nih-gov/www.ncbi.nlm.nih.gov/books/NBK603622/index.html?report=printable

1468 lines
No EOL
406 KiB
XML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-toc" /><meta name="ncbi_acc" content="NBK603622" /><meta name="ncbi_domain" content="niceng238er1" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK603622/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Evidence review for CVD risk assessment tools: primary prevention - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE,NOIMAGEINDEX" /><meta name="citation_title" content="Evidence review for CVD risk assessment tools: primary prevention" /><meta name="citation_publisher" content="National Institute for Health and Care Excellence (NICE)" /><meta name="citation_date" content="2023/05" /><meta name="citation_pmid" content="38723137" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK603622/" /><meta name="citation_keywords" content="Cardiovascular Diseases" /><meta name="citation_keywords" content="Risk Assessment" /><meta name="citation_keywords" content="Primary Prevention" /><meta name="citation_keywords" content="Risk Factors" /><meta name="citation_keywords" content="Heart Disease Risk Factors" /><meta name="citation_keywords" content="Review" /><meta name="citation_keywords" content="Adolescent" /><meta name="citation_keywords" content="Young Adult" /><meta name="citation_keywords" content="Adult" /><meta name="citation_keywords" content="Middle Aged" /><meta name="citation_keywords" content="Aged" /><meta name="citation_keywords" content="Aged, 80 and over" /><meta name="citation_keywords" content="Humans" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Evidence review for CVD risk assessment tools: primary prevention" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="National Institute for Health and Care Excellence (NICE)" /><meta name="DC.Date" content="2023/05" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK603622/" /><meta name="og:title" content="Evidence review for CVD risk assessment tools: primary prevention" /><meta name="og:type" content="book" /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK603622/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-niceng238er1-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/niceng238er1/toc/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK603622/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8EB4AA7D6C71C10000000000D900BD.m_5" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-toc">
<div class="grid no_max_width">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div class="header">
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<div class="container content">
<div class="source">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/Book"><div class="meta-content fm-sec"><div class="iconblock whole_rhythm clearfix no_top_margin"><a href="http://www.nice.org.uk/" title="National Institute for Health and Care Excellence (NICE)" class="img_link icnblk_img" ref="pagearea=logo&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-niceng238er1-lrg.png" alt="Cover of Evidence review for CVD risk assessment tools: primary prevention" /></a><div class="icnblk_cntnt"><h1 id="_NBK603622_"><span itemprop="name">Evidence review for CVD risk assessment tools: primary prevention</span></h1><div class="subtitle">Cardiovascular disease: risk assessment and reduction, including lipid modification</div><p><b>Evidence review A</b></p><p><i>NICE Guideline, No. 238</i></p><div class="half_rhythm">London: <a href="http://www.nice.org.uk/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher"><span itemprop="publisher">National Institute for Health and Care Excellence (NICE)</span></a>; <span itemprop="datePublished">2023 May</span>.<div class="small">ISBN-13: <span itemprop="isbn">978-1-4731-5203-8</span></div></div><div><a href="/books/about/copyright/">Copyright</a> &#x000a9; NICE 2023.</div></div></div></div><div class="body-content whole_rhythm" itemprop="text"><div id="niceng238er1.s1"><h2 id="_niceng238er1_s1_">1. Cardiovascular risk assessment tools in adults without established cardiovascular disease</h2><div id="niceng238er1.s1.1"><h3>1.1. Review question</h3><p>What is the most accurate tool for determining 10-year and lifetime cardiovascular risk in adults without established cardiovascular disease?</p><div id="niceng238er1.s1.1.1"><h4>1.1.1. Introduction</h4><p>A number of risk tools, using a combination of modifiable and non-modifiable risk factors, have been developed to assess a person&#x02019;s risk of experiencing a cardiovascular event. Previous iterations of this guideline have assessed these for accuracy and at present recommend QRISK2 for risk assessment in those who have not experienced a cardiac event (the primary prevention population). There are annual updates of the QRISK tool adding in new clinical variables, and other tools continue to be developed with a view to improve the tools to better predict events and more accurately assess risk in different population subgroups that were either absent in previous tools derivation and validation populations, or in which the prior existing tools performed less well.</p><p>Risk tools have been developed to predict both 10 year and lifetime risk of adverse events. The previous guideline recommends that 10-year risk is calculated as there was insufficient evidence to recommend that lifetime risk assessment tools be recommended. Research into lifestyle risk assessment tools has also progressed, with new tools being developed and those existing ones being enhanced by additional clinical variables in their equations. It is also suggested that lifetime risk tools may better facilitate communication of risk to people having their cardiovascular risk assessed.</p><p>This evidence review therefore intends to update the previous review with the new evidence that has been published in both risk tools for predicting both 10-year and lifetime cardiovascular risk for primary prevention to determine whether the newer tools are superior to QRISK2.</p></div><div id="niceng238er1.s1.1.2"><h4>1.1.2. Summary of the protocol</h4><p>For full details see the review protocol in <a href="#niceng238er1.appa">Appendix A</a>.</p></div><div id="niceng238er1.s1.1.3"><h4>1.1.3. Methods and process</h4><p>This evidence review was developed using the methods and process described in <a href="https://www.nice.org.uk/process/pmg20/chapter/introduction-and-overview" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Developing NICE guidelines: the manual</a>. Methods specific to this review question are described in the review protocol in <a href="#niceng238er1.appa">appendix A</a> and the methods document.</p><p>Declarations of interest were recorded according to <a href="https://www.nice.org.uk/about/who-we-are/policies-and-procedures" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NICE&#x02019;s conflicts of interest policy</a>.</p><p>When a specific risk assessment tool was validated in multiple publications using the same data source and population, only the most recent study or study with the largest applicable sample size was included if the patient registration dates overlap. Therefore, earlier reports/reports of smaller cohorts from the same database were excluded to avoid double counting.</p></div></div><div id="niceng238er1.s1.2"><h3>1.2. Risk prediction evidence</h3><p>Evidence was available for all risk tools included in the protocol. The predictor variables included, and the outcomes predicted in these tools are summarised in <a href="/books/NBK603622/table/niceng238er1.tab2/?report=objectonly" target="object" rid-ob="figobniceng238er1tab2">Table 2</a> and <a href="/books/NBK603622/table/niceng238er1.tab3/?report=objectonly" target="object" rid-ob="figobniceng238er1tab3">Table 3</a>, respectively. Full details of the predictor variables can be found in <a href="#niceng238er1.appd.s1">Appendix D.1</a>.</p><div id="niceng238er1.s1.2.1"><h4>1.2.1. Included studies</h4><p>A search for cohort studies assessing the validation of risk assessment tools for cardiovascular disease (CVD) events and mortality was undertaken. Only tools that have UK validation and studies of adults without established CVD were included. Sixteen cohort studies on 11 risk tools, reported in 17 papers, were included in the review.<sup><a class="bk_pop" href="#niceng238er1.ref1">1</a>&#x02013;<a class="bk_pop" href="#niceng238er1.ref3">3</a>, <a class="bk_pop" href="#niceng238er1.ref5">5</a>&#x02013;<a class="bk_pop" href="#niceng238er1.ref11">11</a>, <a class="bk_pop" href="#niceng238er1.ref13">13</a>&#x02013;<a class="bk_pop" href="#niceng238er1.ref16">16</a>, <a class="bk_pop" href="#niceng238er1.ref19">19</a>, <a class="bk_pop" href="#niceng238er1.ref21">21</a>, <a class="bk_pop" href="#niceng238er1.ref23">23</a></sup></p><p>Evidence from these studies on the discriminative ability of the tools is summarised in the overview tables (<a href="/books/NBK603622/table/niceng238er1.tab5/?report=objectonly" target="object" rid-ob="figobniceng238er1tab5">Table 5</a>, <a href="/books/NBK603622/table/niceng238er1.tab6/?report=objectonly" target="object" rid-ob="figobniceng238er1tab6">Table 6</a>, and <a href="/books/NBK603622/table/niceng238er1.tab7/?report=objectonly" target="object" rid-ob="figobniceng238er1tab7">Table 7</a>), and the clinical evidence summary (<a href="/books/NBK603622/table/niceng238er1.tab8/?report=objectonly" target="object" rid-ob="figobniceng238er1tab8">Table 8</a>) below. Evidence on their calibration and on reclassification is summarised in <a href="#niceng238er1.s1.2.5">sections 1.2.5</a> and <a href="#niceng238er1.s1.2.6">1.2.6</a>, respectively.</p><p>The results of one study<sup><a class="bk_pop" href="#niceng238er1.ref6">6</a></sup> are not included in the summary, but are available in <a href="#niceng238er1.appd">Appendix D</a>. They are not included in the evidence summary because this is the original derivation study for the ASCVD tool in an American population, and so is included for reference only because UK validation studies are available for this tool.</p><p>See also the study selection flow chart in <a href="#niceng238er1.appa">Appendix A</a>, study evidence tables in <a href="#niceng238er1.appd">Appendix D</a>, and forest plots and summary ROC curves in <a href="#niceng238er1.appe">Appendix E</a>.</p></div><div id="niceng238er1.s9"><h4>1.2.2. Excluded studies</h4><p>One Cochrane review<sup><a class="bk_pop" href="#niceng238er1.ref12">12</a></sup> was identified but excluded because none of the included studies used a tool specified in the review protocol.</p><p>One study<sup><a class="bk_pop" href="#niceng238er1.ref22">22</a></sup> from the 2014 update of CG181 was excluded, although it assessed a tool within the protocol for this update of the review, because it was based on a simulated population and did not provide any data of relevance for decision making.</p><p>See the excluded studies list in <a href="#niceng238er1.appi">Appendix I</a>.</p></div><div id="niceng238er1.s1.2.3"><h4>1.2.3. Summary of studies included in the prognostic evidence</h4><p>The included study characteristics are summarised in <a href="/books/NBK603622/table/niceng238er1.tab4/?report=objectonly" target="object" rid-ob="figobniceng238er1tab4">Table 4</a> below.</p><p>See <a href="#niceng238er1.appd">Appendix D</a> for full evidence tables. See <a href="#niceng238er1.appj">Appendix J</a> for List of abbreviations used in <a href="/books/NBK603622/table/niceng238er1.tab4/?report=objectonly" target="object" rid-ob="figobniceng238er1tab4">Table 4</a>.</p></div><div id="niceng238er1.s1.2.4"><h4>1.2.4. Summary of prognostic evidence: discrimination</h4><div id="niceng238er1.s1.2.4.1"><h5>1.2.4.1. Overview of outcome data</h5></div><div id="niceng238er1.s1.2.4.2"><h5>1.2.4.2. Clinical evidence profile for C statistic data</h5></div></div><div id="niceng238er1.s1.2.5"><h4>1.2.5. Summary of prognostic evidence: calibration</h4><p>No calibration statistics matching the protocol were reported in the included studies, so GRADE assessment was not possible. However, available calibration curves and ratios of predicted to observed are provided below.</p><div id="niceng238er1.s1.2.5.1"><h5>1.2.5.1. Calibration curves and predicted:observed events</h5><div id="niceng238er1.s1.2.5.1.1"><h5>QRISK2&#x02013;2011, QRISK2&#x02013;2010 and QRISK2&#x02013;2008</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig1/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig1" rid-ob="figobniceng238er1fig1">Figure 1</a> shows the calibration plots for the 3 versions of QRISK2 and the NICE version of the Framingham equation. All 3 versions of the QRISK2 prediction models show good calibration in all 10<sup>ths</sup> of risk, with the exception of the highest 10<sup>th</sup> of risk in both men and women (calibration slope, range 0.92&#x02013;0.95).</p><p>Reproduced from <i>Predicting the 10 year risk of cardiovascular disease in the United Kingdom: independent and external validation of an updated version of QRISK2</i>, Gary S Collins, Douglas G Altman, 344:e4181, copyright 2012 with permission from BMJ Publishing Group Ltd.</p></div><div id="niceng238er1.s1.2.5.1.2"><h5>QRISK2&#x02013;2012</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig2/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig2" rid-ob="figobniceng238er1fig2">Figure 2</a>, <a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig3/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig3" rid-ob="figobniceng238er1fig3">Figure 3</a> and <a href="/books/NBK603622/table/niceng238er1.tab9/?report=objectonly" target="object" rid-ob="figobniceng238er1tab9">Table 9</a> show the ratio of predicted to observed events for QRISK2&#x02013;2012 (Tillin 2014<sup><a class="bk_pop" href="#niceng238er1.ref23">23</a></sup>). This shows under-prediction for all ethnic groups in men, and in European white and South Asian groups in women, as well as large overprediction in African Caribbean women.</p><p>QRISK2 showed a closer relationship with observed risk in African Caribbean men, but a marked under-prediction of observed risk in South Asian women.</p><p>Reproduced from <i>Ethnicity and prediction of cardiovascular disease: performance of QRISK2 and Framingham scores in a U.K. tri-ethnic prospective cohort study (SABRE--Southall And Brent REvisited)</i> T Tillin et al, Heart 2014 Jan;100(1):60&#x02013;7, Open Access article.</p></div><div id="niceng238er1.s1.2.5.1.3"><h5>QRISK2&#x02013;2014</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig4/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig4" rid-ob="figobniceng238er1fig4">Figure 4</a> shows the calibration plots for QRISK2&#x02013;2014, comparing the mean predicted risks and observed risks for each score across each 10th of predicted risk. The QRISK2&#x02013;2014 prediction model shows good calibration in all 10<sup>ths</sup> of risk, except for the highest 10<sup>th</sup> of risk in both men and women.</p><p>Reproduced from <i>The performance of seven QPrediction risk scores in an independent external sample of patients from general practice: a validation study</i>, Julia Hippisley-Cox, Carol Coupland, Peter Brindle, vol 4, copyright 2014, with permission from BMJ Publishing Group Ltd.</p></div><div id="niceng238er1.s1.2.5.1.4"><h5>QRISK3&#x02013;2017</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig5/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig5" rid-ob="figobniceng238er1fig5">Figure 5</a> shows the calibration plots for QRISK3&#x02013;2017, comparing the mean predicted risks and observed risks for each score across each 10th of predicted risk (Hippisley-Cox 2017<sup><a class="bk_pop" href="#niceng238er1.ref7">7</a></sup>). In women, the mean 10 year predicted risk was 4.7% and the observed 10 year risk was 5.8% (95% CI: 5.8% to 5.9%). In men, the mean 10 year predicted risk was 6.4% and the observed 10 year risk was 7.5% (95% CI: 7.5% to 7.6%).</p><p>QRISK3&#x02013;2017 shows good calibration in all 10<sup>ths</sup> of risk across all age groups, except for those aged 25&#x02013;39 where mean predicted risks were slightly higher than observed risks.</p><p>Reproduced from <i>Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study</i>, Julia Hippisley-Cox, Carol Coupland, Peter Brindle, BMJ 2017;357:j2099, Open Access article.</p></div><div id="niceng238er1.s1.2.5.1.5"><h5>QRISK3 external validation</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig6/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig6" rid-ob="figobniceng238er1fig6">Figure 6</a> and <a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig7/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig7" rid-ob="figobniceng238er1fig7">Figure 7</a> show the calibration plots for QRISK3 in women and men, respectively (Livingstone 2021<sup><a class="bk_pop" href="#niceng238er1.ref15">15</a></sup>).</p><p>In women, when not considering competing mortality risks, calibration was excellent for the whole cohort, and also excellent for those aged 25&#x02013;44 years. However, QRISK3 over-predicted CVD risk in older age groups. When competing mortality risks were accounted for (<a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig6/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig6" rid-ob="figobniceng238er1fig6">Figure 6</a>), there was over-prediction of risk at higher levels of predicted CVD risk in all women. The same pattern of increasing over-prediction with increasing age was observed, but in greater magnitude, and calibration was poor in older age groups.</p><p>In men, when not considering competing mortality risks, calibration was excellent, although with somewhat greater over-prediction at higher levels of predicted CVD risk than in women (<a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig7/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig7" rid-ob="figobniceng238er1fig7">Figure 7</a>). Calibration was excellent for men aged 25&#x02013;44 years, but QRISK3 progressively over-predicted CVD risk with increasing age. When competing mortality risks were accounted for, QRISK3 over-predicted risk at higher levels of predicted CVD risk in all men. Calibration was poor, with large over-prediction in older age groups.</p><p>Reproduced from <i>Effect of competing mortality risks on predictive performance of the QRISK3 cardiovascular risk prediction tool in older people and those with comorbidity: external validation population cohort study</i>, S Livingstone et al, The Lancet VOLUME 2, ISSUE 6, E352-E361, Open Access article.</p><p>Reproduced from <i>Effect of competing mortality risks on predictive performance of the QRISK3 cardiovascular risk prediction tool in older people and those with comorbidity: external validation population cohort study</i>, S Livingstone et al, The Lancet VOLUME 2, ISSUE 6, E352-E361, Open Access article.</p></div><div id="niceng238er1.s1.2.5.1.6"><h5>CRISK, CRISK-CCI and QRISK3</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig8/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig8" rid-ob="figobniceng238er1fig8">Figure 8</a> shows the calibration plots for QRISK3, CRISK and CRISK-CCI from Livingstone 2022<sup><a class="bk_pop" href="#niceng238er1.ref16">16</a></sup>. <a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig9/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig9" rid-ob="figobniceng238er1fig9">Figure 9</a> shows the calibration stratified by age groups.</p><p>In women overall, there was some overprediction with CRISK at higher levels of predicted risk, but CRISK was better calibrated than QRISK3, whilst calibration with CRISK-CCI was excellent. In younger women, there was some underprediction with CRISK and CRISK-CCI that was similar to QRISK3. In older women, CRISK modestly over-predicted CVD risk, particularly at higher levels of predicted risk but was still better calibrated than QRISK3 whilst calibration with CRISK-CCI was excellent.</p><p>In men overall, calibration using CRISK-CCI was better than CRISK which showed some underprediction, whilst QRISK3 overpredicted CVD risk. In younger men, there was some underprediction with CRISK and QRISK3, but calibration with CRISK-CCI was excellent. In older men at lower levels of predicted risk, calibration with CRISK and CRISK-CCI was good, whilst there was overprediction with QRISK3. However, all models overpredicted risk at higher levels of predicted risk.</p><p>Reproduced from <i>Predictive performance of a competing risk cardiovascular prediction tool CRISK compared to QRISK3 in older people and those with comorbidity: population cohort study</i>, S Livingstone et al, BMC Medicine volume 20, Article number: 152 (2022), unadapted, Open Access article.</p><p>Reproduced from <i>Predictive performance of a competing risk cardiovascular prediction tool CRISK compared to QRISK3 in older people and those with comorbidity: population cohort study</i>, S Livingstone et al, BMC Medicine volume 20, Article number: 152 (2022), unadapted, Open Access article.</p></div><div id="niceng238er1.s1.2.5.1.7"><h5>PRIMROSE-lipid and -BMI tools</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig10/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig10" rid-ob="figobniceng238er1fig10">Figure 10</a> shows the calibration plots from the PRIMROSE tools (Osborn 2015<sup><a class="bk_pop" href="#niceng238er1.ref21">21</a></sup>). In men, the PRIMROSE models showed over-prediction in those with 7.5&#x02013;20% predicted risk and underprediction of risk in the highest risk group. In women, the PRIMROSE models were well calibrated, except for some underprediction of risk in the highest risk group for PRIMROSE-BMI.</p><p>Among those estimated to be at high-risk (risk score &#x0003e;20%), the following proportions were observed to have developed CVD:</p><ul><li class="half_rhythm"><div>PRIMROSE BMI 531/2989 (17.8%)</div></li><li class="half_rhythm"><div>PRIMROSE lipid 570/2991 (19.1%)</div></li></ul><p>Among those estimated to be at low risk (risk score &#x0003c;20%) the following proportions were observed to have developed CVD:</p><ul><li class="half_rhythm"><div>PRIMROSE BMI 641/17 418 (3.7%)</div></li><li class="half_rhythm"><div>PRIMROSE lipid 602/17 416 (3.5%)</div></li></ul><p>This figure reproduced from <i>Cardiovascular risk prediction models for people with severe mental illness: results from the prediction and management of cardiovascular risk in people with severe mental illnesses (PRIMROSE) research program,</i> DPJ Osborn et al, JAMA Psychiatry 2015 Feb;72(2):143&#x02013;51, has been redacted pending copyright approval from JAMA Psychiatry.</p></div><div id="niceng238er1.s1.2.5.1.8"><h5>SCORE2</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig11/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig11" rid-ob="figobniceng238er1fig11">Figure 11</a> shows the ratio of predicted to observed events for SCORE2<sup><a class="bk_pop" href="#niceng238er1.ref2">2</a></sup>. This shows over-prediction in younger age groups and under-prediction in older age groups, particularly in men.</p><p>This figure reproduced from <i>SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe</i>, SCORE2 working group and ESC Cardiovascular risk collaboration, European Heart Journal, Volume 42, Issue 25, 1 July 2021, Pages 2439&#x02013;2454, adapted (cropped to show only SCORE2 fatal + non-fatal risk), has been redacted pending copyright approval from Oxford University Press.</p></div><div id="niceng238er1.s1.2.5.1.9"><h5>SCORE2-OP</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig12/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig12" rid-ob="figobniceng238er1fig12">Figure 12</a> shows the ratio of predicted to observed events for SCORE2-OP<sup><a class="bk_pop" href="#niceng238er1.ref1">1</a></sup>. This shows good calibration, with a slight underprediction at 10&#x02013;20% predicted risk and a slight overprediction at &#x0003e;20% predicted risk.</p><p>This figure reproduced from <i>SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions</i>, SCORE2-OP working group and ESC Cardiovascular risk collaboration, European Heart Journal, Volume 42, Issue 25, 1 July 2021, Pages 2455&#x02013;2467, has been redacted pending copyright approval from Oxford University Press.</p></div><div id="niceng238er1.s1.2.5.1.10"><h5>QRISK lifetime</h5><p><a href="/books/NBK603622/table/niceng238er1.tab10/?report=objectonly" target="object" rid-ob="figobniceng238er1tab10">Table 10</a> shows the ratio of predicted to observed events for QRISK lifetime (Hippisley-Cox 2010<sup><a class="bk_pop" href="#niceng238er1.ref9">9</a></sup>). This shows minor under-prediction in those at low predicted risk but good calibration in the highest 10th of risk.</p><p>Reproduced from <i>Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch database</i>, Julia Hippisley-Cox, Carol Coupland, John Robson, Peter Brindle, BMJ 2010 Dec 9;341:c6624, with permission from BMJ Publishing Group Ltd.</p></div><div id="niceng238er1.s1.2.5.1.11"><h5>LIFE-CVD</h5><p><a class="figpopup" href="/books/NBK603622/figure/niceng238er1.fig13/?report=objectonly" target="object" rid-figpopup="figniceng238er1fig13" rid-ob="figobniceng238er1fig13">Figure 13</a> shows the calibration plot for the LIFE-CVD model (Jaspers 2020 <sup><a class="bk_pop" href="#niceng238er1.ref11">11</a></sup>). This shows some over prediction at lower risk and under prediction at higher predicted risk levels.</p><p>This figure reproduced from <i>Prediction of individualized lifetime benefit from cholesterol lowering, blood pressure lowering, antithrombotic therapy, and smoking cessation in apparently healthy people</i>, NEM Jaspers et al, European Heart Journal 2020 Mar 14;41(11):1190&#x02013;1199, has been redacted pending copyright approval from Oxford University Press.</p></div></div></div><div id="niceng238er1.s1.2.6"><h4>1.2.6. Summary of prognostic evidence: reclassification</h4><p>No reclassification statistics were reported in the included studies. Therefore, a narrative summary of the available information is provided below where both the proportion reclassified and the observed risk in this subset of patients are reported.</p><div id="niceng238er1.s1.2.6.1"><h5>1.2.6.1. QRISK3 vs QRISK2 (Hippisley-Cox 2017 <sup><a class="bk_pop" href="#niceng238er1.ref7">7</a></sup>)</h5><p>There were 458,263 (17.2%) people classified as high risk (risk &#x02265;10% over 10 years) with QRISK2&#x02013;2017; 458 869 (17.2%) using QRISK3 without SBP variance, and 458 868 (17.2%) using QRISK3 with SBP variance.</p><p>Of the 458,263 people classified as high risk on QRISK2&#x02013;2017, 10,948 (2.4%) would be reclassified as low risk using QRISK3 without SBP variance. The 10-year observed risk among these reclassified patients was 10.3% (95% CI: 9.6% to 11.1%). Conversely, of the 2,213,035 classified as low risk using QRISK2&#x02013;2017, 11,554 (0.5%) would be reclassified as high risk using QRISK3 without SBP variance. The 10-year observed risk among these reclassified patients was 12.2% (95% CI: 11.4% to 13.1%).