nih-gov/www.ncbi.nlm.nih.gov/books/n/methrestml/index.html

488 lines
No EOL
58 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-toc" /><meta name="ncbi_acc" content="NBK563817" /><meta name="ncbi_domain" content="methrestml" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK563817/" /><meta name="ncbi_pagename" content="Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="toc" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="author" content="Roger Chou, Tracy Dana, Kanaka D. Shetty" /><meta name="citation_title" content="Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments" /><meta name="citation_publisher" content="Agency for Healthcare Research and Quality (US)" /><meta name="citation_date" content="2020/11" /><meta name="citation_author" content="Roger Chou" /><meta name="citation_author" content="Tracy Dana" /><meta name="citation_author" content="Kanaka D. Shetty" /><meta name="citation_pmid" content="33175480" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK563817/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="Agency for Healthcare Research and Quality (US)" /><meta name="DC.Contributor" content="Roger Chou" /><meta name="DC.Contributor" content="Tracy Dana" /><meta name="DC.Contributor" content="Kanaka D. Shetty" /><meta name="DC.Date" content="2020/11" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK563817/" /><meta name="description" content="Living systematic reviews can more rapidly and efficiently incorporate new evidence into systematic reviews through ongoing updates. A challenge to conducting living systematic reviews is identifying new articles in a timely manner. Optimizing search strategies to identify new studies before they have undergone indexing in electronic databases and automation using machine learning classifiers may increase the efficiency of identifying relevant new studies." /><meta name="og:title" content="Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments" /><meta name="og:type" content="book" /><meta name="og:description" content="Living systematic reviews can more rapidly and efficiently incorporate new evidence into systematic reviews through ongoing updates. A challenge to conducting living systematic reviews is identifying new articles in a timely manner. Optimizing search strategies to identify new studies before they have undergone indexing in electronic databases and automation using machine learning classifiers may increase the efficiency of identifying relevant new studies." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK563817/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-methrestml-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/methrestml/toc/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK563817/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="methodscollect" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8DBB2B7D6B4B8100000000000D0009.m_13" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-toc">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="pubmed">PubMed</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore" class="last">Nucleotide</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="source">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p></div><div class="pagination bk_noprnt"><span class="inactive page_link prev">&lt; Prev</span><a class="active page_link next" href="/books/n/methrestml/fm-ch1/" title="Next page in this title">Next &gt;</a></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/Book"><div class="meta-content fm-sec"><div class="iconblock whole_rhythm clearfix no_top_margin"><a href="https://effectivehealthcare.ahrq.gov" title="Agency for Healthcare Research and Quality (US)" class="img_link icnblk_img" ref="pagearea=logo&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-methrestml-lrg.png" alt="Cover of Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments" /></a><div class="icnblk_cntnt"><h1 id="_NBK563817_"><span itemprop="name">Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments</span></h1><p><i>Methods Research Report</i></p><p class="contrib-group">Investigators: <span itemprop="author">Roger Chou</span>, M.D., <span itemprop="author">Tracy Dana</span>, M.L.S, and <span itemprop="author">Kanaka D. Shetty</span>, M.D., M.S.</p><div class="half_rhythm">Rockville (MD): <a href="https://effectivehealthcare.ahrq.gov" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher"><span itemprop="publisher">Agency for Healthcare Research and Quality (US)</span></a>; <span itemprop="datePublished">2020 Nov</span>.<div class="small">Report No.: 21-EHC004</div></div><div class="half_rhythm"><ul class="inline_list"><li><span class="label"><a data-jig="ncbidialog" href="#_ncbi_dlg_cpyrght_NBK563817" data-jigconfig="modal:true">Copyright and
