nih-gov/www.ncbi.nlm.nih.gov/books/NBK65784.23/index.html

609 lines
No EOL
558 KiB
HTML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK65784" /><meta name="ncbi_domain" content="pdqcis" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK65784.23/" /><meta name="ncbi_pagename" content="Genetics of Prostate Cancer (PDQ®) - PDQ Cancer Information Summaries - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="chapter" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Genetics of Prostate Cancer (PDQ®) - PDQ Cancer Information Summaries - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="PDQ Cancer Information Summaries [Internet]" /><meta name="citation_title" content="Genetics of Prostate Cancer (PDQ®)" /><meta name="citation_publisher" content="National Cancer Institute (US)" /><meta name="citation_date" content="2003/11/20" /><meta name="citation_author" content="PDQ Cancer Genetics Editorial Board" /><meta name="citation_pmid" content="26389227" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK65784/" /><meta name="citation_keywords" content="prostate cancer" /><meta name="citation_keywords" content="cancer genetics" /><meta name="citation_keywords" content="cancer genetics" /><meta name="citation_keywords" content="prostate cancer" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Genetics of Prostate Cancer (PDQ®)" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="National Cancer Institute (US)" /><meta name="DC.Contributor" content="PDQ Cancer Genetics Editorial Board" /><meta name="DC.Date" content="2003/11/20" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK65784/" /><meta name="description" content="Familial prostate cancer is associated with certain inherited gene mutations (variants). Learn about the hereditary prostate cancer genes, genetic testing, clinical management, and psychosocial issues in this expert-reviewed summary." /><meta name="og:title" content="Genetics of Prostate Cancer (PDQ®)" /><meta name="og:type" content="book" /><meta name="og:description" content="Familial prostate cancer is associated with certain inherited gene mutations (variants). Learn about the hereditary prostate cancer genes, genetic testing, clinical management, and psychosocial issues in this expert-reviewed summary." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK65784/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-pdqcis-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/pdqcis/CDR0000299612/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK65784/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8D21937C99866100000000001E0019.m_14" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="snp">SNP</option><option value="nlmcatalog">NLM Catalog</option><option value="pcsubstance" class="last">PubChem Substance</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-. </p></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/pdqcis/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-pdqcis-lrg.png" alt="Cover of PDQ Cancer Information Summaries" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>PDQ Cancer Information Summaries [Internet].</h2><a data-jig="ncbitoggler" href="#__NBK65784_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK65784_dtls__"><div>Bethesda (MD): <a href="http://www.cancer.gov/" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">National Cancer Institute (US)</a>; 2002-.</div></div><div class="half_rhythm"></div><div class="bk_noprnt"><form method="get" action="/books/n/pdqcis/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK65784_"><span class="title" itemprop="name">Genetics of Prostate Cancer (PDQ&#x000ae;)</span></h1><div class="subtitle whole_rhythm">Health Professional Version</div><p class="contrib-group"><span itemprop="author">PDQ Cancer Genetics Editorial Board</span>.</p><p class="small">Published online: March 16, 2018.</p><p class="small">Created: <span itemprop="datePublished">November 20, 2003</span>.</p></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="_abs_rndgid_" itemprop="description"><p id="CDR0000299612__1337">This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the genetics of prostate cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.</p><p id="CDR0000299612__1338">This summary is reviewed regularly and updated as necessary by the PDQ Cancer Genetics Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).</p></div><div id="CDR0000299612__1392"><h2 id="_CDR0000299612__1392_">Executive Summary</h2><p id="CDR0000299612__1398">This executive summary reviews the topics covered in this PDQ summary on the genetics of prostate cancer, with hyperlinks to detailed sections below that describe the evidence on each topic.</p><ul id="CDR0000299612__1393"><li class="half_rhythm"><div class="half_rhythm"><b>Inheritance and Risk</b></div><div class="half_rhythm">A genetic contribution to prostate cancer risk has been documented, and knowledge about the molecular genetics of the disease is increasing. Clinical management based on knowledge of inherited pathogenic variants is emerging. <a href="/books/NBK65784.23/#CDR0000299612__1324">Factors suggestive of a genetic contribution to prostate cancer</a> include the following: 1) multiple affected first-degree relatives (FDRs) with prostate cancer, including three successive generations with prostate cancer in the maternal or paternal lineage; 2) early-onset prostate cancer (age &#x02264;55 years); and 3) prostate cancer with a family history of other cancers (e.g., breast, ovarian, pancreatic).</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Associated Genes and Single-Nucleotide Polymorphisms (SNPs)</b></div><div class="half_rhythm">Several genes and chromosomal regions have been found to be associated with prostate cancer in various <a href="#CDR0000299612__28">linkage analyses</a>, <a href="#CDR0000299612__917">case-control studies</a>, <a href="#CDR0000299612__513">genome-wide association studies (GWAS)</a>, and <a href="#CDR0000299612__684">admixture mapping studies</a>. Pathogenic variants in genes of high and moderate penetrance, such as <i><a href="#CDR0000299612__1051">BRCA1</a></i>, <i><a href="#CDR0000299612__1051">BRCA2</a></i>, the <a href="#CDR0000299612__947">mismatch repair genes</a>, and <i><a href="#CDR0000299612__948">HOXB13</a></i> confer modest to high lifetime risk of prostate cancer. Some, such as <i>BRCA2</i>, have emerging clinical relevance in the treatment and screening for prostate cancer. In addition, GWAS have identified more than 100 SNPs associated with the development of prostate cancer, but the clinical utility of these findings remains uncertain. Studies are ongoing to assess whether combinations of these SNPs may have clinical relevance in identifying individuals at increased risk of the disease. Studies analyzing the <a href="#CDR0000299612__645">association between variants and aggressive disease</a> are also ongoing.</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Clinical Management</b></div><div class="half_rhythm">Information is limited about the efficacy of commonly available screening tests such as the digital rectal exam and serum prostate-specific antigen (PSA) levels in men genetically predisposed to developing prostate cancer. Initial reports of targeted PSA <a href="#CDR0000299612__1254">screening of carriers of BRCA pathogenic variants</a> has yielded a higher proportion of aggressive disease. On the basis of the available data, most professional societies and organizations recommend that high-risk men engage in shared decision-making with their health care providers and develop individualized plans for prostate cancer screening based on their risk factors. For example, some experts suggest initiating prostate cancer screening at age 45 years in carriers of <i>BRCA2</i> pathogenic variants and consideration of screening in <i>BRCA1</i> carriers. Inherited variants may influence treatment decisions, particularly for males with pathogenic variants in DNA repair genes. Studies have reported improved response rates to poly (ADP-ribose) polymerase (PARP) inhibition among males with metastatic, castrate-resistant prostate cancer carrying germline pathogenic variants in <i>BRCA2</i> and other DNA repair genes.</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Psychosocial and Behavioral Issues</b></div><div class="half_rhythm"><a href="#CDR0000299612__76">Psychosocial research</a> in men at increased hereditary risk of prostate cancer has focused on <a href="#CDR0000299612__251">risk perception</a>, <a href="#CDR0000299612__80">interest in genetic testing</a>, and <a href="#CDR0000299612__95">screening behaviors</a>. Study conclusions vary regarding whether FDRs of prostate cancer patients accurately estimate their prostate cancer risk, with some studies reporting that men with a family history of prostate cancer consider their risk to be the same as or less than that of the average man. Factors such as being married and the confusion between benign prostatic hyperplasia and prostate cancer have been found to influence perceived risk of prostate cancer. Studies conducted before the availability of genetic testing for prostate cancer susceptibility showed that factors found to positively influence men&#x02019;s hypothetical interest in genetic testing included the advice of their primary care physician, a combination of the emotional distress and concern about prostate cancer treatment effects, and having children. Several small studies have examined the behavioral correlates of prostate cancer screening at average and increased prostate cancer risk based on family history; in general, results appear contradictory regarding whether men with a family history are more likely to be screened than those not at risk and whether the screening is appropriate for their risk status. Research is ongoing to better understand and address psychosocial and behavioral issues in high-risk families.</div></li></ul></div><div id="CDR0000299612__1"><h2 id="_CDR0000299612__1_">Introduction</h2><p id="CDR0000299612__454">[<i>Note: Many of the medical and scientific terms used in this summary are found in the <a href="https://www.cancer.gov/publications/dictionaries/genetics-dictionary" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NCI Dictionary of Genetics Terms</a>. When a linked term is clicked, the definition will appear in a separate window.</i>]</p><p id="CDR0000299612__629">[<i>Note: Many of the genes described in this summary are found in the Online Mendelian Inheritance in Man (OMIM) database. When OMIM appears after a gene name or the name of a condition, click on OMIM for a link to more information.</i>]</p><p id="CDR0000299612__1399">[<i>Note: A concerted effort is being made within the genetics community to shift terminology used to describe genetic variation. The shift is to use the term &#x0201c;variant&#x0201d; rather than the term &#x0201c;mutation&#x0201d; to describe a difference that exists between the person or group being studied and the reference sequence. Variants can then be further classified as benign (harmless), likely benign, of uncertain significance, likely pathogenic, or pathogenic (disease causing). Throughout this summary, we will use the term pathogenic variant to describe a disease-causing mutation. Refer to the <a href="/books/n/pdqcis/CDR0000517309/#CDR0000517309__2676">Cancer Genetics Overview</a> summary for more information about variant classification.</i>]</p><p id="CDR0000299612__2">The public health burden of prostate cancer is substantial. A total of 164,690 new cases of prostate cancer and 29,430 deaths from the disease are anticipated in the United States in 2018, making it the most frequent nondermatologic cancer among U.S. males.[<a class="bk_pop" href="#CDR0000299612_rl_1_1">1</a>] A man&#x02019;s lifetime risk of prostate cancer is one in nine. Prostate cancer is the second leading cause of cancer death in men, exceeded only by lung cancer.[<a class="bk_pop" href="#CDR0000299612_rl_1_1">1</a>]</p><p id="CDR0000299612__3">Some men with prostate cancer remain asymptomatic and die from unrelated causes rather than as a result of the cancer itself. This may be due to the advanced age of many men at the time of diagnosis, slow tumor growth, or response to therapy.[<a class="bk_pop" href="#CDR0000299612_rl_1_2">2</a>] The estimated number of men with latent prostate carcinoma (i.e., prostate cancer that is present in the prostate gland but never detected or diagnosed during a patient&#x02019;s life) is greater than the number of men with clinically detected disease. A better understanding is needed of the genetic and biologic mechanisms that determine why some prostate carcinomas remain clinically silent, while others cause serious, even life-threatening illness.[<a class="bk_pop" href="#CDR0000299612_rl_1_2">2</a>] </p><p id="CDR0000299612__350">Prostate cancer exhibits tremendous differences in incidence among populations worldwide; the ratio of countries with high and low rates of prostate cancer ranges from 60-fold to 100-fold.[<a class="bk_pop" href="#CDR0000299612_rl_1_3">3</a>] Asian men typically have a very low incidence of prostate cancer, with age-adjusted incidence rates ranging from 2 to 10 cases per 100,000 men. Higher incidence rates are generally observed in northern European countries. African American men, however, have the highest incidence of prostate cancer in the world; within the United States, African American men have a 60% higher incidence rate than white men.[<a class="bk_pop" href="#CDR0000299612_rl_1_4">4</a>] African American men have been reported to have more than twice the rate of prostate cancer&#x02013;specific death compared with non-Hispanic white men.[<a class="bk_pop" href="#CDR0000299612_rl_1_1">1</a>] Differences in race-specific prostate cancer survival estimates may be narrowing over time.[<a class="bk_pop" href="#CDR0000299612_rl_1_5">5</a>]</p><p id="CDR0000299612__4">These differences may be due to the interplay of genetic, environmental, and social influences (such as access to health care), which may affect the development and progression of the disease.[<a class="bk_pop" href="#CDR0000299612_rl_1_6">6</a>] Differences in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000046171/" class="def">screening</a> practices have also had a substantial influence on prostate cancer incidence, by permitting prostate cancer to be diagnosed in some patients before symptoms develop or before abnormalities on physical examination are detectable. An analysis of population-based data from Sweden suggested that a diagnosis of prostate cancer in one brother leads to an early diagnosis in a second brother using prostate-specific antigen (PSA) screening.[<a class="bk_pop" href="#CDR0000299612_rl_1_7">7</a>] This may account for an increase in prostate cancer diagnosed in younger men that was evident in nationwide incidence data. A genetic contribution to prostate cancer risk has been documented, and there is increasing knowledge of the molecular genetics of the disease, although much of what is known is not yet clinically actionable. Malignant transformation of prostate epithelial cells and progression of prostate carcinoma are likely to result from a complex series of initiation and promotional events under both genetic and environmental influences.[<a class="bk_pop" href="#CDR0000299612_rl_1_8">8</a>] </p><div id="CDR0000299612__5"><h3>Risk Factors for Prostate Cancer</h3><p id="CDR0000299612__6">The three most important recognized risk factors for prostate cancer in the United States are:</p><ul id="CDR0000299612__7"><li class="half_rhythm"><div><a href="#CDR0000299612__1176">Age</a>.</div></li><li class="half_rhythm"><div><a href="#CDR0000299612__1178">Ancestry</a>.</div></li><li class="half_rhythm"><div><a href="#CDR0000299612__13">Family history of prostate cancer</a>.</div></li></ul><div id="CDR0000299612__1176"><h4>Age</h4><p id="CDR0000299612__1177">Age is an important risk factor for prostate cancer. Prostate cancer is rarely seen in men younger than 40 years; the incidence rises rapidly with each decade thereafter. For example, the probability of being diagnosed with prostate cancer is 1 in 403 for men 49 years or younger, 1 in 58 for men aged 50 through 59 years, 1 in 21 for men aged 60 through 69 years, and 1 in 12 for men aged 70 years and older, with an overall lifetime risk of developing prostate cancer of 1 in 9.[<a class="bk_pop" href="#CDR0000299612_rl_1_1">1</a>]</p><p id="CDR0000299612__1331">Approximately 10% of prostate cancer cases are diagnosed in men younger than 56 years and represent early-onset prostate cancer. Data from the Surveillance, Epidemiology, and End Results (SEER) Program show that early-onset prostate cancer is increasing, and there is evidence that some cases may be more aggressive.[<a class="bk_pop" href="#CDR0000299612_rl_1_9">9</a>] Because early-onset cancers may result from germline pathogenic variants, young men with prostate cancer are being extensively studied with the goal of identifying prostate cancer <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460209/" class="def">susceptibility genes</a>.</p></div><div id="CDR0000299612__1178"><h4>Ancestry</h4><p id="CDR0000299612__32">The risk of developing and dying from prostate cancer is dramatically higher among blacks, is of
intermediate levels among whites, and is lowest among native Japanese.[<a class="bk_pop" href="#CDR0000299612_rl_1_10">10</a>,<a class="bk_pop" href="#CDR0000299612_rl_1_11">11</a>] Conflicting data have been published regarding
the etiology of these outcomes, but some evidence is available that access to
health care may play a role in disease outcomes.[<a class="bk_pop" href="#CDR0000299612_rl_1_12">12</a>]
</p></div><div id="CDR0000299612__13"><h4>Family history of prostate cancer</h4><p id="CDR0000299612__14">Prostate cancer is highly heritable; the inherited risk of prostate cancer has been estimated to be as high as 60%.[<a class="bk_pop" href="#CDR0000299612_rl_1_13">13</a>] As with breast and colon cancer, <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460148/" class="def">familial</a> clustering of prostate cancer has been reported frequently.[<a class="bk_pop" href="#CDR0000299612_rl_1_14">14</a>-<a class="bk_pop" href="#CDR0000299612_rl_1_18">18</a>] From 5% to 10% of prostate cancer cases are believed to be primarily caused by high-risk inherited genetic factors or prostate cancer susceptibility <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000045693/" class="def">genes</a>. Results from several large case-control studies and cohort studies representing various populations suggest that <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000302456/" class="def">family history</a> is a major risk factor in prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_1_15">15</a>,<a class="bk_pop" href="#CDR0000299612_rl_1_19">19</a>,<a class="bk_pop" href="#CDR0000299612_rl_1_20">20</a>] A family history of a brother or father with prostate cancer increases the risk of prostate cancer, and the risk is inversely related to the age of the <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460124/" class="def">affected</a> relative.[<a class="bk_pop" href="#CDR0000299612_rl_1_16">16</a>-<a class="bk_pop" href="#CDR0000299612_rl_1_20">20</a>] However, at least some familial aggregation is due to increased prostate cancer screening in families thought to be at high risk.[<a class="bk_pop" href="#CDR0000299612_rl_1_21">21</a>]</p><p id="CDR0000299612__15">Although some of the prostate cancer studies examining risks associated with family history have used hospital-based series, several studies described population-based series.[<a class="bk_pop" href="#CDR0000299612_rl_1_22">22</a>-<a class="bk_pop" href="#CDR0000299612_rl_1_24">24</a>] The latter are thought to provide information that is more generalizable. A meta-analysis of 33 epidemiologic case-control and cohort-based studies has provided more detailed information regarding risk ratios related to family history of prostate cancer. Risk appeared to be greater for men with affected brothers than for men with affected fathers in this meta-analysis. Although the reason for this difference in risk is unknown, possible hypotheses have included <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339348/" class="def">X-linked</a> or recessive inheritance. In addition, risk increased with increasing numbers of affected close relatives. Risk also increased when a <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460150/" class="def">first-degree relative</a> (FDR) was diagnosed with prostate cancer before age 65 years. (Refer to <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__130/?report=objectonly" target="object" rid-figpopup="figCDR0000299612130" rid-ob="figobCDR0000299612130">Table 1</a> for a summary of the relative risks [RRs] related to a family history of prostate cancer.)[<a class="bk_pop" href="#CDR0000299612_rl_1_25">25</a>]</p><div id="CDR0000299612__130" class="table"><h3><span class="title">Table 1. Relative Risk (RR) Related to Family History of Prostate Cancer<sup>a</sup></span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__130/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__130_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Risk Group</th><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">RR for Prostate Cancer (95% CI)</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Brother(s) with prostate cancer diagnosed at any age</td><td colspan="1" rowspan="1" style="vertical-align:top;">3.14 (2.37&#x02013;4.15)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Father with prostate cancer diagnosed at any age</td><td colspan="1" rowspan="1" style="vertical-align:top;">2.35 (2.02&#x02013;2.72)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">One affected FDR diagnosed at any age</td><td colspan="1" rowspan="1" style="vertical-align:top;">2.48 (2.25&#x02013;2.74)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Affected FDRs diagnosed &#x0003c;65 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">2.87 (2.21&#x02013;3.74)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Affected FDRs diagnosed &#x02265;65 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">1.92 (1.49&#x02013;2.47)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000485395/" class="def">Second-degree relatives</a> diagnosed at any age</td><td colspan="1" rowspan="1" style="vertical-align:top;">2.52 (0.99&#x02013;6.46)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Two or more affected FDRs diagnosed at any age</td><td colspan="1" rowspan="1" style="vertical-align:top;">4.39 (2.61&#x02013;7.39)</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">CI = confidence interval; FDR = first-degree relative.</p></div></dd><dt></dt><dd><div><p class="no_margin"><sup>a</sup>Adapted from Kici&#x00144;ski et al.[<a class="bk_pop" href="#CDR0000299612_rl_1_25">25</a>]</p></div></dd></dl></div></div></div><p id="CDR0000299612__156">Among the many data sources included in this meta-analysis, those from the Swedish population-based Family-Cancer Database warrant special comment. These data were derived from a resource that contained more than 11.8 million individuals, among whom there were 26,651 men with medically verified prostate cancer, of which 5,623 were familial cases.[<a class="bk_pop" href="#CDR0000299612_rl_1_26">26</a>] The size of this data set, with its nearly complete ascertainment of the entire Swedish population and objective verification of cancer diagnoses, should yield risk estimates that are both accurate and free of bias. When the familial age-specific hazard ratios (HRs) for prostate cancer diagnosis and mortality were computed, as expected, the HR for prostate cancer diagnosis increased with more family history. Specifically, HRs for prostate cancer were 2.12 (95% CI, 2.05&#x02013;2.20) with an affected father only, 2.96 (95% CI, 2.80&#x02013;3.13) with an affected brother only, and 8.51 (95% CI, 6.13&#x02013;11.80) with a father and two brothers affected. The highest HR, 17.74 (95% CI, 12.26&#x02013;25.67), was seen in men with three brothers diagnosed with prostate cancer. The HRs were even higher when the affected relative was diagnosed with prostate cancer before age 55 years. </p><p id="CDR0000299612__1203">A separate analysis of this Swedish database reported that the cumulative (absolute) risks of prostate cancer among men in families with two or more affected cases were 5% by age 60 years, 15% by age 70 years, and 30% by age 80 years, compared with 0.45%, 3%, and 10%, respectively, by the same ages in the general population. The risks were even higher when the affected father was diagnosed before age 70 years.[<a class="bk_pop" href="#CDR0000299612_rl_1_27">27</a>] The corresponding familial population attributable fractions (PAFs) were 8.9%, 1.8%, and 1.0% for the same three age groups, respectively, yielding a total PAF of 11.6% (i.e., approximately 11.6%
of all prostate cancers in Sweden can be accounted for on the basis of familial history of the disease).
</p><p id="CDR0000299612__117">The risk of prostate cancer may also increase in men who have a family history of breast cancer. Approximately 9.6% of the Iowa cohort had a family history of breast and/or ovarian cancer in a mother or sister at baseline, and this was positively associated with prostate cancer risk (age-adjusted RR, 1.7; 95% CI, 1.0&#x02013;3.0; multivariate RR, 1.7; 95% CI, 0.9&#x02013;3.2). Men with a family history of both prostate and breast/ovarian cancer were also at increased risk of prostate cancer (RR, 5.8; 95% CI, 2.4&#x02013;14.0).[<a class="bk_pop" href="#CDR0000299612_rl_1_22">22</a>] Analysis of data from the Women's Health Initiative also showed that a family history of prostate cancer was associated with an increase in the risk of postmenopausal breast cancer (adjusted HR, 1.14; 95% CI, 1.02&#x02013;1.26).[<a class="bk_pop" href="#CDR0000299612_rl_1_28">28</a>] Further analyses showed that breast cancer risk was associated with a family history of both breast and prostate cancers; the risk was higher in black women than in white women. Other studies, however, did not find an association between family history of female breast cancer and risk of prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_1_22">22</a>,<a class="bk_pop" href="#CDR0000299612_rl_1_29">29</a>] A family history of prostate cancer also increases the risk of breast cancer among female relatives.[<a class="bk_pop" href="#CDR0000299612_rl_1_30">30</a>] The association between prostate cancer and breast cancer in the same family may be explained, in part, by the increased risk of prostate cancer among men with <i>BRCA1/BRCA2</i> pathogenic variants in the setting of hereditary breast/ovarian cancer or early-onset prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_1_31">31</a>-<a class="bk_pop" href="#CDR0000299612_rl_1_34">34</a>] (Refer to the <i><a href="#CDR0000299612__1051">BRCA1 and BRCA2</a></i> section of this summary for more information.)</p><p id="CDR0000299612__1302">Prostate cancer clusters with particular intensity in some families. Highly <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339344/" class="def">penetrant</a> genetic variants are thought to be associated with prostate cancer risk in these families. (Refer to the <a href="#CDR0000299612__28">Linkage Analyses</a> section of this summary for more information.) Members of such families may benefit from <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000044961/" class="def">genetic counseling</a>. Emerging recommendations and guidelines for genetic counseling referrals are based on prostate cancer age at diagnosis and specific family cancer history patterns.[<a class="bk_pop" href="#CDR0000299612_rl_1_35">35</a>,<a class="bk_pop" href="#CDR0000299612_rl_1_36">36</a>] Individuals meeting the following criteria may warrant referral for genetic consultation:[<a class="bk_pop" href="#CDR0000299612_rl_1_35">35</a>-<a class="bk_pop" href="#CDR0000299612_rl_1_38">38</a>]</p><ul id="CDR0000299612__1324"><li class="half_rhythm"><div>Multiple affected FDRs with prostate cancer.</div></li><li class="half_rhythm"><div>Early-onset prostate cancer (age &#x02264;55 years).</div></li><li class="half_rhythm"><div>Metastatic prostate cancer.</div></li><li class="half_rhythm"><div>Prostate cancer with a family history of other cancers (e.g., breast, ovarian, pancreatic).</div></li></ul><p id="CDR0000299612__16">Family history has been shown to be a risk factor for men of different races and ethnicities. In a population-based case-control study of prostate cancer among African Americans, whites, and Asian Americans in the United States (Los Angeles, San Francisco, and Hawaii) and Canada (Vancouver and Toronto),[<a class="bk_pop" href="#CDR0000299612_rl_1_39">39</a>] 5% of controls and 13% of all cases reported a father, brother, or son with prostate cancer. These prevalence estimates were somewhat lower among Asian Americans than among African Americans or whites. A positive family history was associated with a twofold to threefold increase in RR in each of the three ethnic groups. The overall odds ratio associated with a family history of prostate cancer was 2.5 (95% CI, 1.9&#x02013;3.3) with adjustment for age and ethnicity.[<a class="bk_pop" href="#CDR0000299612_rl_1_39">39</a>]</p><p id="CDR0000299612__1460">There is little evidence that family history alone is associated with inferior clinical outcomes. In a cohort of 7,690 men in Germany who were undergoing radical prostatectomy for localized prostate cancer, family history had no bearing on prostate cancer&#x02013;specific survival.[<a class="bk_pop" href="#CDR0000299612_rl_1_40">40</a>]</p></div><div id="CDR0000299612__1179"><h4>Other potential modifiers of prostate cancer risk</h4><p id="CDR0000299612__10">Endogenous hormones, including both androgens and estrogens, likely influence prostate carcinogenesis. It has been widely reported that eunuchs and other individuals with castrate levels of testosterone before puberty do not develop prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_1_41">41</a>] Some investigators have considered the potential role of genetic variation in androgen biosynthesis and metabolism in prostate cancer risk,[<a class="bk_pop" href="#CDR0000299612_rl_1_42">42</a>] including the potential role of the <i>androgen receptor</i> (<i>AR</i>) CAG repeat length in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460146/" class="def">exon</a> 1. This modulates AR activity, which may influence prostate cancer risk.[<a class="bk_pop" href="#CDR0000299612_rl_1_43">43</a>] For example, a meta-analysis reported that <i>AR</i> CAG repeat length greater than or equal to 20 repeats conferred a protective effect for prostate cancer in subsets of men.[<a class="bk_pop" href="#CDR0000299612_rl_1_44">44</a>] </p><p id="CDR0000299612__1376">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062833/">Prostate Cancer Prevention</a> for more information about nongenetic modifiers of prostate cancer risk in the general population.)</p></div></div><div id="CDR0000299612__661"><h3>Multiple Primaries</h3><p id="CDR0000299612__677">The SEER Cancer Registries assessed the risk of developing a second primary cancer in 292,029 men diagnosed with prostate cancer between 1973 and 2000. Excluding subsequent prostate cancer and adjusting for the risk of death from other causes, the cumulative incidence of a second primary cancer among all patients was 15.2% at 25 years (95% CI, 15.0%&#x02013;15.4%). There was a significant risk of new malignancies (all cancers combined) among men diagnosed before age 50 years, no excess or deficit in cancer risk in men aged 50 to 59 years, and a deficit in cancer risk in all older age groups. The authors suggested that this deficit may be attributable to decreased cancer <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000496506/" class="def">surveillance</a> in an elderly population. Excess risks of second primary cancers included cancers of the small intestine, soft tissue, bladder, thyroid, and thymus; and melanoma. Prostate cancer diagnosed in patients aged 50 years or younger was associated with an excess risk of pancreatic cancer.[<a class="bk_pop" href="#CDR0000299612_rl_1_45">45</a>]</p><p id="CDR0000299612__1332">A review of more than 441,000 men diagnosed with prostate cancer between 1992 and 2010 demonstrated similar findings, with an overall reduction in the risk of being diagnosed with a second primary cancer. This study also examined the risk of second primary cancers in 44,310 men (10%) by treatment modality for localized cancer. The study suggested that men who received radiation therapy had increases in bladder (standardized incidence ratio [SIR], 1.42) and rectal cancer risk (SIR, 1.70) compared with those who did not receive radiation therapy (SIR<sub>bladder</sub>, 0.76; SIR<sub>rectal</sub>, 0.74).[<a class="bk_pop" href="#CDR0000299612_rl_1_46">46</a>]</p><p id="CDR0000299612__678">The underlying etiology of developing a second primary cancer after prostate cancer may be related to various factors, including treatment modality. More than 50% of the small intestine tumors were carcinoid malignancies, suggesting possible hormonal influences. The excess of pancreatic cancer may be due to pathogenic variants in <i>BRCA2</i>, which predisposes to both. The risk of melanoma was most pronounced in the first year of follow-up after diagnosis, raising the possibility that this is the result of increased screening and surveillance.[<a class="bk_pop" href="#CDR0000299612_rl_1_45">45</a>]</p><p id="CDR0000299612__679">One Swedish study using the nationwide Swedish Family Cancer Database assessed the role of family history in the risk of a second primary cancer after prostate cancer. Of 18,207 men with prostate cancer, 560 developed a second primary malignancy. Of those, the RR was increased for colorectal, kidney, bladder, and squamous cell skin cancers. Having a paternal family history of prostate cancer was associated with an increased risk of bladder cancer, myeloma, and squamous cell skin cancer. Among prostate cancer <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460211/" class="def">probands</a>, those with a <b>family history</b> of colorectal cancer, bladder cancer, or chronic lymphoid leukemia were at increased risk of that specific cancer as a second primary cancer.[<a class="bk_pop" href="#CDR0000299612_rl_1_47">47</a>]</p><p id="CDR0000299612__1493">Data are emerging that prostate cancer patients who have at least one additional primary malignancy disproportionately harbor pathogenic variants in known cancer-predisposing genes, such as <i>BRCA2</i> and <i>MLH1</i>.[<a class="bk_pop" href="#CDR0000299612_rl_1_48">48</a>]</p></div><div id="CDR0000299612__657"><h3>Risk of Other Cancers in Multiple-Case Families</h3><p id="CDR0000299612__658">Several reports have suggested an elevated risk of various other cancers among relatives within multiple-case prostate cancer families, but none of these associations have been established definitively.[<a class="bk_pop" href="#CDR0000299612_rl_1_49">49</a>-<a class="bk_pop" href="#CDR0000299612_rl_1_51">51</a>]</p><p id="CDR0000299612__659">In a population-based Finnish study of 202 multiple-case prostate cancer families, no excess risk of all cancers combined (other than prostate cancer) was detected in 5,523 family members. Female family members had a marginal excess of gastric cancer (SIR, 1.9; 95% CI, 1.0&#x02013;3.2). No difference in familial cancer risk was observed when families affected by clinically aggressive prostate cancers were compared with those having nonaggressive prostate cancer. These data suggest that familial prostate cancer is a cancer site&#x02013;specific disorder.[<a class="bk_pop" href="#CDR0000299612_rl_1_52">52</a>]</p></div><div id="CDR0000299612__18"><h3>Inheritance of Prostate Cancer Risk</h3><p id="CDR0000299612__20">Many types of epidemiologic studies (case-control, cohort, twin, family) strongly suggest that prostate cancer susceptibility genes exist in the population. Analysis of longer follow-up of the monozygotic (MZ) and dizygotic (DZ) twin pairs in Scandinavia concluded that 58% (95% CI, 52%&#x02013;63%) of prostate cancer risk may be accounted for by heritable factors.[<a class="bk_pop" href="#CDR0000299612_rl_1_13">13</a>] Additionally, among affected MZ and DZ pairs, the time to diagnosis in the second twin was shortest in MZ twins (mean, 3.8 years in MZ twins vs. 6.5 years in DZ twins). This is in agreement with a previous U.S. study that showed a concordance of 7.1% between DZ twin pairs and a 27% concordance between MZ twin pairs.[<a class="bk_pop" href="#CDR0000299612_rl_1_53">53</a>] The first <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000712689/" class="def">segregation analysis</a> was performed in 1992 using families from 740 consecutive probands who had radical prostatectomies between 1982 and 1989. The study results suggested that familial clustering of disease among men with early-onset prostate cancer was best explained by the presence of a rare (frequency of 0.003) <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339338/" class="def">autosomal dominant</a>, highly penetrant <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339337/" class="def">allele(s)</a>.[<a class="bk_pop" href="#CDR0000299612_rl_1_15">15</a>] Hereditary prostate cancer susceptibility genes were predicted to account for almost half of early-onset disease (age 55 years or younger). In addition, early-onset disease has been further supported to have a strong genetic component from the study of common variants associated with disease onset before age 55 years.[<a class="bk_pop" href="#CDR0000299612_rl_1_54">54</a>]</p><p id="CDR0000299612__223">Subsequent segregation analyses generally agreed with the conclusions but differed in the details regarding frequency, penetrance, and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460196/" class="def">mode of inheritance</a>.[<a class="bk_pop" href="#CDR0000299612_rl_1_55">55</a>-<a class="bk_pop" href="#CDR0000299612_rl_1_57">57</a>] A study of 4,288 men who underwent radical prostatectomy between 1966 and 1995 found that the best fitting genetic model of inheritance was the presence of a rare, autosomal dominant susceptibility gene (frequency of 0.06). In this study, the lifetime risk in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460132/" class="def">carriers</a> was estimated to be 89% by age 85 years and 3.9% for <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000556483/" class="def">noncarriers</a>.[<a class="bk_pop" href="#CDR0000299612_rl_1_53">53</a>] This study also suggested the presence of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339333/" class="def">genetic heterogeneity</a>, as the model did not reliably predict prostate cancer risk in FDRs of probands who were diagnosed at age 70 years or older. More recent segregation analyses have concluded that there are multiple genes associated with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_1_58">58</a>-<a class="bk_pop" href="#CDR0000299612_rl_1_61">61</a>] in a pattern similar to other adult-onset <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339343/" class="def">hereditary cancer syndromes</a>, such as those involving the breast, ovary, colorectum, kidney, and melanoma. In addition, a segregation analysis of 1,546 families from Finland found evidence for mendelian recessive inheritance. Results showed that individuals carrying the risk allele were diagnosed with prostate cancer at younger ages (&#x0003c;66 years) than noncarriers. This is the first segregation analysis to show a recessive mode of inheritance.[<a class="bk_pop" href="#CDR0000299612_rl_1_62">62</a>]</p></div><div id="CDR0000299612_rl_1"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000299612_rl_1_1">American Cancer Society: Cancer Facts and Figures 2018. Atlanta, Ga: American Cancer Society, 2018. <a href="https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online</a>. Last accessed April 27, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_2">Ruijter E, van de Kaa C, Miller G, et al.: Molecular genetics and epidemiology of prostate carcinoma. Endocr Rev 20 (1): 22-45, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10047972" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10047972</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_3">Stanford JL, Stephenson RA, Coyle LM, et al., eds.: Prostate Cancer Trends 1973-1995. Bethesda, Md: National Cancer Institute, 1999. NIH Pub. No. 99-4543. <a href="http://seer.cancer.gov/publications/prostate/" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Also available online</a>. Last accessed March 16, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_4">Miller BA, Kolonel LN, Bernstein L, et al., eds.: Racial/Ethnic Patterns of Cancer in the United States 1988-1992. Bethesda, Md: National Cancer Institute, 1996. NIH Pub. No. 96-4104. <a href="http://seer.cancer.gov/publications/ethnicity/" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Also available online</a>. Last accessed March 16, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_5">Zeng C, Wen W, Morgans AK, et al.: Disparities by Race, Age, and Sex in the Improvement of Survival for Major Cancers: Results From the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) Program in the United States, 1990 to 2010. JAMA Oncol 1 (1): 88-96, 2015. [<a href="/pmc/articles/PMC4523124/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4523124</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26182310" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26182310</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_6">Haas GP, Sakr WA: Epidemiology of prostate cancer. CA Cancer J Clin 47 (5): 273-87, 1997 Sep-Oct. [<a href="https://pubmed.ncbi.nlm.nih.gov/9314822" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9314822</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_7">Hemminki K, Rawal R, Bermejo JL: Prostate cancer screening, changing age-specific incidence trends and implications on familial risk. Int J Cancer 113 (2): 312-5, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15386407" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15386407</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_8">Witte JS: Prostate cancer genomics: towards a new understanding. Nat Rev Genet 10 (2): 77-82, 2009. [<a href="/pmc/articles/PMC2721916/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2721916</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19104501" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19104501</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_9">Salinas CA, Tsodikov A, Ishak-Howard M, et al.: Prostate cancer in young men: an important clinical entity. Nat Rev Urol 11 (6): 317-23, 2014. [<a href="/pmc/articles/PMC4191828/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4191828</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24818853" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24818853</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_10">Altekruse SF, Kosary CL, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2007. Bethesda, Md: National Cancer Institute, 2010. <a href="http://seer.cancer.gov/archive/csr/1975_2007/" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Also available online</a>. Last accessed March 29, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_11">Bunker CH, Patrick AL, Konety BR, et al.: High prevalence of screening-detected prostate cancer among Afro-Caribbeans: the Tobago Prostate Cancer Survey. Cancer Epidemiol Biomarkers Prev 11 (8): 726-9, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12163325" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12163325</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_12">Optenberg SA, Thompson IM, Friedrichs P, et al.: Race, treatment, and long-term survival from prostate cancer in an equal-access medical care delivery system. JAMA 274 (20): 1599-605, 1995 Nov 22-29. [<a href="https://pubmed.ncbi.nlm.nih.gov/7474244" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7474244</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_13">Hjelmborg JB, Scheike T, Holst K, et al.: The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol Biomarkers Prev 23 (11): 2303-10, 2014. [<a href="/pmc/articles/PMC4221420/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4221420</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24812039" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24812039</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_14">Steinberg GD, Carter BS, Beaty TH, et al.: Family history and the risk of prostate cancer. Prostate 17 (4): 337-47, 1990. [<a href="https://pubmed.ncbi.nlm.nih.gov/2251225" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2251225</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_15">Carter BS, Beaty TH, Steinberg GD, et al.: Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A 89 (8): 3367-71, 1992. [<a href="/pmc/articles/PMC48868/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC48868</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1565627" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1565627</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_16">Ghadirian P, Howe GR, Hislop TG, et al.: Family history of prostate cancer: a multi-center case-control study in Canada. Int J Cancer 70 (6): 679-81, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9096649" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9096649</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_17">Stanford JL, Ostrander EA: Familial prostate cancer. Epidemiol Rev 23 (1): 19-23, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11588848" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11588848</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_18">Matikaine MP, Pukkala E, Schleutker J, et al.: Relatives of prostate cancer patients have an increased risk of prostate and stomach cancers: a population-based, cancer registry study in Finland. Cancer Causes Control 12 (3): 223-30, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11405327" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11405327</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_19">Gr&#x000f6;nberg H, Damber L, Damber JE: Familial prostate cancer in Sweden. A nationwide register cohort study. Cancer 77 (1): 138-43, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8630920" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8630920</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_20">Cannon L, Bishop DT, Skolnick M, et al.: Genetic epidemiology of prostate cancer in the Utah Mormon genealogy. Cancer Surv 1 (1): 47-69, 1982.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_21">Bratt O, Garmo H, Adolfsson J, et al.: Effects of prostate-specific antigen testing on familial prostate cancer risk estimates. J Natl Cancer Inst 102 (17): 1336-43, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20724726" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20724726</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_22">Kalish LA, McDougal WS, McKinlay JB: Family history and the risk of prostate cancer. Urology 56 (5): 803-6, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11068306" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11068306</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_23">Cerhan JR, Parker AS, Putnam SD, et al.: Family history and prostate cancer risk in a population-based cohort of Iowa men. Cancer Epidemiol Biomarkers Prev 8 (1): 53-60, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/9950240" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9950240</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_24">Albright F, Stephenson RA, Agarwal N, et al.: Prostate cancer risk prediction based on complete prostate cancer family history. Prostate 75 (4): 390-8, 2015. [<a href="/pmc/articles/PMC4293302/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4293302</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25408531" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25408531</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_25">Kici&#x00144;ski M, Vangronsveld J, Nawrot TS: An epidemiological reappraisal of the familial aggregation of prostate cancer: a meta-analysis. PLoS One 6 (10): e27130, 2011. [<a href="/pmc/articles/PMC3205054/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3205054</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22073129" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22073129</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_26">Brandt A, Bermejo JL, Sundquist J, et al.: Age-specific risk of incident prostate cancer and risk of death from prostate cancer defined by the number of affected family members. Eur Urol 58 (2): 275-80, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20171779" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20171779</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_27">Gr&#x000f6;nberg H, Wiklund F, Damber JE: Age specific risks of familial prostate carcinoma: a basis for screening recommendations in high risk populations. Cancer 86 (3): 477-83, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10430256" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10430256</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_28">Beebe-Dimmer JL, Yee C, Cote ML, et al.: Familial clustering of breast and prostate cancer and risk of postmenopausal breast cancer in the Women's Health Initiative Study. Cancer 121 (8): 1265-72, 2015. [<a href="/pmc/articles/PMC4457314/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4457314</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25754547" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25754547</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_29">Damber L, Gr&#x000f6;nberg H, Damber JE: Familial prostate cancer and possible associated malignancies: nation-wide register cohort study in Sweden. Int J Cancer 78 (3): 293-7, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9766560" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9766560</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_30">Sellers TA, Potter JD, Rich SS, et al.: Familial clustering of breast and prostate cancers and risk of postmenopausal breast cancer. J Natl Cancer Inst 86 (24): 1860-5, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/7990161" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7990161</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_31">Agalliu I, Karlins E, Kwon EM, et al.: Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 97 (6): 826-31, 2007. [<a href="/pmc/articles/PMC2360390/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2360390</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17700570" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17700570</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_32">Edwards SM, Kote-Jarai Z, Meitz J, et al.: Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72 (1): 1-12, 2003. [<a href="/pmc/articles/PMC420008/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC420008</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12474142" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12474142</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_33">Ford D, Easton DF, Bishop DT, et al.: Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343 (8899): 692-5, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/7907678" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7907678</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_34">Gayther SA, de Foy KA, Harrington P, et al.: The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators. Cancer Res 60 (16): 4513-8, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10969800" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10969800</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_35">Hampel H, Bennett RL, Buchanan A, et al.: A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med 17 (1): 70-87, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25394175" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25394175</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_36">National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast and Ovarian. Version 1.2018. Fort Washington, PA: National Comprehensive Cancer Network, 2017. <a href="https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online with free registration.</a> Last accessed January 19, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_37">Carter BS, Bova GS, Beaty TH, et al.: Hereditary prostate cancer: epidemiologic and clinical features. J Urol 150 (3): 797-802, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8345587" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8345587</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_38">Lindor NM, McMaster ML, Lindor CJ, et al.: Concise handbook of familial cancer susceptibility syndromes - second edition. J Natl Cancer Inst Monogr (38): 1-93, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18559331" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18559331</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_39">Whittemore AS, Wu AH, Kolonel LN, et al.: Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol 141 (8): 732-40, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7535977" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7535977</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_40">Brath JM, Grill S, Ankerst DP, et al.: No Detrimental Effect of a Positive Family History on Long-Term Outcomes Following Radical Prostatectomy. J Urol 195 (2): 343-8, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/26239337" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26239337</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_41">Wu CP, Gu FL: The prostate in eunuchs. Prog Clin Biol Res 370: 249-55, 1991. [<a href="https://pubmed.ncbi.nlm.nih.gov/1924456" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1924456</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_42">Ross RK, Pike MC, Coetzee GA, et al.: Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res 58 (20): 4497-504, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9788589" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9788589</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_43">Rajender S, Singh L, Thangaraj K: Phenotypic heterogeneity of mutations in androgen receptor gene. Asian J Androl 9 (2): 147-79, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17334586" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17334586</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_44">Gu M, Dong X, Zhang X, et al.: The CAG repeat polymorphism of androgen receptor gene and prostate cancer: a meta-analysis. Mol Biol Rep 39 (3): 2615-24, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/21667251" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21667251</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_45">McMaster ML, Feuer EJ, Tucker MA: New malignancies following
