nih-gov/www.ncbi.nlm.nih.gov/books/n/micad/GCAC/index.html?report=reader
2025-03-17 02:05:34 +00:00

190 lines
54 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" class="no-js no-jr">
<head>
<!-- For pinger, set start time and add meta elements. -->
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- Logger begin -->
<meta name="ncbi_db" content="books">
<meta name="ncbi_pdid" content="book-part">
<meta name="ncbi_acc" content="NBK22984">
<meta name="ncbi_domain" content="micad">
<meta name="ncbi_report" content="reader">
<meta name="ncbi_type" content="fulltext">
<meta name="ncbi_objectid" content="">
<meta name="ncbi_pcid" content="/NBK22984/?report=reader">
<meta name="ncbi_pagename" content="Gd-DTPA l-Cystine bisamide copolymers - Molecular Imaging and Contrast Agent Database (MICAD) - NCBI Bookshelf">
<meta name="ncbi_bookparttype" content="chapter">
<meta name="ncbi_app" content="bookshelf">
<!-- Logger end -->
<!--component id="Page" label="meta"/-->
<script type="text/javascript" src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.boots.min.js"> </script><title>Gd-DTPA l-Cystine bisamide copolymers - Molecular Imaging and Contrast Agent Database (MICAD) - NCBI Bookshelf</title>
<meta charset="utf-8">
<meta name="apple-mobile-web-app-capable" content="no">
<meta name="viewport" content="initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no">
<meta name="jr-col-layout" content="auto">
<meta name="jr-prev-unit" content="/books/n/micad/GDCEP/?report=reader">
<meta name="jr-next-unit" content="/books/n/micad/GCIC/?report=reader">
<meta name="bk-toc-url" content="/books/n/micad/?report=toc">
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE">
<meta name="citation_inbook_title" content="Molecular Imaging and Contrast Agent Database (MICAD) [Internet]">
<meta name="citation_title" content="Gd-DTPA l-Cystine bisamide copolymers">
<meta name="citation_publisher" content="National Center for Biotechnology Information (US)">
<meta name="citation_date" content="2008/01/22">
<meta name="citation_author" content="Kenneth T. Cheng">
<meta name="citation_author" content="Zheng-Rong Lu">
<meta name="citation_author" content="Todd Kaneshiro">
<meta name="citation_pmid" content="20641192">
<meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK22984/">
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/">
<meta name="DC.Title" content="Gd-DTPA l-Cystine bisamide copolymers">
<meta name="DC.Type" content="Text">
<meta name="DC.Publisher" content="National Center for Biotechnology Information (US)">
<meta name="DC.Contributor" content="Kenneth T. Cheng">
<meta name="DC.Contributor" content="Zheng-Rong Lu">
<meta name="DC.Contributor" content="Todd Kaneshiro">
<meta name="DC.Date" content="2008/01/22">
<meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK22984/">
<meta name="description" content="The Gd-DTPA l-cystine bisamide copolymer (GCAC) is a biodegradable, macromolecular contrast agent designed for contrast enhancement of the blood pool, liver, and kidneys for magnetic resonance imaging (MRI) (1). The gadolinium(III) ion (Gd3+) is a paramagnetic lanthanide metal ion with seven unpaired electrons.">
<meta name="og:title" content="Gd-DTPA l-Cystine bisamide copolymers">
<meta name="og:type" content="book">
<meta name="og:description" content="The Gd-DTPA l-cystine bisamide copolymer (GCAC) is a biodegradable, macromolecular contrast agent designed for contrast enhancement of the blood pool, liver, and kidneys for magnetic resonance imaging (MRI) (1). The gadolinium(III) ion (Gd3+) is a paramagnetic lanthanide metal ion with seven unpaired electrons.">
<meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK22984/">
<meta name="og:site_name" content="NCBI Bookshelf">
<meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-micad-lrg.png">
<meta name="twitter:card" content="summary">
<meta name="twitter:site" content="@ncbibooks">
<meta name="bk-non-canon-loc" content="/books/n/micad/GCAC/?report=reader">
<link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK22984/">
<link href="https://fonts.googleapis.com/css?family=Archivo+Narrow:400,700,400italic,700italic&amp;subset=latin" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/libs.min.css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/jr.min.css">
<meta name="format-detection" content="telephone=no">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css//books_print.min.css" type="text/css" media="print">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_reader.min.css" type="text/css">
<style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style>
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico">
<meta name="ncbi_phid" content="CE8EF7A37D649791000000000021001E.m_5">
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3849091.css"></head>
<body>
<!-- Book content! -->
<div id="jr" data-jr-path="/corehtml/pmc/jatsreader/ptpmc_3.22/"><div class="jr-unsupported"><table class="modal"><tr><td><span class="attn inline-block"></span><br />Your browser does not support the NLM PubReader view.<br />Go to <a href="/pmc/about/pr-browsers/">this page</a> to see a list of supported browsers<br />or return to the <br /><a href="/books/NBK22984/?report=classic">regular view</a>.</td></tr></table></div><div id="jr-ui" class="hidden"><nav id="jr-head"><div class="flexh tb"><div id="jr-tb1"><a id="jr-links-sw" class="hidden" title="Links"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" x="0px" y="0px" viewBox="0 0 70.6 85.3" style="enable-background:new 0 0 70.6 85.3;vertical-align:middle" xml:space="preserve" width="24" height="24">
<style type="text/css">.st0{fill:#939598;}</style>
<g>
<path class="st0" d="M36,0C12.8,2.2-22.4,14.6,19.6,32.5C40.7,41.4-30.6,14,35.9,9.8"></path>
<path class="st0" d="M34.5,85.3c23.2-2.2,58.4-14.6,16.4-32.5c-21.1-8.9,50.2,18.5-16.3,22.7"></path>