</p><p>Of the 458,869 patients with a 10-year predicted risk score of 10% or more using QRISK3 without SBP variance, 9,102 (2.0%) would be reclassified as low risk using QRISK3 with SBP variance. The 10-year observed risk among these reclassified individuals was 9.6% (95% CI: 8.9% to 10.5%). Conversely, of the 2,213,429 with a 10-year predicted risk score of less than 10% using QRISK3 without SBP variance, 9,101 (2.4%) would be reclassified as high risk using QRISK3 with SBP variance. The 10-year observed risk among these reclassified patients was 10.7% (95% CI: 9.9% to 11.6%).</p></div></div><div id="niceng238er1.s1.2.7"><h4>1.2.7. Economic evidence</h4><div id="niceng238er1.s1.2.7.1"><h5>1.2.7.1. Included studies</h5><p>One health economic study with a relevant comparison was included in this review.<sup><a class="bk_pop" href="#niceng238er1.ref24">24</a></sup> This is summarised in the health economic evidence profile below (<a href="/books/NBK603622/table/niceng238er1.tab11/?report=objectonly" target="object" rid-ob="figobniceng238er1tab11">Table 11</a>) and the health economic evidence table in <a href="#niceng238er1.appg">Appendix G</a>.</p></div><div id="niceng238er1.s1.2.7.2"><h5>1.2.7.2. Excluded studies</h5><p>No relevant health economic studies were excluded due to assessment of limited applicability or methodological limitations.</p><p>See also the health economic study selection flow chart in <a href="#niceng238er1.appf">Appendix F</a>.</p></div></div><div id="niceng238er1.s1.2.8"><h4>1.2.8. Summary of included economic evidence</h4></div><div id="niceng238er1.s1.2.9"><h4>1.2.9. Economic model</h4><p>This area was not prioritised for new cost-effectiveness analysis.</p></div><div id="niceng238er1.s1.2.10"><h4>1.2.10. Evidence statements</h4><div id="niceng238er1.s1.2.10.1"><h5>1.2.10.1. Economic</h5><ul><li class="half_rhythm"><div>One cost-utility analysis found that risk assessment using an SMI-specific BMI algorithm (PRIMROSE) was the dominant strategy (lowest cost and highest QALYs) in people with serious mental illness compared to an SMI-specific lipid algorithm (PRIMROSE) and a UK-adjusted Framingham general population BMI or lipid algorithm. This analysis was assessed as partially applicable with potentially serious limitations.</div></li></ul></div></div><div id="niceng238er1.s1.2.11"><h4>1.2.11. The committee's discussion and interpretation of the evidence</h4><div id="niceng238er1.s1.2.11.1"><h5>1.2.11.1. The outcomes that matter most</h5><p>The committee agreed that the clinical outcomes that the tools of relevance to this review should predict were CVD events, in particular cardiovascular mortality, non-fatal MI and stroke. The accuracy of prediction tools to estimate the risk of CVD events at 10-year or lifetime thresholds was measured using the following metrics:</p><div id="niceng238er1.s1.2.11.1.1"><h5>Discrimination</h5><ul><li class="half_rhythm"><div>Area under the ROC curve (c-index, c-statistic).</div></li><li class="half_rhythm"><div>Classification measures at 5%, 7.5%, 10%, 15% and 20% predicted risk thresholds: sensitivity, and specificity.</div></li><li class="half_rhythm"><div>D statistic</div></li></ul></div><div id="niceng238er1.s1.2.11.1.2"><h5>Calibration</h5><ul><li class="half_rhythm"><div>Calibration plots</div></li><li class="half_rhythm"><div>Predicted risk versus observed risk</div></li><li class="half_rhythm"><div>Statistical tests for agreement between predicted and observed events (e.g., Hosmer-Lemeshow or Nam&#x02013;D'Agostino statistics)</div></li></ul></div><div id="niceng238er1.s1.2.11.1.3"><h5>Reclassification / revalidation</h5><ul><li class="half_rhythm"><div>net classification improvement</div></li><li class="half_rhythm"><div>integrated discrimination index</div></li></ul><p>The committee agreed that a good risk tool should accurately predict the true CVD risk (either 10-year or lifetime risk), that is it needs to be well calibrated; over- or under- prediction would lead to over- or under- treatment, which could result in harm. Discrimination is important to correctly classify individuals into risk groups to inform decisions on pharmacological treatment. Clinically relevant re-classification decisions are also important to compare the utility of the tools.</p><p>The committee noted that very little evidence was available for the sensitivity and specificity of the tools at specific thresholds and that no reclassification statistics were reported.</p></div></div><div id="niceng238er1.s1.2.11.2"><h5>1.2.11.2. The quality of the evidence</h5><p>The quality of the evidence ranged from low to high, with the majority being of moderate quality. Downgrading of the evidence was mainly due to risk of bias; some tools having internal validation only, cohorts having less than 100 events and studies not reporting calibration data. For some tools with both internal and external validation there was inconsistency in the findings between the cohorts. It was noted that some of the studies included softer end points that may be more difficult to define in their models (for example TIA or angina), or outcomes subject to practice variation (e.g., revascularisation). However, it was agreed that this should not be considered as a reason for downgrading the quality of the evidence as the model development criteria in these studies appeared sufficiently robust to predict the primary outcomes of interest.</p><div id="niceng238er1.s1.2.11.2.1"><h5>Data sources</h5><p>The committee discussed the differences in the validation databases used in the different UK studies and whether they could be considered as distinct cohorts. It was noted that these are all UK primary care data, but that they are drawn from distinct sets of GP practices, and so can be considered different cohorts while still being representative of the UK primary care population.</p></div></div><div id="niceng238er1.s1.2.11.3"><h5>1.2.11.3. Benefits and harms</h5><div id="niceng238er1.s1.2.11.3.1"><h5>Discrimination</h5><p>QRISK2 and QRISK3 showed similar ability to classify individuals into risk groups based on AUC data. CRISK and CRISK-CCI tools also showed similar discrimination but did not have any external validation data. These tools all have a higher discriminative capacity in women than in men. Other tools included in the review were inferior in terms of this assessment metric.</p></div><div id="niceng238er1.s1.2.11.3.2"><h5>Calibration</h5><p>QRISK2 and QRISK3 were demonstrated to be generally well calibrated but showed some overprediction in the highest risk groups. Calibration of QRISK3 was also less accurate when accounting for competing mortality risk. CRISK, and especially CRISK-CCI, were better calibrated than QRISK3, but all 3 models overpredicted risk at higher levels of predicted risk in those aged 75&#x02013;84 years. The committee noted that although overprediction could result in unnecessary treatment and anxiety, underprediction would have worse consequences in this context as the tools are used to identify those people who will be offered statins. This means people who would benefit from statins due to their high risk of CVD events may not be identified.</p><p>The QRISK2 and 3 and CRISK and CRISK-CCI tools were agreed to be good tools for ranking people from likely highest to lowest risk based on their calibration performance. This was agreed to be useful from a population health perspective because a tool is needed to help triage people. However, it was also noted that most CVD events occur among people who are not perceived to be at high risk because this is often the largest group; therefore, the greatest impact on population health will be based on what threshold is chosen to define those at high risk and, in turn, who should be offered statins. It was noted that whatever threshold is chosen it is likely that events will still be missed.</p><p>Given the poorer discriminative ability of other tools considered in the review, their calibration data was considered of less value for decision making and did not inform the committee discussions. However, it was noted that PRIMROSE and LIFE-CVD showed under-prediction in the highest risk groups, which significantly limits their utility. SCORE2 also showed under-prediction in older age groups and SCORE2-OP showed slight under-prediction at 10&#x02013;20% predicted risk.</p><p>The evidence demonstrated that QRISK3, CRISK and CRISK-CCI over-predict in people aged over 75 and that their discriminative ability reduces with increasing age, even when accounting for competing mortality risk. However, the committee did not consider this a problem in terms of the use of the tool for determining when to offer treatment in clinical practice, as people aged over 75 would already have a greater than 10% risk. The need to assess risk was therefore agreed as important both to inform treatment threshold, but also to inform discussions with a person about risk. Calibration and discrimination data for different age subgroups were not available for QRISK2.</p></div><div id="niceng238er1.s1.2.11.3.3"><h5>Reclassification</h5><p>Limited data were available for reclassification, and no reclassification statistics were reported. However, data showed that QRISK3 correctly reclassified to high risk 0.5% of those who were low risk on QRISK2. The committee discussed that this reflects the benefit of QRISK3 for correctly assessing risk in people for whom the clinical variables added since QRISK2 apply. There was also evidence that a higher proportion of those with observed CVD events were correctly classified as high risk with QRISK3 than with CRISK-CCI.</p></div><div id="niceng238er1.s1.2.11.3.4"><h5>Lifetime risk tools</h5><p>The committee queried the value of studies assessing lifetime risk tools over a 10-year period. It was agreed this evidence was very limited in terms of how it could be used to inform accuracy of the tool over a lifetime. However, the committee discussed the potential utility of lifetime risk estimates in younger people, who may not cross the threshold for being considered high risk based on 10-year estimates. In this group, the use of lifetime risk estimates could help inform discussions about CVD risk and the importance of lifestyle modification at an earlier age. They highlighted that these tools may underestimate the effects of treatment however, as they assume the cholesterol levels entered are the value someone has always had, rather than using RCT data to estimate the impact medicines may have on reducing cholesterol. They agreed that while they should not be used for that purpose, this was not needed explicitly in the recommendation as this was worded so as not to imply this was where they could help conversations and that did not override their benefit in aiding discussions about risk. They therefore agreed to include a recommendation in the guideline within the section on communication about risk, giving the example of QRISK-lifetime of one such tool that could be used. Although this tool performed best from the limited evidence of lifetime risk tools, it was agreed the recommendation should not be restricted to that tool as newer evidence may emerge and so this was just provided as an example.</p></div><div id="niceng238er1.s1.2.11.3.5"><h5>Summary</h5><p>The committee agreed that all of the tools have limitations. They tend to be quite well calibrated, but less accurate in terms of discrimination therefore none are very good screening tests for predicting those who will and will not get disease, but they can be useful in splitting into low, medium and high risk, or ordering likelihood of events occurring. The committee discussed that one use of risk assessment tools for CVD is to help decide on suitability for treatment (See evidence review C for further discussion on this topic). The committee agreed that using an appropriate risk assessment tool should not replace clinical judgement and that risk score interpretation should be individualised.</p><p>The committee agreed that overall the evidence suggests that QRISK3 performs better than QRISK2, although the difference in performance was marginal. The evidence that QRISK3 appropriately reclassified 0.5% of those low risk on QRISK2 to the high-risk category was agreed to be important and reflects the added accuracy of this version of the tool for classifying people with conditions not included in the QRISK2 algorithm, such as severe mental illness and systemic lupus erythematosus. The committee raised concerns that QRISK3 would take longer to complete in practice as QRISK2 is embedded in clinical systems and so pulls the necessary data from medical records. Any additional time taken to complete such a tool would lead to a risk that it wouldn&#x02019;t be fully completed, particularly when considering the current context is people working in very busy clinics when healthcare professionals are already very limited by time. The committee were aware that QRISK3 had been incorporated into the NHS health check and that discussions were ongoing at the time of development of the guideline regarding the continuation of inclusion within clinical systems. The committee however agreed the best risk assessment tool should still be recommended within the guideline as the implementation in systems would apply to all tools. It was agreed that the best tool should be recommended, but recognised that it may be necessary to use QRISK2 until QRISK3 is available in clinical systems. However, this should not be the case for people who use corticosteroids or atypical antipsychotics or have a diagnosis of systemic lupus erythematosus, migraine, severe mental illness, or erectile dysfunction because QRISK2 may underestimate their 10-year CVD risk because, unlike QRISK3, it does not include these variables. In these cases, where QRISK2 is still the version within the care providers electronic system, the web version of QRISK3 should be used. It was acknowledged that QRISK3 is now the standard version of this tool and that the annual remodelling of the algorithm to the latest version of the QResearch database will be applied to QRISK3. Therefore, earlier versions of QRISK, including QRISK2, may not be subject to this annual remodelling and their performance may decay. This was agreed to be another reason in support of recommending QRISK3.</p><p>It was agreed that an important aspect of the use of any tool is the conversation that is had about risk between the healthcare professional and the person, and how risk is communicated.</p></div><div id="niceng238er1.s1.2.11.3.6"><h5>Subgroups</h5><p>Overall, it was agreed that QRISK3 appears to perform reasonably well in terms of discrimination for subgroups with comorbidities including people with CKD, type 1 diabetes and severe mental illnesses, although not so well for people with type 2 diabetes. However, it was further noted that all of this evidence was from internal validation studies only and performance was not as good as it was in the whole population cohort. Furthermore, the models considered perform relatively poorly in terms of discrimination for people with type 2 diabetes. The committee noted that this could be due to some variables associated with type 2 diabetes that would affect CVD risk not being captured in the risk tool, including the length of time someone has had diabetes, their blood sugar control and the therapies that they receive, some of which reduce CVD risk. Additionally, as the CVD event rate is already high in this population risk discrimination is more difficult.</p><p>No calibration data were available for any of these subgroups and the AUC statistic was lower than that for the overall cohort in all subgroups.</p><p>The previous update of this guideline also considered evidence for UKPDS (a type 2 diabetes specific risk calculator). They noted that the UKPDS is based on a historical cohort and had not been updated. At that time, the former committee noted that QRISK2 included diabetes as a risk factor and the development cohort included more than 40,000 people with prevalent type 2 diabetes compared to 4540 newly diagnosed type 2 diabetes patients in the UKPDS derivation cohort and the accuracy results overall were better than UKPDS (although there was no direct head-to-head comparison). They discussed that there was some suggestion that people with diabetes were of equivalent risk to a secondary prevention population, but on balance the committee consensus was that although incidence of CVD events was increased in people with type 2 diabetes, it was not quite as high as a secondary prevention and so use of a risk tool was still of value. They therefore agreed it was appropriate to recommend QRISK3 for people with type 2 diabetes despite the fact that there had not been external validation of QRISK3 in a type 2 diabetes population. The committee&#x02019;s opinion was that it is still difficult to persuade some people to try statin treatment, even when they know they have diabetes, and so continued use of a risk tool could help the communication of risk and improve uptake of statins, even knowing it performs less well in this group. The committee agreed that was an important factor and that a risk tool should continue to be recommended for people with type 2 diabetes, although raised that communication of risk may be better informed, in their opinion, by lifetime risk tools. In line with the previous update of this guidance, QRISK is still the best tool for this population and QRISK3 should replace QRISK2 as it is the current version of this tool.</p><p>The committee discussed whether it was appropriate to recommend the use of a risk tool for people with either chronic kidney disease (CKD) or type 1 diabetes, in whom risk tools have not previously been recommended. Although type 1 diabetes was included within QRISK3 and there was internal validation data available, the committee noted that people with type 1 diabetes are at very high risk of CVD events. As discussed in the previous version of this guideline, features of the metabolic syndrome are highly relevant to the occurrence of CVD events in type 1 diabetes and these risk factors will be recognised by specialists in diabetes who will treat people accordingly. Like QRISK2, QRISK3 only includes a tick box for type 1 diabetes, which does not include factors considered clinically important such as length of time the person has had diabetes or urine albumin. As evidence in this population is still limited the committee agreed that a recommendation not to use a risk tool in this group should be retained.</p><p>They acknowledged that QRISK3 has expanded the definition of CKD to include stage 3, and that there is now internal validation data which shows reasonable discriminative power for both population subgroups, although no calibration data were available. However, the committee agreed people with CKD are often at high CVD risk, including those with stage 1 or 2 CKD which is not captured in QRISK3 and in whom risk can actually be higher than in many people with stage 3 without albuminuria. Therefore, they considered that QRISK3 is likely to significantly underestimate CVD risk, especially those with CKD stage 1 or 2. They also noted that the AUC for this group was lower than the general population sample and was only available from an internal validation cohort. Therefore, the committee agreed that a recommendation not to use a risk tool in people with CKD should be retained. They noted that people with albuminuria (A2 or A3) or with eGFR &#x0003c;60 ml/min/1.73m<sup><a class="bk_pop" href="#niceng238er1.ref2">2</a></sup> with or without albuminuria should be considered at greater risk of CVD and CVD risk modification should be considered within this group.</p><p>As QRISK3 includes consideration of more population subgroups than QRISK2, the committee agreed that these factors could be removed from the 2014 recommendation highlighting where risk tools may underestimate 10-year risk. They acknowledged that the evidence for the performance of the tool in these subgroups had not been validated in separate groups of people to those analysed for its development, nor was calibration data available for these subgroups. However, they agreed that the tool should still be recommended in these groups as the risk tool is used to determine a threshold for treatment and therefore use of QRISK3 for someone with in these subgroups could impact treatment decisions. Based on their clinical experience, the committee agreed that it remained important to highlight that risk tools may still underestimate CVD risk in certain groups of people that are not adequately reflected in the tool. These included autoimmune disorders and other systemic inflammatory disorders as although systemic lupus erythematosus and rheumatoid arthritis are included in QRISK3, this does not adequately reflect the other related conditions that are associated with an increased risk of CVD and that this should still be noted. Furthermore, it was noted that the definition of severe mental illness used in the cohort to derive and validate QRISK3 differed from that in many electronic record systems. The cohort included a large proportion with moderate to severe depression, who are not consistently defined as having severe mental illness. The committee were aware that people with severe mental illness defined as schizophrenia, bipolar disorder and other psychoses are known to be at higher risk of CVD than people with moderate to severe depression. While risk may be increased in this group compared to the general population, the likely impact of including a large proportion in the cohort is that risk may be still slightly underestimated in people with severe mental illness. The committee also noted there was the potential for risk to be overestimated in people with moderate to severe depression. However, they noted this was not evidenced and as recommendations reinforce the importance of shared decision making in CVD risk management, the impact of minimal risk of overestimation was low. The committee agreed that the QRISK3 tool did provide the best estimate of risk for people with severe mental illness, but noted it was important to retain the recommendation that risk tools may underestimate risk in people with severe mental illness. The committee agreed that clinical judgement should inform interpretation of the risk score, based on the individual&#x02019;s circumstances.</p></div></div><div id="niceng238er1.s1.2.11.4"><h5>1.2.11.4. Cost effectiveness and resource use</h5><p>One cost-effectiveness analysis was included that compared severe mental illness (SMI)-specific risk assessment using the PRIMROSE algorithm to a general population risk assessment tool in a population with SMI and without established CVD. This analysis found risk assessment using the PRIMROSE BMI algorithm was the most cost-effective option however the general population comparator was based on a UK adapted Framingham equation that was excluded from the guideline update clinical review protocol as QRISK2 was concluded as better for risk assessment in the 2014 CG181 update. In addition, QRISK3 includes fields related to SMI and so should reflect risk in people with SMI better than the general population algorithm used in this analysis. This limited the conclusions that could be drawn from this analysis. It was also noted that the PRIMROSE risk tool had not been externally validated and the clinical review did not provide evidence that this tool would perform better than QRISK3 (although no direct comparison was available).</p><p>No other cost-effectiveness analyses were identified. The committee discussed whether the different risk tools would require different resource use and so have different costs to use. The tools included in the clinical review were considered to require similar information. It was noted that QRISK3 has additional fields to complete over QRISK2 (which is currently recommended): whether the individual has a diagnosis of migraine, systemic lupus erythematosus, severe mental illness or erectile dysfunction, whether they have a prescription for corticosteroids or atypical antipsychotics, and a measure of systolic blood pressure variability. It was noted that this information can mostly be elicited quickly by asking the patient or from patient records and it was not considered likely to require additional or longer appointment times if QRISK3 was integrated into clinical systems in the same way as QRISK2 currently is, however the committee noted this is currently under discussion by the relevant parties. The committee noted that the measure of blood pressure variability may not be completed unless it was calculated within IT systems automatically but much of the clinical validation data was for QRISK3 without this field completed and the tool would still calculate risk if this was omitted.</p><p>QRISK3 is available as a web tool but the committee highlighted that QRISK2 has to-date usually been integrated into clinical IT systems and that using QRISK3 would be more time consuming to complete if it was not similarly integrated. It was noted that in August 2021 Public Health England issued guidance about using QRISK3 in NHS health checks (responsibility for the NHS Health Check programme has now transferred to the Office for Health Improvement and Disparities). This guidance includes information about integration of QRISK3 and noted that at the time of publication QRISK3 was already incorporated into one system. Also, since QRISK3 is now the standard version of QRISK provided in ClinRisk Ltd software development kits, as software updates are deployed it will become the current version by default over time. The committee were aware that there was some uncertainty about future provision of risk tools in clinical systems but that a statement had been made by EMIS in Pulse Today stating that they are working to offer the QIRSK2 calculator beyond April. Although no information was available about QRISK3, the committee agreed that if integrated into systems, use of QRISK3 was not considered likely to require additional resources over QRISK2.</p><p>Assuming risk tools continue to be integrated in clinical systems and that significant differences in resource use are not expected related to carrying out risk assessment, whatever risk tool is used, the cost effectiveness of using a risk assessment tool will therefore be related to its effectiveness in correctly predicting risk. The committee discussed what influence risk assessment will have on the treatment and outcomes in the rest of the treatment pathway. It was noted that risk assessment is currently used to determine who starts statin treatment. It is also used when considering starting other treatments including blood pressure lowering medication for people with stage 1 hypertension and type 2 diabetes treatment. The committee also highlighted that if individuals have a better understanding of their CVD risk and its implications this could also improve their willingness to start treatment, adhere to treatment and make lifestyle modifications.