<br />3 nM IC50 [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/8844299" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID8844299</a>, <b><a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488925" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID488925</a></b>]<br /><br />MOP Receptor Transfluor (HCS)<br />&#x0003e;32000 nM IC50 [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/88442997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID88442997</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488842" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID488842</a>]<br /><br />DOP Receptor Transfluor (HCS)<br />&#x0003e;32000 nM IC50 [<a href="https://pubchem.ncbi.nlm.nih.gov/substance/88442997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID88442997</a>, <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/488831" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID488831</a>]</td></tr></tbody></table></div></div></div><div id="ml190.s2"><h2 id="_ml190_s2_">Recommendations for scientific use of the probe</h2><p>The probe described in this report, by selectively inhibiting the human kappa opioid receptor, would provide a scientific tool useful in helping to elucidate individual brain pathways that underlie addictive behavior, thus enabling improved understanding of the molecular basis of dependency and potentially providing a basis for therapeutic development.</p><p>This probe, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b> (CID44665680), has a &#x003ba;-opioid (KOP) receptor IC50 in the primary assay of 120 nM with the DiscoveRx (DrX) &#x003b2;-arrestin technology. The apparently higher potency estimated by the HCS format for KOR is unexpected. In our prior probe report, the KOP receptor potency estimation were within 2-fold of each other between the two technologies, 850 nM IC50 nM by DrX compared to 1320 nM by HCS. Dr. Barak&#x02019;s experience is that the HCS (Transfluor) K<sub>i</sub>s are usually a factor 2 &#x02013; 3 fold within the receptor binding affinities of the inhibitors under the conditions of his antagonist assay. Neverthless, this probe could be used to demonstrate selective binding to the KOP receptor in competitive assays with radiolabeled compounds including, [3H]-Diprenorphine (KOP and MOP), DAMGO (MOP) and Naltrindole [5&#x02032;,7&#x02032;-3H] (DOP) receptors.</p><p>The probe is approaching the range of potencies where initial dosing in small animals might be considered, though determination of its reversibility need to be established as a preamble to determining if the probe is short acting at the KOP receptor, which would give it a decided advantage over current compounds under consideration as drugs. Studies of this question in cells and animal models may clarify as to whether the underlying mechanism for antagonist anti-addictive behavior requires activation of JNK.</p><p>If the potency of this probe can be further improved to low nanomolar potency (K<sub>i</sub>) it can be radiolabeled to serve as a key probe for receptor distribution and internalization studies, as well as a probe to map out the contribution of different steps along the &#x003b2;-arrestin mediated signaling pathway within cells.</p></div><div id="ml190.s3"><h2 id="_ml190_s3_">1. Introduction</h2><div id="ml190.s4"><h3>Specific Aims</h3><p>The identification of small molecules, each able to block or activate only a distinct receptor underlying an addiction will provide a means to untangle the many pathways resulting in addictive behavior and create detailed pharmacological maps for designing novel targeted treatments. This project proposes screening a G protein-coupled receptor relevant to drug abuse and to the study and treatment of addiction, in a fashion that affords the unique opportunity to discriminate between G protein and &#x003b2;&#x02013;arrestin-based signaling modalities. This project will hopefully contribute to understanding and treating addiction by providing chemical probes for dissecting the individual brain pathways that underlie addictive behavior thus enabling improved understanding of the molecular basis of addiction and potentially providing targeted therapeutics for this affliction.</p><p>The specific aim of this project is to identify subtype specific small molecule antagonists of the human kappa opioid (KOP) receptor. Such antagonists have been shown to prevent reinstatement of drug taking behavior in animal paradigms thought to model relapse. In addition, they have been shown to block aspects of nicotine withdrawal, and have antidepressant effects in animal models. Use of the existing kappa antagonists to explore these effects <i>in vivo</i> has been limited by their very long duration of pharmacological action (3&#x02013;4 weeks in rhesus monkeys), which appears to be mediated not by pharmacokinetics but by activation of c-Jun N-terminal kinase (JNK) phosphorylation. Known kappa antagonists all appear to share this effect, which may contribute to their long duration of action <i>in vivo</i>. Novel kappa opioid receptor antagonists that do not activate the JNK pathway would be desirable, but their discovery is beyond the scope of the screening project. Therefore, selective kappa antagonists with <i><u>new chemical structures</u></i> may represent valuable leads to the discovery of <i><u>shorter acting compounds</u></i>. This is the explicit <i>raison d&#x02019;&#x000ea;tre</i> as specifically requested by the National Institute on Drug Abuse (NIDA). Our Centers understand that there are currently, several literature antagonists with subnamomolar potency for the KOP with more than 100-fold selectivity against &#x003bc; (MOP) and 1,000-fold &#x003b4; (DOP) receptor subtypes (see <a class="figpopup" href="/books/NBK66151/table/ml190.t9/?report=objectonly" target="object" rid-figpopup="figml190t9" rid-ob="figobml190t9">Table 9</a>, comparing current prior art probes), none of them have the desired short acting duration <i>in vivo,</i> which would decrease the development of tolerance to them. It is further recognized that the <i>in vivo</i> animal testing required to validate the desired pharmacodynamics of these selective antagonists are actually out of scope of the MLPCN. Therefore, the bar for project success was modified from the original goal from the CPDP &#x0201c;to find antagonists structurally distinct from current literature probes, with potencies of less than 1 &#x003bc;M for the kappa-opioid (KOP) receptor, with greater than 100-fold selectivity against the mu-opioid (MOP) receptor and 10-fold selectivity against the delta-opioid (DOP) receptor, or to the extent achievable by test concentration limitations.&#x0201d; As we achieved this with our first probe for NIDA, <b><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></b> (CID342390), originally submitted February 27,2010 <i>(<a href="https://mli.nih.gov/mli/?dl_id=1197" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://mli.nih.gov/mli/?dl_id=1197</a>)</i>, our 2<sup>nd</sup> generation probe should exceed the potency by at least 5&#x02013;10 fold and selectivity improved beyond 25-fold.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml190t9"><a href="/books/NBK66151/table/ml190.t9/?report=objectonly" target="object" title="Table 9" class="img_link icnblk_img figpopup" rid-figpopup="figml190t9" rid-ob="figobml190t9"><img class="small-thumb" src="/books/NBK66151/table/ml190.t9/?report=thumb" src-large="/books/NBK66151/table/ml190.t9/?report=previmg" alt="Table 9. Comparison of prior art and current probe." /></a><div class="icnblk_cntnt"><h4 id="ml190.t9"><a href="/books/NBK66151/table/ml190.t9/?report=objectonly" target="object" rid-ob="figobml190t9">Table 9</a></h4><p class="float-caption no_bottom_margin">Comparison of prior art and current probe. </p></div></div></div><div id="ml190.s5"><h3>Background and Significance</h3><p>For normal activities that produce rewards, there is a rapid habituation of the circuits involved and the behaviors will wane. However, for addictive drugs habituation does not occur and dopamine release persists despite repetitive trials. Upon withdrawal of the drug, a decrease of dopamine levels in the nucleus accumbens results, and this has been observed for opioids, cannabinoids, alcohol, amphetamines, and nicotine (<a class="bk_pop" href="#ml190.r1">1</a>). This loss of dopamine accounts for the withdrawal syndromes observed with these drugs. The prototype opioid drug is morphine. It produces many effects typical of most opioids including analgesia, euphoria, nausea, and respiratory depression. Repeated use of opioids produces physical dependence and tolerance. These manifestations of opioid use are due to the three recognized types of opioid receptors that are members of the GPCR family, the mu (&#x003bc;), delta (&#x003b4;), and kappa (&#x003ba;) subtype receptors. While stimulation of the mu and delta receptors increases dopamine release in the nucleus accumbens, &#x003ba; opioid (KOP) receptor activation by its endogenous ligand dynorphin-A reduces extracellular dopamine. It has been suggested that stimulation of KOP receptor by endogenous opioids like dynorphins will produce an aversive state and thereby counter the effects of rewarding and addictive compounds like alcohol, cocaine and nicotine. Moreover, exogenous KOR agonists have also been observed to attenuate drug-taking behavior (<a class="bk_pop" href="#ml190.r2" data-bk-pop-others="ml190.r3 ml190.r4 ml190.r5 ml190.r6">2&#x02013;6</a>). However, it may be difficult to strike a balance between opposing the sense of reward gained by drugs of abuse and producing an aversive state; therefore, activation of the KOP receptor may not be therapeutically preferable. Although these statements appear contrary, KOP receptor agonists can both alleviate drug self-administration in animal models (most likely via dopamine regulation) and also trigger relapse. This conflicting dual action of KOP receptor agonists alludes to the complex physiological role of KOP receptors and underscores the need for a variety of chemical tools to facilitate their further investigation.</p><p>Intracranial self-stimulation has become a useful means of assessing reward thresholds in rodents and nonhuman primates. In essence, an animal will press a lever to electrically stimulate the brain via implanted probes. This &#x0201c;self stimulation&#x0201d; will be performed to a certain extent in training and that extent is an indication of the animal&#x02019;s &#x0201c;reward threshold.&#x0201d; Administration of &#x0201c;drugs of abuse&#x0201d; have been shown to decrease this reward threshold such that the animal will seek less stimulation to achieve the desired effect. This model paradigm has been likened to positive hedonic states produced by drugs of abuse in human addicts. In rodents, the direct activation of KOP receptor using selective agonists increases reward thresholds (mimicking the withdrawal state) and creating a &#x0201c;depressive-like&#x0201d; state (where more self stimulation is required to achieve the desired effect). Treatment with antagonists has been shown to restore reward thresholds in this model (<a class="bk_pop" href="#ml190.r7">7</a>,<a class="bk_pop" href="#ml190.r8">8</a>). The restoration of reward thresholds may be a very important step in drug abuse treatment as drug cessation is strongly negatively reinforced by aversive feelings, which may be due to a increased reward threshold. Therefore, the development of KOP receptor antagonists may be particularly beneficial in &#x0201c;resetting&#x0201d; this threshold. Furthermore, since an increased reward threshold may manifest as a &#x0201c;depressive state,&#x0201d; then KOP receptor antagonists may also be beneficial for the treatment of depressive disorders. Currently, there are currently no approved agents or compounds for treating the altered reward pathways associated with drug addiction (<a class="bk_pop" href="#ml190.r2">2</a>).</p></div></div><div id="ml190.s6"><h2 id="_ml190_s6_">2. Materials and Methods</h2><div id="ml190.s7"><h3>2.1. Assays</h3><p><a class="figpopup" href="/books/NBK66151/table/ml190.t1/?report=objectonly" target="object" rid-figpopup="figml190t1" rid-ob="figobml190t1">Table 1</a> summarizes the details for the assays that drove this probe project.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml190t1"><a href="/books/NBK66151/table/ml190.t1/?report=objectonly" target="object" title="Table 1" class="img_link icnblk_img figpopup" rid-figpopup="figml190t1" rid-ob="figobml190t1"><img class="small-thumb" src="/books/NBK66151/table/ml190.t1/?report=thumb" src-large="/books/NBK66151/table/ml190.t1/?report=previmg" alt="Table 1. Summary of assays and AIDs." /></a><div class="icnblk_cntnt"><h4 id="ml190.t1"><a href="/books/NBK66151/table/ml190.t1/?report=objectonly" target="object" rid-ob="figobml190t1">Table 1</a></h4><p class="float-caption no_bottom_margin">Summary of assays and AIDs. </p></div></div><p>Unlike imaging or other second messenger assays, the DiscoveRx &#x003b2;-arrestin assay allows for a direct measure of GPCR activation by detection of &#x003b2;-arrestin binding to the KOP receptor. In this system, &#x003b2;-arrestin is fused to an N-terminal deletion mutant of &#x003b2;-gal (termed the enzyme acceptor of EA) and the GPCR of interest is fused to a smaller (42 amino acids), weakly complementing fragment termed ProLink&#x02122;. In cells that stably express these fusion proteins, ligand stimulation results in the interaction of &#x003b2;-arrestin and the Prolink-tagged GPCR, forcing the complementation of the two &#x003b2;-gal fragments and resulting in the formation of a functional enzyme that converts substrate to detectable signal.</p><div id="ml190.s8"><h4>Assay materials</h4><ol><li class="half_rhythm"><div>OPRK1 &#x003b2;-Arrestin (DiscoveRx)</div></li><li class="half_rhythm"><div>Assay Medium: Opti-MEM Medium supplemented with 1% hiFBS, 1X Pen/Strep/Glu, 125 &#x003bc;g/mL Hygromycin (1/2 recommended), 250 &#x003bc;g/mL Geneticin (1/2 recommended)</div></li><li class="half_rhythm"><div>Growth Medium: MEM supplemented with 10% hiFBS, 1X Pen/Strep/Glu, 125 &#x003bc;g/mL Hygromycin (1/2 recommended), 250 &#x003bc;g/mL Geneticin (1/2 recommended)</div></li></ol><div id="ml190.t2" class="table"><h3><span class="label">Table 2</span><span class="title">Reagents used for the uHTS experiments</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK66151/table/ml190.t2/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml190.t2_lrgtbl__"><table class="no_top_margin"><thead><tr><th id="hd_h_ml190.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Reagent</th><th id="hd_h_ml190.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:bottom;">Vendor</th></tr></thead><tbody><tr><td headers="hd_h_ml190.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">OPRK1 &#x003b2;-Arrestin Cell Line</td><td headers="hd_h_ml190.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">DiscoveRx</td></tr><tr><td headers="hd_h_ml190.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Assay Medium: Opti-MEM Medium supplemented with 1% hiFBS, 1X Pen/Strep/Glu, 125 &#x003bc;g/mL Hygromycin, 250 &#x003bc;g/mL Geneticin</td><td headers="hd_h_ml190.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Invitrogen</td></tr><tr><td headers="hd_h_ml190.t2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Growth Medium: MEM supplemented with 10% hiFBS, 1X Pen/Strep/Glu, 125 &#x003bc;g/mL Hygromycin, 250 &#x003bc;g/mL Geneticin</td><td headers="hd_h_ml190.t2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Invitrogen</td></tr></tbody></table></div></div></div><div id="ml190.s9"><h4>The following uHTS protocol was implemented at single point concentration confirmation</h4><div id="ml190.s10"><h5>uHTS protocol</h5><p>Day 1</p><ol><li class="half_rhythm"><div>Harvest cells using Enzyme-Free Dissociation Buffer (Invitrogen Cat#13151-14). Add 500 cells/well in 5 uL of media to each well of a white, 1536 well plate.</div></li><li class="half_rhythm"><div>Spin cells at 500 rpm for 1 min, then wrap plates in Saran Wrap.</div></li><li class="half_rhythm"><div>Incubate overnight at 37&#x000b0;C with 5% CO<sub>2</sub>.</div></li></ol><p>Day 2</p><ol><li class="half_rhythm"><div>Using a Highres Biosolutions pintool pin 30 nL to wells. Columns 1&#x02013;4 should be DMSO only (Control wells), Columns 5&#x02013;48 contain test compounds (10&#x003bc;M final in well concentration).</div></li><li class="half_rhythm"><div>Immediately following pintool addition, add 1.0 uL of assay media to columns 1&#x02013;2 and 1.0 uL of assay media containing 240 nM dynorphin A for a final assay concentration of 40 nM. Centrifuge plates at 500 rpm for 1 min immediately following additions.</div></li><li class="half_rhythm"><div>Incubate for 1hr and 30 minutes.