<path class="st0" d="M34.7,37.1c66.5-4.2-4.8-31.6,16.3-22.7c42.1,17.9,6.9,30.3-16.4,32.5h1.7c-66.2,4.4,4.8,31.6-16.3,22.7 c-42.1-17.9-6.9-30.3,16.4-32.5"></path>
</g>
</svg> Books</a></div><div class="jr-rhead f1 flexh"><div class="head"><a href="/books/n/micad/GDCEP/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="body"><div class="t">Gd-DTPA l-Cystine bisamide copolymers</div><div class="j">Molecular Imaging and Contrast Agent Database (MICAD) [Internet]</div></div><div class="tail"><a href="/books/n/micad/GCIC/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></div><div id="jr-tb2"><a id="jr-bkhelp-sw" class="btn wsprkl hidden" title="Help with NLM PubReader">?</a><a id="jr-help-sw" class="btn wsprkl hidden" title="Settings and typography in NLM PubReader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" preserveAspectRatio="none"><path d="M462,283.742v-55.485l-29.981-10.662c-11.431-4.065-20.628-12.794-25.274-24.001 c-0.002-0.004-0.004-0.009-0.006-0.013c-4.659-11.235-4.333-23.918,0.889-34.903l13.653-28.724l-39.234-39.234l-28.72,13.652 c-10.979,5.219-23.68,5.546-34.908,0.889c-0.005-0.002-0.01-0.003-0.014-0.005c-11.215-4.65-19.933-13.834-24-25.273L283.741,50 h-55.484l-10.662,29.981c-4.065,11.431-12.794,20.627-24.001,25.274c-0.005,0.002-0.009,0.004-0.014,0.005 c-11.235,4.66-23.919,4.333-34.905-0.889l-28.723-13.653l-39.234,39.234l13.653,28.721c5.219,10.979,5.545,23.681,0.889,34.91 c-0.002,0.004-0.004,0.009-0.006,0.013c-4.649,11.214-13.834,19.931-25.271,23.998L50,228.257v55.485l29.98,10.661 c11.431,4.065,20.627,12.794,25.274,24c0.002,0.005,0.003,0.01,0.005,0.014c4.66,11.236,4.334,23.921-0.888,34.906l-13.654,28.723 l39.234,39.234l28.721-13.652c10.979-5.219,23.681-5.546,34.909-0.889c0.005,0.002,0.01,0.004,0.014,0.006 c11.214,4.649,19.93,13.833,23.998,25.271L228.257,462h55.484l10.595-29.79c4.103-11.538,12.908-20.824,24.216-25.525 c0.005-0.002,0.009-0.004,0.014-0.006c11.127-4.628,23.694-4.311,34.578,0.863l28.902,13.738l39.234-39.234l-13.66-28.737 c-5.214-10.969-5.539-23.659-0.886-34.877c0.002-0.005,0.004-0.009,0.006-0.014c4.654-11.225,13.848-19.949,25.297-24.021 L462,283.742z M256,331.546c-41.724,0-75.548-33.823-75.548-75.546s33.824-75.547,75.548-75.547 c41.723,0,75.546,33.824,75.546,75.547S297.723,331.546,256,331.546z"></path></svg></a><a id="jr-fip-sw" class="btn wsprkl hidden" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-rtoc-sw" class="btn wsprkl hidden" title="Table of Contents"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,20h10v8H20V20zM36,20h44v8H36V20zM20,37.33h10v8H20V37.33zM36,37.33h44v8H36V37.33zM20,54.66h10v8H20V54.66zM36,54.66h44v8H36V54.66zM20,72h10v8 H20V72zM36,72h44v8H36V72z"></path></svg></a></div></div></nav><nav id="jr-dash" class="noselect"><nav id="jr-dash" class="noselect"><div id="jr-pi" class="hidden"><a id="jr-pi-prev" class="hidden" title="Previous page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a><div class="pginfo">Page <i class="jr-pg-pn">0</i> of <i class="jr-pg-lp">0</i></div><a id="jr-pi-next" class="hidden" title="Next page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div><div id="jr-is-tb"><a id="jr-is-sw" class="btn wsprkl hidden" title="Switch between Figures/Tables strip and Progress bar"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><rect x="10" y="40" width="20" height="20"></rect><rect x="40" y="40" width="20" height="20"></rect><rect x="70" y="40" width="20" height="20"></rect></svg></a></div><nav id="jr-istrip" class="istrip hidden"><a id="jr-is-prev" href="#" class="hidden" title="Previous"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M80,40 60,65 80,90 70,90 50,65 70,40z M50,40 30,65 50,90 40,90 20,65 40,40z"></path><text x="35" y="25" textLength="60" style="font-size:25px">Prev</text></svg></a><a id="jr-is-next" href="#" class="hidden" title="Next"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,40 40,65 20,90 30,90 50,65 30,40z M50,40 70,65 50,90 60,90 80,65 60,40z"></path><text x="15" y="25" textLength="60" style="font-size:25px">Next</text></svg></a></nav><nav id="jr-progress"></nav></nav></nav><aside id="jr-links-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">NCBI Bookshelf</div></div><div class="cnt lol f1"><a href="/books/">Home</a><a href="/books/browse/">Browse All Titles</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/sharer/sharer.php?u=https://www.ncbi.nlm.nih.gov/books/NBK22984/"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24" preserveAspectRatio="none"><g><path d="M 17.996,32L 12,32 L 12,16 l-4,0 l0-5.514 l 4-0.002l-0.006-3.248C 11.993,2.737, 13.213,0, 18.512,0l 4.412,0 l0,5.515 l-2.757,0 c-2.063,0-2.163,0.77-2.163,2.209l-0.008,2.76l 4.959,0 l-0.585,5.514L 18,16L 17.996,32z"></path></g></svg> Share on Facebook</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://twitter.com/intent/tweet?url=https://www.ncbi.nlm.nih.gov/books/NBK22984/&amp;text=Gd-DTPA%20l-Cystine%20bisamide%20copolymers"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24"><g><path d="M 32,6.076c-1.177,0.522-2.443,0.875-3.771,1.034c 1.355-0.813, 2.396-2.099, 2.887-3.632 c-1.269,0.752-2.674,1.299-4.169,1.593c-1.198-1.276-2.904-2.073-4.792-2.073c-3.626,0-6.565,2.939-6.565,6.565 c0,0.515, 0.058,1.016, 0.17,1.496c-5.456-0.274-10.294-2.888-13.532-6.86c-0.565,0.97-0.889,2.097-0.889,3.301 c0,2.278, 1.159,4.287, 2.921,5.465c-1.076-0.034-2.088-0.329-2.974-0.821c-0.001,0.027-0.001,0.055-0.001,0.083 c0,3.181, 2.263,5.834, 5.266,6.438c-0.551,0.15-1.131,0.23-1.73,0.23c-0.423,0-0.834-0.041-1.235-0.118 c 0.836,2.608, 3.26,4.506, 6.133,4.559c-2.247,1.761-5.078,2.81-8.154,2.81c-0.53,0-1.052-0.031-1.566-0.092 c 2.905,1.863, 6.356,2.95, 10.064,2.95c 12.076,0, 18.679-10.004, 18.679-18.68c0-0.285-0.006-0.568-0.019-0.849 C 30.007,8.548, 31.12,7.392, 32,6.076z"></path></g></svg> Share on Twitter</a></div></aside><aside id="jr-rtoc-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Table of Content</div></div><div class="cnt lol f1"><a href="/books/n/micad/?report=reader">Title