</p><p>Theoretically, the consequence of inaccurate risk assessment could be that a group of people incorrectly calculated as being above the selected risk threshold are prescribed medication but do not get sufficient benefit to justify their use; and/or a group of people incorrectly calculated as being below the selected risk threshold are not prescribed medication and health benefits and cost savings of avoiding future health events are missed. It was noted that statins were shown to be cost-effective even at low risk levels. Therefore, overestimation of risk by a tool will be less of an issue than underestimation or misclassification from a statins cost-effectiveness perspective. Overestimation will lead to more people being treated and lower absolute benefit in the additional people treated but is likely to still be cost effective. For other treatments not looked at in this guideline however this may not always be the case.</p><p>The clinical review found that although QRISK3 performed better than QRISK2, the tools&#x02019; performance did not vary substantially overall and so changing to QRISK3 may not have a large impact to costs or outcomes on a population level. However, it was noted that for people in the specific population groups that have been added to QRISK3 it will increase their risk estimate and so may change their risk category which could affect the treatments they are offered and therefore the health benefits they receive.</p><p>The committee discussed that calculating lifetime risk is likely to require healthcare professionals to enter data into an online calculator as it is not currently incorporated into clinical IT systems. This would take some additional time however it is not clear whether this would result in longer consultations or not. In addition, it would not be done for everyone. If integrated into clinical systems time impact would be minimal. Lifetime risk calculation is likely to be useful in younger people who do not meet conventional criteria for being high risk but who do have risk factors for cardiovascular disease that could confer a high lifetime risk. Lifetime risk estimates could also be useful in some people for whom additional information about cardiovascular risk is deemed helpful to fully inform the patient and encourage them to make lifestyle changes or start or adhere to risk reducing treatments. Given this, any additional time costs were considered likely to improve management of cardiovascular risk and so reduce clinical events.</p></div><div id="niceng238er1.s1.2.11.5"><h5>1.2.11.5. Other factors the committee took into account</h5><p>It was noted that QRISK3 is only validated for use in people aged 25&#x02013;84 inclusive. The committee therefore agreed it was important to retain the 2014 recommendation highlighting that people aged 85 years or older should be considered at high risk due to age alone. There are no risk tools validated in people aged under 25, and as the majority of people of this age group would not be high risk, the committee agreed no separate recommendation was required.</p><p>The committee were aware that hormone therapies used for gender reassignment may impact a person&#x02019;s risk of CVD. They were aware however that the NHS Health Check best practice guidance states that gender should be recorded as reported by the individual. If the individual discloses gender reassignment, they should be provided with CVD risk calculations based on both genders and advised to discuss with their GP which calculation is most appropriate for them as an individual. They agreed that healthcare professionals should follow this guidance when undertaking formal risk assessments.</p><p>The committee discussed other equalities issues that were highlighted when starting development of the update. They noted that the factors included in QRISK3 do address consideration of many relevant factors, for example severe mental illness (as mentioned above), ethnicity and socio-economic status. They also agreed that when full formal CVD risk assessments were first introduced some factors were not consistently recorded in people&#x02019;s medical records, however this was no longer a particular issue, and so they agreed recommendations to highlight these as risk factors for CVD, or areas in which risk might be underestimated, were no longer required in the guideline.</p><p>The committee discussed how sudden death was captured in the databases used. Some committee members raised that in the past where sudden death was listed as the cause of death on a death certificate, it was listed as MI in medical records, leading to an innate bias. The committee were unsure if this was still true. They queried whether the databases used in the development of these models included sudden death in cardiovascular mortality. It was noted that the committee&#x02019;s knowledge of these databases was that if the sudden death was 30 days within an MI, then this was listed within cardiovascular mortality (due to MI). The committee considered this was appropriate.</p><p>It was noted when a cut off for a tool is selected (for example, using a 10% risk on QRISK2) it corresponds to a particular point on the area under the curve, and therefore a particular sensitivity and specificity. The committee discussed that it would be useful to know the detection rate at the threshold that was being considered as that in which statin treatment should be offered to a person. This data was not reported in the included papers, but it was possible to calculate this for QRISK3 from an external validation cohort. The committee noted that the sensitivity improved as the high risk threshold was lowered from 10% to 7.5%, but at the expense of an increased false positive rate. They noted it was important to be aware of the trade-off between these metrics when considering whether it was appropriate to lower the threshold for treatment.</p><p>The committee discussed whether cardiovascular risk assessment was needed at all and whether risk assessment could be stopped if all people over a certain age were offered statins given that they were found to be cost effective for most people between 40 and 80 years of age and they considered that age was the largest single determinant of risk. However, age alone had not been considered as part of the review, and although it may be possible to determine at what age everyone was over a defined high-risk threshold for a particular tool, there were concerns that this would be detrimental to a person&#x02019;s understanding of their individualised CVD risk and the importance of risk factor modification. It was noted that statins are not the only primary prevention treatment where initiation is influenced by CV-risk. In addition, it was agreed that it was important to be able to assess level of risk to aid discussions about lifestyle changes and treatment initiation because people at higher risk were likely to be more motivated to make changes or start treatment and would also receive the largest benefit of doing so. The committee were aware of reports indicating that the uptake of statins in those at greater than 10% risk is currently less than 50%. They raised concerns that without a risk assessment or good communication about risk in absolute terms on an individual level, this could be even lower. Furthermore, it was noted that there could be an equalities consideration regarding engagement with lipid-lowering strategies. In the committee&#x02019;s experience, people with lower levels of education and from lower socio-economic groups may be less likely to take statins, even when they are at high risk. Not informing people of their risk score as a motivator of change, would likely negatively impact this as they may be even less likely to engage in lifestyle modification or consider treatment if they are unaware of their risk. This was not evidenced by recent audit data that the committee were aware of, but the committee agreed it was nevertheless important to be aware of with a view to not negatively impacting this. A further equalities consideration was the ability to reach people who are not registered with a GP, who are likely to also overlap with the above group. The committee agreed this is a particular challenge in reducing health inequalities, as NICE guidelines apply where NHS care is commissioned or delivered, they agreed that this should equally be considered by outreach services that may also include people not registered with GPs in order to try to help all people have a better understanding of CVD risk. Therefore, they agreed it is beneficial to recommend that a risk assessment tool is used to inform a threshold for treatment to enable effective communication of risk and avoid reinforcing health inequalities.</p><p>Overall, it was agreed, risk assessment as a starting point for risk management is beneficial irrespective of the treatment initiation threshold for statins (the treatment initiation threshold is discussed in the statins evidence report C).</p><p>The committee also noted that healthcare professionals may be familiar with the JBS3 tool for assessing lifetime risk. They discussed that this tool was based using the QRISK-Lifetime algorithm and therefore it was not included separately within the review. QRISK-Lifetime was provided as an example of a lifetime risk calculator in the new recommendation for communicating risk, but the recommendation was not restricted to QRISK-Lifetime.</p></div></div><div id="niceng238er1.s1.2.12"><h4>1.2.12. Recommendations supported by this evidence review</h4><p>This evidence review supports recommendations 1.1.7 to 1.1.11 and 1.1.16.</p></div></div><div id="niceng238er1.rl.r1"><h3>1.2.13. References</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="niceng238er1.ref1">Anonymous. SCORE2-OP risk prediction algorithms: Estimating incident cardiovascular event risk in older persons in four geographical risk regions. European Heart Journal. 2021; 42(25):2455&#x02013;2467
[<a href="/pmc/articles/PMC8248997/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8248997</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34120185" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34120185</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="niceng238er1.ref2">Anonymous. SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. European Heart Journal. 2021; 42(25):2439&#x02013;2454
[<a href="/pmc/articles/PMC8248998/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8248998</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34120177" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34120177</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="niceng238er1.ref3">Collins
GS, Altman
DG. Predicting the 10 year risk of cardiovascular disease in the United Kingdom: independent and external validation of an updated version of QRISK2. BMJ. 2012; 344:e4181
[<a href="/pmc/articles/PMC3380799/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3380799</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22723603" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22723603</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="niceng238er1.ref4">D'Agostino
RB
Sr., Vasan
RS, Pencina
MJ, Wolf
PA, Cobain
M, Massaro
JM
et al
General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008; 117(6):743&#x02013;753
[<a href="https://pubmed.ncbi.nlm.nih.gov/18212285" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18212285</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="niceng238er1.ref5">Dziopa
K, Asselbergs
FW, Gratton
J, Chaturvedi
N, Schmidt
AF. Cardiovascular risk prediction in type 2 diabetes: a comparison of 22 risk scores in primary care settings. Diabetologia. 2022; 65(4):644&#x02013;656
[<a href="/pmc/articles/PMC8894164/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8894164</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35032176" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35032176</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="niceng238er1.ref6">Goff
DC, Lloyd-Jones
DM, Bennett
G, Coady
S, D?Agostino
RB, Gibbons
R
et al
2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk. Circulation. 2014; 129(25suppl2):49&#x02013;s73 [<a href="https://pubmed.ncbi.nlm.nih.gov/24222018" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24222018</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="niceng238er1.ref7">Hippisley-Cox
J, Coupland
C, Brindle
P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017; 357:j2099
[<a href="/pmc/articles/PMC5441081/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5441081</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28536104" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28536104</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="niceng238er1.ref8">Hippisley-Cox
J, Coupland
C, Brindle
P. The performance of seven QPrediction risk scores in an independent external sample of patients from general practice: a validation study. BMJ Open. 2014; 4(8):e005809 [<a href="/pmc/articles/PMC4156807/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4156807</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25168040" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25168040</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="niceng238er1.ref9">Hippisley-Cox
J, Coupland
C, Robson
J, Brindle
P. Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch database. BMJ. 2010; 341:c6624
[<a href="/pmc/articles/PMC2999889/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2999889</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21148212" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21148212</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="niceng238er1.ref10">Hippisley-Cox
J, Coupland
C, Vinogradova
Y, Robson
J, Minhas
R, Sheikh
A
et al
Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008; 336(7659):1475&#x02013;1482
[<a href="/pmc/articles/PMC2440904/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2440904</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18573856" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18573856</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="niceng238er1.ref11">Jaspers
NE M, Blaha
MJ, Matsushita
K, van der Schouw
YT, Wareham
NJ, Khaw K-
T
et al
Prediction of individualized lifetime benefit from cholesterol lowering, blood pressure lowering, antithrombotic therapy, and smoking cessation in apparently healthy people. European Heart Journal. 2020; 41(11):1190&#x02013;1199
[<a href="/pmc/articles/PMC7229871/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7229871</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31102402" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31102402</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="niceng238er1.ref12">Karmali
K, Persell
S, Perel
P, Lloyd-Jones
D, Berendsen
M, Huffman
M. Risk scoring for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews
2017, Issue 3. Art. No.: CD006887. DOI: 10.1002/14651858.CD006887.pub4.
[<a href="/pmc/articles/PMC6464686/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6464686</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28290160" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28290160</span></a>] [<a href="http://dx.crossref.org/10.1002/14651858.CD006887.pub4" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="niceng238er1.ref13">Lindbohm
JV, Sipila
PN, Mars
N, Knuppel
A, Pentti
J, Nyberg
ST
et al
Association between change in cardiovascular risk scores and future cardiovascular disease: analyses of data from the Whitehall II longitudinal, prospective cohort study. The Lancet Digital health. 2021; 3(7):e434&#x02013;e444
[<a href="/pmc/articles/PMC8474012/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8474012</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34167764" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34167764</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="niceng238er1.ref14">Lindbohm
JV, Sipila
PN, Mars
NJ, Pentti
J, Ahmadi-Abhari
S, Brunner
EJ
et al
5-year versus risk-category-specific screening intervals for cardiovascular disease prevention: a cohort study. The lancet Public Health. 2019; 4(4):e189&#x02013;e199
[<a href="/pmc/articles/PMC6472327/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6472327</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30954144" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30954144</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="niceng238er1.ref15">Livingstone
S, Morales
DR, Donnan
PT, Payne
K, Thompson
AJ, Youn J-
H
et al
Effect of competing mortality risks on predictive performance of the QRISK3 cardiovascular risk prediction tool in older people and those with comorbidity: external validation population cohort study. The Lancet Healthy longevity. 2021; 2(6):e352&#x02013;e361
[<a href="/pmc/articles/PMC8175241/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8175241</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34100008" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34100008</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="niceng238er1.ref16">Livingstone
SJ, Guthrie
B, Donnan
PT, Thompson
A, Morales
DR. Predictive performance of a competing risk cardiovascular prediction tool CRISK compared to QRISK3 in older people and those with comorbidity: population cohort study. BMC Medicine. 2022; 20(1):152
[<a href="/pmc/articles/PMC9066924/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9066924</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35505353" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35505353</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="niceng238er1.ref17">National Institute for Health and Care Excellence. Developing NICE guidelines: the manual [updated January 2022]. London. National Institute for Health and Care Excellence, 2014. Available from: <a href="http://www.nice.org.uk/article/PMG20/chapter/1%20Introduction%20and%20overview" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://www<wbr style="display:inline-block"></wbr>.nice.org.uk<wbr style="display:inline-block"></wbr>/article/PMG20/chapter<wbr style="display:inline-block"></wbr>/1%20Introduction%20and%20overview</a></div></dd><dt>18.</dt><dd><div class="bk_ref" id="niceng238er1.ref18">National Institute for Health and Clinical Excellence. The guidelines manual. London. National Institute for Health and Clinical Excellence, 2011. Available from: <a href="http://www.nice.org.uk/aboutnice/howwework/developingniceclinicalguidelines/clinicalguidelinedevelopmentmethods/GuidelinesManual2009.jsp" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://www<wbr style="display:inline-block"></wbr>.nice.org.uk<wbr style="display:inline-block"></wbr>/aboutnice/howwework<wbr style="display:inline-block"></wbr>/developingniceclinicalguidelines<wbr style="display:inline-block"></wbr>/clinicalguidelinedevelopmentmethods<wbr style="display:inline-block"></wbr>/GuidelinesManual2009.jsp</a>
</div></dd><dt>19.</dt><dd><div class="bk_ref" id="niceng238er1.ref19">Osborn
D, Burton
A, Walters
K, Atkins
L, Barnes
T, Blackburn
R
et al
Primary care management of cardiovascular risk for people with severe mental illnesses: the Primrose research programme including cluster RCT. NIHR Journals Library Programme Grants for Applied Research. 2019; 4:4 [<a href="https://pubmed.ncbi.nlm.nih.gov/31034192" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31034192</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="niceng238er1.ref20">Osborn
D, Burton
A, Walters
K, Atkins
L, Barnes
T, Blackburn
R
et al
Primary care management of cardiovascular risk for people with severe mental illnesses: the Primrose research programme including cluster RCT. 2019. Available from: <a href="http://www.epistemonikos.org/documents/a6be67124f180e8a97bee68f0a4fc3b9a0053d17" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://www<wbr style="display:inline-block"></wbr>.epistemonikos<wbr style="display:inline-block"></wbr>.org/documents/a6be67124f180e8a97bee68f0a4fc3b9a0053d17</a>
[<a href="https://pubmed.ncbi.nlm.nih.gov/31034192" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31034192</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="niceng238er1.ref21">Osborn
DP J, Hardoon
S, Omar
RZ, Holt
RI G, King
M, Larsen
J
et al
Cardiovascular risk prediction models for people with severe mental illness: results from the prediction and management of cardiovascular risk in people with severe mental illnesses (PRIMROSE) research program. JAMA psychiatry. 2015; 72(2):143&#x02013;151
[<a href="/pmc/articles/PMC4353842/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4353842</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25536289" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25536289</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="niceng238er1.ref22">Simmonds
MC, Wald
NJ. Risk estimation versus screening performance: a comparison of six risk algorithms for cardiovascular disease. Journal of Medical Screening. 2012; 19(4):201&#x02013;205
[<a href="https://pubmed.ncbi.nlm.nih.gov/23293165" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23293165</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="niceng238er1.ref23">Tillin
T, Hughes
AD, Whincup
P, Mayet
J, Sattar
N, McKeigue
PM
et al
Ethnicity and prediction of cardiovascular disease: performance of QRISK2 and Framingham scores in a U.K. tri-ethnic prospective cohort study (SABRE-Southall And Brent REvisited). Heart (British Cardiac Society). 2014; 100(1):60&#x02013;67
[<a href="/pmc/articles/PMC4869829/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4869829</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24186564" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24186564</span></a>]</div></dd><dt>24.</dt><dd><div class="bk_ref" id="niceng238er1.ref24">Zomer
E, Osborn
D, Nazareth
I, Blackburn
R, Burton
A, Hardoon
S
et al
Effectiveness and cost-effectiveness of a cardiovascular risk prediction algorithm for people with severe mental illness (PRIMROSE). BMJ Open. 2017; 7(9):e018181 [<a href="/pmc/articles/PMC5588956/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5588956</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28877952" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28877952</span></a>]</div></dd></dl></div></div><div id="appendixesappgroup1"><h2 id="_appendixesappgroup1_">Appendices</h2><div id="niceng238er1.appa"><h3>Appendix A. Review protocols</h3><div id="niceng238er1.appa.s1"><h4>A.1. Review protocol for CVD risk assessment tools: primary prevention</h4><p id="niceng238er1.appa.et1"><a href="/books/NBK603622/bin/niceng238er1-appa-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (187K)</span></p></div><div id="niceng238er1.appa.s2"><h4>A.2. Health economic review protocol</h4><p id="niceng238er1.appa.et2"><a href="/books/NBK603622/bin/niceng238er1-appa-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (169K)</span></p></div></div><div id="niceng238er1.appb"><h3>Appendix B. Literature search strategies</h3><p>
<u>Cardiovascular risk assessment tools in adults without established cardiovascular disease</u>
</p><p>The literature searches detailed below are for the review:</p><p>What is the most accurate tool for determining 10-year and lifetime cardiovascular risk in adults without established cardiovascular disease?</p><p>They complied with the methodology outlined in Developing NICE guidelines: the manual.<sup><a class="bk_pop" href="#niceng238er1.ref17">17</a></sup></p><p>For more information, please see the Methodology review published as part of the accompanying documents for this guideline.</p><div id="niceng238er1.appb.s1"><h4>B.1. Clinical search literature search strategy</h4><p>Searches were constructed using a PICO framework where population (P) terms were combined with Intervention (I) and in some cases Comparison (C) terms. Outcomes (O) are rarely used in search strategies as these concepts may not be indexed or described in the title or abstract and are therefore difficult to retrieve. Search filters were applied to the search where appropriate.</p><p id="niceng238er1.appb.et1"><a href="/books/NBK603622/bin/niceng238er1-appb-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (209K)</span></p></div><div id="niceng238er1.appb.s2"><h4>B.2. Health Economics literature search strategy</h4><p>Health economic evidence was identified by conducting literature searches as below. The following databases were searched: NHS Economic Evaluation Database (NHS EED - this ceased to be updated after 31st March 2015), Health Technology Assessment database (HTA - this ceased to be updated from 31st March 2018) and The International Network of Agencies for Health Technology Assessment (INAHTA). Searches for recent evidence were run on Medline and Embase from 2014 onwards for health economics, and all years for quality-of-life studies.</p><p id="niceng238er1.appb.et2"><a href="/books/NBK603622/bin/niceng238er1-appb-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (171K)</span></p></div></div><div id="niceng238er1.appc"><h3>Appendix C. Prognostic evidence study selection</h3><p id="niceng238er1.appc.et1"><a href="/books/NBK603622/bin/niceng238er1-appc-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (104K)</span></p></div><div id="niceng238er1.appd"><h3>Appendix D. Prognostic evidence</h3><div id="niceng238er1.appd.s1"><h4>D.1. Risk factors and variables included in the risk assessment tools</h4><p id="niceng238er1.appd.et1"><a href="/books/NBK603622/bin/niceng238er1-appd-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (177K)</span></p></div><div id="niceng238er1.appd.s2"><h4>D.2. Evidence tables from the 2014 version of CG181</h4><p id="niceng238er1.appd.et2"><a href="/books/NBK603622/bin/niceng238er1-appd-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (318K)</span></p></div><div id="niceng238er1.appd.s3"><h4>D.3. Evidence tables from update search</h4><p id="niceng238er1.appd.et3"><a href="/books/NBK603622/bin/niceng238er1-appd-et3.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (665K)</span></p></div></div><div id="niceng238er1.appe"><h3>Appendix E. Forest plots and summary ROC curves</h3><div id="niceng238er1.appe.s1"><h4>E.1. Summary of C statistic data</h4><p id="niceng238er1.appe.et1"><a href="/books/NBK603622/bin/niceng238er1-appe-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (150K)</span></p></div><div id="niceng238er1.appe.s2"><h4>E.2. Sensitivity and specificity data</h4><p id="niceng238er1.appe.et2"><a href="/books/NBK603622/bin/niceng238er1-appe-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (135K)</span></p></div><div id="niceng238er1.appe.s3"><h4>E.3. Summary ROC curves</h4><p id="niceng238er1.appe.et3"><a href="/books/NBK603622/bin/niceng238er1-appe-et3.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (141K)</span></p></div></div><div id="niceng238er1.appf"><h3>Appendix F. Economic evidence study selection</h3><p id="niceng238er1.appf.et1"><a href="/books/NBK603622/bin/niceng238er1-appf-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (164K)</span></p></div><div id="niceng238er1.appg"><h3>Appendix G. Economic evidence tables</h3><p id="niceng238er1.appg.et1"><a href="/books/NBK603622/bin/niceng238er1-appg-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (155K)</span></p></div><div id="niceng238er1.apph"><h3>Appendix H. Health economic model</h3><p>This area was not prioritised for new cost-effectiveness analysis.</p></div><div id="niceng238er1.appi"><h3>Appendix I. Excluded studies</h3><div id="niceng238er1.appi.s1"><h4>I.1. Clinical studies</h4><div id="niceng238er1.appi.tab1" class="table"><h3><span class="label">Table 26</span><span class="title">Studies excluded from the clinical review</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.appi.tab1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.appi.tab1_lrgtbl__"><table><thead><tr><th id="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Exclusion reason(s)</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Abeles