</div></li><li class="half_rhythm"><div>During test incubation, prepare Detection Reagent Solution from DiscoveRx (1 part Galacton Star: 5 parts Emerald II and 19 parts Cell Assay Buffer)</div></li><li class="half_rhythm"><div>Add 2.5ul of detection reagent solution to each well.</div></li><li class="half_rhythm"><div>Incubate at room temperature for 60 min in the dark</div></li><li class="half_rhythm"><div>Read plates in a Perkin Elmer Envision using a luminescence protocol</div></li></ol></div><div id="ml190.s11"><h5>Dose Response protocol</h5><p>Day 1</p><ol><li class="half_rhythm"><div>Harvest cells using Enzyme-Free Dissociation Buffer (Invitrogen Cat#13151-14). Add 500 cells/well in 5 uL of media to each well of a white, 1536 well plate.</div></li><li class="half_rhythm"><div>Spin cells at 500 rpm for 1 min, then wrap plates in Saran Wrap.</div></li><li class="half_rhythm"><div>Incubate overnight at 37&#x000b0;C with 5% CO<sub>2</sub>.</div></li></ol><p>Day 2</p><ol><li class="half_rhythm"><div>Using a Labcyte Echo, DMSO and test compounds are transferred to wells. DMSO only is transferred to columns 1&#x02013;3 and 46&#x02013;48(Control wells), while varying volumes of test compounds are transferred to columns 4&#x02013;45 to achieve the desired test concentrations. Test compound wells in the assay plate are back-filled with DMSO to equalize final assay concentrations.</div></li><li class="half_rhythm"><div>Immediately following Echo transfer, 1.0 uL of assay media is added to columns 1&#x02013;3 and 1.0 uL of assay media containing 240 nM dynorphin A is added to columns 4&#x02013;48 for a final assay concentration of 40 nM. Centrifuge plates at 500 rpm for 1 min immediately following additions.</div></li><li class="half_rhythm"><div>Incubate for 1hr and 30 minutes.</div></li><li class="half_rhythm"><div>During test incubation, prepare Detection Reagent Solution from DiscoveRx (1 part Galacton Star: 5 parts Emerald II and 19 parts Cell Assay Buffer)</div></li><li class="half_rhythm"><div>Add 2.5ul of detection reagent solution to each well.</div></li><li class="half_rhythm"><div>Incubate at room temperature for 60 min in the dark</div></li><li class="half_rhythm"><div>Read plates in a Perkin Elmer Envision using a luminescence protocol</div></li></ol><p>The average Z&#x02032; for the screen was 0.51, the signal to background (S/B) was 4.41, signal to noise (S/N) was 28.9 and signal to window was 4.26.</p></div></div><div id="ml190.s12"><h4>Rationale for confirmatory, counter and selectivity assays</h4><p>The initial frontline counterscreen that was performed shortly following dose response confirmations on both the agonist and antagonist KOP receptor primary screens was the &#x003b2;-galactosidase dose response assay. Each confirmed hit (EC50 &#x0003c; 10 &#x003bc;M) was run in a &#x003b2;-gal dose response assay. Because the primary screen is based upon the formation of a functional &#x003b2;-gal enzyme upon &#x003b2;-arrestin migration to the GPCR, we wanted to rule out compound interaction, either stimulatory or inhibitory, with the &#x003b2;-gal enzyme in the absence of GPCR interaction.</p><p>The High-Content Imaging-based confirmatory (KOR) and selectivity assays (MOR, DOR) which are based upon the translocation of &#x003b2;-arrestin linked to GFP to other receptor subtypes were developed and performed to confirm antagonist activity in the KOP receptor antagonist primary assay, as well as to ascertain the selectivity of compounds for the KOP receptor vs. the MOP and DOP receptor sub-types.</p><p>Improved potency for KOP receptor and increased selectivity against MOP and DOP receptors were primary drivers for compound selection and optimization.</p></div><div id="ml190.s13"><h4>Confirmation assays</h4><p>The initial confirmatory assays were performed in full dose-response for compounds from solvated DPI stock solutions to confirm activity seen first in test agents from screening library in the initial primary screen. Active compounds were then tested in an alternative format for inhibition of GPCR activation, via the imaging-based KOP receptor High-Content Transfluor Antagonist Assay. In the Transfluor assay, GPCR activation is measured indirectly by via the detection of &#x003b2;-Arrestin-GFP redistribution from the cytosolic compartment to the plasma membrane to coated pits and finally endosomal vesicles. The image-based KOP receptor assays allowed for independent confirmation of KOP receptor activation utilizing an alternative technology.</p><p>The following are confirmation assays for this project:</p><ul class="simple-list"><li class="half_rhythm"><div><i>Assay 1:</i> HTS identification of small molecule antagonists of the kappa opioid receptor via a luminescent beta-arrestin assay <i>(<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1778" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 1778</a>)</i></div></li><li class="half_rhythm"><div><i>Assay 2:</i> SAR analysis of small molecule antagonists of the kappa opioid receptor via a luminescent beta-arrestin assay <i>(</i><a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2285" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 2285</a><i>)</i></div></li><li class="half_rhythm"><div><i>Assay 3:</i> HTS Image-Based Screen for Selective Antagonists of the KOR Receptor <i>(</i><a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2136" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 2136</a><i>)</i></div></li><li class="half_rhythm"><div><i>Assay 4:</i> SAR analysis of Antagonists of the Kappa Opioid Receptor (KOR) using an Image-Based Assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2359" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 2359</a>)</div></li></ul></div><div id="ml190.s14"><h4>Counterscreen assays</h4><p>The &#x003b2;-Galactosidase Counterscreen Assay was utilized to ascertain possible enzyme inhibition, which might present the opportunity for false positives from the initial primary assay. The inhibition of activity of the b-galactosidase fragment complementation in the primary KOR1 &#x003b2;-Arrestin Assay in the presence of test agent could lead to decreased signal formation and therefore a false positive result. This counterscreen assay would allow for the detection of these artifactual compounds.</p><ul class="simple-list"><li class="half_rhythm"><div><i>Assay 1:</i> HTS Dose response counterscreen for assays utilizing the enzyme, &#x003b2;-galactosidase <i>(</i><a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1966" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 1966</a><i>)</i></div></li></ul></div><div id="ml190.s15"><h4>Secondary Assays</h4><p>The imaging-based MOP and DOP receptor High-Content Transfluor Antagonist Assays provide for the determination of KOP receptor selectivity. The probe criteria specifies the necessity of at least 100-fold selectivity against MOP and DOP receptors, or within the reasonable limitations imposed for testing compounds at high concentrations, i.e. 100 &#x003bc;M selectivity for a 1 &#x003bc;M compound.</p><ul class="simple-list"><li class="half_rhythm"><div><i>Assay 1:</i> HTS Image-Based Screen for Antagonists of the MOR Receptor <i>(</i><a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2344" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 2344</a><i>)</i></div></li><li class="half_rhythm"><div><i>Assay 2:</i> HTS Image-Based Screen for Antagonists of the DOR Receptor <i>(<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2356" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 2356</a>)</i></div></li><li class="half_rhythm"><div><i>Assay 3:</i> SAR Analysis of Antagonists of the MOR Receptor using an Image-Based Assay <i>(<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2420" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 2420</a>)</i></div></li><li class="half_rhythm"><div><i>Assay 4:</i> SAR Analysis of Antagonists of the DOR Receptor using an Image-Based Assay (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/2357" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 2357</a>)</div></li></ul></div></div><div id="ml190.s16"><h3>2.2. Probe Chemical Characterization</h3><div id="ml190.s17"><h4>a. Chemical name of probe compound <i>[IUPAC name must match PubChem]</i></h4><p>The IUPAC name of the probe, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b><b>,</b> is <i>N</i>-(3-(4-(4-methoxyphenyl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide (PubChem currently does not have an IUPAC name). The actual batch prepared, tested and submitted to the MLSMR is <a href="https://pubchem.ncbi.nlm.nih.gov/substance/88442997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID88442997</a> corresponding to CID44665680.</p></div><div id="ml190.s18"><h4>b. Probe chemical structure including stereochemistry if known <i>(indicate if racemic or diastereomeric)</i></h4><p>One interesting chemical feature of this probe is that it is achiral, which is in contrast to previously known antagonists</p><div id="ml190.fu2" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu6.jpg" alt="Image ml190fu6" /></div></div></div><div id="ml190.s19"><h4>c. Structural Verification I<i>nformation of probe</i>
<i><a href="https://pubchem.ncbi.nlm.nih.gov/substance/88442997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID88442997</a> corresp</i>onding to CID44665680</h4><p><b>Purity &#x00026; Structure Proof by LC/MS:</b> 95.2% (HPLC)</p><p><b>Mass Spec:</b> HRMS (ESI) <i>m/z</i> calcd for C<sub>27</sub>H<sub>32</sub>N<sub>6</sub>O<sub>3</sub> ([M+H]<sup>+</sup>), 489.2614, found 489.2600.</p><div id="ml190.fu3" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu7.jpg" alt="Image ml190fu7" /></div></div><div id="ml190.tu2" class="table"><h3><span class="title">User Chromatogram Peak List</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK66151/table/ml190.tu2/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml190.tu2_lrgtbl__"><table class="no_top_margin"><thead><tr><th id="hd_h_ml190.tu2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Peak #</th><th id="hd_h_ml190.tu2_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Compound Name</th><th id="hd_h_ml190.tu2_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">RT</th><th id="hd_h_ml190.tu2_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Height</th><th id="hd_h_ml190.tu2_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Height %</th><th id="hd_h_ml190.tu2_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Area</th><th id="hd_h_ml190.tu2_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Area %</th><th id="hd_h_ml190.tu2_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Area Sum %</th><th id="hd_h_ml190.tu2_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Width</th></tr></thead><tbody><tr><td headers="hd_h_ml190.tu2_1_1_1_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1</td><td headers="hd_h_ml190.tu2_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_ml190.tu2_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1.945</td><td headers="hd_h_ml190.tu2_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">3.38</td><td headers="hd_h_ml190.tu2_1_1_1_5" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1.36</td><td headers="hd_h_ml190.tu2_1_1_1_6" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">7.4</td><td headers="hd_h_ml190.tu2_1_1_1_7" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.1</td><td headers="hd_h_ml190.tu2_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2</td><td headers="hd_h_ml190.tu2_1_1_1_9" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.032</td></tr><tr><td headers="hd_h_ml190.tu2_1_1_1_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2</td><td headers="hd_h_ml190.tu2_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_ml190.tu2_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.354</td><td headers="hd_h_ml190.tu2_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">3.59</td><td headers="hd_h_ml190.tu2_1_1_1_5" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1.45</td><td headers="hd_h_ml190.tu2_1_1_1_6" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">10.35</td><td headers="hd_h_ml190.tu2_1_1_1_7" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.93</td><td headers="hd_h_ml190.tu2_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.79</td><td headers="hd_h_ml190.tu2_1_1_1_9" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.04</td></tr><tr><td headers="hd_h_ml190.tu2_1_1_1_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">3</td><td headers="hd_h_ml190.tu2_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cpd 1: C27 H32 N6 O3</td><td headers="hd_h_ml190.tu2_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.529</td><td headers="hd_h_ml190.tu2_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">248.18</td><td headers="hd_h_ml190.tu2_1_1_1_5" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">100</td><td headers="hd_h_ml190.tu2_1_1_1_6" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">352.58</td><td headers="hd_h_ml190.tu2_1_1_1_7" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">100</td><td headers="hd_h_ml190.tu2_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">95.21</td><td headers="hd_h_ml190.tu2_1_1_1_9" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.023</td></tr></tbody></table></div></div><div id="ml190.fu4" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu8.jpg" alt="Image ml190fu8" /></div></div><div id="ml190.tu3" class="table"><h3><span class="title">User Chromatogram Peak List</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK66151/table/ml190.tu3/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml190.tu3_lrgtbl__"><table class="no_top_margin"><thead><tr><th id="hd_h_ml190.tu3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Peak #</th><th id="hd_h_ml190.tu3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">RT</th><th id="hd_h_ml190.tu3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Height</th><th id="hd_h_ml190.tu3_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Height %</th><th id="hd_h_ml190.tu3_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Area</th><th id="hd_h_ml190.tu3_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Area %</th><th id="hd_h_ml190.tu3_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Area Sum %</th><th id="hd_h_ml190.tu3_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Width</th></tr></thead><tbody><tr><td headers="hd_h_ml190.tu3_1_1_1_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1</td><td headers="hd_h_ml190.tu3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1.945</td><td headers="hd_h_ml190.tu3_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">3.38</td><td headers="hd_h_ml190.tu3_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1.36</td><td headers="hd_h_ml190.tu3_1_1_1_5" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">7.4</td><td headers="hd_h_ml190.tu3_1_1_1_6" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.1</td><td headers="hd_h_ml190.tu3_1_1_1_7" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2</td><td headers="hd_h_ml190.tu3_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.032</td></tr><tr><td headers="hd_h_ml190.tu3_1_1_1_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2</td><td headers="hd_h_ml190.tu3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.354</td><td headers="hd_h_ml190.tu3_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">3.59</td><td headers="hd_h_ml190.tu3_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1.45</td><td headers="hd_h_ml190.tu3_1_1_1_5" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">10.35</td><td headers="hd_h_ml190.tu3_1_1_1_6" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.93</td><td headers="hd_h_ml190.tu3_1_1_1_7" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.79</td><td headers="hd_h_ml190.tu3_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.04</td></tr><tr><td headers="hd_h_ml190.tu3_1_1_1_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">3</td><td headers="hd_h_ml190.tu3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.529</td><td headers="hd_h_ml190.tu3_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">248.18</td><td headers="hd_h_ml190.tu3_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">100</td><td headers="hd_h_ml190.tu3_1_1_1_5" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">352.58</td><td headers="hd_h_ml190.tu3_1_1_1_6" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">100</td><td headers="hd_h_ml190.tu3_1_1_1_7" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">95.21</td><td headers="hd_h_ml190.tu3_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.023</td></tr></tbody></table></div></div><div id="ml190.fu5" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu9.jpg" alt="Image ml190fu9" /></div></div><p><b>Purity by NMR &#x00026; Structure Proof:</b> &#x0003e;95% pure (<sup>1</sup>H NMR): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.17 (d, <i>J</i> = 4.9 Hz, 1H), 7.87 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 7.33 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 7.12 (s, 1H), 6.99 (d, <i>J</i> = 5.0 Hz, 1H), 6.84 (s, 4H), 6.68 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 5.11 (s, 2H), 3.78 (s, 3H), 3.41 (dd, <i>J</i> = 5.8, 12.0 Hz, 2H), 3.02 &#x02013; 2.91 (m, 4H), 2.74 (s, 3H), 2.63 &#x02013; 2.54 (m, 4H), 2.49 (t, <i>J</i> = 6.4 Hz, 2H), 1.75&#x02013;1.69 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.9, 155.8, 153.8, 145.4, 143.2, 142.3, 134.8, 124.1, 122.8, 122.6, 120.4, 118.0, 114.4, 113.5, 113.4, 57.3, 55.6, 53.4, 50.4, 44.2, 39.4, 25.2, 22.8.