cancer of the male genital tract. In: Curtis RE, Freedman DM, Ron E, et al., eds.: New Malignancies Among Cancer Survivors: SEER Cancer Registries, 1973-2000. Bethesda, Md: National Cancer Institute, 2006. NIH Pub. No. 05-5302, pp 257-84.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_46">Davis EJ, Beebe-Dimmer JL, Yee CL, et al.: Risk of second primary tumors in men diagnosed with prostate cancer: a population-based cohort study. Cancer 120 (17): 2735-41, 2014. [<a href="/pmc/articles/PMC4195444/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4195444</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24842808" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24842808</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_47">Zhang H, Bermejo JL, Sundquist J, et al.: Prostate cancer as a first and second cancer: effect of family history. Br J Cancer 101 (6): 935-9, 2009. [<a href="/pmc/articles/PMC2743371/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2743371</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19690542" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19690542</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_48">Pili&#x000e9; PG, Johnson AM, Hanson KL, et al.: Germline genetic variants in men with prostate cancer and one or more additional cancers. Cancer 123 (20): 3925-3932, 2017. [<a href="/pmc/articles/PMC6108085/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6108085</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28657667" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28657667</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_49">Isaacs SD, Kiemeney LA, Baffoe-Bonnie A, et al.: Risk of cancer in relatives of prostate cancer probands. J Natl Cancer Inst 87 (13): 991-6, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7629886" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7629886</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_50">Albright LA, Schwab A, Camp NJ, et al.: Population-based risk assessment for other cancers in relatives of hereditary prostate cancer (HPC) cases. Prostate 64 (4): 347-55, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15754348" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15754348</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_51">Gr&#x000f6;nberg H, Bergh A, Damber JE, et al.: Cancer risk in families with hereditary prostate carcinoma. Cancer 89 (6): 1315-21, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11002228" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11002228</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_52">Pakkanen S, Pukkala E, Kainulainen H, et al.: Incidence of cancer in finnish families with clinically aggressive and nonaggressive prostate cancer. Cancer Epidemiol Biomarkers Prev 18 (11): 3049-56, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19843684" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19843684</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_53">Page WF, Braun MM, Partin AW, et al.: Heredity and prostate cancer: a study of World War II veteran twins. Prostate 33 (4): 240-5, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9397195" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9397195</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_54">Lange EM, Salinas CA, Zuhlke KA, et al.: Early onset prostate cancer has a significant genetic component. Prostate 72 (2): 147-56, 2012. [<a href="/pmc/articles/PMC3784829/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3784829</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21538423" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21538423</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_55">Schaid DJ, McDonnell SK, Blute ML, et al.: Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62 (6): 1425-38, 1998. [<a href="/pmc/articles/PMC1377141/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1377141</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9585590" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9585590</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_56">Gr&#x000f6;nberg H, Damber L, Damber JE, et al.: Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 146 (7): 552-7, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9326432" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9326432</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_57">Verhage BA, Baffoe-Bonnie AB, Baglietto L, et al.: Autosomal dominant inheritance of prostate cancer: a confirmatory study. Urology 57 (1): 97-101, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11164151" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11164151</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_58">Gong G, Oakley-Girvan I, Wu AH, et al.: Segregation analysis of prostate cancer in 1,719 white, African-American and Asian-American families in the United States and Canada. Cancer Causes Control 13 (5): 471-82, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12146852" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12146852</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_59">Cui J, Staples MP, Hopper JL, et al.: Segregation analyses of 1,476 population-based Australian families affected by prostate cancer. Am J Hum Genet 68 (5): 1207-18, 2001. [<a href="/pmc/articles/PMC1226101/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1226101</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11309686" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11309686</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_60">Conlon EM, Goode EL, Gibbs M, et al.: Oligogenic segregation analysis of hereditary prostate cancer pedigrees: evidence for multiple loci affecting age at onset. Int J Cancer 105 (5): 630-5, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12740911" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12740911</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_61">Valeri A, Briollais L, Azzouzi R, et al.: Segregation analysis of prostate cancer in France: evidence for autosomal dominant inheritance and residual brother-brother dependence. Ann Hum Genet 67 (Pt 2): 125-37, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12675688" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12675688</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_1_62">Pakkanen S, Baffoe-Bonnie AB, Matikainen MP, et al.: Segregation analysis of 1,546 prostate cancer families in Finland shows recessive inheritance. Hum Genet 121 (2): 257-67, 2007. [<a href="/pmc/articles/PMC1945246/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1945246</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17203302" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17203302</span></a>]</div></li></ol></div></div><div id="CDR0000299612__981"><h2 id="_CDR0000299612__981_">Identifying Genes and Inherited Variants Associated With Prostate Cancer Risk</h2><p id="CDR0000299612__982">Various research methods have been employed to uncover the landscape of genetic variation associated with prostate cancer. Specific methodologies inform of unique <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460203/" class="def">phenotypes</a> or inheritance patterns. The sections below describe prostate cancer research utilizing various methods to highlight their role in uncovering the genetic basis of prostate cancer. In an effort to identify disease <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460209/" class="def">susceptibility genes</a>, <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460161/" class="def">linkage</a> studies are typically performed on high-risk extended families in which multiple cases of a particular disease have occurred. Typically, pathogenic variants identified through <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000425374/" class="def">linkage analyses</a> are rare in the population, are moderately to highly penetrant in families, and have large (e.g., relative risk &#x0003e;2.0) effect sizes. The clinical role of pathogenic variants that are identified in linkage studies is a clearer one, establishing precedent for genetic testing for cancer with genes such as <i>BRCA1</i> and <i>BRCA2</i>. (Refer to the <i><a href="#CDR0000299612__1051">BRCA1 and BRCA2</a></i> section in the <a href="#CDR0000299612__922">Genes With Potential Clinical Relevance in Prostate Cancer Risk</a>
section of this summary for more information about these genes.) <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000636779/" class="def">Genome-wide association studies</a> (GWAS) are another methodology used to identify candidate <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460162/" class="def">loci</a> associated with prostate cancer. Genetic variants identified from GWAS typically are common in the population and have low to modest effect sizes for prostate cancer risk. The clinical role of markers identified from GWAS is an active area of investigation. Case-control studies are useful in validating the findings of linkage studies and GWAS as well as for studying candidate gene alterations for association with prostate cancer risk, although the clinical role of findings from case-control studies needs to be further defined. </p><div id="CDR0000299612__28"><h3>Linkage Analyses</h3><div id="CDR0000299612__22"><h4>Introduction to linkage analyses</h4><p id="CDR0000299612__23">The recognition that prostate cancer clusters within families has led many investigators to collect multiple-case families with the goal of localizing prostate cancer susceptibility genes through linkage studies. </p><p id="CDR0000299612__24">Linkage studies are typically performed on high-risk <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460158/" class="def">kindreds</a> in whom multiple cases of a particular disease have occurred in an effort to identify disease susceptibility genes. Linkage analysis statistically compares the <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000660739/" class="def">genotypes</a> between <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460124/" class="def">affected</a> and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460224/" class="def">unaffected</a> individuals and looks for evidence that known genetic markers are inherited along with the disease trait. If such evidence is found (linkage), it provides statistical data that the chromosomal region near the marker also harbors a disease susceptibility gene. Once a genomic region of interest has been identified through linkage analysis, additional studies are required to prove that there truly is a susceptibility gene at that position. Linkage analysis is affected by the following:</p><ul id="CDR0000299612__504"><li class="half_rhythm"><div>Family size and having a sufficient number of family members who volunteer to contribute <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000045671/" class="def">DNA</a>.</div></li><li class="half_rhythm"><div>The number of disease cases in each family.</div></li><li class="half_rhythm"><div>Factors related to age at diagnosis (e.g., utilization of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000046171/" class="def">screening</a>).</div></li><li class="half_rhythm"><div>Gender differences in disease risk (not relevant in prostate cancer but remains relevant in linkage analysis for other conditions).</div></li><li class="half_rhythm"><div>Heterogeneity of disease in cases (e.g., aggressive vs. nonaggressive phenotype).</div></li><li class="half_rhythm"><div>Genetic heterogeneity (e.g., multiple genetic variants contribute to the same condition).</div></li><li class="half_rhythm"><div>The accuracy of family history information.</div></li></ul><p id="CDR0000299612__126"> Furthermore, because a standard definition of hereditary prostate cancer has not been accepted, prostate cancer linkage studies have not used consistent criteria for enrollment.[<a class="bk_pop" href="#CDR0000299612_rl_981_1">1</a>] One criterion that has been proposed is the Hopkins Criteria, which provides a working definition of hereditary prostate cancer families.[<a class="bk_pop" href="#CDR0000299612_rl_981_2">2</a>] Using the Hopkins Criteria, kindreds with prostate cancer need to fulfill only one of following criteria to be considered to have hereditary prostate cancer:</p><ol id="CDR0000299612__213"><li class="half_rhythm"><div>Three or more affected <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460150/" class="def">first-degree relatives</a> (father, brother, son).</div></li><li class="half_rhythm"><div>Affected relatives in three successive generations of either maternal or paternal lineages.</div></li><li class="half_rhythm"><div>At least two relatives affected at age 55 years or younger.</div></li></ol><p id="CDR0000299612__214">Using these criteria, surgical series have reported that approximately 3% to 5% of men will be from a family with hereditary prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_981_2">2</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_3">3</a>]</p><p id="CDR0000299612__27">An additional issue in linkage studies is the high background rate of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339347/" class="def">sporadic</a> prostate cancer in the context of family studies. Because a man&#x02019;s lifetime risk of prostate cancer is one in nine,[<a class="bk_pop" href="#CDR0000299612_rl_981_4">4</a>] it is possible that families under study have men with both inherited and sporadic prostate cancer. Thus, men who do not inherit the prostate cancer susceptibility gene that is segregating in their family may still develop prostate cancer. There are no clinical or pathological features of prostate cancer that will allow differentiation between inherited and sporadic forms of the disease, although current advances in the understanding of molecular phenotypes of prostate cancer may be informative in identifying inherited prostate cancer. Similarly, there are limited data regarding the clinical phenotype or natural history of prostate cancer associated with specific candidate loci. Measurement of the serum prostate-specific antigen (PSA) has been used inconsistently in evaluating families used in linkage analysis studies of prostate cancer. In linkage studies, the
definition of an affected man can be biased by the use of serum PSA screening as the rates of prostate cancer in families will differ between screened and unscreened families.</p><p id="CDR0000299612__383">One way to address inconsistencies between linkage studies is to require inclusion criteria that define clinically significant disease (e.g., Gleason score &#x02265;7, PSA &#x02265;20 ng/mL) in an affected man.[<a class="bk_pop" href="#CDR0000299612_rl_981_5">5</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_7">7</a>] This approach attempts to define a homogeneous set of cases/families to increase the likelihood of identifying a linkage signal. It also prevents the inclusion of cases that may be considered clinically insignificant that were identified by screening in families.</p><p id="CDR0000299612__406">Investigators have also incorporated clinical parameters into linkage analyses with the goal of identifying genes that may influence disease severity.[<a class="bk_pop" href="#CDR0000299612_rl_981_8">8</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_9">9</a>] This type of approach, however, has not yet led to the identification of consistent linkage signals across datasets.[<a class="bk_pop" href="#CDR0000299612_rl_981_10">10</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_11">11</a>]</p></div><div id="CDR0000299612__985"><h4>Susceptibility loci identified in linkage analyses</h4><p id="CDR0000299612__1205"><a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1078/?report=objectonly" target="object" rid-figpopup="figCDR00002996121078" rid-ob="figobCDR00002996121078">Table 2</a> summarizes the proposed prostate cancer susceptibility loci identified in families with multiple prostate cancer&#x02013;affected individuals. Conflicting evidence exists regarding the linkage to some of the loci described above. Data on the proposed phenotype associated with each locus are also limited, and the strength of repeated studies is needed to firmly establish these associations. Evidence suggests that many of these prostate cancer loci account for disease in a small subset of families, which is consistent with the concept that prostate cancer exhibits <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460163/" class="def">locus heterogeneity</a>.</p><div id="CDR0000299612__1078" class="table"><h3><span class="title">Table 2. Proposed Prostate Cancer Susceptibility Loci</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1078/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1078_lrgtbl__"><table class="no_top_margin"><thead><tr><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Gene</th><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Location</th><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Candidate Gene</th><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Clinical Testing</th><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Proposed Phenotype</th><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Comments</th></tr></thead><tbody><tr><td colspan="1" rowspan="3" style="vertical-align:top;"><b><i>HPC1</i></b> (<a href="/omim/601518" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>)/<b><i>RNASEL</i></b> (<a href="/omim/180435" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>) [<a class="bk_pop" href="#CDR0000299612_rl_981_12">12</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_34">34</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">1q25</td><td colspan="1" rowspan="3" style="vertical-align:top;"><i>RNASEL</i></td><td colspan="1" rowspan="3" style="vertical-align:top;">Not available</td><td colspan="1" rowspan="1" style="vertical-align:top;">Younger age at prostate cancer diagnosis (&#x0003c;65 y)</td><td colspan="1" rowspan="2" style="vertical-align:top;">Evidence of linkage is strongest in families with at least five affected persons, young age at diagnosis, and male-to-male transmission.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Higher tumor grade (Gleason score)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">More advanced stage at diagnosis</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>RNASEL</i> pathogenic variants have been identified in a few 1q-linked families.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i><b>PCAP</b></i> (<a href="/omim/602759" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>) [<a class="bk_pop" href="#CDR0000299612_rl_981_1">1</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_9">9</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_16">16</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_23">23</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_35">35</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_44">44</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">1q42.2&#x02013;43</td><td colspan="1" rowspan="1" style="vertical-align:top;">None</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not available</td><td colspan="1" rowspan="1" style="vertical-align:top;">Younger age at prostate cancer diagnosis (&#x0003c;65 y) and more aggressive disease</td><td colspan="1" rowspan="1" style="vertical-align:top;">Evidence of linkage is strongest in European families.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i><b>HPCX</b></i> (<a href="/omim/300147" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>) [<a class="bk_pop" href="#CDR0000299612_rl_981_33">33</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_39">39</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_45">45</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_51">51</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Xq27&#x02013;28</td><td colspan="1" rowspan="1" style="vertical-align:top;">None</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not available</td><td colspan="1" rowspan="1" style="vertical-align:top;">Unknown</td><td colspan="1" rowspan="1" style="vertical-align:top;">May explain observation that an unaffected man with an affected brother has a higher risk than an unaffected man with an affected father.</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;"><i><b>CAPB</b></i> (<a href="/omim/603688" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>) [<a class="bk_pop" href="#CDR0000299612_rl_981_37">37</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_52">52</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_54">54</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">1p36</td><td colspan="1" rowspan="2" style="vertical-align:top;">None</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not available</td><td colspan="1" rowspan="1" style="vertical-align:top;">Younger age at prostate cancer diagnosis (&#x0003c;65 y)</td><td colspan="1" rowspan="2" style="vertical-align:top;">Strongest evidence of linkage was initially described in families with both prostate and brain cancer; follow-up studies indicate that this locus may be associated specifically with early-onset prostate cancer but not necessarily with brain cancer.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">One or more cases of brain cancer</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;"><i><b>HPC20</b></i> (<a href="/omim/608656" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>) [<a class="bk_pop" href="#CDR0000299612_rl_981_39">39</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_55">55</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_58">58</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">20q13</td><td colspan="1" rowspan="2" style="vertical-align:top;">None</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not available</td><td colspan="1" rowspan="1" style="vertical-align:top;">Later age at prostate cancer diagnosis</td><td colspan="1" rowspan="2" style="vertical-align:top;"> Evidence
of linkage is strongest in families with late age at diagnosis, fewer affected family members, and no male-to-male transmission.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">No male-to-male transmission</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">
<b>8p</b> [<a class="bk_pop" href="#CDR0000299612_rl_981_23">23</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_40">40</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_59">59</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_67">67</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">8p21&#x02013;23</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>MSR1</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">Not available</td><td colspan="1" rowspan="1" style="vertical-align:top;">Unknown</td><td colspan="1" rowspan="1" style="vertical-align:top;">In a genomic region commonly deleted in prostate cancer.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><b>8q</b> [<a class="bk_pop" href="#CDR0000299612_rl_981_44">44</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_68">68</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_85">85</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_85">85</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_87">87</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">8q24</td><td colspan="1" rowspan="1" style="vertical-align:top;">None</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not available</td><td colspan="1" rowspan="1" style="vertical-align:top;">More aggressive disease</td><td colspan="1" rowspan="1" style="vertical-align:top;">Data in some reports suggest that the population-attributable risk may be higher for African American men than for men of European origin.</td></tr></tbody></table></div></div><div id="CDR0000299612__895"><h5>Other genetic loci discovered by linkage analysis</h5><p id="CDR0000299612__896">Genome-wide linkage studies of families with prostate cancer have identified several other loci that may harbor prostate cancer susceptibility genes, emphasizing the underlying complexity and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339333/" class="def">genetic heterogeneity</a> of this cancer. The following chromosomal regions have been found to be associated with prostate cancer in more than one study or clinical cohort with a statistically significant (&#x02265;2) <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000415709/" class="def">logarithm of the odds (LOD) score</a>, <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000769471/" class="def">heterogeneity LOD (HLOD) score</a>, or <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000769475/" class="def">summary LOD score</a>:</p><ul id="CDR0000299612__336"><li class="half_rhythm"><div>3p14 [<a class="bk_pop" href="#CDR0000299612_rl_981_88">88</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_90">90</a>]</div></li><li class="half_rhythm"><div>3p24-26 [<a class="bk_pop" href="#CDR0000299612_rl_981_42">42</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_44">44</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_91">91</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_93">93</a>]</div></li><li class="half_rhythm"><div>5q11-12 [<a class="bk_pop" href="#CDR0000299612_rl_981_43">43</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_92">92</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_94">94</a>]</div></li><li class="half_rhythm"><div>5q35 [<a class="bk_pop" href="#CDR0000299612_rl_981_92">92</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_94">94</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_95">95</a>]</div></li><li class="half_rhythm"><div>6p22.3 [<a class="bk_pop" href="#CDR0000299612_rl_981_40">40</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_96">96</a>]</div></li><li class="half_rhythm"><div>7q32 [<a class="bk_pop" href="#CDR0000299612_rl_981_9">9</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_40">40</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_95">95</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_97">97</a>]</div></li><li class="half_rhythm"><div>8q13 [<a class="bk_pop" href="#CDR0000299612_rl_981_92">92</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_98">98</a>]</div></li><li class="half_rhythm"><div>9q34 [<a class="bk_pop" href="#CDR0000299612_rl_981_9">9</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_23">23</a>]</div></li><li class="half_rhythm"><div>11q22 [<a class="bk_pop" href="#CDR0000299612_rl_981_92">92</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_99">99</a>]</div></li><li class="half_rhythm"><div>15q11 [<a class="bk_pop" href="#CDR0000299612_rl_981_92">92</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_100">100</a>]</div></li><li class="half_rhythm"><div>16q23 [<a class="bk_pop" href="#CDR0000299612_rl_981_9">9</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_101">101</a>]</div></li><li class="half_rhythm"><div>17q21-22 [<a class="bk_pop" href="#CDR0000299612_rl_981_41">41</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_78">78</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_92">92</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_100">100</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_102">102</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_106">106</a>]</div></li><li class="half_rhythm"><div>22q12.3 [<a class="bk_pop" href="#CDR0000299612_rl_981_5">5</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_92">92</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_94">94</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_99">99</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_107">107</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_110">110</a>]</div></li></ul><p id="CDR0000299612__1288">The chromosomal region 19q has also been found to be associated with prostate cancer, although specific LOD scores have not been described.[<a class="bk_pop" href="#CDR0000299612_rl_981_8">8</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_11">11</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_95">95</a>] </p></div><div id="CDR0000299612__897"><h5>Linkage analyses in various familial phenotypes</h5><p id="CDR0000299612__898">Linkage studies have also been performed in specific populations or with specific clinical parameters to identify population-specific susceptibility genes or genes influencing disease phenotypes.</p><div id="CDR0000299612__909"><h5>Linkage analysis in African American families</h5><p id="CDR0000299612__910">The African American Hereditary Prostate Cancer study conducted a genome-wide linkage study of 77 families with four or more affected men. Multipoint HLOD scores of 1.3 to less than 2.0 were observed using markers that map to 11q22, 17p11, and Xq21. Analysis of the 16 families with more than six men with prostate cancer provided evidence for two additional loci: 2p21 (multipoint HLOD score = 1.08) and 22q12 (multipoint HLOD score = 0.91).[<a class="bk_pop" href="#CDR0000299612_rl_981_92">92</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_99">99</a>] A smaller linkage study that included 15 African American hereditary prostate cancer families from the southeastern and southcentral Louisiana region identified suggestive linkage for prostate cancer at 2p16 (HLOD = 1.97) and 12q24 (HLOD = 2.21) using a 6,000 <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000458046/" class="def">single nucleotide polymorphism</a> (SNP) platform.[<a class="bk_pop" href="#CDR0000299612_rl_981_111">111</a>] Further study including a larger number of African American families is needed to confirm these findings.</p></div><div id="CDR0000299612__911"><h5>Linkage analysis in families with aggressive prostate cancer</h5><p id="CDR0000299612__912">In an effort to identify loci contributing to prostate cancer aggressiveness, linkage analysis was performed in families with one or more of the following: Gleason grade 7 or higher, PSA of 20 ng/mL or higher, regional or distant cancer stage at diagnosis, or death from metastatic prostate cancer before age 65 years. One hundred twenty-three families with two or more affected family members with aggressive prostate cancer were studied. Suggestive linkage was found at chromosome 22q11 (HLOD score = 2.18) and 22q12.3-q13.1 (HLOD score = 1.90).[<a class="bk_pop" href="#CDR0000299612_rl_981_5">5</a>] These findings suggest that using a clinically defined phenotype may facilitate finding prostate cancer susceptibility genes. A fine-mapping study of 14 extended high-risk prostate cancer families has subsequently narrowed the genomic region of interest to an 880-kb region at 22q12.3.[<a class="bk_pop" href="#CDR0000299612_rl_981_107">107</a>] An analysis of high-risk pedigrees from Utah provides an overview of this strategy.[<a class="bk_pop" href="#CDR0000299612_rl_981_112">112</a>] A linkage analysis utilizing a higher resolution marker set of 6,000 SNPs was performed among 348 families from the International Consortium for Prostate Cancer Genetics with aggressive prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_981_44">44</a>] Aggressive disease was defined as Gleason score 7 or higher, invasion into seminal vesicles or extracapsular extension, pretreatment PSA level of 20 ng/mL or higher, or death from prostate cancer. The region with strongest evidence of linkage among aggressive prostate cancer families was 8q24 with LOD scores of 3.09&#x02013;3.17. Additional regions of linkage included with LOD scores of 2 or higher included 1q43, 2q35, and 12q24.31. No candidate genes have been identified.</p></div><div id="CDR0000299612__913"><h5>Linkage analysis in families with multiple cancers </h5><p id="CDR0000299612__914">In light of the multiple prostate cancer susceptibility loci and disease heterogeneity, another approach has been to stratify families based on other cancers, given that many cancer susceptibility genes are pleiotropic.[<a class="bk_pop" href="#CDR0000299612_rl_981_113">113</a>] A genome-wide linkage study was conducted to identify a susceptibility locus that may account for both prostate cancer and kidney cancer in families. Analysis of 15 families with evidence of hereditary prostate cancer and one or more cases of kidney cancer (pathologically confirmed) in a man with prostate cancer or in a first-degree relative of a man with prostate cancer revealed suggestive linkage with markers that mapped to an 8 cM region of chromosome 11p11.2-q12.2.[<a class="bk_pop" href="#CDR0000299612_rl_981_114">114</a>] This observation awaits confirmation. Another genome-wide linkage study was conducted in 96 hereditary prostate cancer families with one or more first-degree relatives with colon cancer. Evidence for linkage in all families was found in several regions, including 11q25, 15q14, and 18q21. In families with two or more cases of colon cancer, linkage was also observed at 1q31, 11q14, and 15q11-14.[<a class="bk_pop" href="#CDR0000299612_rl_981_113">113</a>]</p></div></div><div id="CDR0000299612__902"><h5>Summary of prostate cancer linkage studies</h5><p id="CDR0000299612__903">Linkage to chromosome 17q21-22 and subsequent fine-mapping and targeted sequencing have identified recurrent pathogenic variants in the <i>HOXB13</i> gene that account for a fraction of hereditary prostate cancer, particularly early-onset prostate cancer. Multiple studies have confirmed the association between the G84E pathogenic variant in <i>HOXB13</i> and prostate cancer risk. (Refer to the <i><a href="#CDR0000299612__948">HOXB13</a></i> section of this summary for more information.) The clinical utility of testing for <i>HOXB13</i> pathogenic variants has not yet been defined, but studies are ongoing to define the clinical role. For example, a study evaluated 948 unselected men scheduled for prostate biopsy. The G84E pathogenic variant was found in three men (0.3%) who had prostate cancer detected on biopsy, although none of the 301 men who had a family history of prostate cancer carried the variant.[<a class="bk_pop" href="#CDR0000299612_rl_981_115">115</a>] Furthermore, many linkage studies have mapped several prostate cancer susceptibility loci (<a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1078/?report=objectonly" target="object" rid-figpopup="figCDR00002996121078" rid-ob="figobCDR00002996121078">Table 2</a>), although the genetic alterations contributing to hereditary prostate cancer from these loci have not been consistently reproduced. With the evolution of high-<a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000763031/" class="def">throughput</a> sequencing technologies, there will likely be additional moderately to highly penetrant genetic variants identified to account for subsets of hereditary prostate cancer families.[<a class="bk_pop" href="#CDR0000299612_rl_981_116">116</a>]</p></div></div></div><div id="CDR0000299612__917"><h3>Case-Control Studies</h3><p id="CDR0000299612__1084">A case-control study involves evaluating factors of interest for association to a condition. The design involves investigation of cases with a condition of interest, such as a specific disease or genetic variant, compared with a control sample without that condition, but often with other similar characteristics (i.e., age, gender, and ethnicity). Limitations of case-control design with regard to identifying genetic factors include the following:[<a class="bk_pop" href="#CDR0000299612_rl_981_117">117</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_118">118</a>] </p><ul id="CDR0000299612__1085"><li class="half_rhythm"><div>Stratification of the population being studied. (Unknown population based genetic differences between cases and controls that could result in false positive associations.)[<a class="bk_pop" href="#CDR0000299612_rl_981_119">119</a>]</div></li><li class="half_rhythm"><div>Genetic heterogeneity. (Different <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339337/" class="def">alleles</a> or loci that can result in a similar phenotype.) </div></li><li class="half_rhythm"><div>Limitations of self-identified race or ethnicity and unknown confounding variables.</div></li></ul><p id="CDR0000299612__918"> Additionally, identified associations may not always be valid, but they could represent a random association and, therefore, warrant validation studies.[<a class="bk_pop" href="#CDR0000299612_rl_981_117">117</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_118">118</a>]</p><div id="CDR0000299612__1180"><h4>Genes interrogated in case-control studies</h4><div id="CDR0000299612__1181"><h5><i>Androgen receptor</i> gene</h5><p id="CDR0000299612__1182"><i>Androgen receptor</i> (<i>AR</i>) gene variants have been examined in relation to both prostate cancer risk and disease progression. The AR is expressed during all stages of prostate carcinogenesis.[<a class="bk_pop" href="#CDR0000299612_rl_981_120">120</a>] One study demonstrated that men with hereditary prostate cancer who underwent radical prostatectomy had a higher percentage of prostate cancer cells exhibiting expression of the AR and a lower percentage of cancer cells expressing estrogen receptor alpha than did men with sporadic prostate cancer. The authors suggest that a specific pattern of hormone receptor expression may be associated with hereditary predisposition to prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_981_121">121</a>]</p><p id="CDR0000299612__1183">Altered activity of the AR caused by inherited variants of the <i>AR</i> gene may influence risk of prostate cancer. The length of the polymorphic trinucleotide CAG and GGN <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000285938/" class="def">microsatellite</a> repeats in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460146/" class="def">exon</a> 1 of the <i>AR</i> gene (located on the X chromosome) have been associated with the risk of prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_981_122">122</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_123">123</a>] Some studies have suggested an inverse association between CAG repeat length and prostate cancer risk, and a direct association between GGN repeat length and risk of prostate cancer; however, the evidence is inconsistent.[<a class="bk_pop" href="#CDR0000299612_rl_981_120">120</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_122">122</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_132">132</a>] A meta-analysis of 19 case-control studies demonstrated a statistically significant association between both short CAG length (odds ratio [OR], 1.2; 95% confidence interval [CI], 1.1&#x02013;1.3) and short GGN length (OR, 1.3; 95% CI, 1.1&#x02013;1.6) and prostate cancer; however, the absolute difference in number of repeats between cases and controls is less than one, leading the investigators to question whether these small, statistically significant differences are biologically meaningful.[<a class="bk_pop" href="#CDR0000299612_rl_981_133">133</a>] Subsequently, the large multiethnic cohort study of 2,036 incident prostate cancer cases and 2,160 ethnically matched controls failed to confirm a statistically significant association (OR, 1.02; <i>P</i> = .11) between CAG repeat size and prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_981_134">134</a>] A study of 1,461 Swedish men with prostate cancer and 796 control men reported an association between <i>AR</i> alleles, with more than 22 CAG repeats and prostate cancer (OR, 1.35; 95% CI, 1.08&#x02013;1.69; <i>P</i> = .03).[<a class="bk_pop" href="#CDR0000299612_rl_981_135">135</a>]</p><p id="CDR0000299612__1184">An analysis of <i>AR</i> gene CAG and GGN repeat length <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000044805/" class="def">polymorphisms</a> targeted African American men from the Flint Men&#x02019;s Health Study in an effort to identify a genetic modifier that might help explain the increased risk of prostate cancer in black versus white males in the United States.[<a class="bk_pop" href="#CDR0000299612_rl_981_136">136</a>] This population-based study of 131 African American prostate cancer patients and 340 screened-negative African American controls showed no evidence of an association between shorter <i>AR</i> repeat length and prostate cancer risk. These results, together with data from three prior, smaller studies,[<a class="bk_pop" href="#CDR0000299612_rl_981_134">134</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_137">137</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_138">138</a>] indicate that short <i>AR</i> repeat variants do not contribute significantly to the risk of prostate cancer in African American men.</p><p id="CDR0000299612__1185">Germline pathogenic variants in the <i>AR</i> gene (located on the X chromosome) have been rarely reported. The R726L pathogenic variant has been identified as a possible contributor to about 2% of both sporadic and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460148/" class="def">familial</a> prostate cancer in Finland.[<a class="bk_pop" href="#CDR0000299612_rl_981_139">139</a>] This variant, which alters the transactivational specificity of the AR protein, was found in 8 of 418 (1.91%) consecutive sporadic prostate cancer cases, 2 of 106 (1.89%) familial cases, and 3 of 900 (0.33%) normal blood donors, yielding a significantly increased prostate cancer OR of 5.8 for both case groups. A subsequent Finnish study of 38 early-onset prostate cancer cases and 36 multiple-case prostate cancer families with no evidence of male-to-male transmission revealed one additional R726L pathogenic variant in one of the familial cases and no new germline variants in the <i>AR</i> gene.[<a class="bk_pop" href="#CDR0000299612_rl_981_140">140</a>] These investigators concluded that germline <i>AR</i> pathogenic variants explain only a small fraction of familial and early-onset cases in Finland.</p><p id="CDR0000299612__1186">A study of genomic DNA from 60 multiple-case African American (n = 30) and white (n = 30) families identified a novel missense germline <i>AR</i> variant, T559S, in three affected members of a black sibship and none in the white families. No functional data were presented to indicate that this variant was clearly deleterious. This was reported as a suggestive finding, in need of additional data.[<a class="bk_pop" href="#CDR0000299612_rl_981_141">141</a>]</p></div><div id="CDR0000299612__1187"><h5><i>Steroid 5-alpha-reductase 2</i> gene (<i>SRD5A2</i>)</h5><p id="CDR0000299612__1188">Molecular epidemiology studies have also examined genetic polymorphisms of the <i>steroid 5-alpha-reductase 2</i> gene, which is also involved in the androgen metabolism cascade. Two isozymes of 5-alpha-reductase exist. The gene that codes for 5-alpha-reductase type II (<i>SRD5A2</i>) is located on chromosome 2. It is expressed in the prostate, where testosterone is converted
irreversibly to dihydrotestosterone (DHT) by 5-alpha-reductase type II.[<a class="bk_pop" href="#CDR0000299612_rl_981_142">142</a>] Evidence suggests that 5-alpha-reductase type II activity is reduced in populations at lower risk of prostate
cancer, including Chinese and Japanese men.[<a class="bk_pop" href="#CDR0000299612_rl_981_143">143</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_144">144</a>]</p><p id="CDR0000299612__593">A polymorphism in the untranslated region of the <i>SRD5A2</i> gene may also be associated with prostate cancer risk.[<a class="bk_pop" href="#CDR0000299612_rl_981_145">145</a>] Ten alleles fall into three families that differ in the number of TA dinucleotide repeats.[<a class="bk_pop" href="#CDR0000299612_rl_981_142">142</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_146">146</a>] Although no clinical significance for these polymorphisms has yet been determined, some TA repeat alleles may promote an elevation of enzyme activity, which may in turn increase the level of DHT in the prostate.[<a class="bk_pop" href="#CDR0000299612_rl_981_120">120</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_142">142</a>] A subsequent meta-analysis failed to detect a statistically significant association between prostate cancer risk and the TA repeat polymorphism, although a relationship could not be definitively excluded.[<a class="bk_pop" href="#CDR0000299612_rl_981_147">147</a>] This meta-analysis also examined the potential roles of two coding variants: A49T and V89L. An association with V89L was excluded, and the role for A49T was found to have at most a modest effect on prostate cancer susceptibility. Bias or chance could account for the latter observation. A study of 1,461 Swedish men with prostate cancer and 796 control men reported an association between two variants in <i>SRD5A2</i> and prostate cancer risk (OR, 1.45; 95% CI, 1.01&#x02013;2.08; OR, 1.49; 95% CI, 1.03&#x02013;2.15).[<a class="bk_pop" href="#CDR0000299612_rl_981_135">135</a>] Another meta-analysis of 25 case-control studies, including 8,615 cases and 9,089 controls, found no overall association between the V89L polymorphism and prostate cancer risk. In a subgroup analysis, men younger than 65 years (323 cases and 677 controls) who carried the LL genotype had a modest association with prostate cancer (LL vs. VV, OR, 1.70; 95% CI, 1.09&#x02013;2.66 and LL vs. VV+VL, OR, 1.75; 95% CI, 1.14&#x02013;2.68).[<a class="bk_pop" href="#CDR0000299612_rl_981_148">148</a>] A subsequent systematic review and meta-analysis including 27 nonfamilial case-control studies found no statistically significant association between either the V89L or A49T polymorphisms and prostate cancer risk.[<a class="bk_pop" href="#CDR0000299612_rl_981_149">149</a>]</p><p id="CDR0000299612__1189">Polymorphisms in several genes involved in the biosynthesis, activation, metabolism, and degradation of androgens (<i>CYP17</i>, <i>CYP3A4</i>, <i>CYP19A1</i>, and<i> SRD5A2</i>) and the stimulation of mitogenic and antiapoptotic activities (<i>IGF-1</i> and <i>IGFBP-3</i>) of normal prostate cells were examined for association with prostate cancer in 131 African American cases and 342 controls. While allele frequencies did not differ between cases and controls regarding three SNPs in the <i>CYP17</i> gene (<a href="/snp/?term=6163" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs6163</a>, <a href="/snp/?term=6162" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs6162</a>, and <a href="/snp/?term=743572" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs743572</a>), <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339341/" class="def">heterozygous genotypes</a> of these SNPs were found to be associated with a reduced risk (OR, 0.56; 95% CI, 0.35&#x02013;0.88; OR, 0.57; 95% CI, 0.36&#x02013;0.90; OR, 0.55; 95% CI, 0.35&#x02013;0.88, respectively). Evidence suggestive of an association between SNP <a href="/snp/?term=5742657" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs5742657</a> in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000660737/" class="def">intron</a> 2 of <i>IGF-1</i> was also found (OR, 1.57; 95% CI, 0.94&#x02013;2.63).[<a class="bk_pop" href="#CDR0000299612_rl_981_150">150</a>] Additional studies are needed to confirm these findings.</p></div><div id="CDR0000299612__1190"><h5><i>Estrogen receptor-beta</i> gene</h5><p id="CDR0000299612__1191">Other investigators have explored the potential contribution of the variation in genes involved in the estrogen pathway. A Swedish population study of 1,415 prostate cancer cases and 801 age-matched controls examined the association of SNPs in the <i>estrogen receptor-beta</i> (<i>ER-beta</i>) gene and prostate cancer. One SNP in the promoter region of <i>ER-beta</i>, <a href="/snp/?term=2987983" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs2987983</a>, was associated with an overall prostate cancer risk of 1.23 and 1.35 for localized disease.[<a class="bk_pop" href="#CDR0000299612_rl_981_151">151</a>] This study awaits replication.</p></div><div id="CDR0000299612__1192"><h5><i>E-cadherin</i> gene</h5><p id="CDR0000299612__1237">Germline pathogenic variants in the <a href="/books/n/pdqcis/glossary/def-item/glossary_CDR0000046657/" class="def">tumor suppressor gene</a>
<i>E-cadherin</i> (also called <i>CDH1</i>) cause a hereditary form of gastric carcinoma. A SNP designated -160&#x02192;A, located in the promoter region of <i>E-cadherin</i>, has been found to alter the transcriptional activity of this gene.[<a class="bk_pop" href="#CDR0000299612_rl_981_152">152</a>] Because somatic pathogenic variants in <i>E-cadherin</i> have been implicated in the development of invasive malignancies in a number of different cancers,[<a class="bk_pop" href="#CDR0000299612_rl_981_153">153</a>] investigators have searched for evidence that this functionally significant promoter might be a modifier of cancer risk. A meta-analysis of 47 case-control studies in 16 cancer types included ten prostate cancer cohorts (3,570 cases and 3,304 controls). The OR of developing prostate cancer among risk allele carriers was 1.33 (95% CI, 1.11&#x02013;1.60). However, the authors of the study noted that there are sources of bias in the dataset, stemming mostly from the small sample sizes of individual cohorts.[<a class="bk_pop" href="#CDR0000299612_rl_981_154">154</a>] Additional studies are required to determine whether this finding is reproducible and biologically and clinically important.</p></div><div id="CDR0000299612__1194"><h5>Toll-like receptor genes</h5><p id="CDR0000299612__1195">There is a great deal of interest in the possibility that chronic inflammation may represent an important risk factor in prostate carcinogenesis.[<a class="bk_pop" href="#CDR0000299612_rl_981_155">155</a>] The family of toll-like receptors has been recognized as a critical component of the intrinsic immune system,[<a class="bk_pop" href="#CDR0000299612_rl_981_156">156</a>] one which recognizes ligands from exogenous microbes and a variety of endogenous substrates. This family of genes has been studied most extensively in the context of autoimmune disease, but there also have been a series of studies that have analyzed genetic variants in various members of this pathway as potential prostate cancer risk modifiers.[<a class="bk_pop" href="#CDR0000299612_rl_981_157">157</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_161">161</a>] The results have been inconsistent, ranging from decreased risk, to null association, to increased risk.</p><p id="CDR0000299612__1196">One study was based upon 1,414 incident prostate cancer cases and 1,414 age-matched controls from the American Cancer Society Cancer Prevention Study II Nutrition Cohort.[<a class="bk_pop" href="#CDR0000299612_rl_981_162">162</a>] These investigators genotyped 28 SNPs in a region on chromosome 4p14 that includes <i>TLR-10</i>, <i>TLR-1</i>, and <i>TLR-6</i>, three members of the toll-like receptor gene cluster. Two <i>TLR-10</i> SNPs and four <i>TLR-1</i> SNPs were associated with significant reductions in prostate cancer risk, ranging from 29% to 38% for the homozygous variant genotype. A more detailed analysis demonstrated these six SNPs were not independent in their effect, but rather represented a single strong association with reduced risk (OR, 0.55; 95% CI, 0.33&#x02013;0.90). There were no significant differences in this association when covariates such as Gleason score, history of benign prostatic hypertrophy, use of nonsteroidal anti-inflammatory drugs, and body mass index were taken into account. This is the largest study undertaken to date and included the most comprehensive panel of SNPs evaluated in the 4p14 region. While these observations provide a basis for further investigation of the toll-like receptor genes in prostate cancer etiology, inconsistencies with the prior studies and lack of information regarding what the biological basis of these associations might be warrant caution in interpreting the findings.</p></div><div id="CDR0000299612__601"><h5>Other genes and polymorphisms interrogated for risk</h5><p id="CDR0000299612__1197">SNPs in genes involved in the steroid hormone pathway have previously been studied in sporadic and familial prostate cancer using a sample of individuals with primarily Caucasian ancestry.[<a class="bk_pop" href="#CDR0000299612_rl_981_163">163</a>] Another study evaluated 116 tagging SNPs located in 12 genes in the steroid hormone pathway for risk of prostate cancer in 886 cases and 1,566 controls encompassing non-Hispanic white men, Hispanic white men, and African American men.[<a class="bk_pop" href="#CDR0000299612_rl_981_164">164</a>] The genes included <i>CYP17</i>, <i>HSD17B3</i>, <i>ESR1</i>, <i>SRD5A2</i>, <i>HSD3B1</i>, <i>HSD3B2</i>, <i>CYP19</i>, <i>CYP1A1</i>, <i>CYP1B1</i>, <i>CYP3A4</i>, <i>CYP27B1</i>, and <i>CYP24A1</i>. Several SNPs in <i>CYP19</i> were associated with prostate cancer risk in all three populations. Analysis of SNP-SNP interactions involving SNPs in multiple genes revealed a seven-SNP interaction involving <i>HSD17B3</i>, <i>CYP19</i>, and <i>CYP24A1</i> in Hispanic whites (<i>P</i> = .001). In non-Hispanic whites, an interaction of four SNPs in <i>HSD3B2</i>, <i>HSD17B3</i>, and <i>CYP19</i> was found (<i>P</i> &#x0003c; .001). In African Americans, SNPs within <i>SRD5A2</i>, <i>HSD17B3</i>, <i>CYP17</i>, <i>CYP27B1</i>, <i>CYP19</i>, and <i>CYP24A1</i> showed a significant interaction (<i>P</i> = .014). In non-Hispanic whites, a cumulative risk of prostate cancer was observed for men carrying risk alleles at three SNPs in <i>HSD3B2</i> and <i>CYP19</i> (OR, 2.20; 95% CI, 1.44&#x02013;3.38; <i>P</i> = .0003). In Hispanic whites, a cumulative risk of prostate cancer was observed for men carrying risk alleles at two SNPs in <i>CYP19</i> and <i>CYP24A1</i> (OR, 4.29; 95% CI, 2.11&#x02013;8.72; <i>P</i> = .00006). While this study did not evaluate all potentially important SNPs in genes in the steroid hormone pathway, it demonstrates how studies can be performed to evaluate multigenic effects in multiple populations to assess the contribution to prostate cancer risk.</p><p id="CDR0000299612__1198">A meta-analysis of the relationship between eight polymorphisms in six genes (<i>MTHFR</i>, <i>MTR</i>, <i>MTHFD1</i>, <i>SLC19A1</i>, <i>SHMT1</i>, and <i>FOLH1</i>) from the folate pathway was conducted by pooling data from eight case-control studies, four GWAS, and a nested case-control study named Prostate Testing for Cancer and Treatment in the United Kingdom. Numbers of tested subjects varied among these polymorphisms, with up to 10,743 cases and 35,821 controls analyzed. The report concluded that known common folate-pathway SNPs do not have significant effects on prostate cancer susceptibility in white men.[<a class="bk_pop" href="#CDR0000299612_rl_981_165">165</a>]</p><p id="CDR0000299612__1199">Four SNPs in the <i>p53</i> pathway (three in genes regulating p53 function including <i>MDM2</i>, <i>MDM4</i>, and <i>HAUSP</i> and one in <i>p53</i>) were evaluated for association with aggressive prostate cancer in a hospital-based prostate cancer cohort of men with Caucasian ethnicity (N = 4,073).[<a class="bk_pop" href="#CDR0000299612_rl_981_166">166</a>] However, a subsequent meta-analysis of case-control studies that focused on <i>MDM2</i> (T309G) and prostate cancer risk revealed no association.[<a class="bk_pop" href="#CDR0000299612_rl_981_167">167</a>] Therefore, the biologic basis of the various associations identified requires further study.</p><p id="CDR0000299612__1158"><a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1159/?report=objectonly" target="object" rid-figpopup="figCDR00002996121159" rid-ob="figobCDR00002996121159">Table 3</a> summarizes additional case-control studies that have assessed genes that are potentially associated with prostate cancer susceptibility.</p><div id="CDR0000299612__1159" class="table"><h3><span class="title">Table 3. Case-Control Studies in Genes With Some Association With Prostate Cancer Risk</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1159/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1159_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Gene</th><th colspan="1" rowspan="1" style="vertical-align:top;">Location</th><th colspan="1" rowspan="1" style="vertical-align:top;">Study</th><th colspan="1" rowspan="1" style="vertical-align:top;">Cases</th><th colspan="1" rowspan="1" style="vertical-align:top;">Controls</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer Associations</th><th colspan="1" rowspan="1" style="vertical-align:top;">Comments </th></tr></thead><tbody><tr><td colspan="1" rowspan="4" style="vertical-align:top;"><i>AMACR</i> (<a href="/omim/604489" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>)</td><td colspan="1" rowspan="4" style="vertical-align:top;">5p13.3</td><td colspan="1" rowspan="1" style="vertical-align:top;">Zheng et al. (2002) [<a class="bk_pop" href="#CDR0000299612_rl_981_168">168</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">159 U.S. men with familial prostate cancer and 245 men with sporadic prostate cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">211 men without prostate cancer who are participants in a prostate cancer screening program</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">Genotype frequencies that compared familial prostate cancer cases to unaffected controls found four missense variants associated with familial prostate cancer (M9V, G1157D, S291L, and K277E).</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Daugherty et al. (2007) [<a class="bk_pop" href="#CDR0000299612_rl_981_169">169</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">1,318 U.S. men aged &#x0003c;55 y with prostate cancer (1,211 non-Hispanic whites and 107 non-Hispanic blacks) unselected for family history</td><td colspan="1" rowspan="1" style="vertical-align:top;">1,842 U.S. men without prostate cancer who participated in a prostate cancer screening program (1,433 non-Hispanic whites and 409 non-Hispanic blacks) </td><td colspan="1" rowspan="1" style="vertical-align:top;">No association was detected between any of the SNPs (M9V, IVS+169G&#x0003e;T, D175G, S201L, Q239H, IVS4+3803C&#x0003e;G, and K277E) and prostate cancer. </td><td colspan="1" rowspan="1" style="vertical-align:top;">Risk of prostate cancer was reduced in men who regularly used ibuprofen who also had specific alleles in four SNPs (M9V, D175G, S201L, and K77E) or a specific six-SNP haplotype (TGTGCG). </td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Levin et al. (2007) [<a class="bk_pop" href="#CDR0000299612_rl_981_170">170</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">449 U.S. white men with familial prostate cancer from 332 familial and early-onset prostate cancer families</td><td colspan="1" rowspan="2" style="vertical-align:top;">394 unaffected brothers of the men with prostate cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">SNP <a href="/snp/?term=3195676" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs3195676</a> (M9V): </td><td colspan="1" rowspan="2" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">OR, 0.58 (95% CI, 0.38&#x02013;0.90; <i>P</i> = .01 for a recessive model)</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;"><i>CHEK2</i> (<a href="/omim/604373" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>)</td><td colspan="1" rowspan="4" style="vertical-align:top;">22q12.1</td><td colspan="1" rowspan="1" style="vertical-align:top;">Dong et al. (2003) [<a class="bk_pop" href="#CDR0000299612_rl_981_171">171</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">84 prostate cancer tumors; 92 prostate cancer tumors diagnosed in men younger than 59 y; 400 U.S. men with prostate cancer and no prostate cancer family history; 298 men with prostate cancer from 149 families (two men per family)</td><td colspan="1" rowspan="1" style="vertical-align:top;">510 U.S. men without prostate cancer with a negative prostate cancer screening exam</td><td colspan="1" rowspan="1" style="vertical-align:top;">18 <i>CHEK2</i> pathogenic variants were identified in 4.8% (28 of 578) of prostate cancer patients, 0 of 423 unaffected men, and 9 of 149 prostate cancer families.</td><td colspan="1" rowspan="1" style="vertical-align:top;">157T was detected in equal numbers of cases and controls and was therefore reported to likely represent a polymorphism.</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Cybulski et al. (2013) [<a class="bk_pop" href="#CDR0000299612_rl_981_172">172</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">3,750 Polish men with prostate cancer</td><td colspan="1" rowspan="3" style="vertical-align:top;">3,956 Polish men with no history of cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">Any <i>CHEK2</i> pathogenic variant: OR, 1.9 (95% CI, 1.6&#x02013;2.2; <i>P</i> &#x0003c; .0001)</td><td colspan="1" rowspan="3" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Prostate cancer diagnosed &#x0003c;60 y: OR, 2.3 (95% CI, 1.8&#x02013;3.1; <i>P</i> &#x0003c; .0001)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Familial prostate cancer: OR, 2.7 (95% CI, 2.0&#x02013;3.7; <i>P</i> &#x0003c; .0001)</td></tr><tr><td colspan="1" rowspan="6" style="vertical-align:top;"><i>EMSY</i> (<a href="/omim/608574" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>)</td><td colspan="1" rowspan="6" style="vertical-align:top;">11q13.5</td><td colspan="1" rowspan="2" style="vertical-align:top;">Nurminen et al. (2011) [<a class="bk_pop" href="#CDR0000299612_rl_981_173">173</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Initial Screen: 184 Finnish men with familial prostate cancer