Information</a><a href="/books/n/micad/toc/?report=reader">Table of Contents Page</a></div></aside><aside id="jr-help-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Settings</div></div><div class="cnt f1"><div id="jr-typo-p" class="typo"><div><a class="sf btn wsprkl">A-</a><a class="lf btn wsprkl">A+</a></div><div><a class="bcol-auto btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 100" preserveAspectRatio="none"><text x="10" y="70" style="font-size:60px;font-family: Trebuchet MS, ArialMT, Arial, sans-serif" textLength="180">AUTO</text></svg></a><a class="bcol-1 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M15,25 85,25zM15,40 85,40zM15,55 85,55zM15,70 85,70z"></path></svg></a><a class="bcol-2 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M5,25 45,25z M55,25 95,25zM5,40 45,40z M55,40 95,40zM5,55 45,55z M55,55 95,55zM5,70 45,70z M55,70 95,70z"></path></svg></a></div></div><div class="lol"><a class="" href="/books/NBK22984/?report=classic">Switch to classic view</a><a href="/books/NBK22984/pdf/Bookshelf_NBK22984.pdf">PDF (155K)</a><a href="/books/NBK22984/?report=printable">Print View</a></div></div></aside><aside id="jr-bkhelp-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Help</div></div><div class="cnt f1 lol"><a id="jr-helpobj-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/help.xml" href="">Help</a><a href="mailto:info@ncbi.nlm.nih.gov?subject=PubReader%20feedback%20%2F%20NBK22984%20%2F%20sid%3ACE8B5AF87C7FFCB1_0191SID%20%2F%20phid%3ACE8EF7A37D649791000000000021001E.4">Send us feedback</a><a id="jr-about-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/about.xml" href="">About PubReader</a></div></aside><aside id="jr-objectbox" class="thidden hidden"><div class="jr-objectbox-close wsprkl">&#10008;</div><div class="jr-objectbox-inner cnt"><div class="jr-objectbox-drawer"></div></div></aside><nav id="jr-pm-left" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Previous Page</text></svg></nav><nav id="jr-pm-right" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Next Page</text></svg></nav><nav id="jr-fip" class="hidden"><nav id="jr-fip-term-p"><input type="search" placeholder="search this page" id="jr-fip-term" autocorrect="off" autocomplete="off" /><a id="jr-fip-mg" class="wsprkl btn" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-fip-done" class="wsprkl btn" title="Dismiss find">&#10008;</a></nav><nav id="jr-fip-info-p"><a id="jr-fip-prev" class="wsprkl btn" title="Jump to previuos match">&#9664;</a><button id="jr-fip-matches">no matches yet</button><a id="jr-fip-next" class="wsprkl btn" title="Jump to next match">&#9654;</a></nav></nav></div><div id="jr-epub-interstitial" class="hidden"></div><div id="jr-content"><article data-type="main"><div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><div class="fm-sec"><h1 id="_NBK22984_"><span class="title" itemprop="name">Gd-DTPA <span class="small-caps">l</span>-Cystine bisamide copolymers</span></h1><div itemprop="alternativeHeadline" class="subtitle whole_rhythm">GCAC</div><p class="contribs">Cheng KT, Lu ZR, Kaneshiro T.</p><p class="fm-aai"><a href="#_NBK22984_pubdet_">Publication Details</a></p></div></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figGCACT1"><a href="/books/NBK22984/table/GCAC.T1/?report=objectonly" target="object" title="Table" class="img_link icnblk_img" rid-ob="figobGCACT1"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="GCAC.T1"><a href="/books/NBK22984/table/GCAC.T1/?report=objectonly" target="object" rid-ob="figobGCACT1">Table</a></h4><p class="float-caption no_bottom_margin">
<i>In vitro</i>
Rodents
</p></div></div><div id="GCAC.Background"><h2 id="_GCAC_Background_">Background</h2><p>[<a href="/sites/entrez?Db=pubmed&#x00026;Cmd=DetailsSearch&#x00026;Term=(gd+dtpa+l+cystine+bisamide+copolymer)+OR+(gd-dtpa-cystine+copolymers)+" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>The Gd-DTPA <span class="small-caps">l</span>-cystine bisamide copolymer (GCAC) is a biodegradable, macromolecular contrast agent designed for contrast enhancement of the blood pool, liver, and kidneys for magnetic resonance imaging (MRI) (<a class="bibr" href="#GCAC.EXTYLES.1" rid="GCAC.EXTYLES.1">1</a>). The gadolinium(III) ion (Gd<sup>3+</sup>) is a paramagnetic lanthanide metal ion with seven unpaired electrons.</p><p>MRI signals depend on a wide range of parameters. The key factor of conventional MRI contrast is the interaction of the total water signal (proton density) and the magnetic properties of the tissues (<a class="bibr" href="#GCAC.EXTYLES.2" rid="GCAC.EXTYLES.2">2</a>, <a class="bibr" href="#GCAC.EXTYLES.3" rid="GCAC.EXTYLES.3">3</a>). Various paramagnetic and superparamagnetic contrast agents can increase the sensitivity and specificity of MRI. Current clinical agents are predominately Gd-based contrast agents (GBCA) and are largely nonspecific, low molecular weight compounds. These agents have transient tissue retention, a wide distribution into the extracellular space, and rapid excretion from the body (<a href="#GCAC.EXTYLES.3">3-5</a>). There is a need to develop intravascular MRI contrast agents that have a sufficiently long intravascular half-life (<i>t</i><sub>&#x000bd;</sub>) to allow imaging of the vasculature and aid in the detection of cancer and cardiovascular diseases (<a class="bibr" href="#GCAC.EXTYLES.6" rid="GCAC.EXTYLES.6">6</a>, <a class="bibr" href="#GCAC.EXTYLES.7" rid="GCAC.EXTYLES.7">7</a>).