108 lines
No EOL
39 KiB
XML
108 lines
No EOL
39 KiB
XML
<?xml version="1.0" encoding="utf-8"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
||
|
||
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||
<!-- AppResources meta begin -->
|
||
<meta name="paf-app-resources" content="" />
|
||
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
||
|
||
<!-- AppResources meta end -->
|
||
|
||
<!-- TemplateResources meta begin -->
|
||
<meta name="paf_template" content="" />
|
||
|
||
<!-- TemplateResources meta end -->
|
||
|
||
<!-- Logger begin -->
|
||
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK593992" /><meta name="ncbi_domain" content="glycopodv2" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK593992/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
|
||
<!-- Logger end -->
|
||
|
||
<title>Isolation of pulmonary surfactant proteins from bronchoalveolar lavage fluids - Glycoscience Protocols (GlycoPODv2) - NCBI Bookshelf</title>
|
||
|
||
<!-- AppResources external_resources begin -->
|
||
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
|
||
|
||
<!-- AppResources external_resources end -->
|
||
|
||
<!-- Page meta begin -->
|
||
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Glycoscience Protocols (GlycoPODv2) [Internet]" /><meta name="citation_title" content="Isolation of pulmonary surfactant proteins from bronchoalveolar lavage fluids" /><meta name="citation_publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="citation_date" content="2022/03/18" /><meta name="citation_author" content="Shigeru Ariki" /><meta name="citation_author" content="Chiaki Nishitani" /><meta name="citation_author" content="Yoshio Kuroki" /><meta name="citation_pmid" content="37590721" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK593992/" /><meta name="citation_keywords" content="pulmonary surfactant" /><meta name="citation_keywords" content="pulmonary collectins" /><meta name="citation_keywords" content="surfactant protein-A" /><meta name="citation_keywords" content="surfactant protein-D" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Isolation of pulmonary surfactant proteins from bronchoalveolar lavage fluids" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="DC.Contributor" content="Shigeru Ariki" /><meta name="DC.Contributor" content="Chiaki Nishitani" /><meta name="DC.Contributor" content="Yoshio Kuroki" /><meta name="DC.Date" content="2022/03/18" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK593992/" /><meta name="description" content="Alveolar type II cells produce and secrete a complex mixture of lipids and proteins called pulmonary surfactant, which keeps the alveoli from collapsing at the end of expiration (1,2). Surfactant enables an effortless process that occurs with a frequency of ~25,000 cycles/d in breathing (2,3). Pulmonary surfactant contains four specific proteins: SP-A, SP-B, SP-C, and SP-D (4). The hydrophobic surfactant proteins, SP-B and SP-C, affect the biophysical functions of surfactant. The hydrophilic surfactant proteins, SP-A and SP-D, belong to the C-type lectin superfamily. SP-A and SP-D along with mannose-binding lectin comprise a subgroup of the C-type lectins that possess collagen-like domains and are called collectins (5). SP-A specifically binds dipalmitoyl phosphatidylcholine that is essential for biophysical function of surfactant (6). SP-A is a potent negative regulator of surfactant phospholipid secretion and affects the regulation of recycling of dipalmitoyl phosphatidylcholine (7), whereas SP-D binds to phosphatidylinositol (8). Additionally, SP-A and SP-D have been implicated in the regulation of pulmonary host defense and inflammation (9). SP-A and SP-D directly interact with various microorganisms, including bacteria and viruses, and inhibit their growth (10). Pulmonary collectins bind to cell surface receptors, including CD14, Toll-like receptors, SIRPα, and celrectculin/CD91, and attenuate or enhance inflammation in a microbial ligand-specific manner (11,12)." /><meta name="og:title" content="Isolation of pulmonary surfactant proteins from bronchoalveolar lavage fluids" /><meta