</td><td colspan="1" rowspan="2" style="vertical-align:top;">923 male blood donors from the Finnish Red Cross with no cancer history</td><td colspan="1" rowspan="1" style="vertical-align:top;">IVS6-43A&#x0003e;G:</td><td colspan="1" rowspan="2" style="vertical-align:top;">IVS6-43A&#x0003e;G also associated with increased risk of aggressive prostate cancer (PSA &#x02265;20 or Gleason score &#x02265;7) in cases unselected for family history (OR, 6.5; 95% CI, 1.5&#x02013;28.4; <i>P</i> = .002).</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Validation: 2,113 unselected prostate cancer cases</td><td colspan="1" rowspan="1" style="vertical-align:top;">Familial cases:
OR, 7.5 (95% CI, 1.3&#x02013;45.5; <i>P</i> = .02)</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;">Nurminen et al. (2013) [<a class="bk_pop" href="#CDR0000299612_rl_981_174">174</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">2,716 unselected Finnish men with prostate cancer</td><td colspan="1" rowspan="4" style="vertical-align:top;">908 male blood donors from the Finnish Red Cross with no cancer history</td><td colspan="1" rowspan="1" style="vertical-align:top;"><a href="/snp/?term=10899221" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs10899221</a>: OR, 1.29 (95% CI, 1.10&#x02013;1.52); <i>P</i> = .008</td><td colspan="1" rowspan="4" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">rs72944738: OR, 1.26 (95% CI, 1.04&#x02013;1.52); <i>P</i> = .03</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">1,318 Finnish men with prostate cancer who participated in the PSA screening arm of the European Randomized Study of Screening for Prostate Cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;"><a href="/snp/?term=10899221" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs10899221</a>: OR, 1.40 (95% CI, 1.16&#x02013;1.69); <i>P</i> = .002</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">rs72944738: OR, 1.46 (95% CI, 1.16&#x02013;1.69); <i>P</i> = .003</td></tr><tr><td colspan="1" rowspan="6" style="vertical-align:top;"><i>KLF6</i> (<a href="/omim/602053" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>)</td><td colspan="1" rowspan="6" style="vertical-align:top;">10p15</td><td colspan="1" rowspan="3" style="vertical-align:top;">Narla et al. (2005) [<a class="bk_pop" href="#CDR0000299612_rl_981_175">175</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">1,253 U.S. men with sporadic prostate cancer and 882 men with familial prostate cancer from 294 unrelated families</td><td colspan="1" rowspan="3" style="vertical-align:top;">1,276 men with no cancer history</td><td colspan="1" rowspan="1" style="vertical-align:top;">IVS1-27G&#x0003e;A:</td><td colspan="1" rowspan="6" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Familial cases: OR, 1.61 (95% CI, 1.20&#x02013;2.16; <i>P</i> = .01)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Sporadic cases:
OR, 1.41 (95% CI, 1.08&#x02013;2.00; <i>P</i> = .01) </td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Bar-Shira et al. (2006) [<a class="bk_pop" href="#CDR0000299612_rl_981_176">176</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">402 Israeli men with prostate cancer (251 AJ, 151 non-AJ)</td><td colspan="1" rowspan="3" style="vertical-align:top;">300 Israeli women aged 20&#x02013;45 y (200 AJ, 100 non-AJ)</td><td colspan="1" rowspan="1" style="vertical-align:top;">IVS1-27G&#x0003e;A:</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">AJ only:
OR, 0.60 (95% CI, 0.35&#x02013;1.03; <i>P</i> = .047)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Combined cohort:
OR, 0.64 (95% CI, 0.42&#x02013;0.98; <i>P</i> = .047)</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;"><i>NBN/NBS1</i>
(<a href="/omim/602667" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>)</td><td colspan="1" rowspan="4" style="vertical-align:top;">8q21</td><td colspan="1" rowspan="1" style="vertical-align:top;">Hebbring et al. (2006) [<a class="bk_pop" href="#CDR0000299612_rl_981_177">177</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">1,819 U.S. and European men with familial prostate cancer from 909 families and 1,218 U.S. and European men with sporadic prostate cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">697 controls consisting of a mix of U.S. and European population-based controls and unaffected men from prostate cancer families</td><td colspan="1" rowspan="1" style="vertical-align:top;">657del5 was not detected in the control population; therefore, testing for an association was not possible.</td><td colspan="1" rowspan="1" style="vertical-align:top;">657del5 had a carrier frequency of 0.22% (2 of 909) for familial prostate cancer and 0.25% (3 of 1,218) for sporadic prostate cancer.</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Cybulski et al. (2013) [<a class="bk_pop" href="#CDR0000299612_rl_981_172">172</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">3,750 Polish men with prostate cancer</td><td colspan="1" rowspan="3" style="vertical-align:top;">3,956 Polish men with no history of cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">675del5: OR, 2.5 (95% CI, 1.5&#x02013;4.0; <i>P</i> = .0003)
</td><td colspan="1" rowspan="3" style="vertical-align:top;"><i>NBN </i>pathogenic variants were associated with a higher mortality (HR, 1.85) and lower 5-year survival (HR, 2.08). </td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Prostate cancer diagnosed &#x0003c;60 y: OR, 3.1 (95% CI, 1.5&#x02013;6.4; <i>P</i> = .003) </td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Familial prostate cancer: OR, 4.3 (95% CI, 2.0&#x02013;9.0; <i>P</i> = .0001)</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">AJ = Ashkenazi Jewish; CI = confidence interval; HR = hazard ratio; OMIM = Online Mendelian Inheritance in Man; OR = odds ratio; PSA = prostate-specific antigen; SNP = single nucleotide polymorphism.</p></div></dd></dl></div></div></div><p id="CDR0000299612__1174">Case-control studies assessed site-specific prostate cancer susceptibility in the following genes: <i>EMSY</i>, <i>KLF6</i>, <i>AMACR</i>, <i>NBN</i>, <i>CHEK2</i>, <i>AR</i>, <i>SRD5A2</i>, <i>ER-beta</i>, <i>E-cadherin</i>, and the toll-like receptor genes. These studies have been complicated by the later-onset nature of the disease and the high background rate of prostate cancer in the general population. In addition, there is likely to be real, extensive locus heterogeneity for hereditary prostate cancer, as suggested by both segregation and linkage studies. In this respect, hereditary prostate cancer resembles a number of the other major adult-onset hereditary cancer syndromes, in which more than one gene can produce the same or very similar clinical phenotype (e.g., hereditary breast/ovarian cancer, Lynch syndrome, hereditary melanoma, and hereditary renal cancer). The clinical validity and utility of genetic testing for any of these genes based solely on evidence for hereditary prostate cancer susceptibility has not been established.</p></div></div></div><div id="CDR0000299612__684"><h3>Admixture Mapping</h3><p id="CDR0000299612__709"><a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000751596/" class="def">Admixture mapping</a> is a method used to identify genetic variants associated with traits and/or diseases in individuals with mixed ancestry.[<a class="bk_pop" href="#CDR0000299612_rl_981_178">178</a>] This approach is most effective when applied to individuals whose admixture was recent and consists of two populations who had previously been separated for thousands of years. The genomes of such individuals are a mosaic, comprised of large blocks from each ancestral locale. The technique takes advantage of a difference in disease incidence in one ancestral group compared with another. Genetic risk loci are presumed to reside in regions enriched for the ancestral group with higher incidence. Successful mapping depends on the availability of population-specific genetic markers associated with ancestry, and on the number of generations since admixture.[<a class="bk_pop" href="#CDR0000299612_rl_981_179">179</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_180">180</a>] </p><p id="CDR0000299612__1175">Admixture mapping is a particularly attractive method for identifying genetic loci associated with increased prostate cancer risk among African Americans. African American men are at higher risk of developing prostate cancer than are men of European ancestry, and the genomes of African American men are mosaics of regions from Africa and regions from Europe. It is therefore hypothesized that inherited variants accounting for the difference in incidence between the two groups must reside in regions enriched for African ancestry. In prostate cancer admixture studies, genetic markers for ancestry were genotyped genome-wide in African American cases and controls in a search for areas enriched for African ancestry in the men with prostate cancer. Admixture studies have identified the following chromosomal regions associated with prostate cancer:</p><ul id="CDR0000299612__685"><li class="half_rhythm"><div>5q35 (<a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000689607/" class="def">Z-score</a> = 3.1) [<a class="bk_pop" href="#CDR0000299612_rl_981_181">181</a>]</div></li><li class="half_rhythm"><div>7q31 (Z-score = 4.6) [<a class="bk_pop" href="#CDR0000299612_rl_981_181">181</a>]</div></li><li class="half_rhythm"><div>8q24 (LOD score = 7.1) [<a class="bk_pop" href="#CDR0000299612_rl_981_181">181</a> ,<a class="bk_pop" href="#CDR0000299612_rl_981_69">69</a>]</div></li></ul><p id="CDR0000299612__1160">An advantage of this approach is that recent admixtures result in long stretches of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000666094/" class="def">linkage disequilibrium</a> (up to hundreds of thousands of base pairs) of one particular ancestry.[<a class="bk_pop" href="#CDR0000299612_rl_981_182">182</a>] As a result, fewer markers are needed to search for genetic variants associated with specific diseases, such as prostate cancer, than the number of markers needed for successful GWAS.[<a class="bk_pop" href="#CDR0000299612_rl_981_179">179</a>] (Refer to the <a href="#CDR0000299612__513">GWAS</a> section of this summary for more information.)</p></div><div id="CDR0000299612__513"><h3>Genome-wide Association Studies (GWAS)</h3><div id="CDR0000299612__879"><h4>Overview</h4><ul id="CDR0000299612__881"><li class="half_rhythm"><div><a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000636780/" class="def">GWAS</a> can identify inherited genetic variants that influence a specific phenotype, such as risk of a particular disease.</div></li><li class="half_rhythm"><div>For complex diseases, such as prostate cancer, risk of developing the disease is the product of multiple genetic and environmental factors; each individual factor contributes relatively little to overall risk.</div></li><li class="half_rhythm"><div>To date, GWAS have discovered more than 100 common genetic variants associated with prostate cancer risk.</div></li><li class="half_rhythm"><div>Individuals can be genotyped for all known prostate cancer risk markers relatively easily; but, to date, studies have not demonstrated that this information substantially refines risk estimates from commonly used variables, such as <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000302456/" class="def">family history</a>.
</div></li><li class="half_rhythm"><div><b>The clinical relevance of variants identified from GWAS remains unclear.</b></div></li></ul></div><div id="CDR0000299612__834"><h4>Introduction to GWAS</h4><p id="CDR0000299612__835">Genome-wide searches have successfully identified susceptibility alleles for many complex diseases,[<a class="bk_pop" href="#CDR0000299612_rl_981_183">183</a>] including prostate cancer. This approach can be contrasted with linkage analysis, which searches for genetic risk variants co-segregating within families that have a high prevalence of disease. Linkage analyses are designed to uncover rare, highly penetrant variants that segregate in predictable heritance patterns (e.g., <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339338/" class="def">autosomal dominant</a>, <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339339/" class="def">autosomal recessive</a>, X-linked, and mitochondrial). GWAS, on the other hand, are best suited to identify multiple, common, low-penetrance genetic polymorphisms. GWAS are conducted under the assumption that the genetic underpinnings of complex phenotypes, such as prostate cancer, are governed by many alleles, each conferring modest risk. Most genetic polymorphisms genotyped in GWAS are common, with minor allele frequencies greater than 1% to 5% within a given ancestral population (e.g., men of European ancestry). GWAS survey all common inherited variants across the genome, searching for alleles that are associated with incidence of a given disease or phenotype.[<a class="bk_pop" href="#CDR0000299612_rl_981_184">184</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_185">185</a>] The strong correlation between many alleles located close to one another on a given chromosome (called linkage disequilibrium) allows one to &#x0201c;scan&#x0201d; the genome without having to test all tens of millions of known SNPs. GWAS can test approximately 1 million to 5 million SNPs and ascertain almost all common inherited variants in the genome.</p><p id="CDR0000299612__836">In a GWAS, allele frequency is compared for each SNP between cases and controls. Promising signals&#x02013;in which allele frequencies deviate significantly in case compared to control populations&#x02013;are validated in replication cohorts. In order to have adequate statistical power to identify variants associated with a phenotype, large numbers of cases and controls, typically thousands of each, are studied. Because 1 million SNPs are typically evaluated in a GWAS, <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460147/" class="def">false-positive findings</a> are expected to occur frequently when standard statistical thresholds are used. Therefore, stringent statistical rules are used to declare a positive finding, usually using a threshold of <i>P</i> &#x0003c; 1 &#x000d7; 10<sup>-7</sup>.[<a class="bk_pop" href="#CDR0000299612_rl_981_186">186</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_188">188</a>]</p><p id="CDR0000299612__837">To date, over 100 variants associated with prostate cancer have been identified by well-powered GWAS and validated in independent cohorts (refer to the <a href="http://www.ebi.ac.uk/gwas/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">National Human Genome Research Institute GWAS catalog</a> and [<a class="bk_pop" href="#CDR0000299612_rl_981_189">189</a>]).[<a class="bk_pop" href="#CDR0000299612_rl_981_190">190</a>] These studies have revealed convincing associations between specific inherited variants and prostate cancer risk. In addition, men with early-onset prostate cancer have a higher cumulative number of risk alleles compared with older prostate cancer cases and compared with public controls.[<a class="bk_pop" href="#CDR0000299612_rl_981_191">191</a>] However, the findings should be qualified with a few important considerations: </p><ol id="CDR0000299612__838"><li class="half_rhythm"><div>GWAS reported thus far have been designed to identify genetic polymorphisms that are relatively common in the population. It is very unlikely that an allele with high frequency in the population by itself contributes substantially to cancer risk. This, coupled with the polygenic nature of prostate tumorigenesis, means that <b>the contribution by any single variant identified by GWAS to date is quite small, generally with an OR for disease risk of less than 1.3</b>. In addition, despite extensive genome-wide interrogation of common polymorphisms in tens of thousands of cases and controls, GWAS findings to date do not account for even half of the genetic component of prostate cancer risk.[<a class="bk_pop" href="#CDR0000299612_rl_981_189">189</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_192">192</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_193">193</a>] </div></li><li class="half_rhythm"><div><b>Variants uncovered by GWAS are not likely to be the ones directly contributing to disease risk.</b> As mentioned above, SNPs exist in linkage disequilibrium blocks and are merely proxies for a set of variants&#x02014;both known and previously undiscovered&#x02014;within a given block. The causal allele is located somewhere within that linkage disequilibrium block. </div></li><li class="half_rhythm"><div>Admixture by groups of different ancestry can confound GWAS findings (i.e., a statistically significant finding could reflect a disproportionate number of subjects in the cases versus controls, rather than a true association with disease). Therefore, GWAS subjects, by design, comprise only one ancestral group. As a result, <b>some populations remain underrepresented in genome-wide analyses</b>. </div></li></ol><p id="CDR0000299612__1071">The implications of these points are discussed in greater detail below. Additional detail can be found elsewhere.[<a class="bk_pop" href="#CDR0000299612_rl_981_194">194</a>]</p></div><div id="CDR0000299612__840"><h4>Susceptibility loci identified in GWAS</h4><p id="CDR0000299612__841">Beginning in 2006, multiple genome-wide studies seeking associations with prostate cancer risk converged on the same chromosomal locus, 8q24. The population-attributable risk of prostate cancer from these alleles was 8%. The results were replicated in European American, African American, Icelandic, and Swedish populations.[<a class="bk_pop" href="#CDR0000299612_rl_981_68">68</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_70">70</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_75">75</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_80">80</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_83">83</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_195">195</a> ,<a class="bk_pop" href="#CDR0000299612_rl_981_86">86</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_87">87</a>] In all, approximately nine genetic polymorphisms, all independently associated with disease, reside within five distinct 8q24 risk regions.[<a class="bk_pop" href="#CDR0000299612_rl_981_86">86</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_87">87</a>]</p><p id="CDR0000299612__842">Since the discovery of prostate cancer risk loci at 8q24, more than 100 variants at other chromosomal risk loci similarly have been identified by multistage GWAS comprised of thousands of cases and controls and validated in independent cohorts. The most convincing associations reported to date for men of European ancestry are annotated in the <a href="http://www.ebi.ac.uk/gwas/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">National Human Genome Research Institute GWAS catalog</a>.</p><div id="CDR0000299612__850"><h5><div class="milestone-start" id="CDR0000299612__1212"></div>GWAS in populations of non-European ancestry</h5><p id="CDR0000299612__851">Most prostate cancer GWAS data generated to date have been derived from populations of European descent. This shortcoming is profound, considering that linkage disequilibrium structure, SNP frequencies, and incidence of disease differ across ancestral groups. To provide meaningful genetic data to all patients, well-designed, adequately powered GWAS must be aimed at specific ethnic groups.[<a class="bk_pop" href="#CDR0000299612_rl_981_196">196</a>] Most work in this regard has focused on African American, Chinese, and Japanese men. The most convincing associations reported to date for men of non-European ancestry are annotated in the <a href="http://www.ebi.ac.uk/gwas/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">National Human Genome Research Institute GWAS catalog</a>.</p><p id="CDR0000299612__852">The African American population is of particular interest because American men with African ancestry are at higher risk of prostate cancer than any other group. In addition, inherited variation at the 8q24 risk locus appears to contribute to differences in African American and European American incidence of disease.[<a class="bk_pop" href="#CDR0000299612_rl_981_69">69</a>] A handful of studies have sought to determine whether GWAS findings in men of European ancestry are applicable to men of African ancestry. One study interrogated 28 known prostate cancer risk loci via fine mapping in 3,425 African American cases and 3,290 African American controls.[<a class="bk_pop" href="#CDR0000299612_rl_981_197">197</a>] Another study examined 82 previously reported risk variants in 4,853 prostate cancer cases and 4,678 controls.[<a class="bk_pop" href="#CDR0000299612_rl_981_198">198</a>] The majority of risk alleles (approximately 83%) are shared across African American and European American populations. </p><p id="CDR0000299612__1461">Statistically well-powered GWAS have also been launched to examine inherited cancer risk in Japanese and Chinese populations. Investigators discovered that these populations share many risk regions observed in African American men in other studies.[<a class="bk_pop" href="#CDR0000299612_rl_981_199">199</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_201">201</a>] Additionally, risk regions that are unique to these ancestral groups were identified. Ongoing work in larger cohorts will validate and expand upon these findings.<div class="milestone-end"></div></p></div></div><div id="CDR0000299612__843"><h4>Clinical application of GWAS findings</h4><p id="CDR0000299612__844">Because the variants discovered by GWAS are markers of risk, there has been great interest in using genotype as a screening tool to predict the development of prostate cancer. As increasing numbers of risk SNPs have been discovered, they have been applied to clinical cohorts alongside traditional variables such as PSA and family history. An initial study of the first five known risk SNPs could not demonstrate that they added clinically meaningful data.[<a class="bk_pop" href="#CDR0000299612_rl_981_78">78</a>] In later trials, larger risk-SNP panels also could not demonstrate usefulness for a large proportion of the screening population. However, the small subset of men carrying large numbers of risk alleles, especially those with positive family histories, were at appreciably high risk of developing prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_981_78">78</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_202">202</a>]</p><p id="CDR0000299612__1116">In July 2012, the Agency for Healthcare Research and Quality (AHRQ) published a report that sought to address the clinical utility of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460154/" class="def">germline</a> genotyping of prostate cancer risk markers discovered by GWAS.[<a class="bk_pop" href="#CDR0000299612_rl_981_203">203</a>] Largely on the basis of the evidence from the studies described above, AHRQ concluded that established prostate cancer risk SNPs have &#x0201c;poor discriminative ability&#x0201d; to identify individuals at risk of developing the disease. Similarly, the authors of another study estimated that the contribution of GWAS polymorphisms in determining the risk of developing prostate cancer will be modest, even as meta-analyses or larger studies uncover additional &#x0201c;common&#x0201d; risk alleles (alleles carried by &#x0003e;1%&#x02013;5% of individuals within the population).[<a class="bk_pop" href="#CDR0000299612_rl_981_204">204</a>] </p><p id="CDR0000299612__1413">By 2014, approximately 100 bona fide prostate cancer risk variants had been annotated. A polygenic risk score comprising the full complement of known risk SNPs has been proposed that could account for a 2.9-fold increase in prostate cancer risk among men in the top 10% risk stratum and a 5.7-fold risk increase among men in top 1% risk stratum, compared with the population average. The authors concluded that targeted germline genetic testing, perhaps focusing on men with a family history of prostate cancer, may help improve the accuracy of PSA screening.[<a class="bk_pop" href="#CDR0000299612_rl_981_189">189</a>] Larger cohorts have validated the finding that those at the extremes of risk allele status carry appreciably greater or less prostate cancer risk, though these subsets represent a very small fraction of the overall screening population.[<a class="bk_pop" href="#CDR0000299612_rl_981_205">205</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_206">206</a>] A 2016 analysis of a collection of risk variants suggested an association between cumulative risk allele status and early-onset prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_981_207">207</a>]</p><p id="CDR0000299612__1136">GWAS findings to date account for only 33% to 50% of heritable risk of disease. Research is ongoing to uncover the remaining portion of genetic risk. This includes the discovery of rarer alleles with higher ORs for risk.[<a class="bk_pop" href="#CDR0000299612_rl_981_208">208</a>]</p><p id="CDR0000299612__1137">In addition, other genetic polymorphisms, such as copy number variants, are becoming increasingly amenable to testing. As the full picture of inherited prostate cancer risk becomes more complete, it is hoped that germline information will become clinically useful. Finally, GWAS are providing more insight into the mechanism of prostate cancer risk. Notably, almost all reported prostate cancer risk alleles reside in nonprotein-coding regions of the genome; however, the underlying biological mechanism of disease susceptibility was initially unclear. It is now apparent that a large proportion of risk variants affect the activity of regulatory elements and, in turn, distal genes.[<a class="bk_pop" href="#CDR0000299612_rl_981_209">209</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_212">212</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_212">212</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_217">217</a>] As GWAS elucidate these networks, it is hoped that new therapies and chemopreventive strategies will follow.</p></div><div id="CDR0000299612__1200"><h4>Modified approaches to GWAS</h4><p id="CDR0000299612__1201">A 2012 study used a novel approach to identify polymorphisms associated with risk.[<a class="bk_pop" href="#CDR0000299612_rl_981_218">218</a>] On the basis of the well-established principle that the AR plays a prominent role in prostate tumorigenesis, the investigators targeted SNPs that reside at sites where the AR binds to DNA. They leveraged data from previous studies that mapped thousands of AR binding sites genome-wide in prostate cancer cell lines to select SNPs to genotype in the Johns Hopkins Hospital cohort of 1,964 cases and 3,172 controls and the Cancer Genetic Markers of Susceptibility cohort of 1,172 cases and 1,157 controls. This modified GWAS revealed a SNP (<a href="/snp/?term=4919743" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs4919743</a>) located at the <i>KRT8</i> locus at 12q13.13&#x02014;a locus previously implicated in cancer development&#x02014;associated with prostate cancer risk, with an OR of 1.22 (95% CI, 1.13&#x02013;1.32). The study is notable for its use of a reasonable hypothesis and prior data to guide a genome-wide search for risk variants. Other approaches include evaluating SNPs implicated in a phenotype other than prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_981_219">219</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_220">220</a>]</p></div><div id="CDR0000299612__856"><h4>Conclusions</h4><p id="CDR0000299612__857">Although the statistical evidence for an association between genetic variation at these loci and prostate cancer risk is overwhelming, the clinical relevance of the variants and the mechanism(s) by which they lead to increased risk are unclear and will require further characterization. Additionally, these loci are associated with very modest risk estimates and explain only a fraction of overall inherited risk. Further work will include genome-wide analysis of rarer alleles catalogued via sequencing efforts, such as the 1000 Genomes Project.[<a class="bk_pop" href="#CDR0000299612_rl_981_221">221</a>] Disease-associated alleles with frequencies of less than 1% in the population may prove to be more highly penetrant and clinically useful. In addition, further work is needed to describe the landscape of genetic risk in non-European populations. Finally, until the individual and collective influences of genetic risk alleles are evaluated prospectively, their clinical utility will remain difficult to fully assess.</p></div></div><div id="CDR0000299612__645"><h3>Inherited Variants Associated With Prostate Cancer Aggressiveness</h3><p id="CDR0000299612__1422">Prostate cancer is biologically and clinically heterogeneous. Many tumors are indolent and are successfully managed with observation alone. Other tumors are quite aggressive and prove deadly. Several variables are used to determine prostate cancer aggressiveness at the time of diagnosis, such as Gleason score and PSA, but these are imperfect. Additional markers are needed because sound treatment decisions depend on accurate prognostic information. Germline genetic variants are attractive markers because they are present, easily detectable, and static throughout life. </p><p id="CDR0000299612__1423">Findings to date regarding inherited risk of aggressive disease are considered preliminary. As described below, germline SNPs associated with prostate cancer aggressiveness are derived primarily from three methods of analysis: 1) annotation of common variants within candidate risk genes; 2) assessment of known overall prostate cancer risk SNPs for aggressiveness; and 3) GWAS for prostate cancer aggressiveness. Further work is needed to validate findings and assess these associations prospectively.</p><p id="CDR0000299612__1424">Like studies of the genetics of overall prostate cancer risk, initial studies of inherited risk of aggressive prostate cancer focused on polymorphisms in candidate genes.[<a class="bk_pop" href="#CDR0000299612_rl_981_166">166</a>,<a class="bk_pop" href="#CDR0000299612_rl_981_222">222</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_227">227</a>] Next, as GWAS revealed prostate cancer risk SNPs, several research teams sought to determine whether certain overall risk SNPs were also associated with aggressiveness.[<a class="bk_pop" href="#CDR0000299612_rl_981_228">228</a>-<a class="bk_pop" href="#CDR0000299612_rl_981_235">235</a>]
</p><p id="CDR0000299612__1425">There has been great interest in launching more unbiased, genome-wide searches for inherited variants associated with indolent versus aggressive prostate cancer.</p><p id="CDR0000299612__1439">Associations between inherited variants and prostate cancer aggressiveness have been reported. A multistage, case-only GWAS led by the National Cancer Institute examined 12,518 prostate cancer cases and discovered an association between genotype and Gleason score at two polymorphisms: <a href="/snp/?term=35148638" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs35148638</a> at 5q14.3 (<i>RASA1</i>, <i>P</i> = 6.49 &#x000d7; 10<sup>-9</sup>) and <a href="/snp/?term=78943174" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs78943174</a> at 3q26.31 (<i>NAALADL2</i>, <i>P</i> = 4.18 &#x000d7; 10<sup>-8</sup>).[<a class="bk_pop" href="#CDR0000299612_rl_981_236">236</a>] Although the associations discovered in this trial may provide valuable insight into the biology of high-grade disease, it is unclear whether they will prove clinically useful. This study raises the issue of the definition of &#x0201c;prostate cancer aggressiveness.&#x0201d; Gleason score is used as a prognostic marker but is not a perfect surrogate for prostate cancer&#x02013;specific survival or overall survival.</p><p id="CDR0000299612__1426">A few GWAS designed specifically to focus on prostate cancer subjects with documented disease-related outcomes have been launched. In one study&#x02014;a genome-wide analysis in which two of the largest international prostate cancer genotyped cohorts were combined for analysis (24,023 prostate cancer cases, including 3,513 disease-specific deaths)&#x02014;no SNP was significantly associated with prostate cancer&#x02013;specific survival.[<a class="bk_pop" href="#CDR0000299612_rl_981_237">237</a>]
Similarly, in a smaller study assessing prostate cancer&#x02013;specific mortality (196 lethal cases, 368 long-term survivors), no variants were significantly associated with outcome.[<a class="bk_pop" href="#CDR0000299612_rl_981_238">238</a>] More recently, a GWAS was conducted across 24,023 prostate cancer patients and similarly found no significant association between genetic variants and prostate cancer survival.[<a class="bk_pop" href="#CDR0000299612_rl_981_236">236</a>] The authors of these studies concluded that any SNP associated with prostate cancer outcome must be fairly rare in the general population (minor allele frequency below 1%). </p></div><div id="CDR0000299612_rl_981"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000299612_rl_981_1">Easton DF, Schaid DJ, Whittemore AS, et al.: Where are the prostate cancer genes?--A summary of eight genome wide searches. Prostate 57 (4): 261-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601022" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601022</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_2">Carter BS, Bova GS, Beaty TH, et al.: Hereditary prostate cancer: epidemiologic and clinical features. J Urol 150 (3): 797-802, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8345587" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8345587</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_3">Siddiqui SA, Sengupta S, Slezak JM, et al.: Impact of familial and hereditary prostate cancer on cancer specific survival after radical retropubic prostatectomy. J Urol 176 (3): 1118-21, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16890705" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16890705</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_4">American Cancer Society: Cancer Facts and Figures 2018. Atlanta, Ga: American Cancer Society, 2018. <a href="https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online</a>. Last accessed April 27, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_5">Stanford JL, McDonnell SK, Friedrichsen DM, et al.: Prostate cancer and genetic susceptibility: a genome scan incorporating disease aggressiveness. Prostate 66 (3): 317-25, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16245279" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16245279</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_6">Chang BL, Isaacs SD, Wiley KE, et al.: Genome-wide screen for prostate cancer susceptibility genes in men with clinically significant disease. Prostate 64 (4): 356-61, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15754351" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15754351</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_7">Lange EM, Ho LA, Beebe-Dimmer JL, et al.: Genome-wide linkage scan for prostate cancer susceptibility genes in men with aggressive disease: significant evidence for linkage at chromosome 15q12. Hum Genet 119 (4): 400-7, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16508751" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16508751</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_8">Witte JS, Goddard KA, Conti DV, et al.: Genomewide scan for prostate cancer-aggressiveness loci. Am J Hum Genet 67 (1): 92-9, 2000. [<a href="/pmc/articles/PMC1287106/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1287106</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10825281" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10825281</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_9">Witte JS, Suarez BK, Thiel B, et al.: Genome-wide scan of brothers: replication and fine mapping of prostate cancer susceptibility and aggressiveness loci. Prostate 57 (4): 298-308, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601026" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601026</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_10">Slager SL, Zarfas KE, Brown WM, et al.: Genome-wide linkage scan for prostate cancer aggressiveness loci using families from the University of Michigan Prostate Cancer Genetics Project. Prostate 66 (2): 173-9, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16173044" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16173044</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_11">Slager SL, Schaid DJ, Cunningham JM, et al.: Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet 72 (3): 759-62, 2003. [<a href="/pmc/articles/PMC1180252/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1180252</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12563560" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12563560</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_12">Smith JR, Freije D, Carpten JD, et al.: Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 274 (5291): 1371-4, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8910276" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8910276</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_13">Gr&#x000f6;nberg H, Xu J, Smith JR, et al.: Early age at diagnosis in families providing evidence of linkage to the hereditary prostate cancer locus (HPC1) on chromosome 1. Cancer Res 57 (21): 4707-9, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9354426" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9354426</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_14">Gr&#x000f6;nberg H, Isaacs SD, Smith JR, et al.: Characteristics of prostate cancer in families potentially linked to the hereditary prostate cancer 1 (HPC1) locus. JAMA 278 (15): 1251-5, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9333266" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9333266</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_15">McIndoe RA, Stanford JL, Gibbs M, et al.: Linkage analysis of 49 high-risk families does not support a common familial prostate cancer-susceptibility gene at 1q24-25. Am J Hum Genet 61 (2): 347-53, 1997. [<a href="/pmc/articles/PMC1715908/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1715908</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9311739" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9311739</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_16">Berthon P, Valeri A, Cohen-Akenine A, et al.: Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet 62 (6): 1416-24, 1998. [<a href="/pmc/articles/PMC1377158/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1377158</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9585607" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9585607</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_17">Eeles RA, Durocher F, Edwards S, et al.: Linkage analysis of chromosome 1q markers in 136 prostate cancer families. The Cancer Research Campaign/British Prostate Group U.K. Familial Prostate Cancer Study Collaborators. Am J Hum Genet 62 (3): 653-8, 1998. [<a href="/pmc/articles/PMC1376940/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1376940</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9497242" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9497242</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_18">Goode EL, Stanford JL, Chakrabarti L, et al.: Linkage analysis of 150 high-risk prostate cancer families at 1q24-25. Genet Epidemiol 18 (3): 251-75, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10723109" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10723109</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_19">Cooney KA, McCarthy JD, Lange E, et al.: Prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 89 (13): 955-9, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9214675" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9214675</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_20">Hsieh CL, Oakley-Girvan I, Gallagher RP, et al.: Re: prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 89 (24): 1893-4, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9414179" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9414179</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_21">Neuhausen SL, Farnham JM, Kort E, et al.: Prostate cancer susceptibility locus HPC1 in Utah high-risk pedigrees. Hum Mol Genet 8 (13): 2437-42, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10556291" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10556291</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_22">Xu J: Combined analysis of hereditary prostate cancer linkage to 1q24-25: results from 772 hereditary prostate cancer families from the International Consortium for Prostate Cancer Genetics. Am J Hum Genet 66 (3): 945-57, 2000. [<a href="/pmc/articles/PMC1288175/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1288175</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10712209" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10712209</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_23">Xu J, Gillanders EM, Isaacs SD, et al.: Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate 57 (4): 320-5, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601028" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601028</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_24">Brown WM, Lange EM, Chen H, et al.: Hereditary prostate cancer in African American families: linkage analysis using markers that map to five candidate susceptibility loci. Br J Cancer 90 (2): 510-4, 2004. [<a href="/pmc/articles/PMC2410149/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2410149</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14735201" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14735201</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_25">Wang L, McDonnell SK, Elkins DA, et al.: Analysis of the RNASEL gene in familial and sporadic prostate cancer. Am J Hum Genet 71 (1): 116-23, 2002. [<a href="/pmc/articles/PMC384968/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC384968</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12022038" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12022038</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_26">Chen H, Griffin AR, Wu YQ, et al.: RNASEL mutations in hereditary prostate cancer. J Med Genet 40 (3): e21, 2003. [<a href="/pmc/articles/PMC1735394/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1735394</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12624150" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12624150</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_27">R&#x000f6;kman A, Ikonen T, Sepp&#x000e4;l&#x000e4; EH, et al.: Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 70 (5): 1299-304, 2002. [<a href="/pmc/articles/PMC447604/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC447604</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11941539" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11941539</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_28">Rennert H, Bercovich D, Hubert A, et al.: A novel founder mutation in the RNASEL gene, 471delAAAG, is associated with prostate cancer in Ashkenazi Jews. Am J Hum Genet 71 (4): 981-4, 2002. [<a href="/pmc/articles/PMC378554/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC378554</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12145743" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12145743</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_29">Casey G, Neville PJ, Plummer SJ, et al.: RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet 32 (4): 581-3, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12415269" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12415269</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_30">Wiklund F, Jonsson BA, Brookes AJ, et al.: Genetic analysis of the RNASEL gene in hereditary, familial, and sporadic prostate cancer. Clin Cancer Res 10 (21): 7150-6, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15534086" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15534086</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_31">Rennert H, Zeigler-Johnson CM, Addya K, et al.: Association of susceptibility alleles in ELAC2/HPC2, RNASEL/HPC1, and MSR1 with prostate cancer severity in European American and African American men. Cancer Epidemiol Biomarkers Prev 14 (4): 949-57, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15824169" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15824169</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_32">Li H, Tai BC: RNASEL gene polymorphisms and the risk of prostate cancer: a meta-analysis. Clin Cancer Res 12 (19): 5713-9, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/17020975" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17020975</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_33">Agalliu I, Leanza SM, Smith L, et al.: Contribution of HPC1 (RNASEL) and HPCX variants to prostate cancer in a founder population. Prostate 70 (15): 1716-27, 2010. [<a href="/pmc/articles/PMC3404133/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3404133</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20564318" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20564318</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_34">Wei B, Xu Z, Ruan J, et al.: RNASEL Asp541Glu and Arg462Gln polymorphisms in prostate cancer risk: evidences from a meta-analysis. Mol Biol Rep 39 (3): 2347-53, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/21656378" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21656378</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_35">Cancel-Tassin G, Latil A, Val&#x000e9;ri A, et al.: PCAP is the major known prostate cancer predisposing locus in families from south and west Europe. Eur J Hum Genet 9 (2): 135-42, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11313747" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11313747</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_36">Whittemore AS, Lin IG, Oakley-Girvan I, et al.: No evidence of linkage for chromosome 1q42.2-43 in prostate cancer. Am J Hum Genet 65 (1): 254-6, 1999. [<a href="/pmc/articles/PMC1378099/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1378099</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10364541" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10364541</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_37">Berry R, Schaid DJ, Smith JR, et al.: Linkage analyses at the chromosome 1 loci 1q24-25 (HPC1), 1q42.2-43 (PCAP), and 1p36 (CAPB) in families with hereditary prostate cancer. Am J Hum Genet 66 (2): 539-46, 2000. [<a href="/pmc/articles/PMC1288107/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1288107</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10677314" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10677314</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_38">Edwards S, Meitz J, Eles R, et al.: Results of a genome-wide linkage analysis in prostate cancer families ascertained through the ACTANE consortium. Prostate 57 (4): 270-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601023" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601023</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_39">Cunningham JM, McDonnell SK, Marks A, et al.: Genome linkage screen for prostate cancer susceptibility loci: results from the Mayo Clinic Familial Prostate Cancer Study. Prostate 57 (4): 335-46, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601030" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601030</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_40">Janer M, Friedrichsen DM, Stanford JL, et al.: Genomic scan of 254 hereditary prostate cancer families. Prostate 57 (4): 309-19, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601027" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601027</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_41">Lange EM, Gillanders EM, Davis CC, et al.: Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 57 (4): 326-34, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601029" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601029</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_42">Schleutker J, Baffoe-Bonnie AB, Gillanders E, et al.: Genome-wide scan for linkage in Finnish hereditary prostate cancer (HPC) families identifies novel susceptibility loci at 11q14 and 