</p><p>Current strategies to prolong the intravascular <i>t</i><sub>&#x000bd;</sub> include the chelation of paramagnetic ions to macromolecules and the use of superparamagnetic nanoparticles (<a class="bibr" href="#GCAC.EXTYLES.1" rid="GCAC.EXTYLES.1">1</a>, <a class="bibr" href="#GCAC.EXTYLES.6" rid="GCAC.EXTYLES.6">6</a>, <a class="bibr" href="#GCAC.EXTYLES.7" rid="GCAC.EXTYLES.7">7</a>). Macromolecular contrast agents are generally large enough (&#x0003e;20 kDa) so that they do not readily diffuse across the healthy vascular endothelium and are not rapidly excreted. These agents are retained in the vasculature for a sufficiently prolonged period of time to allow for imaging, and they also preferentially accumulate in disease tissues with leaky vasculature, such as cancers and vascular disease. Most macromolecular GBCAs are prepared by the conjugation of Gd<sup>3+</sup> chelates to biomedical polymers including poly(amino) acids (<a class="bibr" href="#GCAC.EXTYLES.8" rid="GCAC.EXTYLES.8">8</a>, <a class="bibr" href="#GCAC.EXTYLES.9" rid="GCAC.EXTYLES.9">9</a>), polysaccharides (<a class="bibr" href="#GCAC.EXTYLES.10" rid="GCAC.EXTYLES.10">10</a>, <a class="bibr" href="#GCAC.EXTYLES.11" rid="GCAC.EXTYLES.11">11</a>), dendrimers (<a class="bibr" href="#GCAC.EXTYLES.12" rid="GCAC.EXTYLES.12">12</a>, <a class="bibr" href="#GCAC.EXTYLES.13" rid="GCAC.EXTYLES.13">13</a>), and proteins (<a class="bibr" href="#GCAC.EXTYLES.14" rid="GCAC.EXTYLES.14">14</a>), or by the copolymerization of diethylenetriamine pentaacetic acid (DTPA) dianhydride with diamines and the complexation with Gd<sup>3+</sup> (<a class="bibr" href="#GCAC.EXTYLES.15" rid="GCAC.EXTYLES.15">15</a>, <a class="bibr" href="#GCAC.EXTYLES.16" rid="GCAC.EXTYLES.16">16</a>). However, the development of these macromolecular GBCAs has been hampered by potential Gd toxicity associated with the slow degradation of chemically modified biomedical polymers (<a class="bibr" href="#GCAC.EXTYLES.6" rid="GCAC.EXTYLES.6">6</a>, <a class="bibr" href="#GCAC.EXTYLES.17" rid="GCAC.EXTYLES.17">17</a>). Smaller macromolecules (&#x0003c;20 kDa) are cleared more rapidly by the kidneys but their effectiveness may also be compromised. One approach to improve the safety of macromolecular GBCAs is the development of small molecules (&#x0003c;1.2 kDa) with a hydrophilic Gd<sup>3+</sup> complex and a hydrophobic region for reversible noncovalent binding to serum albumin (<a class="bibr" href="#GCAC.EXTYLES.6" rid="GCAC.EXTYLES.6">6</a>, <a class="bibr" href="#GCAC.EXTYLES.18" rid="GCAC.EXTYLES.18">18</a>). Lu et al. (<a class="bibr" href="#GCAC.EXTYLES.17" rid="GCAC.EXTYLES.17">17</a>, <a class="bibr" href="#GCAC.EXTYLES.19" rid="GCAC.EXTYLES.19">19</a>) proposed another approach by designing biodegradable macromolecular polydisulfide GBCAs. These agents have disulfide bonds incorporated into a polymeric backbone, and these bonds can be readily reduced by the thiol-disulfide exchange reaction with endogenous or exogenous thiols, such as glutathione and cysteine. As a result, these macromolecules are broken down into smaller complexes that are readily excreted by the kidneys. The Gd-DTPA-cystamine copolymer was the first such agent synthesized by the copolymerization of cystamine and DTPA dianhydride (<a class="bibr" href="#GCAC.EXTYLES.17" rid="GCAC.EXTYLES.17">17</a>). A series of polydisulfide-based macromolecular GBCAs with different structural modifications around the disulfide bonds have been synthesized and evaluated by the same research team of Lu et al. (<a class="bibr" href="#GCAC.EXTYLES.17" rid="GCAC.EXTYLES.17">17</a>, <a href="#GCAC.EXTYLES.20">20-23</a>). Kaneshiro et al. (<a class="bibr" href="#GCAC.EXTYLES.1" rid="GCAC.EXTYLES.1">1</a>) reported the synthesis and evaluation of GCAC and two other derivatives with different amide substituents at the cystine carboxylic groups. All three agents were cleaved <i>in vivo</i> into low molecular weight Gd<sup>3+</sup> chelates and were cleared rapidly in rats.</p><p>Both renal and extrarenal toxicities have been reported after the clinical use of GBCAs in patients with underlying kidney disease (<a href="#GCAC.EXTYLES.24">24-26</a>). In 2007, the <a href="http://www.fda.gov/cder/drug/infopage/gcca/default.htm" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">US FDA</a> requested manufacturers of all GBCAs to add new warnings that exposure to GBCAs increases the risk for nephrogenic systemic fibrosis in patients with advanced kidney disease.</p></div><div id="GCAC.Synthesis"><h2 id="_GCAC_Synthesis_">Synthesis</h2><p>[<a href="/sites/entrez?Db=pubmed&#x00026;Cmd=DetailsSearch&#x00026;Term=((gd+dtpa+l+cystine+bisamide+copolymer)+OR+(gd-dtpa-cystine+copolymers)+)+AND+synthesis" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>Kaneshiro et al. (<a class="bibr" href="#GCAC.EXTYLES.1" rid="GCAC.EXTYLES.1">1</a>) described the synthesis of GCAC from commercially available cystine bisamide. The DTPA <span class="small-caps">l</span>-cystine bisamide copolymer was first synthesized by condensation copolymerization of equimolar amounts of DTPA dianhydride and <span class="small-caps">l</span>-cystine bisamide. Briefly, cystine bisamide was dissolved in triethylamine (TEA) and anhydrous dimethyl sulfoxide (DMSO) while stirred in an ice-water bath at 5&#x000ba;C. TEA acted as a base to neutralize the salts of monomers and as a solvent to increase the solubility of the copolymers. DTPA dianhydride was then added over a 25-min period. After 40 min, the solidified mixture was removed and allowed to come to room temperature. Additional DMSO was added and the mixture was stirred overnight at room temperature. DTPA <span class="small-caps">l</span>-cystine bisamide copolymers were precipitated in acetone and dissolved in double ionized water (DI H<sub>2</sub>O) at pH 7. The copolymer was dialyzed and concentrated to dryness. The resulting product was mixed with a large excess of Gd triacetate in DI H<sub>2</sub>O (pH 5.5) and stirred at room temperature for 1 h. Free Gd<sup>3+</sup> ions were removed by size-exclusion chromatography. The yield was 81%. The DTPA <span class="small-caps">l</span>-cystine bisamide copolymers were anionic and had a large hydrodynamic volume. The complexation of the copolymers with Gd<sup>3+</sup> ions produced a neutral GCAC with a significant reduction in hydrodynamic volume. Using size-exclusion chromatography, the number average molecular weight (<i>M</i><sub>n</sub>) and the weight average molecular weight (<i>M</i><sub>w</sub>) were determined to be 14.1 kDa and 22.3 kDa, respectively. The Gd content was determined to be 16.9% on the inductively coupled argon plasma optical emission spectrometer. This was lower than the calculated value of 20.4%; Kaneshiro et al. (<a class="bibr" href="#GCAC.EXTYLES.1" rid="GCAC.EXTYLES.1">1</a>) suggested that this difference might be attributed to the association of water molecules to the hydrophilic polymers.