nih-gov/www.ncbi.nlm.nih.gov/books/n/micad/FDG/index.html?report=reader
2025-03-17 02:05:34 +00:00

219 lines
70 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" class="no-js no-jr">
<head>
<!-- For pinger, set start time and add meta elements. -->
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- Logger begin -->
<meta name="ncbi_db" content="books">
<meta name="ncbi_pdid" content="book-part">
<meta name="ncbi_acc" content="NBK23335">
<meta name="ncbi_domain" content="micad">
<meta name="ncbi_report" content="reader">
<meta name="ncbi_type" content="fulltext">
<meta name="ncbi_objectid" content="">
<meta name="ncbi_pcid" content="/NBK23335/?report=reader">
<meta name="ncbi_pagename" content="[18F]Fluoro-2-deoxy-2-D-glucose - Molecular Imaging and Contrast Agent Database (MICAD) - NCBI Bookshelf">
<meta name="ncbi_bookparttype" content="chapter">
<meta name="ncbi_app" content="bookshelf">
<!-- Logger end -->
<!--component id="Page" label="meta"/-->
<script type="text/javascript" src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.boots.min.js"> </script><title>[18F]Fluoro-2-deoxy-2-D-glucose - Molecular Imaging and Contrast Agent Database (MICAD) - NCBI Bookshelf</title>
<meta charset="utf-8">
<meta name="apple-mobile-web-app-capable" content="no">
<meta name="viewport" content="initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no">
<meta name="jr-col-layout" content="auto">
<meta name="jr-prev-unit" content="/books/n/micad/Choline-D4-18F/?report=reader">
<meta name="jr-next-unit" content="/books/n/micad/F18-5/?report=reader">
<meta name="bk-toc-url" content="/books/n/micad/?report=toc">
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE">
<meta name="citation_inbook_title" content="Molecular Imaging and Contrast Agent Database (MICAD) [Internet]">
<meta name="citation_title" content="[18F]Fluoro-2-deoxy-2-D-glucose">
<meta name="citation_publisher" content="National Center for Biotechnology Information (US)">
<meta name="citation_date" content="2005/01/12">
<meta name="citation_author" content="Kam Leung">
<meta name="citation_pmid" content="20641537">
<meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK23335/">
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/">
<meta name="DC.Title" content="[18F]Fluoro-2-deoxy-2-D-glucose">
<meta name="DC.Type" content="Text">
<meta name="DC.Publisher" content="National Center for Biotechnology Information (US)">
<meta name="DC.Contributor" content="Kam Leung">
<meta name="DC.Date" content="2005/01/12">
<meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK23335/">
<meta name="description" content="The phosphorylation of glucose, an initial and important step in cellular metabolism, is catalyzed by hexokinases (HKs) (1). There are four HKs in mammalian tissues. HKI, HKII, and HKIII have molecular weights of approximately 100,000 each. HKI is found mainly in the brain. HKII is insulin sensitive and found in adipose and muscle cells. HKIV, also known as glucokinase, has a molecular weight of 50,000 and is specific to the liver and pancreas. Most brain HK is bound to mitochondria, enabling coordination between glucose consumption and oxidation. Tumor cells are known to be highly glycolytic because of increased expression of glycolytic enzymes and HK activity (2), which was detected in tumors from patients with lung, gastrointestinal, and breast cancer. The HKs, by converting glucose to glucose-6-phosphate, help to maintain the downhill gradient that results in the transport of glucose into cells through the facilitative glucose transporters (GLUT1-13) (3). GLUT4 and HKII are the major transporter and HK isoform in skeletal muscle, heart, and adipose tissue, wherein insulin promotes glucose utilization. HKIV is associated with GLUT2 in liver and pancreatic &beta; cells.">
<meta name="og:title" content="[18F]Fluoro-2-deoxy-2-D-glucose">
<meta name="og:type" content="book">
<meta name="og:description" content="The phosphorylation of glucose, an initial and important step in cellular metabolism, is catalyzed by hexokinases (HKs) (1). There are four HKs in mammalian tissues. HKI, HKII, and HKIII have molecular weights of approximately 100,000 each. HKI is found mainly in the brain. HKII is insulin sensitive and found in adipose and muscle cells. HKIV, also known as glucokinase, has a molecular weight of 50,000 and is specific to the liver and pancreas. Most brain HK is bound to mitochondria, enabling coordination between glucose consumption and oxidation. Tumor cells are known to be highly glycolytic because of increased expression of glycolytic enzymes and HK activity (2), which was detected in tumors from patients with lung, gastrointestinal, and breast cancer. The HKs, by converting glucose to glucose-6-phosphate, help to maintain the downhill gradient that results in the transport of glucose into cells through the facilitative glucose transporters (GLUT1-13) (3). GLUT4 and HKII are the major transporter and HK isoform in skeletal muscle, heart, and adipose tissue, wherein insulin promotes glucose utilization. HKIV is associated with GLUT2 in liver and pancreatic &beta; cells.">
<meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK23335/">
<meta name="og:site_name" content="NCBI Bookshelf">
<meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-micad-lrg.png">
<meta name="twitter:card" content="summary">
<meta name="twitter:site" content="@ncbibooks">
<meta name="bk-non-canon-loc" content="/books/n/micad/FDG/?report=reader">
<link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK23335/">
<link href="https://fonts.googleapis.com/css?family=Archivo+Narrow:400,700,400italic,700italic&amp;subset=latin" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/libs.min.css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/jr.min.css">
<meta name="format-detection" content="telephone=no">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css//books_print.min.css" type="text/css" media="print">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_reader.min.css" type="text/css">
<style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style>
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico">
<meta name="ncbi_phid" content="CE8ED31E7D646D7100000000006F005D.m_5">
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3849091.css"></head>
<body>
<!-- Book content! -->
<div id="jr" data-jr-path="/corehtml/pmc/jatsreader/ptpmc_3.22/"><div class="jr-unsupported"><table class="modal"><tr><td><span class="attn inline-block"></span><br />Your browser does not support the NLM PubReader view.<br />Go to <a href="/pmc/about/pr-browsers/">this page</a> to see a list of supported browsers<br />or return to the <br /><a href="/books/NBK23335/?report=classic">regular view</a>.</td></tr></table></div><div id="jr-ui" class="hidden"><nav id="jr-head"><div class="flexh tb"><div id="jr-tb1"><a id="jr-links-sw" class="hidden" title="Links"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" x="0px" y="0px" viewBox="0 0 70.6 85.3" style="enable-background:new 0 0 70.6 85.3;vertical-align:middle" xml:space="preserve" width="24" height="24">