</p><div id="ml190.fu6" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu10.jpg" alt="Image ml190fu10" /></div></div></div><div id="ml190.s20"><h4>d. If available from a vendor, please provide details</h4><p>This probe is not commercially available. The KSCC synthesized this compound and deposited 25 mg of newly synthesized material with the MLSMR (Bio-Focus DPI) (see Probe Submission <a class="figpopup" href="/books/NBK66151/table/ml190.t4/?report=objectonly" target="object" rid-figpopup="figml190t4" rid-ob="figobml190t4">Table 4</a> below).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml190t4"><a href="/books/NBK66151/table/ml190.t4/?report=objectonly" target="object" title="Table 4" class="img_link icnblk_img figpopup" rid-figpopup="figml190t4" rid-ob="figobml190t4"><img class="small-thumb" src="/books/NBK66151/table/ml190.t4/?report=thumb" src-large="/books/NBK66151/table/ml190.t4/?report=previmg" alt="Table 4. Probe and analog submissions to MLSMR (BioFocus DPI) for KOR antagonists." /></a><div class="icnblk_cntnt"><h4 id="ml190.t4"><a href="/books/NBK66151/table/ml190.t4/?report=objectonly" target="object" rid-ob="figobml190t4">Table 4</a></h4><p class="float-caption no_bottom_margin">Probe and analog submissions to MLSMR (BioFocus DPI) for KOR antagonists. </p></div></div></div><div id="ml190.s21"><h4>e. Solubility and Stability of probe in PBS at room temperature</h4><p>The probe, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b>, has a reasonable solubility of 12.9 &#x003bc;g/mL in 137 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate dibasic, 2 mM potassium phosphate monobasic, pH 7.4 (PBS) at room temperature (23&#x000b0;C). This is comparable to the solubility of 12.4 &#x003bc;g/mL in the phosphate-free buffer used by SBCCG&#x02019;s Exploratory Pharmacology Group (<i>see also</i> related values detailed <i>In vitro</i> Pharmacology Profiles <a class="figpopup" href="/books/NBK66151/table/ml190.t7/?report=objectonly" target="object" rid-figpopup="figml190t7" rid-ob="figobml190t7">Table 7</a> in <b>Sec. 3.6</b> below). At acidic pHs, the solubility of the probe improves dramatically to &#x0003e;90 &#x003bc;g/mL (<i>see</i>
<a class="figpopup" href="/books/NBK66151/table/ml190.t7/?report=objectonly" target="object" rid-figpopup="figml190t7" rid-ob="figobml190t7">Table 7</a>), presumably due to protonation of the secondary amine of the piperazine linker. <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b> has superior stability at room temperature in PBS in the absence of any antioxidants or other protectants (&#x0003c;0.1% DMSO <i>v/v</i>) with 94.42% of parent compound remaining after 48 hrs of incubation (<i>see</i> timecourse at right). Interestingly, it is rapidly lost when incubated at 37&#x000b0;C in PBS with only ~30% remaining after 3 hrs. This loss is completely ameliorated in the presence of 50% (v/v) mouse or human plasma (<i>see</i>
<a class="figpopup" href="/books/NBK66151/table/ml190.t7/?report=objectonly" target="object" rid-figpopup="figml190t7" rid-ob="figobml190t7">Table 7</a>).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml190t7"><a href="/books/NBK66151/table/ml190.t7/?report=objectonly" target="object" title="Table 7" class="img_link icnblk_img figpopup" rid-figpopup="figml190t7" rid-ob="figobml190t7"><img class="small-thumb" src="/books/NBK66151/table/ml190.t7/?report=thumb" src-large="/books/NBK66151/table/ml190.t7/?report=previmg" alt="Table 7. Summary of in vitro ADME properties of KOP receptor antagonist 2nd probe ML190." /></a><div class="icnblk_cntnt"><h4 id="ml190.t7"><a href="/books/NBK66151/table/ml190.t7/?report=objectonly" target="object" rid-ob="figobml190t7">Table 7</a></h4><p class="float-caption no_bottom_margin">Summary of <i>in vitro</i> ADME properties of KOP receptor antagonist 2<sup>nd</sup> probe ML190. </p></div></div><div id="ml190.fu7" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu11.jpg" alt="Image ml190fu11" /></div></div></div><div id="ml190.s22"><h4>f. A tabulation of calculated and known probe properties</h4><div id="ml190.t3" class="table"><h3><span class="label">Table 3</span><span class="title"><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a> (CID44665680)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK66151/table/ml190.t3/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml190.t3_lrgtbl__"><table class="no_top_margin"><thead><tr><th id="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Calculated Property</th><th id="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:bottom;">Value</th></tr></thead><tbody><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Molecular Weight</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">488.58138 [g/mol]</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Molecular Formula</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">C<sub>27</sub>H<sub>32</sub>N<sub>6</sub>O<sub>3</sub></td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">XLogP3-AA</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.7</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">H-Bond Donor</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">H-Bond Acceptor</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">6</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rotatable Bond Count</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">8</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Tautomer Count</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Exact Mass</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">488.253589</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MonoIsotopic Mass</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">488.253589</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Topological Polar Surface Area</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">82.9</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Heavy Atom Count</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">36</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Formal Charge</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Complexity</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">752</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Isotope Atom Count</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Defined Atom StereoCenter Count</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Undefined Atom StereoCenter Count</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Defined Bond StereoCenter Count</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Undefined Bond StereoCenter Count</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0</td></tr><tr><td headers="hd_h_ml190.t3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Covalently-Bonded Unit Count</td><td headers="hd_h_ml190.t3_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">1</td></tr></tbody></table></div></div></div><div id="ml190.s23"><h4>g. Provide MLS# that verifies the submission of probe molecule and five related samples that were submitted to the SMR collection</h4><p>We submitted 25 mg of the probe and 20 mg of each of 5 analogs (<a class="figpopup" href="/books/NBK66151/table/ml190.t4/?report=objectonly" target="object" rid-figpopup="figml190t4" rid-ob="figobml190t4">Table 4</a>.) to the NIH MLSMR on October 28, 2010.</p></div></div><div id="ml190.s24"><h3>2.3. Probe Preparation</h3><p>The synthetic route to the probe, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b>, its characterization by <sup>1</sup>H and <sup>13</sup>C NMR, and its evaluation by HPLC and MS, are shown below. One interesting chemical feature of this probe is that it is achiral, which is in contrast to previously known antagonists. The experimental details and structural proof for all synthetic intermediates are also provided subsequently.</p><div id="ml190.fu8" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=(a)%202%2C5-dimethoxytetrahydrofuran%2C%20AcOH%3B%20(b)%20ammonia%2C%20MeOH%2C%20150%20%BAC%3B%20(c)%20triphosgene%2C%20toluene%3B%20(d)%20sodium%20hydride%2C%20methyl%20bromoacetate%2C%20DMF%3B%20(e)%20LiOH%2C%20MeOH%3ATHF%3AH2O%3B%20(f)%20acryl%20nitrile%3B%20(g)%20lithium%20aluminum%20hydride%2C%20ether%3B%20(h)%20DIC%2C%20DMAP%2C%20CH2Cl2&amp;p=BOOKS&amp;id=66151_ml190fu12.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK66151/bin/ml190fu12.jpg" alt="(a) 2,5-dimethoxytetrahydrofuran, AcOH; (b) ammonia, MeOH, 150 &#x000ba;C; (c) triphosgene, toluene; (d) sodium hydride, methyl bromoacetate, DMF; (e) LiOH, MeOH:THF:H2O; (f) acryl nitrile; (g) lithium aluminum hydride, ether; (h) DIC, DMAP, CH2Cl2" class="tileshop" title="Click on image to zoom" /></a></div><div class="caption"><p>(a) 2,5-dimethoxytetrahydrofuran, AcOH; (b) ammonia, MeOH, 150 &#x000ba;C; (c) triphosgene, toluene; (d) sodium hydride, methyl bromoacetate, DMF; (e) LiOH, MeOH:THF:H<sub>2</sub>O; (f) acryl nitrile; (g) lithium aluminum hydride, ether; (h) DIC, DMAP, CH<sub>2</sub>Cl<sub>2</sub>.</p></div></div><div id="ml190.fu9" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu13.jpg" alt="Image ml190fu13" /></div></div><p><b>2-Fluoro-4-methyl-3-(1H-pyrrol-1-yl)pyridine</b>: 2-fluoro-4-methylpyridin-3-amine (1.0 g, 7.93 mmol) and 2,5-dimethoxytetrahydrofuran (1.08 mL, 1.05 eqiv.) were suspended in 3 mL of acetic acid and refluxed for 2 hrs. The reaction was cooled down to room temperature. The solvents were removed and the residue was purified by silca gel chromatography (EtOAc/hexanes = 1:8, Rf = 0.3) to afford 1.0 g (72%) oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.10 (dd, <i>J</i> = 0.8, 5.1 Hz, 1H), 7.17 (d, <i>J</i> = 5.1 Hz, 1H), 6.74 (td, <i>J</i> = 2.1, 0.9 Hz, 2H), 6.40 (t, <i>J</i> = 2.1 Hz, 2H), 2.26 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 160.2, 157.8, 149.6, 149.5, 145.5, 145.4, 123.80, 123.76, 122.1, 109.8, 17.29, 17.25. HRMS (m/z): calcd for C<sub>10</sub>H<sub>10</sub>FN<sub>2</sub> (M+H) 177.0828; found 177.0827.</p><div id="ml190.fu10" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu14.jpg" alt="Image ml190fu14" /></div></div><p>Richards, J.J.; Reed, C.S.; Melander, C., <i>Bioorganic &#x00026; Medicinal Chemistry Letters</i> 18 (<b>2008</b>) 4325&#x02013;4327.</p><div id="ml190.fu11" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu15.jpg" alt="Image ml190fu15" /></div></div><p><b>4-Methyl-3-(1H-pyrrol-1-yl)pyridin-2-amine</b>: 2-fluoro-4-methyl-3-(1H-pyrrol-1-yl)pyridine (3.9 g, 22.1 mmol) was dissolved in 80 mL of ammonia solution (7N in MeOH) in a sealed tube (350 mL). The mixture was heated at 150 &#x000b0;C for 2 days protected with a blast shield. The mixture was cooled to room temperature, then cooled in the ice for 30 min. The filtrate was evaporated to dryness and purified by flash chromatography (EtOAc/Hexanes = 1:1, Rf = 0.5) to give 2.9 g (76%) white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 7.96 (d, <i>J</i> = 5.1 Hz, 1H), 6.67 (t, <i>J</i> = 2.1 Hz, 2H), 6.60 (d, <i>J</i> = 5.2 Hz, 1H), 6.41 (t, <i>J</i> = 2.1 Hz, 2H), 4.52 (s, 2H), 2.02 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 156.1, 147.2, 145.9, 121.5, 121.2, 116.0, 110.0, 16.7. HRMS (m/z): calcd for C<sub>10</sub>H<sub>12</sub>N<sub>3</sub> (M+H) 174.1031; found 174.1026. (Peet, N. P.; Sunder, S. <i>Heterocycles</i>
<b>1986</b>, <i>24</i>, 3213&#x02013;3221)</p><div id="ml190.fu12" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu16.jpg" alt="Image ml190fu16" /></div></div><p><b>1-Methylpyrido[2,3-e]pyrrolo[1,2-a]pyrazin-6(5H)-one</b>: 4-methyl-3-(1H-pyrrol-1-yl)pyridin-2-amine (1.0 g, 5.8 mmol) and triphosgene (2.6 g, 8.7 mmol) were dissolved in 100 mL of toluene. The mixture was refluxed for 3 h, then cooled to room temperature. The red solid was collected after filtration and washed with CH<sub>3</sub>CN. 0.5 g (43%). The material was used directly for next step reaction without purification. <sup>1</sup>H NMR (400 MHz, DMSO) &#x003b4; 11.64 (s, 1H), 8.15 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 8.13 (d, <i>J</i> = 4.9 Hz, 1H), 7.20 &#x02013; 7.08 (m, 2H), 6.75 (dd, <i>J</i> = 2.9, 3.9 Hz, 1H), 2.81 (s, 3H).</p><div id="ml190.fu13" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu17a.jpg" alt="Image ml190fu17a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu17b.jpg" alt="Image ml190fu17b" /></div></div><p><b>Methyl 2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetate</b>: To a solution of 1-methylpyrido[2,3-e]pyrrolo[1,2-a]pyrazin-6(5H)-one (50 mg, 0.25 mmol) in 2 mL of DMF, was added NaH (60%, 11 mg, 0.28 mmol). The mixture was stirred at room temperature for 1 h. Methyl bromoacetate (26 mL, 0.28 mmol) was added. The mixture was stirred for 16 h. Solvents were removed under vacuum and the residue was purified by silca gel flash chromatography (DCM/MeOH = 1:10, Rf = 0.5) to afford 37 mg (54%) light yellow solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.15 (d, <i>J</i> = 4.9 Hz, 1H), 7.95 (dd, <i>J</i> = 1.5, 2.9 Hz, 1H), 7.36 (dd, <i>J</i> = 1.5, 4.0 Hz, 1H), 7.00 (d, <i>J</i> = 4.9 Hz, 1H), 6.71 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 5.25 (s, 2H), 3.77 (s, 3H), 2.83 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 169.3, 155.5, 143.1, 142.1, 134.8, 124.2, 122.7, 122.6, 120.4, 113.5, 113.4, 52.3, 41.9, 22.9. HRMS (m/z): calcd for C<sub>14</sub>H<sub>14</sub>N<sub>3</sub>O<sub>3</sub> (M+H) 272.1035; found 272.1042.</p><div id="ml190.fu14" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu18.jpg" alt="Image ml190fu18" /></div></div><p><b>2-(1-Methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetic acid</b>: methyl 2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetate (517 mg, 1.91 mmol) was dissolved in 20 mL of MeOH/H2O/THF (1:1:4). LiOH (68.5 mg, 2.86 mmol) was added. The mixture was stirred at room temperature for 16 h. The solvents were removed and residue was dissolved in water, washed with ether, then neutralized with 2N HCl to pH = 3. 356 mg (73%) white solid was obtained after filtration and dried under vacuum. <sup>1</sup>H NMR (400 MHz, DMSO) &#x003b4; 12.90 (s, 1H), 8.27 &#x02013; 8.17 (m, 2H), 7.29 &#x02013; 7.19 (m, 2H), 6.80 (dd, <i>J</i> = 2.9, 3.9 Hz, 1H), 5.02 (s, 2H), 2.85 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO, APT) &#x003b4; 169.8, 154.5, 143.1, 141.4, 135.9, 123.9, 123.3, 122.8, 119.5, 113.3, 112.7, 41.6, 22.2. HRMS (m/z): calcd for C<sub>13</sub>H<sub>12</sub>N<sub>3</sub>O<sub>3</sub> (M+H) 258.0879; found 258.0894.</p><div id="ml190.fu15" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu19.jpg" alt="Image ml190fu19" /></div></div><p><b>3-(4-(4-Methoxyphenyl)piperazin-1-yl)propanenitrile</b>: 4-methoxyphenypiperazine (0.92 g, 4.68 mmol) and acrylonitrile (0.31 mL, 4.68 mmol) were mixed in a 10 mL reaction tube and stirred for 16 h. The product was purified by sical gel flash chromatography (EtOAc/hexanes = 1:8, Rf = 0.3) to give 0.8 g (74%) white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 6.98 &#x02013; 6.90 (m, 2H), 6.90 &#x02013; 6.82 (m, 2H), 3.79 (s, 3H), 3.17 &#x02013; 3.07 (m, 4H), 2.78 (t, <i>J</i> = 7.0 Hz, 2H), 2.74 &#x02013; 2.64 (m, 4H), 2.57 (t, <i>J</i> = 7.0 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 154.0, 145.5, 118.8, 118.4, 114.5, 55.6, 53.4, 52.8, 50.6, 15.9. [Upadhayaya, R.S.; Sinha, N.; Jain, S.; Chandrab, N.K.R. and Arora, S. K. <i>Bioorganic &#x00026; Medicinal Chemistry</i> 12 (2004) 2225&#x02013;2238]</p><div id="ml190.fu16" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu20.jpg" alt="Image ml190fu20" /></div></div><p><b>3-(4-(4-Methoxyphenyl)piperazin-1-yl)propan-1-amine</b>: A solution of 3-(4-(4-methoxyphenyl) piperazin-1-yl)propanenitrile (0.8 g, 3.26 mmol) in 15 mL ether was added to the suspension of LiAlH4 (0.19 g, 4.89 mmol) in 5 mL of ether. The mixture was stirred at room temperature for 16 h. Then quenched with 2N NaOH (1 mL). The ether phase was dried over MgSO4 and evaporated to dryness to give 0.68 g (84%) white solid, which was used directly without further purification. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 6.89 (d, <i>J</i> = 9.1 Hz, 2H), 6.82 (d, <i>J</i> = 9.1 Hz, 2H), 3.75 (s, 3H), 3.15 &#x02013; 3.04 (m, 4H), 2.87 (s, br. 2H), 2.76 (t, <i>J</i> = 6.8 Hz, 2H), 2.67 &#x02013; 2.53 (m, 4H), 2.51 &#x02013; 2.37 (m, 2H), 1.75 &#x02013; 1.54 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 153.8, 145.7, 118.1, 114.4, 56.4, 55.5, 53.48, 50.6, 40.6, 30.1.</p><div id="ml190.fu17" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu21.jpg" alt="Image ml190fu21" /></div></div><p>Valenta, V.; Vlkova, M.; Holubek, J.; Svatek, E.; Metysova, J.; Protiva, M. <i>Collect. Czech. Chem. Commun.</i>