3p25-26. Prostate 57 (4): 280-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601024" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601024</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_43">Wiklund F, Gillanders EM, Albertus JA, et al.: Genome-wide scan of Swedish families with hereditary prostate cancer: suggestive evidence of linkage at 5q11.2 and 19p13.3. Prostate 57 (4): 290-7, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601025" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601025</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_44">Lu L, Cancel-Tassin G, Valeri A, et al.: Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG. Prostate 72 (4): 410-26, 2012. [<a href="/pmc/articles/PMC3568777/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3568777</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21748754" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21748754</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_45">Xu J, Meyers D, Freije D, et al.: Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 20 (2): 175-9, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9771711" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9771711</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_46">Lesko SM, Rosenberg L, Shapiro S: Family history and prostate cancer risk. Am J Epidemiol 144 (11): 1041-7, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8942435" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8942435</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_47">Lange EM, Chen H, Brierley K, et al.: Linkage analysis of 153 prostate cancer families over a 30-cM region containing the putative susceptibility locus HPCX. Clin Cancer Res 5 (12): 4013-20, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10632333" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10632333</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_48">Peters MA, Jarvik GP, Janer M, et al.: Genetic linkage analysis of prostate cancer families to Xq27-28. Hum Hered 51 (1-2): 107-13, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11096277" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11096277</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_49">Farnham JM, Camp NJ, Swensen J, et al.: Confirmation of the HPCX prostate cancer predisposition locus in large Utah prostate cancer pedigrees. Hum Genet 116 (3): 179-85, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15592687" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15592687</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_50">Baffoe-Bonnie AB, Smith JR, Stephan DA, et al.: A major locus for hereditary prostate cancer in Finland: localization by linkage disequilibrium of a haplotype in the HPCX region. Hum Genet 117 (4): 307-16, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15906096" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15906096</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_51">Yaspan BL, McReynolds KM, Elmore JB, et al.: A haplotype at chromosome Xq27.2 confers susceptibility to prostate cancer. Hum Genet 123 (4): 379-86, 2008. [<a href="/pmc/articles/PMC2811403/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2811403</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18350320" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18350320</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_52">Gibbs M, Stanford JL, McIndoe RA, et al.: Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 64 (3): 776-87, 1999. [<a href="/pmc/articles/PMC1377795/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1377795</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10053012" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10053012</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_53">Badzioch M, Eeles R, Leblanc G, et al.: Suggestive evidence for a site specific prostate cancer gene on chromosome 1p36. The CRC/BPG UK Familial Prostate Cancer Study Coordinators and Collaborators. The EU Biomed Collaborators. J Med Genet 37 (12): 947-9, 2000. [<a href="/pmc/articles/PMC1734501/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1734501</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11186936" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11186936</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_54">Matsui H, Suzuki K, Ohtake N, et al.: Genomewide linkage analysis of familial prostate cancer in the Japanese population. J Hum Genet 49 (1): 9-15, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14666403" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14666403</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_55">Bock CH, Cunningham JM, McDonnell SK, et al.: Analysis of the prostate cancer-susceptibility locus HPC20 in 172 families affected by prostate cancer. Am J Hum Genet 68 (3): 795-801, 2001. [<a href="/pmc/articles/PMC1274493/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1274493</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11179028" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11179028</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_56">Zheng SL, Xu J, Isaacs SD, et al.: Evidence for a prostate cancer linkage to chromosome 20 in 159 hereditary prostate cancer families. Hum Genet 108 (5): 430-5, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11409871" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11409871</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_57">Schaid DJ, Chang BL; International Consortium For Prostate Cancer Genetics: Description of the International Consortium For Prostate Cancer Genetics, and failure to replicate linkage of hereditary prostate cancer to 20q13. Prostate 63 (3): 276-90, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15599943" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15599943</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_58">Berry R, Schroeder JJ, French AJ, et al.: Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet 67 (1): 82-91, 2000. [<a href="/pmc/articles/PMC1287105/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1287105</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10820130" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10820130</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_59">Xu J, Zheng SL, Hawkins GA, et al.: Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22-23. Am J Hum Genet 69 (2): 341-50, 2001. [<a href="/pmc/articles/PMC1235306/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1235306</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11443539" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11443539</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_60">Xu J, Zheng SL, Komiya A, et al.: Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32 (2): 321-5, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12244320" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12244320</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_61">Xu J, Zheng SL, Komiya A, et al.: Common sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Am J Hum Genet 72 (1): 208-12, 2003. [<a href="/pmc/articles/PMC378627/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC378627</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12471593" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12471593</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_62">Sepp&#x000e4;l&#x000e4; EH, Ikonen T, Autio V, et al.: Germ-line alterations in MSR1 gene and prostate cancer risk. Clin Cancer Res 9 (14): 5252-6, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14614006" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14614006</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_63">Wang L, McDonnell SK, Cunningham JM, et al.: No association of germline alteration of MSR1 with prostate cancer risk. Nat Genet 35 (2): 128-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12958598" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12958598</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_64">Miller DC, Zheng SL, Dunn RL, et al.: Germ-line mutations of the macrophage scavenger receptor 1 gene: association with prostate cancer risk in African-American men. Cancer Res 63 (13): 3486-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12839931" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12839931</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_65">Hawkins GA, Mychaleckyj JC, Zheng SL, et al.: Germline sequence variants of the LZTS1 gene are associated with prostate cancer risk. Cancer Genet Cytogenet 137 (1): 1-7, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12377406" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12377406</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_66">Sun J, Hsu FC, Turner AR, et al.: Meta-analysis of association of rare mutations and common sequence variants in the MSR1 gene and prostate cancer risk. Prostate 66 (7): 728-37, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16425212" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16425212</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_67">Chang BL, Liu W, Sun J, et al.: Integration of somatic deletion analysis of prostate cancers and germline linkage analysis of prostate cancer families reveals two small consensus regions for prostate cancer genes at 8p. Cancer Res 67 (9): 4098-103, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17483320" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17483320</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_68">Amundadottir LT, Sulem P, Gudmundsson J, et al.: A common variant associated with prostate cancer in European and African populations. Nat Genet 38 (6): 652-8, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16682969" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16682969</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_69">Freedman ML, Haiman CA, Patterson N, et al.: Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A 103 (38): 14068-73, 2006. [<a href="/pmc/articles/PMC1599913/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1599913</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16945910" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16945910</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_70">Schumacher FR, Feigelson HS, Cox DG, et al.: A common 8q24 variant in prostate and breast cancer from a large nested case-control study. Cancer Res 67 (7): 2951-6, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17409400" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17409400</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_71">Suuriniemi M, Agalliu I, Schaid DJ, et al.: Confirmation of a positive association between prostate cancer risk and a locus at chromosome 8q24. Cancer Epidemiol Biomarkers Prev 16 (4): 809-14, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17416775" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17416775</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_72">Wang L, McDonnell SK, Slusser JP, et al.: Two common chromosome 8q24 variants are associated with increased risk for prostate cancer. Cancer Res 67 (7): 2944-50, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17409399" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17409399</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_73">Yeager M, Orr N, Hayes RB, et al.: Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39 (5): 645-9, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17401363" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17401363</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_74">Gudmundsson J, Sulem P, Manolescu A, et al.: Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39 (5): 631-7, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17401366" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17401366</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_75">Haiman CA, Patterson N, Freedman ML, et al.: Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 39 (5): 638-44, 2007. [<a href="/pmc/articles/PMC2638766/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2638766</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17401364" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17401364</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_76">Beebe-Dimmer JL, Levin AM, Ray AM, et al.: Chromosome 8q24 markers: risk of early-onset and familial prostate cancer. Int J Cancer 122 (12): 2876-9, 2008. [<a href="/pmc/articles/PMC2695763/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2695763</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18360876" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18360876</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_77">Sun J, Lange EM, Isaacs SD, et al.: Chromosome 8q24 risk variants in hereditary and non-hereditary prostate cancer patients. Prostate 68 (5): 489-97, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18213635" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18213635</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_78">Zheng SL, Sun J, Wiklund F, et al.: Cumulative association of five genetic variants with prostate cancer. N Engl J Med 358 (9): 910-9, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18199855" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18199855</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_79">Salinas CA, Koopmeiners JS, Kwon EM, et al.: Clinical utility of five genetic variants for predicting prostate cancer risk and mortality. Prostate 69 (4): 363-72, 2009. [<a href="/pmc/articles/PMC2788301/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2788301</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19058137" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19058137</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_80">Zheng SL, Sun J, Cheng Y, et al.: Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst 99 (20): 1525-33, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17925536" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17925536</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_81">Savage SA, Greene MH: The evidence for prostate cancer risk loci at 8q24 grows stronger. J Natl Cancer Inst 99 (20): 1499-501, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17925532" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17925532</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_82">Salinas CA, Kwon E, Carlson CS, et al.: Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 17 (5): 1203-13, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18483343" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18483343</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_83">Zheng SL, Hsing AW, Sun J, et al.: Association of 17 prostate cancer susceptibility loci with prostate cancer risk in Chinese men. Prostate 70 (4): 425-32, 2010. [<a href="/pmc/articles/PMC3078699/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3078699</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19866473" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19866473</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_84">Robbins C, Torres JB, Hooker S, et al.: Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res 17 (12): 1717-22, 2007. [<a href="/pmc/articles/PMC2099580/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2099580</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17978284" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17978284</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_85">Cheng I, Plummer SJ, Jorgenson E, et al.: 8q24 and prostate cancer: association with advanced disease and meta-analysis. Eur J Hum Genet 16 (4): 496-505, 2008. [<a href="/pmc/articles/PMC2819154/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2819154</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18231127" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18231127</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_86">Yeager M, Chatterjee N, Ciampa J, et al.: Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 41 (10): 1055-7, 2009. [<a href="/pmc/articles/PMC3430510/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3430510</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19767755" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19767755</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_87">Al Olama AA, Kote-Jarai Z, Giles GG, et al.: Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet 41 (10): 1058-60, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19767752" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19767752</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_88">Larson GP, Ding Y, Cheng LS, et al.: Genetic linkage of prostate cancer risk to the chromosome 3 region bearing FHIT. Cancer Res 65 (3): 805-14, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15705877" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15705877</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_89">Ding Y, Larson G, Rivas G, et al.: Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk. PLoS ONE 3 (10): e3533, 2008. [<a href="/pmc/articles/PMC2568805/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2568805</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18953408" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18953408</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_90">Levin AM, Ray AM, Zuhlke KA, et al.: Association between germline variation in the FHIT gene and prostate cancer in Caucasians and African Americans. Cancer Epidemiol Biomarkers Prev 16 (6): 1294-7, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17548701" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17548701</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_91">R&#x000f6;kman A, Baffoe-Bonnie AB, Gillanders E, et al.: Hereditary prostate cancer in Finland: fine-mapping validates 3p26 as a major predisposition locus. Hum Genet 116 (1-2): 43-50, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15549392" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15549392</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_92">Xu J, Dimitrov L, Chang BL, et al.: A combined genomewide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet 77 (2): 219-29, 2005. [<a href="/pmc/articles/PMC1224525/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1224525</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15988677" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15988677</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_93">Chang BL, Gillanders EM, Isaacs SD, et al.: Evidence for a general cancer susceptibility locus at 3p24 in families with hereditary prostate cancer. Cancer Lett 219 (2): 177-82, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15723717" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15723717</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_94">Christensen GB, Baffoe-Bonnie AB, George A, et al.: Genome-wide linkage analysis of 1,233 prostate cancer pedigrees from the International Consortium for Prostate Cancer Genetics using novel sumLINK and sumLOD analyses. Prostate 70 (7): 735-44, 2010. [<a href="/pmc/articles/PMC3428045/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3428045</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20333727" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20333727</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_95">Schaid DJ, Stanford JL, McDonnell SK, et al.: Genome-wide linkage scan of prostate cancer Gleason score and confirmation of chromosome 19q. Hum Genet 121 (6): 729-35, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17486369" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17486369</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_96">Schaid DJ, McDonnell SK, Zarfas KE, et al.: Pooled genome linkage scan of aggressive prostate cancer: results from the International Consortium for Prostate Cancer Genetics. Hum Genet 120 (4): 471-85, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16932970" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16932970</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_97">Verhage BA, van Houwelingen K, Ruijter TE, et al.: Allelic imbalance in hereditary and sporadic prostate cancer. Prostate 54 (1): 50-7, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12481255" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12481255</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_98">Maier C, Herkommer K, Hoegel J, et al.: A genomewide linkage analysis for prostate cancer susceptibility genes in families from Germany. Eur J Hum Genet 13 (3): 352-60, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15536476" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15536476</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_99">Baffoe-Bonnie AB, Kittles RA, Gillanders E, et al.: Genome-wide linkage of 77 families from the African American Hereditary Prostate Cancer study (AAHPC). Prostate 67 (1): 22-31, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17031815" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17031815</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_100">Gillanders EM, Xu J, Chang BL, et al.: Combined genome-wide scan for prostate cancer susceptibility genes. J Natl Cancer Inst 96 (16): 1240-7, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15316059" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15316059</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_101">Lange EM, Beebe-Dimmer JL, Ray AM, et al.: Genome-wide linkage scan for prostate cancer susceptibility from the University of Michigan Prostate Cancer Genetics Project: suggestive evidence for linkage at 16q23. Prostate 69 (4): 385-91, 2009. [<a href="/pmc/articles/PMC2712837/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2712837</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19035517" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19035517</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_102">Gudmundsson J, Sulem P, Steinthorsdottir V, et al.: Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39 (8): 977-83, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17603485" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17603485</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_103">Agalliu I, Suuriniemi M, Prokunina-Olsson L, et al.: Evaluation of a variant in the transcription factor 7-like 2 (TCF7L2) gene and prostate cancer risk in a population-based study. Prostate 68 (7): 740-7, 2008. [<a href="/pmc/articles/PMC2765224/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2765224</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18302196" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18302196</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_104">Sun J, Purcell L, Gao Z, et al.: Association between sequence variants at 17q12 and 17q24.3 and prostate cancer risk in European and African Americans. Prostate 68 (7): 691-7, 2008. [<a href="/pmc/articles/PMC3176499/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3176499</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18361410" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18361410</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_105">Lange EM, Robbins CM, Gillanders EM, et al.: Fine-mapping the putative chromosome 17q21-22 prostate cancer susceptibility gene to a 10 cM region based on linkage analysis. Hum Genet 121 (1): 49-55, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17120048" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17120048</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_106">Cropp CD, Simpson CL, Wahlfors T, et al.: Genome-wide linkage scan for prostate cancer susceptibility in Finland: evidence for a novel locus on 2q37.3 and confirmation of signal on 17q21-q22. Int J Cancer 129 (10): 2400-7, 2011. [<a href="/pmc/articles/PMC3137914/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3137914</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21207418" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21207418</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_107">Camp NJ, Farnham JM, Cannon-Albright LA: Localization of a prostate cancer predisposition gene to an 880-kb region on chromosome 22q12.3 in Utah high-risk pedigrees. Cancer Res 66 (20): 10205-12, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/17047086" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17047086</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_108">Johanneson B, McDonnell SK, Karyadi DM, et al.: Fine mapping of familial prostate cancer families narrows the interval for a susceptibility locus on chromosome 22q12.3 to 1.36 Mb. Hum Genet 123 (1): 65-75, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18066601" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18066601</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_109">Camp NJ, Cannon-Albright LA, Farnham JM, et al.: Compelling evidence for a prostate cancer gene at 22q12.3 by the International Consortium for Prostate Cancer Genetics. Hum Mol Genet 16 (11): 1271-8, 2007. [<a href="/pmc/articles/PMC2653215/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2653215</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17478474" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17478474</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_110">Johanneson B, McDonnell SK, Karyadi DM, et al.: Family-based association analysis of 42 hereditary prostate cancer families identifies the Apolipoprotein L3 region on chromosome 22q12 as a risk locus. Hum Mol Genet 19 (19): 3852-62, 2010. [<a href="/pmc/articles/PMC2935853/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2935853</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20631155" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20631155</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_111">Ledet EM, Sartor O, Rayford W, et al.: Suggestive evidence of linkage identified at chromosomes 12q24 and 2p16 in African American prostate cancer families from Louisiana. Prostate 72 (9): 938-47, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22615067" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22615067</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_112">Christensen GB, Camp NJ, Farnham JM, et al.: Genome-wide linkage analysis for aggressive prostate cancer in Utah high-risk pedigrees. Prostate 67 (6): 605-13, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17299800" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17299800</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_113">Fitzgerald LM, McDonnell SK, Carlson EE, et al.: Genome-wide linkage analyses of hereditary prostate cancer families with colon cancer provide further evidence for a susceptibility locus on 15q11-q14. Eur J Hum Genet 18 (10): 1141-7, 2010. [<a href="/pmc/articles/PMC2921483/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2921483</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20407467" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20407467</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_114">Johanneson B, Deutsch K, McIntosh L, et al.: Suggestive genetic linkage to chromosome 11p11.2-q12.2 in hereditary prostate cancer families with primary kidney cancer. Prostate 67 (7): 732-42, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17372923" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17372923</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_115">Schroeck FR, Zuhlke KA, Siddiqui J, et al.: Testing for the recurrent HOXB13 G84E germline mutation in men with clinical indications for prostate biopsy. J Urol 189 (3): 849-53, 2013. [<a href="/pmc/articles/PMC4193792/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4193792</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23036981" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23036981</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_116">Fitzgerald LM, Kumar A, Boyle EA, et al.: Germline missense variants in the BTNL2 gene are associated with prostate cancer susceptibility. Cancer Epidemiol Biomarkers Prev 22 (9): 1520-8, 2013. [<a href="/pmc/articles/PMC3769499/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3769499</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23833122" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23833122</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_117">Schork NJ, Fallin D, Thiel B, et al.: The future of genetic case-control studies. Adv Genet 42: 191-212, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11037322" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11037322</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_118">Tang H, Quertermous T, Rodriguez B, et al.: Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 76 (2): 268-75, 2005. [<a href="/pmc/articles/PMC1196372/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1196372</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15625622" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15625622</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_119">Thomas DC, Witte JS: Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev 11 (6): 505-12, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12050090" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12050090</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_120">Ruijter E, van de Kaa C, Miller G, et al.: Molecular genetics and epidemiology of prostate carcinoma. Endocr Rev 20 (1): 22-45, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10047972" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10047972</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_121">Fromont G, Yacoub M, Valeri A, et al.: Differential expression of genes related to androgen and estrogen metabolism in hereditary versus sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev 17 (6): 1505-9, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18559568" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18559568</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_122">Giovannucci E, Stampfer MJ, Krithivas K, et al.: The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci U S A 94 (7): 3320-3, 1997. [<a href="/pmc/articles/PMC20367/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC20367</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9096391" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9096391</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_123">Stanford JL, Just JJ, Gibbs M, et al.: Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 57 (6): 1194-8, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9067292" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9067292</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_124">Ekman P: Genetic and environmental factors in prostate cancer genesis: identifying high-risk cohorts. Eur Urol 35 (5-6): 362-9, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10325490" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10325490</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_125">Chamberlain NL, Driver ED, Miesfeld RL: The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 22 (15): 3181-6, 1994. [<a href="/pmc/articles/PMC310294/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC310294</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8065934" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8065934</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_126">Platz EA, Giovannucci E, Dahl DM, et al.: The androgen receptor gene GGN microsatellite and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 7 (5): 379-84, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9610786" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9610786</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_127">Bratt O, Borg A, Kristoffersson U, et al.: CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk. Br J Cancer 81 (4): 672-6, 1999. [<a href="/pmc/articles/PMC2362888/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2362888</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10574254" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10574254</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_128">Ekman P, Gr&#x000f6;nberg H, Matsuyama H, et al.: Links between genetic and environmental factors and prostate cancer risk. Prostate 39 (4): 262-8, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10344215" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10344215</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_129">Lange EM, Chen H, Brierley K, et al.: The polymorphic exon 1 androgen receptor CAG repeat in men with a potential inherited predisposition to prostate cancer. Cancer Epidemiol Biomarkers Prev 9 (4): 439-42, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10794490" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10794490</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_130">Edwards SM, Badzioch MD, Minter R, et al.: Androgen receptor polymorphisms: association with prostate cancer risk, relapse and overall survival. Int J Cancer 84 (5): 458-65, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10502720" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10502720</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_131">Correa-Cerro L, W&#x000f6;hr G, H&#x000e4;ussler J, et al.: (CAG)nCAA and GGN repeats in the human androgen receptor gene are not associated with prostate cancer in a French-German population. Eur J Hum Genet 7 (3): 357-62, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10234512" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10234512</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_132">Mononen N, Ikonen T, Autio V, et al.: Androgen receptor CAG polymorphism and prostate cancer risk. Hum Genet 111 (2): 166-71, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12189490" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12189490</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_133">Zeegers MP, Kiemeney LA, Nieder AM, et al.: How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol Biomarkers Prev 13 (11 Pt 1): 1765-71, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15533905" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15533905</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_134">Freedman ML, Pearce CL, Penney KL, et al.: Systematic evaluation of genetic variation at the androgen receptor locus and risk of prostate cancer in a multiethnic cohort study. Am J Hum Genet 76 (1): 82-90, 2005. [<a href="/pmc/articles/PMC1196436/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1196436</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15570555" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15570555</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_135">Lindstr&#x000f6;m S, Zheng SL, Wiklund F, et al.: Systematic replication study of reported genetic associations in prostate cancer: Strong support for genetic variation in the androgen pathway. Prostate 66 (16): 1729-43, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16998812" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16998812</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_136">Lange EM, Sarma AV, Ray A, et al.: The androgen receptor CAG and GGN repeat polymorphisms and prostate cancer susceptibility in African-American men: results from the Flint Men's Health Study. J Hum Genet 53 (3): 220-6, 2008. [<a href="/pmc/articles/PMC2692543/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2692543</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18217192" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18217192</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_137">Panz VR, Joffe BI, Spitz I, et al.: Tandem CAG repeats of the androgen receptor gene and prostate cancer risk in black and white men. Endocrine 15 (2): 213-6, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11720249" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11720249</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_138">Gilligan T, Manola J, Sartor O, et al.: Absence of a correlation of androgen receptor gene CAG repeat length and prostate cancer risk in an African-American population. Clin Prostate Cancer 3 (2): 98-103, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15479493" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15479493</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_139">Mononen N, Syrj&#x000e4;koski K, Matikainen M, et al.: Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res 60 (22): 6479-81, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11103816" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11103816</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_140">Koivisto PA, Hyytinen ER, Matikainen M, et al.: Germline mutation analysis of the androgen receptor gene in Finnish patients with prostate cancer. J Urol 171 (1): 431-3, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14665948" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14665948</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_141">Hu SY, Liu T, Liu ZZ, et al.: Identification of a novel germline missense mutation of the androgen receptor in African American men with familial prostate cancer. Asian J Androl 12 (3): 336-43, 2010. [<a href="/pmc/articles/PMC3008322/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3008322</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20173765" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20173765</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_142">Reichardt JK, Makridakis N, Henderson BE, et al.: Genetic variability of the human SRD5A2 gene: implications for prostate cancer risk. Cancer Res 55 (18): 3973-5, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7664265" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7664265</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_143">Brawley OW, Ford LG, Thompson I, et al.: 5-Alpha-reductase inhibition and prostate cancer prevention. Cancer Epidemiol Biomarkers Prev 3 (2): 177-82, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/8049641" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8049641</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_144">Ross RK, Bernstein L, Lobo RA, et al.: 5-alpha-reductase activity and risk of prostate cancer among Japanese and US white and black males. Lancet 339 (8798): 887-9, 1992. [<a href="https://pubmed.ncbi.nlm.nih.gov/1348296" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1348296</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_145">Davis DL, Russell DW: Unusual length polymorphism in human steroid 5 alpha-reductase type 2 gene (SRD5A2). Hum Mol Genet 2 (6): 820, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8353504" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8353504</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_146">Kantoff PW, Febbo PG, Giovannucci E, et al.: A polymorphism of the 5 alpha-reductase gene and its association with prostate cancer: a case-control analysis. Cancer Epidemiol Biomarkers Prev 6 (3): 189-92, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9138662" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9138662</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_147">Ntais C, Polycarpou A, Ioannidis JP: SRD5A2 gene polymorphisms and the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 12 (7): 618-24, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12869400" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12869400</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_148">Wang C, Tao W, Chen Q, et al.: SRD5A2 V89L polymorphism and prostate cancer risk: a meta-analysis. Prostate 70 (2): 170-8, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/19760631" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19760631</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_149">Li J, Coates RJ, Gwinn M, et al.: Steroid 5-{alpha}-reductase Type 2 (SRD5a2) gene polymorphisms and risk of prostate cancer: a HuGE review. Am J Epidemiol 171 (1): 1-13, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/19914946" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19914946</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_150">Sarma AV, Dunn RL, Lange LA, et al.: Genetic polymorphisms in CYP17, CYP3A4, CYP19A1, SRD5A2, IGF-1, and IGFBP-3 and prostate cancer risk in African-American men: the Flint Men's Health Study. Prostate 68 (3): 296-305, 2008. [<a href="/pmc/articles/PMC2712831/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2712831</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18163429" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18163429</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_151">Thellenberg-Karlsson C, Lindstr&#x000f6;m S, Malmer B, et al.: Estrogen receptor beta polymorphism is associated with prostate cancer risk. Clin Cancer Res 12 (6): 1936-41, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16551880" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16551880</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_152">Li LC, Chui RM, Sasaki M, et al.: A single nucleotide polymorphism in the E-cadherin gene promoter alters transcriptional activities. Cancer Res 60 (4): 873-6, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10706097" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10706097</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_153">Wang GY, Lu CQ, Zhang RM, et al.: The E-cadherin gene polymorphism 160C-&#x0003e;A and cancer risk: A HuGE review and meta-analysis of 26 case-control studies. Am J Epidemiol 167 (1): 7-14, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/17971340" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17971340</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_154">Wang L, Wang G, Lu C, et al.: Contribution of the -160C/A polymorphism in the E-cadherin promoter to cancer risk: a meta-analysis of 47 case-control studies. PLoS One 7 (7): e40219, 2012. [<a href="/pmc/articles/PMC3390351/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3390351</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22792244" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22792244</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_155">De Marzo AM, Platz EA, Sutcliffe S, et al.: Inflammation in prostate carcinogenesis. Nat Rev Cancer 7 (4): 256-69, 2007. [<a href="/pmc/articles/PMC3552388/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3552388</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17384581" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17384581</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_156">Akira S, Takeda K: Toll-like receptor signalling. Nat Rev Immunol 4 (7): 499-511, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15229469" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15229469</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_157">Zheng SL, Augustsson-B&#x000e4;lter K, Chang B, et al.: Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the CAncer Prostate in Sweden Study. Cancer Res 64 (8): 2918-22, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15087412" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15087412</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_158">Chen YC, Giovannucci E, Lazarus R, et al.: Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res 65 (24): 11771-8, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16357190" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16357190</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_159">Cheng I, Plummer SJ, Casey G, et al.: Toll-like receptor 4 genetic variation and advanced prostate cancer risk. Cancer Epidemiol Biomarkers Prev 16 (2): 352-5, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17301271" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17301271</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_160">Sun J, Wiklund F, Zheng SL, et al.: Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J Natl Cancer Inst 97 (7): 525-32, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15812078" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15812078</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_161">Chen YC, Giovannucci E, Kraft P, et al.: Association between Toll-like receptor gene cluster (TLR6, TLR1, and TLR10) and prostate cancer. Cancer Epidemiol Biomarkers Prev 16 (10): 1982-9, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17932345" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17932345</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_162">Stevens VL, Hsing AW, Talbot JT, et al.: Genetic variation in the toll-like receptor gene cluster (TLR10-TLR1-TLR6) and prostate cancer risk. Int J Cancer 123 (11): 2644-50, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18752252" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18752252</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_163">Cunningham JM, Hebbring SJ, McDonnell SK, et al.: Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer. Cancer Epidemiol Biomarkers Prev 16 (5): 969-78, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17507624" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17507624</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_164">Beuten J, Gelfond JA, Franke JL, et al.: Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 18 (6): 1869-80, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19505920" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19505920</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_165">Collin SM, Metcalfe C, Zuccolo L, et al.: Association of folate-pathway gene polymorphisms with the risk of prostate cancer: a population-based nested case-control study, systematic review, and meta-analysis. Cancer Epidemiol Biomarkers Prev 18 (9): 2528-39, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19706844" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19706844</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_166">Sun T, Lee GS, Oh WK, et al.: Single-nucleotide polymorphisms in p53 pathway and aggressiveness of prostate cancer in a Caucasian population. Clin Cancer Res 16 (21): 5244-51, 2010. [<a href="/pmc/articles/PMC2970725/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2970725</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20855462" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20855462</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_167">Chen T, Yi SH, Liu XY, et al.: Meta-analysis of associations between the MDM2-T309G polymorphism and prostate cancer risk. Asian Pac J Cancer Prev 13 (9): 4327-30, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/23167337" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23167337</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_168">Zheng SL, Chang BL, Faith DA, et al.: Sequence variants of alpha-methylacyl-CoA racemase are associated with prostate cancer risk. Cancer Res 62 (22): 6485-8, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12438241" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12438241</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_169">Daugherty SE, Shugart YY, Platz EA, et al.: Polymorphic variants in alpha-methylacyl-CoA racemase and prostate cancer. Prostate 67 (14): 1487-97, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17680641" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17680641</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_170">Levin AM, Zuhlke KA, Ray AM, et al.: Sequence variation in alpha-methylacyl-CoA racemase and risk of early-onset and familial prostate cancer. Prostate 67 (14): 1507-13, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17683075" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17683075</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_171">Dong X, Wang L, Taniguchi K, et al.: Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 72 (2): 270-80, 2003. [<a href="/pmc/articles/PMC379222/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC379222</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12533788" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12533788</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_172">Cybulski C, Woko&#x00142;orczyk D, Klu&#x0017a;niak W, et al.: An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer 108 (2): 461-8, 2013. [<a href="/pmc/articles/PMC3566821/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3566821</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23149842" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23149842</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_173">Nurminen R, Wahlfors T, Tammela TL, et al.: Identification of an aggressive prostate cancer predisposing variant at 11q13. Int J Cancer 129 (3): 599-606, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21064104" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21064104</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_174">Nurminen R, Lehtonen R, Auvinen A, et al.: Fine mapping of 11q13.5 identifies regions associated with prostate cancer and prostate cancer death. Eur J Cancer 49 (15): 3335-43, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23830236" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23830236</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_175">Narla G, Difeo A, Reeves HL, et al.: A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 65 (4): 1213-22, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15735005" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15735005</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_176">Bar-Shira A, Matarasso N, Rosner S, et al.: Mutation screening and association study of the candidate prostate cancer susceptibility genes MSR1, PTEN, and KLF6. Prostate 66 (10): 1052-60, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16598737" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16598737</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_177">Hebbring SJ, Fredriksson H, White KA, et al.: Role of the Nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev 15 (5): 935-8, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16702373" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16702373</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_178">Mao X, Bigham AW, Mei R, et al.: A genomewide admixture mapping panel for Hispanic/Latino populations. Am J Hum Genet 80 (6): 1171-8, 2007. [<a href="/pmc/articles/PMC1867104/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1867104</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17503334" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17503334</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_179">McKeigue PM: Prospects for admixture mapping of complex traits. Am J Hum Genet 76 (1): 1-7, 2005. [<a href="/pmc/articles/PMC1196412/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1196412</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15540159" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15540159</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_180">McKeigue PM: Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am J Hum Genet 63 (1): 241-51, 1998. [<a href="/pmc/articles/PMC1377232/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1377232</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9634509" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9634509</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_181">Bock CH, Schwartz AG, Ruterbusch JJ, et al.: Results from a prostate cancer admixture mapping study in African-American men. Hum Genet 126 (5): 637-42, 2009. [<a href="/pmc/articles/PMC2975267/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2975267</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19568772" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19568772</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_182">Race, Ethnicity, and Genetics Working Group: The use of racial, ethnic, and ancestral categories in human genetics research. Am J Hum Genet 77 (4): 519-32, 2005. [<a href="/pmc/articles/PMC1275602/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1275602</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16175499" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16175499</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_183">Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447 (7145): 661-78, 2007. [<a href="/pmc/articles/PMC2719288/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2719288</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17554300" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17554300</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_184">The International HapMap Consortium: The International HapMap Project. Nature 426 (6968): 789-96, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14685227" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14685227</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_185">Thorisson GA, Smith AV, Krishnan L, et al.: The International HapMap Project Web site. Genome Res 15 (11): 1592-3, 2005. [<a href="/pmc/articles/PMC1310647/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1310647</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16251469" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16251469</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_186">Evans DM, Cardon LR: Genome-wide association: a promising start to a long race. Trends Genet 22 (7): 350-4, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16713652" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16713652</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_187">Cardon LR: Genetics. Delivering new disease genes. Science 314 (5804): 1403-5, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/17138888" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17138888</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_188">Chanock SJ, Manolio T, Boehnke M, et al.: Replicating genotype-phenotype associations. Nature 447 (7145): 655-60, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17554299" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17554299</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_189">Al Olama AA, Kote-Jarai Z, Berndt SI, et al.: A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 46 (10): 1103-9, 2014. [<a href="/pmc/articles/PMC4383163/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4383163</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25217961" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25217961</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_190">Eeles R, Goh C, Castro E, et al.: The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 11 (1): 18-31, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24296704" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24296704</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_191">Lange EM, Salinas CA, Zuhlke KA, et al.: Early onset prostate cancer has a significant genetic component. Prostate 72 (2): 147-56, 2012. [<a href="/pmc/articles/PMC3784829/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3784829</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21538423" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21538423</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_192">Kote-Jarai Z, Olama AA, Giles GG, et al.: Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat Genet 43 (8): 785-91, 2011. [<a href="/pmc/articles/PMC3396006/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3396006</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21743467" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21743467</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_193">Eeles RA, Olama AA, Benlloch S, et al.: Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet 45 (4): 385-91, 391e1-2, 2013. [<a href="/pmc/articles/PMC3832790/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3832790</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23535732" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23535732</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_194">Jorgenson E, Witte JS: Genome-wide association studies of cancer. Future Oncol 3 (4): 419-27, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17661717" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17661717</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_195">Zeegers MP, Khan HS, Schouten LJ, et al.: Genetic marker polymorphisms on chromosome 8q24 and prostate cancer in the Dutch population: DG8S737 may not be the causative variant. Eur J Hum Genet 19 (1): 118-20, 2011. [<a href="/pmc/articles/PMC3039500/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3039500</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20700145" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20700145</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_196">Cook MB, Wang Z, Yeboah ED, et al.: A genome-wide association study of prostate cancer in West African men. Hum Genet 133 (5): 509-21, 2014. [<a href="/pmc/articles/PMC3988225/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3988225</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24185611" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24185611</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_197">Haiman CA, Chen GK, Blot WJ, et al.: Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet 7 (5): e1001387, 2011. [<a href="/pmc/articles/PMC3102736/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3102736</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21637779" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21637779</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_198">Han Y, Signorello LB, Strom SS, et al.: Generalizability of established prostate cancer risk variants in men of African ancestry. Int J Cancer 136 (5): 1210-7, 2015. [<a href="/pmc/articles/PMC4268262/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4268262</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25044450" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25044450</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_199">Takata R, Akamatsu S, Kubo M, et al.: Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet 42 (9): 751-4, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20676098" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20676098</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_200">Akamatsu S, Takata R, Haiman CA, et al.: Common variants at 11q12, 10q26 and 3p11.2 are associated with prostate cancer susceptibility in Japanese. Nat Genet 44 (4): 426-9, S1, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22366784" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22366784</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_201">Xu J, Mo Z, Ye D, et al.: Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4. Nat Genet 44 (11): 1231-5, 2012. [<a href="/pmc/articles/PMC4116636/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4116636</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23023329" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23023329</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_202">Xu J, Sun J, Kader AK, et al.: Estimation of absolute risk for prostate cancer using genetic markers and family history. Prostate 69 (14): 1565-72, 2009. [<a href="/pmc/articles/PMC2793526/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2793526</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19562736" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19562736</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_203">Little J, Wilson B, Carter R, et al.: Multigene Panels in Prostate Cancer Risk Assessment. Rockville, MD: Agency for Healthcare Research and Quality (US), 2012. Evidence Report/Technology Assessment