<style type="text/css">.st0{fill:#939598;}</style>
<g>
<path class="st0" d="M36,0C12.8,2.2-22.4,14.6,19.6,32.5C40.7,41.4-30.6,14,35.9,9.8"></path>
<path class="st0" d="M34.5,85.3c23.2-2.2,58.4-14.6,16.4-32.5c-21.1-8.9,50.2,18.5-16.3,22.7"></path>
<path class="st0" d="M34.7,37.1c66.5-4.2-4.8-31.6,16.3-22.7c42.1,17.9,6.9,30.3-16.4,32.5h1.7c-66.2,4.4,4.8,31.6-16.3,22.7 c-42.1-17.9-6.9-30.3,16.4-32.5"></path>
</g>
</svg> Books</a></div><div class="jr-rhead f1 flexh"><div class="head"><a href="/books/n/micad/Choline-D4-18F/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="body"><div class="t">[18F]Fluoro-2-deoxy-2-D-glucose</div><div class="j">Molecular Imaging and Contrast Agent Database (MICAD) [Internet]</div></div><div class="tail"><a href="/books/n/micad/F18-5/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></div><div id="jr-tb2"><a id="jr-bkhelp-sw" class="btn wsprkl hidden" title="Help with NLM PubReader">?</a><a id="jr-help-sw" class="btn wsprkl hidden" title="Settings and typography in NLM PubReader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" preserveAspectRatio="none"><path d="M462,283.742v-55.485l-29.981-10.662c-11.431-4.065-20.628-12.794-25.274-24.001 c-0.002-0.004-0.004-0.009-0.006-0.013c-4.659-11.235-4.333-23.918,0.889-34.903l13.653-28.724l-39.234-39.234l-28.72,13.652 c-10.979,5.219-23.68,5.546-34.908,0.889c-0.005-0.002-0.01-0.003-0.014-0.005c-11.215-4.65-19.933-13.834-24-25.273L283.741,50 h-55.484l-10.662,29.981c-4.065,11.431-12.794,20.627-24.001,25.274c-0.005,0.002-0.009,0.004-0.014,0.005 c-11.235,4.66-23.919,4.333-34.905-0.889l-28.723-13.653l-39.234,39.234l13.653,28.721c5.219,10.979,5.545,23.681,0.889,34.91 c-0.002,0.004-0.004,0.009-0.006,0.013c-4.649,11.214-13.834,19.931-25.271,23.998L50,228.257v55.485l29.98,10.661 c11.431,4.065,20.627,12.794,25.274,24c0.002,0.005,0.003,0.01,0.005,0.014c4.66,11.236,4.334,23.921-0.888,34.906l-13.654,28.723 l39.234,39.234l28.721-13.652c10.979-5.219,23.681-5.546,34.909-0.889c0.005,0.002,0.01,0.004,0.014,0.006 c11.214,4.649,19.93,13.833,23.998,25.271L228.257,462h55.484l10.595-29.79c4.103-11.538,12.908-20.824,24.216-25.525 c0.005-0.002,0.009-0.004,0.014-0.006c11.127-4.628,23.694-4.311,34.578,0.863l28.902,13.738l39.234-39.234l-13.66-28.737 c-5.214-10.969-5.539-23.659-0.886-34.877c0.002-0.005,0.004-0.009,0.006-0.014c4.654-11.225,13.848-19.949,25.297-24.021 L462,283.742z M256,331.546c-41.724,0-75.548-33.823-75.548-75.546s33.824-75.547,75.548-75.547 c41.723,0,75.546,33.824,75.546,75.547S297.723,331.546,256,331.546z"></path></svg></a><a id="jr-fip-sw" class="btn wsprkl hidden" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-rtoc-sw" class="btn wsprkl hidden" title="Table of Contents"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,20h10v8H20V20zM36,20h44v8H36V20zM20,37.33h10v8H20V37.33zM36,37.33h44v8H36V37.33zM20,54.66h10v8H20V54.66zM36,54.66h44v8H36V54.66zM20,72h10v8 H20V72zM36,72h44v8H36V72z"></path></svg></a></div></div></nav><nav id="jr-dash" class="noselect"><nav id="jr-dash" class="noselect"><div id="jr-pi" class="hidden"><a id="jr-pi-prev" class="hidden" title="Previous page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a><div class="pginfo">Page <i class="jr-pg-pn">0</i> of <i class="jr-pg-lp">0</i></div><a id="jr-pi-next" class="hidden" title="Next page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div><div id="jr-is-tb"><a id="jr-is-sw" class="btn wsprkl hidden" title="Switch between Figures/Tables strip and Progress bar"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><rect x="10" y="40" width="20" height="20"></rect><rect x="40" y="40" width="20" height="20"></rect><rect x="70" y="40" width="20" height="20"></rect></svg></a></div><nav id="jr-istrip" class="istrip hidden"><a id="jr-is-prev" href="#" class="hidden" title="Previous"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M80,40 60,65 80,90 70,90 50,65 70,40z M50,40 30,65 50,90 40,90 20,65 40,40z"></path><text x="35" y="25" textLength="60" style="font-size:25px">Prev</text></svg></a><a id="jr-is-next" href="#" class="hidden" title="Next"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,40 40,65 20,90 30,90 50,65 30,40z M50,40 70,65 50,90 60,90 80,65 60,40z"></path><text x="15" y="25" textLength="60" style="font-size:25px">Next</text></svg></a></nav><nav id="jr-progress"></nav></nav></nav><aside id="jr-links-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">NCBI Bookshelf</div></div><div class="cnt lol f1"><a href="/books/">Home</a><a href="/books/browse/">Browse All Titles</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/sharer/sharer.php?u=https://www.ncbi.nlm.nih.gov/books/NBK23335/"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24" preserveAspectRatio="none"><g><path d="M 17.996,32L 12,32 L 12,16 l-4,0 l0-5.514 l 4-0.002l-0.006-3.248C 11.993,2.737, 13.213,0, 18.512,0l 4.412,0 l0,5.515 l-2.757,0 c-2.063,0-2.163,0.77-2.163,2.209l-0.008,2.76l 4.959,0 l-0.585,5.514L 18,16L 17.996,32z"></path></g></svg> Share on Facebook</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://twitter.com/intent/tweet?url=https://www.ncbi.nlm.nih.gov/books/NBK23335/&amp;text=%5B18F%5DFluoro-2-deoxy-2-D-glucose"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24"><g><path d="M 32,6.076c-1.177,0.522-2.443,0.875-3.771,1.034c 1.355-0.813, 2.396-2.099, 2.887-3.632 c-1.269,0.752-2.674,1.299-4.169,1.593c-1.198-1.276-2.904-2.073-4.792-2.073c-3.626,0-6.565,2.939-6.565,6.565 c0,0.515, 0.058,1.016, 0.17,1.496c-5.456-0.274-10.294-2.888-13.532-6.86c-0.565,0.97-0.889,2.097-0.889,3.301 c0,2.278, 1.159,4.287, 2.921,5.465c-1.076-0.034-2.088-0.329-2.974-0.821c-0.001,0.027-0.001,0.055-0.001,0.083 c0,3.181, 2.263,5.834, 5.266,6.438c-0.551,0.15-1.131,0.23-1.73,0.23c-0.423,0-0.834-0.041-1.235-0.118 c 0.836,2.608, 3.26,4.506, 6.133,4.559c-2.247,1.761-5.078,2.81-8.154,2.81c-0.53,0-1.052-0.031-1.566-0.092 c 2.905,1.863, 6.356,2.95, 10.064,2.95c 12.076,0, 18.679-10.004, 18.679-18.68c0-0.285-0.006-0.568-0.019-0.849 C 30.007,8.548, 31.12,7.392, 32,6.076z"></path></g></svg> Share on Twitter</a></div></aside><aside id="jr-rtoc-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Table of Content</div></div><div class="cnt lol f1"><a href="/books/n/micad/?report=reader">Title Information</a><a href="/books/n/micad/toc/?report=reader">Table of Contents Page</a></div></aside><aside id="jr-help-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Settings</div></div><div class="cnt f1"><div id="jr-typo-p" class="typo"><div><a class="sf btn wsprkl">A-</a><a class="lf btn wsprkl">A+</a></div><div><a class="bcol-auto btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 100" preserveAspectRatio="none"><text x="10" y="70" style="font-size:60px;font-family: Trebuchet MS, ArialMT, Arial, sans-serif" textLength="180">AUTO</text></svg></a><a class="bcol-1 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M15,25 85,25zM15,40 85,40zM15,55 85,55zM15,70 85,70z"></path></svg></a><a class="bcol-2 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M5,25 45,25z M55,25 95,25zM5,40 45,40z M55,40 95,40zM5,55 45,55z M55,55 95,55zM5,70 45,70z M55,70 95,70z"></path></svg></a></div></div><div class="lol"><a class="" href="/books/NBK23335/?report=classic">Switch to classic view</a><a href="/books/NBK23335/pdf/Bookshelf_NBK23335.pdf">PDF (172K)</a><a href="/books/NBK23335/?report=printable">Print View</a></div></div></aside><aside id="jr-bkhelp-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Help</div></div><div class="cnt f1 lol"><a id="jr-helpobj-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/help.xml" href="">Help</a><a href="mailto:info@ncbi.nlm.nih.gov?subject=PubReader%20feedback%20%2F%20NBK23335%20%2F%20sid%3ACE8B5AF87C7FFCB1_0191SID%20%2F%20phid%3ACE8ED31E7D646D7100000000006F005D.4">Send us feedback</a><a id="jr-about-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/about.xml" href="">About PubReader</a></div></aside><aside id="jr-objectbox" class="thidden hidden"><div class="jr-objectbox-close wsprkl">&#10008;</div><div class="jr-objectbox-inner cnt"><div class="jr-objectbox-drawer"></div></div></aside><nav id="jr-pm-left" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Previous Page</text></svg></nav><nav id="jr-pm-right" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Next Page</text></svg></nav><nav id="jr-fip" class="hidden"><nav id="jr-fip-term-p"><input type="search" placeholder="search this page" id="jr-fip-term" autocorrect="off" autocomplete="off" /><a id="jr-fip-mg" class="wsprkl btn" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-fip-done" class="wsprkl btn" title="Dismiss find">&#10008;</a></nav><nav id="jr-fip-info-p"><a id="jr-fip-prev" class="wsprkl btn" title="Jump to previuos match">&#9664;</a><button id="jr-fip-matches">no matches yet</button><a id="jr-fip-next" class="wsprkl btn" title="Jump to next match">&#9654;</a></nav></nav></div><div id="jr-epub-interstitial" class="hidden"></div><div id="jr-content"><article data-type="main"><div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><div class="fm-sec"><h1 id="_NBK23335_"><span class="title" itemprop="name">[<sup>18</sup>F]Fluoro-2-deoxy-2-<span class="small-caps">D</span>-glucose</span></h1><div itemprop="alternativeHeadline" class="subtitle whole_rhythm">[<sup>18</sup>F]FDG</div><p class="contribs">Leung K.</p><p class="fm-aai"><a href="#_NBK23335_pubdet_">Publication Details</a></p></div></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figFDGTncchemicalname18ffluoro2deoxy2d"><a href="/books/NBK23335/table/FDG.T.nc_chemical_name18ffluoro2deoxy2d/?report=objectonly" target="object" title="Table" class="img_link icnblk_img" rid-ob="figobFDGTncchemicalname18ffluoro2deoxy2d"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="FDG.T.nc_chemical_name18ffluoro2deoxy2d"><a href="/books/NBK23335/table/FDG.T.nc_chemical_name18ffluoro2deoxy2d/?report=objectonly" target="object" rid-ob="figobFDGTncchemicalname18ffluoro2deoxy2d">Table</a></h4><p class="float-caption no_bottom_margin">
<i>In vitro</i>
Rodents
</p></div></div><div id="FDG.Background"><h2 id="_FDG_Background_">Background</h2><p>[<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>The phosphorylation of glucose, an initial and important step in cellular metabolism, is catalyzed by hexokinases (HKs) (<a class="bibr" href="#FDG.REF.1" rid="FDG.REF.1">1</a>). There are four HKs in mammalian tissues. HKI, HKII, and HKIII have molecular weights of approximately 100,000 each. HKI is found mainly in the brain. HKII is insulin sensitive and found in adipose and muscle cells. HKIV, also known as glucokinase, has a molecular weight of 50,000 and is specific to the liver and pancreas. Most brain HK is bound to mitochondria, enabling coordination between glucose consumption and oxidation. Tumor cells are known to be highly glycolytic because of increased expression of glycolytic enzymes and HK activity (<a class="bibr" href="#FDG.REF.2" rid="FDG.REF.2">2</a>), which was detected in tumors from patients with lung, gastrointestinal, and breast cancer. The HKs, by converting glucose to glucose-6-phosphate, help to maintain the downhill gradient that results in the transport of glucose into cells through the facilitative glucose transporters (GLUT1-13) (<a class="bibr" href="#FDG.REF.3" rid="FDG.REF.3">3</a>). GLUT4 and HKII are the major transporter and HK isoform in skeletal muscle, heart, and adipose tissue, wherein insulin promotes glucose utilization. HKIV is associated with GLUT2 in liver and pancreatic &#x003b2; cells.</p><p>2-Deoxy-<span class="small-caps">d</span>-glucose (2DG) was first developed to inhibit glucose utilization by cancer cells (<a class="bibr" href="#FDG.REF.4" rid="FDG.REF.4">4</a>). HKs phosphorylate 2DG to 2-DG-6-phosphate, which inhibits phosphorylation of glucose. 2-[<sup>18</sup>F]Fluoro-2-deoxy-<span class="small-caps">d</span>-glucose ([<sup>18</sup>F]FDG) was later developed for molecular imaging studies (<a class="bibr" href="#FDG.REF.5" rid="FDG.REF.5">5</a>). FDG is moved into cells by glucose transporters and is then phosphorylated by HK to FDG-6- phosphate. FDG-6- phosphate cannot be metabolized further in the glycolytic pathway and stays intracellularly in the cells. Tumor cells do not contain a sufficient amount of glucose-6-phosphatase to reverse the phosphorylation. The elevated rates of glycolysis and glucose transport in many types of tumor cells and activated cells enhance the uptake of FDG in these cells relative to other normal cells. Positron emission tomography (PET) with [<sup>18</sup>F]FDG has been used to assess alternations in glucose metabolism in brain, cancer, cardiovascular diseases, Alzheimer&#x02019;s disease and other central nervous system disorders, and infectious, autoimmune, and inflammatory diseases (<a class="bibr" href="#FDG.REF.6" rid="FDG.REF.6 FDG.REF.7 FDG.REF.8 FDG.REF.9 FDG.REF.10 FDG.REF.11">6-11</a>).</p><div id="FDG.Related_Resource_Links"><h3>Related Resource Links:</h3><ul><li class="half_rhythm"><div>Chapters in MICAD (<a href="/books?term=(hexokinase%20OR%20hexokinases)%20AND%20micad%5Bbook%5D" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Hexokinase</a>, <a href="/books?term=glucose%20transporters%20%20AND%20micad%5Bbook%5D" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">glucose transporter</a>)</div></li><li class="half_rhythm"><div>Gene information in NCBI (<a href="/gene?term=hexokinase%20human" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Hexokinase</a>, <a href="/gene/6513" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Glut1</a>).