name="og:type" content="book" /><meta name="og:description" content="Alveolar type II cells produce and secrete a complex mixture of lipids and proteins called pulmonary surfactant, which keeps the alveoli from collapsing at the end of expiration (1,2). Surfactant enables an effortless process that occurs with a frequency of ~25,000 cycles/d in breathing (2,3). Pulmonary surfactant contains four specific proteins: SP-A, SP-B, SP-C, and SP-D (4). The hydrophobic surfactant proteins, SP-B and SP-C, affect the biophysical functions of surfactant. The hydrophilic surfactant proteins, SP-A and SP-D, belong to the C-type lectin superfamily. SP-A and SP-D along with mannose-binding lectin comprise a subgroup of the C-type lectins that possess collagen-like domains and are called collectins (5). SP-A specifically binds dipalmitoyl phosphatidylcholine that is essential for biophysical function of surfactant (6). SP-A is a potent negative regulator of surfactant phospholipid secretion and affects the regulation of recycling of dipalmitoyl phosphatidylcholine (7), whereas SP-D binds to phosphatidylinositol (8). Additionally, SP-A and SP-D have been implicated in the regulation of pulmonary host defense and inflammation (9). SP-A and SP-D directly interact with various microorganisms, including bacteria and viruses, and inhibit their growth (10). Pulmonary collectins bind to cell surface receptors, including CD14, Toll-like receptors, SIRPα, and celrectculin/CD91, and attenuate or enhance inflammation in a microbial ligand-specific manner (11,12)." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK593992/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-glycopodv2-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/glycopodv2/g26-isopulmonary/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK593992/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
|
||
|
||
<!-- Page meta end -->
|
||
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8D7CA17D6716A10000000000350028.m_5" />
|
||
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
|
||
<body class="book-part">
|
||
<div class="grid no_max_width">
|
||
<div class="col twelve_col nomargin shadow">
|
||
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
|
||
<div class="sysmessages">
|
||
<noscript>
|
||
<p class="nojs">
|
||
<strong>Warning:</strong>
|
||
The NCBI web site requires JavaScript to function.
|
||
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
|
||
</p>
|
||
</noscript>
|
||
</div>
|
||
<!--/.sysmessage-->
|
||
<div class="wrap">
|
||
<div class="page">
|
||
<div class="top">
|
||
|
||
<div class="header">
|
||
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<!--<component id="Page" label="headcontent"/>-->
|
||
|
||
</div>
|
||
<div class="content">
|
||
<!-- site messages -->
|
||
<div class="container content">
|
||
<div class="document">
|
||
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Nishihara S, Angata K, Aoki-Kinoshita KF, et al., editors. Glycoscience Protocols (GlycoPODv2) [Internet]. Saitama (JP): Japan Consortium for Glycobiology and Glycotechnology; 2021-. </p></div></div></div>
|
||
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK593992_"><span class="title" itemprop="name">Isolation of pulmonary surfactant proteins from bronchoalveolar lavage fluids</span></h1><div class="contrib half_rhythm"><span itemprop="author">Shigeru Ariki</span>, Doctor of Science, Ph.D.<div class="affiliation small">Sapporo Medical University<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="pj.ca.dempas@bcskiras" class="oemail">pj.ca.dempas@bcskiras</a></div></div><div class="small">Corresponding author.</div></div><div class="contrib half_rhythm"><span itemprop="author">Chiaki Nishitani</span>, Doctor of Science, Ph.D.<div class="affiliation small">Sapporo Medical University</div></div><div class="contrib half_rhythm"><span itemprop="author">Yoshio Kuroki</span>, M.D., Ph.D.