<b>1990</b>, <i>55</i>, 797&#x02013;808</p><div id="ml190.fu18" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu22.jpg" alt="Image ml190fu22" /></div></div><p><b>N-(3-(4-(4-Methoxyphenyl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3-e] pyrrolo [1,2-a] pyrazin-5(6H)-yl)acetamide:</b> 2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetic acid (30 mg, 0.12 mmol), 3-(4-(4-methoxyphenyl)piperazin-1-yl)propan-1-amine (43.6 mg, 0.17 mmol) and DMAP (1.4 mg, 0.012 mmol) were dissolved in 1 mL of DCM. Diisopropylcarbodiimide (0.09 mL, 0.58 mmol) was added. The mixture was stirred at room temperature for 16 h. And the product was purified by silica gel flash chromatography (DCM/MeOH = 10 :1, Rf= 0.5) to give 30 mg (53%) white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.17 (d, <i>J</i> = 4.9 Hz, 1H), 7.87 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 7.33 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 7.12 (s, 1H), 6.99 (d, <i>J</i> = 5.0 Hz, 1H), 6.84 (s, 4H), 6.68 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 5.11 (s, 2H), 3.78 (s, 3H), 3.41 (dd, <i>J</i> = 5.8, 12.0 Hz, 2H), 3.02 &#x02013; 2.91 (m, 4H), 2.74 (s, 3H), 2.63 &#x02013; 2.54 (m, 4H), 2.49 (t, <i>J</i> = 6.4 Hz, 2H), 1.75&#x02013;1.69 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.9, 155.8, 153.8, 145.4, 143.2, 142.3, 134.8, 124.1, 122.8, 122.6, 120.4, 118.0, 114.4, 113.5, 113.4, 57.3, 55.6, 53.4, 50.4, 44.2, 39.4, 25.2, 22.8. HRMS (m/z): calcd for C<sub>27</sub>H<sub>33</sub>N<sub>6</sub>O<sub>3</sub> (M+H) 489.2609; found 489.2600.</p><div id="ml190.fu19" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu23.jpg" alt="Image ml190fu23" /></div></div></div></div><div id="ml190.s25"><h2 id="_ml190_s25_">3. Results</h2><p>After primary HTS and hit confirmation phase of the project, we initially identified 3 chemotypes, which were the subject of an earlier Center Probe Report for KOR antagonists. Through continued hit confirmation an additional chemotype was identified as a novel and promising scaffold for SAR optimization. This scaffold contained a pyrrolopyrazine and a p-methoxyphenyl substituted piperazine moiety and subsequent SAR led to the present probe which has an potency of 120 nM IC50 for KOR as measured by the DiscoveRx &#x003b2;-arrestin technology which estimates a &#x0003e;267-fold selectivity against both the MOP and DOP receptors (measured by HCS). The apparent higher KOR potency of the probe (3 nM IC50) in the HCS Transfluor assay for &#x003b2;-arrestin translocation is unexpected. The KOR potency estimates for our previously reported probe, <b><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></b> (CID3342390), were 850 nM and 1310 nM, by DiscoveRx and Transfluor methods, respectively. The following subsections provide in-depth details and discussion of the screening, hit follow-up, subsequent SAR development, and characterization of the biological and chemical properties/liabilities of the probe.</p><div id="ml190.s26"><h3>3.1. Summary of Screening Results</h3><p>The following flowchart summarizes the compound triage and decision tree for advancement of compounds:</p><div id="ml190.fu20" class="figure bk_fig"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu24.jpg" alt="Primary Screen/Confirmation Triage." /></div><h3><span class="title">Primary Screen/Confirmation Triage</span></h3></div><p>A library of approximately 290,000 compounds was tested in the KOR1 DiscoveRx &#x003b2;-arrestin primary screen. Upon data analysis, 606 hits with activity &#x0003e;50% at a single concentration point of 10 &#x003bc;M were identified. Liquid samples were then ordered through DPI and 531 compounds were received.</p><p>The compound solutions resupplied by the MLSMR were first confirmed in 10 &#x003bc;M single-point duplicate in the KOR1 DiscoveRx &#x003b2;-arrestin primary assay. Of these, 213 compounds were confirmed to have at least 50% activity at a 10 &#x003bc;M assay concentration (see Critical Path flowchart below).</p><div id="ml190.fu21" class="figure bk_fig"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu25.jpg" alt="Critical Path Flowchart for KOR Antagonist Project." /></div><h3><span class="title">Critical Path Flowchart for KOR Antagonist Project</span></h3><div class="caption"><p>(revised as per 10/23/09 CPDP Chem Update telecon)</p></div></div><p>The confirmed compounds were further tested in dose response in the KOR1 DiscoveRx &#x003b2;-arrestin primary assay to obtain EC50 values and were also tested in a &#x003b2;-galactosidase Counterscreen assay to assess the possibility that these compounds might inhibit the enzyme. The KOR1 antagonist dose response experiments revealed 148 compounds with EC50 potencies at or below 10 &#x003bc;M. Twenty-nine of the compounds were eliminated from future consideration because they were found to inhibit &#x003b2;-galactosidase activity in the enzymatic counterscreen.</p><p>The active, confirmed compounds were then tested in the KOR1 High-Content Transfluor Antagonist assay for further confirmation, then in the MOR and DOR High-Content Transfluor Antagonist assays to determine subtype selectivity.</p><p>Chemistry and cheminformatics resources were then employed in the selection of both novel and chemically tractable molecules to pursue for a KOR selective probe. Structures of interest and analogs thereof were either purchased as commercial dry powders. In total, 32 structures were received from commercial vendors. These constituted the SAR driving chemistries from which the KOR1 antagonist probe candidate and analogs emerged.</p><p>SAR testing of re-constituted powders encompassed dose response testing of compounds in four assays: KOR1 DiscoveRx &#x003b2;-arrestin Antagonist assay, the KOR High-Content Transfluor Antagonist assay, and the MOR and DOR High-Content Transfluor Antagonist assays.</p></div><div id="ml190.s27"><h3>3.2. Dose Response Curves for Probe</h3><p>The normalized dose response curves for inhibition of the &#x003ba;- &#x003bc;-, and &#x003b4;-opioid receptor (KOR, MOR, and DOR, respectively) signaling stimulated by 240 nM dynorphin A agonist by the probe <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b> CID44665680, <a href="https://pubchem.ncbi.nlm.nih.gov/substance/88442997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">SID88442997</a>) are show in the graphs below. For the &#x003ba;-opioid receptor the responses from both the primary luminescent screen DiscoveRx &#x003b2;-arrestin binding assay from lysed cell and the Transfluor HCS &#x003b2;-arrestin translocation imaging-based assay are also plotted. The greater potency of the probe in the HCS system (3 nM IC50) compared to the DiscoveRx (DRx) system (120 nM IC50) is somewhat unexpected as noted previously. There is essentially no dose-responsiveness of the MOR and DOR HCS systems. This is in contrast to our prior KOR antagonist probe <b><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></b> (CID3342390) where the potencies are very close between the two assay technologies (850 nM by DRx versus 1310 nM by HCS) <i>(<a href="https://mli.nih.gov/mli/?dl_id=1197" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://mli.nih.gov/mli/?dl_id=1197</a>).</i></p><div id="ml190.fu22" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu26.jpg" alt="Image ml190fu26" /></div></div></div><div id="ml190.s28"><h3>3.3. Scaffold/Moiety Chemical Liabilities</h3><p>This scaffold contains no reactive moieties or functional groups known to form covalent bonds. The amide bond linking the two hemispheres of the probe molecule provides a facile site for metabolism of the compound <i>in vivo</i>.</p></div><div id="ml190.s29"><h3>3.4. SAR Tables</h3><p>During the HTS and continuted hit confirmation phase of the project, an additional chemotype emerged presently, as a novel and promising scaffold for SAR optimization (<a class="figpopup" href="/books/NBK66151/figure/ml190.f1/?report=objectonly" target="object" rid-figpopup="figml190f1" rid-ob="figobml190f1">Figure 1</a>). Two compounds, CID 22553442 and CID 22522554, were found to possess promising antagonist activity in preliminary &#x003b2;-arrestin assays (<a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1778" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 1778</a> and <a href="https://pubchem.ncbi.nlm.nih.gov/bioassay/1785" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem">AID 1785</a>) while four additional compounds were found to have IC<sub>50</sub> values above ten micromolar. Notably, both active compounds contained a <i>p</i>-methoxyphenyl substituted piperazine moiety and a pyrrolopyrazine moiety.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figml190f1" co-legend-rid="figlgndml190f1"><a href="/books/NBK66151/figure/ml190.f1/?report=objectonly" target="object" title="Figure 1" class="img_link icnblk_img figpopup" rid-figpopup="figml190f1" rid-ob="figobml190f1"><img class="small-thumb" src="/books/NBK66151/bin/ml190f1.gif" src-large="/books/NBK66151/bin/ml190f1.jpg" alt="Figure 1. Preliminary screening of hit structures." /></a><div class="icnblk_cntnt" id="figlgndml190f1"><h4 id="ml190.f1"><a href="/books/NBK66151/figure/ml190.f1/?report=objectonly" target="object" rid-ob="figobml190f1">Figure 1</a></h4><p class="float-caption no_bottom_margin">Preliminary screening of hit structures. </p></div></div><p><b>SAR Analysis.</b> A single round of SAR comprised of 8 commercial and 18 synthesized analogs were screened in both the KOP receptor &#x003b2;-arrestin assay and secondary, high content transfluor assays for KOP, DOP and MOP receptor activities. These results are summarized in <a class="figpopup" href="/books/NBK66151/table/ml190.t5/?report=objectonly" target="object" rid-figpopup="figml190t5" rid-ob="figobml190t5">Tables 5</a> and <a class="figpopup" href="/books/NBK66151/table/ml190.t6/?report=objectonly" target="object" rid-figpopup="figml190t6" rid-ob="figobml190t6">6</a>. Impressively, the incorporation of a single methyl group on the heterocyclic core increased the potency of the <i>p</i>-methoxyphenyl substituted piperazine analog by over ten fold in the &#x003b2;-arrestin assay and afforded a KOP receptor-selective compound with a more potent IC<sub>50</sub> of 120 nM (<a class="figpopup" href="/books/NBK66151/table/ml190.t5/?report=objectonly" target="object" rid-figpopup="figml190t5" rid-ob="figobml190t5">Table 5</a>. entry 1, CID 44665680, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b>). While less potent than JDTic (CID 9956146, IC<sub>50</sub> = 0.02 nM), this compound (CID 44665680, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b>) is over &#x0003e;267-fold selective for the KOP receptor over both the DOP and MOP receptors, an improved selectivity compared to JDTic (202-fold selective for the KOP over the MOP receptor). The most valuable attribute of this probe lies in its structural novelty compared to JDTic and other established KOP receptor-selective compounds. Such novel structural chemotypes could possess subtle variations in their interactions with the KOP receptor that would be useful in the investigation into the precise signaling pathways involved with KOP receptor modulation. The discovery of new structural chemotypes for KOR research was the main objective of this project as established in our approved Chemical Probe Development Plan (CPDP). Further pharmacodynamic studies in animal behavioral models are required to determine if the ultimate objective finding shorter acting antagonists has been achieved, as there are no predictive in vitro assays to evaluate this. These studies are beyond the scope and funding of the Molecular Libraries Program for this present probe report.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml190t5"><a href="/books/NBK66151/table/ml190.t5/?report=objectonly" target="object" title="Table 5" class="img_link icnblk_img figpopup" rid-figpopup="figml190t5" rid-ob="figobml190t5"><img class="small-thumb" src="/books/NBK66151/table/ml190.t5/?report=thumb" src-large="/books/NBK66151/table/ml190.t5/?report=previmg" alt="Table 5. SAR analysis for selective &#x003ba;&#x02013;opioid receptor antagonist for the tricyclic lactam scaffold." /></a><div class="icnblk_cntnt"><h4 id="ml190.t5"><a href="/books/NBK66151/table/ml190.t5/?report=objectonly" target="object" rid-ob="figobml190t5">Table 5</a></h4><p class="float-caption no_bottom_margin">SAR analysis for selective &#x003ba;&#x02013;opioid receptor antagonist for the tricyclic lactam scaffold. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml190t6"><a href="/books/NBK66151/table/ml190.t6/?report=objectonly" target="object" title="Table 6" class="img_link icnblk_img figpopup" rid-figpopup="figml190t6" rid-ob="figobml190t6"><img class="small-thumb" src="/books/NBK66151/table/ml190.t6/?report=thumb" src-large="/books/NBK66151/table/ml190.t6/?report=previmg" alt="Table 6. SAR analysis for selective &#x003ba;&#x02013;opioid receptor antagonist for the tricyclic lactam scaffold." /></a><div class="icnblk_cntnt"><h4 id="ml190.t6"><a href="/books/NBK66151/table/ml190.t6/?report=objectonly" target="object" rid-ob="figobml190t6">Table 6</a></h4><p class="float-caption no_bottom_margin">SAR analysis for selective &#x003ba;&#x02013;opioid receptor antagonist for the tricyclic lactam scaffold. </p></div></div><p>The modular synthetic route developed here can readily provide access to the requisite quantities necessary for the advanced assays and <i>in vivo</i> studies needed to determine the binding profile of <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b>. The present synthetic methods also allow for the synthesis of additional analogues to augment the limited set of analogues discussed here. Based on these merits, the compound (CID 44665680, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b>) is nominated as a probe compound. Several other compounds sharing the additional methyl group also exceeded the probe criteria to a lesser extent (<a class="figpopup" href="/books/NBK66151/table/ml190.t5/?report=objectonly" target="object" rid-figpopup="figml190t5" rid-ob="figobml190t5">Table 5</a>., entries 2 through 5). The 2,4-dimethoxy analogue (entry 2, CID 44665679) is only slightly less potent in both the &#x003b2;-arrestin and transfluor assays, suggesting that additional analogues exploring the methoxy substitution patern could be a fruitful area for followup SAR studies. That five individual compounds of this chemotype possess submicromolar potency is encouraging for the potential to incorporate tracking moieties such as bromo or azide (the 4-chloro analogue is particularly relevant here). The present probe candidate is of adequate potency and high KOR selectivity for utilization in additional studies in KOR research or could be further refined through additional rounds of SAR to optimize potency or improve other characteristics desirable to individual research groups. The scaffold is highly amenable to modification via the present synthetic route and the effects of varying the substitution of this chemotype have only begun to be explored.</p><p>The analogues shown in <a class="figpopup" href="/books/NBK66151/table/ml190.t6/?report=objectonly" target="object" rid-figpopup="figml190t6" rid-ob="figobml190t6">Table 6</a> contain slightly greater structural variation than those above and most of these changes conferred a drastic loss in activity. The compounds in entries 8 (CID 45479166) and 9 (CID 45479168) demonstrate the connection between tether length and activity. While not an exhaustive study, the lower activity of both the two carbon and four carbon tether analogues supports the three-carbon tether length of the probe candidate as the optimal length. Entries 6 (CID 22553452) and 7 (CID 22553453) contain compounds that could provide lead structures for a MOP receptor-selective compound based on the present scaffold.</p></div><div id="ml190.s30"><h3>3.5. Cellular Activity</h3><p>The probe molecule has demonstrated potent 120 nM IC<sub>50</sub> (DiscoveRx) antagonist activity in both the primary enzyme complementation assay for inhibition of &#x003b2;-arrestin mediated signaling of the kappa opioid receptors, with &#x0003e; 267-fold selectivity for inhibition of activation over the mu- and delta opioid receptors of the selectivity is calculated for the HCS vs. DiscoveRx values. Unexpectedly, these have even higher apparent potency (3 nM IC<sub>50</sub>) when ascertained by the High-Content imaging assay versus the plate-reader based DiscoveRx luminescent assay (see cover page), with then provides an even higher selectivity of &#x0003e;10,700-fold over the mu- and delta-opioid receptors, comparing HCS to HCS IC<sub>50</sub> values. As all of these assay are cell-based functional signaling assays, therefore by definition they have cellular activity and are expected have some cell permeability. Consistent with this is the finding that the probe has excellent PAMPA and moderate Blood-Brain-Barrier PAMPA permeability (<i>see below</i> in <a class="figpopup" href="/books/NBK66151/table/ml190.t7/?report=objectonly" target="object" rid-figpopup="figml190t7" rid-ob="figobml190t7">Table 7</a>