</p></div><div id="GCAC.In_Vitro_Studies_Tes"><h2 id="_GCAC_In_Vitro_Studies_Tes_"><i>In Vitro</i> Studies: Testing in Cells and Tissues</h2><p>[<a href="/sites/entrez?Db=pubmed&#x00026;Cmd=DetailsSearch&#x00026;Term=((gd+dtpa+l+cystine+bisamide+copolymer)+OR+(gd-dtpa-cystine+copolymers)+)+AND+(in+vitro)" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>The <i>in vitro</i> longitudinal relaxivity (R<sub>1</sub>) of GCAC based on T<sub>1</sub> relaxation time measurement at room temperature by a 3T scanner (inversion recovery prepared turbo spin-echo pulse sequence) was 4.37 mM&#x02212;<sup>1</sup>s&#x02212;<sup>1</sup> (<a class="bibr" href="#GCAC.EXTYLES.1" rid="GCAC.EXTYLES.1">1</a>). The <i>in vitro</i> transverse relaxivity (R<sub>2</sub>) was 6.21 mM&#x02212;<sup>1</sup>s&#x02212;<sup>1</sup>. In comparison, the R<sub>1</sub> of Gd-DTPA-BMEA was 4.62 mM&#x02212;<sup>1</sup>s&#x02212;<sup>1</sup>.</p><p>GCAC was stable in the solid state for at least 6 months of cold storage as its molecular weight distribution did not change.</p><p><i>In vitro</i> degradation of DTPA <span class="small-caps">l</span>-cystine bisamide copolymers (DCAC - copolymers without Gd) and GCAC with and without the presence of <span class="small-caps">l</span>-cysteine (15 &#x003bc;M) at 37&#x000ba;C was studied (<a class="bibr" href="#GCAC.EXTYLES.1" rid="GCAC.EXTYLES.1">1</a>). In the presence of cysteine, DCAC completely degraded into low molecular weight species within 24 h. GCAC completely degraded into low molecular weight oligomers after 75 min. Measurement by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry indicated that the mass of degradation products with one or two repeat units was ~753.0 and ~1501.2 (<i>m/z</i>).</p></div><div id="GCAC.Animal_Studies"><h2 id="_GCAC_Animal_Studies_">Animal Studies</h2><div id="GCAC.Rodents"><h3>Rodents</h3><p>[<a href="/sites/entrez?Db=pubmed&#x00026;Cmd=DetailsSearch&#x00026;Term=((gd+dtpa+l+cystine+bisamide+copolymer)+OR+(gd-dtpa-cystine+copolymers)+)+AND+rodentia" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p><i>In vivo</i> metabolic studies of GCAC were conducted in rats with a dose of 0.1 mmol Gd/kg by i.v. injection (<a class="bibr" href="#GCAC.EXTYLES.1" rid="GCAC.EXTYLES.1">1</a>). Only one major metabolite with a mass (<i>m/z</i>) of 988.02 was identified in urine samples measured by positively-charged labeled MALDI-TOF mass spectrometry (&#x003b1;-cyano-4-hydroxycinnamic acid matrix) at 8 h. There were no major metabolites identified in urine samples at 24 h. With negatively-charged labeled MALDI-TOF mass spectrometry, the masses (<i>m/z</i>) identified in urine samples at 8 h were 589.06, 707.09, and 734.10. The structures of these metabolites were not known (<a class="bibr" href="#GCAC.EXTYLES.20" rid="GCAC.EXTYLES.20">20</a>). No metabolites were observed at 24 h.</p><p><i>In vivo</i> MRI imaging was performed with a 3T MRI scanner in three rats (<a class="bibr" href="#GCAC.EXTYLES.1" rid="GCAC.EXTYLES.1">1</a>). Each rat received an i.v. dose of 0.1 mmol Gd/kg. Images were obtained with a wrist coil using a 3D FLASH pulse sequence. Strong contrast enhancement was observed within the heart, blood vessels, liver, and kidneys at 2 min. The contrast enhancement gradually decreased but was still visible at 30 min. Contrast enhancement was also observed and gradually increased over time in the urinary bladder.</p></div><div id="GCAC.Other_NonPrimate_Mam"><h3>Other Non-Primate Mammals</h3><p>[<a href="/sites/entrez?Db=pubmed&#x00026;Cmd=DetailsSearch&#x00026;Term=((gd+dtpa+l+cystine+bisamide+copolymer)+OR+(gd-dtpa-cystine+copolymers)+)+AND+(dog+OR+rabbit+OR+pig+OR+sheep)" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>No publication is currently available.</p></div><div id="GCAC.NonHuman_Primates"><h3>Non-Human Primates</h3><p>[<a href="/sites/entrez?Db=pubmed&#x00026;Cmd=DetailsSearch&#x00026;Term=((gd+dtpa+l+cystine+bisamide+copolymer)+OR+(gd-dtpa-cystine+copolymers)+)++AND+(primate+NOT+human)" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>No publication is currently available.</p></div></div><div id="GCAC.Human_Studies"><h2 id="_GCAC_Human_Studies_">Human Studies</h2><p>[<a href="/sites/entrez?Db=pubmed&#x00026;Cmd=DetailsSearch&#x00026;Term=((gd+dtpa+l+cystine+bisamide+copolymer)+OR+(gd-dtpa-cystine+copolymers))+AND+human" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>No publication is currently available.</p></div><div id="GCAC.NIH_Support"><h2 id="_GCAC_NIH_Support_">NIH Support</h2><p>R01 EB00489, R33 CA095873,</p></div><div id="GCAC.references"><h2 id="_GCAC_references_">References</h2><dl class="temp-labeled-list"><dl class="bkr_refwrap"><dt>1.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.1">Kaneshiro T.L. , Ke T. , Jeong E.K. , Parker D.L. , Lu Z.R. Gd-DTPA L-cystine bisamide copolymers as novel biodegradable macromolecular contrast agents for MR blood pool imaging. <span><span class="ref-journal">Pharm Res. </span>2006;<span class="ref-vol">
<strong>23</strong>
</span>(6):1285&ndash;94.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16729223" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16729223</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>2.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.2">Morawski A.M. , Lanza G.A. , Wickline S.A. Targeted contrast agents for magnetic resonance imaging and ultrasound. <span><span class="ref-journal">Curr Opin Biotechnol. </span>2005;<span class="ref-vol">