<div class="affiliation small">Sapporo Medical University<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="moc.liamg@4150yikoruk" class="oemail">moc.liamg@4150yikoruk</a></div></div></div><p class="small">Created: <span itemprop="datePublished">September 30, 2021</span>; Last Revision: <span itemprop="dateModified">March 18, 2022</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><div id="g26-isopulmonary.Introduction"><h2 id="_g26-isopulmonary_Introduction_">Introduction</h2><p>Alveolar type II cells produce and secrete a complex mixture of lipids and proteins called pulmonary surfactant, which keeps the alveoli from collapsing at the end of expiration (<a class="bk_pop" href="#g26-isopulmonary.REF.1">1</a>,<a class="bk_pop" href="#g26-isopulmonary.REF.2">2</a>). Surfactant enables an effortless process that occurs with a frequency of ~25,000 cycles/d in breathing (<a class="bk_pop" href="#g26-isopulmonary.REF.2">2</a>,<a class="bk_pop" href="#g26-isopulmonary.REF.3">3</a>). Pulmonary surfactant contains four specific proteins: SP-A, SP-B, SP-C, and SP-D (<a class="bk_pop" href="#g26-isopulmonary.REF.4">4</a>). The hydrophobic surfactant proteins, SP-B and SP-C, affect the biophysical functions of surfactant. The hydrophilic surfactant proteins, SP-A and SP-D, belong to the C-type lectin superfamily. SP-A and SP-D along with mannose-binding lectin comprise a subgroup of the C-type lectins that possess collagen-like domains and are called collectins (<a class="bk_pop" href="#g26-isopulmonary.REF.5">5</a>). SP-A specifically binds dipalmitoyl phosphatidylcholine that is essential for biophysical function of surfactant (<a class="bk_pop" href="#g26-isopulmonary.REF.6">6</a>). SP-A is a potent negative regulator of surfactant phospholipid secretion and affects the regulation of recycling of dipalmitoyl phosphatidylcholine (<a class="bk_pop" href="#g26-isopulmonary.REF.7">7</a>), whereas SP-D binds to phosphatidylinositol (<a class="bk_pop" href="#g26-isopulmonary.REF.8">8</a>). Additionally, SP-A and SP-D have been implicated in the regulation of pulmonary host defense and inflammation (<a class="bk_pop" href="#g26-isopulmonary.REF.9">9</a>). SP-A and SP-D directly interact with various microorganisms, including bacteria and viruses, and inhibit their growth (<a class="bk_pop" href="#g26-isopulmonary.REF.10">10</a>). Pulmonary collectins bind to cell surface receptors, including CD14, Toll-like receptors, SIRPα, and celrectculin/CD91, and attenuate or enhance inflammation in a microbial ligand-specific manner (<a class="bk_pop" href="#g26-isopulmonary.REF.11">11</a>,<a class="bk_pop" href="#g26-isopulmonary.REF.12">12</a>).</p></div><div id="g26-isopulmonary.Protocol"><h2 id="_g26-isopulmonary_Protocol_">Protocol</h2><p>Because SP-A, SP-D, and surfactant lipids exist in the alveoli, these materials are obtained in bronchoalveolar lavage (BAL) fluids recovered by washing the lung. BAL fluids are the starting material for isolating SP-A and SP-D. After the BAL fluids are centrifuged at 85,000 ×<i>g</i> at 4°C overnight, SP-A is sedimented with surfactant lipids, whereas SP-D is present in the supernatant (<a class="bk_pop" href="#g26-isopulmonary.REF.13">13</a>).</p><p>In this chapter, protocols for isolating pulmonary collectins (SP-A and SP-D) will be described.</p><div id="g26-isopulmonary.Materials"><h3>Materials</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Sepharose 6B (GE Healthcare, Little Chalfont, UK)</p></dd><dt>2.</dt><dd><p class="no_top_margin">Buffer A (0.5 M sodium carbonate, pH 11.0)</p></dd><dt>3.</dt><dd><p class="no_top_margin">Buffer B (0.5 M sodium carbonate, pH 10.0)</p></dd><dt>4.</dt><dd><p class="no_top_margin">Buffer C (0.5 M sodium carbonate, pH 8.5)</p></dd><dt>5.</dt><dd><p class="no_top_margin">Divinyl sulfone (Sigma, St Louis, MO)</p></dd><dt>6.</dt><dd><p class="no_top_margin">D-Mannose solution (20% (w/v) D-mannose in buffer B)</p></dd><dt>7.</dt><dd><p class="no_top_margin">Pooled BAL fluids from rat or pooled fluids of therapeutic BAL from individuals with pulmonary alveolar proteinosis.</p></dd><dt>8.</dt><dd><p class="no_top_margin">Buffer D (10 mM of Tris-HCl buffer, pH 7.4, containing 150 mM of NaCl)</p></dd><dt>9.</dt><dd><p class="no_top_margin">Buffer E (10 mM of Tris-HCl buffer, pH 7.4)</p></dd><dt>10.</dt><dd><p class="no_top_margin">NaBr solution (1.64 M NaBr in buffer D)</p></dd><dt>11.