</div></li><li class="half_rhythm"><div>Articles in Online Mendelian Inheritance in Man (OMIM) (<a href="/omim?Db=omim&#x00026;Cmd=DetailsSearch&#x00026;Term=hexokinase%5BAll+Fields%5D" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Hexokinase</a>, <a href="/omim/138140" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Glut1</a>)</div></li><li class="half_rhythm"><div>Clinical trials (<a href="http://www.clinicaltrials.gov/ct2/results?term=FDG" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">[<sup>18</sup>F]FDG</a>)</div></li><li class="half_rhythm"><div>Drug information in FDA (<a href="http://google2.fda.gov/search?q=%5B18F%5DFDG&#x00026;client=FDAgov&#x00026;site=FDAgov&#x00026;lr=&#x00026;proxystylesheet=FDAgov&#x00026;output=xml_no_dtd&#x00026;getfields=*&#x00026;x=3&#x00026;y=9" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">[<sup>18</sup>F]FDG</a>)</div></li></ul></div></div><div id="FDG.Synthesis"><h2 id="_FDG_Synthesis_">Synthesis</h2><p>[<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22Fluorodeoxyglucose%20F18%22%5BMeSH%5D%20AND%20%22chemical%20synthesis%22%5BSubheading%5D" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p> [<sup>18</sup>F]FDG was synthesized by a direct electrophilic fluorination of 3,4,6-tri-<i>O</i>-acetyl-<span class="small-caps">d</span>-glucal with [<sup>18</sup>F]F<sub>2</sub> gas with a radiochemical yield of 8% (<a class="bibr" href="#FDG.REF.12" rid="FDG.REF.12">12</a>). [<sup>18</sup>F]FDG was also prepared by reacting <sup>18</sup>F-labeled acetyl hypofluorite, prepared by reaction of <sup>18</sup>F-labeled molecular fluorine with sodium acetate in glacial acetic acid, and tri-acetyl-<span class="small-caps">d</span>-glucal at room temperature. Overall radiochemical yield was about 24% with a radiochemical purity of 98%. The specific activity of [<sup>18</sup>F]FDG was about 25 GBq/mmol (685 mCi/mmol). The synthesis time was approximately 60 min (<a class="bibr" href="#FDG.REF.13" rid="FDG.REF.13">13</a>). Subsequently, the radiochemical yields of [<sup>18</sup>F]FDG were improved to 50-60% by using various methods involving nucleophilic fluorination using fluoride of high specific activity (<a class="bibr" href="#FDG.REF.14" rid="FDG.REF.14 FDG.REF.15 FDG.REF.16 FDG.REF.17">14-17</a>). An automated synthesis of [<sup>18</sup>F]FDG using tetrabutylammonium [<sup>18</sup>F]fluoride was reported to give a radiochemical yield of 12-17% with 96-99% radiochemical purity (<a class="bibr" href="#FDG.REF.18" rid="FDG.REF.18">18</a>).</p></div><div id="FDG.In_Vitro_Studies_Testing_in_Cells_an"><h2 id="_FDG_In_Vitro_Studies_Testing_in_Cells_an_"><i>In Vitro</i> Studies: Testing in Cells and Tissues</h2><p>[<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20in%20vitro" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>FDG and other glucose analogs were investigated as anticancer agents by inhibiting glycolysis of tumor cells grown in cell cultures. <i>In vitro</i> uptake studies of [<sup>18</sup>F]FDG by endothelial cells, monocytes, macrophages, neutrophils, granulocytes, lymphocytes, and tumor cells have been reported and shed some light on [<sup>18</sup>F]FDG uptake mechanisms in these cells (<a class="bibr" href="#FDG.REF.19" rid="FDG.REF.19 FDG.REF.20 FDG.REF.21 FDG.REF.22 FDG.REF.23">19-23</a>). On the other hand, in organs such as the liver, FDG is taken up and rapidly released because of dephosphorylation by FDG-6-phosphatase (<a class="bibr" href="#FDG.REF.24" rid="FDG.REF.24">24</a>). Therefore, the overall FDG uptake into cells is dependent on the activity of glucose transporters, HKs, and phosphatases.</p><p>Uptake of [<sup>18</sup>F]FDG in isolated human monocytes-macrophages (HMMs) <i>in vitro</i> was compared with that in human glioblastoma and pancreatic carcinoma cells (<a class="bibr" href="#FDG.REF.25" rid="FDG.REF.25">25</a>). HMMs were cultured for 0, 7, and 14 days. [<sup>18</sup>F]FDG uptake in HMMs significantly increased with culture duration as monocytes differentiated into mature macrophages. The uptake of day 14 macrophages was similar to the two cancer cell lines. Lipopolysaccharide stimulation further enhanced [<sup>18</sup>F]FDG uptake in HMMs. [<sup>18</sup>F]FDG uptake significantly decreased with increasing glucose concentration in the medium. Radio-thin layer chromatography of intracellular metabolites revealed that [<sup>18</sup>F]FDG was trapped by HMMs mainly as [<sup>18</sup>F]FDG-6-phosphate and [<sup>18</sup>F]FDG-1,6-diphosphate. HMMs in tumors and inflamed tissues could result in high uptake of [<sup>18</sup>F]FDG.</p></div><div id="FDG.Animal_Studies"><h2 id="_FDG_Animal_Studies_">Animal Studies</h2><div id="FDG.Rodents"><h3>Rodents</h3><p>[<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20rodentia%20NOT%20in%20vitro" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p> [<sup>18</sup>F]FDG was accumulated rapidly into kidneys, liver, lung, and small intestine of normal mice, followed by a rapid clearance (<a class="bibr" href="#FDG.REF.26" rid="FDG.REF.26">26</a>). On the other hand, the accumulation of the tracer in the brain and heart remained relatively constant during the 2 h of the experiment. [<sup>18</sup>F]FDG was tested as a tumor diagnostic agent in a transplantable rat tumor (<a class="bibr" href="#FDG.REF.27" rid="FDG.REF.27">27</a>). Tissue distribution studies in rats showed high uptakes of [<sup>18</sup>F]FDG in the tumor, heart, intestine, and brain. Tumor uptake reached 2.65% dose [<sup>18</sup>F]FDG/g at 60 min and remained relatively constant until 120 min. Blood clearance [<sup>18</sup>F]FDG was very rapid, and tumor/blood ratios reached 22.1 at 60 min. Tumor/tissue ratios were very high in most organs, especially in the liver, kidneys, and pancreas.</p><p>Increased glucose metabolism of inflammatory tissues is the main source of false-positive [<sup>18</sup>F]FDG PET findings in oncology. The biodistribution of 3'-deoxy-3'-[<sup>18</sup>F]fluorothymidine [<sup>18</sup>F]FLT and [<sup>18</sup>F]FDG was studied in Wistar rats that bore tumors (C6 rat glioma in the right shoulder) and also had sterile inflammation in the left calf muscle (induced by injection of 0.1 ml of turpentine). Tumor/muscle ratios of [<sup>18</sup>F]FDG at 2 h after injection (13.2 &#x000b1; 3.0) were higher than those of [<sup>18</sup>F]FLT (3.8 &#x000b1; 1.3). [<sup>18</sup>F]FDG showed high uptake in brain and heart, whereas [<sup>18</sup>F]FLT showed high uptake in bone marrow. [<sup>18</sup>F]FDG was also accumulated in the inflamed muscle, with 4.8 &#x000b1; 1.2 times higher uptake in the affected thigh than in the healthy thigh. In contrast to [<sup>18</sup>F]FLT, [<sup>18</sup>F]FDG uptake was not significantly different between the two thighs. In [<sup>18</sup>F]FDG PET images, both tumor and inflammation were visible, but [<sup>18</sup>F]FLT PET showed only the tumor (<a class="bibr" href="#FDG.REF.28" rid="FDG.REF.28">28</a>).