Robin D, Mullish
Benjamin H, Forlano
Roberta
et al (2019) Derivation and validation of a cardiovascular risk score for prediction of major acute cardiovascular events in nonalcoholic fatty liver disease; the importance of an elevated mean platelet volume. Alimentary pharmacology &#x00026; therapeutics
49(8): 1077&#x02013;1085
[<a href="/pmc/articles/PMC6519040/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6519040</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30836450" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30836450</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Analysis not relevant to this protocol: prediction of 1-year risk only</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Albarqouni
Loai, Doust
Jennifer A, Magliano
Dianna
et al (2019) External validation and comparison of four cardiovascular risk prediction models with data from the Australian Diabetes, Obesity and Lifestyle study. The Medical journal of Australia
210(4): 161&#x02013;167
[<a href="https://pubmed.ncbi.nlm.nih.gov/30656697" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30656697</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Australia</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Alemao
Evo, Cawston
Helene, Bourhis
Francois
et al (2017) Comparison of cardiovascular risk algorithms in patients with vs without rheumatoid arthritis and the role of C-reactive protein in predicting cardiovascular outcomes in rheumatoid arthritis. Rheumatology (Oxford, England)
56(5): 777&#x02013;786
[<a href="/pmc/articles/PMC8344293/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8344293</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28087832" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28087832</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Analysis not relevant to this protocol: Prediction of 5 and 3-year risk only</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Arts
E E A, Popa
C D, Den Broeder
A A
et al (2016) Prediction of cardiovascular risk in rheumatoid arthritis: performance of original and adapted SCORE algorithms. Annals of the rheumatic diseases
75(4): 674&#x02013;80
[<a href="https://pubmed.ncbi.nlm.nih.gov/25691119" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25691119</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Study does not contain a risk tool relevant to this review protocol: SCORE</p>
<p>- Population not relevant to this review protocol: Netherlands</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Arts
E E A, Popa
C, Den Broeder
A A
et al (2015) Performance of four current risk algorithms in predicting cardiovascular events in patients with early rheumatoid arthritis. Annals of the rheumatic diseases
74(4): 668&#x02013;74
[<a href="https://pubmed.ncbi.nlm.nih.gov/24389293" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24389293</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Netherlands</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Ashraf
Tariq, Mengal
Muhammad Naeem, Muhammad
Atif Sher
et al (2020) Ten years risk assessment of atherosclerotic cardiovascular disease using Astro-CHARM and pooled cohort equation in a south Asian subpopulation. BMC public health
20(1): 403
[<a href="/pmc/articles/PMC7099772/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7099772</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32220240" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32220240</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Pakistan</p>
<p>- Study design not relevant to this review protocol: cross sectional</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Aspelund
Thor, Thorgeirsson
Gudmundur, Sigurdsson
Gunnar
et al (2007) Estimation of 10-year risk of fatal cardiovascular disease and coronary heart disease in Iceland with results comparable with those of the Systematic Coronary Risk Evaluation project. European journal of cardiovascular prevention and rehabilitation: official journal of the European Society of Cardiology, Working Groups on Epidemiology &#x00026; Prevention and Cardiac Rehabilitation and Exercise Physiology
14(6): 761&#x02013;8 [<a href="https://pubmed.ncbi.nlm.nih.gov/18043296" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18043296</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Iceland</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Bae
Jae Hyun, Moon
Min Kyong, Oh
Sohee
et al (2020) Validation of Risk Prediction Models for Atherosclerotic Cardiovascular Disease in a Prospective Korean Community-Based Cohort. Diabetes &#x00026; metabolism journal
44(3): 458&#x02013;469
[<a href="/pmc/articles/PMC7332332/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7332332</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31950769" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31950769</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Korea</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Bell
Katy J L, White
Sam, Hassan
Omar
et al (2022) Evaluation of the Incremental Value of a Coronary Artery Calcium Score Beyond Traditional Cardiovascular Risk Assessment: A Systematic Review and Meta-analysis. JAMA internal medicine
182(6): 634&#x02013;642
[<a href="/pmc/articles/PMC9039826/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9039826</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35467692" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35467692</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: US, Netherlands, Germany and South Korea</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Bertomeu-Gonzalez
Vicente, Maldonado
Soriano, Cristina
Bleda-Cano, Jesus
et al (2019) Predictive validity of the risk SCORE model in a Mediterranean population with dyslipidemia. Atherosclerosis
290: 80&#x02013;86
[<a href="https://pubmed.ncbi.nlm.nih.gov/31593904" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31593904</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Spain</p>
<p>- Study does not contain a risk tool relevant to this review protocol: SCORE</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Cacciapaglia
Fabio, Fornaro
Marco, Venerito
Vincenzo
et al (2020) Cardiovascular risk estimation with 5 different algorithms before and after 5 years of bDMARD treatment in rheumatoid arthritis. European journal of clinical investigation
50(12): e13343
[<a href="https://pubmed.ncbi.nlm.nih.gov/32654116" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32654116</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Italy</p>
<p>- Study design not relevant to this review protocol:</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Campos-Staffico
Alessandra M, Cordwin
David, Murthy
Venkatesh L
et al (2021) Comparative performance of the two pooled cohort equations for predicting atherosclerotic cardiovascular disease. Atherosclerosis
334: 23&#x02013;29
[<a href="/pmc/articles/PMC8527545/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8527545</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34461391" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34461391</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Cauwenberghs
Nicholas, Hedman
Kristofer, Kobayashi
Yukari
et al (2019) The 2013 ACC/AHA risk score and subclinical cardiac remodeling and dysfunction: Complementary in cardiovascular disease prediction. International journal of cardiology
297: 67&#x02013;74
[<a href="https://pubmed.ncbi.nlm.nih.gov/31623873" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31623873</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Belgium</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Mora
Cedeno, Santiago
Goicoechea, Marian
Torres, Esther
et al (2017) Cardiovascular risk prediction in chronic kidney disease patients. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia
37(3): 293&#x02013;300
[<a href="https://pubmed.ncbi.nlm.nih.gov/28495396" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28495396</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Spain</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Chew
K W, Bhattacharya
D, Horwich
T B
et al (2017) Performance of the Pooled Cohort atherosclerotic cardiovascular disease risk score in hepatitis C virus-infected persons. Journal of viral hepatitis
24(10): 814&#x02013;822
[<a href="/pmc/articles/PMC5589479/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5589479</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28273386" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28273386</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Chia
Yook Chin; Lim
Hooi Min; Ching
Siew Mooi (2014) Validation of the pooled cohort risk score in an Asian population - a retrospective cohort study. BMC cardiovascular disorders
14: 163
[<a href="/pmc/articles/PMC4246627/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4246627</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25410585" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25410585</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Malaysia</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Chlabicz
Malgorzata, Jamiolkowski
Jacek, Laguna
Wojciech
et al (2021) A Similar Lifetime CV Risk and a Similar Cardiometabolic Profile in the Moderate and High Cardiovascular Risk Populations: A Population-Based Study. Journal of clinical medicine
10(8) [<a href="/pmc/articles/PMC8069041/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8069041</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33918620" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33918620</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Study design not relevant to this review protocol: cross sectional study with no calibration or discrimination data</p>
<p>- Population not relevant to this review protocol: Poland</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Clark
Christopher E, Warren
Fiona C, Boddy
Kate
et al (2021) Associations Between Systolic Interarm Differences in Blood Pressure and Cardiovascular Disease Outcomes and Mortality: Individual Participant Data Meta-Analysis, Development and Validation of a Prognostic Algorithm: The INTERPRESS-IPD Collaboration. Hypertension (Dallas, Tex.: 1979)
77(2): 650&#x02013;661
[<a href="/pmc/articles/PMC7803446/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7803446</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33342236" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33342236</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Validation not in a UK population (USA, China, Spain and Netherlands); 18.3% had established CVD</p>
<p>- Study does not contain a risk tool relevant to this review protocol: Validation only for prediction of fatal events</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Colaco
Keith, Ocampo
Vanessa, Ayala
Ana Patricia
et al (2020) Predictive Utility of Cardiovascular Risk Prediction Algorithms in Inflammatory Rheumatic Diseases: A Systematic Review. The Journal of rheumatology
47(6): 928&#x02013;938
[<a href="https://pubmed.ncbi.nlm.nih.gov/31416923" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31416923</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Systematic review used as source of primary studies</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Colantonio
Lisandro D, Richman
Joshua S, Carson
April P
et al (2017) Performance of the Atherosclerotic Cardiovascular Disease Pooled Cohort Risk Equations by Social Deprivation Status. Journal of the American Heart Association
6(3) [<a href="/pmc/articles/PMC5524046/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5524046</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28314800" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28314800</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: USA</p>
<p>- Analysis not relevant to this protocol: prediction of 5-year risk only</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Collins
Gary S and Altman
Douglas G (2009) An independent external validation and evaluation of QRISK cardiovascular risk prediction: a prospective open cohort study. BMJ (Clinical research ed.)
339: b2584 [<a href="/pmc/articles/PMC2714681/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2714681</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19584409" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19584409</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol: QRISK</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Collins
Gary S and Altman
Douglas G (2010) An independent and external validation of QRISK2 cardiovascular disease risk score: a prospective open cohort study. BMJ (Clinical research ed.)
340: c2442 [<a href="/pmc/articles/PMC2869403/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2869403</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20466793" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20466793</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Validation cohort overlaps with an included study with also reports on QRISK2&#x02013;2008 using data from THIN, and includes a larger, more-applicable sample</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Conroy
R M, Pyorala
K, Fitzgerald
A P
et al (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European heart journal
24(11): 987&#x02013;1003
[<a href="https://pubmed.ncbi.nlm.nih.gov/12788299" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12788299</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol: SCORE: fatal events only</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Cooney
Marie Therese, Selmer
Randi, Lindman
Anja
et al (2016) Cardiovascular risk estimation in older persons: SCORE O.P. European journal of preventive cardiology
23(10): 1093&#x02013;103
[<a href="https://pubmed.ncbi.nlm.nih.gov/26040999" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26040999</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol: SCORE-OP</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Corrales
Alfonso, Vegas-Revenga
Nuria, Atienza-Mateo
Belen
et al (2021) Combined use of QRISK3 and SCORE as predictors of carotid plaques in patients with rheumatoid arthritis. Rheumatology (Oxford, England)
60(6): 2801&#x02013;2807
[<a href="https://pubmed.ncbi.nlm.nih.gov/33249513" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33249513</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study design not relevant to this review protocol: diagnostic accuracy for carotid plaques</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Courand
Pierre-Yves, Lenoir
Jerome, Grandjean
Adrien
et al (2022) SCORE underestimates cardiovascular mortality in hypertension: insight from the OLD-HTA and NEW-HTA Lyon cohorts. European journal of preventive cardiology
29(1): 136&#x02013;143
[<a href="https://pubmed.ncbi.nlm.nih.gov/33580796" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33580796</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: France</p>
<p>- Study does not contain a risk tool relevant to this review protocol: SCORE: fatal events only</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Crowson
Cynthia S, Gabriel
Sherine E, Semb
Anne Grete
et al (2017) Rheumatoid arthritis-specific cardiovascular risk scores are not superior to general risk scores: a validation analysis of patients from seven countries. Rheumatology (Oxford, England)
56(7): 1102&#x02013;1110
[<a href="/pmc/articles/PMC5850220/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5850220</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28339992" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28339992</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Includes 7 countries (UK, Norway, Netherlands, USA, South Africa, Canada and Mexico) and proportions are unclear.</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Dalton
Jarrod E, Perzynski
Adam T, Zidar
David A
et al (2017) Accuracy of Cardiovascular Risk Prediction Varies by Neighborhood Socioeconomic Position: A Retrospective Cohort Study. Annals of internal medicine
167(7): 456&#x02013;464
[<a href="/pmc/articles/PMC6435027/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6435027</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28847012" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28847012</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: USA</p>
<p>- Study design not relevant to this review protocol: prediction of 5-year risk only</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
De Bacquer
Dirk, De Backer
Guy (2010) Predictive ability of the SCORE Belgium risk chart for cardiovascular mortality. International journal of cardiology
143(3): 385&#x02013;90
[<a href="https://pubmed.ncbi.nlm.nih.gov/19386372" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19386372</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Belgium</p>
<p>- Study does not contain a risk tool relevant to this review protocol: SCORE: fatal events only</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
de la Iglesia
Beatriz, Potter
John F, Poulter
Neil R
et al (2011) Performance of the ASSIGN cardiovascular disease risk score on a UK cohort of patients from general practice. Heart (British Cardiac Society)
97(6): 491&#x02013;9
[<a href="https://pubmed.ncbi.nlm.nih.gov/21097820" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21097820</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol: ASSIGN and Framingham</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
De Las Heras Gala
T., Geisel
M.H., Peters
A.
et al (2016) Recalibration of the ACC/AHA risk score in two population-based German cohorts. PLoS ONE
11(10): e0164688
[<a href="/pmc/articles/PMC5061315/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5061315</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27732641" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27732641</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Germany</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
DeFilippis
Andrew P, Young
Rebekah, Carrubba
Christopher J
et al (2015) An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Annals of internal medicine
162(4): 266&#x02013;75
[<a href="/pmc/articles/PMC4414494/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4414494</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25686167" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25686167</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
DeFilippis
Andrew Paul, Young
Rebekah, McEvoy
John W
et al (2017) Risk score overestimation: the impact of individual cardiovascular risk factors and preventive therapies on the performance of the American Heart Association-American College of Cardiology-Atherosclerotic Cardiovascular Disease risk score in a modern multi-ethnic cohort. European heart journal
38(8): 598&#x02013;608
[<a href="/pmc/articles/PMC5837662/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5837662</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27436865" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27436865</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Di Battista, Marco, Tani, Chiara, Elefante, Elena
et al (2020) Framingham, ACC/AHA or QRISK3: which is the best in systemic lupus erythematosus cardiovascular risk estimation?. Clinical and experimental rheumatology
38(4): 602&#x02013;608
[<a href="https://pubmed.ncbi.nlm.nih.gov/31694741" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31694741</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Italy</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Drosos
George C, Konstantonis
George, Sfikakis
Petros P
et al (2020) Underperformance of clinical risk scores in identifying vascular ultrasound-based high cardiovascular risk in systemic lupus erythematosus. European journal of preventive cardiology: 2047487320906650
[<a href="https://pubmed.ncbi.nlm.nih.gov/32122200" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32122200</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Greece</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Edwards
N., Langford-Smith
A.W. W., Parker
B.J.
et al (2018) QRISK3 improves detection of cardiovascular disease risk in patients with systemic lupus erythematosus. Lupus Science and Medicine
5(1): e000272
[<a href="/pmc/articles/PMC6109811/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6109811</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30167314" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30167314</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Data not reported in an extractable format or a format that can be analysed</p>
<p>no accuracy data</p>
<p>- Study design not relevant to this review protocol: cross sectional</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Emdin
Connor A, Khera
Amit V, Natarajan
Pradeep
et al (2017) Evaluation of the Pooled Cohort Equations for Prediction of Cardiovascular Risk in a Contemporary Prospective Cohort. The American journal of cardiology
119(6): 881&#x02013;885
[<a href="https://pubmed.ncbi.nlm.nih.gov/28061997" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28061997</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Fan
W., Wong
D.N., Li
X.
et al (2020) Cardiovascular Risk Prediction in Diabetes from Machine Learning: The ACCORD Study. Circulation
142(suppl3)
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Conference abstract</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Fausto
S., Marina
C., Marco
D.C.
et al (2018) The expanded risk score in rheumatoid arthritis (ERS-RA): Performance of a disease-specific calculator in comparison with the traditional prediction scores in the assessment of the 10-year risk of cardiovascular disease in patients with rheumatoid arthritis. Swiss Medical Weekly
148(3334): w14656
[<a href="https://pubmed.ncbi.nlm.nih.gov/30141517" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30141517</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Italy</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Giavarina
Davide, Barzon
Elena, Cigolini
Massimo
et al (2007) Comparison of methods to identify individuals at increased risk of cardiovascular disease in Italian cohorts. Nutrition, metabolism, and cardiovascular diseases: NMCD
17(4): 311&#x02013;8
[<a href="https://pubmed.ncbi.nlm.nih.gov/17434054" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17434054</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study design not relevant to this review protocol: cross-sectional</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Gidlow
C.J., Ellis
N.J., Cowap
L.
et al (2021) Cardiovascular disease risk communication in nhs health checks using qrisk 2 and jbs3 risk calculators: The rico qualitative and quantitative study. Health Technology Assessment
25(50): vii-102 [<a href="https://pubmed.ncbi.nlm.nih.gov/34427556" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34427556</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study design not relevant to this review protocol: qualitative study with no predictive accuracy data</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Goh
Louise Gek Huang; Welborn
Timothy Alexander; Dhaliwal
Satvinder Singh (2014) Independent external validation of cardiovascular disease mortality in women utilising Framingham and SCORE risk models: a mortality follow-up study. BMC women's health
14: 118
[<a href="/pmc/articles/PMC4181599/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4181599</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25255986" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25255986</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Australia</p>
<p>- Study does not contain a risk tool relevant to this review protocol</p>
<p>SCORE and Framingham: fatal events only</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Gopal
Dipesh P and Usher-Smith
Juliet A (2016) Cardiovascular risk models for South Asian populations: a systematic review. International journal of public health
61(5): 525&#x02013;34
[<a href="https://pubmed.ncbi.nlm.nih.gov/26361963" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26361963</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Systematic review used as source of primary studies</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Grammer
Tanja B, Dressel
Alexander, Gergei
Ingrid
et al (2019) Cardiovascular risk algorithms in primary care: Results from the DETECT study. Scientific reports
9(1): 1101
[<a href="/pmc/articles/PMC6355969/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6355969</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30705337" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30705337</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Germany</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Graversen
Peter, Abildstrom
Steen Z, Jespersen
Lasse
et al (2016) Cardiovascular risk prediction: Can Systematic Coronary Risk Evaluation (SCORE) be improved by adding simple risk markers? Results from the Copenhagen City Heart Study. European journal of preventive cardiology
23(14): 1546&#x02013;56
[<a href="https://pubmed.ncbi.nlm.nih.gov/26976846" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26976846</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Denmark</p>
<p>- Study does not contain a risk tool relevant to this review protocol SCORE</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Hageman
Steven H J, McKay
Ailsa J, Ueda
Peter
et al (2022) Estimation of recurrent atherosclerotic cardiovascular event risk in patients with established cardiovascular disease: the updated SMART2 algorithm. European heart journal
43(18): 1715&#x02013;1727
[<a href="/pmc/articles/PMC9312860/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9312860</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35165703" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35165703</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Secondary prevention</p>
<p>- Study does not contain a risk tool relevant to this review protocol SMART2</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Hippisley-Cox
J, Coupland
C, Vinogradova
Y
et al (2008) Performance of the QRISK cardiovascular risk prediction algorithm in an independent UK sample of patients from general practice: a validation study. Heart (British Cardiac Society)
94(1): 34&#x02013;9
[<a href="https://pubmed.ncbi.nlm.nih.gov/17916661" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17916661</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol<br />QRISK and Framingham</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Hippisley-Cox
Julia, Coupland
Carol, Vinogradova
Yana
et al (2007) Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ (Clinical research ed.)