</dt><dd><p class="no_top_margin">Butanol (Sigma, St Louis, MO)</p></dd><dt>12.</dt><dd><p class="no_top_margin">Buffer F: loading buffer for SP-A isolation (10 mM of Tris-HCl buffer, pH 7.4 containing 5 mM of CaCl<sub>2</sub>)</p></dd><dt>13.</dt><dd><p class="no_top_margin">Buffer G: loading buffer for SP-D isolation (10 mM of Tris-HCl buffer, pH 7.4 containing 150 mM of NaCl and 5 mM of CaCl<sub>2</sub>)</p></dd><dt>14.</dt><dd><p class="no_top_margin">Buffer H: elution buffer for SP-A isolation (10 mM of Tris-HCl buffer, pH 7.4 containing 5 mM of EDTA)</p></dd><dt>15.</dt><dd><p class="no_top_margin">Buffer I: elution buffer for SP-D isolation (10 mM of Tris-HCl buffer, pH 7.4 containing 150 mM of NaCl and 5 mM of EDTA)</p></dd><dt>16.</dt><dd><p class="no_top_margin">Sepharose 6 10/300 GL (GE Healthcare, Little Chalfont, UK)</p></dd><dt>17.</dt><dd><p class="no_top_margin">Dialysis membrane (MWCO: 14,000) (Viskase Companies Inc., Darien, IL)</p></dd></dl></div><div id="g26-isopulmonary.Instruments"><h3>Instruments</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Ultracentrifuge (CP60E; Himac, Ibaraki, Japan)</p></dd><dt>2.</dt><dd><p class="no_top_margin">Column for open column chromatography</p></dd><dt>3.</dt><dd><p class="no_top_margin">AKTA purifier (GE Healthcare, Little Chalfont, UK)</p></dd></dl></div><div id="g26-isopulmonary.Methods"><h3>Methods</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Preparation of mannose-Sepharose</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Put ~80 mL of Sepharose 6B (1:1 slurry) on the glass filter.</p></dd><dt>b.</dt><dd><p class="no_top_margin">Wash the resin with 1 L of distilled water.</p></dd><dt>c.</dt><dd><p class="no_top_margin">Transfer the resin to glass bottle and suspend with 50 mL of buffer A.</p></dd><dt>d.</dt><dd><p class="no_top_margin">Add 5 mL of divinyl sulfone to the suspension.</p></dd><dt>e.</dt><dd><p class="no_top_margin">Incubate 70 min at room temperature with rocking.</p></dd><dt>f.</dt><dd><p class="no_top_margin">Put the resin on the glass filter and wash with 1 L of distilled water.</p></dd><dt>g.</dt><dd><p class="no_top_margin">Transfer the resin to glass bottle and suspend with 50 mL of D-mannose solution.</p></dd><dt>h.</dt><dd><p class="no_top_margin">Incubate overnight at room temperature with rocking.</p></dd><dt>i.</dt><dd><p class="no_top_margin">Put the resin on the glass filter and wash with 1 L of distilled water.</p></dd><dt>j.</dt><dd><p class="no_top_margin">Transfer the resin to glass bottle and suspend with 50 mL of buffer C.</p></dd><dt>k.</dt><dd><p class="no_top_margin">Add 1 mL of β-mercaptoethanol to the suspension.</p></dd><dt>l.</dt><dd><p class="no_top_margin">Incubate 2 h at room temperature with rocking.</p></dd><dt>m.</dt><dd><p class="no_top_margin">Put the resin on the glass filter and wash with 1 L of distilled water.</p></dd><dt>n.</dt><dd><p class="no_top_margin">Transfer the resin to a glass bottle and suspend with 50 mL of distilled water.</p></dd><dt>o.</dt><dd><p class="no_top_margin">Store at 4°C until use (<b>Note 1</b>).</p></dd></dl></dd><dt>2.</dt><dd><p class="no_top_margin">Protocol for isolation and purification of SP-A from BAL fluids</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Prepare pooled BAL fluids (starting materials) after lavaging with buffer D (Note 2).</p></dd><dt>b.</dt><dd><p class="no_top_margin">Add 0.5 M CaCl<sub>2</sub> into the BAL fluids to a final concentration of 5 mM.</p></dd><dt>c.</dt><dd><p class="no_top_margin">Centrifuge the pooled BAL fluids at 85,000 ×g at 4°C overnight.</p></dd><dt>d.</dt><dd><p class="no_top_margin">Separate the supernatant and the precipitate (Note 3).</p></dd><dt>e.</dt><dd><p class="no_top_margin">Suspend the precipitate with NaBr solution (Note 4).</p></dd><dt>f.</dt><dd><p class="no_top_margin">Homogenize thoroughly until a homogeneous suspension is obtained (Note 5).</p></dd><dt>g.</dt><dd><p class="no_top_margin">Centrifuge the homogenate at 60,000 ×g at 4°C for 4 h (Note 6).</p></dd><dt>h.</dt><dd><p class="no_top_margin">Collect and suspend the pellicle with buffer D (Note 4).