Permissions</a></span></li></ul></div><div id="_ncbi_dlg_cpyrght_NBK563817" style="display:none" title="Copyright and&#10; Permissions"><div>This publication is in the public domain. For more information, see the <a href="/books/about/copyright/">Bookshelf Copyright Notice</a>.</div></div><div class="bk_noprnt"><form method="get" action="/books/n/methrestml/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div></div></div><div class="body-content whole_rhythm" itemprop="text"><div itemprop="description"><h2>Structured Abstract</h2><div id="background"><h4 class="inline">Background:</h4><p>Living systematic reviews can more rapidly and efficiently incorporate new evidence into systematic reviews through ongoing updates. A challenge to conducting living systematic reviews is identifying new articles in a timely manner. Optimizing search strategies to identify new studies before they have undergone indexing in electronic databases and automation using machine learning classifiers may increase the efficiency of identifying relevant new studies.</p></div><div id="methods"><h4 class="inline">Methods:</h4><p>This project had three stages: develop optimized search strategies (<a href="/books/n/methrestml/ch2/#ch2.s1">Stage 1</a>), test machine learning classifier on optimized searches (<a href="/books/n/methrestml/ch2/#ch2.s2">Stage 2</a>), and test machine learning classifier on monthly update searches (<a href="/books/n/methrestml/ch2/#ch2.s3">Stage 3</a>). Ovid<sup>&#x000ae;</sup> MEDLINE<sup>&#x000ae;</sup> search strategies were developed for three previously conducted chronic pain reviews using standard methods, combining National Library of Medicine Medical Subject Headings (MeSH) terms and text words (&#x0201c;standard searches&#x0201d;). Text word-only search strategies (&#x0201c;optimized searches&#x0201d;) were also developed based on the inclusion criteria for each review. In <a href="/books/n/methrestml/ch2/#ch2.s2">Stage 2</a>, a machine learning classifier was trained and refined using citations from each of the completed pain reviews (&#x0201c;training set&#x0201d;) and tested on a subset of more recent citations (&#x0201c;simulated update&#x0201d;), to develop models that could predict the relevant of citations for each topic. In <a href="/books/n/methrestml/ch2/#ch2.s3">Stage 3</a>, the machine learning models were prospectively applied to &#x0201c;optimized&#x0201d; monthly update searches conducted for the three pain reviews.</p></div><div id="results"><h4 class="inline">Results:</h4><p>In <a href="/books/n/methrestml/ch3/#ch3.s1">Stage 1</a>, the optimized searches were less precise than the standard searches (i.e., identified more citations that reviewers eventually excluded) but were highly sensitive. In <a href="/books/n/methrestml/ch3/#ch3.s2">Stage 2</a>, a machine learning classifier using a support vector machine model achieved 96 to 100 percent recall for all topics, with precision of between 1 and 7 percent. Performance was similar using the training data and on the simulated updates. The machine learning classifier excluded 35 to 65 percent of studies classified as low relevance. In <a href="/books/n/methrestml/ch3/#ch3.s3">Stage 3</a>, the machine classifier achieved 97 to 100 percent sensitivity and excluded (i.e., classified as very low probability) 45 to 76 percent of studies identified in prospective, actual update searches. The estimated savings in time using the machine classifier ranged from 2.0 to 13.2 hours.</p></div><div id="conclusions"><h4 class="inline">Conclusions:</h4><p>Text word-only searches to facilitate the conduct of living systematic reviews are associated with high sensitivity but reduced precision compared with standard searches using MeSH indexing terms. A machine learning classifier had high recall for identifying studies identified using text word searches, but had low to moderate precision, resulting in a small to moderate estimated time savings when applied to update searches.