</p></div><div id="FDG.Other_NonPrimate_Mammals"><h3>Other Non-Primate Mammals</h3><p>[<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%5D%20AND%20%28dog%20or%20pig%20or%20rabbit%20or%20sheep%29" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>There was an early and high uptake of [<sup>18</sup>F]FDG in a variety of transplantable tumors in mice, rats, hamsters, and rabbits (<a class="bibr" href="#FDG.REF.29" rid="FDG.REF.29">29</a>). Tumor/blood and tumor/normal tissue ratios ranged from 2.6 to 17.8 and 2.1 to 9.2, respectively. Various [<sup>18</sup>F]FDG uptake studies were performed using dogs [<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20%28%22dogs%22%5BMeSH%20Terms%5D%20OR%20dogs%5BText%20Word%5D%29" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>], pigs [<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20%28%22swine%22%5BMeSH%20Terms%5D%20OR%20pigs%5BText%20Word%5D%29" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>], sheep [<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20%28%22sheep%22%5BMeSH%20Terms%5D%20OR%20sheep%5BText%20Word%5D%29" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>], and rabbits [<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20%28%22rabbits%22%5BMeSH%20Terms%5D%20OR%20rabbits%5BText%20Word%5D%29" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>].</p></div><div id="FDG.NonHuman_Primates"><h3>Non-Human Primates</h3><p>[<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20primate%20not%20human" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>Regional cerebral blood flow (rCBF) and regional cerebral metabolic rate of glucose (rCMRglc) were measured in old and young monkeys by PET. Studies were performed on six old and six young-adult male rhesus monkeys. rCBF and the rCMRglc were serially measured using PET with [<sup>15</sup>O]H<sub>2</sub>O and [<sup>18</sup>F]FDG, respectively. All PET emission scans were performed in the conscious state for the cerebellum, hippocampus, striatum, occipital cortex, temporal cortex, frontal cortex, and cingulate. Old monkeys had significantly lower rCBF in the cerebellum, hippocampus, striatum, occipital cortex, temporal cortex, and frontal cortex and significantly lower rCMRglc in the cerebellum, hippocampus, striatum, occipital cortex, temporal cortex, frontal cortex, and cingulate, compared with young monkeys (<a class="bibr" href="#FDG.REF.30" rid="FDG.REF.30">30</a>).</p><p>Pathogenesis of simian immunodeficiency virus (SIV) infection in rhesus macaques begins with acute viremia and then progresses to a distributed infection in the solid lymphoid tissues. PET imaging with [<sup>18</sup>F]FDG from SIV-infected animals was distinguishable from uninfected controls and revealed a pattern consistent with widespread lymphoid tissue activation. Significant [<sup>18</sup>F]FDG accumulation in colon, along with mesenteric and ileocecal lymph nodes, was found in SIV infection, especially during terminal disease stages. Areas of elevated [<sup>18</sup>F]FDG uptake in the PET images were correlated with productive SIV infection. [<sup>18</sup>F]FDG PET images of SIV-infected animals correlated sites of virus replication with high FDG accumulation. Therefore, [<sup>18</sup>F]FDG can be used to evaluate the distribution and activity of infected tissues in a living animal without biopsy (<a class="bibr" href="#FDG.REF.31" rid="FDG.REF.31">31</a>).</p></div></div><div id="FDG.Human_Studies"><h2 id="_FDG_Human_Studies_">Human Studies</h2><p>[<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20humans" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>]</p><p>In 1976, the first images of [<sup>18</sup>F]FDG metabolism in humans were obtained and showed the high uptake in the bladder, heart, and brain (<a class="bibr" href="#FDG.REF.5" rid="FDG.REF.5 FDG.REF.32">5, 32</a>). Regional kinetic constants and rCMRglc in normal human subjects were determined by [<sup>18</sup>F]FDG PET (<a class="bibr" href="#FDG.REF.33" rid="FDG.REF.33 FDG.REF.34 FDG.REF.35 FDG.REF.36">33-36</a>). Human dosimetry [<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20dosimetry%5BAll%20Fields%5D" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>] was estimated from absorbed dose in organs after intravenous administration of [<sup>18</sup>F]FDG using whole-body PET scans in six normal volunteers (<a class="bibr" href="#FDG.REF.37" rid="FDG.REF.37">37</a>). The bladder received the highest dose of radioactivity, followed by the spleen, heart, and brain. Mejia et al (<a class="bibr" href="#FDG.REF.38" rid="FDG.REF.38">38</a>) estimated the effective dose equivalent to be 0.024 mSv/MBq (81 mrem/mCi).</p><p> [<sup>18</sup>F]FDG PET imaging techniques are widely used in clinical applications. In central nervous system disorders [<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20%22humans%22%5BMeSH%20Terms%5D%20AND%20%22brain%22%5BMeSH%20Terms%5D" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>], the clinical applications are in Alzheimer&#x02019;s disease, dementia, epilepsy, brain trauma, Huntington disease, cerebrovascular disorders, brain tumors, Schizophrenia, and mood disorders (<a class="bibr" href="#FDG.REF.39" rid="FDG.REF.39 FDG.REF.40">39, 40</a>). In oncology [<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20%28%22humans%22%5BMeSH%5D%20AND%20%22neoplasms%22%5BMeSH%20Terms%5D%29" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>], the clinical applications are in diagnosis, treatment monitoring, and tumor staging have been used in non-small cell lung cancer, colorectal carcinoma, malignant melanoma, Hodgkin and non-Hodgkin lymphoma, esophageal carcinoma, head and neck cancer, breast cancer, and thyroid carcinoma (<a class="bibr" href="#FDG.REF.9" rid="FDG.REF.9 FDG.REF.41">9, 41</a>). In cardiovascular disorders [<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20%22Humans%22%5BMeSH%5D%20AND%20%22cardiovascular%20system%22%5BMeSH%20Terms%5D" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>], the clinical applications are in myocardial viability and atherosclerosis (<a class="bibr" href="#FDG.REF.42" rid="FDG.REF.42">42</a>). In infectious and inflammatory diseases [<a href="/entrez/query.fcgi?cmd=PureSearch&#x00026;db=pubmed&#x00026;details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D%20AND%20%22humans%22%5BMeSH%20Terms%5D%20AND%20%28%22inflammation%22%5BMeSH%5D%20OR%20%22infection%22%5BMeSH%20Terms%5D%29" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubMed</a>], the clinical applications are in orthopedic infections, osteomyelitis, ileitis, sarcoidosis, rheumatologic disease, and vasculitis (<a class="bibr" href="#FDG.REF.42" rid="FDG.REF.42">42</a>).</p></div><div id="FDG.References"><h2 id="_FDG_References_">References</h2><dl class="temp-labeled-list"><dl class="bkr_refwrap"><dt>1.</dt><dd><div class="bk_ref" id="FDG.REF.1">Smith T.A.