<strong>16</strong>
</span>(1):89&ndash;92.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15722020" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15722020</span></a>]</div></dd></dl><li><div class="bk_ref" id="GCAC.EXTYLES.3">3. Saini, S., J.T. Ferrucci, Enhanced Agents for Magnetic Resonance Imaging: Clinical Applications, in Pharmaceuticals in Medical Imaging, D.P. Swanson, H.M. Chilton and J.H. Thrall, Editor. 1990, MacMillan Publishing Co., Inc.: New York. p. 662-681.</div></li><li><div class="bk_ref" id="GCAC.EXTYLES.4">4. Brasch, R.C., M.D. Ogan and B.L. Engelstad, Paramagnetic Contrast Agents and Their Application in NMR Imaging, in Contrast media; Biologic effects and clinical application, Z. Parvez, R., R. Monada and M. Sovak, Editor. 1987, CRC Press, Inc.: Boca Raton, Florida. p. 131-143.</div></li><dl class="bkr_refwrap"><dt>5.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.5">Runge V.M. , Kirsch J.E. , Wells J.W. , Awh M.H. , Bittner D.F. , Woolfolk C.E. Enhanced liver MR: Contrast agents and imaging strategy. <span><span class="ref-journal">Critical Reviews in Diagnostic Imaging. </span>1993;<span class="ref-vol">
<strong>34</strong>
</span>(2):1&ndash;3.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8216813" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8216813</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>6.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.6">Mohs A.M. , Lu Z.R. Gadolinium(III)-based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential. <span><span class="ref-journal">Expert Opin Drug Deliv. </span>2007;<span class="ref-vol">
<strong>4</strong>
</span>(2):149&ndash;64.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17335412" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17335412</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>7.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.7">Hyslop W.B. , Semelka R.C. Future directions in body magnetic resonance imaging. <span><span class="ref-journal">Top Magn Reson Imaging. </span>2005;<span class="ref-vol">
<strong>16</strong>
</span>(1):3&ndash;14.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16314694" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16314694</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>8.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.8">Schuhmann-Giampieri G. , Schmitt-Willich H. , Frenzel T. , Press W.R. , Weinmann H.J. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. <span><span class="ref-journal">Invest Radiol. </span>1991;<span class="ref-vol">
<strong>26</strong>
</span>(11):969&ndash;74.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1743920" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1743920</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>9.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.9">Weissleder R. , Bogdanov A. , Tung C.H. , Weinmann H.J. Size optimization of synthetic graft copolymers for in vivo angiogenesis imaging. <span><span class="ref-journal">Bioconjug Chem. </span>2001;<span class="ref-vol">
<strong>12</strong>
</span>(2):213&ndash;9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11312682" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11312682</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>10.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.10">Rongved P. , Klaveness J. Water-soluble polysaccharides as carriers of paramagnetic contrast agents for magnetic resonance imaging: synthesis and relaxation properties. <span><span class="ref-journal">Carbohydr Res. </span>1991;<span class="ref-vol">
<strong>214</strong>
</span>(2):315&ndash;23.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1769023" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1769023</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>11.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.11">Gibby W.A. , Bogdan A. , Ovitt T.W. Cross-linked DTPA polysaccharides for magnetic resonance imaging. Synthesis and relaxation properties. <span><span class="ref-journal">Invest Radiol. </span>1989;<span class="ref-vol">
<strong>24</strong>
</span>(4):302&ndash;9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2745011" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2745011</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>12.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.12">Wiener E.C. , Brechbiel M.W. , Brothers H. , Magin R.L. , Gansow O.A. , Tomalia D.A. , Lauterbur P.C. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. <span><span class="ref-journal">Magn Reson Med. </span>1994;<span class="ref-vol">
<strong>31</strong>
</span>(1):1&ndash;8.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8121264" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8121264</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>13.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.13">Kobayashi H. , Sato N. , Kawamoto S. , Saga T. , Hiraga A. , Ishimori T. , Konishi J. , Togashi K. , Brechbiel M.W. 3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. <span><span class="ref-journal">Magn Reson Med. </span>2001;<span class="ref-vol">
<strong>46</strong>
</span>(3):579&ndash;85.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11550252" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11550252</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>14.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.14">Lauffer R.B. , Brady T.J. Preparation and water relaxation properties of proteins labeled with paramagnetic metal chelates. <span><span class="ref-journal">Magn Reson Imaging. </span>1985;<span class="ref-vol">
<strong>3</strong>