335(7611): 136 [<a href="/pmc/articles/PMC1925200/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1925200</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17615182" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17615182</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol<br />QRISK, Framingham and ASSIGN</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Johns
I., Moschonas
K.E., Medina
J.
et al (2018) Risk classification in primary prevention of CVD according to QRISK2 and JBS3 - - heart age', and prevalence of elevated high-sensitivity C reactive protein in the UK cohort of the EURIKA study. Open Heart
5(2): e000849
[<a href="/pmc/articles/PMC6269641/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6269641</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30564373" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30564373</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study design not relevant to this review protocol: cross sectional and no predictive accuracy outcome data</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Jorstad
Harald T, Colkesen
Ersen B, Minneboo
Madelon
et al (2015) The Systematic COronary Risk Evaluation (SCORE) in a large UK population: 10-year follow-up in the EPIC-Norfolk prospective population study. European journal of preventive cardiology
22(1): 119&#x02013;26
[<a href="https://pubmed.ncbi.nlm.nih.gov/24002125" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24002125</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol<br />SCORE: fatal events only</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Jung
K.J., Jang
Y., Oh
D.J.
et al (2015) The ACC/AHA 2013 pooled cohort equations compared to a Korean Risk Prediction Model for atherosclerotic cardiovascular disease. Atherosclerosis
242(1): 367&#x02013;375
[<a href="https://pubmed.ncbi.nlm.nih.gov/26255683" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26255683</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Korea</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Karmali
KN, Persell
SD, Perel
P
et al (2017) Risk scoring for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews [<a href="/pmc/articles/PMC6464686/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6464686</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28290160" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28290160</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Systematic review used as source of primary studies<br />none of the included studies used a tool specified in the review protocol</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Karmali
Kunal N, Goff
David C
Jr, Ning, Hongyan
et al (2014) A systematic examination of the 2013 ACC/AHA pooled cohort risk assessment tool for atherosclerotic cardiovascular disease. Journal of the American College of Cardiology
64(10): 959&#x02013;68 [<a href="https://pubmed.ncbi.nlm.nih.gov/25190228" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25190228</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study design not relevant to this review protocol: no predictive accuracy data reported</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Khera
Rohan, Pandey
Ambarish, Ayers
Colby R
et al (2020) Performance of the Pooled Cohort Equations to Estimate Atherosclerotic Cardiovascular Disease Risk by Body Mass Index. JAMA network open
3(10): e2023242
[<a href="/pmc/articles/PMC7596579/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7596579</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33119108" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33119108</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Kim
Tae Hyuk, Choi
Hoon Sung, Bae
Ji Cheol
et al (2014) Subclinical hypothyroidism in addition to common risk scores for prediction of cardiovascular disease: a 10-year community-based cohort study. European journal of endocrinology
171(5): 649&#x02013;57
[<a href="https://pubmed.ncbi.nlm.nih.gov/25184283" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25184283</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Korea</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Kuragaichi
Takashi, Kataoka
Yuki, Miyakoshi
Chisato
et al (2019) External validation of pooled cohort equations using systolic blood pressure intervention trial data. BMC research notes
12(1): 271
[<a href="/pmc/articles/PMC6518641/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6518641</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31088530" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31088530</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Lengele
Jean-Philippe, Vinck
Wouter J, De Plaen
Jean-Francois
et al (2007) Cardiovascular risk assessment in hypertensive patients: major discrepancy according to ESH and SCORE strategies. Journal of hypertension
25(4): 757&#x02013;62
[<a href="https://pubmed.ncbi.nlm.nih.gov/17351366" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17351366</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study design not relevant to this review protocol: cross sectional and no predictive accuracy outcome data</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Li
Yan, Sperrin
Matthew, Ashcroft
Darren M
et al (2020) Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar. BMJ (Clinical research ed.)
371: m3919 [<a href="/pmc/articles/PMC7610202/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7610202</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33148619" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33148619</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Data not reported in an extractable format or a format that can be analysed</p>
<p>Confidence intervals not reported for accuracy data</p>
<p>- Validation cohort overlaps with an included study of more direct relevance</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Loprinzi
P D (2016) Predictive validity of the ACC/AHA pooled cohort equations in predicting cancer-specific mortality in a National Prospective Cohort Study of Adults in the United States. International journal of clinical practice
70(8): 691&#x02013;5
[<a href="https://pubmed.ncbi.nlm.nih.gov/27384232" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27384232</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol: cancer-specific mortality</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Loprinzi
Paul D and Addoh
Ovuokerie (2016) Predictive Validity of the American College of Cardiology/American Heart Association Pooled Cohort Equations in Predicting All-Cause and Cardiovascular Disease-Specific Mortality in a National Prospective Cohort Study of Adults in the United States. Mayo Clinic proceedings
91(6): 763&#x02013;9
[<a href="https://pubmed.ncbi.nlm.nih.gov/27180122" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27180122</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Lucaroni
Francesca, Modica
Cicciarella, Domenico
Macino, Mattia
et al (2019) Can risk be predicted? An umbrella systematic review of current risk prediction models for cardiovascular diseases, diabetes and hypertension. BMJ open
9(12): e030234 [<a href="/pmc/articles/PMC6937066/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6937066</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31862737" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31862737</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Systematic review used as source of primary studies</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Mancini
G.B. J. and Ryomoto
A. (2014) Comparison of cardiovascular risk assessment algorithms to determine eligibility for statin therapy: Implications for practice in Canada. Canadian Journal of Cardiology
30(6): 661&#x02013;666
[<a href="https://pubmed.ncbi.nlm.nih.gov/24882538" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24882538</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study design not relevant to this review protocol: no predictive accuracy data</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Mansoor
Hend, Jo
Ara, Beau De Rochars
V Madsen
et al (2019) Novel Self-Report Tool for Cardiovascular Risk Assessment. Journal of the American Heart Association
8(24): e014123
[<a href="/pmc/articles/PMC6951080/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6951080</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31818214" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31818214</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Matsushita
K., Jassal
S.K., Sang
Y.
et al (2020) Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets. EClinicalMedicine
27: 100552
[<a href="/pmc/articles/PMC7599294/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7599294</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33150324" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33150324</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study design not relevant to this review protocol: only estimates 5-year risk for the UK cohort</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
McKay
Ailsa J, Gunn
Laura H, Ference
Brian A
et al (2022) Is the SMART risk prediction model ready for real-world implementation? A validation study in a routine care setting of approximately 380 000 individuals. European journal of preventive cardiology
29(4): 654&#x02013;663
[<a href="https://pubmed.ncbi.nlm.nih.gov/34160035" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34160035</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: secondary prevention</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Mora
Samia, Wenger
Nanette K, Cook
Nancy R
et al (2018) Evaluation of the Pooled Cohort Risk Equations for Cardiovascular Risk Prediction in a Multiethnic Cohort From the Women's Health Initiative. JAMA internal medicine
178(9): 1231&#x02013;1240
[<a href="/pmc/articles/PMC6142964/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6142964</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30039172" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30039172</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Moral Pelaez
I., Brotons Cuixart
C., Fernandez Valverde
D.
et al (2021) External validation of the European and American equations for calculating cardiovascular risk in a Spanish working population. Revista Clinica Espanola
221(10): 561&#x02013;568
[<a href="https://pubmed.ncbi.nlm.nih.gov/34147422" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34147422</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Spain</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Mosepele
M., Hemphill
L.C., Palai
T.
et al (2017) Cardiovascular disease risk prediction by the American College of Cardiology (ACC)/American Heart Association (AHA) Atherosclerotic Cardiovascular Disease (ASCVD) risk score among HIV-infected patients in sub-Saharan Africa. PLoS ONE
12(2): e0172897
[<a href="/pmc/articles/PMC5325544/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5325544</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28235058" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28235058</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Botswana</p>
<p>- Study design not relevant to this review protocol: Cross sectional and no predictive accuracy outcome data</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Motamed
N, Ajdarkosh
H, Perumal
D
et al (2021) Comparison of risk assessment tools for cardiovascular diseases: results of an Iranian cohort study. Public health
200: 116&#x02013;123
[<a href="https://pubmed.ncbi.nlm.nih.gov/34717165" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34717165</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Iran</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Nanna
Michael G, Peterson
Eric D, Wojdyla
Daniel
et al (2020) The Accuracy of Cardiovascular Pooled Cohort Risk Estimates in U.S. Older Adults. Journal of general internal medicine
35(6): 1701&#x02013;1708
[<a href="/pmc/articles/PMC7280419/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7280419</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31667745" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31667745</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Navarini
Luca, Caso
Francesco, Costa
Luisa
et al (2020) Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment. Rheumatology and therapy
7(4): 867&#x02013;882
[<a href="/pmc/articles/PMC7695785/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7695785</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32939675" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32939675</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Italy</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Navarini
Luca, Margiotta
Domenico Paolo Emanuele, Caso
Francesco
et al (2018) Performances of five risk algorithms in predicting cardiovascular events in patients with Psoriatic Arthritis: An Italian bicentric study. PloS one
13(10): e0205506
[<a href="/pmc/articles/PMC6181379/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6181379</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30308025" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30308025</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Italy</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Nguyen
Q.D., Odden
M.C., Peralta
C.A.
et al (2020) Predicting risk of atherosclerotic cardiovascular disease using pooled cohort equations in older adults with frailty, multimorbidity, and competing risks. Journal of the American Heart Association
9(18): e016003
[<a href="/pmc/articles/PMC7727000/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7727000</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32875939" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32875939</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Ozen
Gulsen, Sunbul
Murat, Atagunduz
Pamir
et al (2016) The 2013 ACC/AHA 10-year atherosclerotic cardiovascular disease risk index is better than SCORE and QRisk II in rheumatoid arthritis: is it enough?. Rheumatology (Oxford, England)
55(3): 513&#x02013;22
[<a href="https://pubmed.ncbi.nlm.nih.gov/26472565" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26472565</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study design not relevant to this review protocol: Cross sectional</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Pandey
Ambarish, Mehta
Anurag, Paluch
Amanda
et al (2021) Performance of the American Heart Association/American College of Cardiology Pooled Cohort Equations to Estimate Atherosclerotic Cardiovascular Disease Risk by Self-reported Physical Activity Levels. JAMA cardiology
6(6): 690&#x02013;696
[<a href="/pmc/articles/PMC8082430/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8082430</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33909016" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33909016</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Pate
Alexander, Emsley
Richard, Ashcroft
Darren M
et al (2019) The uncertainty with using risk prediction models for individual decision making: an exemplar cohort study examining the prediction of cardiovascular disease in English primary care. BMC medicine
17(1): 134
[<a href="/pmc/articles/PMC6636064/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6636064</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31311543" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31311543</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol: Unvalidated models based on QRISK2 and QRISK3</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Patel
Aniruddh P, Wang
Minxian, Kartoun
Uri
et al (2021) Quantifying and Understanding the Higher Risk of Atherosclerotic Cardiovascular Disease Among South Asian Individuals: Results From the UK Biobank Prospective Cohort Study. Circulation
144(6): 410&#x02013;422
[<a href="/pmc/articles/PMC8355171/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8355171</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34247495" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34247495</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Data not reported in an extractable format or a format that can be analysed</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Pennells
Lisa, Kaptoge
Stephen, Wood
Angela
et al (2019) Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. European heart journal
40(7): 621&#x02013;631
[<a href="/pmc/articles/PMC6374687/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6374687</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30476079" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30476079</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Mixed cohorts: &#x0003c;80% UK-based</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Piccininni
Marco, Rohmann
Jessica L, Huscher
Dorte
et al (2020) Performance of risk prediction scores for cardiovascular mortality in older persons: External validation of the SCORE OP and appraisal. PloS one
15(4): e0231097
[<a href="/pmc/articles/PMC7144969/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7144969</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32271825" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32271825</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Germany</p>
<p>- Study does not contain a risk tool relevant to this review protocol: SCORE-OP</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Plante
T.B., Juraschek
S.P., Zakai
N.A.
et al (2019) Pooled Cohort Equation performance in primary and secondary prevention subgroups of the systolicblood pressure intervention trial (SPRINT). Circulation
139(supplement1) [<a href="/pmc/articles/PMC7240131/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7240131</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31575423" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31575423</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Conference abstract</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Prausmuller
Suriya, Resl
Michael, Arfsten
Henrike
et al (2021) Performance of the recommended ESC/EASD cardiovascular risk stratification model in comparison to SCORE and NT-proBNP as a single biomarker for risk prediction in type 2 diabetes mellitus. Cardiovascular diabetology
20(1): 34
[<a href="/pmc/articles/PMC7856811/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7856811</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33530999" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33530999</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Austria</p>
<p>- Study does not contain a risk tool relevant to this review protocol: SCORE</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Preiss
David and Kristensen
Soren L (2015) The new pooled cohort equations risk calculator. The Canadian journal of cardiology
31(5): 613&#x02013;9
[<a href="https://pubmed.ncbi.nlm.nih.gov/25843167" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25843167</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Review article but not a systematic review</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Raiko
Juho R H, Magnussen
Costan G, Kivimaki
Mika
et al (2010) Cardiovascular risk scores in the prediction of subclinical atherosclerosis in young adults: evidence from the cardiovascular risk in a young Finns study. European journal of cardiovascular prevention and rehabilitation: official journal of the
European Society of Cardiology, Working Groups on Epidemiology &#x00026; Prevention and Cardiac Rehabilitation and Exercise Physiology
17(5): 549&#x02013;55 [<a href="/pmc/articles/PMC2907448/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2907448</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20354441" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20354441</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Finland</p>
<p>- Study does not contain a risk tool relevant to this review protocol:</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Ramsay
Sheena E, Morris
Richard W, Whincup
Peter H
et al (2011) Prediction of coronary heart disease risk by Framingham and SCORE risk assessments varies by socioeconomic position: results from a study in British men. European journal of cardiovascular prevention and rehabilitation: official journal of the European Society of Cardiology, Working Groups on Epidemiology &#x00026; Prevention and Cardiac Rehabilitation and Exercise Physiology
18(2): 186&#x02013;93 [<a href="https://pubmed.ncbi.nlm.nih.gov/21450664" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21450664</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol: Framingham and SCORE</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Rana
Jamal S, Tabada
Grace H, Solomon
Matthew D
et al (2016) Accuracy of the Atherosclerotic Cardiovascular Risk Equation in a Large Contemporary, Multiethnic Population. Journal of the American College of Cardiology
67(18): 2118&#x02013;2130
[<a href="/pmc/articles/PMC5097466/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5097466</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27151343" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27151343</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Read
Stephanie H, van Diepen
Merel, Colhoun
Helen M
et al (2018) Performance of Cardiovascular Disease Risk Scores in People Diagnosed With Type 2 Diabetes: External Validation Using Data From the National Scottish Diabetes Register. Diabetes care
41(9): 2010&#x02013;2018
[<a href="https://pubmed.ncbi.nlm.nih.gov/30002197" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30002197</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Analysis not relevant to this review protocol: 5-year risk estimate only</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Romanens
Michel, Adams
Ansgar, Sudano
Isabella
et al (2021) Prediction of cardiovascular events with traditional risk equations and total plaque area of carotid atherosclerosis: The Arteris Cardiovascular Outcome (ARCO) cohort study. Preventive medicine
147: 106525
[<a href="https://pubmed.ncbi.nlm.nih.gov/33745952" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33745952</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Switzerland and Germany</p>
<p>- Study does not contain a risk tool relevant to this review protocol:</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Saar
Aet, Lall
Kristi, Alver
Maris
et al (2019) Estimating the performance of three cardiovascular disease risk scores: the Estonian Biobank cohort study. Journal of epidemiology and community health
73(3): 272&#x02013;277
[<a href="https://pubmed.ncbi.nlm.nih.gov/30635435" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30635435</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Estonia</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Santos-Ferreira
Catia, Baptista
Rui, Oliveira-Santos
Manuel
et al (2020) A 10- and 15-year performance analysis of ESC/EAS and ACC/AHA cardiovascular risk scores in a Southern European cohort. BMC cardiovascular disorders
20(1): 301
[<a href="/pmc/articles/PMC7304198/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7304198</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32560700" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32560700</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Portugal</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Sawano
Mitsuaki, Kohsaka
Shun, Okamura
Tomonori
et al (2016) Validation of the european SCORE risk chart in the healthy middle-aged Japanese. Atherosclerosis
252: 116&#x02013;121
[<a href="https://pubmed.ncbi.nlm.nih.gov/27521900" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27521900</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Japan</p>
<p>- Study does not contain a risk tool relevant to this review protocol:</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Schiborn
Catarina, Kuhn
Tilman, Muhlenbruch
Kristin
et al (2021) A newly developed and externally validated non-clinical score accurately predicts 10-year cardiovascular disease risk in the general adult population. Scientific reports
11(1): 19609
[<a href="/pmc/articles/PMC8490374/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8490374</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34608230" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34608230</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Germany</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Schulz
C.-A., Mavarani
L., Reinsch
N.
et al (2021) Prediction of future cardiovascular events by Framingham, SCORE and asCVD risk scores is less accurate in HIV-positive individuals from the HIV-HEART Study compared with the general population. HIV Medicine
22(8): 732&#x02013;741
[<a href="https://pubmed.ncbi.nlm.nih.gov/34028959" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34028959</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Germany</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Siontis
George C M, Tzoulaki
Ioanna, Siontis
Konstantinos C
et al (2012) Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ (Clinical research ed.)
344: e3318 [<a href="https://pubmed.ncbi.nlm.nih.gov/22628003" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22628003</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Systematic review used as source of primary studies</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Sivakumaran
J., Harvey
P., Omar
A.
et al (2021) Assessment of cardiovascular risk tools as predictors of cardiovascular disease events in systemic lupus erythematosus. Lupus Science and Medicine
8(1): e000448
[<a href="/pmc/articles/PMC8162102/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8162102</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34045359" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34045359</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Canada</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Tang
Xun, Zhang
Dudan, He
Liu
et al (2019) Performance of atherosclerotic cardiovascular risk prediction models in a rural Northern Chinese population: Results from the Fangshan Cohort Study. American heart journal
211: 34&#x02013;44
[<a href="https://pubmed.ncbi.nlm.nih.gov/30831332" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30831332</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: China</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Tolunay
Hatice and Kurmus
Ozge (2016) Comparison of coronary risk scoring systems to predict the severity of coronary artery disease using the SYNTAX score. Cardiology journal
23(1): 51&#x02013;6
[<a href="https://pubmed.ncbi.nlm.nih.gov/26503075" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26503075</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Turkey</p>
<p>- Study does not contain a risk tool relevant to this review protocol:</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Tralhao
Antonio, Ferreira
Antonio M, Goncalves
Pedro de Araujo
et al (2016) Accuracy of Pooled-Cohort Equation and SCORE cardiovascular risk calculators to identify individuals with high coronary atherosclerotic burden - implications for statin treatment. Coronary artery disease
27(7): 573&#x02013;9
[<a href="https://pubmed.ncbi.nlm.nih.gov/27285280" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27285280</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Portugal</p>
<p>- Analysis not relevant to this review protocol: predicting risk of coronary atherosclerotic burden</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Triant
Virginia A, Perez
Jeremiah, Regan
Susan
et al (2018) Cardiovascular Risk Prediction Functions Underestimate Risk in HIV Infection. Circulation
137(21): 2203&#x02013;2214
[<a href="/pmc/articles/PMC6157923/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6157923</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29444987" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29444987</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Ueda
Peter, Woodward
Mark, Lu
Yuan
et al (2017) Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys. The lancet. Diabetes &#x00026; endocrinology
5(3): 196&#x02013;213
[<a href="/pmc/articles/PMC5354360/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5354360</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28126460" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28126460</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: No accuracy data for UK</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
van der Heijden
Amber A W A, Monica M Ortegon, Niessen
Louis W
et al (2009) Prediction of coronary heart disease risk in a general, prediabetic, and diabetic population during 10 years of follow-up: accuracy of the Framingham, SCORE, and UKPDS risk functions: The Hoorn Study. Diabetes care
32(11): 2094&#x02013;8
[<a href="/pmc/articles/PMC2768197/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2768197</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19875606" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19875606</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Netherlands</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
van Dis
Ineke, Kromhout
Daan, Geleijnse
Johanna M
et al (2010) Evaluation of cardiovascular risk predicted by different SCORE equations: the Netherlands as an example. European journal of cardiovascular prevention and rehabilitation: official journal of the European Society of Cardiology, Working Groups on Epidemiology &#x00026; Prevention and Cardiac Rehabilitation and Exercise Physiology
17(2): 244&#x02013;9 [<a href="https://pubmed.ncbi.nlm.nih.gov/20195155" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20195155</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Population not relevant to this review protocol: Netherlands</p>
<p>- Analysis not relevant to this review protocol: Fatal events only</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Vassy
Jason L, Lu
Bing, Ho
Yuk-Lam
et al (2020) Estimation of Atherosclerotic Cardiovascular Disease Risk Among Patients in the Veterans Affairs Health Care System. JAMA network open
3(7): e208236
[<a href="/pmc/articles/PMC7361654/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7361654</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32662843" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32662843</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Vega Alonso
A.T., Ordax Diez
A., Lozano Alonso
J.E.
et al (2019) Validation of the SCORE index and SCORE for old people in the Castilla y Leon cardiovascular disease risk cohort. Hipertension y Riesgo Vascular
36(4): 184&#x02013;192
[<a href="https://pubmed.ncbi.nlm.nih.gov/30926254" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30926254</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>- Study not reported in English</p>
<p>- Population not relevant to this review protocol: Spain</p></td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Verweij
Lotte, Peters
Ron J G, Scholte Op Reimer
Wilma J M
et al (2019) Validation of the Systematic COronary Risk Evaluation - Older Persons (SCORE-OP) in the EPIC-Norfolk prospective population study. International journal of cardiology
293: 226&#x02013;230
[<a href="https://pubmed.ncbi.nlm.nih.gov/31324398" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31324398</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol: SCORE-OP (not latest version)</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Wang
M., Wang
W., Liu
J.
et al (2017) Updating 10-year atherosclerotic cardiovascular risk assessment equation for Chinese adults. Journal of the American College of Cardiology
70(16supplement1): c74&#x02013;c75
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Conference abstract</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Welsh
Paul, Hart
Carole, Papacosta
Olia
et al (2016) Prediction of Cardiovascular Disease Risk by Cardiac Biomarkers in 2 United Kingdom Cohort Studies: Does Utility Depend on Risk Thresholds For Treatment?. Hypertension (Dallas, Tex.: 1979)
67(2): 309&#x02013;15
[<a href="/pmc/articles/PMC4716288/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4716288</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26667414" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26667414</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol: Model based on QRISK2 and modifications</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
WHO CVD Risk Chart Working, Group (2019) World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet. Global health
7(10): e1332&#x02013;e1345
[<a href="/pmc/articles/PMC7025029/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7025029</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31488387" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31488387</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Study does not contain a risk tool relevant to this review protocol:</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Xu
Yu, Li
Mian, Qin
Guijun
et al (2021) Cardiovascular Risk Based on ASCVD and KDIGO Categories in Chinese Adults: A Nationwide, Population-Based, Prospective Cohort Study. Journal of the American Society of Nephrology: JASN [<a href="/pmc/articles/PMC8017537/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8017537</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33788701" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33788701</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: China</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Yang
Xueli, Li
Jianxin, Hu
Dongsheng
et al (2016) Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China). Circulation
134(19): 1430&#x02013;1440
[<a href="https://pubmed.ncbi.nlm.nih.gov/27682885" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27682885</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: China</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Yu
Zhi, Yang
Nicole, Everett
Brendan M
et al (2018) Impact of Changes in Inflammation on Estimated Ten-Year Cardiovascular Risk in Rheumatoid Arthritis. Arthritis &#x00026; rheumatology (Hoboken, N.J.)