<i>In vitro</i> ADMET properties). The hepatocyte toxicity (see <a class="figpopup" href="/books/NBK66151/table/ml190.t7/?report=objectonly" target="object" rid-figpopup="figml190t7" rid-ob="figobml190t7">Table 7</a>
<i>In vitro</i> ADMET properties) estimates are still pending, and are expected shortly.</p></div><div id="ml190.s31"><h3>3.6. Profiling Assays</h3><p><b><i>In vitro Pharmacology Profiles</i></b> conducted by SBCCG Exploratory Pharmacology group of Probe CID44665680 [<b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b>] (<i>See</i>
<a class="figpopup" href="/books/NBK66151/table/ml190.t7/?report=objectonly" target="object" rid-figpopup="figml190t7" rid-ob="figobml190t7">Table 7</a>
<i>below</i>).</p><p>The probe, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b> (CID44665680), had very high solubility of 96.6 &#x003bc;g/mL and 90.6 &#x003bc;g/mL at pH 5.0 and 6.2 respectively. This could be due to the protonation of one tertiary amine(s) of the piperazine linker (pKa&#x02019;s of ~5.8 and 9.5), consistent with decreasing solubility as the pH increases. At pH 7.4 in phosphate-free buffer, the solubility was a moderate 12.4 &#x003bc;g/mL, comparable to the 12.9 &#x003bc;g/mL in PBS consistent with the little effect of phosphate effect or ionic strength on solubility. This probe <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b> has superior solubility compared the previous probe <b><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></b> (less than 0.8 &#x003bc;g/mL at all pH&#x02019;s tested).</p><p>The PAMPA (<b>P</b>arallel <b>A</b>rtificial <b>M</b>embrane <b>P</b>ermeability <b>A</b>ssay) assay is used as an <i>in vitro</i> model of passive, transcellular permeability. An artificial membrane immobilized on a filter is placed between a donor and acceptor compartment. At the start of the test, drug is introduced in the donor compartment. Following the permeation period, the concentrations of drug in the donor and acceptor compartments are measured using UV spectroscopy. In this assay, the probe, CID44665680, had a moderate permeability (Pe) of 27 &#x000d7;10<sup>&#x02212;6</sup> cm/s at pH 5 that rapidly increased to 757 &#x000d7;10<sup>&#x02212;6</sup> cm/s as the pH rose to 7.4, consistent with loss of protonation and positive charge, which would improve permeability. This probe exhibited moderate permeability in the blood brain barrier (BBB-Pe) PAMPA assay of 51 &#x000d7;10<sup>&#x02212;6</sup> cm/s. By comparison our first antagonist [<a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a>] CID03342390 have very poor solubility (&#x0003c; 1 &#x003bc;g/mL at all pHs), but very good Pe (&#x0003e;1710&#x02013;1940 &#x000d7;10<sup>&#x02212;6</sup> cm/s) and BBB-Pe (419 &#x000d7;10<sup>&#x02212;6</sup> cm/s).</p><p>Plasma Protein Binding is a measure of a drug&#x02019;s efficiency to bind to the proteins within <i><u>blood plasma</u></i>. The less bound a drug is, the more efficiently it can traverse cell membranes or diffuse. Highly plasma protein bound drugs are confined to the vascular space, thereby having a relatively low volume of distribution. In contrast, drugs that remain largely unbound in plasma are generally available for distribution to other organs and tissues. The probe, CID44665680, is highly bound (80 &#x02013; 94%) to both human and mouse plasma.</p><p>Plasma Stability is a measure of the stability of small molecules and peptides in plasma and is an important parameter, which strongly can influence the <i>in vivo</i> efficacy of a test compound. Drug candidates are exposed in plasma to enzymatic processes (proteinases, esterases), and they can undergo intramolecular rearrangement or bind irreversibly (covalently) to proteins. The probe, CID44665680, shows excellent stability (100% remaining after 3 hrs at 37&#x000b0;C) in both human and mouse plasma. Interestingly, in the companion control experiments without plasma, the probe rapidly is lost (~30% remaining), so its strong binding to protein also stabilizes it.</p><p>The microsome stability assay is commonly used to rank compounds according to their metabolic stability. This assay addresses the pharmacologic question of how long the parent compound will remain circulating in plasma within the body. The probe, CID44665680, is rapidly metabolized in both human or mouse microsomes with 22% and 7.3 % remaining after 1 hr. Data for toxicity to human hepatocyctes is pending and should be available shortly.</p><p><b>Profiling against other GPCRs.</b> The probe, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b> (CID44665680), was submitted to the Psychoactive Drug Screening Program (PDSP) at the University of North Carolina (PDSP, Bryan Roth, PI) and the data received to date for the probe CID44665680 against a GPCR binding assay panel is shown in <a class="figpopup" href="/books/NBK66151/table/ml190.t8/?report=objectonly" target="object" rid-figpopup="figml190t8" rid-ob="figobml190t8">Table 8</a>. Overall, this 2<sup>nd</sup> probe shows a slightly cleaner binding profile than our Centers&#x02019; prior antagonist probe <b><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></b> (CID3342390), although this probe does posses a rather high affinity for the D3 receptor (250 nM vs. 1,234 for <b><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></b>). This affinity, while not optimal, may also encourage its development as a D3 receptor antagonist. Compounds of this type have also shown great promise in the treatment of addictive disorders (<a class="bk_pop" href="#ml190.r9">9</a>). The binding Ki from the PDSP for <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b> of 129 nM is in excellent agreement with the 120 nM (DiscoveRx) estimate for the IC50 inhibition of KOR response to dynorphin A. At this time, the results for the secondary binding assays are pending for the DAT secondary assays. The primary binding assay values (performed at 10 &#x003bc;M) was 57% for DAT, which is only marginally over the hit threshold for significant inhibition of 50% (<a class="bk_pop" href="#ml190.r10">10</a>).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figml190t8"><a href="/books/NBK66151/table/ml190.t8/?report=objectonly" target="object" title="Table 8" class="img_link icnblk_img figpopup" rid-figpopup="figml190t8" rid-ob="figobml190t8"><img class="small-thumb" src="/books/NBK66151/table/ml190.t8/?report=thumb" src-large="/books/NBK66151/table/ml190.t8/?report=previmg" alt="Table 8. Receptor profiling of KOP receptor antagonist ML190 (CID44665680)." /></a><div class="icnblk_cntnt"><h4 id="ml190.t8"><a href="/books/NBK66151/table/ml190.t8/?report=objectonly" target="object" rid-ob="figobml190t8">Table 8</a></h4><p class="float-caption no_bottom_margin">Receptor profiling of KOP receptor antagonist ML190 (CID44665680). </p></div></div><p><b>Profiling against the NCI cell line panel.</b> The probe, <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b>,, was submitted to the Developmental Therapeutics Program (DTP) for screening against the NCI-60 panel of human tumor cell lines. The compound was screened against each cell line in a single dose at 10 &#x003bc;M and the results summarized on the next page. No significant inhibition of tumor cell growth was observed and the compound was not selected for additional screening. The absence of selective cytotoxicity is not surprising given that the compound was developed to target the KOR. In fact, inhibition of cellular growth in this panel would have been cause for concern that the compound might possess general cellular toxicity.</p><div id="ml190.fu23" class="figure bk_fig"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu29.jpg" alt="Developmental Therapeutics Program One Dose Mean Graph." /></div><h3><span class="title">Developmental Therapeutics Program One Dose Mean Graph</span></h3></div></div></div><div id="ml190.s32"><h2 id="_ml190_s32_">4. Discussion</h2><p>The criteria for probe as defined in the CPDP Chem Update document filed on October 28, 2009 and revised and re-filed on November 21, 2009, and finally re-filed after corrections requested by NIH on January 12, 2010 with the NIH PT were: a potency for KOP receptor of less than 1 &#x003bc;M, and at least 100-fold selectivity over MOP and 10-fold selectivity over DOP receptors or as obtained by the achievable test concentrations, (e.g. solubility limited). This current antagonist is a novel scaffold compared to those in the literature and exceeds all the criteria for KOP receptor potency (120 nM by DiscoverRx) and for DOP and MOP receptor selectivity when assessed by the ratio of the DiscoveRx IC50 for KOP compared to the MOP or DOP receptor HCS IC50 values (&#x0003e;267-fold). This probe also significantly exceeds the first KOP receptor antagonist probe <a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a> (CID3342390) originally filed February 27, 2010, revised several times and filed in final revised form on Sept 15, 2010 after review by an External Scientific panel convened in June 2010 and feedback with the NIH PT the August 5, 2010.</p><p>In this probe report, we describe the discovery and optimization of a novel more potent antagonist (120 nM by DiscoveRx) for the kappa-(&#x003ba;)opioid (KOP) receptor that is &#x0003e;267-fold selective over the mu-(&#x003bc;) (MOP) and the delta-(&#x003b4;) (DOP) opioid receptors. Importantly, this probe and its analogs represent a novel chemical class compared to current literature antagonists and our previously submitted probe, <b><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></b>. Accordingly, this probe and its analogs may serve as interesting tools to advance addiction research. Additionally, this new chemotype is less complicated compared to known KOP receptor antagonist compounds. The structure contains no stereochemical centers and the short, versatile synthetic route enables both the synthesis of potential analogs and the production of the compound on larger scale.</p><div id="ml190.s33"><h3>4.1. Comparison to existing art and how the new probe is an improvement</h3><p>As described in the CPDP these studies are now on-going in the assay provider&#x02019;s and collaborating laboratories, as post-probe nomination research and we hope to publish jointly in the future. Additionally, we sent the probe <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b> for broad GPCR paneling and the results are in <a class="figpopup" href="/books/NBK66151/table/ml190.t8/?report=objectonly" target="object" rid-figpopup="figml190t8" rid-ob="figobml190t8">Table 8</a>, and as noted this probe is &#x0201c;cleaner&#x0201d; against all the other tested GPCR, though it has a 250 nM Ki for D3 vs. 1,234 nM for <b><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></b>. Furthermore, the relatively good agreement among the GPCR panel, cell-based &#x003b2;-arrestin mediated enzyme complementation assay and the more downstream image based &#x003b2;-arrestin mediated G-protein redistribution with these compounds is notable.</p><p>As defined in the CPDP and the initial teleconference calls with the National Institute on Drug Abuse, this probe project was unusual as there are already examples of very potent agonists and antagonists of the kappa-opioid receptors with low nanomolar EC50 and IC50s, that are very selective against the mu- and delta- opioid subtypes. As emphasized during those initial discussions, <u>the overarching purpose was to find new chemical scaffolds</u> that are chemically distinct from the rich literature of known agonists and antagonists as starting points for further synthesis and work by the assay provider's lab and their collaborative chemists. Furthermore, NIDA is ultimately interested in new antagonists that are <i><u>short acting</u></i>. While these animal model studies are out of scope of the MLPCN and indeed would take much more compound and more time than a probe nomination project, NIDA was clear that new scaffolds would be a key measure of success.</p><p>As a comparative measure, the following tables summarize our antagonist probe against the precedent state-of-art probes. The binding Ki from the PDSP for <b><a href="/pcsubstance/?term=ML190[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML190</a></b> (CID44665680) of 129 nM is in excellent agreement with the 120 nM (DiscoveRx) estimate of IC50. JDTic is entering an IND phase (communication by Assay Provider), but it is still a long-acting drug. It is hoped that the current probe may be a short acting probe. Our first probe was found to rapidly wash-out suggesting that it was in rapid equilibrium with a high-off rate and suggesting that it could be short acting.</p><p>This probe exceeds both the potency and selectivity criteria set by our revised CPDP Chem Update by more than 5-fold. The assay provider is interested in this structure and finds the SAR intriguing. We consider this probe and project to be an unmitigated success in achieving the goals of defining a novel chemical scaffold that may well have different and interesting pharmacological properties than the current literature examples. We await the eventual evaluation of this probe in NIDA&#x02019;s model for drug wash-out and pharmacodynamic efficacy and confirmation of a short duration of action.</p></div><div id="ml190.s34"><h3>4.2. Mechanism of Action Studies</h3><p>Dr. Bohn, the assay provider&#x02019;s collaborator performed follow-up studies to verify where in the pathway for GPCR activation of the KOP receptor the probes acted. The probe and an isosteric analog lacking the 4-methyl substitution and the nitrogen heteroatom of the pyridine group in the probe were selected for study. Nor-BNI was used as a control.</p><p>The probe was found to be a potent inhibitor of the <sup>35</sup>S-GTP&#x003b3;S Coupling indicating a direct functional effect on G-coupling. Potency was comparable to the Transfluor HCS assay.</p><div id="ml190.fu26" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu32.jpg" alt="Image ml190fu32" /></div></div><div id="ml190.tu4" class="table"><h3><span class="title">Antagonists: <sup>35</sup>S-GTP&#x003b3;S Coupling</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK66151/table/ml190.tu4/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml190.tu4_lrgtbl__"><table class="no_margin"><thead><tr><th id="hd_h_ml190.tu4_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Ligand</th><th id="hd_h_ml190.tu4_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">IC50, nM</th><th id="hd_h_ml190.tu4_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Imax (% NBNI)</th></tr></thead><tbody><tr><td headers="hd_h_ml190.tu4_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><b>Nor-BNI</b></td><td headers="hd_h_ml190.tu4_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4.64 &#x000b1; 0.83</td><td headers="hd_h_ml190.tu4_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">101 &#x000b1; 1</td></tr><tr><td headers="hd_h_ml190.tu4_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><b>22553442</b></td><td headers="hd_h_ml190.tu4_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">95.7 &#x000b1; 48</td><td headers="hd_h_ml190.tu4_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">122 &#x000b1; 5 <sup><a class="bk_pop" href="#ml190.tfn18">a</a></sup></td></tr><tr><td headers="hd_h_ml190.tu4_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><b>44665680</b></td><td headers="hd_h_ml190.tu4_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">434.2 &#x000b1; 154.1 <sup><a class="bk_pop" href="#ml190.tfn18">a</a></sup></td><td headers="hd_h_ml190.tu4_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">177 &#x000b1; 5 <sup><a class="bk_pop" href="#ml190.tfn18">a</a></sup></td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div id="ml190.tfn16"><p class="no_margin">n&#x02265;3 curves performed in duplicate.</p></div></dd><dt></dt><dd><div id="ml190.tfn17"><p class="no_margin">Ligand vs NBNI:</p></div></dd><dt>a</dt><dd><div id="ml190.tfn18"><p class="no_margin">p&#x0003c;0.05; t-test. n&#x02265;3.