<em>Mammalian hexokinases and their abnormal expression in cancer.</em>
<span><span class="ref-journal">Br J Biomed Sci. </span>2000;<span class="ref-vol">57</span>(2):170&ndash;8.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10912295" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10912295</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>2.</dt><dd><div class="bk_ref" id="FDG.REF.2">Suolinna E.M., Haaparanta M., Paul R., Harkonen P., Solin O., Sipila H.
<em>Metabolism of 2-[18F]fluoro-2-deoxyglucose in tumor-bearing rats: chromatographic and enzymatic studies.</em>
<span><span class="ref-journal">Int J Rad Appl Instrum B. </span>1986;<span class="ref-vol">13</span>(5):577&ndash;81.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3818323" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3818323</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>3.</dt><dd><div class="bk_ref" id="FDG.REF.3">Avril N.
<em>GLUT1 expression in tissue and (18)F-FDG uptake.</em>
<span><span class="ref-journal">J Nucl Med. </span>2004;<span class="ref-vol">45</span>(6):930&ndash;2.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15181126" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15181126</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>4.</dt><dd><div class="bk_ref" id="FDG.REF.4">Laszlo J., Humphreys S.R., Goldin A.
<em>Effects of glucose analogues (2-deoxy-D-glucose, 2-deoxy-D-galactose) on experimental tumors.</em>
<span><span class="ref-journal">J Natl Cancer Inst. </span>1960;<span class="ref-vol">24</span>:267&ndash;81.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14414406" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14414406</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>5.</dt><dd><div class="bk_ref" id="FDG.REF.5">Fowler J.S., Ido T.
<em>Initial and subsequent approach for the synthesis of 18FDG.</em>
<span><span class="ref-journal">Semin Nucl Med. </span>2002;<span class="ref-vol">32</span>(1):6&ndash;12.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11839070" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11839070</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>6.</dt><dd><div class="bk_ref" id="FDG.REF.6">Phelps M.E.
<em>PET: the merging of biology and imaging into molecular imaging.</em>
<span><span class="ref-journal">J Nucl Med. </span>2000;<span class="ref-vol">41</span>(4):661&ndash;81.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10768568" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10768568</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>7.</dt><dd><div class="bk_ref" id="FDG.REF.7">Phelps M.E., Mazziotta J.C.
<em>Positron emission tomography: human brain function and biochemistry.</em>
<span><span class="ref-journal">Science. </span>1985;<span class="ref-vol">228</span>(4701):799&ndash;809.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2860723" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2860723</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>8.</dt><dd><div class="bk_ref" id="FDG.REF.8">Phelps M.E., Mazziotta J.C., Huang S.C.
<em>Study of cerebral function with positron computed tomography.</em>
<span><span class="ref-journal">J Cereb Blood Flow Metab. </span>1982;<span class="ref-vol">2</span>(2):113&ndash;62.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6210701" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6210701</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>9.</dt><dd><div class="bk_ref" id="FDG.REF.9">Rohren E.M., Turkington T.G., Coleman R.E.
<em>Clinical applications of PET in oncology.</em>
<span><span class="ref-journal">Radiology. </span>2004;<span class="ref-vol">231</span>(2):305&ndash;32.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15044750" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15044750</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>10.</dt><dd><div class="bk_ref" id="FDG.REF.10">Sokoloff L.
<em>Basic principles in imaging of regional cerebral metabolic rates.</em>
<span><span class="ref-journal">Res Publ Assoc Res Nerv Ment Dis. </span>1985;<span class="ref-vol">63</span>:21&ndash;49.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2992057" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2992057</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>11.</dt><dd><div class="bk_ref" id="FDG.REF.11">Spence A.M., Mankoff D.A., Muzi M.
<em>Positron emission tomography imaging of brain tumors.</em>
<span><span class="ref-journal">Neuroimaging Clin N Am. </span>2003;<span class="ref-vol">13</span>(4):717&ndash;39.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15024957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15024957</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>12.</dt><dd><div class="bk_ref" id="FDG.REF.12">Reivich M., Kuhl D., Wolf A., Greenberg J., Phelps M., Ido T., Casella V., Fowler J., Gallagher B., Hoffman E., Alavi A., Sokoloff L.
<em>Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-d-glucose.</em>
<span><span class="ref-journal">Acta Neurol Scand Suppl. </span>1977;<span class="ref-vol">64</span>:190&ndash;1.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/268783" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 268783</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>13.</dt><dd><div class="bk_ref" id="FDG.REF.13">Diksic M., Jolly D.
<em>New high-yield synthesis of 18F-labelled 2-deoxy-2-fluoro-D-glucose.</em>
<span><span class="ref-journal">Int J Appl Radiat Isot. </span>1983;<span class="ref-vol">34</span>(6):893&ndash;6.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6874115" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6874115</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>14.</dt><dd><div class="bk_ref" id="FDG.REF.14">Mock B.H., Vavrek M.T., Mulholland G.K.
<em>Back-to-back "one-pot" [18F]FDG syntheses in a single Siemens-CTI chemistry process control unit.</em>
<span><span class="ref-journal">Nucl Med Biol. </span>1996;<span class="ref-vol">23</span>(4):497&ndash;501.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8832706" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8832706</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>15.</dt><dd><div class="bk_ref" id="FDG.REF.15">Taylor M.D., Roberts A.D., Nickles R.J.
<em>Improving the yield of 2-[18F]fluoro-2-deoxyglucose using a microwave cavity.</em>
<span><span class="ref-journal">Nucl Med Biol. </span>1996;<span class="ref-vol">23</span>(5):605&ndash;9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9044687" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9044687</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>16.</dt><dd><div class="bk_ref" id="FDG.REF.16">Toorongian S.A., Mulholland G.K., Jewett D.M., Bachelor M.A., Kilbourn M.R.
<em>Routine production of 2-deoxy-2-[18F]fluoro-D-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin.</em>
<span><span class="ref-journal">Int J Rad Appl Instrum B. </span>1990;<span class="ref-vol">17</span>(3):273&ndash;9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2341282" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2341282</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>17.</dt><dd><div class="bk_ref" id="FDG.REF.17">Hamacher K., Coenen H.H., Stocklin G.
<em>Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution.</em>
<span><span class="ref-journal">J Nucl Med. </span>1986;<span class="ref-vol">27</span>(2):235&ndash;8.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3712040" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3712040</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>18.</dt><dd><div class="bk_ref" id="FDG.REF.18">Brodack J.W., Dence C.S., Kilbourn M.R., Welch M.J.
<em>Robotic production of 2-deoxy-2-[18F]fluoro-D-glucose: a routine method of synthesis using tetrabutylammonium [18F]fluoride.</em>
<span><span class="ref-journal">Int J Rad Appl Instrum [A] </span>1988;<span class="ref-vol">39</span>(7):699&ndash;703.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2844702" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2844702</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>19.</dt><dd><div class="bk_ref" id="FDG.REF.19">Deichen J.T., Schmidt C., Prante O., Maschauer S., Papadopoulos T., Kuwert T.