</span>(1):11&ndash;6.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3923289" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3923289</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>15.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.15">Duarte M.G. , Gil M.H. , Peters J.A. , Colet J.M. , Elst L.V. , Muller R.N. , Geraldes C.F. Synthesis, characterization, and relaxivity of two linear Gd(DTPA)-polymer conjugates. <span><span class="ref-journal">Bioconjug Chem. </span>2001;<span class="ref-vol">
<strong>12</strong>
</span>(2):170&ndash;7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11312677" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11312677</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>16.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.16">Ladd D.L. , Hollister R. , Peng X. , Wei D. , Wu G. , Delecki D. , Snow R.A. , Toner J.L. , Kellar K. , Eck J. , Desai V.C. , Raymond G. , Kinter L.B. , Desser T.S. , Rubin D.L. Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties. <span><span class="ref-journal">Bioconjug Chem. </span>1999;<span class="ref-vol">
<strong>10</strong>
</span>(3):361&ndash;70.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10346865" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10346865</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>17.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.17">Lu Z.R. , Parker D.L. , Goodrich K.C. , Wang X. , Dalle J.G. , Buswell H.R. Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. <span><span class="ref-journal">Magn Reson Med. </span>2004;<span class="ref-vol">
<strong>51</strong>
</span>(1):27&ndash;34.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14705042" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14705042</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>18.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.18">Martin V.V. , Ralston W.H. , Hynes M.R. , Keana J.F. Gadolinium(III) di- and tetrachelates designed for in vivo noncovalent complexation with plasma proteins: a novel molecular design for blood pool MRI contrast enhancing agents. <span><span class="ref-journal">Bioconjug Chem. </span>1995;<span class="ref-vol">
<strong>6</strong>
</span>(5):616&ndash;23.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8974462" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8974462</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>19.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.19">Lu Z.R. , Mohs A.M. , Zong Y. , Feng Y. Polydisulfide Gd(III) chelates as biodegradable macromolecular magnetic resonance imaging contrast agents. <span><span class="ref-journal">Int J Nanomedicine. </span>2006;<span class="ref-vol">
<strong>1</strong>
</span>(1):31&ndash;40.</span> [<a href="/pmc/articles/PMC2426761/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2426761</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17722260" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17722260</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>20.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.20">Zong Y. , Wang X. , Goodrich K.C. , Mohs A.M. , Parker D.L. , Lu Z.R. Contrast-enhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor-bearing mice. <span><span class="ref-journal">Magn Reson Med. </span>2005;<span class="ref-vol">
<strong>53</strong>
</span>(4):835&ndash;42.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15799038" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15799038</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>21.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.21">Mohs A.M. , Wang X. , Goodrich K.C. , Zong Y. , Parker D.L. , Lu Z.R. PEG-g-poly(GdDTPA-co-L-cystine): a biodegradable macromolecular blood pool contrast agent for MR imaging. <span><span class="ref-journal">Bioconjug Chem. </span>2004;<span class="ref-vol">
<strong>15</strong>
</span>(6):1424&ndash;30.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15546211" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15546211</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>22.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.22">Wang X. , Feng Y. , Ke T. , Schabel M. , Lu Z.R. Pharmacokinetics and tissue retention of (Gd-DTPA)-cystamine copolymers, a biodegradable macromolecular magnetic resonance imaging contrast agent. <span><span class="ref-journal">Pharm Res. </span>2005;<span class="ref-vol">
<strong>22</strong>
</span>(4):596&ndash;602.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15846467" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15846467</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>23.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.23">Mohs A.M. , Zong Y. , Guo J. , Parker D.L. , Lu Z.R. PEG-g-poly(GdDTPA-co-L-cystine): effect of PEG chain length on in vivo contrast enhancement in MRI. <span><span class="ref-journal">Biomacromolecules. </span>2005;<span class="ref-vol">
<strong>6</strong>
</span>(4):2305&ndash;11.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16004476" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16004476</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>24.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.24">Perazella M.A. , Rodby R.A. Gadolinium use in patients with kidney disease: a cause for concern. <span><span class="ref-journal">Semin Dial. </span>2007;<span class="ref-vol">
<strong>20</strong>
</span>(3):179&ndash;85.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17555477" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17555477</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>25.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.25">Grobner T. , Prischl F.C. <span><span class="ref-journal">and Gadolinium and nephrogenic systemic fibrosis. Kidney Int. </span>2007</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17507905" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17507905</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>26.</dt><dd><div class="bk_ref" id="GCAC.EXTYLES.26">Pedersen M. Safety update on the possible causal relationship between gadolinium-containing MRI agents and nephrogenic systemic fibrosis. <span><span class="ref-journal">J Magn Reson Imaging. </span>2007;<span class="ref-vol">