Number 209. <a href="https://www.ahrq.gov/research/findings/evidence-based-reports/mgenprcatp.html" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Also available online.</a> Last accessed November 1, 2017.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_204">Park JH, Gail MH, Greene MH, et al.: Potential usefulness of single nucleotide polymorphisms to identify persons at high cancer risk: an evaluation of seven common cancers. J Clin Oncol 30 (17): 2157-62, 2012. [<a href="/pmc/articles/PMC3397697/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3397697</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22585702" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22585702</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_205">Amin Al Olama A, Benlloch S, Antoniou AC, et al.: Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiol Biomarkers Prev 24 (7): 1121-9, 2015. [<a href="/pmc/articles/PMC4491026/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4491026</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25837820" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25837820</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_206">Szulkin R, Whitington T, Eklund M, et al.: Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate 75 (13): 1467-74, 2015. [<a href="/pmc/articles/PMC7745998/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7745998</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26177737" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26177737</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_207">Lange EM, Ribado JV, Zuhlke KA, et al.: Assessing the Cumulative Contribution of New and Established Common Genetic Risk Factors to Early-Onset Prostate Cancer. Cancer Epidemiol Biomarkers Prev 25 (5): 766-72, 2016. [<a href="/pmc/articles/PMC4873425/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4873425</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26671023" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26671023</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_208">Gudmundsson J, Sulem P, Gudbjartsson DF, et al.: A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat Genet 44 (12): 1326-9, 2012. [<a href="/pmc/articles/PMC3562711/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3562711</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23104005" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23104005</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_209">Freedman ML, Monteiro AN, Gayther SA, et al.: Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet 43 (6): 513-8, 2011. [<a href="/pmc/articles/PMC3325768/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3325768</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21614091" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21614091</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_210">Pomerantz MM, Beckwith CA, Regan MM, et al.: Evaluation of the 8q24 prostate cancer risk locus and MYC expression. Cancer Res 69 (13): 5568-74, 2009. [<a href="/pmc/articles/PMC2884104/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2884104</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19549893" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19549893</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_211">Jia L, Landan G, Pomerantz M, et al.: Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet 5 (8): e1000597, 2009. [<a href="/pmc/articles/PMC2717370/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2717370</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19680443" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19680443</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_212">Ahmadiyeh N, Pomerantz MM, Grisanzio C, et al.: 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci U S A 107 (21): 9742-6, 2010. [<a href="/pmc/articles/PMC2906844/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2906844</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20453196" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20453196</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_213">Sotelo J, Esposito D, Duhagon MA, et al.: Long-range enhancers on 8q24 regulate c-Myc. Proc Natl Acad Sci U S A 107 (7): 3001-5, 2010. [<a href="/pmc/articles/PMC2840341/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2840341</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20133699" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20133699</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_214">Meyer KB, Maia AT, O'Reilly M, et al.: A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression. PLoS Genet 7 (7): e1002165, 2011. [<a href="/pmc/articles/PMC3140991/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3140991</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21814516" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21814516</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_215">Spis&#x000e1;k S, Lawrenson K, Fu Y, et al.: CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants. Nat Med 21 (11): 1357-63, 2015. [<a href="/pmc/articles/PMC4746056/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4746056</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26398868" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26398868</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_216">Hazelett DJ, Rhie SK, Gaddis M, et al.: Comprehensive functional annotation of 77 prostate cancer risk loci. PLoS Genet 10 (1): e1004102, 2014. [<a href="/pmc/articles/PMC3907334/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3907334</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24497837" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24497837</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_217">Jiang J, Cui W, Vongsangnak W, et al.: Post genome-wide association studies functional characterization of prostate cancer risk loci. BMC Genomics 14 (Suppl 8): S9, 2013. [<a href="/pmc/articles/PMC4042239/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4042239</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24564736" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24564736</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_218">Feng J, Sun J, Kim ST, et al.: A genome-wide survey over the ChIP-on-chip identified androgen receptor-binding genomic regions identifies a novel prostate cancer susceptibility locus at 12q13.13. Cancer Epidemiol Biomarkers Prev 20 (11): 2396-403, 2011. [<a href="/pmc/articles/PMC3210915/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3210915</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21960693" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21960693</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_219">Stegeman S, Amankwah E, Klein K, et al.: A Large-Scale Analysis of Genetic Variants within Putative miRNA Binding Sites in Prostate Cancer. Cancer Discov 5 (4): 368-79, 2015. [<a href="/pmc/articles/PMC4390388/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4390388</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25691096" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25691096</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_220">Panagiotou OA, Travis RC, Campa D, et al.: A genome-wide pleiotropy scan for prostate cancer risk. Eur Urol 67 (4): 649-57, 2015. [<a href="/pmc/articles/PMC4359641/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4359641</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25277271" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25277271</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_221">1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature 467 (7319): 1061-73, 2010. [<a href="/pmc/articles/PMC3042601/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3042601</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20981092" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20981092</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_222">Sun T, Mary LG, Oh WK, et al.: Inherited variants in the chemokine CCL2 gene and prostate cancer aggressiveness in a Caucasian cohort. Clin Cancer Res 17 (6): 1546-52, 2011. [<a href="/pmc/articles/PMC3060307/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3060307</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21135144" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21135144</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_223">Zabaleta J, Su LJ, Lin HY, et al.: Cytokine genetic polymorphisms and prostate cancer aggressiveness. Carcinogenesis 30 (8): 1358-62, 2009. [<a href="/pmc/articles/PMC2718072/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2718072</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19474090" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19474090</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_224">Ross PL, Cheng I, Liu X, et al.: Carboxypeptidase 4 gene variants and early-onset intermediate-to-high risk prostate cancer. BMC Cancer 9: 69, 2009. [<a href="/pmc/articles/PMC2657151/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2657151</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19245716" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19245716</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_225">Henr&#x000ed;quez-Hern&#x000e1;ndez LA, Valenciano A, Foro-Arnalot P, et al.: Single nucleotide polymorphisms in DNA repair genes as risk factors associated to prostate cancer progression. BMC Med Genet 15: 143, 2014. [<a href="/pmc/articles/PMC4316399/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4316399</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25540025" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25540025</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_226">Lin DW, FitzGerald LM, Fu R, et al.: Genetic variants in the LEPR, CRY1, RNASEL, IL4, and ARVCF genes are prognostic markers of prostate cancer-specific mortality. Cancer Epidemiol Biomarkers Prev 20 (9): 1928-36, 2011. [<a href="/pmc/articles/PMC3169727/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3169727</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21846818" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21846818</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_227">Langeberg WJ, Kwon EM, Koopmeiners JS, et al.: Population-based study of the association of variants in mismatch repair genes with prostate cancer risk and outcomes. Cancer Epidemiol Biomarkers Prev 19 (1): 258-64, 2010. [<a href="/pmc/articles/PMC2825566/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2825566</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20056646" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20056646</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_228">Pomerantz MM, Werner L, Xie W, et al.: Association of prostate cancer risk Loci with disease aggressiveness and prostate cancer-specific mortality. Cancer Prev Res (Phila) 4 (5): 719-28, 2011. [<a href="/pmc/articles/PMC3811002/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3811002</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21367958" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21367958</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_229">Bensen JT, Xu Z, Smith GJ, et al.: Genetic polymorphism and prostate cancer aggressiveness: a case-only study of 1,536 GWAS and candidate SNPs in African-Americans and European-Americans. Prostate 73 (1): 11-22, 2013. [<a href="/pmc/articles/PMC3480543/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3480543</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22549899" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22549899</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_230">He Y, Gu J, Strom S, et al.: The prostate cancer susceptibility variant rs2735839 near KLK3 gene is associated with aggressive prostate cancer and can stratify gleason score 7 patients. Clin Cancer Res 20 (19): 5133-9, 2014. [<a href="/pmc/articles/PMC4185411/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4185411</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25274378" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25274378</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_231">Helfand BT, Roehl KA, Cooper PR, et al.: Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases. Hum Genet 134 (4): 439-50, 2015. [<a href="/pmc/articles/PMC4586077/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4586077</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25715684" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25715684</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_232">Xu J, Isaacs SD, Sun J, et al.: Association of prostate cancer risk variants with clinicopathologic characteristics of the disease. Clin Cancer Res 14 (18): 5819-24, 2008. [<a href="/pmc/articles/PMC2810539/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2810539</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18794092" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18794092</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_233">Gallagher DJ, Vijai J, Cronin AM, et al.: Susceptibility loci associated with prostate cancer progression and mortality. Clin Cancer Res 16 (10): 2819-32, 2010. [<a href="/pmc/articles/PMC3732009/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3732009</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20460480" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20460480</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_234">Kader AK, Sun J, Isaacs SD, et al.: Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate 69 (11): 1195-205, 2009. [<a href="/pmc/articles/PMC2852875/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2852875</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19434657" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19434657</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_235">Fitzgerald LM, Kwon EM, Koopmeiners JS, et al.: Analysis of recently identified prostate cancer susceptibility loci in a population-based study: associations with family history and clinical features. Clin Cancer Res 15 (9): 3231-7, 2009. [<a href="/pmc/articles/PMC2707085/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2707085</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19366831" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19366831</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_236">Berndt SI, Wang Z, Yeager M, et al.: Two susceptibility loci identified for prostate cancer aggressiveness. Nat Commun 6: 6889, 2015. [<a href="/pmc/articles/PMC4422072/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4422072</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25939597" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25939597</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_237">Szulkin R, Karlsson R, Whitington T, et al.: Genome-wide association study of prostate cancer-specific survival. Cancer Epidemiol Biomarkers Prev 24 (11): 1796-800, 2015. [<a href="/pmc/articles/PMC5674990/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5674990</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26307654" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26307654</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_981_238">Penney KL, Pyne S, Schumacher FR, et al.: Genome-wide association study of prostate cancer mortality. Cancer Epidemiol Biomarkers Prev 19 (11): 2869-76, 2010. [<a href="/pmc/articles/PMC3197738/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3197738</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20978177" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20978177</span></a>]</div></li></ol></div></div><div id="CDR0000299612__922"><h2 id="_CDR0000299612__922_">Genes With Potential Clinical Relevance in Prostate Cancer Risk</h2><p id="CDR0000299612__1089">Genetic testing for pathogenic variants in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000045693/" class="def">genes</a> with some association with prostate cancer risk is now available and has the potential to identify those at increased risk of prostate cancer. Research from selected cohorts has reported that prostate cancer risk is elevated in men with pathogenic variants in <i>BRCA1</i>, <i>BRCA2</i>, and on a smaller scale, in mismatch repair (MMR) genes. Since clinical genetic testing is available for these genes, information about risk of prostate cancer based on alterations in these genes is included in this section. In addition, pathogenic variants in <i>HOXB13</i> are reported to account for a small proportion of hereditary prostate cancer. Clinical testing for <i>HOXB13</i> alterations is also available; therefore, this gene is included in this section.</p><p id="CDR0000299612__1334">It is possible that additional genes will have clinical relevance in prostate cancer risk in the future. Clinical sequencing of 150 metastatic tumors from men with castrate-resistant prostate cancer identified alterations in genes involved in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000045671/" class="def">DNA</a> repair in 23% of men.[<a class="bk_pop" href="#CDR0000299612_rl_922_1">1</a>] Interestingly, 8% of these variants were present in the <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460154/" class="def">germline</a>. Although this work has not been confirmed, it raises the possibility that identification of certain germline variants may have clinical relevance in the near future. </p><div id="CDR0000299612__1051"><h3><i>BRCA1</i> and <i>BRCA2</i></h3><p id="CDR0000299612__924">Studies of male <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460132/" class="def">carriers</a> of <i>BRCA1</i> [<a class="bk_pop" href="#CDR0000299612_rl_922_2">2</a>] and <i>BRCA2</i> pathogenic variants demonstrate that these individuals have a higher risk of prostate cancer and other cancers.[<a class="bk_pop" href="#CDR0000299612_rl_922_3">3</a>] Prostate cancer in particular has been observed at higher rates in male carriers of <i>BRCA2</i> pathogenic variants than in the general population.[<a class="bk_pop" href="#CDR0000299612_rl_922_4">4</a>] </p><div id="CDR0000299612__925"><h4><i>BRCA</i>&#x02013;associated prostate cancer risk</h4><p id="CDR0000299612__926">The risk of prostate cancer in carriers of <i>BRCA</i> pathogenic variants has been studied in various settings.</p><p id="CDR0000299612__1122">In an effort to clarify the relationship between <i>BRCA</i> pathogenic variants and prostate cancer risk, findings from several case series are summarized in <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1129/?report=objectonly" target="object" rid-figpopup="figCDR00002996121129" rid-ob="figobCDR00002996121129">Table 4</a>.</p><div id="CDR0000299612__1129" class="table"><h3><span class="title"> Table 4. Case Series of <i>BRCA</i> Pathogenic Variants in Prostate Cancer </span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1129/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1129_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study</th><th colspan="1" rowspan="1" style="vertical-align:top;">Population</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer Risk (<i>BRCA1</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer Risk (<i>BRCA2</i>)</th></tr></thead><tbody><tr><td colspan="1" rowspan="2" style="vertical-align:top;">BCLC (1999) [<a class="bk_pop" href="#CDR0000299612_rl_922_5">5</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">BCLC family set that included 173 <i>BRCA2</i> linkage&#x02013; or pathogenic variant&#x02013;positive families, among which there were 3,728 individuals and 333 cancers<sup>a</sup>
</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">Overall:
RR, 4.65 (95% CI, 3.48&#x02013;6.22)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Men &#x0003c;65 y: RR, 7.33 (95% CI, 4.66&#x02013;11.52)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Thompson et al. (2001) [<a class="bk_pop" href="#CDR0000299612_rl_922_6">6</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">BCLC family set that included 164 <i>BRCA2</i> pathogenic variant&#x02013;positive families, among which there were 3,728 individuals and 333 cancers<sup>a</sup></td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">OCCR:
RR, 0.52 (95% CI, 0.24&#x02013;1.00)
</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Thompson et al. (2002) [<a class="bk_pop" href="#CDR0000299612_rl_922_2">2</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">BCLC family set that included 7,106 women and 4,741 men, among which 2,245 were carriers of <i>BRCA1</i> pathogenic variants; 1,106 were tested <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000556483/" class="def">noncarriers</a>, and 8,496 were not tested</td><td colspan="1" rowspan="1" style="vertical-align:top;">Overall:
RR, 1.07 (95% CI, 0.75&#x02013;1.54)
</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Men younger than 65 y: RR, 1.82 (95% CI, 1.01&#x02013;3.29)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Mersch et al. (2015) [<a class="bk_pop" href="#CDR0000299612_rl_922_4">4</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Clinical genetics population at a single institution from 1997&#x02013;2013. Compared cancer incidence to U.S. Statistics Report by CDC for general population cancer incidence. </td><td colspan="1" rowspan="1" style="vertical-align:top;">SIR = 3.809 (95% CI, 0.766&#x02013;11.13)
(<i>Not significant</i>)
</td><td colspan="1" rowspan="1" style="vertical-align:top;">SIR = 4.89 (95% CI, 1.959&#x02013;10.075)</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">BCLC = Breast Cancer Linkage Consortium; CDC = Centers for Disease Control and Prevention; CI = confidence interval; OCCR = Ovarian Cancer Cluster Region; RR = relative risk; SIR = standardized incidence ratio.</p></div></dd><dt></dt><dd><div><p class="no_margin"><sup>a</sup>Includes all cancers except breast, ovarian, and nonmelanoma skin cancers.</p></div></dd></dl></div></div></div><p id="CDR0000299612__929">Estimates derived from the Breast Cancer Linkage Consortium may be overestimated because these data are generated from a highly select population of families ascertained for significant evidence of risk of breast cancer and ovarian cancer and suitability for <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000425374/" class="def">linkage analysis</a>. However, a review of the relationship between germline pathogenic variants in <i>BRCA2</i> and prostate cancer risk supports the view that this gene confers a significant increase in risk among male members of hereditary breast and ovarian cancer families but that it likely plays only a small role, if any, in site-specific, multiple-case prostate cancer families.[<a class="bk_pop" href="#CDR0000299612_rl_922_7">7</a>] In addition, the clinical validity and utility of <i>BRCA</i> testing solely on the basis of evidence for hereditary prostate cancer susceptibility has not been established.</p><p id="CDR0000299612__1427">One study has assessed the relationship between germline DNA repair gene pathogenic variants and metastatic prostate cancer. Of 692 men unselected for cancer family history or age at diagnosis, 5.3% (37 of 692) were found to have a <i>BRCA2</i> pathogenic variant, and 0.9% (6 of 692) had a <i>BRCA1</i> pathogenic variant.[<a class="bk_pop" href="#CDR0000299612_rl_922_8">8</a>]</p></div><div id="CDR0000299612__930"><h4>Prevalence of <i>BRCA</i> founder pathogenic variants in men with prostate cancer</h4><div id="CDR0000299612__931"><h5>Ashkenazi Jewish population</h5><p id="CDR0000299612__932">Several studies in Israel and in North America have analyzed the frequency of <i>BRCA</i> founder pathogenic variants among <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460127/" class="def">Ashkenazi Jewish</a> (AJ) men with prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_922_9">9</a>-<a class="bk_pop" href="#CDR0000299612_rl_922_11">11</a>] Two specific <i>BRCA1</i> pathogenic variants (185delAG and 5382insC) and one <i>BRCA2</i> pathogenic variant (6174delT) are common in individuals of AJ ancestry. Carrier frequencies for these pathogenic variants in the general Jewish population are 0.9% (95% CI, 0.7&#x02013;1.1) for the 185delAG pathogenic variant, 0.3% (95% confidence interval [CI], 0.2&#x02013;0.4) for the 5382insC pathogenic variant, and 1.3% (95% CI, 1.0&#x02013;1.5) for the <i>BRCA2</i> 6174delT pathogenic variant.[<a class="bk_pop" href="#CDR0000299612_rl_922_12">12</a>-<a class="bk_pop" href="#CDR0000299612_rl_922_15">15</a>] (Refer to the <a href="/books/n/pdqcis/CDR0000062855/#CDR0000062855__88">High-Penetrance Breast and/or Gynecologic Cancer Susceptibility Genes</a> section in the PDQ summary on <a href="/books/n/pdqcis/CDR0000062855/">Genetics of Breast and Gynecologic Cancers</a> for more information about <i>BRCA1</i> and <i>BRCA2</i> genes.) In these studies, the relative risks (RRs) were commonly greater than 1, but only a few have been statistically significant. Many of these studies were not sufficiently powered to rule out a lower, but clinically significant, risk of prostate cancer in carriers of Ashkenazi <i>BRCA</i> founder pathogenic variants.</p><p id="CDR0000299612__979">In the Washington Ashkenazi Study (WAS), a kin-cohort analytic approach was used to estimate the cumulative risk of prostate cancer among more than 5,000 American AJ male volunteers from the Washington, District of Columbia, area who carried one of the <i>BRCA</i> Ashkenazi founder pathogenic variants. The cumulative risk to age 70 years was estimated to be 16% (95% CI, 4&#x02013;30) among carriers of the founder pathogenic variants and 3.8% among noncarriers (95% CI, 3.3&#x02013;4.4).[<a class="bk_pop" href="#CDR0000299612_rl_922_15">15</a>] This fourfold increase in prostate cancer risk was equal (in absolute terms) to the cumulative risk of ovarian cancer among female carriers at the same age (16% by age 70 years; 95% CI, 6&#x02013;28). The risk of prostate cancer in male carriers in the WAS cohort was elevated by age 50 years, was statistically significantly elevated by age 67 years, and increased thereafter with age, suggesting both an overall excess in prostate cancer risk and an earlier age at diagnosis among carriers of Ashkenazi founder pathogenic variants. Prostate cancer risk differed depending on the gene, with <i>BRCA1</i> pathogenic variants associated with increasing risk after age 55 to 60 years, reaching 25% by age 70 years and 41% by age 80 years. In contrast, prostate cancer risk associated with the <i>BRCA2</i> pathogenic variant began to rise at later ages, reaching 5% by age 70 years and 36% by age 80 years (numeric values were provided by the author [written communication, April 2005]).</p><p id="CDR0000299612__915">The studies summarized in <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1121/?report=objectonly" target="object" rid-figpopup="figCDR00002996121121" rid-ob="figobCDR00002996121121">Table 5</a> used similar case-control methods to examine the prevalence of Ashkenazi founder pathogenic variants among Jewish men with prostate cancer and found an overall positive association between carrier status of founder pathogenic variants and prostate cancer risk.</p><div id="CDR0000299612__1121" class="table"><h3><span class="title">Table 5. Case-Control Studies in Ashkenazi Jewish Populations of <i>BRCA1</i> and <i>BRCA2</i> and Prostate Cancer Risk</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1121/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1121_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study</th><th colspan="1" rowspan="1" style="vertical-align:top;">Cases / Controls</th><th colspan="1" rowspan="1" style="vertical-align:top;">Pathogenic Variant Freq. <i>BRCA1</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Pathogenic Variant Freq. (<i>BRCA2</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer Risk (<i>BRCA1</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer Risk (<i>BRCA2</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Comments</th></tr></thead><tbody><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Guisti et al. (2003) [<a class="bk_pop" href="#CDR0000299612_rl_922_16">16</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 979 consecutive AJ men from Israel diagnosed with prostate cancer between 1994 and 1995 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 16 (1.7%)
</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 14 (1.5%)
</td><td colspan="1" rowspan="1" style="vertical-align:top;">185delAG: OR, 2.52 (95% CI, 1.05&#x02013;6.04)</td><td colspan="1" rowspan="2" style="vertical-align:top;">OR, 2.02 (95% CI, 0.16&#x02013;5.72)</td><td colspan="1" rowspan="2" style="vertical-align:top;">There was no evidence of unique or specific histopathology findings within the pathogenic variant&#x02013;associated prostate cancers.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: Prevalence of founder pathogenic variants compared with age-matched controls &#x0003e;50 years with no history of prostate cancer from the WAS study and the MECC study from Israel</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 11 (0.81%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 10 (0.74%</td><td colspan="1" rowspan="1" style="vertical-align:top;">5282insC: OR, 0.22 (95% CI, 0.16&#x02013;5.72)</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Kirchoff et al. (2004) [<a class="bk_pop" href="#CDR0000299612_rl_922_17">17</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 251 unselected AJ men treated for prostate cancer between 2000 and 2002 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 5 (2.0%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 8 (3.2%)</td><td colspan="1" rowspan="2" style="vertical-align:top;">OR, 2.20 (95% CI, 0.72&#x02013;6.70)</td><td colspan="1" rowspan="2" style="vertical-align:top;">OR, 4.78 (95% CI, 1.87&#x02013;12.25)</td><td colspan="1" rowspan="2" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 1,472 AJ men with no history of cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 12 (0.8%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 16 (1.1%)</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Agalliu et al. (2009) [<a class="bk_pop" href="#CDR0000299612_rl_922_18">18</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 979 AJ men diagnosed with prostate cancer between 1978 and 2005 (mean and median year of diagnosis: 1996) </td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 12 (1.2%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 18 (1.9%)</td><td colspan="1" rowspan="2" style="vertical-align:top;">OR, 1.39 (95% CI, 0.60&#x02013;3.22)</td><td colspan="1" rowspan="2" style="vertical-align:top;">OR, 1.92 (95% CI, 0.91&#x02013;4.07)</td><td colspan="1" rowspan="2" style="vertical-align:top;">Gleason score 7&#x02013;10 prostate cancer was more common in carriers of <i>BRCA1</i> pathogenic variants (OR, 2.23; 95% CI, 0.84&#x02013;5.86) and carriers of <i>BRCA2</i> pathogenic variants (OR, 3.18; 95% CI, 1.62&#x02013;6.24) than in controls.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 1,251 AJ men with no history of cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 11 (0.9%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 12 (1.0%)</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Gallagher et al. (2010) [<a class="bk_pop" href="#CDR0000299612_rl_922_19">19</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">Cases: 832 AJ men diagnosed with localized prostate cancer between 1988 and 2007</td><td colspan="1" rowspan="1" style="vertical-align:top;">Noncarriers: 806 (96.9%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Noncarriers: 447 (98.5%)</td><td colspan="1" rowspan="3" style="vertical-align:top;">OR, 0.38 (95% CI, 0.05&#x02013;2.75)</td><td colspan="1" rowspan="3" style="vertical-align:top;">OR, 3.18 (95% CI, 1.52&#x02013;6.66)</td><td colspan="1" rowspan="3" style="vertical-align:top;">The <i>BRCA1</i> 5382insC founder pathogenic variant was not tested in this series, so it is likely that some carriers of this pathogenic variant were not identified. Consequently, <i>BRCA1</i>-related risk may be underestimated.
Gleason score 7&#x02013;10 prostate cancer was more common in carriers of <i>BRCA2</i> pathogenic variants (85%) than in noncarriers (57%); <i>P</i> = .0002.
Carriers of <i>BRCA1/BRCA2</i> pathogenic variants had significantly greater risk of recurrence and prostate cancer&#x02013;specific death than did noncarriers.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 6 (0.7%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 20 (2.4%)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 454 AJ men with no history of cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 4 (0.9%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 3 (0.7%)</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">AJ = Ashkenazi Jewish; CI = confidence interval; MECC = Molecular Epidemiology of Colorectal Cancer; OR = odds ratio; WAS = Washington Ashkenazi Study.</p></div></dd></dl></div></div></div><p id="CDR0000299612__934">These studies support the hypothesis that prostate cancer occurs excessively among carriers of AJ founder pathogenic variants and suggest that the risk may be greater among men with the <i>BRCA2</i> founder pathogenic variant (6174delT) than among those with one of the <i>BRCA1</i> founder pathogenic variants (185delAG; 5382insC). The magnitude of the <i>BRCA2</i>-associated risks differ somewhat, undoubtedly because of interstudy differences related to participant ascertainment, calendar time differences in diagnosis, and analytic methods.
Some data suggest that <i>BRCA</i>-related prostate cancer has a significantly worse prognosis than prostate cancer that occurs among noncarriers.[<a class="bk_pop" href="#CDR0000299612_rl_922_19">19</a>]</p></div><div id="CDR0000299612__935"><h5>Other populations</h5><p id="CDR0000299612__1109">The association between prostate cancer and pathogenic variants in <i>BRCA1</i> and <i>BRCA2</i> has also been studied in other populations. <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1130/?report=objectonly" target="object" rid-figpopup="figCDR00002996121130" rid-ob="figobCDR00002996121130">Table 6</a> summarizes studies that used case-control methods to examine the prevalence of <i>BRCA</i> pathogenic variants among men with prostate cancer from other varied populations.</p><div id="CDR0000299612__1130" class="table"><h3><span class="title">Table 6. Case-Control Studies in Varied Populations of <i>BRCA1</i> and <i>BRCA2</i> and Prostate Cancer Risk</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1130/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1130_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study</th><th colspan="1" rowspan="1" style="vertical-align:top;">Cases / Controls</th><th colspan="1" rowspan="1" style="vertical-align:top;">Pathogenic Variant Freq. (<i>BRCA1</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Pathogenic Variant Freq. (<i>BRCA2)</i></th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer Risk (<i>BRCA1</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer Risk (<i>BRCA2</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Comments</th></tr></thead><tbody><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Johannesdottir et al. (1996) [<a class="bk_pop" href="#CDR0000299612_rl_922_20">20</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 75 Icelandic men diagnosed with prostate cancer &#x0003c;65 y, between 1983 and 1992, with available archival tissue blocks </td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 999del5 (2.7%)
</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">999del5: RR, 2.5 (95% CI, 0.49&#x02013;18.4)</td><td colspan="1" rowspan="2" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 499 randomly selected DNA samples from the Icelandic National Diet Survey</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: (0.4%)
</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Eerola et al. (2001) [<a class="bk_pop" href="#CDR0000299612_rl_922_21">21</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 107 Finnish hereditary breast cancer families defined as having three first- or second-degree relatives with breast or ovarian cancer at any age</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">SIR, 1.0 (95% CI, 0.0&#x02013;3.9)</td><td colspan="1" rowspan="2" style="vertical-align:top;">SIR, 4.9 (95% CI, 1.8&#x02013;11.0)</td><td colspan="1" rowspan="2" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: Finnish population based on gender, age, and calendar period&#x02013;specific incidence rates</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;">Cybulski et al. (2013) [<a class="bk_pop" href="#CDR0000299612_rl_922_22">22</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">Cases: 3,750 Polish men with prostate cancer unselected for age or family history and diagnosed between 1999 and 2012 </td><td colspan="1" rowspan="2" style="vertical-align:top;">Cases: 14 (0.4%)</td><td colspan="1" rowspan="4" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">Any <i>BRCA1</i> pathogenic variant: OR, 0.9; (95% CI, 0.4&#x02013;1.8)</td><td colspan="1" rowspan="4" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="4" style="vertical-align:top;">Prostate cancer risk was greater in familial cases and cases diagnosed &#x0003c;60 y.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">4153delA: OR, 5.3 (95% CI, 0.6&#x02013;45.2)
</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Controls: 3,956 Polish men with no history of cancer aged 23&#x02013;90 y</td><td colspan="1" rowspan="2" style="vertical-align:top;">Controls: 17 (0.4%) </td><td colspan="1" rowspan="1" style="vertical-align:top;">5382insC: OR, 0.5 (95% CI, 0.2&#x02013;1.3)
</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">C61G: OR, 1.1 (95% CI, 1.6&#x02013;2.2) </td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">CI = confidence interval; OR = odds ratio; RR = relative risk; SIR = standardized incidence ratio.</p></div></dd></dl></div></div></div><p id="CDR0000299612__1110">These data suggest that prostate cancer risk in carriers of <i>BRCA1</i>/<i>BRCA2</i> pathogenic variants varies with the location of the pathogenic variant (i.e., there is a correlation between <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000660739/" class="def">genotype</a> and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460203/" class="def">phenotype</a>).[<a class="bk_pop" href="#CDR0000299612_rl_922_20">20</a>,<a class="bk_pop" href="#CDR0000299612_rl_922_21">21</a>,<a class="bk_pop" href="#CDR0000299612_rl_922_23">23</a>] These observations might explain some of the inconsistencies encountered in prior studies of these associations, since varied populations may have differences in the proportion of persons with specific <i>BRCA1</i>/<i>BRCA2</i> pathogenic variants.</p><p id="CDR0000299612__1111">Several case series have also explored the role of <i>BRCA1</i> and <i>BRCA2</i> pathogenic variants and prostate cancer risk. </p><div id="CDR0000299612__1131" class="table"><h3><span class="title">Table 7. Case Series of <i>BRCA1</i> and <i>BRCA2</i> and Prostate Cancer Risk</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1131/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1131_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study</th><th colspan="1" rowspan="1" style="vertical-align:top;">Population</th><th colspan="1" rowspan="1" style="vertical-align:top;">Pathogenic Variant Freq. (<i>BRCA1</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Pathogenic Variant Freq. (<i>BRCA2</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer Risk (<i>BRCA1</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer Risk (<i>BRCA2</i>)</th><th colspan="1" rowspan="1" style="vertical-align:top;">Comments</th></tr></thead><tbody><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Agalliu et al. (2007) [<a class="bk_pop" href="#CDR0000299612_rl_922_24">24</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">290 men (white, n = 257; African American, n = 33) diagnosed with prostate cancer &#x0003c;55 y and unselected for family history</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">2 (0.69%)</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">RR, 7.8 (95% CI, 1.8&#x02013;9.4)</td><td colspan="1" rowspan="1" style="vertical-align:top;">No pathogenic variants were found in African American men. </td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">The two men with a pathogenic variant reported no family history of breast cancer or ovarian cancer.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Agalliu et al. (2007) [<a class="bk_pop" href="#CDR0000299612_rl_922_25">25</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">266 individuals from 194 hereditary prostate cancer families, including 253
men affected with prostate cancer; median age at prostate cancer diagnosis: 58 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">0 (0%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">31 nonsynonymous variations were identified; no truncating or pathogenic variants were detected.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Tryggvad&#x000f3;ttir et al. (2007) [<a class="bk_pop" href="#CDR0000299612_rl_922_26">26</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">527 men diagnosed with prostate cancer between 1955 and 2004</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">30/527 (5.7%) carried the Icelandic founder pathogenic variant 999del5</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">The <i>BRCA2</i> 999del5 pathogenic variant was associated with a lower mean age at prostate cancer diagnosis (69 vs. 74 y; <i>P</i> = .002)</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Kote-Jarai et al. (2011) [<a class="bk_pop" href="#CDR0000299612_rl_922_27">27</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">1,832 men diagnosed with prostate cancer between ages 36 and 88 y who participated in the UK Genetic Prostate Cancer Study</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">Overall:
19/1,832 (1.03%)
</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">RR, 8.6<sup>a</sup> (95% CI, 5.1&#x02013;12.6)</td><td colspan="1" rowspan="2" style="vertical-align:top;">MLPA was not used; therefore, the pathogenic variant frequency may be an underestimate, given the inability to detect large genomic rearrangements.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Prostate cancer diagnosed &#x02264;55 y:
8/632 (1.27%)
</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Leongamornlert et al. (2012) [<a class="bk_pop" href="#CDR0000299612_rl_922_28">28</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">913 men with prostate cancer who participated in the UK Genetic Prostate Cancer Study; included 821 cases diagnosed between ages 36 and 65 y, regardless of family history, and 92 cases diagnosed &#x0003e;65 y with a family history of prostate cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">All cases: 4/886 (0.45%) </td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">RR, 3.75<sup>a</sup> (95% CI, 1.02&#x02013;9.6)</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">Quality-control assessment after sequencing excluded 27 cases, resulting in 886 included in the final analysis.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Cases &#x02264;65 y: 3/802 (0.37%)</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">CI = confidence interval; MLPA = multiplex ligation-dependent probe amplification; RR = relative risk; UK = United Kingdom.</p></div></dd><dt></dt><dd><div><p class="no_margin"><sup>a</sup>Estimate calculated using RR data in UK general population.</p></div></dd></dl></div></div></div><p id="CDR0000299612__1112">These case series confirm that pathogenic variants in <i>BRCA1</i> and <i>BRCA2</i> do not play a significant role in hereditary prostate cancer. However, germline pathogenic variants in <i>BRCA2</i> account for some cases of early-onset prostate cancer, although this is estimated to be less than 1% of early-onset prostate cancers in the United States.[<a class="bk_pop" href="#CDR0000299612_rl_922_24">24</a>]</p></div></div><div id="CDR0000299612__940"><h4>Prostate cancer aggressiveness in carriers of <i>BRCA</i> pathogenic variants</h4><p id="CDR0000299612__1123">The studies summarized in <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1132/?report=objectonly" target="object" rid-figpopup="figCDR00002996121132" rid-ob="figobCDR00002996121132">Table 8</a> used similar case-control methods to examine features of prostate cancer aggressiveness among men with prostate cancer found to harbor a <i>BRCA1/BRCA2</i> pathogenic variant.</p><div id="CDR0000299612__1132" class="table"><h3><span class="title">Table 8. Case-Control Studies of <i>BRCA1</i> and <i>BRCA2</i> and Prostate Cancer Aggressiveness</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1132/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1132_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study</th><th colspan="1" rowspan="1" style="vertical-align:top;">Cases / Controls</th><th colspan="1" rowspan="1" style="vertical-align:top;">Gleason Score<sup>a</sup></th><th colspan="1" rowspan="1" style="vertical-align:top;">PSA<sup>a</sup></th><th colspan="1" rowspan="1" style="vertical-align:top;">Tumor Stage or Grade<sup>a</sup></th><th colspan="1" rowspan="1" style="vertical-align:top;">Comments</th></tr></thead><tbody><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Tryggvad&#x000f3;ttir et al. (2007) [<a class="bk_pop" href="#CDR0000299612_rl_922_26">26</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">Cases: 30 men diagnosed with prostate cancer who were carriers of <i>BRCA2</i> 999del5 founder pathogenic variants</td><td colspan="1" rowspan="1" style="vertical-align:top;">Gleason score 7&#x02013;10:</td><td colspan="1" rowspan="3" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">Stage IV at diagnosis:</td><td colspan="1" rowspan="3" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Cases:
84%</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Cases:
55.2%
</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 59 men with prostate cancer matched by birth and diagnosis year and confirmed not to carry the <i>BRCA2</i> 999del5 pathogenic variant </td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Controls: 52.7% </td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Controls:
24.6%
</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Agalliu et al. (2009) [<a class="bk_pop" href="#CDR0000299612_rl_922_18">18</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">Cases: 979 AJ men diagnosed with prostate cancer between 1978 and 2005 (mean and median year of diagnosis: 1996)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Gleason score 7&#x02013;10: </td><td colspan="1" rowspan="3" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="3" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="3" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA1</i> 185delAG pathogenic variant: OR, 3.54 (95% CI, 1.22&#x02013;10.31)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 1,251 AJ men with no history of cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA2</i> 6174delT pathogenic variant:
OR, 3.18 (95% CI, 1.37&#x02013;7.34)
</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;">Edwards et al. (2010) [<a class="bk_pop" href="#CDR0000299612_rl_922_29">29</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">Cases: 21 men diagnosed with prostate cancer who harbored a <i>BRCA2 </i>pathogenic variant: 6 with early-onset disease (&#x02264;55 y) from a UK prostate cancer study and 15 unselected for age at diagnosis from a UK clinical series</td><td colspan="1" rowspan="4" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="4" style="vertical-align:top;">PSA &#x02265;25 ng/mL: HR, 1.39 (95% CI, 1.04&#x02013;1.86)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Stage T3: HR, 1.19 (95% CI, 0.68&#x02013;2.05)
</td><td colspan="1" rowspan="4" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Stage T4: HR, 1.87 (95% CI, 1.00&#x02013;3.48)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">
Grade 2: HR, 2.24 (95% CI, 1.03&#x02013;4.88)
</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 1,587 age- and stage-matched men with prostate cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">Grade 3: HR, 3.94 (95% CI, 1.78&#x02013;8.73)</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Gallagher et al. (2010) [<a class="bk_pop" href="#CDR0000299612_rl_922_19">19</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Cases: 832 AJ men diagnosed with localized prostate cancer between 1988 and 2007, of which there were six carriers of <i>BRCA1</i> pathogenic variants and 20 carriers of <i>BRCA2</i> pathogenic variants</td><td colspan="1" rowspan="1" style="vertical-align:top;">Gleason score 7&#x02013;10: </td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="2" style="vertical-align:top;">The <i>BRCA1</i> 5382insC founder pathogenic variant was not tested in this series.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 454 AJ men with no history of cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>BRCA2</i> 6174delT pathogenic variant: HR, 2.63 (95% CI, 1.23&#x02013;5.6; <i>P</i> = .001)
</td></tr><tr><td colspan="1" rowspan="6" style="vertical-align:top;">Thorne et al. (2011) [<a class="bk_pop" href="#CDR0000299612_rl_922_30">30</a>]</td><td colspan="1" rowspan="4" style="vertical-align:top;">Cases: 40 men diagnosed with prostate cancer who were carriers of <i> BRCA2 </i>pathogenic variants from 30 familial breast cancer families from Australia and New Zealand </td><td colspan="1" rowspan="2" style="vertical-align:top;">Gleason score &#x02265;8:</td><td colspan="1" rowspan="1" style="vertical-align:top;">PSA 10&#x02013;100 ng/mL:</td><td colspan="1" rowspan="1" style="vertical-align:top;">Stage &#x02265;pT3 at presentation:
</td><td colspan="1" rowspan="6" style="vertical-align:top;">Carriers of <i>BRCA2</i> pathogenic variants were more likely to have high-risk disease by <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000740451/" class="def">D&#x02019;Amico criteria</a> than were noncarriers (77.5% vs. 58.7%, <i>P</i> = .05).