</p></div></dd></dl></div></div></div><p>The probe was also a potent inhibitor of the downstream ERK 1/2 Activation pathway, whose potency was comparable to the Transfluor HCS assay.</p><div id="ml190.fu27" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu33.jpg" alt="Image ml190fu33" /></div></div><div id="ml190.tu5" class="table"><h3><span class="title">Antagonists: ERK 1/2 Activation</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK66151/table/ml190.tu5/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__ml190.tu5_lrgtbl__"><table class="no_margin"><thead><tr><th id="hd_h_ml190.tu5_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Ligand</th><th id="hd_h_ml190.tu5_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">IC50, nM</th><th id="hd_h_ml190.tu5_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">Imax (% NBNI)</th></tr></thead><tbody><tr><td headers="hd_h_ml190.tu5_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><b>Nor-BNI</b></td><td headers="hd_h_ml190.tu5_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">4.46 &#x000b1; 0.64</td><td headers="hd_h_ml190.tu5_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">100 &#x000b1; 0.3</td></tr><tr><td headers="hd_h_ml190.tu5_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><b>22553442</b></td><td headers="hd_h_ml190.tu5_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">65.0 &#x000b1; 9.2 <sup><a class="bk_pop" href="#ml190.tfn21">a</a></sup></td><td headers="hd_h_ml190.tu5_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">101 &#x000b1; 3</td></tr><tr><td headers="hd_h_ml190.tu5_1_1_1_1" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"><b>44665680</b></td><td headers="hd_h_ml190.tu5_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">330.0 &#x000b1; 29.4 <sup><a class="bk_pop" href="#ml190.tfn21">a</a></sup><sup>,</sup><sup><a class="bk_pop" href="#ml190.tfn23">b</a></sup></td><td headers="hd_h_ml190.tu5_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">90 &#x000b1; 2 <sup><a class="bk_pop" href="#ml190.tfn21">a</a></sup></td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div id="ml190.tfn19"><p class="no_margin">n&#x02265;3 curves performed in replicates of 6.</p></div></dd><dt></dt><dd><div id="ml190.tfn20"><p class="no_margin">Ligand vs NBNI:</p></div></dd><dt>a</dt><dd><div id="ml190.tfn21"><p class="no_margin">p&#x0003c;0.001.</p></div></dd><dt></dt><dd><div id="ml190.tfn22"><p class="no_margin">Ligand vs 22553442:</p></div></dd><dt>b</dt><dd><div id="ml190.tfn23"><p class="no_margin">p&#x0003c;0.001, t-test.</p></div></dd></dl></div></div></div><p>Interestingly, it appears that when KOR &#x003b2;-arrestin potencies are enhanced, the G protein coupling and ERK activation potencies are diminished. This could be an example of functional selectivity.</p></div><div id="ml190.s35"><h3>4.3. Planned Future Studies</h3><p>Of particular interest is whether the probe is long or short acting at the KOR, and studies of this question in cells and animal models may clarify as to whether the underlying mechanism for antagonist anti-addictive behavior requires activation of JNK. The previously reported probe, <b><a href="/pcsubstance/?term=ML140[synonym]" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=pubchem">ML140</a></b> (CID3342390) has been shown in preliminary studies to be short acting in the mouse brain, appearing in the brain 2 h following i.p injection and being completely washed out after 24 h. The behavior of CID3342390 is distinct from that of nor-BNI, which is still largely present in the brain over the same time course. Having shown that it is possible for small molecule KOR antagonists to show this type of KOR PK profile, similar studies are underway with the presently proposed probe. Studies of this question in cells and animal models may clarify as to whether the underlying mechanism for antagonist anti-addictive behavior requires activation of JNK.</p><p>Three of the most potent and selective of the KOR antagonists, NorBNI, GNTI, and JDTic have been recognized for their long acting properties at the KOR that may be associated with JNK activation. While they have common structural features their differences are sufficient to cloud the SAR that underlies this long acting physiological behavior that can be blocked by reversible nonselective opioid antagonists. It is therefore important to determine how this selective, nanomolar probe functions at the KOR with respect to NorBNI, GNTI, and JDTic (see <a class="figpopup" href="/books/NBK66151/table/ml190.t9/?report=objectonly" target="object" rid-figpopup="figml190t9" rid-ob="figobml190t9">Table 9</a>).</p><p>If the potency of this probe can be further improved to subnanomolar potency (K<sub>i</sub>) it can be radiolabeled to serve as a key probe for receptor distribution and internalization studies, as well as a probe to map out the contribution of different steps along the &#x003b2;-arrestin mediated signaling pathway in cells.</p><p>The probe is approaching the range of potencies where initial dosing in small animals might be considered, though determination of it&#x02019;s reversibility need to be established as a preamble to determining if the probe is short acting at the KOR, which would give it a decided advantage over current compounds under consideration as drugs. This probe may be a candidate for future extended characterization and small animal dosing for exposure by SBCCG&#x02019;s Exploratory Pharmacology group prior to advanced studies by the assay provider and by NIDA.</p></div></div><div id="ml190.s36"><h2 id="_ml190_s36_">5. References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="ml190.r1">Cami J, Farre M. Drug addiction. <span><span class="ref-journal">N Engl J Med. </span>2003;<span class="ref-vol">349</span>:975.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12954747" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12954747</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="ml190.r2">Prisinzano TE, Tidgewell K, Harding WW. Kappa opioids as potential treatments for stimulant dependence. <span><span class="ref-journal">Aaps J. </span>2005;<span class="ref-vol">7</span>:E592.</span> [<a href="/pmc/articles/PMC2751263/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2751263</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16353938" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16353938</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="ml190.r3">Xuei X, Dick D, Flury-Wetherill L, Tian HJ, Agrawal A, Bierut L, Goate A, Bucholz K, Schuckit M, Nurnberger J Jr, Tischfield J, Kuperman S, Porjesz B, Begleiter H, Foroud T, Edenberg HJ. Association of the kappa-opioid system with alcohol dependence. <span><span class="ref-journal">Mol Psychiatry. </span>2006;<span class="ref-vol">11</span>:1016.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16924269" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16924269</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="ml190.r4">Prisinzano TE. Psychopharmacology of the hallucinogenic sage Salvia divinorum. <span><span class="ref-journal">Life Sci. </span>2005;<span class="ref-vol">78</span>:527.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16213533" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16213533</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="ml190.r5">Hasebe K, Kawai K, Suzuki T, Kawamura K, Tanaka T, Narita M, Nagase H. Possible pharmacotherapy of the opioid kappa receptor agonist for drug dependence. <span><span class="ref-journal">Ann N Y Acad Sci. </span>2004;<span class="ref-vol">1025</span>:404.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15542743" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15542743</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="ml190.r6">Metcalf MD, Coop A. Kappa opioid antagonists: past successes and future prospects. <span><span class="ref-journal">AAPS J. </span>2005;<span class="ref-vol">7</span>:E704.</span> [<a href="/pmc/articles/PMC2751273/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2751273</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16353947" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16353947</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="ml190.r7">Glick SD, Maisonneuve IM, Raucci J, Archer S. Kappa opioid inhibition of morphine and cocaine self-administration. <span><span class="ref-journal">Brain Res. </span><span class="ref-vol">681</span>:147.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7552272" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7552272</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="ml190.r8">Bruijnzeel AW. Kappa-opioid receptor signaling and brain reward function. <span><span class="ref-journal">Brain Res. Rev. </span><span class="ref-vol">62</span>:127.</span> [<a href="/pmc/articles/PMC2787673/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2787673</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19804796" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19804796</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="ml190.r9">Heidbreder CA, Newman AH. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders. <span><span class="ref-journal">Ann N Y Acad Sci. </span><span class="ref-vol">1187</span>:4.</span> [<a href="/pmc/articles/PMC3148950/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3148950</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20201845" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20201845</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="ml190.r10">Detailed protocols for all assays are available online (<a href="http://pdsp.med.unc.edu/UNC-CH%20Protocol%Book.pdf" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://pdsp<wbr style="display:inline-block"></wbr>.med.unc.edu<wbr style="display:inline-block"></wbr>/UNC-CH%20Protocol%Book.pdf</a>).</div></dd><dt>11.</dt><dd><div class="bk_ref" id="ml190.r11">Thomas JB, Atkinson RN, Rothman RB, Fix SE, Mascarella SW, Vinson NA, Xu H, Dersch CM, Lu Y, Cantrell BE, Zimmerman DM, Carroll FI. Identification of the first <em>trans</em>-(3<em>R,</em>4<em>R</em>)-dimethyl-4-(3-hydroxyphenyl)piperidine derivative to possess highly potent and selective opioid kappa receptor antagonist activity. <span><span class="ref-journal">J. Med. Chem. </span><span class="ref-vol">44</span>:2687.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11495579" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11495579</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="ml190.r12">Lipkowski AW, Nagase H, Portoghese PS. A novel pyrole synthesis via reaction of ketones with N-aminoimides. <span><span class="ref-journal">Tet. Lett. </span><span class="ref-vol">27</span>:4257.</span></div></dd><dt>13.</dt><dd><div class="bk_ref" id="ml190.r13">Portoghese PS, Lipkowski AW, Takemori AE. Binaltorphimine and nor-binaltorphimine, potent and selective &#x003ba;-opioid receptor antagonists. <span><span class="ref-journal">Life Sciences. </span><span class="ref-vol">40</span>:1287.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2882399" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2882399</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="ml190.r14">Portoghese PS, Lipkowski AW, Takemori AE. Bimorphinans as highly selective, potent &#x003ba; opioid receptor antagonists. <span><span class="ref-journal">J. Med. Chem. </span><span class="ref-vol">30</span>:238.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3027336" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3027336</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="ml190.r15">Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Mutational Evidence for a common &#x003ba; antagonist binding pocket in the wild-type &#x003ba; and mutant &#x003bc;[K303E] opioid receptors. <span><span class="ref-journal">J. Med. Chem. </span><span class="ref-vol">41</span>:4911.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9836606" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9836606</span></a>]</div></dd></dl></div><div id="ml190.app1"><h2 id="_ml190_app1_">Appendix. Synthetic procedures and compound characterization</h2><p>A pdf of KU synthesis details for all analogs made for this project will be appended or supplied searately to this report.</p><div id="ml190.s38"><h3>Additional Characterization of SAR compounds</h3><div id="ml190.fu28" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu34.jpg" alt="Image ml190fu34" /></div></div><p>2-fluoro-4-methyl-3-(1H-pyrrol-1-yl)pyridine: 2-fluoro-4-methylpyridin-3-amine (1.0 g, 7.93 mmol) and 2,5-dimethoxytetrahydrofuran (1.08 mL, 1.05 eqiv.) were suspended in 3 mL of acetic acid and refluxed for 2 hrs. The reaction was cooled down to room temperature. The solvents were removed and the residue was purified by silca gel chromatography (EtOAc/hexanes = 1:8, Rf = 0.3) to afford 1.0 g (72%) oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.10 (dd, <i>J</i> = 0.8, 5.1 Hz, 1H), 7.17 (d, <i>J</i> = 5.1 Hz, 1H), 6.74 (td, <i>J</i> = 2.1, 0.9 Hz, 2H), 6.40 (t, <i>J</i> = 2.1 Hz, 2H), 2.26 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 160.2, 157.8, 149.6, 149.5, 145.5, 145.4, 123.80, 123.76, 122.1, 109.8, 17.29, 17.25. HRMS (m/z): calcd for C<sub>10</sub>H<sub>10</sub>FN<sub>2</sub> (M+H) 177.0828; found 177.0827.</p><div id="ml190.fu29" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu35.jpg" alt="Image ml190fu35" /></div></div><p>Richards, J.J.; Reed, C.S.; Melander, C., <i>Bioorganic &#x00026; Medicinal Chemistry Letters</i> 18 (<b>2008</b>) 4325&#x02013;4327</p><div id="ml190.fu30" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu36.jpg" alt="Image ml190fu36" /></div></div><p>4-methyl-3-(1H-pyrrol-1-yl)pyridin-2-amine: 2-fluoro-4-methyl-3-(1H-pyrrol-1-yl)pyridine (3.9 g, 22.1 mmol) was dissolved in 80 mL of ammonia (7N in MeOH) in a sealed tube (250 mL). The mixture was heated at 150 &#x000b0;C for 2 days protected with shield. The mixture was cooled to room temperature, then cooled in the ice for 30 min. The filtrate was evaporated to dryness and purified by flash chromatography (EtOAc/Hexanes = 1:1, Rf = 0.5) to give 2.9 g (76%) white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 7.96 (d, <i>J</i> = 5.1 Hz, 1H), 6.67 (t, <i>J</i> = 2.1 Hz, 2H), 6.60 (d, <i>J</i> = 5.2 Hz, 1H), 6.41 (t, <i>J</i> = 2.1 Hz, 2H), 4.52 (s, 2H), 2.02 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 156.1, 147.2, 145.9, 121.5, 121.2, 116.0, 110.0, 16.7. HRMS (m/z): calcd for C<sub>10</sub>H<sub>12</sub>N<sub>3</sub> (M+H) 174.1031; found 174.1026.</p><div id="ml190.fu31" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu37a.jpg" alt="Image ml190fu37a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu37b.jpg" alt="Image ml190fu37b" /></div></div><p>1-methylpyrido[2,3-e]pyrrolo[1,2-a]pyrazin-6(5H)-one: 4-methyl-3-(1H-pyrrol-1-yl)pyridin-2-amine (1.0 g, 5.8 mmol) and triphosgene (2.6 g, 8.7 mmol) were dissolved in 100 mL of toluene. The mixture was refluxed for 3 h, then cooled to room temperature. The red solid was collected after filtration and washed with CH<sub>3</sub>CN. 0.5 g (43%). The material was used directly for next step reaction without purification. <sup>1</sup>H NMR (400 MHz, DMSO) &#x003b4; 11.64 (s, 1H), 8.15 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 8.13 (d, <i>J</i> = 4.9 Hz, 1H), 7.20 &#x02013; 7.08 (m, 2H), 6.75 (dd, <i>J</i> = 2.9, 3.9 Hz, 1H), 2.81 (s, 3H).</p><div id="ml190.fu32" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu38a.jpg" alt="Image ml190fu38a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu38b.jpg" alt="Image ml190fu38b" /></div></div><p>methyl 2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetate: To a solution of 1-methylpyrido[2,3-e]pyrrolo[1,2-a]pyrazin-6(5H)-one (50 mg, 0.25 mmol) in 2 mL of DMF, was added NaH (60%, 11 mg, 0.28 mmol). The mixture was stirred at room temperature for 1 h. Methyl bromoacetate (26 mL, 0.28 mmol) was added. The mixture was stirred for 16 h. Solvents were removed under vacuum and the residue was purified by silca gel flash chromatography (DCM/MeOH = 1:10, Rf = 0.5) to afford 37 mg (54%) light yellow solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.15 (d, <i>J</i> = 4.9 Hz, 1H), 7.95 (dd, <i>J</i> = 1.5, 2.9 Hz, 1H), 7.36 (dd, <i>J</i> = 1.5, 4.0 Hz, 1H), 7.00 (d, <i>J</i> = 4.9 Hz, 1H), 6.71 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 5.25 (s, 2H), 3.77 (s, 3H), 2.83 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 169.3, 155.5, 143.1, 142.1, 134.8, 124.2, 122.7, 122.6, 120.4, 113.5, 113.4, 52.3, 41.9, 22.9. HRMS (m/z): calcd for C<sub>14</sub>H<sub>14</sub>N<sub>3</sub>O<sub>3</sub> (M+H) 272.1035; found 272.1042.