</p></dd><dt>i.</dt><dd><p class="no_top_margin">Centrifuge the suspension at 100,000 ×g at 4°C for 1 h.</p></dd><dt>j.</dt><dd><p class="no_top_margin">Collect the precipitate, which is the surfactant fraction, and discard the supernatant.</p></dd><dt>k.</dt><dd><p class="no_top_margin">Suspend the precipitate with 1–2 mL of distilled water.</p></dd><dt>l.</dt><dd><p class="no_top_margin">Inject the suspension of the surfactant fraction into 100 mL of 1-butanol, which is strongly being mixed by a stir bar, and continue mixing at room temperature for at least 1 h (the process of delipidation of the surfactant).</p></dd><dt>m.</dt><dd><p class="no_top_margin">Centrifuge the surfactant-butanol mixture at 1,600 ×g at room temperature for 30 min.</p></dd><dt>n.</dt><dd><p class="no_top_margin">Discard the supernatant and collect the precipitate (delipidated surfactant) (Note 7).</p></dd><dt>o.</dt><dd><p class="no_top_margin">Vapor the residual butanol in the precipitate by a gentle stream of nitrogen.</p></dd><dt>p.</dt><dd><p class="no_top_margin">Suspend the delipidated surfactant with 3–4 mL of distilled water.</p></dd><dt>q.</dt><dd><p class="no_top_margin">Dialyze the delipidated surfactant against buffer E at 4°C for 2–3 d with 3–4 exchanges of the same buffer (Note 8).</p></dd><dt>r.</dt><dd><p class="no_top_margin">Centrifuge the dialysate at 150,000 ×g at 4°C for 1h.</p></dd><dt>s.</dt><dd><p class="no_top_margin">Collect the supernatant.</p></dd><dt>t.</dt><dd><p class="no_top_margin">Add 0.5 M CaCl<sub>2</sub> into the supernatant to a final concentration of 5 mM (Note 9).</p></dd><dt>u.</dt><dd><p class="no_top_margin">Apply the supernatant to a mannose-Sepharose column (bed volume: 3 mL) after equilibrating the column with the buffer F (loading buffer).</p></dd><dt>v.</dt><dd><p class="no_top_margin">Wash the column with buffer F until the absorbance of the eluate at 280 nm becomes <0.01.</p></dd><dt>w.</dt><dd><p class="no_top_margin">Elute the bound components with buffer H (elution buffer), monitor the absorbance at 280 nm, and collect the protein peak (Note 10) (<a class="figpopup" href="/books/NBK593992/figure/g26-isopulmonary.F1/?report=objectonly" target="object" rid-figpopup="figg26isopulmonaryF1" rid-ob="figobg26isopulmonaryF1">Fig. 1</a>).</p></dd><dt>x.</dt><dd><p class="no_top_margin">Dialyze against buffer E and store at −30°C.</p></dd></dl></dd><dt>3.</dt><dd><p class="no_top_margin">Protocol for isolation and purification of SP-D from BAL fluids</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Collect the supernatant after centrifugation of the BAL fluids at 85,000 ×<i>g</i> (Protocols 2[c] and [d]).</p></dd><dt>b.</dt><dd><p class="no_top_margin">Apply the supernatant to a mannose-Sepharose column (bed volume: 3 mL) after equilibrating the column with buffer G (loading buffer).</p></dd><dt>c.</dt><dd><p class="no_top_margin">Wash the column with buffer G until the absorbance of the eluate at 280 nm becomes <0.01.</p></dd><dt>d.</dt><dd><p class="no_top_margin">Elute the bound components with buffer I (elution buffer), monitor the absorbance at 280 nm, and collect the protein peak (<b>Note 10</b>) (<a class="figpopup" href="/books/NBK593992/figure/g26-isopulmonary.F1/?report=objectonly" target="object" rid-figpopup="figg26isopulmonaryF1" rid-ob="figobg26isopulmonaryF1">Figure 1</a>).</p></dd><dt>e.</dt><dd><p class="no_top_margin">Dialyze against buffer D and store at −30°C.</p></dd></dl></dd><dt>4.</dt><dd><p class="no_top_margin">Protocol for further purification of pulmonary collectins (<b>Note 11</b>).</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Apply the collected eluate (Protocol 2[w] or 3[d]) to the Superose 6 10/300 GL column on AKTA purifier, which is equilibrating with the buffer E (for SP-A purification) or buffer D (for SP-D purification).</p></dd><dt>b.</dt><dd><p class="no_top_margin">Elute the protein while monitoring the absorbance at 280 nm.</p></dd><dt>c.