<em>Influence of TSH on uptake of [18F]fluorodeoxyglucose in human thyroid cells in vitro.</em>
<span><span class="ref-journal">Eur J Nucl Med Mol Imaging. </span>2004;<span class="ref-vol">31</span>(4):507&ndash;12.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14722674" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14722674</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>20.</dt><dd><div class="bk_ref" id="FDG.REF.20">Smith T.A.
<em>The rate-limiting step for tumor [18F]fluoro-2-deoxy-D-glucose (FDG) incorporation.</em>
<span><span class="ref-journal">Nucl Med Biol. </span>2001;<span class="ref-vol">28</span>(1):1&ndash;4.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11182558" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11182558</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>21.</dt><dd><div class="bk_ref" id="FDG.REF.21">Maschauer S., Prante O., Hoffmann M., Deichen J.T., Kuwert T.
<em>Characterization of 18F-FDG uptake in human endothelial cells in vitro.</em>
<span><span class="ref-journal">J Nucl Med. </span>2004;<span class="ref-vol">45</span>(3):455&ndash;60.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15001687" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15001687</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>22.</dt><dd><div class="bk_ref" id="FDG.REF.22">Osman S., Danpure H.J.
<em>The use of 2-[18F]fluoro-2-deoxy-D-glucose as a potential in vitro agent for labelling human granulocytes for clinical studies by positron emission tomography.</em>
<span><span class="ref-journal">Int J Rad Appl Instrum B. </span>1992;<span class="ref-vol">19</span>(2):183&ndash;90.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1601671" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1601671</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>23.</dt><dd><div class="bk_ref" id="FDG.REF.23">Vinals F., Gross A., Testar X., Palacin M., Rosen P., Zorzano A.
<em>High glucose concentrations inhibit glucose phosphorylation, but not glucose transport, in human endothelial cells.</em>
<span><span class="ref-journal">Biochim Biophys Acta. </span>1999;<span class="ref-vol">1450</span>(2):119&ndash;29.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10354504" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10354504</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>24.</dt><dd><div class="bk_ref" id="FDG.REF.24">Caraco C., Aloj L., Chen L.Y., Chou J.Y., Eckelman W.C.
<em>Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatase enzyme system.</em>
<span><span class="ref-journal">J Biol Chem. </span>2000;<span class="ref-vol">275</span>(24):18489&ndash;94.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10764804" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10764804</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>25.</dt><dd><div class="bk_ref" id="FDG.REF.25">Deichen J.T., Prante O., Gack M., Schmiedehausen K., Kuwert T.
<em>Uptake of [18F]fluorodeoxyglucose in human monocyte-macrophages in vitro.</em>
<span><span class="ref-journal">Eur J Nucl Med Mol Imaging. </span>2003;<span class="ref-vol">30</span>(2):267&ndash;73.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12552345" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12552345</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>26.</dt><dd><div class="bk_ref" id="FDG.REF.26">Gallagher B.M., Ansari A., Atkins H., Casella V., Christman D.R., Fowler J.S., Ido T., MacGregor R.R., Som P., Wan C.N., Wolf A.P., Kuhl D.E., Reivich M.
<em>Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals.</em>
<span><span class="ref-journal">J Nucl Med. </span>1977;<span class="ref-vol">18</span>(10):990&ndash;6.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/903484" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 903484</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>27.</dt><dd><div class="bk_ref" id="FDG.REF.27">Fukuda H., Matsuzawa T., Abe Y., Endo S., Yamada K., Kubota K., Hatazawa J., Sato T., Ito M., Takahashi T., Iwata R., Ido T.
<em>Experimental study for cancer diagnosis with positron-labeled fluorinated glucose analogs: [18F]-2-fluoro-2-deoxy-D-mannose: a new tracer for cancer detection.</em>
<span><span class="ref-journal">Eur J Nucl Med. </span>1982;<span class="ref-vol">7</span>(7):294&ndash;7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6981508" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6981508</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>28.</dt><dd><div class="bk_ref" id="FDG.REF.28">van Waarde A., Cobben D.C., Suurmeijer A.J., Maas B., Vaalburg W., de Vries E.F., Jager P.L., Hoekstra H.J., Elsinga P.H.
<em>Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model.</em>
<span><span class="ref-journal">J Nucl Med. </span>2004;<span class="ref-vol">45</span>(4):695&ndash;700.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15073267" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15073267</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>29.</dt><dd><div class="bk_ref" id="FDG.REF.29">Som P., Atkins H.L., Bandoypadhyay D., Fowler J.S., MacGregor R.R., Matsui K., Oster Z.H., Sacker D.F., Shiue C.Y., Turner H., Wan C.N., Wolf A.P., Zabinski S.V.
<em>A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection.</em>
<span><span class="ref-journal">J Nucl Med. </span>1980;<span class="ref-vol">21</span>(7):670&ndash;5.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7391842" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7391842</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>30.</dt><dd><div class="bk_ref" id="FDG.REF.30">Noda A., Ohba H., Kakiuchi T., Futatsubashi M., Tsukada H., Nishimura S.
<em>Age-related changes in cerebral blood flow and glucose metabolism in conscious rhesus monkeys.</em>
<span><span class="ref-journal">Brain Res. </span>2002;<span class="ref-vol">936</span>(1-2):76&ndash;81.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11988232" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11988232</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>31.</dt><dd><div class="bk_ref" id="FDG.REF.31">Scharko A.M., Perlman S.B., Hinds P.W.n., Hanson J.M., Uno H., Pauza C.D.
<em>Whole body positron emission tomography imaging of simian immunodeficiency virus-infected rhesus macaques.</em>
<span><span class="ref-journal">Proc Natl Acad Sci U S A. </span>1996;<span class="ref-vol">93</span>(13):6425&ndash;30.</span> [<a href="/pmc/articles/PMC39039/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC39039</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8692831" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8692831</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>32.</dt><dd><div class="bk_ref" id="FDG.REF.32">Reivich M., Kuhl D., Wolf A., Greenberg J., Phelps M., Ido T., Casella V., Fowler J., Hoffman E., Alavi A., Som P., Sokoloff L.
<em>The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man.</em>
<span><span class="ref-journal">Circ Res. </span>1979;<span class="ref-vol">44</span>(1):127&ndash;37.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/363301" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 363301</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>33.</dt><dd><div class="bk_ref" id="FDG.REF.33">Hawkins R.A., Mazziotta J.C., Phelps M.E., Huang S.C., Kuhl D.E., Carson R.E., Metter E.J., Riege W.H.
<em>Cerebral glucose metabolism as a function of age in man: influence of the rate constants in the fluorodeoxyglucose method.</em>
<span><span class="ref-journal">J Cereb Blood Flow Metab. </span>1983;<span class="ref-vol">3</span>(2):250&ndash;3.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6841472" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6841472</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>34.</dt><dd><div class="bk_ref" id="FDG.REF.34">Heiss W.D., Pawlik G., Herholz K., Wagner R., Goldner H., Wienhard K.