</p><div id="ml190.fu33" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu39a.jpg" alt="Image ml190fu39a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu39b.jpg" alt="Image ml190fu39b" /></div></div><p>2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetic acid: methyl 2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetate (517 mg, 1.91 mmol) was dissolved in 20 mL of MeOH/H2O/THF (1:1:4). LiOH (68.5 mg, 2.86 mmol) was added. The mixture was stirred at room temperature for 16 h. The solvents were removed and residue was dissolved in water, washed with ether, then neutralized with 2N HCl to pH = 3. 356 mg (73%) white solid was obtained after filtration and dried over vacuum. <sup>1</sup>H NMR (400 MHz, DMSO) &#x003b4; 12.90 (s, 1H), 8.27 &#x02013; 8.17 (m, 2H), 7.29 &#x02013; 7.19 (m, 2H), 6.80 (dd, <i>J</i> = 2.9, 3.9 Hz, 1H), 5.02 (s, 2H), 2.85 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO, APT) &#x003b4; 169.8, 154.5, 143.1, 141.4, 135.9, 123.9, 123.3, 122.8, 119.5, 113.3, 112.7, 41.6, 22.2. HRMS (m/z): calcd for C<sub>13</sub>H<sub>12</sub>N<sub>3</sub>O<sub>3</sub> (M+H) 258.0879; found 258.0894.</p><div id="ml190.fu34" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu40a.jpg" alt="Image ml190fu40a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu40b.jpg" alt="Image ml190fu40b" /></div></div><p>3-(4-(4-methoxyphenyl)piperazin-1-yl)propanenitrile: 4-methoxyphenypiperazine (0.92 g, 4.68 mmol) and acrylonitrile (0.31 mL, 4.68 mmol) were mixed in a 10 mL reaction tube and stirred for 16 h. The product was purified by sical gel flash chromatography (EtOAc/hexanes = 1:8, Rf = 0.3) to give 0.8 g (74%) white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 6.98 &#x02013; 6.90 (m, 2H), 6.90 &#x02013; 6.82 (m, 2H), 3.79 (s, 3H), 3.17 &#x02013; 3.07 (m, 4H), 2.78 (t, <i>J</i> = 7.0 Hz, 2H), 2.74 &#x02013; 2.64 (m, 4H), 2.57 (t, <i>J</i> = 7.0 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 154.0, 145.5, 118.8, 118.4, 114.5, 55.6, 53.4, 52.8, 50.6, 15.9.</p><p>Upadhayaya, R.S.; Sinha, N.; Jain, S.; Chandrab, N.K.R. and Arora, S. K. <i>Bioorganic &#x00026; Medicinal Chemistry</i> 12 (2004) 2225&#x02013;2238</p><div id="ml190.fu35" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu41.jpg" alt="Image ml190fu41" /></div></div><p>3-(4-(4-methoxyphenyl)piperazin-1-yl)propan-1-amine: A solution of 3-(4-(4-methoxyphenyl)piperazin-1-yl)propanenitrile (0.8 g, 3.26 mmol) in 15 mL ether was added to the suspension of LiAlH4 (0.19 g, 4.89 mmol) in 5 mL of ether. The mixture was stirred at room temperature for 16 h. Then quenched with 2N NaOH (1 mL). The ether phase was dried over MgSO4 and evaporated to dryness to give 0.68 g (84%) white solid, which was used directly without further purification. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 6.89 (d, <i>J</i> = 9.1 Hz, 2H), 6.82 (d, <i>J</i> = 9.1 Hz, 2H), 3.75 (s, 3H), 3.15 &#x02013; 3.04 (m, 4H), 2.87 (s, br. 2H), 2.76 (t, <i>J</i> = 6.8 Hz, 2H), 2.67 &#x02013; 2.53 (m, 4H), 2.51 &#x02013; 2.37 (m, 2H), 1.75 &#x02013; 1.54 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 153.8, 145.7, 118.1, 114.4, 56.4, 55.5, 53.48, 50.6, 40.6, 30.1.</p><div id="ml190.fu36" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu42.jpg" alt="Image ml190fu42" /></div></div><p>Valenta, V.; Vlkova, M.; Holubek, J.; Svatek, E.; Metysova, J.; Protiva, M. <i>Collect. Czech. Chem. Commun.</i>
<b>1990</b>, <i>55</i>, 797&#x02013;808</p><div id="ml190.fu37" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu43.jpg" alt="Image ml190fu43" /></div></div><p>N-(3-(4-(4-methoxyphenyl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetic acid (30 mg, 0.12 mmol), 3-(4-(4-methoxyphenyl)piperazin-1-yl)propan-1-amine (43.6 mg, 0.17 mmol) and DMAP (1.4 mg, 0.012 mmol) were dissolved in 1 mL of DCM. Diisopropylcarbodiimide (0.09 mL, 0.58 mmol) was added. The mixture was stirred at room temperature for 16 h. And the product was purified by silica gel flash chromatography (DCM/MeOH = 10 :1, Rf= 0.5) to give 30 mg (53%) white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.17 (d, <i>J</i> = 4.9 Hz, 1H), 7.87 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 7.33 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 7.12 (s, 1H), 6.99 (d, <i>J</i> = 5.0 Hz, 1H), 6.84 (s, 4H), 6.68 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 5.11 (s, 2H), 3.78 (s, 3H), 3.41 (dd, <i>J</i> = 5.8, 12.0 Hz, 2H), 3.02 &#x02013; 2.91 (m, 4H), 2.74 (s, 3H), 2.63 &#x02013; 2.54 (m, 4H), 2.49 (t, <i>J</i> = 6.4 Hz, 2H), 1.75&#x02013;1.69 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.9, 155.8, 153.8, 145.4, 143.2, 142.3, 134.8, 124.1, 122.8, 122.6, 120.4, 118.0, 114.4, 113.5, 113.4, 57.3, 55.6, 53.4, 50.4, 44.2, 39.4, 25.2, 22.8. HRMS (m/z): calcd for C<sub>27</sub>H<sub>33</sub>N<sub>6</sub>O<sub>3</sub> (M+H) 489.2609; found 489.2600.</p><div id="ml190.fu38" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu44a.jpg" alt="Image ml190fu44a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu44b.jpg" alt="Image ml190fu44b" /></div></div><p>2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-phenylpiperazin-1-yl)propyl)acetamide: 24 mg, 79%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.08 (d, <i>J</i> = 4.9 Hz, 1H), 7.76 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 7.25 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 7.17 (dd, <i>J</i> = 1.7, 6.8 Hz, 2H), 7.00 (s, 1H), 6.90 (d, <i>J</i> = 4.9 Hz, 1H), 6.77 (dd, <i>J</i> = 7.7, 8.5 Hz, 3H), 6.58 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 5.02 (s, 2H), 3.33 (dd, <i>J</i> = 5.8, 12.0 Hz, 2H), 2.99 &#x02013; 2.84 (m, 4H), 2.62 (s, 3H), 2.50 &#x02013; 2.42 (m, 4H), 2.38 (t, <i>J</i> = 6.3 Hz, 2H), 1.67 &#x02013; 1.52 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.9, 155.8, 151.0, 143.2, 142.3, 134.9, 129.1, 124.0, 122.8, 122.7, 120.4, 119.7, 115.9, 113.6, 113.5, 57.4, 53.3, 48.9, 44.4, 39.5, 25.1, 22.8. HRMS (m/z): calcd for C<sub>26</sub>H<sub>31</sub>N<sub>6</sub>O<sub>2</sub> (M+H) 459.2503; found 459.2507.</p><div id="ml190.fu39" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu45a.jpg" alt="Image ml190fu45a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu45b.jpg" alt="Image ml190fu45b" /></div></div><p>2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(p-tolyl)piperazin-1-yl)propyl)acetamide: 29 mg, 53%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.14 (d, <i>J</i> = 4.9 Hz, 1H), 7.84 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 7.31 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 7.09 (s, 1H), 7.05 (d, <i>J</i> = 8.2 Hz, 2H), 6.96 (d, <i>J</i> = 4.9 Hz, 1H), 6.76 (d, <i>J</i> = 8.6 Hz, 2H), 6.65 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 5.08 (s, 2H), 3.39 (dd, <i>J</i> = 5.8, 12.0 Hz, 2H), 3.03 &#x02013; 2.92 (m, 4H), 2.70 (s, 3H), 2.60 &#x02013; 2.51 (m, 4H), 2.46 (t, <i>J</i> = 6.4 Hz, 2H), 2.26 (s, 3H), 1.72 &#x02013; 1.66 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.9, 155.8, 148.9, 143.2, 142.3, 134.9, 129.6, 129.2, 124.1, 122.8, 122.6, 120.4, 116.2, 113.5, 113.4, 57.3, 53.3, 49.5, 44.2, 39.4, 25.2, 22.8, 20.4. HRMS (m/z): calcd for C<sub>27</sub>H<sub>33</sub>N<sub>6</sub>O<sub>2</sub> (M+H) 473.2600; found 473.2657.</p><div id="ml190.fu40" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu46a.jpg" alt="Image ml190fu46a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu46b.jpg" alt="Image ml190fu46b" /></div></div><p>N-(3-(4-(4-chlorophenyl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 34 mg, 59%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.17 (d, <i>J</i> = 4.9 Hz, 1H), 7.87 (dd, <i>J</i> = 1.5, 2.9 Hz, 1H), 7.32 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 7.25 &#x02013; 7.16 (m, 2H), 7.02 (s, 1H), 6.99 (d, <i>J</i> = 4.9 Hz, 1H), 6.80 &#x02013; 6.73 (m, 2H), 6.67 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 5.11 (s, 2H), 3.41 (dd, <i>J</i> = 5.9, 12.0 Hz, 2H), 3.06 &#x02013; 2.94 (m, 4H), 2.74 (s, 3H), 2.61 &#x02013; 2.51 (m, 4H), 2.47 (t, <i>J</i> = 6.4 Hz, 2H), 1.75 &#x02013; 1.68 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.9, 155.8, 149.6, 143.2, 142.3, 134.8, 128.9, 124.4, 124.1, 122.8, 122.6, 120.4, 117.0, 113.5, 113.5, 57.2, 53.1, 48.9, 44.3, 39.3, 25.3, 22.8. HRMS (m/z): calcd for C<sub>26</sub>H<sub>30</sub>ClN<sub>6</sub>O<sub>2</sub> (M+H) 493.2113; found 493.2108.</p><div id="ml190.fu41" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu47a.jpg" alt="Image ml190fu47a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu47b.jpg" alt="Image ml190fu47b" /></div></div><p>N-(3-(4-(benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 24 mg, 41%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.08 (d, <i>J</i> = 4.9 Hz, 1H), 7.80 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 7.25 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 6.96 (s, 1H), 6.91 (d, <i>J</i> = 4.9 Hz, 1H), 6.66 &#x02013; 6.58 (m, 2H), 6.40 (d, <i>J</i> = 2.4 Hz, 1H), 6.20 (dd, <i>J</i> = 2.4, 8.5 Hz, 1H), 5.82 (s, 2H), 5.02 (s, 2H), 3.32 (dd, <i>J</i> = 5.8, 12.0 Hz, 2H), 2.89 &#x02013; 2.80 (m, 4H), 2.67 (s, 3H), 2.52 &#x02013; 2.43 (m, 4H), 2.39 (t, <i>J</i> = 6.4 Hz, 2H), 1.69 &#x02013; 1.56 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.9, 155.7, 148.3, 147.1, 143.2, 142.3, 141.3, 134.8, 124.1, 122.8, 122.6, 120.4, 113.6, 113.5, 108.8, 108.2, 100.9, 99.7, 57.3, 53.3, 50.6, 44.3, 39.4, 25.2, 22.9. HRMS (m/z): calcd for C<sub>27</sub>H<sub>31</sub>N<sub>6</sub>O<sub>4</sub> (M+H) 503.2401; found 503.2397.</p><div id="ml190.fu42" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu48.jpg" alt="Image ml190fu48" /></div></div><p>N-(3-(4-(2,4-dimethoxyphenyl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 38 mg, 63%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.06 (d, <i>J</i> = 4.9 Hz, 1H), 7.81 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 7.24 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 7.14 (s, 1H), 6.89 (d, <i>J</i> = 4.9 Hz, 1H), 6.70 (d, <i>J</i> = 8.6 Hz, 1H), 6.59 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 6.39 (d, <i>J</i> = 2.7 Hz, 1H), 6.32 (dd, <i>J</i> = 2.7, 8.6 Hz, 1H), 5.03 (s, 2H), 3.75 (s, 3H), 3.69 (s, 3H), 3.31 (dd, <i>J</i> = 5.9, 11.9 Hz, 2H), 2.87 (s, br. 4H), 2.68 (s, 3H), 2.56 (s, br. 4H), 2.42 (t, <i>J</i> = 6.4 Hz, 2H), 1.72 &#x02013; 1.55 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.8, 156.1, 155.8, 153.3, 143.2, 142.3, 135.0, 134.8, 124.2, 122.7, 122.6, 120.4, 118.5, 113.4, 113.4, 103.4, 100.0, 57.3, 55.5, 55.4, 53.5, 51.2, 44.1, 39.3, 25.2, 22.9. HRMS (m/z): calcd for C<sub>28</sub>H<sub>35</sub>N<sub>6</sub>O<sub>4</sub> (M+H) 519.2714; found 519.2710.</p><div id="ml190.fu43" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu49.jpg" alt="Image ml190fu49" /></div></div><p>2-(6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-phenylpiperazin-1-yl)propyl)acetamide: 40 mg, 73%. <sup>1</sup>H NMR (400 MHz, CDCl3) &#x003b4; 8.30 (dd, <i>J</i> = 1.5, 4.8 Hz, 1H), 7.83 (dd, <i>J</i> = 1.5, 8.1 Hz, 1H), 7.54 (dd, <i>J</i> = 1.4, 2.8 Hz, 1H), 7.34 &#x02013; 7.18 (m, 4H), 7.14 (dd, <i>J</i> = 4.8, 8.0 Hz, 1H), 6.93 &#x02013; 6.82 (m, 3H), 6.64 (dd, <i>J</i> = 2.8, 3.9 Hz, 1H), 5.10 (s, 2H), 3.43 (dd, <i>J</i> = 5.8, 11.9 Hz, 2H), 3.13 &#x02013; 2.98 (m, 4H), 2.64 &#x02013; 2.54 (m, 4H), 2.50 (t, <i>J</i> = 6.3 Hz, 2H), 1.73 (p, <i>J</i> = 6.3 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.7, 155.9, 151.0, 144.3, 141.6, 129.1, 122.8, 121.8, 120.1, 119.7, 118.5, 117.0, 115.9, 114.1, 113.9, 57.4, 53.3, 49.0, 43.6, 39.6, 25.1. HRMS (m/z): calcd for C<sub>25</sub>H<sub>29</sub>N<sub>6</sub>O<sub>2</sub> (M+H) 445.2347; found 445.2344.</p><div id="ml190.fu44" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu50.jpg" alt="Image ml190fu50" /></div></div><p>2-(6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(p-tolyl)piperazin-1-yl)propyl)acetamide: 30 mg, 53%. <sup>1</sup>H NMR (400 MHz, CDCl3) &#x003b4; 8.20 (dd, <i>J</i> = 1.5, 4.8 Hz, 1H), 7.75 (dd, <i>J</i> = 1.5, 8.1 Hz, 1H), 7.46 (dd, <i>J</i> = 1.4, 2.8 Hz, 1H), 7.14 (dt, <i>J</i> = 4.2, 8.3 Hz, 2H), 7.05 (dd, <i>J</i> = 4.8, 8.0 Hz, 1H), 6.99 (d, <i>J</i> = 8.2 Hz, 2H), 6.70 (d, <i>J</i> = 8.6 Hz, 2H), 6.56 (dd, <i>J</i> = 2.8, 3.9 Hz, 1H), 5.00 (s, 2H), 3.33 (dd, <i>J</i> = 5.8, 11.9 Hz, 2H), 2.99 &#x02013; 2.85 (m, 4H), 2.54 &#x02013; 2.45 (m, 4H), 2.40 (t, <i>J</i> = 6.3 Hz, 2H), 2.19 (s, 3H), 1.63 (p, <i>J</i> = 6.3 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.6, 155.9, 148.9, 144.3, 141.6, 129.6, 129.2, 122.8, 121.8, 120.2, 118.5, 117.0, 116.3, 114.1, 113.9, 57.4, 53.3, 49.6, 43.5, 39.5, 25.1, 20.4. HRMS (m/z): calcd for C<sub>26</sub>H<sub>31</sub>N<sub>6</sub>O<sub>2</sub> (M+H) 459.2503; found 459.2501.</p><div id="ml190.fu45" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu51.jpg" alt="Image ml190fu51" /></div></div><p>N-(3-(4-(4-methoxyphenyl)piperazin-1-yl)propyl)-2-(6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 19 mg, 32%. <sup>1</sup>H NMR (400 MHz, CDCl3) &#x003b4; 8.22 (dd, <i>J</i> = 1.5, 4.8 Hz, 1H), 7.77 (dd, <i>J</i> = 1.5, 8.1 Hz, 1H), 7.48 (dd, <i>J</i> = 1.4, 2.8 Hz, 1H), 7.16 (dd, <i>J</i> = 1.4, 3.9 Hz, 1H), 7.12 (s, 1H), 7.07 (dd, <i>J</i> = 4.8, 8.0 Hz, 1H), 6.76 (s, 4H), 6.58 (dd, <i>J</i> = 2.8, 3.9 Hz, 1H), 5.02 (s, 2H), 3.69 (s, 3H), 3.34 (dd, <i>J</i> = 5.8, 11.9 Hz, 2H), 2.96 &#x02013; 2.83 (m, 4H), 2.57 &#x02013; 2.47 (m, 4H), 2.42 (t, <i>J</i> = 6.3 Hz, 2H), 1.71 &#x02013; 1.58 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.6, 155.9, 153.8, 145.4, 144.4, 141.6, 122.9, 121.8, 120.2, 118.5, 118.0, 116.9, 114.4, 114.1, 113.9, 57.3, 55.6, 53.4, 50.4, 43.5, 39.5, 25.1. HRMS (m/z): calcd for C<sub>26</sub>H<sub>31</sub>N<sub>6</sub>O<sub>3</sub> (M+H) 475.2452; found 475.2448.</p><div id="ml190.fu46" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu52.jpg" alt="Image ml190fu52" /></div></div><p>N-(3-(4-(4-chlorophenyl)piperazin-1-yl)propyl)-2-(6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 35 mg, 59%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.22 (d, <i>J</i> = 4.7 Hz, 1H), 7.77 (dd, <i>J</i> = 1.3, 8.0 Hz, 1H), 7.47 (dd, <i>J</i> = 1.4, 2.7 Hz, 1H), 7.17 &#x02013; 7.05 (m, 4H), 7.02 (s, 1H), 6.73 &#x02013; 6.63 (m, 2H), 6.60 &#x02013; 6.51 (m, 1H), 5.01 (s, 2H), 3.33 (dd, <i>J</i> = 5.9, 11.9 Hz, 2H), 2.98 &#x02013; 2.87 (m, 4H), 2.52 &#x02013; 2.44 (m, 4H), 2.39 (t, <i>J</i> = 6.3 Hz, 2H), 1.63 (p, <i>J</i> = 6.3 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.7, 155.9, 149.6, 144.4, 141.6, 128.9, 124.5, 122.8, 121.8, 120.2, 118.5, 117.1, 116.9, 114.1, 113.9, 57.3, 53.1, 49.0, 43.6, 39.4, 25.2. HRMS (m/z): calcd for C<sub>25</sub>H<sub>28</sub>ClN<sub>6</sub>O<sub>2</sub> (M+H) 479.1957; found 479.1949.</p><div id="ml190.fu47" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu53.jpg" alt="Image ml190fu53" /></div></div><p>N-(3-(4-(benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)propyl)-2-(6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 24 mg, 40%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.22 (dd, <i>J</i> = 1.4, 4.8 Hz, 1H), 7.79 (dd, <i>J</i> = 1.4, 8.1 Hz, 1H), 7.50 (dd, <i>J</i> = 1.4, 2.8 Hz, 1H), 7.16 (dd, <i>J</i> = 1.4, 3.9 Hz, 1H), 7.08 (dd, <i>J</i> = 4.8, 8.0 Hz, 2H), 6.63 (d, <i>J</i> = 8.4 Hz, 1H), 6.58 (dd, <i>J</i> = 2.8, 3.9 Hz, 1H), 6.41 (d, <i>J</i> = 2.4 Hz, 1H), 6.21 (dd, <i>J</i> = 2.4, 8.5 Hz, 1H), 5.82 (s, 2H), 5.01 (s, 2H), 3.33 (dd, <i>J</i> = 5.8, 11.9 Hz, 2H), 2.93 &#x02013; 2.80 (m, 4H), 2.54 &#x02013; 2.44 (m, 4H), 2.40 (t, <i>J</i> = 6.3 Hz, 2H), 1.71 &#x02013; 1.57 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.7, 155.9, 148.2, 147.1, 144.4, 141.6, 141.5, 122.8, 121.8, 120.2, 118.5, 116.9, 114.1, 113.9, 108.8, 108.1, 100.9, 99.7, 57.3, 53.3, 50.7, 43.6, 39.4, 25.2. HRMS (m/z): calcd for C<sub>26</sub>H<sub>29</sub>N<sub>6</sub>O<sub>4</sub> (M+H) 489.2245; found 489.2237.</p><div id="ml190.fu48" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu54a.jpg" alt="Image ml190fu54a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu54b.jpg" alt="Image ml190fu54b" /></div></div><p>N-(3-(4-(2,4-dimethoxyphenyl)piperazin-1-yl)propyl)-2-(6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 36 mg, 58%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.29 (dd, <i>J</i> = 1.5, 4.8 Hz, 1H), 7.90 (dd, <i>J</i> = 1.5, 8.1 Hz, 1H), 7.61 (dd, <i>J</i> = 1.4, 2.8 Hz, 1H), 7.37 (s, 1H), 7.25 (dd, <i>J</i> = 1.4, 3.9 Hz, 1H), 7.15 (dd, <i>J</i> = 4.8, 8.0 Hz, 1H), 6.82 (d, <i>J</i> = 8.6 Hz, 1H), 6.66 (dd, <i>J</i> = 2.8, 3.9 Hz, 1H), 6.48 (d, <i>J</i> = 2.7 Hz, 1H), 6.42 (dd, <i>J</i> = 2.7, 8.6 Hz, 1H), 5.12 (s, 2H), 3.85 (s, 3H), 3.78 (s, 3H), 3.43 (dd, <i>J</i> = 5.8, 11.8 Hz, 2H), 2.98 (s, br. 4H), 2.67 (s, br. 4H), 2.54 (t, <i>J</i> = 6.3 Hz, 3H), 1.82 &#x02013; 1.68 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.6, 156.2, 155.9, 153.4, 144.3, 141.6, 135.0, 122.9, 121.8, 120.2, 118.5, 118.4, 116.9, 114.0, 113.8, 103.3, 99.9, 57.3, 55.5, 55.5, 53.5, 51.2, 43.4, 39.4, 25.1. HRMS (m/z): calcd for C<sub>27</sub>H<sub>33</sub>N<sub>6</sub>O<sub>4</sub> (M+H) 505.2558; found 505.2552.