</p></div></div><div><h2>Contents</h2><div class="bktoc_all_cntnr top align_right" style="display:none"><ul class="inline_list_right"><li><a class="bktoc_all_exp" href="#">Expand All</a></li><li style="margin-left:.8em"><a class="bktoc_all_clps" href="#">Collapse All</a></li></ul></div><ul id="toc_tllNBK563817_toc_fm-ch1" class="simple-list toc toc-toggle"><li class="half_rhythm" id="toc_itm_NBK563817_toc_fm-ch1"><a class="toc-item" href="/books/n/methrestml/fm-ch1/">Key Messages</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_preface1"><a class="toc-item" href="/books/n/methrestml/preface1/">Preface</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_fm-ch2"><a class="toc-item" href="/books/n/methrestml/fm-ch2/">Peer Reviewers</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch1"><a class="toc-item" href="/books/n/methrestml/ch1/">Background</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch2"><a class="toc-item" href="/books/n/methrestml/ch2/">Methods</a><ul id="toc_lst_NBK563817_toc_ch2" class="simple-list toc bktoc_lst_exp"><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch2_s1"><a class="toc-item" href="/books/n/methrestml/ch2/#ch2.s1">Stage 1. Develop Optimized Search Strategies</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch2_s2"><a class="toc-item" href="/books/n/methrestml/ch2/#ch2.s2">Stage 2. Test Machine Learning Classifier on Optimized Searches</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch2_s3"><a class="toc-item" href="/books/n/methrestml/ch2/#ch2.s3">Stage 3. Test Machine Learning Classifier on Monthly Update Searches</a></li></ul></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch3"><a class="toc-item" href="/books/n/methrestml/ch3/">Results</a><ul id="toc_lst_NBK563817_toc_ch3" class="simple-list toc bktoc_lst_exp"><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch3_s1"><a class="toc-item" href="/books/n/methrestml/ch3/#ch3.s1">Stage 1. Develop Optimized Search Strategies</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch3_s2"><a class="toc-item" href="/books/n/methrestml/ch3/#ch3.s2">Stage 2. Test Machine Learning Classifier on Optimized Searches</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch3_s3"><a class="toc-item" href="/books/n/methrestml/ch3/#ch3.s3">Stage 3. Test Machine Learning Classifier on Monthly Update Searches</a></li></ul></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch4"><a class="toc-item" href="/books/n/methrestml/ch4/">Discussion</a><ul id="toc_lst_NBK563817_toc_ch4" class="simple-list toc bktoc_lst_exp"><li class="half_rhythm" id="toc_itm_NBK563817_toc_ch4_s1"><a class="toc-item" href="/books/n/methrestml/ch4/#ch4.s1">Conclusion</a></li></ul></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_rl_r1"><a class="toc-item" href="/books/n/methrestml/rl.r1/">References</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_gl1"><a class="toc-item" href="/books/n/methrestml/gl1/">Abbreviations and Acronyms</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_appendices"><a class="toc-item" href="/books/n/methrestml/appendices/">Appendixes</a><ul id="toc_lst_NBK563817_toc_appendices" class="simple-list toc bktoc_lst_exp"><li class="half_rhythm" id="toc_itm_NBK563817_toc_appa"><a class="toc-item" href="/books/n/methrestml/appa/">Appendix A. Project Flow Diagram</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_appb"><a class="toc-item" href="/books/n/methrestml/appb/">Appendix B. Original and Text Word-Only Search Strategies</a></li><li class="half_rhythm" id="toc_itm_NBK563817_toc_appc"><a class="toc-item" href="/books/n/methrestml/appc/">Appendix C. Cases</a></li></ul></li></ul><div class="bktoc_all_cntnr align_right" style="display:none"><ul class="inline_list_right"><li><a class="bktoc_all_exp" href="#">Expand All</a></li><li style="margin-left:.8em"><a class="bktoc_all_clps" href="#">Collapse All</a></li></ul></div></div><div><b>Prepared for:</b> Agency for Healthcare Research and Quality, U.S. Department of Health and Human Services, 5600 Fishers Lane, Rockville, MD 20857; <a href="http://www.ahrq.gov" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">www.ahrq.gov</a>
<b>Contract Nos. 290-2015-00009-I, 290-2015-00010-I</b>
<b>Prepared by:</b> Pacific Northwest Evidence-based Practice Center, Portland, OR; Southern California Evidence-based Practice Center&#x02013;RAND Corporation, Santa Monica, CA</div><div><h4 class="inline">Suggested citation:</h4><p>Chou R, Dana T, Shetty KD. Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments. Methods Research Report. (Prepared by the Pacific Northwest Evidence-based Practice Center under Contract No. 290-2015-00009-I and the Southern California Evidence-based Practice Center-RAND Corporation under Contract No. 290-2015-00010-I.) AHRQ Publication No. 21-EHC004. Rockville, MD: Agency for Healthcare Research and Quality. November 2020. Posted final reports are located on the Effective Health Care Program <a href="https://effectivehealthcare.ahrq.gov/products?f%5B0%5D=field_product_type%3Aresearch_report&#x00026;f%5B1%5D=field_product_type%3Asystematic_review&#x00026;f%5B2%5D=field_product_type%3Atechnical_brief&#x00026;f%5B3%5D=field_product_type%3Awhite_paper&#x00026;f%5B4%5D=field_product_type%3Amethods_guide_chapter&#x00026;sort_by=field_product_pub_date" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">search page</a>. DOI: <a href="http://dx.crossref.org/10.23970/AHRQEPCMETHTESTINGMACHINELEARNING" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">10.23970/AHRQEPCMETHTESTINGMACHINELEARNING</a>.