70(9): 1392&#x02013;1398
[<a href="/pmc/articles/PMC6115296/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6115296</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29676517" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29676517</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Zafrir
Barak, Saliba
Walid, Widder
Rachel Shay Li
et al (2021) Value of addition of coronary artery calcium to risk scores in the prediction of major cardiovascular events in patients with type 2 diabetes. BMC cardiovascular disorders
21(1): 541
[<a href="/pmc/articles/PMC8590310/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8590310</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34773970" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34773970</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: Israel</td></tr><tr><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
Zhu
Lisa, Singh
Manpreet, Lele
Sonia
et al (2022) Assessing the validity of QRISK3 in predicting cardiovascular events in systemic lupus erythematosus. Lupus science &#x00026; medicine
9(1) [<a href="/pmc/articles/PMC8867320/" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8867320</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35193947" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35193947</span></a>]
</td><td headers="hd_h_niceng238er1.appi.tab1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">- Population not relevant to this review protocol: USA</td></tr></tbody></table></div></div></div><div id="niceng238er1.appi.s2"><h4>I.2. Health Economic studies</h4><p>Published health economic studies that met the inclusion criteria (relevant population, comparators, economic study design, published 2007 or later and not from non-OECD country or USA) but that were excluded following appraisal of applicability and methodological quality are listed below. See the health economic protocol for more details.</p><div id="niceng238er1.appi.tab2" class="table"><h3><span class="label">Table 27</span><span class="title">Studies excluded from the health economic review</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.appi.tab2/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.appi.tab2_lrgtbl__"><table><thead><tr><th id="hd_h_niceng238er1.appi.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Reference</th><th id="hd_h_niceng238er1.appi.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Reason for exclusion</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.appi.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">None</td><td headers="hd_h_niceng238er1.appi.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td></tr></tbody></table></div></div></div></div><div id="niceng238er1.appj"><h3>Appendix J. List of abbreviations</h3><div id="niceng238er1.appj.tab1" class="table"><h3><span class="label">Table 28</span><span class="title">List of abbreviations</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.appj.tab1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.appj.tab1_lrgtbl__"><table><tbody><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;"></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;"></td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">BiomarCaREConsortium</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Biomarker for Cardiovascular Risk Assessment across Europe consortium</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">DETECT</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Dynamic Electronic Tracking and Escalation to reduce Critical Care Transfers</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">EHR</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Electronic Health Records</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">EPIC-CVD</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">European Prospective Investigation into Cancer and Nutrition-cardiovascular disease</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ERFC</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Emerging Risk Factors Collaboration</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ESC</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">European Society of Cardiology</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">GHS</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Gutenberg Health Study</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">h</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">hours</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HAPIEE</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health, Alcohol and Psychosocial factors In Eastern Europe</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HNR</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Heinz-Nixdorf Recall</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HUNT</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">The Tr&#x000f8;ndelag Health Study</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MORGAM</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MOnica Risk, Genetics, Archiving and Monograph</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">NR</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">not reported</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">NHLBI</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">National Heart, Lung, and Blood Institute</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PAD</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Peripheral arterial disease</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SABRE</td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Southall and Brent Revisited cohort</td></tr></tbody></table></div></div></div></div><div class="bk_prnt_sctn"><h2>Figures</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="niceng238er1.fig1" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%201.%20Calibration%20curves%3A%20observed%20versus%20predicted%2010-year%20risk%20of%20CVD%20(from%20Collins%202012).&amp;p=BOOKS&amp;id=603622_niceng238er1f1.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f1.jpg" alt="Figure 1. Calibration curves: observed versus predicted 10-year risk of CVD (from Collins 2012)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 1</span><span class="title">Calibration curves: observed versus predicted 10-year risk of CVD (from Collins 2012)</span></h3><p><i>Source: from Collins 2012</i>
<sup><a class="bk_pop" href="#niceng238er1.ref3">3</a></sup><br /><i>BMJ 2010;340:c2442</i><br /><i>doi:10.1136/bmj.c2442</i><br /><i>&#x000a9;BMJ Publishing Group Ltd</i></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig2" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%202.%20Calibration%20curves%20for%20QRISK2%3A%20observed%20versus%20predicted%2010-year%20risk%20of%20CVD%20in%20men.&amp;p=BOOKS&amp;id=603622_niceng238er1f2.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f2.jpg" alt="Figure 2. Calibration curves for QRISK2: observed versus predicted 10-year risk of CVD in men." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 2</span><span class="title">Calibration curves for QRISK2: observed versus predicted 10-year risk of CVD in men</span></h3><p><i>Source: Tillin 2014</i>
<sup><a class="bk_pop" href="#niceng238er1.ref23">23</a></sup></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig3" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%203.%20Calibration%20curves%20for%20QRISK2%3A%20observed%20versus%20predicted%2010-year%20risk%20of%20CVD%20in%20women.&amp;p=BOOKS&amp;id=603622_niceng238er1f3.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f3.jpg" alt="Figure 3. Calibration curves for QRISK2: observed versus predicted 10-year risk of CVD in women." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 3</span><span class="title">Calibration curves for QRISK2: observed versus predicted 10-year risk of CVD in women</span></h3><p><i>Source: Tillin 2014</i>
<sup><a class="bk_pop" href="#niceng238er1.ref23">23</a></sup></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig4" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%204.%20Calibration%20curves%3A%20observed%20versus%20predicted%2010-year%20risk%20of%20CVD%20(from%20Hippisley-Cox%202014).&amp;p=BOOKS&amp;id=603622_niceng238er1f4.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f4.jpg" alt="Figure 4. Calibration curves: observed versus predicted 10-year risk of CVD (from Hippisley-Cox 2014)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 4</span><span class="title">Calibration curves: observed versus predicted 10-year risk of CVD (from Hippisley-Cox 2014)</span></h3><p><i>Source: Hippisley-Cox 2014</i>
<sup><a class="bk_pop" href="#niceng238er1.ref8">8</a></sup></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig5" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%205.%20Calibration%20curves%3A%20observed%20versus%20predicted%2010-year%20risk%20of%20CVD%20(from%20Hippisley-Cox%202017).&amp;p=BOOKS&amp;id=603622_niceng238er1f5.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f5.jpg" alt="Figure 5. Calibration curves: observed versus predicted 10-year risk of CVD (from Hippisley-Cox 2017)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 5</span><span class="title">Calibration curves: observed versus predicted 10-year risk of CVD (from Hippisley-Cox 2017)</span></h3><p><i>Source: Hippisley-Cox 2017</i>
<sup><a class="bk_pop" href="#niceng238er1.ref7">7</a></sup></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig6" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%206.%20QRISK3%20calibration%20in%20women.&amp;p=BOOKS&amp;id=603622_niceng238er1f6.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f6.jpg" alt="Figure 6. QRISK3 calibration in women." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 6</span><span class="title">QRISK3 calibration in women</span></h3><p>
<i>Source: Livingstone 2021</i>
<sup>
<a class="bk_pop" href="#niceng238er1.ref15">15</a>
</sup>
</p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig7" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%207.%20QRISK3%20calibration%20in%20men.&amp;p=BOOKS&amp;id=603622_niceng238er1f7.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f7.jpg" alt="Figure 7. QRISK3 calibration in men." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 7</span><span class="title">QRISK3 calibration in men</span></h3><p><i>Source: Livingstone 2021</i>
<sup><a class="bk_pop" href="#niceng238er1.ref15">15</a></sup></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig8" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%208.%20Calibration%20plot%20of%20QRISK3%2C%20CRISK%20and%20CRISK-CCI.&amp;p=BOOKS&amp;id=603622_niceng238er1f8.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f8.jpg" alt="Figure 8. Calibration plot of QRISK3, CRISK and CRISK-CCI." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 8</span><span class="title">Calibration plot of QRISK3, CRISK and CRISK-CCI</span></h3><p>
<i>Source: Livingstone 2022</i>
<sup>
<a class="bk_pop" href="#niceng238er1.ref16">16</a>
</sup>
</p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig9" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%209.%20Calibration%20plots%20of%20QRISK3%2C%20CRISK%20and%20CRISK-CCI%20stratified%20by%20age.&amp;p=BOOKS&amp;id=603622_niceng238er1f9.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f9.jpg" alt="Figure 9. Calibration plots of QRISK3, CRISK and CRISK-CCI stratified by age." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 9</span><span class="title">Calibration plots of QRISK3, CRISK and CRISK-CCI stratified by age</span></h3><p>
<i>Source: Livingstone 2022</i>
<sup>
<a class="bk_pop" href="#niceng238er1.ref16">16</a>
</sup>
</p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig10" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%2010.%20Calibration%20plots%20for%20PRIMROSE%20tools.&amp;p=BOOKS&amp;id=603622_niceng238er1f10.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f10.jpg" alt="chart, scatter chart" class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 10</span><span class="title">Calibration plots for PRIMROSE tools</span></h3><p>
<i>Source: Osborn 2015</i>
<sup>
<a class="bk_pop" href="#niceng238er1.ref21">21</a>
</sup>
</p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig11" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%2011.%20Calibration%20of%20SCORE2%20in%20CPRD%20data%20by%20age%20groups%20(SCORE2%20working%20group%202021).&amp;p=BOOKS&amp;id=603622_niceng238er1f11.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f11.jpg" alt="Figure 11. Calibration of SCORE2 in CPRD data by age groups (SCORE2 working group 2021)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 11</span><span class="title">Calibration of SCORE2 in CPRD data by age groups (SCORE2 working group 2021)</span></h3><p>
<i>Source: SC0RE2 working group 2021</i>
<sup>
<a class="bk_pop" href="#niceng238er1.ref2">2</a>
</sup>
</p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig12" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%2012.%20Calibration%20plot%20of%20observed%20versus%20estimated%20(O%2FE)%20risk%20within%20deciles%20of%20the%20CPRD%20cohort.&amp;p=BOOKS&amp;id=603622_niceng238er1f12.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f12.jpg" alt="Figure 12. Calibration plot of observed versus estimated (O/E) risk within deciles of the CPRD cohort." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 12</span><span class="title">Calibration plot of observed versus estimated (O/E) risk within deciles of the CPRD cohort</span></h3><p>
<i>Source: SCORE2-OP working group 2021</i>
<sup>
<a class="bk_pop" href="#niceng238er1.ref1">1</a>
</sup>
</p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.fig13" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%2013.%20External%20calibration%20of%20predicted%20vs.%20observed%2010-year%20risk%20using%20the%20LIFE-CVD%20model.&amp;p=BOOKS&amp;id=603622_niceng238er1f13.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK603622/bin/niceng238er1f13.jpg" alt="Figure 13. External calibration of predicted vs. observed 10-year risk using the LIFE-CVD model." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 13</span><span class="title">External calibration of predicted vs. observed 10-year risk using the LIFE-CVD model</span></h3><p>
<i>Source: Jaspers 2020</i>
<sup>
<a class="bk_pop" href="#niceng238er1.ref11">11</a>
</sup>
</p></div></div></div><div class="bk_prnt_sctn"><h2>Tables</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="niceng238er1.tab1" class="table"><h3><span class="label">Table 1</span><span class="title">PICO characteristics of review question</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab1_lrgtbl__"><table><tbody><tr><th id="hd_b_niceng238er1.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Population</th><td headers="hd_b_niceng238er1.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Adults (18 years and over) without established CVD, including adults with chronic kidney disease, type 1 diabetes, and type 2 diabetes</p>
<ul><li class="half_rhythm"><div>Validation studies in a UK population</div></li><li class="half_rhythm"><div>Derivation studies from the UK, or non-UK cohorts if the tool has subsequently been validated in a UK population.</div></li></ul></td></tr><tr><th id="hd_b_niceng238er1.tab1_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Risk tools</th><td headers="hd_b_niceng238er1.tab1_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p><b>10-year risk</b></p>
<ul><li class="half_rhythm"><div>QRISK 2</div></li><li class="half_rhythm"><div>QRISK 3</div></li><li class="half_rhythm"><div>SCORE 2</div></li><li class="half_rhythm"><div>SCORE 2 &#x02013; OP</div></li><li class="half_rhythm"><div>AHA/ASCVD risk engine</div></li><li class="half_rhythm"><div>LIFE-CVD</div></li><li class="half_rhythm"><div>PRIMROSE (BMI model and lipid model)</div></li><li class="half_rhythm"><div>CCRISK</div></li><li class="half_rhythm"><div>CRISK</div></li></ul>
<p><b>Lifetime risk</b></p>
<ul><li class="half_rhythm"><div>QRISK lifetime</div></li><li class="half_rhythm"><div>AHA/ASCVD risk engine</div></li><li class="half_rhythm"><div>LIFE-CVD</div></li></ul></td></tr><tr><th id="hd_b_niceng238er1.tab1_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Patient outcomes</th><td headers="hd_b_niceng238er1.tab1_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Overall CVD events, including:</p>
<ul><li class="half_rhythm"><div>All-cause mortality</div></li><li class="half_rhythm"><div>CV mortality</div></li><li class="half_rhythm"><div>Non-fatal myocardial infarction</div></li><li class="half_rhythm"><div>Non-fatal stroke</div></li></ul></td></tr><tr><th id="hd_b_niceng238er1.tab1_1_1_4_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Statistical outcomes</th><td headers="hd_b_niceng238er1.tab1_1_1_4_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p><b>Discrimination:</b></p>
<ul><li class="half_rhythm"><div>Area under the ROC curve (c-index, c-statistic).</div></li><li class="half_rhythm"><div>Classification measures at 5%, 7.5%, 10%, 15% and 20% predicted risk thresholds: sensitivity, and specificity.</div></li><li class="half_rhythm"><div>D statistic</div></li></ul>
<p><b>Calibration</b>:</p>
<ul><li class="half_rhythm"><div>Calibration plots</div></li><li class="half_rhythm"><div>Predicted risk versus observed risk</div></li><li class="half_rhythm"><div>Statistical tests for agreement between predicted and observed events (E.g. Hosmer-Lemeshow or Nam&#x02013;D'Agostino statistics)</div></li></ul>
<p><b>Reclassification / revalidation</b></p>
<ul><li class="half_rhythm"><div>net classification improvement</div></li><li class="half_rhythm"><div>integrated discrimination index</div></li></ul></td></tr><tr><th id="hd_b_niceng238er1.tab1_1_1_5_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Study design</th><td headers="hd_b_niceng238er1.tab1_1_1_5_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cohort (external validation, internal validation)</td></tr><tr><th id="hd_b_niceng238er1.tab1_1_1_6_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Specific groups</th><td headers="hd_b_niceng238er1.tab1_1_1_6_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Subgroups that will be investigated:</p>
<ul><li class="half_rhythm"><div>presence of type 1 diabetes</div></li><li class="half_rhythm"><div>presence of CKD (eGFR &#x0003c;60 ml/min/1.73 m<sup>2</sup> and/or albuminuria)</div></li></ul></td></tr></tbody></table></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab2" class="table"><h3><span class="label">Table 2</span><span class="title">Predictor variables included in CVD risk assessment tools</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab2/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab2_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk Score</th><th id="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Age</th><th id="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Sex</th><th id="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Ethnicity</th><th id="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">BMI</th><th id="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Total cholesterol</th><th id="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">LDL- cholesterol</th><th id="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">HDL- cholesterol</th><th id="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Non-HDL- cholesterol</th><th id="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Systolic blood pressure</th><th id="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Blood pressure medication</th><th id="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Diabetes</th><th id="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Smoking</th><th id="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Family history of CVD</th><th id="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Social deprivation</th><th id="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Chronic kidney disease</th><th id="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Rheumatoid arthritis</th><th id="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">SBP variability</th><th id="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Migraine</th><th id="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Corticosteroids</th><th id="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Systemic lupus erythematosus</th><th id="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Erectile dysfunction</th><th id="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Antipsychotics</th><th id="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Severe mental illness</th><th id="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">HIV/AIDS</th><th id="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Antidepressants</th><th id="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">History of heavy drinking</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ASCVD</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CRISK</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CRISK-CCI</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">LIFE-CVD</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
<sup><a class="bk_pop" href="#niceng238er1.tab2_1">*</a></sup>
</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE-BMI</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE-lipids</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK-lifetime</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">
<sup><a class="bk_pop" href="#niceng238er1.tab2_1">*</a></sup>
</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SCORE2</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SCORE-OP</td><td headers="hd_h_niceng238er1.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_12" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_13" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab2_1_1_1_14" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_15" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_16" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_17" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_18" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_19" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_20" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_21" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_22" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_23" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_24" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_25" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_26" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab2_1_1_1_27" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt>*</dt><dd><div id="niceng238er1.tab2_1"><p class="no_margin">Age considered as the underlying time function of the model, not as a predictor variable</p></div></dd><dt></dt><dd><div><p class="no_margin">Definitions: ASCVD; atherosclerotic cardiovascular disease score derived in US cohorts, CRISK; Competing risk model, CRISK-CCI; Competing risk model with Charlson comorbidity index, LIFE-CVD; prediction algorithm for cardiovascular disease derived from a US cohort (MESA). QRISK; prediction algorithm for cardiovascular disease derived from UK cohort, QResearch; large consolidated database derived from the anonymised health records from general practices using Egton Medical Information Systems clinical computer system in the UK, PRIMROSE; Prediction risk score for people with severe mental illnesses derived from a European cohort, SCORE; risk prediction algorithm for cardiovascular disease in Europe, SCORE-OP; risk prediction algorithm estimating incident cardiovascular event risk in older persons in four geographical risk regions</p></div></dd></dl></div></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab3" class="table"><h3><span class="label">Table 3</span><span class="title">Outcomes predicted by CVD risk assessment tools</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab3/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab3_lrgtbl__"><table><thead><tr><th id="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk Score</th><th id="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Derivation cohort and region</th><th id="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Publication year</th><th id="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Myocardial infarction</th><th id="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Coronary heart disease death</th><th id="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Stroke</th><th id="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Stroke death</th><th id="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Transient ischaemic attack</th><th id="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Coronary revascularisation</th><th id="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Angina pectoris</th><th id="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Unstable angina</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ASCVD</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>ARIC (Atherosclerosis Risk in Communities), CARDIA (Coronary Artery Risk Development in Young Adults), CHS (Cardiovascular Health Study), Framingham</p>
<p>USA</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2013</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CRISK</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>CPRD (UK Clinical Practice Research Datalink) Gold</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2017</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CRISK-CCI</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>CPRD Gold</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2017</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">LIFE-CVD</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>MESA (Multi-Ethnic Study of Atherosclerosis)</p>
<p>USA</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2020</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE-BMI</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>THIN (The Health Improvement Network)</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2015</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE-lipids</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>THIN</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2015</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRESEARCH</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2009</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRESEARCH</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2017</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK-lifetime</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRESEARCH</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2010</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SCORE2</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>45 prospective cohorts</p>
<p>Europe, Canada, USA</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2021</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr><tr><td headers="hd_h_niceng238er1.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SCORE-OP</td><td headers="hd_h_niceng238er1.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>ARIC, CPRD, HYVET (Hypertension in the Very Elderly Trial), MESA, PROSPER (PROspective study of pravastatin in the elderly at risk), SPRINT (Systolic Blood Pressure Intervention Trial)</p>
<p>Europe, USA</p></td><td headers="hd_h_niceng238er1.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">2021</td><td headers="hd_h_niceng238er1.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;">X</td><td headers="hd_h_niceng238er1.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_10" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td><td headers="hd_h_niceng238er1.tab3_1_1_1_11" rowspan="1" colspan="1" style="text-align:center;vertical-align:middle;"></td></tr></tbody></table></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab4" class="table"><h3><span class="label">Table 4</span><span class="title">Summary of studies included in the evidence review</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab4/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab4_lrgtbl__"><table><thead><tr><th id="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study (cohort)</th><th id="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk tool(s)</th><th id="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Population, N (Country)</th><th id="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Age, years (range)</th><th id="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Outcomes (including definitions)</th><th id="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">No. of CVD events</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1 hd_h_niceng238er1.tab4_1_1_1_2 hd_h_niceng238er1.tab4_1_1_1_3 hd_h_niceng238er1.tab4_1_1_1_4 hd_h_niceng238er1.tab4_1_1_1_5 hd_h_niceng238er1.tab4_1_1_1_6" colspan="6" rowspan="1" style="text-align:left;vertical-align:bottom;">
<b>From 2014 update of CG181</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Collins 2012B<sup><a class="bk_pop" href="#niceng238er1.ref3">3</a></sup> (THIN)</p>
<p>External validation of QRISK2</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>QRISK2&#x02013;2008</div></li><li class="half_rhythm"><div>QRISK2&#x02013;2010</div></li><li class="half_rhythm"><div>QRISK2&#x02013;2011</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>2,084,445</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">30&#x02013;84</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Fatal or non-fatal CVD: myocardial infarction, angina, CHD, stroke, transient ischaemic attacks</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">93,563</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Hippisley-Cox 2008<sup><a class="bk_pop" href="#niceng238er1.ref10">10</a></sup> (QResearch)</p>
<p>Development and validation of QRISK2 (10-year risk)</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>QRISK2&#x02013;2008</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>2,285,815</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">35&#x02013;74</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Fatal or non-fatal CVD: coronary heart disease (angina and myocardial infarction), stroke, or transient ischaemic attacks.</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">96,709</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Hippisley-Cox 2010<sup><a class="bk_pop" href="#niceng238er1.ref9">9</a></sup></p>
<p>(QResearch)</p>
<p>Development and validation of QRISK2 (lifetime risk)</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>QRISK2&#x02013;2010 lifetime</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>3,601,918</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">30&#x02013;84</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Fatal or non-fatal CVD: coronary heart disease (angina and myocardial infarction), stroke, or transient ischaemic attacks.</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">121,623</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1 hd_h_niceng238er1.tab4_1_1_1_2 hd_h_niceng238er1.tab4_1_1_1_3 hd_h_niceng238er1.tab4_1_1_1_4 hd_h_niceng238er1.tab4_1_1_1_5 hd_h_niceng238er1.tab4_1_1_1_6" colspan="6" rowspan="1" style="text-align:left;vertical-align:bottom;">
<b>From update search</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Anonymous 2021 (SCORE2 working group)<sup><a class="bk_pop" href="#niceng238er1.ref2">2</a></sup></p>
<p>(CPRD)</p>
<p>Development, internal and external validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>SCORE2</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>677,684 (derivation)</p>
<p>30 plus countries (ERFC) and UK</p>
<p>1,133,181 (validation)</p>
<p>15 European countries: Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Spain, Sweden, UK, Czech Republic, Estonia, Poland, Lithuania, Russia</p>
<p>Validation cohort: MORGAM project, BiomarCaREConsortium, EPIC-CVD, CPRD, HNR, Estonian Biobank, HAPIEE study, HUNT study, DETECT study, Gutenberg Health Study</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">40&#x02013;69</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Fatal or non-fatal CVD. Cause-specific mortality due to hypertensive disease, ischemic heart disease, arrhythmias, heart failure, cerebrovascular disease: atherosclerosis/abdominal aortic aneurysm, sudden death and death within 24h of symptom onset</p>
<p>Non-fatal cardiovascular disease: non-fatal myocardial infarction, non-fatal stroke</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>30,121 (derivation cohort)</p>
<p>43,492 (validation cohort)</p></td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Anonymous 2021 (SCORE2-OP working group)<sup><a class="bk_pop" href="#niceng238er1.ref1">1</a></sup></p>
<p>(CPRD)</p>
<p>Development, internal and external validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>SCORE2-OP</div></li><li class="half_rhythm"><div>ASCVD</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>28,503 (derivation)</p>