</p><div id="ml190.fu49" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu55a.jpg" alt="Image ml190fu55a" /></div><div class="graphic"><img src="/books/NBK66151/bin/ml190fu55b.jpg" alt="Image ml190fu55b" /></div></div><p>2-(2-bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(p-tolyl)piperazin-1-yl)propyl)acetamide: 12 mg, 24%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.23 (d, <i>J</i> = 2.0 Hz, 1H), 7.86 (d, <i>J</i> = 2.0 Hz, 1H), 7.45 &#x02013; 7.36 (m, 1H), 7.25 (s, 1H), 7.16 (dd, <i>J</i> = 1.3, 3.9 Hz, 1H), 7.00 (d, <i>J</i> = 8.3 Hz, 2H), 6.71 (d, <i>J</i> = 8.6 Hz, 2H), 6.61 &#x02013; 6.54 (m, 1H), 4.95 (s, 2H), 3.34 (dd, <i>J</i> = 5.7, 11.7 Hz, 2H), 3.00 &#x02013; 2.88 (m, 4H), 2.58 &#x02013; 2.47 (m, 4H), 2.44 (t, <i>J</i> = 6.2 Hz, 2H), 2.20 (s, 3H), 1.72 &#x02013; 1.59 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.2, 155.5, 148.9, 144.8, 140.5, 129.6, 129.3, 124.3, 122.8, 120.9, 117.2, 116.3, 114.6, 114.5, 113.5, 57.6, 53.3, 49.6, 43.5, 39.8, 24.9, 20.4. HRMS (m/z): calcd for C<sub>26</sub>H<sub>30</sub>BrN<sub>6</sub>O<sub>2</sub> (M+H) 539.1591; found 539.1581.</p><div id="ml190.fu50" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu56.jpg" alt="Image ml190fu56" /></div></div><p>2-(2-bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-phenylpiperazin-1-yl)propyl)acetamide: 31 mg, 95%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.24 (d, <i>J</i> = 2.0 Hz, 1H), 7.84 (d, <i>J</i> = 2.0 Hz, 1H), 7.38 (dd, <i>J</i> = 1.4, 2.8 Hz, 1H), 7.27 &#x02013; 7.12 (m, 5H), 6.80 (dd, <i>J</i> = 6.3, 7.9 Hz, 3H), 6.58 (dd, <i>J</i> = 2.9, 3.9 Hz, 1H), 4.95 (s, 2H), 3.35 (dd, <i>J</i> = 5.7, 11.7 Hz, 2H), 3.06 &#x02013; 2.88 (m, 4H), 2.58 &#x02013; 2.48 (m, 4H), 2.44 (t, <i>J</i> = 6.2 Hz, 2H), 1.68 &#x02013; 1.63 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.2, 155.5, 150.9, 144.8, 140.5, 129.1, 124.3, 122.7, 120.9 119.8, 117.2, 115.9, 114.6, 114.6, 113.5, 57.7, 53.3, 49.0, 43.6, 39.9, 24.9. HRMS (m/z): calcd for C<sub>25</sub>H<sub>28</sub>BrN<sub>6</sub>O<sub>2</sub> (M+H) 525.1435; found 525.1429.</p><div id="ml190.fu51" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu57.jpg" alt="Image ml190fu57" /></div></div><p>2-(2-bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(4-methoxyphenyl)piperazin-1-yl)propyl)acetamide: 31 mg, 90%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.33 (d, <i>J</i> = 2.0 Hz, 1H), 7.97 (d, <i>J</i> = 2.0 Hz, 1H), 7.51 (dd, <i>J</i> = 1.4, 2.8 Hz, 1H), 7.36 (s, 1H), 7.26 (dd, <i>J</i> = 1.4, 3.9 Hz, 1H), 6.86 (s, 4H), 6.68 (dd, <i>J</i> = 2.9, 3.8 Hz, 1H), 5.05 (s, 2H), 3.79 (s, 3H), 3.44 (dd, <i>J</i> = 5.7, 11.7 Hz, 2H), 3.07 &#x02013; 2.95 (m, 4H), 2.68 &#x02013; 2.59 (m, 4H), 2.54 (t, <i>J</i> = 6.2 Hz, 2H), 1.78 &#x02013; 1.71 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.2, 155.5, 153.8, 145.4, 144.8, 140.5, 124.3, 122.8, 120.8, 118.0, 117.2, 114.6, 114.5, 114.5, 113.5, 57.6, 55.6, 53.4, 50.5, 43.5, 39.8, 24.9. HRMS (m/z): calcd for C<sub>26</sub>H<sub>30</sub>BrN<sub>6</sub>O<sub>3</sub> (M+H) 553.1557; found 553.1544.</p><div id="ml190.fu52" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu58.jpg" alt="Image ml190fu58" /></div></div><p>2-(2-bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(4-chlorophenyl)piperazin-1-yl)propyl)acetamide: 30 mg, 87%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.34 (d, <i>J</i> = 2.0 Hz, 1H), 7.97 (d, <i>J</i> = 2.0 Hz, 1H), 7.52 (dd, <i>J</i> = 1.4, 2.8 Hz, 1H), 7.28 &#x02013; 7.17 (m, 4H), 6.85 &#x02013; 6.76 (m, 2H), 6.69 (dd, <i>J</i> = 2.9, 3.9 Hz, 1H), 5.05 (s, 2H), 3.44 (dd, <i>J</i> = 5.8, 11.8 Hz, 2H), 3.10 &#x02013; 2.98 (m, 4H), 2.66 &#x02013; 2.57 (m, 4H), 2.52 (t, <i>J</i> = 6.2 Hz, 2H), 1.78 &#x02013; 1.71 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.2, 155.5, 149.6, 144.9, 140.5, 128.9, 124.6, 124.3, 122.8, 120.8, 117.2, 117.1, 114.7, 114.6, 113.5, 57.5, 53.1, 49.0, 43.6, 39.7, 25.0. HRMS (m/z): calcd for C<sub>25</sub>H<sub>27</sub>BrClN<sub>6</sub>O<sub>2</sub> (M+H) 559.1042; found 559.1031.</p><div id="ml190.fu53" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu59.jpg" alt="Image ml190fu59" /></div></div><p>N-(3-(4-(benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)propyl)-2-(2-bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 31 mg, 88%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.24 (d, <i>J</i> = 1.9 Hz, 1H), 7.89 (d, <i>J</i> = 1.9 Hz, 1H), 7.45 (s, 1H), 7.26 &#x02013; 7.14 (m, 3H), 6.69 &#x02013; 6.56 (m, 2H), 6.43 (d, <i>J</i> = 2.3 Hz, 1H), 6.23 (dd, <i>J</i> = 2.4, 8.5 Hz, 1H), 5.83 (s, 2H), 4.96 (s, 2H), 3.34 (d, <i>J</i> = 5.9 Hz, 2H), 2.88 (d, <i>J</i> = 4.9 Hz, 4H), 2.53 (s, 4H), 2.44 (t, <i>J</i> = 6.2 Hz, 2H), 1.70 &#x02013; 1.58 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.2, 155.5, 148.2, 147.0, 144.8, 141.6, 140.5, 124.3, 120.9, 117.1, 114.7, 114.6, 113.5, 108.8, 108.2, 100.9, 99.8, 57.4, 53.3, 50.6, 43.5, 39.6, 24.9. HRMS (m/z): calcd for C<sub>26</sub>H<sub>28</sub>BrN<sub>6</sub>O<sub>4</sub> (M+H) 569.1333; found 569.1321.</p><div id="ml190.fu54" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu60.jpg" alt="Image ml190fu60" /></div></div><p>2-(2-bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(2,4-dimethoxyphenyl)piperazin-1-yl)propyl)acetamide: 34 mg, 94%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.33 (s, 1H), 8.02 (s, 1H), 7.57 (s, 1H), 7.50 (s, 1H), 7.28 (dd, <i>J</i> = 2.7, 5.7 Hz, 2H), 6.83 (d, <i>J</i> = 8.7 Hz, 1H), 6.70 (s, 1H), 6.50 (s, 1H), 6.44 (d, <i>J</i> = 8.7 Hz, 1H), 5.07 (s, 2H), 3.86 (s, 3H), 3.80 (s, 3H), 3.44 (d, <i>J</i> = 5.7 Hz, 2H), 3.01 (s, br. 4H), 2.71 (s, br. 4H), 2.58 (d, <i>J</i> = 6.0H, 2H), 1.79 &#x02013; 1.73 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.1, 156.2, 155.5, 153.4, 144.8, 140.6, 134.8, 124.2, 122.9, 120.9, 118.5, 117.1, 114.6, 114.5, 113.4, 103.3, 99.9, 57.5, 55.49, 55.46, 53.5, 51.2, 43.4, 39.7, 24.8. HRMS (m/z): calcd for C<sub>27</sub>H<sub>32</sub>BrN<sub>6</sub>O<sub>4</sub> (M+H) 585.1647; found 585.1637.</p><div id="ml190.fu55" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu61.jpg" alt="Image ml190fu61" /></div></div><p>N-(2-(4-(4-methoxyphenyl)piperazin-1-yl)ethyl)-2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 19.6 mg, 97%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.19 (d, <i>J</i> = 4.9 Hz, 1H), 7.87 (dd, <i>J</i> = 1.5, 2.9 Hz, 1H), 7.37 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 6.99 (d, <i>J</i> = 5.2 Hz, 1H), 6.92 &#x02013; 6.76 (m, 4H), 6.69 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 6.52 (s, 1H), 5.18 (s, 2H), 3.80 (s, 3H), 3.37 (dd, <i>J</i> = 5.8, 11.0 Hz, 2H), 2.86 &#x02013; 2.73 (m, 4H), 2.51&#x02013;2.47 (m, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.9, 155.6, 153.8, 145.5, 143.3, 142.1, 134.9, 124.0, 122.9, 122.7, 120.4, 118.0, 114.4, 113.7, 113.6, 55.7, 55.6, 52.6, 50.4, 44.1, 35.7, 22.8. HRMS (m/z): calcd for C<sub>26</sub>H<sub>31</sub>N<sub>6</sub>O<sub>3</sub> (M+H) 475.2452; found 475.2450.</p><div id="ml190.fu56" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu62.jpg" alt="Image ml190fu62" /></div></div><p>N-(4-(4-(4-methoxyphenyl)piperazin-1-yl)butyl)-2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide: 20 mg, 99%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) &#x003b4; 8.09 (d, <i>J</i> = 4.9 Hz, 1H), 7.86 (dd, <i>J</i> = 1.4, 2.9 Hz, 1H), 7.26 (dd, <i>J</i> = 1.4, 4.0 Hz, 1H), 6.91 (d, <i>J</i> = 4.9 Hz, 1H), 6.86 &#x02013; 6.78 (m, 2H), 6.78 &#x02013; 6.71 (m, 2H), 6.62 (dd, <i>J</i> = 2.9, 4.0 Hz, 1H), 6.31 (s, 1H), 5.04 (s, 2H), 3.69 (s, 3H), 3.21 (d, <i>J</i> = 5.7 Hz, 2H), 3.09 &#x02013; 2.92 (m, 4H), 2.73 (s, 3H), 2.58 &#x02013; 2.43 (m, 4H), 2.32 (s, 2H), 1.48 &#x02013; 1.45 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) &#x003b4; 167.9, 155.8, 153.8, 145.7, 143.3, 142.2, 134.8, 124.1, 122.8, 122.6, 120.4, 118.2, 114.4, 113.5, 57.9, 55.6, 53.3, 50.6, 44.2, 39.4, 27.4, 24.1, 23.0. HRMS (m/z): calcd for C<sub>28</sub>H<sub>35</sub>N<sub>6</sub>O<sub>3</sub> (M+H) 503.2765; found 503.2761.</p><div id="ml190.fu57" class="figure"><div class="graphic"><img src="/books/NBK66151/bin/ml190fu63.jpg" alt="Image ml190fu63" /></div></div></div></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div><div class="small"><span class="label">Bookshelf ID: NBK66151</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/22091479" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">22091479</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/mlprobe/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/mlprobe/ml193/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/mlprobe/ml189/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK66151&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK66151/?report=reader">PubReader</a></li><li><a href="/books/NBK66151/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK66151" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK66151" style="display:none" title="Cite this Page"><div class="bk_tt">Hedrick MP, Gosalia P, Li K, et al. Antagonist for the Kappa Opioid Receptor. 2010 Oct 31 [Updated 2011 May 26]. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-. <span class="bk_cite_avail"></span></div></div></li><li><a href="/books/NBK66151/pdf/Bookshelf_NBK66151.pdf">PDF version of this page</a> (3.5M)</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#ml190.s1" ref="log$=inpage&amp;link_id=inpage">Probe Structure &amp; Characteristics</a></li><li><a href="#ml190.s2" ref="log$=inpage&amp;link_id=inpage">Recommendations for scientific use of the probe</a></li><li><a href="#ml190.s3" ref="log$=inpage&amp;link_id=inpage">Introduction</a></li><li><a href="#ml190.s6" ref="log$=inpage&amp;link_id=inpage">Materials and Methods</a></li><li><a href="#ml190.s25" ref="log$=inpage&amp;link_id=inpage">Results</a></li><li><a href="#ml190.s32" ref="log$=inpage&amp;link_id=inpage">Discussion</a></li><li><a href="#ml190.s36" ref="log$=inpage&amp;link_id=inpage">References</a></li><li><a href="#ml190.app1" ref="log$=inpage&amp;link_id=inpage">Synthetic procedures and compound characterization</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related information</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="discovery_db_links" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pmc&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pmc_refs&amp;IdsFromResult=2647372" ref="log$=recordlinks">PMC</a><div class="brieflinkpop offscreen_noflow">PubMed Central citations</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pcassay&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pcassay_probe&amp;IdsFromResult=2647372" ref="log$=recordlinks">PubChem BioAssay for Chemical Probe</a><div class="brieflinkpop offscreen_noflow">PubChem BioAssay records reporting screening data for the development of the chemical probe(s) described in this book chapter</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pcsubstance&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pcsubstance&amp;IdsFromResult=2647372" ref="log$=recordlinks">PubChem Substance</a><div class="brieflinkpop offscreen_noflow">Related PubChem Substances</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pubmed&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pubmed_refs&amp;IdsFromResult=2647372" ref="log$=recordlinks">PubMed</a><div class="brieflinkpop offscreen_noflow">Links to PubMed</div></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/21433386" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Selective KOP Receptor Agonists: Probe 1 &amp; Probe 2.</a><span class="source">[Probe Reports from the NIH Mol...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Selective KOP Receptor Agonists: Probe 1 &amp; Probe 2.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Hedrick MP, Gosalia P, Frankowski K, Shi S, Prisinzano TE, Schoenen F, Aubé J, Su Y, Vasile S, Sergienko E, et al. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Probe Reports from the NIH Molecular Libraries Program. 2010</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/15333676" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Opioid receptor involvement in food deprivation-induced feeding: evaluation of selective antagonist and antisense oligodeoxynucleotide probe effects in mice and rats.</a><span class="source">[J Pharmacol Exp Ther. 2004]</span><div class="brieflinkpop offscreen_noflow">Opioid receptor involvement in food deprivation-induced feeding: evaluation of selective antagonist and antisense oligodeoxynucleotide probe effects in mice and rats.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Hadjimarkou MM, Singh A, Kandov Y, Israel Y, Pan YX, Rossi GC, Pasternak GW, Bodnar RJ. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">J Pharmacol Exp Ther. 2004 Dec; 311(3):1188-202. Epub 2004 Aug 27.</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/9667975" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Synthesis, opioid receptor binding, and bioassay of naltrindole analogues substituted in the indolic benzene moiety.</a><span class="source">[J Med Chem. 1998]</span><div class="brieflinkpop offscreen_noflow">Synthesis, opioid receptor binding, and bioassay of naltrindole analogues substituted in the indolic benzene moiety.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Ananthan S, Johnson CA, Carter RL, Clayton SD, Rice KC, Xu H, Davis P, Porreca F, Rothman RB. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">J Med Chem. 1998 Jul 16; 41(15):2872-81. </em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/18065096" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedarticles&amp;logdbfrom=pubmed">New benzomorphan derivatives of MPCB as MOP and KOP receptor ligands.</a><span class="source">[Pharmazie. 2007]</span><div class="brieflinkpop offscreen_noflow">New benzomorphan derivatives of MPCB as MOP and KOP receptor ligands.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Pasquinucci L, Iadanza M, Marrazzo A, Prezzavento O, Ronsisvalle S, Scoto GM, Parenti C, De Luca L, Ronsisvalle G. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Pharmazie. 2007 Nov; 62(11):813-24. </em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/21433381" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Selective KOP Receptor Antagonists: Probe 1.</a><span class="source">[Probe Reports from the NIH Mol...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Selective KOP Receptor Antagonists: Probe 1.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Hedrick MP, Gosalia P, Frankowski K, Whipple DA, Shi S, Prisinzano TE, Schoenen F, Aubé J, Su Y, Vasile S, et al. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Probe Reports from the NIH Molecular Libraries Program. 2010</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=22091479" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=22091479" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67d66bd384f3725e592cec8b">Antagonist for the Kappa Opioid Receptor - Probe Reports from the NIH Molecular ...</a><div class="ralinkpop offscreen_noflow">Antagonist for the Kappa Opioid Receptor - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=2" href="/portal/utils/pageresolver.fcgi?recordid=67d66bd22f30673f7bf7ca1d">Screening for Selective Ligands for GPR55 - Antagonists - Probe Reports from the...</a><div class="ralinkpop offscreen_noflow">Screening for Selective Ligands for GPR55 - Antagonists - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=3" href="/portal/utils/pageresolver.fcgi?recordid=67d66bd0cde49f3df7dbefbc">Selective GPR35 Antagonists - Probe 3 - Probe Reports from the NIH Molecular Lib...</a><div class="ralinkpop offscreen_noflow">Selective GPR35 Antagonists - Probe 3 - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=4" href="/portal/utils/pageresolver.fcgi?recordid=67d66bcf84f3725e592cde75">Small Molecule Inhibitors of the Human Apurinic/apyrimidinic Endonuclease 1 (APE...</a><div class="ralinkpop offscreen_noflow">Small Molecule Inhibitors of the Human Apurinic/apyrimidinic Endonuclease 1 (APE1) - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=5" href="/portal/utils/pageresolver.fcgi?recordid=67d66bce84f3725e592cda24">5-(4-(4-Acetylphenyl)piperazin-1-ylsulfonyl)indolin-2-one Analogs as Inhibitors ...</a><div class="ralinkpop offscreen_noflow">5-(4-(4-Acetylphenyl)piperazin-1-ylsulfonyl)indolin-2-one Analogs as Inhibitors of Acid alpha-Glucosidase for Potential Chaperone Treatment of Pompe Disease or Intervention for Diabetes Mellitus Type 2 - Probe Reports from the NIH Molecular Libraries Program<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK66151&amp;ncbi_domain=mlprobe&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK66151/&amp;ncbi_pagename=Antagonist for the Kappa Opioid Receptor - Probe Reports from the NIH Molecular Libraries Program - NCBI Bookshelf&amp;ncbi_bookparttype=chapter&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>