<em>Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose.</em>
<span><span class="ref-journal">J Cereb Blood Flow Metab. </span>1984;<span class="ref-vol">4</span>(2):212&ndash;23.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6609929" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6609929</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>35.</dt><dd><div class="bk_ref" id="FDG.REF.35">Huang S.C., Phelps M.E., Hoffman E.J., Sideris K., Selin C.J., Kuhl D.E.
<em>Noninvasive determination of local cerebral metabolic rate of glucose in man.</em>
<span><span class="ref-journal">Am J Physiol. </span>1980;<span class="ref-vol">238</span>(1):E69&ndash;82.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6965568" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6965568</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>36.</dt><dd><div class="bk_ref" id="FDG.REF.36">Phelps M.E., Huang S.C., Hoffman E.J., Selin C., Sokoloff L., Kuhl D.E.
<em>Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method.</em>
<span><span class="ref-journal">Ann Neurol. </span>1979;<span class="ref-vol">6</span>(5):371&ndash;88.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/117743" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 117743</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>37.</dt><dd><div class="bk_ref" id="FDG.REF.37">Jones S.C., Alavi A., Christman D., Montanez I., Wolf A.P., Reivich M.
<em>The radiation dosimetry of 2 [F-18]fluoro-2-deoxy-D-glucose in man.</em>
<span><span class="ref-journal">J Nucl Med. </span>1982;<span class="ref-vol">23</span>(7):613&ndash;7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/6979616" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6979616</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>38.</dt><dd><div class="bk_ref" id="FDG.REF.38">Mejia A.A., Nakamura T., Masatoshi I., Hatazawa J., Masaki M., Watanuki S.
<em>Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies.</em>
<span><span class="ref-journal">J Nucl Med. </span>1991;<span class="ref-vol">32</span>(4):699&ndash;706.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2013810" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2013810</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>39.</dt><dd><div class="bk_ref" id="FDG.REF.39">Newberg A., Alavi A., Reivich M.
<em>Determination of regional cerebral function with FDG-PET imaging in neuropsychiatric disorders.</em>
<span><span class="ref-journal">Semin Nucl Med. </span>2002;<span class="ref-vol">32</span>(1):13&ndash;34.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11839066" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11839066</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>40.</dt><dd><div class="bk_ref" id="FDG.REF.40">Tai Y.F., Piccini P.
<em>Applications of positron emission tomography (PET) in neurology.</em>
<span><span class="ref-journal">J Neurol Neurosurg Psychiatry. </span>2004;<span class="ref-vol">75</span>(5):669&ndash;76.</span> [<a href="/pmc/articles/PMC1763584/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1763584</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15090557" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15090557</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>41.</dt><dd><div class="bk_ref" id="FDG.REF.41">Otsuka H., Graham M., Kubo A., Nishitani H.
<em>Clinical utility of FDG PET.</em>
<span><span class="ref-journal">J Med Invest. </span>2004;<span class="ref-vol">51</span>(1-2):14&ndash;9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15000251" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15000251</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>42.</dt><dd><div class="bk_ref" id="FDG.REF.42">Alavi A., Kung J.W., Zhuang H.
<em>Implications of PET based molecular imaging on the current and future practice of medicine.</em>
<span><span class="ref-journal">Semin Nucl Med. </span>2004;<span class="ref-vol">34</span>(1):56&ndash;69.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14735459" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14735459</span></a>]</div></dd></dl></dl></div><div id="bk_toc_contnr"></div></div></div><div class="fm-sec"><h2 id="_NBK23335_pubdet_">Publication Details</h2><h3>Author Information and Affiliations</h3><div class="contrib half_rhythm"><span itemprop="author">Kam Leung</span>, PhD<div class="affiliation small">National for Biotechnology Information, NLM, NIH, Bethesda, MD<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="vog.hin.mln.ibcn@DACIM" class="oemail">vog.hin.mln.ibcn@DACIM</a></div></div><div class="small">Corresponding author.</div></div><h3>Publication History</h3><p class="small">Created: <span itemprop="datePublished">October 1, 2004</span>; Last Update: <span itemprop="dateModified">January 12, 2005</span>.</p><h3>Copyright</h3><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div></div><h3>Publisher</h3><p><a href="http://www.ncbi.nlm.nih.gov/" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">National Center for Biotechnology Information (US)</a>, Bethesda (MD)</p><h3>NLM Citation</h3><p>Leung K. [18F]Fluoro-2-deoxy-2-D-glucose. 2004 Oct 1 [Updated 2005 Jan 12]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013. <span class="bk_cite_avail"></span></p></div><div class="small-screen-prev"><a href="/books/n/micad/Choline-D4-18F/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="small-screen-next"><a href="/books/n/micad/F18-5/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></article><article data-type="table-wrap" id="figobFDGTncchemicalname18ffluoro2deoxy2d"><div id="FDG.T.nc_chemical_name18ffluoro2deoxy2d" class="table"><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK23335/table/FDG.T.nc_chemical_name18ffluoro2deoxy2d/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__FDG.T.nc_chemical_name18ffluoro2deoxy2d_lrgtbl__"><table><tbody><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Chemical name:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">[<sup>18</sup>F]Fluoro-2-deoxy-2-<span class="small-caps">D</span>-glucose</td><td rowspan="9" colspan="1" style="text-align:center;vertical-align:middle;">
<a href="https://pubchem.ncbi.nlm.nih.gov/substance/4237470" title="View this structure in PubChem" class="img_link" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubchem"><img src="https://pubchem.ncbi.nlm.nih.gov/image/imgsrv.fcgi?t=l&amp;sid=4237470" alt="image 4237470 in the ncbi pubchem database" /></a>
</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Abbreviated name:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">[<sup>18</sup>F]FDG, FDG</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Synonym:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">[<sup>18</sup>F]Fluorodeoxyglucose</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Agent Category:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Compound</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Target:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Glucose transporters and hexokinases</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Target Category:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Transporters, enzymes</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Method of detection:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Positron emission tomography (PET)</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Source of signal / contrast:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><sup>18</sup>F</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Activation:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No</td></tr><tr><td rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
<b>Studies:</b>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul class="simple-list"><li class="half_rhythm"><div>
<img alt="Checkbox" src="/corehtml/pmc/css/bookshelf/2.26/img/studies.checkbox.png" />
<i>In vitro</i>
</div></li><li class="half_rhythm"><div>
<img alt="Checkbox" src="/corehtml/pmc/css/bookshelf/2.26/img/studies.checkbox.png" /> Rodents
</div></li><li class="half_rhythm"><div>
<img alt="Checkbox" src="/corehtml/pmc/css/bookshelf/2.26/img/studies.checkbox.png" /> Non-primate non-rodent mammals
</div></li><li class="half_rhythm"><div>
<img alt="Checkbox" src="/corehtml/pmc/css/bookshelf/2.26/img/studies.checkbox.png" /> Non-human primates
</div></li><li class="half_rhythm"><div>
<img alt="Checkbox" src="/corehtml/pmc/css/bookshelf/2.26/img/studies.checkbox.png" /> Humans
</div></li></ul>
</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Click on the above structure for additional information in <a href="http://pubchem.ncbi.nlm.nih.gov/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PubChem</a>.</td></tr></tbody></table></div></div></article></div><div id="jr-scripts"><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/libs.min.js"> </script><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.min.js"> </script></div></div>
<!-- Book content -->
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal107 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3968615.js" snapshot="books"></script></body>
</html>