<p>Norway</p>
<p>338,615 (validation)</p>
<p>USA, Europe, and UK</p>
<p>Validation cohort: ARIC, MESA, and CPRD cohorts, and the combined study populations of the HYVET, PROSPER, and SPRINT trial</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">65 and older</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Cause-specific mortality due to: hypertensive disease, ischemic heart disease, arrhythmias, heart failure, cerebrovascular disease, atherosclerosis/AAA, sudden death and death within 24, h of symptom onset</p>
<p>Non-fatal cardiovascular disease: non-fatal myocardial infarction, non-fatal stroke</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>10,089 (derivation cohort)</p>
<p>33,219 (validation cohort)</p></td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Dziopa 2022<sup><a class="bk_pop" href="#niceng238er1.ref5">5</a></sup></p>
<p>(CPRD)</p>
<p>External validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>QRISK2</div></li><li class="half_rhythm"><div>QRISK3</div></li><li class="half_rhythm"><div>ASCVD</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>168,871</p>
<p>(type 2 diabetes)</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Range: NR</p>
<p>Mean (SD): 59.3 (13.9)</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: the first occurrence of fatal or non-fatal myocardial infarction, sudden cardiac death, ischaemic heart disease, fatal or non-fatal stroke, or PAD since diagnosis of type 2 diabetes. Additional outcomes (CVD+) included all of the above plus heart failure and atrial fibrillation</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">38,335</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Goff 2014<sup><a class="bk_pop" href="#niceng238er1.ref6">6</a></sup></p>
<p>Development, internal and external validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>ASCVD</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>24,626</p>
<p>USA</p>
<p>Validation cohort: NHLBI-sponsored cohort studies, including the ARIC study Cardiovascular Health Study, CARDIA study combined with applicable data from the Framingham Original and Offspring Study cohort</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">40&#x02013;79</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: nonfatal myocardial infarction, CHD death, or fatal or nonfatal stroke</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2689</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Hippisley-Cox 2014<sup><a class="bk_pop" href="#niceng238er1.ref8">8</a></sup></p>
<p>(CPRD)</p>
<p>External validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>QRISK2&#x02013;2014</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>3,271,512</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">25&#x02013;99</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: defined as a composite outcome of coronary heart disease, ischaemic stroke, or transient ischaemic attack</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">139,485</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Hippisley-Cox 2017<sup><a class="bk_pop" href="#niceng238er1.ref7">7</a></sup></p>
<p>(QResearch)</p>
<p>Development and internal validation of QRISK3</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>QRISK2&#x02013;2017</div></li><li class="half_rhythm"><div>QRISK-3</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>7,889,803 (derivation)</p>
<p>2,671,298 (validation)</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">25&#x02013;84</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: coronary heart disease, ischaemic stroke, or transient ischaemic attack</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">363,565 (derivation)</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Jaspers, 2020<sup><a class="bk_pop" href="#niceng238er1.ref11">11</a></sup></p>
<p>(EPIC-Norfolk)</p>
<p>Development, internal and external validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>LIFE-CVD</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<p>6715 (MESA derivation)</p>
<p>23548 (validation)</p>
<p>Europe</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">45&#x02013;80</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: fatal or non-fatal MI or stroke, resuscitated cardiac arrest, and coronary heart disease death</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">621 (MESA derivation)</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Lindbohm 2019<sup><a class="bk_pop" href="#niceng238er1.ref14">14</a></sup></p>
<p>(Whitehall II cohort)</p>
<p>External validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>ASCVD</div></li><li class="half_rhythm"><div>Revised ASCVD</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>6964</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">40&#x02013;64</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: fatal coronary heart disease, non-fatal myocardial infarction, fatal or non-fatal stroke</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">617</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Lindbohm 2021<sup><a class="bk_pop" href="#niceng238er1.ref13">13</a></sup></p>
<p>(Whitehall II cohort)</p>
<p>External validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>ASCVD</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>7996</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">40&#x02013;63</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: nonfatal myocardial infarction, CHD death, or fatal or nonfatal stroke</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1840</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Livingstone 2021<sup><a class="bk_pop" href="#niceng238er1.ref15">15</a></sup></p>
<p>(CPRD Gold database)</p>
<p>External validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>QRISK3</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>2,904,773</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">25&#x02013;84</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: coronary heart disease, ischaemic stroke, or transient ischaemic attack</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">95,517</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Livingstone 2022<sup><a class="bk_pop" href="#niceng238er1.ref16">16</a></sup></p>
<p>(CPRD Gold database)</p>
<p>Development and internal validation of CRISK tools</p>
<p>External validation of QRISK3</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>CRISK</div></li><li class="half_rhythm"><div>CRISK-CCI</div></li><li class="half_rhythm"><div>QRISK3</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>1,936,516 (derivation)</p>
<p>968,257 (validation)</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">25&#x02013;84</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: coronary heart disease, ischaemic stroke, or transient ischaemic attack</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">31,839</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Osborn 2015<sup><a class="bk_pop" href="#niceng238er1.ref21">21</a></sup> and 2019<sup><a class="bk_pop" href="#niceng238er1.ref19">19</a>, <a class="bk_pop" href="#niceng238er1.ref20">20</a></sup></p>
<p>(THIN)</p>
<p>Development and internal validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>PRIMROSE BMI</div></li><li class="half_rhythm"><div>PRIMROSE lipid</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>38,824</p>
<p>UK &#x02013; adults with severe mental illness</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">30&#x02013;90</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: myocardial infarction, angina pectoris, cerebrovascular accidents, or major coronary surgery</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2324</td></tr><tr><td headers="hd_h_niceng238er1.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Tillin 2014<sup><a class="bk_pop" href="#niceng238er1.ref23">23</a></sup></p>
<p>(SABRE)</p>
<p>External validation</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>QRISK2&#x02013;2012</div></li></ul></td><td headers="hd_h_niceng238er1.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>3674</p>
<p>UK</p></td><td headers="hd_h_niceng238er1.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">40&#x02013;69</td><td headers="hd_h_niceng238er1.tab4_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CVD: myocardial infarction, coronary revascularisation, angina, transient ischaemic attack or stroke</td><td headers="hd_h_niceng238er1.tab4_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">465</td></tr></tbody></table></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab5" class="table"><h3><span class="label">Table 5</span><span class="title">Summary of results: AUC (95% CI)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab5/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab5_lrgtbl__"><table><thead><tr><th id="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng238er1.tab5_1_1_1_1" style="text-align:left;vertical-align:bottom;">Tool and subgroup</th><th id="hd_h_niceng238er1.tab5_1_1_1_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">AUC (95% CI)</th></tr><tr><th headers="hd_h_niceng238er1.tab5_1_1_1_2" id="hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Women</th><th headers="hd_h_niceng238er1.tab5_1_1_1_2" id="hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Men</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Hippisley-Cox 2008</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref10">10</a>
</sup>
<b>. QRISK2&#x02013;2008; QResearch database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2008</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.817 (0.814&#x02013;0.820)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.792 (0.789&#x02013;0.794)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Collins 2012</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref3">3</a>
</sup>
<b>. QRISK2; THIN database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRISK2&#x02013;2011.</p>
<p>Age 30&#x02013;84</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.835 (0.834&#x02013;0.837)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.809 (0.807&#x02013;0.811)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRISK2&#x02013;2010.</p>
<p>Age 30&#x02013;84</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.835 (0.833&#x02013;0.837)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.811 (0.809&#x02013;0.812)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRISK2&#x02013;2011.</p>
<p>Age 35&#x02013;74</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.802 (0.800&#x02013;0.804)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.771 (0.769&#x02013;0.773)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRISK2&#x02013;2008.</p>
<p>Age 35&#x02013;74</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.800 (0.798&#x02013;0.803)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.772 (0.769&#x02013;0.774)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Hippisley-Cox 2014</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref8">8</a>
</sup>
<b>. QRISK2&#x02013;2014; CPRD database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2014</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.883 (0.882&#x02013;0.884)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.859 (0.858&#x02013;0.861)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Tillin 2014</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref23">23</a>
</sup>
<b>. QRISK2&#x02013;2012; SABRE cohort</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRISK2&#x02013;2012</p>
<p>European White</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.750 (0.670&#x02013;0.820)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.700 (0.660&#x02013;0.740)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRISK2&#x02013;2012</p>
<p>South Asian</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.750 (0.660&#x02013;0.840)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.730 (0.690&#x02013;0.770)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>QRISK2&#x02013;2012</p>
<p>African Caribbean</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.650 (0.540&#x02013;0.760)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.670 (0.570&#x02013;0.770)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Hippisley-Cox 2017</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref7">7</a>
</sup>
<b>. QRISK2&#x02013;2017 and QRISK3; QResearch database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2017: full cohort</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.879 (0.878&#x02013;0.88)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.858 (0.856&#x02013;0.859)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3 &#x02013; with SBP variation: full cohort</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.880 (0.879&#x02013;0.882)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.858 (0.857&#x02013;0.860)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3 &#x02013; without SBP variation: full cohort</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.880 (0.878&#x02013;0.881)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.858 (0.857&#x02013;0.859)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: CKD stage 3&#x02013;5</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.742 (0.720&#x02013;0.764)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.737 (0.715&#x02013;0.776)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: type 1 diabetes</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.823 (0.789&#x02013;0.857)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.804 (0.760&#x02013;0.832)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: type 2 diabetes</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.701 (0.691&#x02013;0.711)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.696 (0.687&#x02013;0.704)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: SMI</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.844 (0.837&#x02013;0.851)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.817 (0.809&#x02013;0.852)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: age &#x0003c;40</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.747 (0.728&#x02013;0.766)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.781 (0.771&#x02013;0.792)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: age 40&#x02013;59</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.752 (0.747&#x02013;0.757)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.732 (0.728&#x02013;0.736)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: age 60+</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.692 (0.689&#x02013;0.695)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.659 (0.656&#x02013;0.663)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Dziopa 2022</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref5">5</a>
</sup>
<b>. QRISK2, QRISK3 &#x00026;ASCVD; CPRD database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2: type 2 diabetes</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.664 (0.660&#x02013;0.668)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3: type 2 diabetes</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.664 (0.660&#x02013;0.667)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ASCVD: type 2 diabetes</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.668 (0.664&#x02013;0.671)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;"><b>Lindbohm 2019</b><sup><a class="bk_pop" href="#niceng238er1.ref14">14</a></sup>
<b>and 2021</b><sup><a class="bk_pop" href="#niceng238er1.ref13">13</a></sup><b>. ASCVD; Whitehall II cohort</b></td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>ASCVD (original version)</p>
<p>Age 40&#x02013;64</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.71</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>ASCVD (revised for Whitehall II cohort)</p>
<p>Age 40&#x02013;64</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.72</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>ASCVD (original version)</p>
<p>Age 40&#x02013;75 (cohort overlaps with above)</p></td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.699</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;"><b>Livingstone 2021</b><sup><a class="bk_pop" href="#niceng238er1.ref15">15</a></sup>
<b>and 2022</b><sup><a class="bk_pop" href="#niceng238er1.ref16">16</a></sup><b>; QRISK3, CRISK and CRISK-CCI; CPRD database</b></td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3: in full CPRD cohort</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.865 (0.861&#x02013;0.868)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.834 (0.831&#x02013;0.837)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3: in full CPRD cohort; age 25&#x02013;44</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.758 (0.747&#x02013;0.769)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.757 (0.749&#x02013;0.764)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3: in full CPRD cohort; age 45&#x02013;64</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.707 (0.702&#x02013;0.713)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.681 (0.677&#x02013;0.685)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3: in full CPRD cohort; age 65&#x02013;74</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.641 (0.635&#x02013;0.647)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.612 (0.606&#x02013;0.617)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3: in full CPRD cohort; age 75&#x02013;84</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.611 (0.605&#x02013;0.616)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.585 (0.579&#x02013;0.591)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3: in CRISK validation cohort (subset of above cohort)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.863 (0.858&#x02013;0.869)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.832 (0.827&#x02013;0.836)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3: in CRISK validation cohort; age 25&#x02013;44</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.765 (0.747&#x02013;0.783)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.740 (0.727&#x02013;0.753)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3: in CRISK validation cohort; age 45&#x02013;64</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.708 (0.698&#x02013;0.717)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.679 (0.672&#x02013;0.686)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3: in CRISK validation cohort; age 65&#x02013;74</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.641 (0.631&#x02013;0.652)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.606 (0.596&#x02013;0.615)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3: in CRISK validation cohort; age 75&#x02013;84</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.614 (0.605&#x02013;0.622)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.590 (0.580&#x02013;0.601)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CRISK</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.863 (0.858&#x02013;0.869)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.833 (0.828&#x02013;0.837)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;CRISK; age 25&#x02013;44</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.761 (0.743&#x02013;0.779)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.744 (0.731&#x02013;0.757)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;CRISK; age 45&#x02013;64</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.710 (0.701&#x02013;0.720)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.683 (0.676&#x02013;0.690)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;CRISK; age 65&#x02013;74</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.645 (0.634&#x02013;0.655)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.610 (0.600&#x02013;0.619)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;CRISK; age 75&#x02013;84</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.614 (0.605&#x02013;0.622)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.594 (0.583&#x02013;0.604)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CRISK-CCI</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.864 (0.859&#x02013;0.869)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.819 (0.815&#x02013;0.824)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;CRISK-CCI; age 25&#x02013;44</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.763 (0.745&#x02013;0.781)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.733 (0.720&#x02013;0.746)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;CRISK-CCI; age 45&#x02013;64</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.713 (0.703&#x02013;0.722)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.661 (0.654&#x02013;0.668)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;CRISK-CCI; age 65&#x02013;74</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.647 (0.637&#x02013;0.658)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.591 (0.581&#x02013;0.600)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;CRISK-CCI; age 75&#x02013;84</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.616 (0.607&#x02013;0.624)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.570 (0.559&#x02013;0.580)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;"><b>Osborn 2015</b>
<sup><a class="bk_pop" href="#niceng238er1.ref21">21</a></sup><b>. PRIMROSE (internal validation); UK THIN database</b></td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE-BMI</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.779 (0.749&#x02013;0.810)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.784 (0.735&#x02013;0.833)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE-lipid</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.790 (0.755&#x02013;0.824)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.796 (0.758&#x02013;0.833)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>SCORE2 working group 2021</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref2">2</a>
</sup>
<b>. SCORE2; CPRD database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SCORE2: full cohort</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.720 (0.717&#x02013;0.724)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;SCORE2: age 40&#x02013;50</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.698 (0.689&#x02013;0.706)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;SCORE2: age 50&#x02013;59</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.653 (0.647&#x02013;0.659)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;SCORE2: age 60&#x02013;69</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">&#x02003;0.620 (0.614&#x02013;0.625)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>SCORE2-OP working group 2021</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref1">1</a>
</sup>
<b>. SCORE2-OP &#x00026; ASCVD; CPRD database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SCORE2-OP.</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.657 (0.655&#x02013;0.662)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ASCVD</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.663 (0.659&#x02013;0.666)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Hippisley-Cox 2010</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref9">9</a>
</sup>
<b>. Lifetime QRISK2; QRESEARCH database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2- lifetime (at 10 years)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.842 (0.840&#x02013;0.844)</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.828 (0.826&#x02013;0.830)</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1 hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Jaspers 2020</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref11">11</a>
</sup>
<b>. LIFE-CVD; EPIC-Norfolk</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">LIFE-CVD</td><td headers="hd_h_niceng238er1.tab5_1_1_1_2 hd_h_niceng238er1.tab5_1_1_2_1 hd_h_niceng238er1.tab5_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">0.76 (0.75&#x02013;0.76)</td></tr></tbody></table></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab6" class="table"><h3><span class="label">Table 6</span><span class="title">Summary of results: D statistics</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab6/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab6_lrgtbl__"><table><thead><tr><th id="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng238er1.tab6_1_1_1_1" style="text-align:left;vertical-align:bottom;">Tool and subgroup</th><th id="hd_h_niceng238er1.tab6_1_1_1_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">D statistics</th></tr><tr><th headers="hd_h_niceng238er1.tab6_1_1_1_2" id="hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Women</th><th headers="hd_h_niceng238er1.tab6_1_1_1_2" id="hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Men</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1 hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1 hd_h_niceng238er1.tab6_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Hippisley-Cox 2008</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref10">10</a>
</sup>
<b>. QRISK2&#x02013;2008; QResearch database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2008</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.795 (1.769&#x02013;1.820)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.615 (1.594&#x02013;1.637)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1 hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1 hd_h_niceng238er1.tab6_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Collins 2012</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref3">3</a>
</sup>
<b>. QRISK2; THIN database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2011 (aged 30&#x02013;84)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.98 (1.96&#x02013;1.99)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.73 (1.71&#x02013;1.75)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2010 (aged 30&#x02013;84)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.97 (1.95&#x02013;1.99)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.76 (1.74&#x02013;1.77)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2011 (aged 35&#x02013;74)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.67 (1.65&#x02013;1.69)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.44 (1.42&#x02013;1.46)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2008 (aged 35&#x02013;74)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.66 (1.56&#x02013;1.76)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.45 (1.31&#x02013;1.59)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1 hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1 hd_h_niceng238er1.tab6_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Hippisley-Cox 2014</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref8">8</a>
</sup>
<b>. QRISK2&#x02013;2014; CPRD database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2014</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.328 (2.313&#x02013;2.343)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.085 (2.071&#x02013;2.098)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1 hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1 hd_h_niceng238er1.tab6_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Tillin 2014</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref23">23</a>
</sup>
<b>. QRISK2&#x02013;2012; SABRE cohort</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2 - European White</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.33 (0.79 to 1.87)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.06 (0.82 to 1.30)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2 - South Asian</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.55 (0.91 to 2.19)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.22 (0.99 to 1.45)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2 - African Caribbean</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.74 (0 to 1.63)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.96 (0.32 to 1.59)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1 hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1 hd_h_niceng238er1.tab6_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Hippisley-Cox 2017</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref7">7</a>
</sup>
<b>. QRISK2&#x02013;2017 and QRISK3; QResearch database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2017</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.48 (2.46 to 2.5)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.25 (2.24 to 2.27)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3-with SBP variability</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.49 (2.47 to 2.51)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.26 (2.25 to 2.28)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3-without SBP variability</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.48 (2.46 to 2.5)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.26 (2.24 to 2.27)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: CKD stage 3&#x02013;5</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.32 (1.17 to 1.47)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.28 (1.13 to 1.44)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: type 1 diabetes</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.94 (1.66 to 2.22)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.87 (1.64 to 2.11)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: type 2 diabetes</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.19 (1.12 to 1.25)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.12 (1.06 to 1.17)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: SMI</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.16 (2.1 to 2.22)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.94 (1.87 to 2.02)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: age &#x0003c;40</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.66 (1.55 to 1.76)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.75 (1.69 to 1.82)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: age 40&#x02013;59</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.48 (1.44 to 1.51)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.33 (1.31 to 1.36)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;QRISK3 &#x02013; without SBP variation: age 60+</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.11 (1.09 to 1.13)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">.903 (.883 to .922)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1 hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1 hd_h_niceng238er1.tab6_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;"><b>Livingstone 2021</b><sup><a class="bk_pop" href="#niceng238er1.ref15">15</a></sup>
<b>(Royston&#x02019;s D) QRISK3; CPRD database</b></td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3 (full cohort)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.43 (2.41 to 2.45)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2.1 (2.08 to 2.12)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3 (age 25&#x02013;44)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.69 (1.63 to 1.76)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.57 (1.52 to 1.61)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3 (age 45&#x02013;64)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.25 (1.22 to 1.28)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.04 (1.02 to 1.07)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3 (age 65&#x02013;74)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.82 (0.77 to 0.86)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.63 (0.59 to 0.66)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3 (age 75&#x02013;84)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.61 (0.56 to 0.66)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.46 (0.42 to 0.51)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1 hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1 hd_h_niceng238er1.tab6_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;"><b>Osborn 2015</b>
<sup><a class="bk_pop" href="#niceng238er1.ref21">21</a></sup><b>. PRIMROSE (internal validation); UK THIN database</b></td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE BMI</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.8 (1.7 to 1.9)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.84 (1.73 to 1.96)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE lipid</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.87 (1.76 to 1.98)</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.92 (1.8 to 2.03)</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1 hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1 hd_h_niceng238er1.tab6_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;"><b>Hippisley-Cox 2010. Lifetime QRISK2</b>