</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"> &#x02013; <i>BRCA2</i> pathogenic variants:
35%
(14/40)</td><td colspan="1" rowspan="3" style="vertical-align:top;">&#x02013; <i>BRCA2</i> pathogenic variants:
44.7% (17/38) </td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">&#x02013; <i>BRCA2</i> pathogenic variants: 65.8% (25/38) </td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Controls:
27.9%
(27/97) </td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">PSA &#x0003e;101 ng/mL:</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Controls: 97 men from 89 familial breast cancer families from Australia and New Zealand with prostate cancer and no <i>BRCA</i> pathogenic variant found in the family </td><td colspan="1" rowspan="2" style="vertical-align:top;">&#x02013; Controls:
33.0% (25/97) </td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA2</i> pathogenic variants:
10% (4/40)</td><td colspan="1" rowspan="2" style="vertical-align:top;">&#x02013; Controls:
22.6% (21/97)
</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013;Controls:
2.1% (2/97)</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;"> Castro et al. (2013) [<a class="bk_pop" href="#CDR0000299612_rl_922_31">31</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">Cases: 2,019 men diagnosed with prostate cancer from the UK, of whom 18 were carriers of <i>BRCA1</i> pathogenic variants and 61 were carriers of <i>BRCA2</i> pathogenic variants </td><td colspan="1" rowspan="1" style="vertical-align:top;">Gleason score &#x0003e;8:</td><td colspan="1" rowspan="2" style="vertical-align:top;"><i>BRCA1</i> median PSA: 8.9 (range, 0.7&#x02013;3,000)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Stage &#x02265;pT3 at presentation:</td><td colspan="1" rowspan="4" style="vertical-align:top;">Nodal metastasis and distant metastasis were higher in men with a <i>BRCA</i> pathogenic variant than in controls. </td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA1</i> pathogenic variants: 27.8% (5/18)</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA1</i>: 38.9% (7/18)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA2</i> pathogenic variants: 37.7% (23/61)</td><td colspan="1" rowspan="1" style="vertical-align:top;">
<i>BRCA2 </i>median PSA: 15.1 (range, 0.5&#x02013;761)</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA2 </i>: 49.2% (30/61)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls: 1,940 men who were <i>BRCA1/BRCA2</i> noncarriers</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Controls 15.4% (299/1,940)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls median PSA: 11.3 (range, 0.2&#x02013;7,800)</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Controls: 31.7% (616/1,940)</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Akbari et al. (2014) [<a class="bk_pop" href="#CDR0000299612_rl_922_32">32</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">Cases: 4,187 men who underwent prostate biopsy for elevated PSA or abnormal exam, including 26 men with at least one <i>BRCA</i> coding pathogenic variant (all 26 coding exons of <i>BRCA</i> were sequenced for polymorphisms)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Gleason score 7&#x02013;10:</td><td colspan="1" rowspan="2" style="vertical-align:top;">Cases median PSA: 56.3</td><td colspan="1" rowspan="3" style="vertical-align:top;">Not fully assessed in cases and controls</td><td colspan="1" rowspan="3" style="vertical-align:top;">The 12-year survival for men with a <i>BRCA2</i> pathogenic variant was inferior to that of men without a <i>BRCA2</i> pathogenic variant (61.8% vs. 94.3%; <i>P</i> &#x0003c; 10<sup>&#x02212;4</sup>). Among the men with high-grade disease (Gleason 7&#x02013;9), the presence of a <i>BRCA2</i> pathogenic variant was associated with an HR of 4.38 (95% CI, 1.99&#x02013;9.62; <i>P</i> &#x0003c; .0001) after adjusting for age and PSA level.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Cases 96% </td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Controls:
1,878 men with no <i>BRCA</i> coding pathogenic variants (all 26 coding exons of <i>BRCA</i> were sequenced for polymorphisms)
</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Controls 54% </td><td colspan="1" rowspan="1" style="vertical-align:top;">Controls median PSA: 13.3</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">AJ = Ashkenazi Jewish; CI = confidence interval; HR = hazard ratio; OR = odds ratio; PSA = prostate-specific antigen; UK = United Kingdom.</p></div></dd><dt></dt><dd><div><p class="no_margin"><sup>a</sup>Measures of prostate cancer aggressiveness.</p></div></dd></dl></div></div></div><p id="CDR0000299612__1124">These studies suggest that prostate cancer in carriers of <i>BRCA</i> pathogenic variants may be associated with features of aggressive disease, including higher Gleason score, higher prostate-specific antigen (PSA) level at diagnosis, and higher tumor stage and/or grade at diagnosis , a finding that warrants consideration as patients undergo cancer risk assessment and genetic counseling.[<a class="bk_pop" href="#CDR0000299612_rl_922_33">33</a>] Research is under way to gain insight into the biologic basis of aggressive prostate cancer in carriers of <i>BRCA</i> pathogenic variants. One study of 14 <i>BRCA2</i> germline pathogenic variant carriers reported that <i>BRCA2</i>-associated prostate cancers harbor increased genomic instability and a mutational pro&#x0fb01;le that more closely resembles metastatic prostate cancer than localized disease, with genomic and epigenomic dysregulation of the <i>MED12L</i>/<i>MED12</i> axis similar to metastatic castration-resistant prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_922_34">34</a>]</p></div><div id="CDR0000299612__943"><h4><i>BRCA1/BRCA2</i> and survival outcomes</h4><p id="CDR0000299612__944">Analyses of prostate cancer cases in families with known <i>BRCA1</i> or <i>BRCA2</i> pathogenic variants have been examined for survival. In an unadjusted analysis performed on a case series, median survival was 4 years in 183 men with prostate cancer with a <i>BRCA2</i> pathogenic variant and 8 years in 119 men with a <i>BRCA1</i> pathogenic variant. The study suggests that carriers of <i>BRCA2</i> pathogenic variants have a poorer survival than carriers of <i>BRCA1</i> pathogenic variants.[<a class="bk_pop" href="#CDR0000299612_rl_922_35">35</a>] To further assess this observation, case-control studies were conducted (summarized in <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1133/?report=objectonly" target="object" rid-figpopup="figCDR00002996121133" rid-ob="figobCDR00002996121133">Table 9</a>). </p><div id="CDR0000299612__1133" class="table"><h3><span class="title">Table 9. Case-Control Studies of <i>BRCA1</i> and <i>BRCA2</i> and Survival Outcomes </span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1133/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1133_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study</th><th colspan="1" rowspan="1" style="vertical-align:top;">Cases</th><th colspan="1" rowspan="1" style="vertical-align:top;">Controls</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prostate Cancer&#x02013;Specific Survival</th><th colspan="1" rowspan="1" style="vertical-align:top;">Overall Survival</th><th colspan="1" rowspan="1" style="vertical-align:top;">Comments</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Tryggvad&#x000f3;ttir et al. (2007) [<a class="bk_pop" href="#CDR0000299612_rl_922_26">26</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">30 men diagnosed with prostate cancer who were carriers of <i>BRCA2</i> 999del5 founder pathogenic variants</td><td colspan="1" rowspan="1" style="vertical-align:top;">59 men with prostate cancer matched by birth and diagnosis year and confirmed not to carry the <i>BRCA2</i> 999del5 pathogenic variant </td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>BRCA2</i> 999del5 pathogenic variant was associated with a higher risk of death from prostate cancer (HR, 3.42; 95% CI, 2.12&#x02013;5.51), which remained after adjustment for tumor stage and grade (HR, 2.35; 95% CI, 1.08&#x02013;5.11).</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Edwards et al. (2010) [<a class="bk_pop" href="#CDR0000299612_rl_922_29">29</a>] </td><td colspan="1" rowspan="1" style="vertical-align:top;">21 men diagnosed with prostate cancer who harbored a <i>BRCA2</i> pathogenic variant: 6 with early-onset disease (&#x02264;55 y) from a UK prostate cancer study and 15 unselected for age at diagnosis from a UK clinical series</td><td colspan="1" rowspan="1" style="vertical-align:top;">1,587 age- and stage-matched men with prostate cancer </td><td colspan="1" rowspan="1" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="1" style="vertical-align:top;">Overall survival was lower in carriers of <i>BRCA2</i> pathogenic variants (4.8 y) than in noncarriers (8.5 y); in noncarriers, HR, 2.14 (95% CI, 1.28&#x02013;3.56; <i>P</i> = .003).</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Gallagher et al. (2010) [<a class="bk_pop" href="#CDR0000299612_rl_922_19">19</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">832 AJ men diagnosed with localized prostate cancer between 1988 and 2007, of which there were 6 carriers of <i>BRCA1</i> pathogenic variants and 20 carriers of <i>BRCA2</i> pathogenic variants</td><td colspan="1" rowspan="3" style="vertical-align:top;">454 AJ men with no history of cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">After adjusting for stage, PSA, Gleason score, and therapy received:
</td><td colspan="1" rowspan="3" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="3" style="vertical-align:top;">The <i>BRCA1</i> 5382insC founder pathogenic variant was not tested in this series.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Carriers of <i>BRCA1 </i>185delAG pathogenic variants had a greater risk of death due to prostate cancer (HR, 5.16; 95% CI, 1.09&#x02013;24.53; <i>P</i> = .001).</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013;Carriers of <i> BRCA2</i> 6174delT pathogenic variants had a greater risk of death due to prostate cancer (HR, 5.48; 95% CI, 2.03&#x02013;14.79; <i>P</i> = .001).</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Thorne et al. (2011) [<a class="bk_pop" href="#CDR0000299612_rl_922_30">30</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">40 men diagnosed with prostate cancer who were carriers of<i> BRCA2 </i>pathogenic variants from 30 familial breast cancer families from Australia and New Zealand </td><td colspan="1" rowspan="1" style="vertical-align:top;">97 men from 89 familial breast cancer families from Australia and New Zealand with prostate cancer and no <i>BRCA</i> pathogenic variant found in the family </td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>BRCA2</i> carriers were shown to have an increased risk of prostate cancer&#x02013;specific mortality (HR, 4.5; 95% CI, 2.12&#x02013;9.52; <i>P</i> = 8.9 &#x000d7; 10<sup>-5</sup>), compared with noncarrier controls.</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>BRCA2</i> carriers were shown to have an increased risk of death (HR, 3.12; 95% CI, 1.64&#x02013;6.14; <i>P</i> = 3.0 &#x000d7; 10<sup>-4</sup>), compared with noncarrier controls.</td><td colspan="1" rowspan="1" style="vertical-align:top;">There were too few <i>BRCA1</i> carriers available to include in the analysis.</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;">Castro et al. (2013) [<a class="bk_pop" href="#CDR0000299612_rl_922_31">31</a>]</td><td colspan="1" rowspan="4" style="vertical-align:top;">2,019 men diagnosed with prostate cancer from the UK, of whom 18 were carriers of <i>BRCA1</i> pathogenic variants and 61 were carriers of <i>BRCA2</i> pathogenic variants </td><td colspan="1" rowspan="4" style="vertical-align:top;">1,940 men who were <i>BRCA1/BRCA2</i> noncarriers</td><td colspan="1" rowspan="1" style="vertical-align:top;">Prostate cancer&#x02013;specific survival at 5 years:
</td><td colspan="1" rowspan="1" style="vertical-align:top;">Overall survival at 5 years:</td><td colspan="1" rowspan="4" style="vertical-align:top;">For localized prostate cancer, metastasis-free survival was also higher in controls than in carriers of pathogenic variants (93% vs. 77%; HR, 2.7).</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013;<i> BRCA1</i>: 80.8% (95% CI, 56.9%&#x02013;100%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013;<i> BRCA1</i>: 82.5% (95% CI, 60.4%&#x02013;100%)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA2</i>: 67.9% (95% CI 53.4%&#x02013;82.4%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA2</i>: 57.9% (95% CI, 43.4%&#x02013;72.4%)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Controls: 90.6% (95% CI 88.8%&#x02013;92.4%)</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Controls: 86.4% (95% CI, 84.4%&#x02013;88.4%)</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Castro et al. (2015) [<a class="bk_pop" href="#CDR0000299612_rl_922_36">36</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">1,302 men from the UK with local or locally advanced prostate cancer, including 67 carriers of <i>BRCA1/BRCA2</i> pathogenic variants</td><td colspan="1" rowspan="3" style="vertical-align:top;">1,235 men who were <i>BRCA1/BRCA2</i> noncarriers</td><td colspan="1" rowspan="1" style="vertical-align:top;">Prostate cancer&#x02013;specific survival:</td><td colspan="1" rowspan="3" style="vertical-align:top;">Not assessed</td><td colspan="1" rowspan="3" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; <i>BRCA1/BRCA2</i>: 61% at 10 years</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Noncarriers: 85% at 10 years</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">CI = confidence interval; HR = hazard ratio; PSA = prostate-specific antigen; UK = United Kingdom.</p></div></dd></dl></div></div></div><p id="CDR0000299612__1128">These findings suggest overall survival and prostate cancer&#x02013;specific survival may be lower in carriers of pathogenic variants than in controls.</p></div><div id="CDR0000299612__1113"><h4>Additional studies involving the <i>BRCA</i> region</h4><p id="CDR0000299612__1114">A genome-wide scan for hereditary prostate cancer using 175 families from the University of Michigan Prostate Cancer Genetics Project (UM-PCGP) found evidence of linkage to chromosome 17q markers.[<a class="bk_pop" href="#CDR0000299612_rl_922_37">37</a>] The maximum logarithm of the odds (LOD) score in all families was 2.36, and the LOD score increased to 3.27 when only families with four or more confirmed affected men were analyzed. The linkage peak was centered over the <i>BRCA1</i> gene. In follow-up, these investigators screened the entire <i>BRCA1</i> gene for pathogenic variants using DNA from one individual from each of 93 pedigrees with evidence of prostate cancer linkage to 17q markers.[<a class="bk_pop" href="#CDR0000299612_rl_922_38">38</a>] Sixty-five of the individuals screened had wild-type <i>BRCA1</i> sequence, and only one individual from a family with prostate and ovarian cancers was found to have a truncating pathogenic variant (3829delT). The remainder of the individuals harbored one or more germline <i>BRCA1</i> variants, including 15 missense variants of uncertain clinical significance. The conclusion from these two reports is that there is evidence of a prostate cancer <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460209/" class="def">susceptibility gene</a> on chromosome 17q near <i>BRCA1</i>; however, large deleterious inactivating variants in <i>BRCA1</i> are not likely to be associated with prostate cancer risk in chromosome 17&#x02013;linked families. </p><p id="CDR0000299612__1115">In another study from the UM-PCGP, common genetic variation in <i>BRCA1</i> was examined.[<a class="bk_pop" href="#CDR0000299612_rl_922_39">39</a>] Conditional logistic regression analysis and family-based association tests were performed in 323 familial prostate cancer families and early-onset prostate cancer families, which included 817 men with and without prostate cancer, to investigate the association of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000458046/" class="def">single nucleotide polymorphisms</a> (SNPs) tagging common haplotype variation in a 200-kilobase region surrounding and including <i>BRCA1</i>. Three SNPs in <i>BRCA1</i> (<a href="/snp/?term=1799950" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs1799950</a>, <a href="/snp/?term=3737559" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs3737559</a>, and <a href="/snp/?term=799923" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs799923</a>) were found to be associated with prostate cancer. The strongest association was observed for SNP <a href="/snp/?term=1799950" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs1799950</a> (odds ratio [OR], 2.25; 95% CI, 1.21&#x02013;4.20), which leads to a glutamine-to-arginine substitution at codon 356 (Gln356Arg) of exon 11 of <i>BRCA1</i>. Furthermore, SNP <a href="/snp/?term=1799950" class="bk_tag" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=snp">rs1799950</a> was found to contribute to the linkage signal on chromosome 17q21 originally reported by the UM-PCGP.[<a class="bk_pop" href="#CDR0000299612_rl_922_37">37</a>]</p></div></div><div id="CDR0000299612__947"><h3>Mismatch Repair (MMR) Genes</h3><p id="CDR0000299612__980">Five genes are implicated in MMR, namely <i>MLH1</i>, <i>MSH2</i>, <i>MSH6</i>, <i>PMS2</i>, and <i>EPCAM</i>. Germline pathogenic variants in these five genes have been associated with Lynch syndrome, which manifests by cases of nonpolyposis colorectal cancer and a constellation of other cancers in families, including endometrial, ovarian, and duodenal cancers; and transitional cell cancers of the ureter and renal pelvis. Reports have suggested that prostate cancer may be observed in men harboring an MMR gene pathogenic variant.[<a class="bk_pop" href="#CDR0000299612_rl_922_40">40</a>,<a class="bk_pop" href="#CDR0000299612_rl_922_41">41</a>] The first quantitative study described nine cases of prostate cancer occurring in a population-based cohort of 106 Norwegian male carrier of MMR gene pathogenic variants or obligate carriers.[<a class="bk_pop" href="#CDR0000299612_rl_922_42">42</a>] The expected number of cases among these 106 men was 1.52 (<i>P</i> &#x0003c; .01); the men were younger at the time of diagnosis (60.4 years vs. 66.6 years, <i>P</i> = .006) and had more evidence of Gleason score of 8 to 10 (<i>P</i> &#x0003c; .00001) than the cases from the Norwegian Cancer Registry. Kaplan Meier analysis revealed that the cumulative risk of prostate cancer diagnosis by age 70 years was 30% in carriers of MMR gene pathogenic variants and 8% in the general population. This finding awaits confirmation in additional populations. A population-based case-control study examined haplotype-tagging SNPs in three MMR genes (<i>MLH1</i>, <i>MSH2</i>, and <i>PMS2</i>). This study provided some evidence supporting the contribution of genetic variation in <i>MLH1</i> and overall risk of prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_922_43">43</a>] To assess the contribution of prostate cancer as a feature of Lynch syndrome, one study performed microsatellite instability (MSI) testing on prostate cancer tissue blocks from families enrolled in a prostate cancer family registry who also reported a history of colon cancer. Among 35 tissue blocks from 31 distinct families, two tumors from families with MMR gene pathogenic variants were found to be MSI-high. The authors conclude that MSI is rare in hereditary prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_922_44">44</a>] Other studies are attempting to characterize rates of prostate cancer in Lynch syndrome families and correlate molecular features with prostate cancer risk.[<a class="bk_pop" href="#CDR0000299612_rl_922_45">45</a>]</p><p id="CDR0000299612__1234">One study that included two familial cancer registries found an increased cumulative incidence and risk of prostate cancer among 198 independent families with MMR gene pathogenic variants and Lynch syndrome.[<a class="bk_pop" href="#CDR0000299612_rl_922_46">46</a>] The cumulative lifetime risk of prostate cancer (to age 80 years) was 30.0% in carriers of MMR gene pathogenic variants (95% CI, 16.54&#x02013;41.30; <i>P</i> = .07), whereas it was 17.84% in the general population, according to the Surveillance, Epidemiology, and End Results Program estimates. There was a trend of increased prostate cancer risk in carriers of pathogenic variants by age 50 years, where the risk was 0.64% (95% CI, 0.24&#x02013;1.01; <i>P</i> = .06), compared with a risk of 0.26% in the general population. Overall, the hazard ratio (HR) (to age 80 years) for prostate cancer in carriers of MMR gene pathogenic variants in the combined data set was 1.99 (95% CI, 1.31&#x02013;3.03; <i>P</i> = .0013). Among men aged 20 to 59 years, the HR was 2.48 (95% CI, 1.34&#x02013;4.59; <i>P</i> = .0038).</p><p id="CDR0000299612__1308">A systematic review and meta-analysis that included 23 studies (6 studies with molecular characterization and 18 risk studies, of which 12 studies quantified risk for prostate cancer) reported an association of prostate cancer with Lynch syndrome.[<a class="bk_pop" href="#CDR0000299612_rl_922_47">47</a>] In the six molecular studies included in the analysis, 73% (95% CI, 57%&#x02013;85%) of prostate cancers in carriers of MMR gene pathogenic variants were MMR deficient. The RR of prostate cancer in carriers of MMR gene pathogenic variants was estimated to be 3.67 (95% CI, 2.32&#x02013;6.67). Of the twelve risk studies, the RR of prostate cancer ranged from 2.11 to 2.28, compared with that seen in the general population depending on carrier status, prior diagnosis of colorectal cancer, or unknown male carrier status from families with a known pathogenic variant. </p><p id="CDR0000299612__1377">A study from three sites participating in the Colon Cancer Family Registry examined 32 cases of prostate cancer (mean age at diagnosis, 62 years; standard deviation, 8 years) in men with a documented MMR gene pathogenic variant (23 <i>MSH2</i> carriers, 5 <i>MLH1</i> carriers, and 4 <i>MSH6</i> carriers).[<a class="bk_pop" href="#CDR0000299612_rl_922_48">48</a>] Seventy-two percent (n = 23) had a previous diagnosis of colorectal cancer. Immunohistochemistry was used to assess MMR protein loss, which was observed in 22 tumors (69%); the pattern of loss of protein expression was 100% concordant with the germline pathogenic variant. The RR of prostate cancer was highest in carriers of <i>MSH2</i> pathogenic variants (RR, 5.8 [95% CI, 2.6&#x02013;20.9]); the RRs in carriers of <i>MLH1</i> and <i>MSH6</i> pathogenic variants were 1.7 (95% CI, 1.1&#x02013;6.7) and 1.3 (95% CI, 1.1&#x02013;5.3), respectively. Gleason scores ranged from 5 to 10; two tumors had a Gleason score of 5; 22 tumors had a Gleason score of 6 or 7; and eight tumors had a Gleason score higher than 8. Sixty-seven percent (12 of 18) of the tumors were found to have perineural invasion, and 47% (9 of 19) had extracapsular invasion.</p><p id="CDR0000299612__1235">Although the risk of prostate cancer appears to be elevated in families with Lynch syndrome, strategies for germline testing for MMR gene pathogenic variants in index prostate cancer patients remain to be determined. </p></div><div id="CDR0000299612__948"><h3><i>HOXB13</i></h3><p id="CDR0000299612__949">Linkage to 17q21-22 was initially reported by the UM-PCGP from 175 pedigrees of families with hereditary prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_922_37">37</a>] Fine-mapping of this region provided strong evidence of linkage (LOD score = 5.49) and a narrow candidate interval (15.5 Mb) for a putative susceptibility gene among 147 families with four or more <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460124/" class="def">affected</a> men and average age at diagnosis of 65 years or younger.[<a class="bk_pop" href="#CDR0000299612_rl_922_49">49</a>] The exons of 200 genes in the 17q21-22 region were sequenced in DNA from 94 unrelated patients from hereditary prostate cancer families (from the UM-PCGP and Johns Hopkins).[<a class="bk_pop" href="#CDR0000299612_rl_922_50">50</a>] <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460211/" class="def">Probands</a> from four families were discovered to have a recurrent pathogenic variant (G84E) in <i>HOXB13</i>, and 18 men with prostate cancer from these four families carried the pathogenic variant. The pathogenic variant status was determined in 5,083 additional case subjects and 2,662 control subjects. Carrier frequencies and ORs for prostate cancer risk were as follows:</p><ul id="CDR0000299612__950"><li class="half_rhythm"><div>Men with a positive family history of prostate cancer: 2.2% versus negative: 0.8% (OR, 2.8; 95% CI, 1.6&#x02013;5.1; <i>P </i>= 1.2 &#x000d7; 10<sup>-4</sup>).</div></li><li class="half_rhythm"><div>Men younger than 55 years at diagnosis: 2.2% versus older than 55 years: 0.8% (OR, 2.7; 95% CI, 1.6&#x02013;4.7; <i>P</i> = 1.1 &#x000d7; 10<sup>-4</sup>).</div></li><li class="half_rhythm"><div>Men with a positive family history of prostate cancer and younger than 55 years at diagnosis: 3.1% versus a negative family history of prostate cancer and age at diagnosis older than 55 years: 0.6% (OR, 5.1; 95% CI, 2.4&#x02013;12.2; <i>P </i>= 2.0 &#x000d7; 10<sup>-6</sup>).</div></li><li class="half_rhythm"><div>Men with a positive family history of prostate cancer and older than 55 years age at diagnosis: 1.2%.</div></li><li class="half_rhythm"><div>Control subjects: 0.1% to 0.2%.[<a class="bk_pop" href="#CDR0000299612_rl_922_50">50</a>]</div></li></ul><p id="CDR0000299612__1213">A validation study from the International Consortium of Prostate Cancer Genetics confirmed <i>HOXB13</i> as a susceptibility gene for prostate cancer risk.[<a class="bk_pop" href="#CDR0000299612_rl_922_51">51</a>] Within carrier families, the G84E pathogenic variant was more common among men with prostate cancer than among unaffected men (OR, 4.42; 95% CI, 2.56&#x02013;7.64). The G84E pathogenic variant was also significantly overtransmitted from parents to affected offspring (<i>P</i> = 6.5 &#x000d7; 10<sup>-6</sup>). </p><p id="CDR0000299612__1204">Additional studies have emerged that better define the carrier frequency, prostate cancer risk, and penetrance associated with the <i>HOXB13</i> G84E pathogenic variant.[<a class="bk_pop" href="#CDR0000299612_rl_922_50">50</a>,<a class="bk_pop" href="#CDR0000299612_rl_922_52">52</a>-<a class="bk_pop" href="#CDR0000299612_rl_922_57">57</a>] To date, this pathogenic variant appears to be restricted to white men, primarily of European descent.[<a class="bk_pop" href="#CDR0000299612_rl_922_50">50</a>,<a class="bk_pop" href="#CDR0000299612_rl_922_52">52</a>-<a class="bk_pop" href="#CDR0000299612_rl_922_54">54</a>] The highest carrier frequency of 6.25% was reported in Finnish early-onset cases.[<a class="bk_pop" href="#CDR0000299612_rl_922_55">55</a>] A pooled analysis that included 9,016 cases and 9,678 controls of European Americans found an overall G84E pathogenic variant frequency of 1.34% among cases and 0.28% among controls.[<a class="bk_pop" href="#CDR0000299612_rl_922_56">56</a>]</p><p id="CDR0000299612__1207">Risk of prostate cancer by <i>HOXB13</i> G84E pathogenic variant status has been reported to vary by age of onset, family history, and geographical region. A validation study in an independent cohort of 9,988 cases and 61,994 controls from six studies of men of European ancestry, including 4,537 cases and 54,444 controls from Iceland whose genotypes were largely imputed, reported an OR of 7.06 (95% CI, 4.62&#x02013;10.78; <i>P</i> = 1.5 &#x000d7; 10<sup>&#x02212;19</sup>) for prostate cancer risk by G84E carrier status.[<a class="bk_pop" href="#CDR0000299612_rl_922_58">58</a>] A pooled analysis reported a prostate cancer OR of 4.86 (95% CI, 3.18&#x02013;7.69; <i>P</i> = 3.48 &#x000d7; 10<sup>-17</sup>) in men with <i>HOXB13</i> pathogenic variants compared with noncarriers; this increased to an OR of 8.41 (95% CI, 5.27&#x02013;13.76; <i>P</i> = 2.72 &#x000d7;10<sup>-22</sup>) among men diagnosed with prostate cancer at age 55 years or younger. The OR was 7.19 (95% CI, 4.55&#x02013;11.67; <i>P</i> = 9.3 &#x000d7; 10<sup>-21</sup>) among men with a
positive family history of prostate cancer and 3.09 (95% CI, 1.83&#x02013;5.23; <i>P</i> = 6.26 &#x000d7; 10<sup>-6</sup>) among men with a negative family history of prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_922_56">56</a>] A meta-analysis that included 24,213 cases and 73,631 controls of European descent revealed an overall OR for prostate cancer by carrier status of 4.07 (95% CI, 3.05&#x02013;5.45; <i>P</i> &#x0003c; .00001). Risk of prostate cancer varied by geographical region: United States (OR, 5.10; 95% CI, 3.21&#x02013;8.10; <i>P</i> &#x0003c; .00001), Canada (OR, 5.80; 95% CI, 1.27&#x02013;26.51; <i>P</i> = .02), Northern Europe (OR, 3.61; 95% CI, 2.81&#x02013;4.64; <i>P</i> &#x0003c; .00001), and Western Europe (OR, 8.47; 95% CI, 3.68&#x02013;19.48; <i>P</i> &#x0003c; .00001).[<a class="bk_pop" href="#CDR0000299612_rl_922_53">53</a>] In addition, the association between the G84E pathogenic variant and prostate cancer risk was higher for early-onset cases (OR, 10.11; 95% CI, 5.97&#x02013;17.12). There was no significant association with aggressive disease in the meta-analysis. </p><p id="CDR0000299612__1492">Another meta-analysis that included 11 case-control studies also reported higher risk estimates for prostate cancer in <i>HOXB13</i> G84E carriers (OR, 4.51; 95% CI, 3.28&#x02013;6.20; <i>P</i> &#x0003c; .00001) and found a stronger association between <i>HOXB13</i> G84E and early-onset disease (OR, 9.73; 95% CI, 6.57&#x02013;14.39; <i>P</i> &#x0003c; .00001).[<a class="bk_pop" href="#CDR0000299612_rl_922_59">59</a>] An additional meta-analysis of 25 studies including 51,390 cases and 93,867 controls revealed an OR for prostate cancer of 3.248 (95% CI, 2.121&#x02013;3.888). The association was most significant in Caucasians (OR, 2.673; 95% CI, 1.920&#x02013;3.720), especially those of European descent. No association was found for breast or colorectal cancer.[<a class="bk_pop" href="#CDR0000299612_rl_922_60">60</a>] One population-based, case-control study from the United States confirmed the association of the G84E pathogenic variant with prostate cancer (OR, 3.30; 95% CI, 1.21&#x02013;8.96) and reported a suggestive association with aggressive disease.[<a class="bk_pop" href="#CDR0000299612_rl_922_61">61</a>] In addition, one study identified no men of Ashkenazi Jewish ancestry who carried the G84E pathogenic variant.[<a class="bk_pop" href="#CDR0000299612_rl_922_62">62</a>] A case-control study from the U.K. that included 8,652 cases and 5,252 controls also confirmed the association of <i>HOXB13</i> G84E with prostate cancer (OR, 2.93; 95% CI, 1.94&#x02013;4.59; <i>P</i> = 6.27 &#x000d7; 10<sup>-8</sup>).[<a class="bk_pop" href="#CDR0000299612_rl_922_63">63</a>] The risk was higher among men with a family history (OR, 4.53; 95% CI, 2.86&#x02013;7.34; <i>P</i> = 3.1 &#x000d7; 10<sup>&#x02212;8</sup>] and in early-onset prostate cancer (diagnosed at age 55 years or younger) (OR, 3.11; 95% CI, 1.98&#x02013;5.00; <i>P</i> = 6.1 &#x000d7; 10<sup>&#x02212;7</sup>). No association was found between carrier status and Gleason score, cancer stage, overall survival, or cancer-specific survival.</p><p id="CDR0000299612__1208">Penetrance estimates for prostate cancer development in carriers of the <i>HOXB13</i> G84E pathogenic variant are also being reported. One study from Sweden estimated a 33% lifetime risk of prostate cancer among G84E carriers.[<a class="bk_pop" href="#CDR0000299612_rl_922_64">64</a>] Another study from Australia reported age-specific cumulative risk of prostate cancer of up to 60% by age 80 years.[<a class="bk_pop" href="#CDR0000299612_rl_922_65">65</a>]</p><p id="CDR0000299612__1209"><i>HOXB13</i> plays a role in prostate cancer development and interacts with the androgen receptor; however, the mechanism by which it contributes to the pathogenesis of prostate cancer remains unknown. This is the first gene identified to account for a fraction of hereditary prostate cancer, particularly early-onset prostate cancer. The clinical utility and implications for genetic counseling regarding the <i>HOXB13</i> G84E pathogenic variant have yet to be defined.</p></div><div id="CDR0000299612__1414"><h3>Multigene (Panel) Testing in Prostate Cancer</h3><p id="CDR0000299612__1415">Since the availability of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000763024/" class="def">next-generation sequencing</a> and the elimination of patent restrictions, several clinical laboratories now offer genetic testing through multigene panels at a cost comparable to single-gene testing. A caveat is the possible finding of a <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000556495/" class="def">variant of uncertain significance</a>, where the clinical significance remains unknown. (Refer to the <a href="/books/n/pdqcis/CDR0000062865/#CDR0000062865__1320">Multigene [panel] testing</a> section in the PDQ summary on <a href="/books/n/pdqcis/CDR0000062865/">Cancer Genetics Risk Assessment and Counseling</a> for more information about multigene testing, including genetic education and counseling considerations and research examining the use of multigene testing.) This section summarizes the evidence for additional genes that may be on prostate cancer susceptibility panel tests.</p><p id="CDR0000299612__1428">One retrospective case series of 692 men with metastatic prostate cancer unselected for cancer family history or age at diagnosis assessed the incidence of germline pathogenic variants in 16 DNA repair genes. Pathogenic variants were identified in 11.8% (82 of 692), a rate higher than in men with localized prostate cancer (4.6%, <i>P</i> &#x0003c; .001), suggesting that genetic aberrations are more commonly observed in men with aggressive forms of disease.[<a class="bk_pop" href="#CDR0000299612_rl_922_8">8</a>]</p><div id="CDR0000299612__1416"><h4><i>ATM</i></h4><p id="CDR0000299612__1417">Ataxia telangiectasia (AT) (<a href="/omim/208900" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>) is an <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339339/" class="def">autosomal recessive</a> disorder characterized by
neurologic deterioration, telangiectasias, immunodeficiency states, and
hypersensitivity to ionizing radiation. It is estimated that 1%
of the general population may be <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339341/" class="def">heterozygote</a> carriers of <i>ATM</i> variants (<a href="/omim/607585" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>).[<a class="bk_pop" href="#CDR0000299612_rl_922_66">66</a>] In the presence of DNA damage, the ATM protein is involved in mediating cell cycle arrest, DNA repair, and apoptosis.[<a class="bk_pop" href="#CDR0000299612_rl_922_67">67</a>] Given evidence of other cancer risks in heterozygote carriers, evidence of an association with prostate cancer susceptibility continues to emerge. (Refer to the <i><a href="/books/n/pdqcis/CDR0000062855/#CDR0000062855__1311">ATM</a></i> section in the PDQ summary on <a href="/books/n/pdqcis/CDR0000062855/">Genetics of Breast and Gynecologic Cancers</a> for more information about <i>ATM</i> and breast cancer.) A prospective case series of 10,317 Danish individuals with 36 years of follow-up, during which 2,056 individuals developed cancer, found that Ser49Cys was associated with prostate cancer (HR, 2.3; 95% CI, 1.1&#x02013;5.0).[<a class="bk_pop" href="#CDR0000299612_rl_922_67">67</a>] A retrospective case series of 692 men with metastatic prostate cancer unselected for cancer family history or age at diagnosis found that 1.6% (11 of 692) had an <i>ATM</i> pathogenic variant.[<a class="bk_pop" href="#CDR0000299612_rl_922_8">8</a>]</p></div><div id="CDR0000299612__1418"><h4><i>CHEK2</i></h4><p id="CDR0000299612__1429"><i>CHEK2</i> has also been investigated for a potential association with prostate cancer risk. (Refer to <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1159/?report=objectonly" target="object" rid-figpopup="figCDR00002996121159" rid-ob="figobCDR00002996121159">Table 3</a> for information about case-control studies that have assessed <i>CHEK2</i> as a potential prostate cancer susceptibility gene.) A retrospective case series of 692 men with metastatic prostate cancer unselected for cancer family history or age at diagnosis found 1.9% (10 of 534 [men with data]) were found to have a <i>CHEK2</i> pathogenic variant.[<a class="bk_pop" href="#CDR0000299612_rl_922_8">8</a>]</p></div><div id="CDR0000299612__1430"><h4><i>TP53</i></h4><p id="CDR0000299612__1491"><i>TP53</i> has also been investigated for a potential association with prostate cancer risk. In a case series of 286 individuals from 107 families with a deleterious <i>TP53</i> variant, 403 cancer diagnoses were reported, of which 211 were the first primary cancer including two prostate cancers diagnosed after age 45 years. Prostate cancer was also reported in 4 of 61 men with a second primary cancer.[<a class="bk_pop" href="#CDR0000299612_rl_922_68">68</a>] In a Dutch case series of 180 families meeting either classic Li-Fraumeni syndrome (LFS) or Li-Fraumeni-like (LFL) family history criteria, a deleterious <i>TP53</i> variant was identified in 24 families with one case of prostate cancer found in each group (LFS or LFL). Prostate cancer risks varied on the basis of the family history criteria with LFS (RR, 0.50; 95% CI, 0.01&#x02013;3.00) and LFL (RR, 4.90; 95% CI, 0.10&#x02013;27.00).[<a class="bk_pop" href="#CDR0000299612_rl_922_69">69</a>] In a French case series of 415 families with a deleterious <i>TP53</i> variant, four prostate cancers were reported, with a mean age at diagnosis of 63 years (range, 57&#x02013;71 y).[<a class="bk_pop" href="#CDR0000299612_rl_922_70">70</a>]</p><p id="CDR0000299612__1462">Germline <i>TP53</i> pathogenic variants have also been identified in men with prostate cancer who have undergone tumor testing. A prospective case series of 42 men with either localized, biochemically recurrent, or metastatic prostate cancer unselected for cancer family history or age at diagnosis undergoing tumor-only somatic testing found that 2 of 42 men (5%) were found to have a suspected <i>TP53</i> germline pathogenic variant.[<a class="bk_pop" href="#CDR0000299612_rl_922_71">71</a>]</p><p id="CDR0000299612__1480">Further evidence supports an association between prostate cancer and germline <i>TP53</i> pathogenic variants,[<a class="bk_pop" href="#CDR0000299612_rl_922_72">72</a>-<a class="bk_pop" href="#CDR0000299612_rl_922_74">74</a>] although additional studies to clarify the association with this gene are warranted.</p></div><div id="CDR0000299612__1431"><h4><i>NBN/NBS1</i></h4><p id="CDR0000299612__1463"><i>NBN</i>, which is also known as <i>NBS1</i> (<i>Nijmegan breakage syndrome 1</i>), has been investigated for a potential association with risk of prostate cancer. (Refer to <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1159/?report=objectonly" target="object" rid-figpopup="figCDR00002996121159" rid-ob="figobCDR00002996121159">Table 3</a> for information about case-control studies that have assessed <i>NBN</i> as a potential prostate cancer susceptibility gene.) A retrospective case series of 692 men with metastatic prostate cancer unselected for cancer family history or age at diagnosis found that 0.3% (2 of 692 men) had a <i>NBN</i> pathogenic variant.[<a class="bk_pop" href="#CDR0000299612_rl_922_8">8</a>]</p></div><div id="CDR0000299612__1432"><h4><i>EPCAM</i></h4><p id="CDR0000299612__1464"><i>EPCAM</i> (<i>epithelial cellular adhesion molecule</i>) testing has been included in some multigene panels likely due to <i>EPCAM</i> variants silencing <i>MSH2</i>. Specific large genomic rearrangement variants at the 3&#x02019; end of <i>EPCAM</i>, which lies near <i>MSH2</i>, induce methylation of the <i>MSH2</i> promoter resulting in MSH2 protein loss.[<a class="bk_pop" href="#CDR0000299612_rl_922_75">75</a>]
(Refer to the <i><a href="/books/n/pdqcis/CDR0000062863/#CDR0000062863__1130">EPCAM</a></i> section in the PDQ summary on <a href="/books/n/pdqcis/CDR0000062863/">Genetics of Colorectal Cancer</a> for a more detailed discussion about <i>EPCAM</i> and Lynch syndrome.) Pathogenic variants in <i>MSH2</i> that are associated with Lynch syndrome were found to be associated with increased risk of prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_922_48">48</a>] (Refer to the <a href="#CDR0000299612__947">Mismatch Repair Genes</a> section of this summary for information about <i>MSH2</i> and prostate cancer risk.) Thus far, studies ascertaining the spectrum of germline pathogenic variants in men with prostate cancer have not identified pathogenic variants in <i>EPCAM</i>.[<a class="bk_pop" href="#CDR0000299612_rl_922_8">8</a>]</p></div></div><div id="CDR0000299612_rl_922"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000299612_rl_922_1">Robinson D, Van Allen EM, Wu YM, et al.: Integrative clinical genomics of advanced prostate cancer. Cell 161 (5): 1215-28, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/28623072" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28623072</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_2">Thompson D, Easton DF; Breast Cancer Linkage Consortium: Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94 (18): 1358-65, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12237281" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12237281</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_3">Liede A, Karlan BY, Narod SA: Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol 22 (4): 735-42, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14966099" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14966099</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_4">Mersch J, Jackson MA, Park M, et al.: Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 121 (2): 269-75, 2015. [<a href="/pmc/articles/PMC4293332/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4293332</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25224030" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25224030</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_5">Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 91 (15): 1310-6, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10433620" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10433620</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_6">Thompson D, Easton D; Breast Cancer Linkage Consortium: Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet 68 (2): 410-9, 2001. [<a href="/pmc/articles/PMC1235274/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1235274</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11170890" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11170890</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_7">Ostrander EA, Udler MS: The role of the BRCA2 gene in susceptibility to prostate cancer revisited. Cancer Epidemiol Biomarkers Prev 17 (8): 1843-8, 2008. [<a href="/pmc/articles/PMC2562346/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2562346</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18708369" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18708369</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_8">Pritchard CC, Mateo J, Walsh MF, et al.: Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med 375 (5): 443-53, 2016. [<a href="/pmc/articles/PMC4986616/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4986616</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27433846" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27433846</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_9">Nastiuk KL, Mansukhani M, Terry MB, et al.: Common mutations in BRCA1 and BRCA2 do not contribute to early prostate cancer in Jewish men. Prostate 40 (3): 172-7, 1999. [<a href="/pmc/articles/PMC4196372/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4196372</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10398279" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10398279</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_10">Vazina A, Baniel J, Yaacobi Y, et al.: The rate of the founder Jewish mutations in BRCA1 and BRCA2 in prostate cancer patients in Israel. Br J Cancer 83 (4): 463-6, 2000. [<a href="/pmc/articles/PMC2374645/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2374645</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10945492" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10945492</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_11">Lehrer S, Fodor F, Stock RG, et al.: Absence of 185delAG mutation of the BRCA1 gene and 6174delT mutation of the BRCA2 gene in Ashkenazi Jewish men with prostate cancer. Br J Cancer 78 (6): 771-3, 1998. [<a href="/pmc/articles/PMC2062966/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2062966</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9743298" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9743298</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_12">Struewing JP, Abeliovich D, Peretz T, et al.: The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet 11 (2): 198-200, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7550349" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7550349</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_13">Oddoux C, Struewing JP, Clayton CM, et al.: The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%. Nat Genet 14 (2): 188-90, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8841192" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8841192</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_14">Roa BB, Boyd AA, Volcik K, et al.: Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet 14 (2): 185-7, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8841191" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8841191</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_15">Struewing JP, Hartge P, Wacholder S, et al.: The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 336 (20): 1401-8, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9145676" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9145676</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_16">Giusti RM, Rutter JL, Duray PH, et al.: A twofold increase in BRCA mutation related prostate cancer among Ashkenazi Israelis is not associated with distinctive histopathology. J Med Genet 40 (10): 787-92, 2003. [<a href="/pmc/articles/PMC1735297/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1735297</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14569130" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14569130</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_17">Kirchhoff T, Kauff ND, Mitra N, et al.: BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 10 (9): 2918-21, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15131025" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15131025</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_18">Agalliu I, Gern R, Leanza S, et al.: Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 15 (3): 1112-20, 2009. [<a href="/pmc/articles/PMC3722558/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3722558</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19188187" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19188187</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_19">Gallagher DJ, Gaudet MM, Pal P, et al.: Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 16 (7): 2115-21, 2010. [<a href="/pmc/articles/PMC3713614/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3713614</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20215531" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20215531</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_20">Johannesdottir G, Gudmundsson J, Bergthorsson JT, et al.: High prevalence of the 999del5 mutation in icelandic breast and ovarian cancer patients. Cancer Res 56 (16): 3663-5, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8706004" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8706004</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_21">Eerola H, Pukkala E, Pyrh&#x000f6;nen S, et al.: Risk of cancer in BRCA1 and BRCA2 mutation-positive and -negative breast cancer families (Finland). Cancer Causes Control 12 (8): 739-46, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11562114" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11562114</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_22">Cybulski C, Woko&#x00142;orczyk D, Klu&#x0017a;niak W, et al.: An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer 108 (2): 461-8, 2013. [<a href="/pmc/articles/PMC3566821/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3566821</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23149842" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23149842</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_23">Cybulski C, G&#x000f3;rski B, Gronwald J, et al.: BRCA1 mutations and prostate cancer in Poland. Eur J Cancer Prev 17 (1): 62-6, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18090912" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18090912</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_24">Agalliu I, Karlins E, Kwon EM, et al.: Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 97 (6): 826-31, 2007. [<a href="/pmc/articles/PMC2360390/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2360390</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17700570" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17700570</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_25">Agalliu I, Kwon EM, Zadory D, et al.: Germline mutations in the BRCA2 gene and susceptibility to hereditary prostate cancer. Clin Cancer Res 13 (3): 839-43, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17289875" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17289875</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_26">Tryggvad&#x000f3;ttir L, Vidarsd&#x000f3;ttir L, Thorgeirsson T, et al.: Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst 99 (12): 929-35, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17565157" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17565157</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_27">Kote-Jarai Z, Leongamornlert D, Saunders E, et al.: BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 105 (8): 1230-4, 2011. [<a href="/pmc/articles/PMC3208504/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3208504</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21952622" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21952622</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_28">Leongamornlert D, Mahmud N, Tymrakiewicz M, et al.: Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 106 (10): 1697-701, 2012. [<a href="/pmc/articles/PMC3349179/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3349179</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22516946" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22516946</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_29">Edwards SM, Evans DG, Hope Q, et al.: Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 103 (6): 918-24, 2010. [<a href="/pmc/articles/PMC2948551/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2948551</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20736950" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20736950</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_30">Thorne H, Willems AJ, Niedermayr E, et al.: Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev Res (Phila) 4 (7): 1002-10, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21733824" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21733824</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_31">Castro E, Goh C, Olmos D, et al.: Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 31 (14): 1748-57, 2013. [<a href="/pmc/articles/PMC3641696/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3641696</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23569316" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23569316</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_32">Akbari MR, Wallis CJ, Toi A, et al.: The impact of a BRCA2 mutation on mortality from screen-detected prostate cancer. Br J Cancer 111 (6): 1238-40, 2014. [<a href="/pmc/articles/PMC4453856/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4453856</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25101567" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25101567</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_33">National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast and Ovarian. Version 1.2018. Fort Washington, PA: National Comprehensive Cancer Network, 2017. <a href="https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online with free registration.</a> Last accessed January 19, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_34">Taylor RA, Fraser M, Livingstone J, et al.: Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun 8: 13671, 2017. [<a href="/pmc/articles/PMC5227331/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5227331</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28067867" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28067867</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_35">Narod SA, Neuhausen S, Vichodez G, et al.: Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 99 (2): 371-4, 2008. [<a href="/pmc/articles/PMC2480973/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2480973</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18577985" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18577985</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_36">Castro E, Goh C, Leongamornlert D, et al.: Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. Eur Urol 68 (2): 186-93, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25454609" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25454609</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_37">Lange EM, Gillanders EM, Davis CC, et al.: Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 57 (4): 326-34, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14601029" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14601029</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_38">Zuhlke KA, Madeoy JJ, Beebe-Dimmer J, et al.: Truncating BRCA1 mutations are uncommon in a cohort of hereditary prostate cancer families with evidence of linkage to 17q markers. Clin Cancer Res 10 (18 Pt 1): 5975-80, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15447980" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15447980</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_39">Douglas JA, Levin AM, Zuhlke KA, et al.: Common variation in the BRCA1 gene and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 16 (7): 1510-6, 2007. [<a href="/pmc/articles/PMC3082399/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3082399</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17585057" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17585057</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_40">Soravia C, van der Klift H, Br&#x000fc;ndler MA, et al.: Prostate cancer is part of the hereditary non-polyposis colorectal cancer (HNPCC) tumor spectrum. Am J Med Genet 121A (2): 159-62, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12910497" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12910497</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_41">Haraldsdottir S, Hampel H, Wei L, et al.: Prostate cancer incidence in males with Lynch syndrome. Genet Med 16 (7): 553-7, 2014. [<a href="/pmc/articles/PMC4289599/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4289599</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24434690" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24434690</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_42">Grindedal EM, M&#x000f8;ller P, Eeles R, et al.: Germ-line mutations in mismatch repair genes associated with prostate cancer. Cancer Epidemiol Biomarkers Prev 18 (9): 2460-7, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19723918" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19723918</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_43">Langeberg WJ, Kwon EM, Koopmeiners JS, et al.: Population-based study of the association of variants in mismatch repair genes with prostate cancer risk and outcomes. Cancer Epidemiol Biomarkers Prev 19 (1): 258-64, 2010. [<a href="/pmc/articles/PMC2825566/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2825566</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20056646" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20056646</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_44">Bauer CM, Ray AM, Halstead-Nussloch BA, et al.: Hereditary prostate cancer as a feature of Lynch syndrome. Fam Cancer 10 (1): 37-42, 2011. [<a href="/pmc/articles/PMC3089958/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3089958</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20872076" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20872076</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_45">Dominguez-Valentin M, Joost P, Therkildsen C, et al.: Frequent mismatch-repair defects link prostate cancer to Lynch syndrome. BMC Urol 16: 15, 2016. [<a href="/pmc/articles/PMC4806412/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4806412</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27013479" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27013479</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_46">Raymond VM, Mukherjee B, Wang F, et al.: Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol 31 (14): 1713-8, 2013. [<a href="/pmc/articles/PMC3641694/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3641694</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23530095" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23530095</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_47">Ryan S, Jenkins MA, Win AK: Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 23 (3): 437-49, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24425144" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24425144</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_48">Rosty C, Walsh MD, Lindor NM, et al.: High prevalence of mismatch repair deficiency in prostate cancers diagnosed in mismatch repair gene mutation carriers from the colon cancer family registry. Fam Cancer 13 (4): 573-82, 2014. [<a href="/pmc/articles/PMC4329248/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4329248</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25117503" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25117503</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_49">Lange EM, Robbins CM, Gillanders EM, et al.: Fine-mapping the putative chromosome 17q21-22 prostate cancer susceptibility gene to a 10 cM region based on linkage analysis. Hum Genet 121 (1): 49-55, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17120048" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17120048</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_50">Ewing CM, Ray AM, Lange EM, et al.: Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 366 (2): 141-9, 2012. [<a href="/pmc/articles/PMC3779870/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3779870</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22236224" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22236224</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_51">Xu J, Lange EM, Lu L, et al.: HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet 132 (1): 5-14, 2013. [<a href="/pmc/articles/PMC3535370/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3535370</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23064873" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23064873</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_52">Chen Z, Greenwood C, Isaacs WB, et al.: The G84E mutation of HOXB13 is associated with increased risk for prostate cancer: results from the REDUCE trial. Carcinogenesis 34 (6): 1260-4, 2013. [<a href="/pmc/articles/PMC3670258/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3670258</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23393222" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23393222</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_53">Shang Z, Zhu S, Zhang H, et al.: Germline homeobox B13 (HOXB13) G84E mutation and prostate cancer risk in European descendants: a meta-analysis of 24,213 cases and 73, 631 controls. Eur Urol 64 (1): 173-6, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23518396" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23518396</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_54">Handorf E, Crumpler N, Gross L, et al.: Prevalence of the HOXB13 G84E mutation among unaffected men with a family history of prostate cancer. J Genet Couns 23 (3): 371-6, 2014. [<a href="/pmc/articles/PMC4028414/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4028414</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24310616" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24310616</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_55">Laitinen VH, Wahlfors T, Saaristo L, et al.: HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 22 (3): 452-60, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23292082" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23292082</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_56">Witte JS, Mefford J, Plummer SJ, et al.: HOXB13 mutation and prostate cancer: studies of siblings and aggressive disease. Cancer Epidemiol Biomarkers Prev 22 (4): 675-80, 2013. [<a href="/pmc/articles/PMC3617049/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3617049</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23396964" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23396964</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_57">Beebe-Dimmer JL, Hathcock M, Yee C, et al.: The HOXB13 G84E Mutation Is Associated with an Increased Risk for Prostate Cancer and Other Malignancies. Cancer Epidemiol Biomarkers Prev 24 (9): 1366-72, 2015. [<a href="/pmc/articles/PMC4560608/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4560608</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26108461" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26108461</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_58">Gudmundsson J, Sulem P, Gudbjartsson DF, et al.: A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat Genet 44 (12): 1326-9, 2012. [<a href="/pmc/articles/PMC3562711/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3562711</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23104005" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23104005</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_59">Huang H, Cai B: G84E mutation in HOXB13 is firmly associated with prostate cancer risk: a meta-analysis. Tumour Biol 35 (2): 1177-82, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24026887" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24026887</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_60">Cai Q, Wang X, Li X, et al.: Germline HOXB13 p.Gly84Glu mutation and cancer susceptibility: a pooled analysis of 25 epidemiological studies with 145,257 participates. Oncotarget 6 (39): 42312-21, 2015. [<a href="/pmc/articles/PMC4747227/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4747227</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26517352" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26517352</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_61">Stott-Miller M, Karyadi DM, Smith T, et al.: HOXB13 mutations in a population-based, case-control study of prostate cancer. Prostate 73 (6): 634-41, 2013. [<a href="/pmc/articles/PMC3612366/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3612366</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23129385" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23129385</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_62">Alanee S, Shah S, Vijai J, et al.: Prevalence of HOXB13 mutation in a population of Ashkenazi Jewish men treated for prostate cancer. Fam Cancer 12 (4): 597-600, 2013. [<a href="/pmc/articles/PMC5073797/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5073797</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23475555" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23475555</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_63">Kote-Jarai Z, Mikropoulos C, Leongamornlert DA, et al.: Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes. Ann Oncol 26 (4): 756-61, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25595936" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25595936</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_64">Karlsson R, Aly M, Clements M, et al.: A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol 65 (1): 169-76, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/22841674" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22841674</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_65">MacInnis RJ, Severi G, Baglietto L, et al.: Population-based estimate of prostate cancer risk for carriers of the HOXB13 missense mutation G84E. PLoS One 8 (2): e54727, 2013. [<a href="/pmc/articles/PMC3574137/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3574137</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23457453" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23457453</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_66">Savitsky K, Bar-Shira A, Gilad S, et al.: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268 (5218): 1749-53, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7792600" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7792600</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_67">Dombernowsky SL, Weischer M, Allin KH, et al.: Risk of cancer by ATM missense mutations in the general population. J Clin Oncol 26 (18): 3057-62, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18565893" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18565893</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_68">Mai PL, Best AF, Peters JA, et al.: Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer 122 (23): 3673-3681, 2016. [<a href="/pmc/articles/PMC5115949/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5115949</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27496084" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27496084</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_69">Ruijs MW, Verhoef S, Rookus MA, et al.: TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet 47 (6): 421-8, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20522432" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20522432</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_70">Bougeard G, Renaux-Petel M, Flaman JM, et al.: Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol 33 (21): 2345-52, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26014290" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26014290</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_71">Cheng HH, Klemfuss N, Montgomery B, et al.: A Pilot Study of Clinical Targeted Next Generation Sequencing for Prostate Cancer: Consequences for Treatment and Genetic Counseling. Prostate 76 (14): 1303-11, 2016. [<a href="/pmc/articles/PMC5549853/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5549853</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27324988" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27324988</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_72">Stacey SN, Sulem P, Jonasdottir A, et al.: A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet 43 (11): 1098-103, 2011. [<a href="/pmc/articles/PMC3263694/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3263694</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21946351" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21946351</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_73">Mittal RD, George GP, Mishra J, et al.: Role of functional polymorphisms of P53 and P73 genes with the risk of prostate cancer in a case-control study from Northern India. Arch Med Res 42 (2): 122-7, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21565625" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21565625</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_74">Xu B, Xu Z, Cheng G, et al.: Association between polymorphisms of TP53 and MDM2 and prostate cancer risk in southern Chinese. Cancer Genet Cytogenet 202 (2): 76-81, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20875869" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20875869</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_922_75">Kovacs ME, Papp J, Szentirmay Z, et al.: Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat 30 (2): 197-203, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19177550" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19177550</span></a>]</div></li></ol></div></div><div id="CDR0000299612__62"><h2 id="_CDR0000299612__62_">Interventions in Familial Prostate Cancer </h2><div id="CDR0000299612__1249"><h3>Background</h3><p id="CDR0000299612__1250">Decisions about risk-reducing interventions for patients with an inherited predisposition to prostate cancer, as with any disease, are best guided by randomized controlled clinical trials and knowledge of the underlying natural history of the process. However, existing studies of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000046171/" class="def">screening</a> for prostate cancer in high-risk men (men with a positive <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000302456/" class="def">family history</a> of prostate cancer and African American men) are predominantly based on retrospective case series or retrospective cohort analyses. Because awareness of a positive family history can lead to more frequent work-ups for cancer and result in apparently earlier prostate cancer detection, assessments of disease progression rates and survival after diagnosis are subject to selection, lead time, and length biases. (Refer to the PDQ <a href="/books/n/pdqcis/CDR0000062758/">Cancer Screening Overview</a> summary for more information.) This section focuses on screening and risk reduction of prostate cancer among men predisposed to the disease; data relevant to screening in high-risk men are primarily extracted from studies performed in the general population.</p></div><div id="CDR0000299612__1251"><h3>Screening</h3><p id="CDR0000299612__1252">Information is limited about the efficacy of commonly available screening tests such as the digital rectal exam (DRE) and serum prostate-specific antigen (PSA) in men <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460153/" class="def">genetically predisposed</a> to developing prostate cancer. Furthermore, comparing the results of studies that have examined the efficacy of screening for prostate cancer is difficult because studies vary with regard to the cutoff values chosen for an elevated PSA test. For a given <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000322883/" class="def">sensitivity</a> and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000322884/" class="def">specificity</a> of a screening test, the <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460206/" class="def">positive predictive value</a> (PPV) increases as the underlying prevalence of disease rises. Therefore, it is theoretically possible that the PPV and diagnostic yield will be higher for the DRE and for PSA in men with a genetic predisposition than in average-risk populations.[<a class="bk_pop" href="#CDR0000299612_rl_62_1">1</a>,<a class="bk_pop" href="#CDR0000299612_rl_62_2">2</a>]</p><p id="CDR0000299612__1253">Most retrospective analyses of prostate cancer screening cohorts have reported PPV for PSA, with or without DRE, among high-risk men in the range of 23% to 75%.[<a class="bk_pop" href="#CDR0000299612_rl_62_2">2</a>-<a class="bk_pop" href="#CDR0000299612_rl_62_6">6</a>] Screening strategies (frequency of PSA measurements or inclusion of DRE) and PSA cutoff for biopsy varied among these studies, which may have influenced this range of PPV. Cancer detection rates among high-risk men have been reported to be in the range of 4.75% to 22%.[<a class="bk_pop" href="#CDR0000299612_rl_62_2">2</a>,<a class="bk_pop" href="#CDR0000299612_rl_62_5">5</a>,<a class="bk_pop" href="#CDR0000299612_rl_62_6">6</a>] Most cancers detected were of intermediate Gleason score (5&#x02013;7), with Gleason scores of 8 or higher being detected in some high-risk men. Overall, there is limited information about the net benefits and harms of screening men at higher risk of prostate cancer. In addition, there is little evidence to support specific screening approaches in prostate cancer families at high risk. Risks and benefits of routine screening in the general population are discussed in the PDQ <a href="/books/n/pdqcis/CDR0000062755/">Prostate Cancer Screening</a> summary. On the basis of the available data, most professional societies and organizations recommend that high-risk men engage in shared decision-making with their health care providers and develop individualized plans for prostate cancer screening based on their risk factors. A summary of prostate cancer screening recommendations for high-risk men by professional organizations is shown in <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1267/?report=objectonly" target="object" rid-figpopup="figCDR00002996121267" rid-ob="figobCDR00002996121267">Table 10</a>.</p><div id="CDR0000299612__1267" class="table"><h3><span class="title">Table 10. Summary of Prostate Cancer Screening Recommendations for High-Risk Men </span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1267/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1267_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Screening Recommendation Source</th><th colspan="1" rowspan="1" style="vertical-align:top;">Population</th><th colspan="1" rowspan="1" style="vertical-align:top;">Test</th><th colspan="1" rowspan="1" style="vertical-align:top;">Age Screening Initiated</th><th colspan="1" rowspan="1" style="vertical-align:top;">Frequency</th><th colspan="1" rowspan="1" style="vertical-align:top;">Comments</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;">United States Preventive Services Task Force (2012) [<a class="bk_pop" href="#CDR0000299612_rl_62_7">7</a>] </td><td colspan="1" rowspan="1" style="vertical-align:top;">N/A</td><td colspan="1" rowspan="1" style="vertical-align:top;">N/A</td><td colspan="1" rowspan="1" style="vertical-align:top;">N/A</td><td colspan="1" rowspan="1" style="vertical-align:top;">N/A</td><td colspan="1" rowspan="1" style="vertical-align:top;">No specific recommendation for high-risk populations (defined as black men and men with a prostate cancer family history).</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;">American College of Physicians (2013) [<a class="bk_pop" href="#CDR0000299612_rl_62_8">8</a>]