<strong>25</strong>
</span>(5):881&ndash;3.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17457808" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17457808</span></a>]</div></dd></dl></dl></div><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_top_margin"><div>This MICAD chapter is not included in the Open Access Subset, because it was authored / co-authored by one or more investigators who was not a member of the MICAD staff.</div></p></div></dd></dl></dl></div><div id="bk_toc_contnr"></div></div></div><div class="fm-sec"><h2 id="_NBK22984_pubdet_">Publication Details</h2><h3>Author Information and Affiliations</h3><div class="contrib half_rhythm"><span itemprop="author">Kenneth T. Cheng</span>, PhD<div class="affiliation small">
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,
<span class="before-email-separator"></span><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="vog.hin.mln.ibcn@dacim" class="oemail">vog.hin.mln.ibcn@dacim</a>
</div></div><div class="contrib half_rhythm"><span itemprop="author">Zheng-Rong Lu</span>, PhD<div class="affiliation small">
Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, Corresponding Author,
<span class="before-email-separator"></span><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="ude.hatu@ul.gnorgnehZ" class="oemail">ude.hatu@ul.gnorgnehZ</a>
</div></div><div class="contrib half_rhythm"><span itemprop="author">Todd Kaneshiro</span>, BS<div class="affiliation small">
Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT,
<span class="before-email-separator"></span><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="ude..hatu@orihsenaK.T" class="oemail">ude..hatu@orihsenaK.T</a>
</div></div><h3>Publication History</h3><p class="small">Created: <span itemprop="datePublished">November 8, 2007</span>; Last Update: <span itemprop="dateModified">January 22, 2008</span>.</p><h3>Copyright</h3><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div></div><h3>Publisher</h3><p><a href="http://www.ncbi.nlm.nih.gov/" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">National Center for Biotechnology Information (US)</a>, Bethesda (MD)</p><h3>NLM Citation</h3><p>Cheng KT, Lu ZR, Kaneshiro T. Gd-DTPA l-Cystine bisamide copolymers. 2007 Nov 8 [Updated 2008 Jan 22]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013. <span class="bk_cite_avail"></span></p></div><div class="small-screen-prev"><a href="/books/n/micad/GDCEP/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="small-screen-next"><a href="/books/n/micad/GCIC/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></article><article data-type="table-wrap" id="figobGCACT1"><div id="GCAC.T1" class="table"><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK22984/table/GCAC.T1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__GCAC.T1_lrgtbl__"><table><tbody><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Chemical name:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Gd-DTPA <span class="small-caps">l</span>-Cystine bisamide copolymers</td><td rowspan="9" colspan="1" style="text-align:left;vertical-align:middle;">
<div class="graphic"><img src="/books/NBK22984/bin/GCAC.jpg" alt="Image GCAC.jpg" /></div>
</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Abbreviated name:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">GCAC</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Synonym:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Agent Category:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Compound, polymers</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Target:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Non-targeted, vasculature, liver, kidneys.</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Target Category:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Nonspecific confinement to the vascular space</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Method of detection:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Magnetic resonance imaging (MRI)</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Source of contrast /signal:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Gadolinium (Gd)</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Activation:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Studies:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul class="simple-list"><li class="half_rhythm"><div>
<img alt="Checkbox" src="/corehtml/pmc/css/bookshelf/2.26/img/studies.checkbox.png" />
<i>In vitro</i>
</div></li></ul>
<ul class="simple-list"><li class="half_rhythm"><div>
<img alt="Checkbox" src="/corehtml/pmc/css/bookshelf/2.26/img/studies.checkbox.png" /> Rodents
</div></li></ul>
<br />
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Gd-DTPA <span class="small-caps">l</span>-cystine bisamide copolymers structure.<br />Click on <a href="http://pubchem.ncbi.nlm.nih.gov" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubChem</a> (<a href="http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=46501388" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">SID 46501388</a>) for more information.</td></tr></tbody></table></div></div></article></div><div id="jr-scripts"><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/libs.min.js"> </script><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.min.js"> </script></div></div>
<!-- Book content -->
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal107 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3968615.js" snapshot="books"></script></body>
</html>