<sup><a class="bk_pop" href="#niceng238er1.ref9">9</a></sup><b>. Lifetime QRISK2; QRESEARCH database</b></td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2 lifetime</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">NR</td><td headers="hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">NR</td></tr><tr><td headers="hd_h_niceng238er1.tab6_1_1_1_1 hd_h_niceng238er1.tab6_1_1_1_2 hd_h_niceng238er1.tab6_1_1_2_1 hd_h_niceng238er1.tab6_1_1_2_2" colspan="3" rowspan="1" style="text-align:left;vertical-align:top;">Abbreviation: NR; not reported</td></tr></tbody></table></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab7" class="table"><h3><span class="label">Table 7</span><span class="title">Summary of results: sensitivity and specificity</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab7/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab7_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng238er1.tab7_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Tool</th><th id="hd_h_niceng238er1.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Threshold</th><th id="hd_h_niceng238er1.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Sensitivity, % (95% CI)</th><th id="hd_h_niceng238er1.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Specificity, % (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab7_1_1_1_1 hd_h_niceng238er1.tab7_1_1_1_2 hd_h_niceng238er1.tab7_1_1_1_3 hd_h_niceng238er1.tab7_1_1_1_4" colspan="4" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Hippisley-Cox 2014</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref8">8</a>
</sup>
<b>. QRISK2&#x02013;2014; CPRD database</b>
</td></tr><tr><td headers="hd_h_niceng238er1.tab7_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2014</td><td headers="hd_h_niceng238er1.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>20.7% (top decile of predicted risk)</p>
<p>Observed risk 31.8%</p></td><td headers="hd_h_niceng238er1.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">49.9</td><td headers="hd_h_niceng238er1.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">91.9</td></tr><tr><td headers="hd_h_niceng238er1.tab7_1_1_1_1 hd_h_niceng238er1.tab7_1_1_1_2 hd_h_niceng238er1.tab7_1_1_1_3 hd_h_niceng238er1.tab7_1_1_1_4" colspan="4" rowspan="1" style="text-align:left;vertical-align:top;">
<b>Livingstone 2022</b>
<sup>
<a class="bk_pop" href="#niceng238er1.ref16">16</a>
</sup>
<b>. QRISK3 and CRISK-CCI; CPRD database</b>
<sup><a class="bk_pop" href="#niceng238er1.tab7_1">*</a></sup>
</td></tr><tr><td headers="hd_h_niceng238er1.tab7_1_1_1_1" rowspan="3" colspan="1" style="text-align:left;vertical-align:top;">QRISK3</td><td headers="hd_h_niceng238er1.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">7.5%</td><td headers="hd_h_niceng238er1.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 75.0</p>
<p>Men: 79.5</p></td><td headers="hd_h_niceng238er1.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 81.2</p>
<p>Men: 71.5</p></td></tr><tr><td headers="hd_h_niceng238er1.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">10%</td><td headers="hd_h_niceng238er1.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 68.3</p>
<p>Men: 71.3</p></td><td headers="hd_h_niceng238er1.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 85.3</p>
<p>Men: 77.9</p></td></tr><tr><td headers="hd_h_niceng238er1.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">20%</td><td headers="hd_h_niceng238er1.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 47.0</p>
<p>Men: 45.1</p></td><td headers="hd_h_niceng238er1.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 93.1</p>
<p>Men: 90.9</p></td></tr><tr><td headers="hd_h_niceng238er1.tab7_1_1_1_1" rowspan="3" colspan="1" style="text-align:left;vertical-align:top;">CRISK-CCI</td><td headers="hd_h_niceng238er1.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">7.5%</td><td headers="hd_h_niceng238er1.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 73.3</p>
<p>Men: 77.9</p></td><td headers="hd_h_niceng238er1.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 82.5</p>
<p>Men: 72.5</p></td></tr><tr><td headers="hd_h_niceng238er1.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">10%</td><td headers="hd_h_niceng238er1.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 65.9</p>
<p>Men: 69.1</p></td><td headers="hd_h_niceng238er1.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 69.1</p>
<p>Men: 79.0</p></td></tr><tr><td headers="hd_h_niceng238er1.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">20%</td><td headers="hd_h_niceng238er1.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 41.2</p>
<p>Men: 37.6</p></td><td headers="hd_h_niceng238er1.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 94.5</p>
<p>Men: 92.3</p></td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt>*</dt><dd><div id="niceng238er1.tab7_1"><p class="no_margin">Sensitivity and specificity values have been calculated from data available in the study report and are therefore approximate. See also <a href="#niceng238er1.appe.s2">Appendix E.2</a> and <a href="#niceng238er1.appe.s3">E.3</a>.</p></div></dd></dl></div></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab8" class="table"><h3><span class="label">Table 8</span><span class="title">Clinical evidence profile: Discriminative capacity of selected CVD risk prediction tools</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab8/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab8_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk tool</th><th id="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">No of studies</th><th id="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">N</th><th id="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Risk of bias</th><th id="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Inconsistency</th><th id="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Indirectness</th><th id="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="writing-mode:sideways-lr;text-align:left;vertical-align:bottom;">Imprecision</th><th id="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Area Under Curve: Individual study effects [point estimate (95% CI)]</th><th id="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Confidence</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2008 (internal and external validation)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 1441890</p>
<p>Men: 1392787</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious inconsistency<sup><a class="bk_pop" href="#niceng238er1.tab8_2">b</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women 30&#x02013;84: 0.817 (0.814&#x02013;0.820)</p>
<p>Men 30&#x02013;84: 0.792 (0.789&#x02013;0.794)</p>
<p>Women aged 35&#x02013;74: 0.800 (0.798&#x02013;0.803)</p>
<p>Men aged 35&#x02013;74: 0.772 (0.769&#x02013;0.774)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2010</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 1066127</p>
<p>Men: 1018318</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women aged 30&#x02013;84: 0.835 (0.833&#x02013;0.837)</p>
<p>Men aged 30&#x02013;84: 0.811 (0.809&#x02013;0.812)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HIGH</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2011</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 1066127</p>
<p>Men: 1018318</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women aged 30&#x02013;84: 0.835 (0.834&#x02013;0.837)</p>
<p>Men aged 30&#x02013;84: 0.809 (0.807&#x02013;0.811)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HIGH</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2012</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>European White Women: 444</p>
<p>South Asian Women: 241</p>
<p>African Caribbean Women: 247</p>
<p>African Caribbean Men: 307</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_4">d</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>European white women: 0.750 (0.670&#x02013;0.820)</p>
<p>South Asian women: 0.750 (0.660&#x02013;0.840)</p>
<p>African Caribbean women: 0.650 (0.540&#x02013;0.760)</p>
<p>European white men: 0.700 (0.660&#x02013;0.740)</p>
<p>South Asian men: 0.730 (0.690&#x02013;0.770) </p>
<p>African Caribbean men: 0.670 (0.570&#x02013;0.770)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">LOW</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>European White Men: 1359</p>
<p>South Asian Men: 1076</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>European white men: 0.700 (0.660&#x02013;0.740)</p>
<p>South Asian men: 0.730 (0.690&#x02013;0.770)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2014</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 1682709</p>
<p>Men: 1588803</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.883 (0.882&#x02013;0.884)</p>
<p>Men: 0.859 (0.858&#x02013;0.861)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HIGH</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2&#x02013;2017</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 1360457</p>
<p>Men: 1310841</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_5">e</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.879 (0.878&#x02013;0.88)</p>
<p>Men: 0.858 (0.856&#x02013;0.859)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2-year not specified</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">168871</td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Type 2 diabetes: 0.664 (0.660&#x02013;0.668)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HIGH</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3-year not specified</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">168871</td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Type 2 diabetes: 0.664 (0.660&#x02013;0.667)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HIGH</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3&#x02013;2017 internal and external validation (with SBP variability)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">2</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 2845054</p>
<p>Men: 2731017</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">serious inconsistency<sup><a class="bk_pop" href="#niceng238er1.tab8_2">b</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.880 (0.879&#x02013;0.882)</p>
<p>0.865 (0.861&#x02013;0.868)</p>
<p>Men: 0.858 (0.857&#x02013;0.860)</p>
<p>0.834 (0.831&#x02013;0.837)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3&#x02013; 2017 internal validation (without SBP variability)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 1360457</p>
<p>Men: 1310841</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_6">f</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.880 (0.878&#x02013;0.881)</p>
<p>Men: 0.858 (0.857&#x02013;0.859)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3&#x02013;2017 (Type 1 diabetes subgroup)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 3351</p>
<p>Men: 3932</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_6">f</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.823 (0.789&#x02013;0.857)</p>
<p>Men: 0.804 (0.760&#x02013;0.832)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK3&#x02013;2017 (CKD stage 3&#x02013;5 subgroup)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 6949</p>
<p>Men: 4232</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_6">f</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.742 (0.720&#x02013;0.764)</p>
<p>Men: 0.737 (0.715&#x02013;0.776)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ASCVD</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">4</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Type 2 diabetes: 168871</p>
<p>Age&#x02265;65: 319390</p>
<p>Age 40&#x02013;64: 6964</p>
<p>Age 40&#x02013;75: 7996</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_7">g</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Type 2 diabetes: 0.668 (0.664&#x02013;0.671)</p>
<p>Age&#x02265;65: 0.663 (0.659&#x02013;0.666)</p>
<p>Age 40&#x02013;64: 0.71</p>
<p>Age 40&#x02013;75: 0.72</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ASCVD revised for Whitehall II cohort</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">6964</td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_8">h</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Age 40&#x02013;75: 0.699</td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CRISK internal validation</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 494865</p>
<p>Men: 473392</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_6">f</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.863 (0.858&#x02013;0.869)</p>
<p>Men: 0.833 (0.828&#x02013;0.837)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CRISK-CCI internal validation</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 494865</p>
<p>Men: 473392</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_6">f</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.864 (0.859&#x02013;0.869)</p>
<p>Men: 0.819 (0.815&#x02013;0.824)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE-BMI internal validation</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 2041</p>
<p>Men: 1842</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_6">f</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.779 (0.749&#x02013;0.810)</p>
<p>Men: 0.784 (0.735&#x02013;0.833)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PRIMROSE-lipid internal validation</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 2041</p>
<p>Men: 1842</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_6">f</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.790 (0.755&#x02013;0.824)</p>
<p>Men: 0.796 (0.758&#x02013;0.833)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SCORE2</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">927079</td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias</td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.720 (0.717&#x02013;0.724)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HIGH</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SCORE2-OP</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">319390</td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias</td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.657 (0.655&#x02013;0.662)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HIGH</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK lifetime internal validation (assessed over 10 years)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Women: 645012</p>
<p>Men: 622147</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Serious risk of bias<sup><a class="bk_pop" href="#niceng238er1.tab8_1">a</a>,<a class="bk_pop" href="#niceng238er1.tab8_6">f</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;"><p>Women: 0.842 (0.840&#x02013;0.844)</p>
<p>Men: 0.828 (0.826&#x02013;0.830)</p></td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MODERATE</td></tr><tr><td headers="hd_h_niceng238er1.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">LIFE-CVD</td><td headers="hd_h_niceng238er1.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1</td><td headers="hd_h_niceng238er1.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">23548</td><td headers="hd_h_niceng238er1.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious risk of bias</td><td headers="hd_h_niceng238er1.tab8_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious inconsistency</td><td headers="hd_h_niceng238er1.tab8_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious indirectness</td><td headers="hd_h_niceng238er1.tab8_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No serious imprecision<sup><a class="bk_pop" href="#niceng238er1.tab8_3">c</a></sup></td><td headers="hd_h_niceng238er1.tab8_1_1_1_8" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.760 (0.750&#x02013;0.760)</td><td headers="hd_h_niceng238er1.tab8_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HIGH</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">GRADE was conducted with emphasis on area under the curve, as this was the primary measure for decision making</p></div></dd><dt>a)</dt><dd><div id="niceng238er1.tab8_1"><p class="no_margin">Risk of bias was assessed using the PROBAST checklist. Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias. Risk of bias was serious for some risk tools because of low event rate, insufficient reporting of outcomes, lack of calibration data, or having internal validation only.</p></div></dd><dt>b)</dt><dd><div id="niceng238er1.tab8_2"><p class="no_margin">If no pooling were possible, inconsistency was assessed by inspection of the degree of overlap of confidence intervals between studies: if one of more CIs did not overlap then a rating of serious inconsistency was given. Reasons for heterogeneity between studies may include geographical/cultural/ethnic differences.</p></div></dd><dt>c)</dt><dd><div id="niceng238er1.tab8_3"><p class="no_margin">The judgement of precision was based on the spread of confidence interval across two clinical thresholds: C statistics of 0.5 and 0.7. The threshold of 0.5 marked the boundary between no predictive value better than chance and a predictive value better than chance. The threshold of 0.7 marked the boundary above which the committee might consider recommendations. If the 95% CIs crossed one of these thresholds a rating of serious imprecision was given and if they crossed both of these thresholds a rating of very serious imprecision as given.</p></div></dd><dt>d)</dt><dd><div id="niceng238er1.tab8_4"><p class="no_margin">Event rate &#x0003c;100 in each subgroup</p></div></dd><dt>e)</dt><dd><div id="niceng238er1.tab8_5"><p class="no_margin">Same data source as internal validation cohort</p></div></dd><dt>f)</dt><dd><div id="niceng238er1.tab8_6"><p class="no_margin">Internal validation only</p></div></dd><dt>g)</dt><dd><div id="niceng238er1.tab8_7"><p class="no_margin">Insufficient reporting (point estimate only) in 2/4 and no calibration data in 1/4 studies</p></div></dd><dt>h)</dt><dd><div id="niceng238er1.tab8_8"><p class="no_margin">Insufficient reporting (point estimate only)</p></div></dd></dl></div></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab9" class="table"><h3><span class="label">Table 9</span><span class="title">QRISK2-2012 predicted : observed events</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab9/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab9_lrgtbl__"><table><thead><tr><th id="hd_h_niceng238er1.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Tillin 2014</th><th id="hd_h_niceng238er1.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Men</th><th id="hd_h_niceng238er1.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Women</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2 - European White</td><td headers="hd_h_niceng238er1.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">0.78 (0.72 to 0.85)</td><td headers="hd_h_niceng238er1.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">0.73 (0.65 to 0.80)</td></tr><tr><td headers="hd_h_niceng238er1.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2 - South Asian</td><td headers="hd_h_niceng238er1.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">0.71 (0.64 to 0.78)</td><td headers="hd_h_niceng238er1.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">0.52 (0.34 to 0.72)</td></tr><tr><td headers="hd_h_niceng238er1.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QRISK2 - African Caribbean</td><td headers="hd_h_niceng238er1.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">0.95 (0.80 to 1.00)</td><td headers="hd_h_niceng238er1.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">1.22 (1.04 to 1.84)</td></tr></tbody></table></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab10" class="table"><h3><span class="label">Table 10</span><span class="title">Predicted and observed lifetime risk of cardiovascular disease by 10th of predicted lifetime risk in the validation cohort of 1,267,159 patients</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab10/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab10_lrgtbl__"><table><thead><tr><th id="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng238er1.tab10_1_1_1_1" style="text-align:left;vertical-align:top;">Model decile</th><th id="hd_h_niceng238er1.tab10_1_1_1_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;">Mean lifetime risk (%)</th><th id="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng238er1.tab10_1_1_1_3" style="text-align:left;vertical-align:top;">Ratio of predicted to observed</th></tr><tr><th headers="hd_h_niceng238er1.tab10_1_1_1_2" id="hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Predicted</th><th headers="hd_h_niceng238er1.tab10_1_1_1_2" id="hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Observed</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1 hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1 hd_h_niceng238er1.tab10_1_1_2_2 hd_h_niceng238er1.tab10_1_1_1_3" colspan="4" rowspan="1" style="text-align:left;vertical-align:top;">Women:</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;1</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">18.5</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">22.4</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.83</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;2</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">21.3</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">25.9</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.82</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;3</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">22.9</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">27.3</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.84</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;4</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">24.4</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">28.5</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.86</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;5</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">26.0</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">29.4</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.88</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;6</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">27.8</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">31.9</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.87</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;7</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">30.2</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">34.8</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.87</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;8</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">33.7</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">36.8</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.92</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;9</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">39.5</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">41.3</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.96</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;10</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">51.9</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50.8</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.02</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1 hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1 hd_h_niceng238er1.tab10_1_1_2_2 hd_h_niceng238er1.tab10_1_1_1_3" colspan="4" rowspan="1" style="text-align:left;vertical-align:top;">Men:</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;1</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">22.5</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">25</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.90</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;2</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">27.2</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">32.1</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.85</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;3</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">29.8</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">34.9</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.85</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;4</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">32.0</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">37.3</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.86</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;5</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">34.2</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">39.3</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.87</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;6</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">36.6</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">42.1</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.87</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;7</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">39.5</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">44.9</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.88</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;8</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">43.5</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">47.5</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.92</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;9</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">49.9</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">51</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.98</td></tr><tr><td headers="hd_h_niceng238er1.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">&#x02003;10</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">64.4</td><td headers="hd_h_niceng238er1.tab10_1_1_1_2 hd_h_niceng238er1.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">63.7</td><td headers="hd_h_niceng238er1.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1.01</td></tr></tbody></table></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="niceng238er1.tab11" class="table"><h3><span class="label">Table 11</span><span class="title">Health economic evidence profile: risk assessment tools</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK603622/table/niceng238er1.tab11/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng238er1.tab11_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng238er1.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng238er1.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng238er1.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng238er1.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng238er1.tab11_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng238er1.tab11_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng238er1.tab11_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng238er1.tab11_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng238er1.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Zomer 2017<sup><a class="bk_pop" href="#niceng238er1.ref24">24</a></sup> (UK)</td><td headers="hd_h_niceng238er1.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup><a class="bk_pop" href="#niceng238er1.tab11_1">(a)</a></sup></td><td headers="hd_h_niceng238er1.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup><a class="bk_pop" href="#niceng238er1.tab11_2">(b)</a></sup></td><td headers="hd_h_niceng238er1.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<ul><li class="half_rhythm"><div>Patient-level simulation model</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: people with SMI and no CVD</div></li><li class="half_rhythm"><div>Comparators<sup><a class="bk_pop" href="#niceng238er1.tab11_3">(c)</a></sup>:</div><ol><li class="half_rhythm"><div>General population lipid algorithm</div></li><li class="half_rhythm"><div>General population BMI algorithm</div></li><li class="half_rhythm"><div>SMI-specific lipid algorithm</div></li><li class="half_rhythm"><div>SMI-specific BMI algorithm</div></li></ol></li><li class="half_rhythm"><div>Time horizon: 10 years</div></li></ul></td><td headers="hd_h_niceng238er1.tab11_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>2&#x02013;1: &#x000a3;11</p>
<p>3&#x02013;1: &#x000a3;5</p>
<p>4&#x02013;1: &#x02212;&#x000a3;7<sup><a class="bk_pop" href="#niceng238er1.tab11_4">(d)</a></sup></p></td><td headers="hd_h_niceng238er1.tab11_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>2&#x02013;1: &#x02212;0.002</p>
<p>3&#x02013;1: &#x02212;0.001</p>
<p>4&#x02013;1: 0.002</p></td><td headers="hd_h_niceng238er1.tab11_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SMI-specific BMI algorithm is dominant (lower costs and higher QALYs than all other options)<br /></td><td headers="hd_h_niceng238er1.tab11_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><p>Probability cost effective (&#x000a3;20K/30K threshold):</p>
<ol><li class="half_rhythm"><div>~22%/~22%</div></li><li class="half_rhythm"><div>~17%/~17%</div></li><li class="half_rhythm"><div>~13%/~13%</div></li><li class="half_rhythm"><div>~43%/~43%</div></li></ol>
<p>In some deterministic sensitivity analyses the general population lipid algorithm became the most cost-effective option (when statin compliance was reduced to 50%, when utility in the SMI population was reduced, and in some of the scenarios when costs were doubled).</p></td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">Abbreviations: BMI = body mass index; CVD = cardiovascular disease; ICER = incremental cost-effectiveness ratio; QALY = quality-adjusted life years; SMI = serious mental illness.</p></div></dd><dt>(a)</dt><dd><div id="niceng238er1.tab11_1"><p class="no_margin">Doesn&#x02019;t include comparison to general population algorithms used in current practice (general population algorithms were UK adjusted Framingham equations which don&#x02019;t meet the update review protocol [QRISK2 recommended in the 2014 CG181 update over Framingham-based assessments]). 2012/13 cost year and some based on resource use before 2007 may not reflect current NHS context. Cost of blood test excluded for BMI-based algorithms but would be required in patients starting statin therapy so can monitor impact of treatment.</p></div></dd><dt>(b)</dt><dd><div id="niceng238er1.tab11_2"><p class="no_margin">The PRIMROSE SMI-specific risk tool has not been externally validated (see clinical review). Time horizon of 10 years may not fully reflect the impact on costs and QALYs.</p></div></dd><dt>(c)</dt><dd><div id="niceng238er1.tab11_3"><p class="no_margin">General population algorithms were UK adjusted Framingham (D&#x02019;Agostino 2008) &#x02013; not included in update review protocol; SMI-specific algorithms were PRIMROSE. For all groups, people assessed as &#x0003e;10% 10-year CV risk receive and statin treatment (20mg atorvastatin). People already on statin therapy (in THIN) remained on treatment irrespective of risk level. A &#x02019;No risk assessment&#x02019; group without additional statin treatment was also estimated but is not presented here as did not meet the protocol.</p></div></dd><dt>(d)</dt><dd><div id="niceng238er1.tab11_4"><p class="no_margin">2012/13 costs. Cost components incorporated: risk assessment (GP time and blood tests); statins; CVD event costs (first and subsequent years).</p></div></dd></dl></div></div></div></div></div><div><p>Final</p></div><div><p>Evidence review underpinning recommendations 1.1.7 to 1.1.11 and 1.1.16 in the NICE guideline</p><p>Developed by National Institute for Health and Care Excellence</p></div><div><p><b>Disclaimer</b>: The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.</p><p>Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.</p><p>NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <a href="https://www.gov.wales/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Welsh Government</a>, <a href="http://www.scotland.gov.uk/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Scottish Government</a>, and <a href="https://www.northernireland.gov.uk/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Northern Ireland Executive</a>. All NICE guidance is subject to regular review and may be updated or withdrawn.</p></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> © NICE 2023.</div><div class="small"><span class="label">Bookshelf ID: NBK603622</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/38723137" title="PubMed record of this title" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">38723137</a></span></div></div></div>
</div>
</div>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-toc&amp;ncbi_acc=NBK603622&amp;ncbi_domain=niceng238er1&amp;ncbi_report=printable&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK603622/?report=printable&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal107 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
</html>