</td><td colspan="1" rowspan="2" style="vertical-align:top;">African American men
and
men with first-degree relative diagnosed with prostate cancer, especially &#x0003c;65
y</td><td colspan="1" rowspan="2" style="vertical-align:top;">PSA</td><td colspan="1" rowspan="2" style="vertical-align:top;">&#x02265;45 y </td><td colspan="1" rowspan="1" style="vertical-align:top;">No clear evidence to establish screening frequency </td><td colspan="1" rowspan="4" style="vertical-align:top;">Counseling includes information about the uncertainties, risks, and potential benefits associated with prostate cancer screening.</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">
No clear evidence to perform PSA test more frequently than every 4 y</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Men with family history of multiple family members with prostate cancer diagnosed &#x0003c;65 y</td><td colspan="1" rowspan="2" style="vertical-align:top;">PSA</td><td colspan="1" rowspan="2" style="vertical-align:top;">&#x02265;40 y</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">PSA level &#x0003e;2.5 &#x000b5;g/L may warrant annual screening</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">American Urological Association (2013) [<a class="bk_pop" href="#CDR0000299612_rl_62_9">9</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">African American men and men with a strong prostate cancer family history</td><td colspan="1" rowspan="1" style="vertical-align:top;">PSA</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x0003e;40 to &#x0003c;55 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">Individualized based on personal preferences and informed discussion regarding the uncertainty of benefit and associated harms.</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">American Cancer Society (2014) [<a class="bk_pop" href="#CDR0000299612_rl_62_10">10</a>] </td><td colspan="1" rowspan="1" style="vertical-align:top;">African American men and/or men with a father or brother with prostate cancer diagnosed &#x0003c;65 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">PSA with or without DRE<sup>a</sup></td><td colspan="1" rowspan="1" style="vertical-align:top;"> &#x02265;45 y </td><td colspan="1" rowspan="1" style="vertical-align:top;">Frequency depends on PSA level</td><td colspan="1" rowspan="2" style="vertical-align:top;">Counseling consists of a review of the benefits and limitations of testing so that a clinician-assisted, informed decision about testing can be made.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Men with multiple family members with prostate cancer diagnosed &#x0003c;65 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">PSA with or without DRE<sup>a</sup></td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02265;40 y </td><td colspan="1" rowspan="1" style="vertical-align:top;">Frequency depends on PSA level</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">NCCN (2017) [<a class="bk_pop" href="#CDR0000299612_rl_62_11">11</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">African American men and men with family history of prostate cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">N/A</td><td colspan="1" rowspan="1" style="vertical-align:top;">N/A</td><td colspan="1" rowspan="1" style="vertical-align:top;">N/A</td><td colspan="1" rowspan="1" style="vertical-align:top;">The panel states that it
is
reasonable
for
African American
men
to
begin
discussing
PSA
screening
with
their
providers
several
years
earlier
than
Caucasian
American men and to consider screening at annual intervals rather than every other year.</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">NCCN (2018) [<a class="bk_pop" href="#CDR0000299612_rl_62_12">12</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Men with <i>BRCA1</i> pathogenic variant</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not specified</td><td colspan="1" rowspan="1" style="vertical-align:top;">Consider screening starting at age &#x02265;45 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not specified</td><td colspan="1" rowspan="2" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Men with <i>BRCA2</i> pathogenic variant</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not specified</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02265;45 y </td><td colspan="1" rowspan="1" style="vertical-align:top;">Not specified</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">NCCN (2017) [<a class="bk_pop" href="#CDR0000299612_rl_62_11">11</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">Men with a personal or family history of <i>BRCA1/BRCA2</i> pathogenic variants</td><td colspan="1" rowspan="2" style="vertical-align:top;">Baseline PSA; strongly consider baseline DRE</td><td colspan="1" rowspan="2" style="vertical-align:top;">45&#x02013;75 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">Every 2&#x02013;4 y if PSA level &#x0003c;1 ng/mL, DRE normal</td><td colspan="1" rowspan="2" style="vertical-align:top;">Additional recommendations for men with a PSA level &#x0003e;3 ng/mL and men older than 75 y. (Refer to page PROSD-2 of the NCCN guidelines for more information.) Referral
to
a
cancer genetics
professional is recommended for those with a known or suspected <i>BRCA1/BRCA2</i> variant.[<a class="bk_pop" href="#CDR0000299612_rl_62_11">11</a>] </td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Every 1&#x02013;2 y if PSA level 1&#x02013;3 ng/mL, DRE normal</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">DRE = digital rectal exam; NCCN = National Comprehensive Cancer Network; PSA = prostate-specific antigen.</p></div></dd><dt></dt><dd><div><p class="no_margin"><sup>a</sup>DRE is recommended in addition to PSA test for men with hypogonadism.</p></div></dd></dl></div></div></div><p id="CDR0000299612__1264"><a href="/books/n/pdqcis/glossary_loe/def-item/glossary_loe_CDR0000526280/" class="def">Level of evidence: 5</a></p><div id="CDR0000299612__1254"><h4>Screening in carriers of <i>BRCA</i> pathogenic variants</h4><p id="CDR0000299612__1255">An international study that focused on prostate cancer screening in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460132/" class="def">carriers</a> of <i>BRCA1</i>/<i>BRCA2</i> pathogenic variants versus <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000556483/" class="def">noncarriers</a> reported initial screening results.[<a class="bk_pop" href="#CDR0000299612_rl_62_13">13</a>]
The study recruited 2,481 men (791 <i>BRCA1</i> carriers, 531 <i>BRCA1</i> noncarriers; 731 <i>BRCA2</i> carriers, 428 <i>BRCA2</i> noncarriers). A total of 199 men (8%) presented with PSA levels higher than 3.0 ng/mL, which was the study PSA cutoff for recommending a biopsy. The overall cancer detection rate was 36.4% (59 prostate cancers diagnosed among 162 biopsies). Prostate cancer by <i>BRCA</i> pathogenic variant status was as follows: <i>BRCA1</i> carriers (n = 18), <i>BRCA1</i> noncarriers (n = 10); <i>BRCA2 </i>carriers (n = 24), <i>BRCA2</i> noncarriers (n = 7). Using published stage and grade criteria for risk classification,[<a class="bk_pop" href="#CDR0000299612_rl_62_14">14</a>] intermediate- or high-risk tumors were diagnosed in 11 of 18 <i>BRCA1</i> carriers (61%), 8 of 10 <i>BRCA1</i> noncarriers (80%), 17 of 24 <i>BRCA2</i> carriers (71%), and 3 of 7 <i>BRCA2</i> noncarriers (43%). The PPV of PSA with a biopsy threshold of 3.0 ng/mL was 48% in carriers of <i>BRCA2</i> pathogenic variants, 33.3% in <i>BRCA2</i> noncarriers, 37.5% in <i>BRCA1</i> carriers, and 23.3% in <i>BRCA1</i> noncarriers. Ninety-five percent of the men were white; therefore, the results cannot be generalized to all ethnic groups. Follow-up for this study is ongoing.</p><p id="CDR0000299612__1265"><a href="/books/n/pdqcis/glossary_loe/def-item/glossary_loe_CDR0000531825/" class="def">Level of evidence (screening in carriers of BRCA pathogenic variants): 3</a></p></div></div><div id="CDR0000299612__1256"><h3>Chemoprevention of Prostate Cancer With Finasteride and Dutasteride</h3><p id="CDR0000299612__1257">The benefits, harms, and supporting data regarding the use of finasteride and dutasteride for the prevention of prostate cancer in the general population are discussed in the PDQ summary on <a href="/books/n/pdqcis/CDR0000062833/">Prostate Cancer Prevention</a>.</p></div><div id="CDR0000299612__1476"><h3>Tumor Sequencing to Inform Germline Findings and Targeted Therapies in Prostate Cancer</h3><p id="CDR0000299612__1477">Precision medicine efforts are under way in prostate cancer to identify targetable variants for improved responses to therapy. <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000768570/" class="def">Tumor sequencing</a> is a primary method to identify somatic variants for potential treatment. However, increasingly germline pathogenic variants are being identified from tumor sequencing, and are necessitating efforts to engage patients in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000044961/" class="def">genetic counseling</a> for potential inherited cancer risk. Most of these efforts have involved metastatic prostate cancer. In particular, germline pathogenic variants in <i>BRCA2</i>, <i>ATM</i>, and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000045671/" class="def">DNA</a> repair <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000045693/" class="def">genes</a> [<a class="bk_pop" href="#CDR0000299612_rl_62_15">15</a>,<a class="bk_pop" href="#CDR0000299612_rl_62_16">16</a>] have been identified at substantial rates in tumor sequencing of metastatic prostate cancer. Furthermore, clinical activity in response to targeted agents is being demonstrated in the metastatic prostate cancer setting, such as with poly (ADP-ribose) polymerase (PARP) inhibition.[<a class="bk_pop" href="#CDR0000299612_rl_62_17">17</a>] <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1479/?report=objectonly" target="object" rid-figpopup="figCDR00002996121479" rid-ob="figobCDR00002996121479">Table 11</a> describes these studies and results.</p><div id="CDR0000299612__1479" class="table"><h3><span class="title">Table 11. Summary of Tumor Sequencing Studies With Germline Results</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__1479/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__1479_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study</th><th colspan="1" rowspan="1" style="vertical-align:top;">Cohort</th><th colspan="2" rowspan="1" style="vertical-align:top;">Germline Results for Prostate Cancer</th><th colspan="2" rowspan="1" style="vertical-align:top;">Comments</th></tr></thead><tbody><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Mateo et al. (2015)<sup>a</sup> [<a class="bk_pop" href="#CDR0000299612_rl_62_17">17</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">Phase 2 trial of 49 men with mCRPC treated with olaparib 400 mg twice a day.
</td><td colspan="2" rowspan="1" style="vertical-align:top;">6/49 (12.2%) had germline pathogenic variants:
</td><td colspan="2" rowspan="1" style="vertical-align:top;">Of 16 patients with somatic or germline DNA repair aberrations, 14 (88%) responded to olaparib:</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>BRCA2</i>: 3/49 (6.1%)</td><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; Radiologic PFS (<i>P </i> &#x0003c; .001) for biomarker positive vs. biomarker negative. </td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>ATM</i>: 3/49 (6.1%)</td><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; OS (<i>P </i> = .05) for biomarker positive vs. biomarker negative.</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;">Robinson et al. (2015)<sup>a</sup> [<a class="bk_pop" href="#CDR0000299612_rl_62_18">18</a>]</td><td colspan="1" rowspan="4" style="vertical-align:top;"><a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000740459/" class="def">Whole-exome</a> and transcriptome sequencing
of bone or soft tissue tumor biopsies
from a cohort of 150 men with mCRPC.
</td><td colspan="2" rowspan="1" style="vertical-align:top;">8% had germline pathogenic variants: </td><td colspan="2" rowspan="4" style="vertical-align:top;"></td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>BRCA2</i>: 9/150 (6.0%)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>ATM</i>: 2/150 (1.3%)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>BRCA1</i>: 1/150 (0.7%)</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;">Pritchard et al. (2016)<sup>a</sup> [<a class="bk_pop" href="#CDR0000299612_rl_62_15">15</a>]</td><td colspan="1" rowspan="4" style="vertical-align:top;">692 men with metastatic prostate cancer, unselected for family history;
analysis focused on 20 genes involved in maintaining DNA integrity and associated with <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339338/" class="def">autosomal dominant</a> cancer&#x02013;predisposing syndromes.
</td><td colspan="2" rowspan="1" style="vertical-align:top;">82/692 (11.8%) had germline pathogenic variants: </td><td colspan="2" rowspan="4" style="vertical-align:top;">Frequency of germline
pathogenic variants in DNA repair genes among men with metastatic prostate cancer significantly
exceeded the prevalence of 4.6% among 499 men with localized prostate
cancer in the Cancer Genome Atlas (<i>P </i> &#x0003c; .001).
</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>BRCA2</i>: 37/692 (5.3%)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>ATM</i>: 11/692 (1.6%)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>BRCA1</i>: 6/692 (0.9%)</td></tr><tr><td colspan="1" rowspan="6" style="vertical-align:top;">Schrader et al. (2016) [<a class="bk_pop" href="#CDR0000299612_rl_62_16">16</a>]</td><td colspan="1" rowspan="6" style="vertical-align:top;">1,566 patients undergoing tumor profiling (341 genes) with matched normal DNA at a single institution; 97 cases of prostate cancer included.</td><td colspan="2" rowspan="1" style="vertical-align:top;">10/97 (10.3%) had germline pathogenic variants:
</td><td colspan="2" rowspan="6" style="vertical-align:top;"></td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>BRCA2</i>: 6/97 (6.2%)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>BRCA1</i>: 1/97 (1.0%)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>MSH6</i>: 1/97 (1.0%)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>MUTYH</i>: 1/97 (1.0%)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>PMS2</i>: 1/97 (1.0%)</td></tr><tr><td colspan="1" rowspan="5" style="vertical-align:top;">Annala et al. (2017) [<a class="bk_pop" href="#CDR0000299612_rl_62_19">19</a>]</td><td colspan="1" rowspan="5" style="vertical-align:top;">319 men with mCRPC; performed germline sequencing of 22 DNA repair genes.
</td><td colspan="2" rowspan="1" style="vertical-align:top;">24/319 (7.5%) had germline pathogenic variants:</td><td colspan="2" rowspan="1" style="vertical-align:top;">Patients with DNA repair defects had decreased responses to ADT:</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>BRCA2</i>: 16/319 (5.0%)</td><td colspan="2" rowspan="2" style="vertical-align:top;">&#x02022; Time from ADT initiation to mCRPC (mo): Germline positive, 11.8 (n = 22) vs. germline negative, 19.0 (n = 113) (<i>P </i> = .031).</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>ATM</i>: 1/319 (0.3%) </td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>BRCA1</i>: 1/319 (0.3%)</td><td colspan="2" rowspan="2" style="vertical-align:top;">&#x02022; PFS on first-line AR-targeted therapy (mo): Germline positive, 3.3 vs. germline negative, 6.2 (<i>P </i> = .01).</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;">&#x02022; <i>PALB2</i>: 2/319 (0.6%)</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">ADT = androgen deprivation therapy; AR = androgen receptor; mCRPC = metastatic castration-resistant prostate cancer; OS = overall survival; PFS = progression-free survival. </p></div></dd><dt></dt><dd><div><p class="no_margin"><sup>a</sup>Potential overlap of cohorts.</p></div></dd></dl></div></div></div><p id="CDR0000299612__1478">Overall, emerging studies report germline pathogenic variant rates of up to 12% primarily in metastatic prostate cancer, with the potential for clinical activity of PARP inhibitors for those with DNA repair pathogenic variants. A consideration is the use of various gene panels in assessing germline pathogenic variant rates across studies. Genetic counseling in the setting of tumor sequencing is also an emerging paradigm.</p></div><div id="CDR0000299612_rl_62"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000299612_rl_62_1">Sartor O: Early detection of prostate cancer in African-American men with an increased familial risk of disease. J La State Med Soc 148 (4): 179-85, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8935621" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8935621</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_2">Matikainen MP, Schleutker J, M&#x000f6;rsky P, et al.: Detection of subclinical cancers by prostate-specific antigen screening in asymptomatic men from high-risk prostate cancer families. Clin Cancer Res 5 (6): 1275-9, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10389909" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10389909</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_3">Catalona WJ, Antenor JA, Roehl KA, et al.: Screening for prostate cancer in high risk populations. J Urol 168 (5): 1980-3; discussion 1983-4, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12394689" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12394689</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_4">Valeri A, Cormier L, Moineau MP, et al.: Targeted screening for prostate cancer in high risk families: early onset is a significant risk factor for disease in first degree relatives. J Urol 168 (2): 483-7, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12131293" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12131293</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_5">Narod SA, Dupont A, Cusan L, et al.: The impact of family history on early detection of prostate cancer. Nat Med 1 (2): 99-101, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7585019" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7585019</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_6">Giri VN, Beebe-Dimmer J, Buyyounouski M, et al.: Prostate cancer risk assessment program: a 10-year update of cancer detection. J Urol 178 (5): 1920-4; discussion 1924, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17868726" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17868726</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_7">Moyer VA; U.S. Preventive Services Task Force: Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 157 (2): 120-34, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22801674" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22801674</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_8">Qaseem A, Barry MJ, Denberg TD, et al.: Screening for prostate cancer: a guidance statement from the Clinical Guidelines Committee of the American College of Physicians. Ann Intern Med 158 (10): 761-9, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23567643" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23567643</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_9">Carter HB, Albertsen PC, Barry MJ, et al.: Early detection of prostate cancer: AUA Guideline. J Urol 190 (2): 419-26, 2013. [<a href="/pmc/articles/PMC4020420/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4020420</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23659877" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23659877</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_10">Smith RA, Manassaram-Baptiste D, Brooks D, et al.: Cancer screening in the United States, 2014: a review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin 64 (1): 30-51, 2014 Jan-Feb. [<a href="https://pubmed.ncbi.nlm.nih.gov/24408568" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24408568</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_11">National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer Early Detection. Version 2.2017. Fort Washington, PA: National Comprehensive Cancer Network, 2017. <a href="https://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online with free subscription.</a> Last accessed January 19, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_12">National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast and Ovarian. Version 1.2018. Fort Washington, PA: National Comprehensive Cancer Network, 2017. <a href="https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online with free registration.</a> Last accessed January 19, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_13">Bancroft EK, Page EC, Castro E, et al.: Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol 66 (3): 489-99, 2014. [<a href="/pmc/articles/PMC4105321/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4105321</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24484606" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24484606</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_14">National Collaborating Centre for Cancer (UK): Prostate Cancer: Diagnosis and Treatment. Cardiff, UK: National Collaborating Centre for Cancer, 2008. <a href="https://www.ncbi.nlm.nih.gov/books/NBK49533/" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online</a>. Last accessed March 16, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_15">Pritchard CC, Mateo J, Walsh MF, et al.: Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med 375 (5): 443-53, 2016. [<a href="/pmc/articles/PMC4986616/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4986616</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27433846" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27433846</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_16">Schrader KA, Cheng DT, Joseph V, et al.: Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA. JAMA Oncol 2 (1): 104-11, 2016. [<a href="/pmc/articles/PMC5477989/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5477989</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26556299" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26556299</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_17">Mateo J, Carreira S, Sandhu S, et al.: DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N Engl J Med 373 (18): 1697-708, 2015. [<a href="/pmc/articles/PMC5228595/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5228595</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26510020" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26510020</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_18">Robinson D, Van Allen EM, Wu YM, et al.: Integrative clinical genomics of advanced prostate cancer. Cell 161 (5): 1215-28, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/28623072" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28623072</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_62_19">Annala M, Struss WJ, Warner EW, et al.: Treatment Outcomes and Tumor Loss of Heterozygosity in Germline DNA Repair-deficient Prostate Cancer. Eur Urol 72 (1): 34-42, 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/28259476" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28259476</span></a>]</div></li></ol></div></div><div id="CDR0000299612__264"><h2 id="_CDR0000299612__264_">Prostate Cancer Risk Assessment</h2><p id="CDR0000299612__265">The purpose of this section is to describe current approaches to assessing and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000044961/" class="def">counseling</a> patients about susceptibility to prostate cancer. <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000044961/" class="def">Genetic counseling</a> for men at increased risk of prostate cancer encompasses all of the elements of genetic counseling for other hereditary cancers. (Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062865/">Cancer Genetics Risk Assessment and Counseling</a> for more information.) The components of genetic counseling include concepts of prostate cancer risk, reinforcing the importance of detailed <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000302456/" class="def">family history</a>, <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000044868/" class="def">pedigree</a> analysis to derive age-related risk, and offering participation in research studies to those individuals who have multiple <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460124/" class="def">affected</a> family members.[<a class="bk_pop" href="#CDR0000299612_rl_264_1">1</a>,<a class="bk_pop" href="#CDR0000299612_rl_264_2">2</a>] <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460195/" class="def">Genetic testing</a> for prostate cancer susceptibility is not available outside of the context of a research study. Families with prostate cancer can be referred to ongoing research studies; however, these studies will not provide individual genetic results to participants.</p><p id="CDR0000299612__290">Prostate cancer will affect an estimated one in nine American men during their lifetime.[<a class="bk_pop" href="#CDR0000299612_rl_264_3">3</a>] Currently, evidence exists to support the hypothesis that approximately 5% to 10% of all prostate cancer is due to rare <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339338/" class="def">autosomal dominant</a> prostate cancer <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460209/" class="def">susceptibility genes</a>.[<a class="bk_pop" href="#CDR0000299612_rl_264_4">4</a>,<a class="bk_pop" href="#CDR0000299612_rl_264_5">5</a>] The proportion of prostate cancer associated with an inherited susceptibility may be even larger.[<a class="bk_pop" href="#CDR0000299612_rl_264_6">6</a>-<a class="bk_pop" href="#CDR0000299612_rl_264_8">8</a>] Men are generally considered to be candidates for genetic counseling regarding prostate cancer risk if they have a family history of prostate cancer. The Hopkins Criteria provide a working definition of hereditary prostate cancer families.[<a class="bk_pop" href="#CDR0000299612_rl_264_9">9</a>] The three criteria include the following:</p><ol id="CDR0000299612__267"><li class="half_rhythm"><div>Three or more <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460150/" class="def">first-degree relatives</a> (father, brother, son), or</div></li><li class="half_rhythm"><div>Three successive generations of either the maternal or paternal lineages, or</div></li><li class="half_rhythm"><div>At least two relatives affected at or before age 55 years.</div></li></ol><p id="CDR0000299612__266">Families need to fulfill only one of these criteria to be considered to have hereditary prostate cancer. One study investigated attitudes regarding prostate cancer susceptibility among sons of men with prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_264_10">10</a>] They found that 90% of sons were interested in knowing whether there is an inherited susceptibility to prostate cancer and would be likely to undergo <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000046171/" class="def">screening</a> and consider genetic testing if there was a family history of prostate cancer; however, similar high levels of interest in genetic testing for other <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339343/" class="def">hereditary cancer syndromes</a> have not generally been borne out in testing uptake once the clinical genetic test becomes available.</p><div id="CDR0000299612__268"><h3>Risk Assessment and Analysis</h3><p id="CDR0000299612__292">Assessment of a man concerned about his inherited risk of prostate cancer should include taking a detailed family history; eliciting information regarding personal prostate cancer risk factors such as age, race, and dietary intake of fats and dairy products; documenting other medical problems; and evaluating genetics-related psychosocial issues.</p><p id="CDR0000299612__293">Family history documentation is based on construction of a pedigree, and generally includes the following:</p><ul id="CDR0000299612__305"><li class="half_rhythm"><div>The history of cancer in both maternal and paternal bloodlines.</div></li><li class="half_rhythm"><div>All primary cancer diagnoses (not just prostate cancer) and ages at diagnosis.</div></li><li class="half_rhythm"><div>Race and ethnicity.</div></li><li class="half_rhythm"><div>Other health problems including benign prostatic hypertrophy.[<a class="bk_pop" href="#CDR0000299612_rl_264_11">11</a>]</div></li></ul><p id="CDR0000299612__294">(Refer to the <a href="/books/n/pdqcis/CDR0000062865/#CDR0000062865__162">Documenting the family history</a> section in the PDQ summary on <a href="/books/n/pdqcis/CDR0000062865/">Cancer Genetics Risk Assessment and Counseling</a> for a more detailed description of taking a family history.)</p><p id="CDR0000299612__295">Analysis of the family history generally consists of four components:</p><ol id="CDR0000299612__273"><li class="half_rhythm"><div>Evaluation of the pattern of cancers in the family to identify cancer clusters, which might suggest a known inherited cancer syndrome. In addition to site-specific prostate cancer, other cancer susceptibility syndromes include prostate cancer as a component tumor (e.g., hereditary breast/ovarian cancer syndrome [associated with pathogenic variants in <i>BRCA1</i> and <i>BRCA2</i>]).</div></li><li class="half_rhythm"><div>Assessment for genetic transmission. The pedigree should be assessed for evidence of both autosomal dominant and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000339348/" class="def">X-linked inheritance</a>, which may be associated with a higher likelihood of an inherited susceptibility to prostate cancer. Autosomal dominant transmission is characterized by the presence of affected family members in sequential generations, with approximately 50% of males in each generation affected with prostate cancer. X-linked inheritance is suggested by apparent transmission of susceptibility from affected males in the maternal lineage. (Refer to the <a href="/books/n/pdqcis/CDR0000062865/#CDR0000062865__174">Analysis of the Family History</a> section in the PDQ summary on <a href="/books/n/pdqcis/CDR0000062865/">Cancer Genetics Risk Assessment and Counseling</a> for more information.)</div></li><li class="half_rhythm"><div>Age at diagnosis of prostate cancer in the family. An inherited susceptibility to prostate cancer may be likely in families with early-onset (inconsistently defined) prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_264_12">12</a>] However, genetic research is also under way in families with an older age of prostate cancer onset. In the aggregate, the data are inconsistent relative to whether hereditary prostate cancer is routinely characterized by a younger-than-usual age at diagnosis.</div></li><li class="half_rhythm"><div><a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460214/" class="def">Risk assessment</a> based on family and epidemiological studies. Multiple studies have reported that first-degree relatives of men affected with prostate cancer are two to three times more likely to develop prostate cancer than are men in the general population. In some studies, the relative risk (RR) of prostate cancer is highest among families who develop prostate cancer at an earlier age, consistent with other cancer susceptibility syndromes in which early age at onset is a common feature. It has been estimated that male relatives of men diagnosed with prostate cancer younger than 53 years have a 40% lifetime cumulative risk of developing prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_264_13">13</a>] A population-based case-control study of more than 1,500 cases and 1,600 controls, in which whites, African Americans, and Asian Americans were studied, reported an odds ratio of 2.5 for men with an affected first-degree relative after adjusting for age and ethnicity.[<a class="bk_pop" href="#CDR0000299612_rl_264_14">14</a>] For men with a brother and father or son affected with prostate cancer, the RR was estimated to be 6.4.</div></li></ol><p id="CDR0000299612__296">A number of studies have examined the accuracy of the family history of prostate cancer provided by men with prostate cancer. This has clinical importance when risk assessments are based on unverified family history information. In an Australian study of 154 unaffected men with a family history of prostate cancer, self-reported family history was verified from cancer registry data in 89.6% of cases.[<a class="bk_pop" href="#CDR0000299612_rl_264_15">15</a>] Accuracy of age at diagnosis within a 3-year range was correct in 83% of the cases, and accuracy of age at diagnosis within a 5-year range was correct in 93% of the cases. Self-reported family history from men younger than 55 years and reports about first-degree relatives had the highest degree of accuracy.[<a class="bk_pop" href="#CDR0000299612_rl_264_15">15</a>] Self-reported family history of prostate cancer, however, may not be reliably reported over time,[<a class="bk_pop" href="#CDR0000299612_rl_264_16">16</a>] which underscores the need to verify objectively reported prostate cancer diagnoses when trying to determine whether a patient has a significant family history.</p><p id="CDR0000299612__297">The personal health and risk-factor history includes, but is not limited to, the following:</p><ul id="CDR0000299612__381"><li class="half_rhythm"><div>Family history.</div></li><li class="half_rhythm"><div><a href="#CDR0000299612__5">Age</a>.</div></li><li class="half_rhythm"><div><a href="#CDR0000299612__5">Race</a>.</div></li><li class="half_rhythm"><div>Current and past diet history, including fat intake.</div></li><li class="half_rhythm"><div>Current and past use of drugs that can affect prostatic growth, such as steroids (e.g., finasteride [Proscar]). (Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062833/">Prostate Cancer Prevention</a> for more information about finasteride and prostate cancer.)</div></li><li class="half_rhythm"><div>Current and past use of complementary and alternative medications (e.g., saw palmetto, PC-SPES).[<a class="bk_pop" href="#CDR0000299612_rl_264_17">17</a>] (Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000404384/">PC-SPES</a> for more information.)</div></li></ul><p id="CDR0000299612__298">The most definitive risk factors for prostate cancer are age, race, and family history.[<a class="bk_pop" href="#CDR0000299612_rl_264_18">18</a>] The correlation between other risk factors and prostate cancer risk is not clearly established. Despite this limitation, cancer risk counseling is an educational process that provides details regarding the state of the knowledge of prostate cancer risk factors. The discussion regarding these other risk factors should be individualized to incorporate the patient's personal health and risk factor history. (Refer to the <a href="#CDR0000299612__5">Risk Factors for Prostate Cancer</a> section of this summary for a more detailed description of prostate cancer risk factors.)</p><p id="CDR0000299612__299">The psychosocial assessment in this context might include evaluation of the following:</p><ul id="CDR0000299612__306"><li class="half_rhythm"><div>Level of psychological distress.</div></li><li class="half_rhythm"><div>Perceived risk of prostate cancer.</div></li><li class="half_rhythm"><div>Past history of depression, anxiety, or other mental illness.</div></li></ul><p id="CDR0000299612__300">One study found that psychological distress was greater among men attending prostate cancer screening who had a family history of the disease, particularly if they also reported an overestimation of prostate cancer risk. Psychological distress and elevated risk perception may influence adherence to cancer screening and risk management strategies. Consultation with a mental health professional may be valuable if serious psychosocial issues are identified.[<a class="bk_pop" href="#CDR0000299612_rl_264_19">19</a>]</p></div><div id="CDR0000299612__1494"><h3>Genetic Testing</h3><p id="CDR0000299612__1495">Multigene (panel) tests for variants in genes associated with prostate cancer susceptibility are currently available and are increasingly being used in the clinic. (Refer to the <a href="#CDR0000299612__1414">Multigene [Panel] Testing in Prostate Cancer</a> section for more information.) Although routine genetic testing of high-risk prostate cancer patients for inherited variants associated with the disease is not standard, many centers are studying the clinical utility of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460154/" class="def">germline</a> genetic testing and counseling in these patients.</p></div><div id="CDR0000299612_rl_264"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000299612_rl_264_1">Nieder AM, Taneja SS, Zeegers MP, et al.: Genetic counseling for prostate cancer risk. Clin Genet 63 (3): 169-76, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12694223" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12694223</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_2">Bruner DW, Baffoe-Bonnie A, Miller S, et al.: Prostate cancer risk assessment program. A model for the early detection of prostate cancer. Oncology (Huntingt) 13 (3): 325-34; discussion 337-9, 343-4 pas, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10204154" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10204154</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_3">American Cancer Society: Cancer Facts and Figures 2018. Atlanta, Ga: American Cancer Society, 2018. <a href="https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online</a>. Last accessed April 27, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_4">Steinberg GD, Carter BS, Beaty TH, et al.: Family history and the risk of prostate cancer. Prostate 17 (4): 337-47, 1990. [<a href="https://pubmed.ncbi.nlm.nih.gov/2251225" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2251225</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_5">Carter BS, Beaty TH, Steinberg GD, et al.: Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A 89 (8): 3367-71, 1992. [<a href="/pmc/articles/PMC48868/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC48868</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1565627" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1565627</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_6">Lesko SM, Rosenberg L, Shapiro S: Family history and prostate cancer risk. Am J Epidemiol 144 (11): 1041-7, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8942435" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8942435</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_7">Gr&#x000f6;nberg H, Damber L, Damber JE, et al.: Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 146 (7): 552-7, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9326432" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9326432</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_8">Schaid DJ, McDonnell SK, Blute ML, et al.: Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62 (6): 1425-38, 1998. [<a href="/pmc/articles/PMC1377141/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1377141</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9585590" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9585590</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_9">Carter BS, Bova GS, Beaty TH, et al.: Hereditary prostate cancer: epidemiologic and clinical features. J Urol 150 (3): 797-802, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8345587" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8345587</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_10">Bratt O, Kristoffersson U, Lundgren R, et al.: Sons of men with prostate cancer: their attitudes regarding possible inheritance of prostate cancer, screening, and genetic testing. Urology 50 (3): 360-5, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9301698" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9301698</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_11">Pienta KJ, Esper PS: Risk factors for prostate cancer. Ann Intern Med 118 (10): 793-803, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8470854" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8470854</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_12">Giovannucci E: How is individual risk for prostate cancer assessed? Hematol Oncol Clin North Am 10 (3): 537-48, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8773495" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8773495</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_13">Neuhausen SL, Skolnick MH, Cannon-Albright L: Familial prostate cancer studies in Utah. Br J Urol 79 (Suppl 1): 15-20, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9088268" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9088268</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_14">Whittemore AS, Wu AH, Kolonel LN, et al.: Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol 141 (8): 732-40, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7535977" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7535977</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_15">Gaff CL, Aragona C, MacInnis RJ, et al.: Accuracy and completeness in reporting family history of prostate cancer by unaffected men. Urology 63 (6): 1111-6, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15183962" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15183962</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_16">Weinrich SP, Faison-Smith L, Hudson-Priest J, et al.: Stability of self-reported family history of prostate cancer among African American men. J Nurs Meas 10 (1): 39-46, 2002 Spring-Summer. [<a href="https://pubmed.ncbi.nlm.nih.gov/12048968" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12048968</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_17">Barqawi A, Gamito E, O'Donnell C, et al.: Herbal and vitamin supplement use in a prostate cancer screening population. Urology 63 (2): 288-92, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14972473" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14972473</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_18">Stanford JL, Stephenson RA, Coyle LM, et al., eds.: Prostate Cancer Trends 1973-1995. Bethesda, Md: National Cancer Institute, 1999. NIH Pub. No. 99-4543. <a href="http://seer.cancer.gov/publications/prostate/" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Also available online</a>. Last accessed March 16, 2018.</div></li><li><div class="bk_ref" id="CDR0000299612_rl_264_19">Taylor KL, DiPlacido J, Redd WH, et al.: Demographics, family histories, and psychological characteristics of prostate carcinoma screening participants. Cancer 85 (6): 1305-12, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10189136" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10189136</span></a>]</div></li></ol></div></div><div id="CDR0000299612__76"><h2 id="_CDR0000299612__76_">Psychosocial Issues in Familial Prostate Cancer</h2><div id="CDR0000299612__77"><h3>Introduction</h3><p id="CDR0000299612__78">Research to date has included survey, focus group, and correlation studies on psychosocial issues related to prostate cancer risk. (Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062865/">Cancer Genetics Risk Assessment and Counseling</a> for more information about psychological issues related to <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000044961/" class="def">genetic counseling</a> for cancer <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460214/" class="def">risk assessment</a>.) Genetic testing for pathogenic variants in <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000045693/" class="def">genes</a> with some association with prostate cancer risk is now available and has the potential to identify those at increased risk of prostate cancer. Having an understanding of the motivations of men who may consider genetic testing for inherited susceptibility to prostate cancer can help clinicians and researchers anticipate interest in testing. Further, these data may inform the nature and content of counseling strategies for men and their families, including consideration of the risks, benefits, decision-making issues, and <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000044677/" class="def">informed consent</a> for genetic testing.</p></div><div id="CDR0000299612__251"><h3>Risk Perception</h3><p id="CDR0000299612__252">Knowledge about risk of prostate cancer is thought to be a factor influencing men&#x02019;s decisions to pursue prostate cancer <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000046171/" class="def">screening</a> and, possibly, genetic testing.[<a class="bk_pop" href="#CDR0000299612_rl_76_1">1</a>] A study of 79 African American men (38 of whom had been diagnosed with prostate cancer and the remainder who were <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460224/" class="def">unaffected</a> but at high risk of prostate cancer) completed a nine-item telephone questionnaire assessing knowledge about hereditary prostate cancer. On a scale of 0 to 9, with 9 representing a perfect score, scores ranged from 3.5 to 9 with a mean score of 6.34. The three questions relating to genetic testing were the questions most likely to be incorrect. In contrast, questions related to inheritance of prostate cancer risk were answered correctly by the majority of subjects.[<a class="bk_pop" href="#CDR0000299612_rl_76_2">2</a>] Overall, knowledge of hereditary prostate cancer was low, especially concepts of <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000256553/" class="def">genetic susceptibility</a>, indicating a need for increased education. An emerging body of literature is now exploring risk perception for prostate cancer among men with and without a <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000302456/" class="def">family history</a>. <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__384/?report=objectonly" target="object" rid-figpopup="figCDR0000299612384" rid-ob="figobCDR0000299612384">Table 12</a> provides a summary of studies examining prostate cancer risk perception.</p><div id="CDR0000299612__384" class="table"><h3><span class="title">Table 12. Summary of Cross-Sectional Studies of Prostate Cancer Risk Perception</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__384/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__384_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study Population</th><th colspan="1" rowspan="1" style="vertical-align:top;">Sample Size</th><th colspan="1" rowspan="1" style="vertical-align:top;">Proportion of Study Population That Accurately Reported Their Risk</th><th colspan="1" rowspan="1" style="vertical-align:top;"> Other Findings</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Unaffected men with a family history of prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_3">3</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">120 men aged 40&#x02013;72 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">40%</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460150/" class="def">FDR</a> of men with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_4">4</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">105 men aged 40&#x02013;70 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">62%</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Men with brothers <a href="/books/n/pdqcis/glossary_gen/def-item/glossary_gen_CDR0000460124/" class="def">affected</a> with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_5">5</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">111 men aged 33&#x02013;78 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">Not available</td><td colspan="1" rowspan="1" style="vertical-align:top;">38% of men reported their risk of prostate cancer to be the same or less than the average man.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">FDR of men with prostate cancer and a community sample [<a class="bk_pop" href="#CDR0000299612_rl_76_6">6</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">56 men with an FDR with prostate cancer and 100 men without an FDR with prostate cancer all older than 40 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">57%</td><td colspan="1" rowspan="1" style="vertical-align:top;">29% of men with an FDR thought that they were at the same risk as the average man, and 14% believed that they were at somewhat lower risk than average. </td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">FDR = first-degree relative.</p></div></dd></dl></div></div></div><p id="CDR0000299612__253">Study conclusions vary regarding whether first-degree relatives (FDRs) of prostate cancer patients accurately estimate their prostate cancer risk. Some studies found that men with a family history of prostate cancer considered their risk to be the same as or less than that of the average man.[<a class="bk_pop" href="#CDR0000299612_rl_76_5">5</a>,<a class="bk_pop" href="#CDR0000299612_rl_76_6">6</a>] Other factors, including being married, have been associated with higher prostate cancer risk perception.[<a class="bk_pop" href="#CDR0000299612_rl_76_7">7</a>] A confounder in prostate cancer risk perception was confusion between benign prostatic hyperplasia and prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_76_3">3</a>]</p></div><div id="CDR0000299612__80"><h3>Anticipated Interest in Genetic Testing for Risk of Prostate Cancer</h3><p id="CDR0000299612__379">A number of studies summarized in <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__385/?report=objectonly" target="object" rid-figpopup="figCDR0000299612385" rid-ob="figobCDR0000299612385">Table 13</a> have examined participants' interest in genetic testing, if such a test were available for clinical use. Factors found to positively influence the interest in genetic testing include the following:</p><ul id="CDR0000299612__377"><li class="half_rhythm"><div>Advice of their primary care physician.[<a class="bk_pop" href="#CDR0000299612_rl_76_8">8</a>] </div></li><li class="half_rhythm"><div>Combination of emotional distress and concern about prostate cancer treatment effects.[<a class="bk_pop" href="#CDR0000299612_rl_76_9">9</a>]</div></li><li class="half_rhythm"><div>Having children.[<a class="bk_pop" href="#CDR0000299612_rl_76_10">10</a>]</div></li></ul><p id="CDR0000299612__380">Findings from these studies were not consistent regarding the influence of race, education, marital status, employment status, family history, and age on interest in genetic testing. Study participants expressed concerns about confidentiality of test results among employers, insurers, and family and stigmatization; potential loss of insurability; and the cost of the test.[<a class="bk_pop" href="#CDR0000299612_rl_76_8">8</a>] These concerns are similar to those that have been reported in women contemplating genetic testing for breast cancer predisposition.[<a class="bk_pop" href="#CDR0000299612_rl_76_11">11</a>-<a class="bk_pop" href="#CDR0000299612_rl_76_16">16</a>] Concerns voiced about testing positive for a pathogenic variant in a prostate cancer susceptibility gene included decreased quality of life secondary to interference with sex life in the event of a cancer diagnosis, increased anxiety, and elevated stress.[<a class="bk_pop" href="#CDR0000299612_rl_76_8">8</a>]</p><div id="CDR0000299612__385" class="table"><h3><span class="title">Table 13. Summary of Cross-Sectional Studies of Anticipated Interest in Prostate Cancer Susceptibility Genetic Testing</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__385/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__385_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study Population</th><th colspan="1" rowspan="1" style="vertical-align:top;">Sample Size</th><th colspan="1" rowspan="1" style="vertical-align:top;">Percent Expressing Interest in Genetic Testing</th><th colspan="1" rowspan="1" style="vertical-align:top;">Other Findings</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Prostate screening clinic participants [<a class="bk_pop" href="#CDR0000299612_rl_76_17">17</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">342 men aged 40&#x02013;97 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">89%</td><td colspan="1" rowspan="1" style="vertical-align:top;">28% did not demonstrate an understanding of the concept of inherited predisposition to cancer. </td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">General population; 9% with positive family history [<a class="bk_pop" href="#CDR0000299612_rl_76_8">8</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">12 focus groups with a total of 90 men aged 18&#x02013;70 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">All focus groups</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">African American men [<a class="bk_pop" href="#CDR0000299612_rl_76_18">18</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">320 men aged 21&#x02013;98 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">87%</td><td colspan="1" rowspan="1" style="vertical-align:top;">Most participants could not distinguish between genetic susceptibility testing and a prostate-specific antigen blood test.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Men with and without FDRs with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_9">9</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">126 men aged &#x0003e;40 y; mean age 52.6 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">24% definitely; 50% probably </td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Swedish men with an FDR with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_3">3</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">110 men aged 40&#x02013;72 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">76% definitely; 18% probably</td><td colspan="1" rowspan="1" style="vertical-align:top;">89% definitely or probably wanted their sons to undergo genetic testing.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Sons of Swedish men with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_10">10</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">101 men aged 21&#x02013;65 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">90%; 100% of sons with two or three family members affected with prostate cancer</td><td colspan="1" rowspan="1" style="vertical-align:top;">60% expressed worry about having an increased risk of prostate cancer.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Healthy outpatient males with no history of prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_19">19</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">400 men aged 40&#x02013;69 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">82%</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Healthy African American males with no history of prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_20">20</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">413 African American men aged 40&#x02013;70 y</td><td colspan="1" rowspan="1" style="vertical-align:top;">87%</td><td colspan="1" rowspan="1" style="vertical-align:top;">Belief in the efficacy of and intention to undergo prostate cancer screening was associated with testing interest.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Healthy Australian males with no history of prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_21">21</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">473 adult men</td><td colspan="1" rowspan="1" style="vertical-align:top;">66% definitely; 26% probably</td><td colspan="1" rowspan="1" style="vertical-align:top;">73% reported that they felt diet could influence prostate cancer risk.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Males with prostate cancer and their unaffected male family members [<a class="bk_pop" href="#CDR0000299612_rl_76_22">22</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">559 men with prostate cancer;
370 unaffected male relatives
</td><td colspan="1" rowspan="1" style="vertical-align:top;">45% of men affected with cancer;
56% of unaffected men</td><td colspan="1" rowspan="1" style="vertical-align:top;">In affected men, younger age and test familiarity were predictors of genetic testing interest. In unaffected men, older age, test familiarity, and a PSA test within the last 5 y were predictors of genetic testing interest.