</dt><dd><p class="no_top_margin">Collect the first protein peak, which is the purified pulmonary collectin (<a class="figpopup" href="/books/NBK593992/figure/g26-isopulmonary.F2/?report=objectonly" target="object" rid-figpopup="figg26isopulmonaryF2" rid-ob="figobg26isopulmonaryF2">Figures 2</a> and <a class="figpopup" href="/books/NBK593992/figure/g26-isopulmonary.F3/?report=objectonly" target="object" rid-figpopup="figg26isopulmonaryF3" rid-ob="figobg26isopulmonaryF3">3</a>).</p></dd></dl></dd></dl></div><div id="g26-isopulmonary.Notes"><h3>Notes</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">If the resin will be stored over a week, the addition of 0.02% NaN<sub>3</sub> is recommended.</p></dd><dt>2.</dt><dd><p class="no_top_margin">Lavage with 10–15 mL of buffer D and repeat 5–7 times for each rat. Pool the BAL fluids from a few dozen rats and use them as starting material.</p></dd><dt>3.</dt><dd><p class="no_top_margin">Do not discard the supernatant as it contains SP-D.</p></dd><dt>4.</dt><dd><p class="no_top_margin">The volume of NaBr solution or buffer D depends on the size of the homogenizer and the centrifuge tube to be used.</p></dd><dt>5.</dt><dd><p class="no_top_margin">To avoid heat denaturation, this procedure should be performed on ice.</p></dd><dt>6.</dt><dd><p class="no_top_margin">After centrifugation, surfactant forms white membrane (referred as “pellicle” in the next procedure) on the surface of the solution.</p></dd><dt>7.</dt><dd><p class="no_top_margin">Carefully discard the supernatant as the precipitate is easy to peel off.</p></dd><dt>8.</dt><dd><p class="no_top_margin">Dialyze thoroughly until the butanol odor disappears.</p></dd><dt>9.</dt><dd><p class="no_top_margin">If the solution becomes cloudy white, use it as is.</p></dd><dt>10.</dt><dd><p class="no_top_margin">Use appropriate elution buffer. SP-A and SP-D cannot be eluted with buffers I and H, respectively.</p></dd><dt>11.</dt><dd><p class="no_top_margin">These steps should be performed when a highly purified protein is needed.</p></dd></dl></div></div><div id="g26-isopulmonary.References"><h2 id="_g26-isopulmonary_References_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.1">Dobbs LG, Mason RJ. Pulmonary alveolar type II cells isolated from rats. Release of phosphatidylcholine in response to beta-adrenergic stimulation. J Clin Invest. 1979 Mar;63(3):378-87. doi: 10.1172/JCI109313. PMID: 34631. [<a href="/pmc/articles/PMC371964/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC371964</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34631" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 34631</span></a>] [<a href="http://dx.crossref.org/10.1172/JCI109313" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.2">Goerke J, Clements JA. Handbook of Physiology-The Respiratory System III. Washington: American Physiological Society; 1986. Alveolar surface tension and lung surfactant; p. 247-261.</div></dd><dt>3.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.3">King RJ, Clements JA. Surface active materials from dog lung. I. Method of isolation. <span><span class="ref-journal">Am J Physiol. </span>1972 Sep;<span class="ref-vol">223</span>(3):707–14.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/5068619" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 5068619</span></a>] [<a href="http://dx.crossref.org/10.1152/ajplegacy.1972.223.3.707" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.4">Kuroki Y, Voelker DR. Pulmonary surfactant proteins. <span><span class="ref-journal">J Biol Chem. </span>1994 Oct 21;<span class="ref-vol">269</span>(42):25943–6.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7929300" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 7929300</span></a>] [<a href="http://dx.crossref.org/10.1016/S0021-9258(18)47138-4" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.5">Day AJ. The C-type carbohydrate recognition domain (CRD) superfamily. <span><span class="ref-journal">Biochem Soc Trans. </span>1994 Feb;<span class="ref-vol">22</span>(1):83–8.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7515837" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 7515837</span></a>] [<a href="http://dx.crossref.org/10.1042/bst0220083" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.6">Kuroki Y, Akino T. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine. <span><span class="ref-journal">J Biol Chem. </span>1991 Feb 15;<span class="ref-vol">266</span>(5):3068–73.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1993679" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 1993679</span></a>] [<a href="http://dx.crossref.org/10.1016/S0021-9258(18)49955-3" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.7">Kuroki Y, Mason RJ, Voelker DR. Pulmonary surfactant apoprotein A structure and modulation of surfactant secretion by rat alveolar type II cells. <span><span class="ref-journal">J Biol Chem. </span>1988 Mar 5;<span class="ref-vol">263</span>(7):3388–94.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2449439" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 2449439</span></a>] [<a href="http://dx.crossref.org/10.1016/S0021-9258(18)69083-0" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.8">Ogasawara Y, Kuroki Y, Akino T. Pulmonary surfactant protein D specifically binds to phosphatidylinositol. <span><span class="ref-journal">J Biol Chem. </span>1992 Oct 15;<span class="ref-vol">267</span>(29):21244–9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1400434" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 1400434</span></a>] [<a href="http://dx.crossref.org/10.1016/S0021-9258(19)36824-3" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.9">Kuroki Y, Takahashi M, Nishitani C. Pulmonary collectins in innate immunity of the lung. <span><span class="ref-journal">Cell Microbiol. </span>2007 Aug;<span class="ref-vol">9</span>(8):1871–9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17490408" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17490408</span></a>] [<a href="http://dx.crossref.org/10.1111/j.1462-5822.2007.00953.x" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.10">Ariki S, Kojima T, Gasa S, Saito A, Nishitani C, Takahashi M, Shimizu T, Kurimura Y, Sawada N, Fujii N, Kuroki Y. Pulmonary collectins play distinct roles in host defense against Mycobacterium avium. <span><span class="ref-journal">J Immunol. </span>2011 Sep 1;<span class="ref-vol">187</span>(5):2586–94.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21821801" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21821801</span></a>] [<a href="http://dx.crossref.org/10.4049/jimmunol.1100024" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.11">Sano H, Sohma H, Muta T, Nomura S, Voelker DR, Kuroki Y. Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. <span><span class="ref-journal">J Immunol. </span>1999 Jul 1;<span class="ref-vol">163</span>(1):387–95.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10384140" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 10384140</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.12">Yamada C, Sano H, Shimizu T, Mitsuzawa H, Nishitani C, Himi T, Kuroki Y. Surfactant protein A directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response. Importance of supratrimeric oligomerization. <span><span class="ref-journal">J Biol Chem. </span>2006 Aug 4;<span class="ref-vol">281</span>(31):21771–21780.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16754682" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 16754682</span></a>] [<a href="http://dx.crossref.org/10.1074/jbc.M513041200" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="g26-isopulmonary.REF.13">Kuroki Y, Shiratori M, Ogasawara Y, Tsuzuki A, Akino T. Characterization of pulmonary surfactant protein D: its copurification with lipids. <span><span class="ref-journal">Biochim Biophys Acta. </span>1991 Nov 5;<span class="ref-vol">1086</span>(2):185–90.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1932100" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 1932100</span></a>] [<a href="http://dx.crossref.org/10.1016/0005-2760(91)90006-4" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl></div><h2 id="NBK593992_footnotes">Footnotes</h2><dl class="temp-labeled-list small"><dt></dt><dd><div id="g26-isopulmonary.FN1"><p class="no_top_margin">The authors declare no competing or financial interests.