</p></div><div><p>This report is based on research conducted by the Pacific Northwest Evidence-based Practice Center (EPC) and the Southern California EPC-RAND Corporation under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract Nos. 290-2015-00009-I and 290-2015-00010-I). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.</p><p><b>None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.</b></p><p>The information in this report is intended to help healthcare decision makers&#x02014;patients and clinicians, health system leaders, and policymakers, among others&#x02014;make well-informed decisions and thereby improve the quality of healthcare services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.</p><p>This report is made available to the public under the terms of a licensing agreement between the author and the Agency for Healthcare Research and Quality. This report may be used and reprinted without permission except those copyrighted materials that are clearly noted in the report. Further reproduction of those copyrighted materials is prohibited without the express permission of copyright holders.</p><p>AHRQ or U.S. Department of Health and Human Services endorsement of any derivative products that may be developed from this report, such as clinical practice guidelines, other quality enhancement tools, or reimbursement or coverage policies may not be stated or implied.</p><p>AHRQ appreciates appropriate acknowledgment and citation of its work. Suggested language for acknowledgment: This work was based on a methods research report, Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments, by the Evidence-based Practice Center Program at the Agency for Healthcare Research and Quality (AHRQ).</p></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div><div class="small"><span class="label">Bookshelf ID: NBK563817</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/33175480" title="PubMed record of this title" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">33175480</a></span></div><div style="margin-top:2em" class="bk_noprnt"><div class="pagination bk_noprnt"><span class="inactive page_link prev">&lt; Prev</span><a class="active page_link next" href="/books/n/methrestml/fm-ch1/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK563817&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK563817/?report=reader">PubReader</a></li><li><a href="/books/NBK563817/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK563817" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK563817" style="display:none" title="Cite this Page"><div class="bk_tt">Chou R, Dana T, Shetty KD. Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2020 Nov. <span class="bk_cite_avail"></span></div></div></li><li><a href="/books/n/methrestml/pdf/">PDF version of this title</a> (496K)</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Other titles in this collection</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="source-links" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/n/methodscollect/">AHRQ Methods for Effective Health Care</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related information</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="discovery_db_links" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=nlmcatalog&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_nlmcatalog&amp;IdsFromResult=5101974" ref="log$=recordlinks">NLM Catalog</a><div class="brieflinkpop offscreen_noflow">Related NLM Catalog Entries</div></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/22677493" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Screening nonrandomized studies for medical systematic reviews: a comparative study of classifiers.</a><span class="source">[Artif Intell Med. 2012]</span><div class="brieflinkpop offscreen_noflow">Screening nonrandomized studies for medical systematic reviews: a comparative study of classifiers.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Bekhuis T, Demner-Fushman D. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Artif Intell Med. 2012 Jul; 55(3):197-207. Epub 2012 Jun 5.