</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">FDR = first-degree relative; PSA = prostate-specific antigen.</p></div></dd></dl></div></div></div><p id="CDR0000299612__210">Overall, these reports and a study that developed a conceptual model to look at factors associated with intention to undergo genetic testing [<a class="bk_pop" href="#CDR0000299612_rl_76_23">23</a>] have shown a significant interest in genetic testing for prostate cancer susceptibility despite concerns about confidentiality and potential discrimination. These findings must be interpreted cautiously in predicting actual prostate cancer genetic test uptake once testing is available. In both Huntington disease and hereditary breast and ovarian cancers, hypothetical interest before testing was possible was much higher than actual uptake following availability of the test.[<a class="bk_pop" href="#CDR0000299612_rl_76_24">24</a>,<a class="bk_pop" href="#CDR0000299612_rl_76_25">25</a>]</p><p id="CDR0000299612__1285">In a sample comprised of undiagnosed men with and without a prostate cancer&#x02013;affected FDR, older age and lower education levels were associated with lower levels of prostate cancer&#x02013;specific distress (as measured by the 11-item Prostate Cancer Anxiety Subscale of the Memorial Anxiety Scale for Prostate Cancer); higher distress was associated with having more urinary symptoms.[<a class="bk_pop" href="#CDR0000299612_rl_76_26">26</a>] In the same study, men with a prostate cancer&#x02013;affected FDR who perceived their relative&#x02019;s cancer as more threatening and who had a relative deceased from the disease reported higher distress. In general, prostate cancer&#x02013;specific distress levels were low for both groups of men. </p></div><div id="CDR0000299612__95"><h3>Screening for Prostate Cancer in Individuals at Increased Familial Risk</h3><p id="CDR0000299612__176">The proportion of prostate cancers attributed to hereditary causes is estimated to be 5% to 10%,[<a class="bk_pop" href="#CDR0000299612_rl_76_27">27</a>] and the risk of prostate cancer increases with the number of blood relatives with prostate cancer and young age at onset of prostate cancer within families.[<a class="bk_pop" href="#CDR0000299612_rl_76_28">28</a>] There is considerable controversy in prostate cancer about the use of serum prostate-specific antigen (PSA) measurement and digital rectal exam for prostate cancer early detection in the general population, with different organizations suggesting significantly different screening algorithms and age recommendations. (Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062910/">Prostate Cancer Treatment</a> for more information about prostate cancer in the general population and the <a href="#CDR0000299612__62">Interventions</a> section of this summary for more information about inherited prostate cancer susceptibility.) This variation is likely to add to patient and provider confusion about recommendations for screening by members of hereditary cancer families or FDRs of prostate cancer patients. Psychosocial questions of interest include what individuals at increased risk understand about hereditary risk, whether informational interventions are associated with increased uptake of prostate cancer screening behaviors, and what the associated quality-of-life implications of screening are for individuals at increased risk. Also of interest is the role of the primary care provider in helping those at increased risk identify their risk and undergo age- and family-history&#x02013;appropriate screening. </p><div id="CDR0000299612__181"><h4>Screening behaviors</h4><p id="CDR0000299612__182">In most cancers, the goal of improved knowledge of hereditary risk can be translated rather easily into a desired increase in adherence to approved and recommended (if not proven) screening behaviors. This is complicated for prostate cancer screening by the lack of clear recommendations for men in both high-risk and general populations. (Refer to the <a href="#CDR0000299612__1251">Screening</a> section of this summary for more information.) In addition, controversy exists with regard to the value of early diagnosis of prostate cancer. This creates uncertainty for patients and providers and challenges the psychosocial factors related to screening behavior.</p><p id="CDR0000299612__456">Several small studies have examined the behavioral correlates of prostate cancer screening at average and increased prostate cancer risk based on family history; these are summarized in <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__458/?report=objectonly" target="object" rid-figpopup="figCDR0000299612458" rid-ob="figobCDR0000299612458">Table 14</a>. In general, results appear contradictory regarding whether men with a family history are more likely to be screened than those not at risk and whether the screening is appropriate for their risk status. Furthermore, most of the studies had relatively small numbers of subjects, and the criteria for screening were not uniform, making generalization difficult.</p><div id="CDR0000299612__458" class="table"><h3><span class="title">Table 14. Summary of Studies of Behavioral Correlates for Prostate Cancer Screening</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK65784.23/table/CDR0000299612__458/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000299612__458_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Study Population </th><th colspan="1" rowspan="1" style="vertical-align:top;">Sample Size </th><th colspan="1" rowspan="1" style="vertical-align:top;">Percent Undergoing Screening </th><th colspan="1" rowspan="1" style="vertical-align:top;">Predictive Correlates for Screening Behavior </th></tr></thead><tbody><tr><td colspan="1" rowspan="4" style="vertical-align:top;">Unaffected men with at least one FDR with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_29">29</a>]</td><td colspan="1" rowspan="4" style="vertical-align:top;">82 men (aged &#x02265;40 y; mean age 50.5 y)</td><td colspan="1" rowspan="2" style="vertical-align:top;"><b>PSA:</b></td><td colspan="1" rowspan="1" style="vertical-align:top;">Aged &#x0003e;50 y.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Annual income &#x02265; U.S. $40,000.</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">50% reported PSA screening within the previous 14 mo.</td><td colspan="1" rowspan="1" style="vertical-align:top;">History of PSA screening before study enrollment.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Higher levels of self-efficacy and response efficacy for undergoing prostate cancer screening.</td></tr><tr><td colspan="1" rowspan="9" style="vertical-align:top;">Sons of men with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_30">30</a>]</td><td colspan="1" rowspan="9" style="vertical-align:top;">124 men (60 men with a history of prostate cancer aged 38&#x02013;84 y, median age 59 y; 64 unaffected men aged 31&#x02013;78 y, median age 55 y)</td><td colspan="1" rowspan="1" style="vertical-align:top;"><b>PSA:</b></td><td colspan="1" rowspan="5" style="vertical-align:top;">39.4% patient request.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Unaffected men: 95.3% reported ever having a PSA test.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Affected men: 71.7% reported ever having a PSA test before diagnosis.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><b>DRE:</b></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Unaffected men: 96.9% reported ever having a DRE.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"> &#x02013; Affected men: 91.5% reported ever having a DRE before diagnosis.</td><td colspan="1" rowspan="4" style="vertical-align:top;">35.6% physician request.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><b>Both PSA and DRE:</b></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Unaffected men: 93.8% had both procedures.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; Affected men: 70.0% reported having both procedures before diagnosis.</td></tr><tr><td colspan="1" rowspan="5" style="vertical-align:top;">Unaffected men with and without an FDR with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_6">6</a>]</td><td colspan="1" rowspan="5" style="vertical-align:top;">156 men aged &#x02265;40 y (56 men with an FDR; 100 men without an FDR)</td><td colspan="1" rowspan="1" style="vertical-align:top;"><b>PSA:</b></td><td colspan="1" rowspan="2" style="vertical-align:top;">Older age.</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">63% reported ever having a PSA test.</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">FDRs reported higher disease vulnerability and less belief in disease prevention, but this did not result in increased prostate cancer screening when compared with those without an FDR.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><b>DRE:</b></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">86% reported ever having a DRE.</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">Unaffected Swedish men from families with a 50% probability of carrying a pathogenic variant in a dominant prostate cancer susceptibility gene [<a class="bk_pop" href="#CDR0000299612_rl_76_3">3</a>]</td><td colspan="1" rowspan="2" style="vertical-align:top;">110 men aged 50&#x02013;72 y</td><td colspan="1" rowspan="2" style="vertical-align:top;">68% of men aged &#x02265;50 y were screened for prostate cancer.</td><td colspan="1" rowspan="1" style="vertical-align:top;"> More relatives with prostate cancer.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Low score on the avoidance subscales of the Impact of Event Scale.[<a class="bk_pop" href="#CDR0000299612_rl_76_31">31</a>]</td></tr><tr><td colspan="1" rowspan="10" style="vertical-align:top;">Brothers or sons of men with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_32">32</a>]</td><td colspan="1" rowspan="10" style="vertical-align:top;">136 men aged 40&#x02013;70 y (72% were African American men)</td><td colspan="1" rowspan="1" style="vertical-align:top;"><b>PSA:</b></td><td colspan="1" rowspan="2" style="vertical-align:top;">More relatives with prostate cancer.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">72% reported ever having a PSA test.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 73% within 1 y.</td><td colspan="1" rowspan="3" style="vertical-align:top;">Older age.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 23% 1&#x02013;2 y ago.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 4% &#x0003e;2 y ago.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><b>DRE:</b></td><td colspan="1" rowspan="3" style="vertical-align:top;">Urinary symptoms.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">90% reported ever having had a DRE.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 60% within 1 y.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 23% 1&#x02013;2 y ago.</td><td colspan="1" rowspan="2" style="vertical-align:top;">71% reported their physician had spoken to them about prostate cancer screening.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 17% &#x0003e;2 y ago.</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Unaffected men with and without an FDR with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_33">33</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">166 men aged 40&#x02013;80 y (83 men with an FDR; 83 men with no family history)</td><td colspan="1" rowspan="1" style="vertical-align:top;"><b>PSA:</b></td><td colspan="1" rowspan="2" style="vertical-align:top;">Family history of prostate cancer.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; FDR: 72% reported ever having had a PSA test.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; No family history: 53% reported ever having had a PSA test.</td><td colspan="1" rowspan="1" style="vertical-align:top;">Greater perceived vulnerability to developing prostate cancer.</td></tr><tr><td colspan="1" rowspan="6" style="vertical-align:top;">French brothers or sons of men with prostate cancer [<a class="bk_pop" href="#CDR0000299612_rl_76_34">34</a>]</td><td colspan="1" rowspan="6" style="vertical-align:top;">420 men aged 40&#x02013;70 y</td><td colspan="1" rowspan="3" style="vertical-align:top;"><b>PSA:</b></td><td colspan="1" rowspan="1" style="vertical-align:top;">Younger age.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">More relatives with prostate cancer.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Increased anxiety.</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">88% adhered to annual PSA screening.</td><td colspan="1" rowspan="1" style="vertical-align:top;">Married.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Higher education.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Previous history of prostate cancer screening.</td></tr><tr><td colspan="1" rowspan="10" style="vertical-align:top;">Data from unaffected African American men participating in AAHPC and data from the 1998 and 2000 NHIS [<a class="bk_pop" href="#CDR0000299612_rl_76_35">35</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">Unaffected men aged 40&#x02013;69 y:</td><td colspan="1" rowspan="1" style="vertical-align:top;"><b>PSA:</b></td><td colspan="1" rowspan="6" style="vertical-align:top;">Younger age.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">AAHPC Cohort:</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 45% reported ever having had a PSA test.</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">&#x02013; AAHPC Cohort: 134 men</td><td colspan="1" rowspan="1" style="vertical-align:top;">African American men in 2000 NHIS:</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 65% reported ever having had a PSA test.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><b>DRE:</b></td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">&#x02013; NHIS 1998 Cohort: 5,583 men (683 African American, 4,900 white)</td><td colspan="1" rowspan="1" style="vertical-align:top;">AAHPC Cohort:</td><td colspan="1" rowspan="4" style="vertical-align:top;">Fewer relatives with prostate cancer.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 35% reported ever having had a DRE.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">African American men in 1998 NHIS:</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; NHIS 2000 Cohort: 3,359 men (411 African American, 2,948 white)</td><td colspan="1" rowspan="1" style="vertical-align:top;">&#x02013; 45% reported ever having had a DRE.</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;">Unaffected African American men who participated in the 2000 NHIS [<a class="bk_pop" href="#CDR0000299612_rl_76_36">36</a>]</td><td colspan="1" rowspan="4" style="vertical-align:top;">736 men aged &#x02265;45 y</td><td colspan="1" rowspan="2" style="vertical-align:top;"><b>PSA:</b></td><td colspan="1" rowspan="1" style="vertical-align:top;">Older age (&#x02265;50 y).</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Private or military health insurance.</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;">48% reported ever having had a PSA test.</td><td colspan="1" rowspan="1" style="vertical-align:top;">Fair or poor health status.</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Family history of prostate cancer.</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">AAHPC = African American Hereditary Prostate Cancer Study Network; DRE = digital rectal exam; FDR = first-degree relative; NHIS = National Health Interview Survey; PSA = prostate-specific antigen.</p></div></dd></dl></div></div></div></div><div id="CDR0000299612__98"><h4>Psychosocial outcomes of screening in individuals at increased familial risk</h4><p id="CDR0000299612__185"><b>Concern about developing prostate cancer:</b> Although up to 50% of men in some studies who were FDRs of prostate cancer patients expressed some concern about developing prostate cancer,[<a class="bk_pop" href="#CDR0000299612_rl_76_5">5</a>] the level of anxiety reported is typically relatively low and is related to lifetime risk rather than short-term risk.[<a class="bk_pop" href="#CDR0000299612_rl_76_3">3</a>,<a class="bk_pop" href="#CDR0000299612_rl_76_5">5</a>] The concern is also higher in men who are younger than his FDR was at the time when their prostate cancer was diagnosed.[<a class="bk_pop" href="#CDR0000299612_rl_76_5">5</a>] Unmarried FDRs worried more about developing prostate cancer than did married men.[<a class="bk_pop" href="#CDR0000299612_rl_76_5">5</a>] Men with higher levels of concern about developing prostate cancer also had higher estimates of personal prostate cancer risk and had a larger number of relatives diagnosed with prostate cancer.[<a class="bk_pop" href="#CDR0000299612_rl_76_5">5</a>] In a Swedish study, only 3% of the 110 men surveyed said that worry about prostate cancer affected their daily life &#x0201c;fairly much,&#x0201d; and 28% said it affected their daily life "slightly."[<a class="bk_pop" href="#CDR0000299612_rl_76_3">3</a>]</p><p id="CDR0000299612__186"><b>Baseline distress levels:</b> Among men who self-referred for free prostate cancer screening, general and prostate cancer&#x02013;related distress did not differ significantly between men who were FDRs of prostate cancer patients and men who were not.[<a class="bk_pop" href="#CDR0000299612_rl_76_37">37</a>] Men with a family history of prostate cancer in the study had higher levels of perceived risk. In a Swedish study, male FDRs of prostate cancer patients who reported more worry about developing prostate cancer had higher Hospital Anxiety and Depression Scale (HADS) depression and anxiety scores than men with lower levels of worry. In that study, the average HADS depression and anxiety scores among FDRs was at the 75<sup>th</sup> percentile. Depression was associated with higher levels of personal risk overestimation.[<a class="bk_pop" href="#CDR0000299612_rl_76_3">3</a>]</p><p id="CDR0000299612__187"><b>Distress experienced during prostate cancer screening:</b> A study measured the anxiety and general quality of life experienced by 220 men with a family history of prostate cancer while undergoing prostate cancer screening with PSA tests.[<a class="bk_pop" href="#CDR0000299612_rl_76_32">32</a>] In this group, 20% of the men experienced a moderate deterioration in their anxiety scores, and 20% experienced a minimal deterioration in health-related quality of life (HRQOL). The average period between assessments was 35 days, which encompassed PSA testing and a wait for results that averaged 15.6 days. Only men with normal PSA values (4 ng/mL or less) were assessed. Factors associated with deterioration in HRQOL included being age 50 to 60 years, having more than two relatives with prostate cancer, having an anxious personality, being well-educated, and having no children presently living at home. These authors stress that analysis of the impact of screening on FDRs should not rely solely on mean changes in scores, which may &#x0201c;mask diversity among responses, as illustrated by the proportion of subjects worsening during the screening process.&#x0201d; Given that these were men receiving what was considered a normal result and that a subset of men experienced screening-associated distress, this study suggests that interventions to reduce screening-related distress may be needed to encourage men at increased hereditary risk to comply with repeated requests for screening.</p><p id="CDR0000299612__409">A study in the United Kingdom assessed predictors of psychological morbidity and screening adherence in FDRs of men with prostate cancer participating in a PSA screening study. One hundred twenty-eight FDRs completed measures assessing psychological morbidity, barriers, benefits, knowledge of PSA screening, and perceived susceptibility to prostate cancer. Overall, 18 men (14%) scored above the threshold for psychiatric morbidity, consistent with normal population ranges. Cancer worry was positively associated with health anxiety, perceived risk, and subjective stress. However, psychological morbidity did not predict PSA screening adherence. Only past screening behavior was found to be associated with PSA screening adherence.[<a class="bk_pop" href="#CDR0000299612_rl_76_38">38</a>]</p></div></div><div id="CDR0000299612_rl_76"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000299612_rl_76_1">Weinrich SP, Weinrich MC, Boyd MD, et al.: The impact of prostate cancer knowledge on cancer screening. Oncol Nurs Forum 25 (3): 527-34, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9568607" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9568607</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_2">Weinrich S, Vijayakumar S, Powell IJ, et al.: Knowledge of hereditary prostate cancer among high-risk African American men. Oncol Nurs Forum 34 (4): 854-60, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17723986" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17723986</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_3">Bratt O, Damber JE, Emanuelsson M, et al.: Risk perception, screening practice and interest in genetic testing among unaffected men in families with hereditary prostate cancer. Eur J Cancer 36 (2): 235-41, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10741283" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10741283</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_4">Cormier L, Kwan L, Reid K, et al.: Knowledge and beliefs among brothers and sons of men with prostate cancer. Urology 59 (6): 895-900, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12031377" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12031377</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_5">Beebe-Dimmer JL, Wood DP Jr, Gruber SB, et al.: Risk perception and concern among brothers of men with prostate carcinoma. Cancer 100 (7): 1537-44, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15042690" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15042690</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_6">Miller SM, Diefenbach MA, Kruus LK, et al.: Psychological and screening profiles of first-degree relatives of prostate cancer patients. J Behav Med 24 (3): 247-58, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11436545" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11436545</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_7">Montgomery GH, Erblich J, DiLorenzo T, et al.: Family and friends with disease: their impact on perceived risk. Prev Med 37 (3): 242-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12914830" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12914830</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_8">Doukas DJ, Fetters MD, Coyne JC, et al.: How men view genetic testing for prostate cancer risk: findings from focus groups. Clin Genet 58 (3): 169-76, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11076038" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11076038</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_9">Diefenbach MA, Schnoll RA, Miller SM, et al.: Genetic testing for prostate cancer. Willingness and predictors of interest. Cancer Pract 8 (2): 82-6, 2000 Mar-Apr. [<a href="https://pubmed.ncbi.nlm.nih.gov/11898181" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11898181</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_10">Bratt O, Kristoffersson U, Lundgren R, et al.: Sons of men with prostate cancer: their attitudes regarding possible inheritance of prostate cancer, screening, and genetic testing. Urology 50 (3): 360-5, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9301698" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9301698</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_11">Lee SC, Bernhardt BA, Helzlsouer KJ: Utilization of BRCA1/2 genetic testing in the clinical setting: report from a single institution. Cancer 94 (6): 1876-85, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/11920551" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11920551</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_12">Jacobsen PB, Valdimarsdottier HB, Brown KL, et al.: Decision-making about genetic testing among women at familial risk for breast cancer. Psychosom Med 59 (5): 459-66, 1997 Sep-Oct. [<a href="https://pubmed.ncbi.nlm.nih.gov/9316177" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9316177</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_13">Lerman C, Schwartz MD, Lin TH, et al.: The influence of psychological distress on use of genetic testing for cancer risk. J Consult Clin Psychol 65 (3): 414-20, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9170764" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9170764</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_14">Rimer BK, Schildkraut JM, Lerman C, et al.: Participation in a women's breast cancer risk counseling trial. Who participates? Who declines? High Risk Breast Cancer Consortium. Cancer 77 (11): 2348-55, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8635106" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8635106</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_15">Struewing JP, Lerman C, Kase RG, et al.: Anticipated uptake and impact of genetic testing in hereditary breast and ovarian cancer families. Cancer Epidemiol Biomarkers Prev 4 (2): 169-73, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7742725" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7742725</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_16">Lerman C, Daly M, Masny A, et al.: Attitudes about genetic testing for breast-ovarian cancer susceptibility. J Clin Oncol 12 (4): 843-50, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/8151327" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8151327</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_17">Miesfeldt S, Jones SM, Cohn W, et al.: Men's attitudes regarding genetic testing for hereditary prostate cancer risk. Urology 55 (1): 46-50, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10654893" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10654893</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_18">Weinrich S, Royal C, Pettaway CA, et al.: Interest in genetic prostate cancer susceptibility testing among African American men. Cancer Nurs 25 (1): 28-34, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/11838717" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11838717</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_19">Doukas DJ, Li Y: Men's values-based factors on prostate cancer risk genetic testing: a telephone survey. BMC Med Genet 5: 28, 2004. [<a href="/pmc/articles/PMC544862/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC544862</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15588314" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15588314</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_20">Myers RE, Hyslop T, Jennings-Dozier K, et al.: Intention to be tested for prostate cancer risk among African-American men. Cancer Epidemiol Biomarkers Prev 9 (12): 1323-8, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11142417" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11142417</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_21">Cowan R, Meiser B, Giles GG, et al.: The beliefs, and reported and intended behaviors of unaffected men in response to their family history of prostate cancer. Genet Med 10 (6): 430-8, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18496220" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18496220</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_22">Harris JN, Bowen DJ, Kuniyuki A, et al.: Interest in genetic testing among affected men from hereditary prostate cancer families and their unaffected male relatives. Genet Med 11 (5): 344-55, 2009. [<a href="/pmc/articles/PMC2683189/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2683189</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19346959" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19346959</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_23">Li Y, Doukas DJ: Health motivation and emotional vigilance in genetic testing for prostate cancer risk. Clin Genet 66 (6): 512-6, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15521978" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15521978</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_24">Meiser B, Dunn S: Psychological impact of genetic testing for Huntington's disease: an update of the literature. J Neurol Neurosurg Psychiatry 69 (5): 574-8, 2000. [<a href="/pmc/articles/PMC1763433/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1763433</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11032605" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11032605</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_25">Lerman C, Shields AE: Genetic testing for cancer susceptibility: the promise and the pitfalls. Nat Rev Cancer 4 (3): 235-41, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14993905" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14993905</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_26">McDowell ME, Occhipinti S, Gardiner RA, et al.: Prevalence and predictors of cancer specific distress in men with a family history of prostate cancer. Psychooncology 22 (11): 2496-504, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23712946" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23712946</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_27">Carter BS, Beaty TH, Steinberg GD, et al.: Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A 89 (8): 3367-71, 1992. [<a href="/pmc/articles/PMC48868/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC48868</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1565627" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1565627</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_28">Carter BS, Bova GS, Beaty TH, et al.: Hereditary prostate cancer: epidemiologic and clinical features. J Urol 150 (3): 797-802, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8345587" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8345587</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_29">Vadaparampil ST, Jacobsen PB, Kash K, et al.: Factors predicting prostate specific antigen testing among first-degree relatives of prostate cancer patients. Cancer Epidemiol Biomarkers Prev 13 (5): 753-8, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15159306" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15159306</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_30">Bock CH, Peyser PA, Gruber SB, et al.: Prostate cancer early detection practices among men with a family history of disease. Urology 62 (3): 470-5, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12946749" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12946749</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_31">Horowitz M, Wilner N, Alvarez W: Impact of Event Scale: a measure of subjective stress. Psychosom Med 41 (3): 209-18, 1979. [<a href="https://pubmed.ncbi.nlm.nih.gov/472086" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 472086</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_32">Cormier L, Reid K, Kwan L, et al.: Screening behavior in brothers and sons of men with prostate cancer. J Urol 169 (5): 1715-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12686816" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12686816</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_33">Jacobsen PB, Lamonde LA, Honour M, et al.: Relation of family history of prostate cancer to perceived vulnerability and screening behavior. Psychooncology 13 (2): 80-5, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14872526" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14872526</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_34">Roumier X, Azzouzi R, Val&#x000e9;ri A, et al.: Adherence to an annual PSA screening program over 3 years for brothers and sons of men with prostate cancer. Eur Urol 45 (3): 280-5; author reply 285-6, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15036671" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15036671</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_35">Weinrich SP: Prostate cancer screening in high-risk men: African American Hereditary Prostate Cancer Study Network. Cancer 106 (4): 796-803, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16411222" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16411222</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_36">Ross LE, Uhler RJ, Williams KN: Awareness and use of the prostate-specific antigen test among African-American men. J Natl Med Assoc 97 (7): 963-71, 2005. [<a href="/pmc/articles/PMC2569321/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2569321</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16080666" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16080666</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_37">Taylor KL, DiPlacido J, Redd WH, et al.: Demographics, family histories, and psychological characteristics of prostate carcinoma screening participants. Cancer 85 (6): 1305-12, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10189136" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10189136</span></a>]</div></li><li><div class="bk_ref" id="CDR0000299612_rl_76_38">Sweetman J, Watson M, Norman A, et al.: Feasibility of familial PSA screening: psychosocial issues and screening adherence. Br J Cancer 94 (4): 507-12, 2006. [<a href="/pmc/articles/PMC2361177/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2361177</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16434991" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16434991</span></a>]</div></li></ol></div></div><div id="CDR0000299612__139"><h2 id="_CDR0000299612__139_">Changes to This Summary (03/16/2018)</h2><p id="CDR0000299612__140">The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.</p><p id="CDR0000299612__1510"><b><a href="#CDR0000299612__1">Introduction</a></b></p><p id="CDR0000299612__1512">Updated National Comprehensive Cancer Network (NCCN) as <a href="#CDR0000299612__1302">reference 36</a>.</p><p id="CDR0000299612__1511">Added <a href="/books/NBK65784.23/#CDR0000299612__1324">text</a> to include metastatic prostate cancer as part of the criteria that may warrant referral for genetic consultation.</p><p id="CDR0000299612__1513"><b><a href="#CDR0000299612__922">Genes With Potential Clinical Relevance in Prostate Cancer Risk</a></b></p><p id="CDR0000299612__1514">Updated NCCN as <a href="#CDR0000299612__1124">reference 33</a>.</p><p id="CDR0000299612__1515"><b><a href="#CDR0000299612__62">Interventions in Familial Prostate Cancer</a></b></p><p id="CDR0000299612__1516">Updated NCCN as <a class="figpopup" href="/books/NBK65784.23/table/CDR0000299612__1267/?report=objectonly" target="object" rid-figpopup="figCDR00002996121267" rid-ob="figobCDR00002996121267">reference 12</a>.</p><p id="CDR0000299612__disclaimerHP_3">This summary is written and maintained by the <a href="http://www.cancer.gov/publications/pdq/editorial-boards/genetics" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PDQ Cancer Genetics Editorial Board</a>, which is
editorially independent of NCI. The summary reflects an independent review of
the literature and does not represent a policy statement of NCI or NIH. More
information about summary policies and the role of the PDQ Editorial Boards in
maintaining the PDQ summaries can be found on the <a href="#CDR0000299612__AboutThis_1">About This PDQ Summary</a> and <a href="http://www.cancer.gov/publications/pdq" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PDQ&#x000ae; - NCI's Comprehensive Cancer Database</a> pages.
</p></div><div id="CDR0000299612__AboutThis_1"><h2 id="_CDR0000299612__AboutThis_1_">About This PDQ Summary</h2><div id="CDR0000299612__AboutThis_2"><h3>Purpose of This Summary</h3><p id="CDR0000299612__AboutThis_3">This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the genetics of prostate cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.</p></div><div id="CDR0000299612__AboutThis_4"><h3>Reviewers and Updates</h3><p id="CDR0000299612__AboutThis_5">This summary is reviewed regularly and updated as necessary by the <a href="http://www.cancer.gov/publications/pdq/editorial-boards/genetics" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PDQ Cancer Genetics Editorial Board</a>, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).</p><p id="CDR0000299612__AboutThis_22"> Board members review recently published articles each month to determine whether an article should:</p><ul id="CDR0000299612__AboutThis_6"><li class="half_rhythm"><div>be discussed at a meeting,</div></li><li class="half_rhythm"><div>be cited with text, or</div></li><li class="half_rhythm"><div>replace or update an existing article that is already cited.</div></li></ul><p id="CDR0000299612__AboutThis_7">Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.</p><p>The lead reviewers for Genetics of Prostate Cancer are:</p><ul><li class="half_rhythm"><div>Kathleen A. Calzone, PhD, RN, AGN-BC, FAAN (National Cancer Institute)</div></li><li class="half_rhythm"><div>Veda N. Giri, MD (Thomas Jefferson University)</div></li><li class="half_rhythm"><div>Suzanne M. O'Neill, MS, PhD, CGC</div></li><li class="half_rhythm"><div>Beth N. Peshkin, MS, CGC (Lombardi Comprehensive Cancer Center at Georgetown University Medical Center)</div></li><li class="half_rhythm"><div>Susan K. Peterson, PhD, MPH (University of Texas, M.D. Anderson Cancer Center)</div></li><li class="half_rhythm"><div>Mark Pomerantz, MD (Dana-Farber Cancer Institute)</div></li><li class="half_rhythm"><div>Susan T. Vadaparampil, PhD, MPH (H. Lee Moffitt Cancer Center &#x00026; Research Institute)</div></li><li class="half_rhythm"><div>Catharine Wang, PhD, MSc (Boston University School of Public Health)</div></li></ul><p id="CDR0000299612__AboutThis_9">Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's <a href="https://www.cancer.gov/contact/email-us" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Email Us</a>. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.</p></div><div id="CDR0000299612__AboutThis_10"><h3>Levels of Evidence</h3><p id="CDR0000299612__AboutThis_11">Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Cancer Genetics Editorial Board uses a <a href="/books/n/pdqcis/CDR0000685387/">formal evidence ranking system</a> in developing its level-of-evidence designations.</p></div><div id="CDR0000299612__AboutThis_12"><h3>Permission to Use This Summary</h3><p id="CDR0000299612__AboutThis_13">PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as &#x0201c;NCI&#x02019;s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].&#x0201d;</p><p id="CDR0000299612__AboutThis_14">The preferred citation for this PDQ summary is:</p><p id="CDR0000299612__AboutThis_15">PDQ&#x000ae; Cancer Genetics Editorial Board. PDQ Genetics of Prostate Cancer. Bethesda, MD: National Cancer Institute. Updated &#x0003c;MM/DD/YYYY&#x0003e;. Available at: <a href="https://www.cancer.gov/types/prostate/hp/prostate-genetics-pdq" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.cancer.gov/types/prostate/hp/prostate-genetics-pdq</a>. Accessed &#x0003c;MM/DD/YYYY&#x0003e;. [PMID: 26389227]</p><p id="CDR0000299612__AboutThis_16">Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in <a href="https://visualsonline.cancer.gov/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Visuals Online</a>, a collection of over 2,000 scientific images.
</p></div><div id="CDR0000299612__AboutThis_17"><h3>Disclaimer</h3><p id="CDR0000299612__AboutThis_19">The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the <a href="https://www.cancer.gov/about-cancer/managing-care" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Managing Cancer Care</a> page.</p></div><div id="CDR0000299612__AboutThis_20"><h3>Contact Us</h3><p id="CDR0000299612__AboutThis_21">More information about contacting us or receiving help with the Cancer.gov website can be found on our <a href="https://www.cancer.gov/contact" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Contact Us for Help</a> page. Questions can also be submitted to Cancer.gov through the website&#x02019;s <a href="https://www.cancer.gov/contact/email-us" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Email Us</a>.</p></div></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div><div class="small"><span class="label">Bookshelf ID: NBK65784</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/26389227" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">26389227</a></span></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK65784&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK65784.23/?report=reader">PubReader</a></li><li><a href="/books/NBK65784.23/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK65784" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK65784" style="display:none" title="Cite this Page"><div class="bk_tt">PDQ Cancer Genetics Editorial Board. Genetics of Prostate Cancer (PDQ®): Health Professional Version. 2018 Mar 16. In: PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-. <span class="bk_cite_avail"></span></div></div></li><li><a href="#" class="toggle-glossary-link" title="Enable/disable links to the glossary">Disable Glossary Links</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Version History</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter shutter_closed" title="Show/hide content" remembercollapsed="true" pgsec_name="version_history" id="Shutter"></a></div><div class="portlet_content" style="display: none;"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><span class="bk_col_itm"><a href="/books/NBK65784.45/">NBK65784.45</a></span> January 3, 2025</li><li><span class="bk_col_itm"><a href="/books/NBK65784.44/">NBK65784.44</a></span> June 27, 2024</li><li><span class="bk_col_itm"><a href="/books/NBK65784.43/">NBK65784.43</a></span> February 15, 2024</li><li><span class="bk_col_itm"><a href="/books/NBK65784.42/">NBK65784.42</a></span> November 8, 2023</li><li><span class="bk_col_itm"><a href="/books/NBK65784.41/">NBK65784.41</a></span> March 17, 2023</li><li><span class="bk_col_itm"><a href="/books/NBK65784.40/">NBK65784.40</a></span> February 10, 2023</li><li><span class="bk_col_itm"><a href="/books/NBK65784.39/">NBK65784.39</a></span> November 22, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK65784.38/">NBK65784.38</a></span> August 16, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK65784.37/">NBK65784.37</a></span> March 29, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK65784.36/">NBK65784.36</a></span> February 24, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK65784.35/">NBK65784.35</a></span> July 8, 2021</li><li><span class="bk_col_itm"><a href="/books/NBK65784.34/">NBK65784.34</a></span> February 26, 2021</li><li><span class="bk_col_itm"><a href="/books/NBK65784.33/">NBK65784.33</a></span> November 12, 2020</li><li><span class="bk_col_itm"><a href="/books/NBK65784.32/">NBK65784.32</a></span> May 22, 2020</li><li><span class="bk_col_itm"><a href="/books/NBK65784.31/">NBK65784.31</a></span> February 7, 2020</li><li><span class="bk_col_itm"><a href="/books/NBK65784.30/">NBK65784.30</a></span> October 4, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK65784.29/">NBK65784.29</a></span> June 7, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK65784.28/">NBK65784.28</a></span> April 5, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK65784.27/">NBK65784.27</a></span> March 22, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK65784.26/">NBK65784.26</a></span> December 18, 2018</li><li><span class="bk_col_itm"><a href="/books/NBK65784.25/">NBK65784.25</a></span> June 13, 2018</li><li><span class="bk_col_itm"><a href="/books/NBK65784.24/">NBK65784.24</a></span> May 10, 2018</li><li><span class="bk_col_itm">NBK65784.23</span> March 16, 2018 (Displayed Version)</li><li><span class="bk_col_itm"><a href="/books/NBK65784.22/">NBK65784.22</a></span> February 16, 2018</li><li><span class="bk_col_itm"><a href="/books/NBK65784.21/">NBK65784.21</a></span> January 19, 2018</li><li><span class="bk_col_itm"><a href="/books/NBK65784.20/">NBK65784.20</a></span> November 28, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.19/">NBK65784.19</a></span> November 2, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.18/">NBK65784.18</a></span> September 21, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.17/">NBK65784.17</a></span> August 18, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.16/">NBK65784.16</a></span> July 3, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.15/">NBK65784.15</a></span> June 29, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.14/">NBK65784.14</a></span> May 11, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.13/">NBK65784.13</a></span> March 27, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.12/">NBK65784.12</a></span> February 10, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.11/">NBK65784.11</a></span> January 20, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK65784.10/">NBK65784.10</a></span> November 30, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK65784.9/">NBK65784.9</a></span> October 14, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK65784.8/">NBK65784.8</a></span> July 14, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK65784.7/">NBK65784.7</a></span> May 17, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK65784.6/">NBK65784.6</a></span> February 12, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK65784.5/">NBK65784.5</a></span> January 20, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK65784.4/">NBK65784.4</a></span> December 10, 2015</li><li><span class="bk_col_itm"><a href="/books/NBK65784.3/">NBK65784.3</a></span> November 5, 2015</li><li><span class="bk_col_itm"><a href="/books/NBK65784.2/">NBK65784.2</a></span> October 2, 2015</li><li><span class="bk_col_itm"><a href="/books/NBK65784.1/">NBK65784.1</a></span> July 7, 2015</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#CDR0000299612__1392" ref="log$=inpage&amp;link_id=inpage">Executive Summary</a></li><li><a href="#CDR0000299612__1" ref="log$=inpage&amp;link_id=inpage">Introduction</a></li><li><a href="#CDR0000299612__981" ref="log$=inpage&amp;link_id=inpage">Identifying Genes and Inherited Variants Associated With Prostate Cancer Risk</a></li><li><a href="#CDR0000299612__922" ref="log$=inpage&amp;link_id=inpage">Genes With Potential Clinical Relevance in Prostate Cancer Risk</a></li><li><a href="#CDR0000299612__62" ref="log$=inpage&amp;link_id=inpage">Interventions in Familial Prostate Cancer </a></li><li><a href="#CDR0000299612__264" ref="log$=inpage&amp;link_id=inpage">Prostate Cancer Risk Assessment</a></li><li><a href="#CDR0000299612__76" ref="log$=inpage&amp;link_id=inpage">Psychosocial Issues in Familial Prostate Cancer</a></li><li><a href="#CDR0000299612__139" ref="log$=inpage&amp;link_id=inpage">Changes to This Summary (03/16/2018)</a></li><li><a href="#CDR0000299612__AboutThis_1" ref="log$=inpage&amp;link_id=inpage">About This PDQ Summary</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related information</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="discovery_db_links" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pmc&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pmc_refs&amp;IdsFromResult=2825012" ref="log$=recordlinks">PMC</a><div class="brieflinkpop offscreen_noflow">PubMed Central citations</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pubmed&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pubmed_refs&amp;IdsFromResult=2825012" ref="log$=recordlinks">PubMed</a><div class="brieflinkpop offscreen_noflow">Links to PubMed</div></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/26389505" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Genetics of Colorectal Cancer (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Genetics of Colorectal Cancer (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Cancer Genetics Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/26389333" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Genetics of Skin Cancer (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Genetics of Skin Cancer (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Cancer Genetics Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/37669413" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Genetics of Gastric Cancer (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Genetics of Gastric Cancer (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Cancer Genetics Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/26389204" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Cancer Genetics Overview (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Cancer Genetics Overview (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Cancer Genetics Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/26389471" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Prostate Cancer Treatment (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Prostate Cancer Treatment (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Adult Treatment Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=26389227" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=26389227" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67c99a6df4a390645e41c54e">Genetics of Prostate Cancer (PDQ®) - PDQ Cancer Information Summaries</a><div class="ralinkpop offscreen_noflow">Genetics of Prostate Cancer (PDQ®) - PDQ Cancer Information Summaries<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK65784&amp;ncbi_domain=pdqcis&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK65784.23/&amp;ncbi_pagename=Genetics of Prostate Cancer (PDQ®) - PDQ Cancer Information Summaries - NCBI Bookshelf&amp;ncbi_bookparttype=chapter&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>