</p></div></dd></dl><div class="bk_prnt_sctn"><h2>Figures</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="g26-isopulmonary.F1" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593992/bin/g26-isopulmonary-Image001.jpg" alt="Figure 1: . Schematic diagram of typical elution pattern from mannose-Sepharose column." /></div><h3><span class="label">Figure 1: </span></h3><div class="caption"><p>Schematic diagram of typical elution pattern from mannose-Sepharose column. Both SP-A and SP-D exhibit similar elution pattern. The fractions indicated by the solid line contain pulmonary collectin.</p></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="g26-isopulmonary.F2" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593992/bin/g26-isopulmonary-Image002.jpg" alt="Figure 2: . Schematic diagram of typical elution pattern from Superose 6 10/300 GL column." /></div><h3><span class="label">Figure 2: </span></h3><div class="caption"><p>Schematic diagram of typical elution pattern from Superose 6 10/300 GL column. Both SP-A and SP-D exhibit similar elution pattern. The fractions indicated by the solid line contain pulmonary collectin. Arrowhead indicates void volume. Arrows indicate elution time of molecular mass standards; 1, thyroglobulin (669 kDa); 2, ferritin (440 kDa); 3, aldolase (158 kDa); 4, ovalbumin (43 kDa); and 5, ribonuclease A (13.7 kDa).</p></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="g26-isopulmonary.F3" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593992/bin/g26-isopulmonary-Image003.jpg" alt="Figure 3: . Sodium dodecyl sulfate–polyacrylamide gel electrophoresis of isolated SP-A and SP-D under reducing and nonreducing conditions." /></div><h3><span class="label">Figure 3: </span></h3><div class="caption"><p>Sodium dodecyl sulfate–polyacrylamide gel electrophoresis of isolated SP-A and SP-D under reducing and nonreducing conditions. Purified proteins were separated on 10% Laemmli’s gel and stained with Coomassie Brilliant Blue. SP-A and SP-D show highly oligomerized forms under nonreducing conditions.</p></div></div></div></div><div id="bk_toc_contnr"></div></div></div>
|
||
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a><p class="small">Licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported license. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&targetsite=external&targetcat=link&targettype=uri">http://creativecommons.org/licenses/by-nc-nd/4.0/</a>.</p></div><div class="small"><span class="label">Bookshelf ID: NBK593992</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/37590721" title="PubMed record of this page" ref="pagearea=meta&targetsite=entrez&targetcat=link&targettype=pubmed">37590721</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/glycopodv2/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/glycopodv2/g25-isoprotein/" title="Previous page in this title">< Prev</a><a class="active page_link next" href="/books/n/glycopodv2/g27-purificolin2/" title="Next page in this title">Next ></a></div></div></div></div>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="bottom">
|
||
|
||
<div id="NCBIFooter_dynamic">
|
||
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
|
||
<component id="Breadcrumbs" label="helpdesk"/>-->
|
||
|
||
</div>
|
||
|
||
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
|
||
</div>
|
||
</div>
|
||
<!--/.page-->
|
||
</div>
|
||
<!--/.wrap-->
|
||
</div><!-- /.twelve_col -->
|
||
</div>
|
||
<!-- /.grid -->
|
||
|
||
<span class="PAFAppResources"></span>
|
||
|
||
<!-- BESelector tab -->
|
||
|
||
|
||
|
||
<noscript><img alt="statistics" src="/stat?jsdisabled=true&ncbi_db=books&ncbi_pdid=book-part&ncbi_acc=NBK593992&ncbi_domain=glycopodv2&ncbi_report=printable&ncbi_type=fulltext&ncbi_objectid=&ncbi_pcid=/NBK593992/?report=printable&ncbi_app=bookshelf" /></noscript>
|
||
|
||
|
||
<!-- usually for JS scripts at page bottom -->
|
||
<!--<component id="PageFixtures" label="styles"></component>-->
|
||
|
||
|
||
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
||
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
||
|
||
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
|
||
</html> |