</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/33755394" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> A Prospective Comparison of Evidence Synthesis Search Strategies Developed With and Without Text-Mining Tools</a><span class="source">[ 2021]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> A Prospective Comparison of Evidence Synthesis Search Strategies Developed With and Without Text-Mining Tools<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Paynter RA, Fiordalisi C, Stoeger E, Erinoff E, Featherstone R, Voisin C, Adam GP. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">2021 Mar</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/34747151" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Applying machine classifiers to update searches: Analysis from two case studies.</a><span class="source">[Res Synth Methods. 2022]</span><div class="brieflinkpop offscreen_noflow">Applying machine classifiers to update searches: Analysis from two case studies.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Stansfield C, Stokes G, Thomas J. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Res Synth Methods. 2022 Jan; 13(1):121-133. Epub 2021 Nov 25.</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/33308292" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedarticles&amp;logdbfrom=pubmed">Aligning text mining and machine learning algorithms with best practices for study selection in systematic literature reviews.</a><span class="source">[Syst Rev. 2020]</span><div class="brieflinkpop offscreen_noflow">Aligning text mining and machine learning algorithms with best practices for study selection in systematic literature reviews.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Popoff E, Besada M, Jansen JP, Cope S, Kanters S. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Syst Rev. 2020 Dec 13; 9(1):293. Epub 2020 Dec 13.</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/20734512" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Updating Systematic Reviews</a><span class="source">[ 2007]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Updating Systematic Reviews<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Shojania KG, Sampson M, Ansari MT, Ji J, Garritty C, Rader T, Moher D. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">2007 Sep</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=33175480" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=33175480" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67d6b5bccde49f3df70da99f">Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Ch...</a><div class="ralinkpop offscreen_noflow">Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=2" href="/portal/utils/pageresolver.fcgi?recordid=67d6b5bb2f30673f7b28ae92">Standardized Library of Depression Outcome Measures</a><div class="ralinkpop offscreen_noflow">Standardized Library of Depression Outcome Measures<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=3" href="/portal/utils/pageresolver.fcgi?recordid=67d6b5ba84f3725e595c3532">Roadmap for Narratively Describing Effects of Interventions in Systematic Review...</a><div class="ralinkpop offscreen_noflow">Roadmap for Narratively Describing Effects of Interventions in Systematic Reviews<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=4" href="/portal/utils/pageresolver.fcgi?recordid=67d6b5b92f30673f7b28a535">Registries for Evaluating Patient Outcomes: A Users Guide</a><div class="ralinkpop offscreen_noflow">Registries for Evaluating Patient Outcomes: A Users Guide<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=5" href="/portal/utils/pageresolver.fcgi?recordid=67d6b5b8cde49f3df70d9523">Outcome Measure Harmonization and Data Infrastructure for Patient-Centered Outco...</a><div class="ralinkpop offscreen_noflow">Outcome Measure Harmonization and Data Infrastructure for Patient-Centered Outcomes Research in Depression: Report on Registry Configuration<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<script type="text/javascript">
var PBooksSearchTermData = {
highlighter: "bold",
dateTime: "03/16/2025 05:16:39",
terms: [
'degeneration', 'disease', 'hepatolenticular', 'hepatolenticular degeneration', 'hepatolenticular degeneration', 'practice guideline', 'wilson', 'wilson disease'
]
};
</script>
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-toc&amp;ncbi_acc=NBK563817&amp;ncbi_domain=methrestml&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK563817/&amp;ncbi_pagename=Testing a Machine Learning Tool for Facilitating Living Systematic Reviews of Chronic Pain Treatments - NCBI Bookshelf&amp;ncbi_bookparttype=toc&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>