nih-gov/www.ncbi.nlm.nih.gov/books/NBK593940/index.html?report=printable

108 lines
No EOL
20 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK593940" /><meta name="ncbi_domain" content="glycopodv2" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK593940/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Synthesis of glycosyl fluoride donor - Glycoscience Protocols (GlycoPODv2) - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Glycoscience Protocols (GlycoPODv2) [Internet]" /><meta name="citation_title" content="Synthesis of glycosyl fluoride donor" /><meta name="citation_publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="citation_date" content="2022/03/17" /><meta name="citation_author" content="Akihiro Imamura" /><meta name="citation_pmid" content="37590677" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK593940/" /><meta name="citation_keywords" content="fluoride" /><meta name="citation_keywords" content="halogen" /><meta name="citation_keywords" content="leaving group" /><meta name="citation_keywords" content="anomeric position" /><meta name="citation_keywords" content="glycosylation" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Synthesis of glycosyl fluoride donor" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="DC.Contributor" content="Akihiro Imamura" /><meta name="DC.Date" content="2022/03/17" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK593940/" /><meta name="description" content="Glycosyl fluorides are widely used for O- and C-glycosidation reactions. An advantage of the glycosyl fluoride as a glycosyl donor is its chemical stability due to the strong CF bond compared with other corresponding glycosyl halides. The CF bond can be efficiently cleaved with specific activating reagents to generate the reactive oxocarbenium intermediate (1). Glycosyl fluorides can be derived from thioglycoside (Figure 1), lactol (hemiacetal), acetate, methyl glycoside, epoxide, glycal, etc. (1,2)." /><meta name="og:title" content="Synthesis of glycosyl fluoride donor" /><meta name="og:type" content="book" /><meta name="og:description" content="Glycosyl fluorides are widely used for O- and C-glycosidation reactions. An advantage of the glycosyl fluoride as a glycosyl donor is its chemical stability due to the strong CF bond compared with other corresponding glycosyl halides. The CF bond can be efficiently cleaved with specific activating reagents to generate the reactive oxocarbenium intermediate (1). Glycosyl fluorides can be derived from thioglycoside (Figure 1), lactol (hemiacetal), acetate, methyl glycoside, epoxide, glycal, etc. (1,2)." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK593940/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-glycopodv2-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/glycopodv2/g208-synthglyfluo/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK593940/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8B258F7D6794C100000000002B0023.m_5" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid no_max_width">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div class="header">
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<div class="container content">
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Nishihara S, Angata K, Aoki-Kinoshita KF, et al., editors. Glycoscience Protocols (GlycoPODv2) [Internet]. Saitama (JP): Japan Consortium for Glycobiology and Glycotechnology; 2021-. </p></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK593940_"><span class="title" itemprop="name">Synthesis of glycosyl fluoride donor</span></h1><div class="contrib half_rhythm"><span itemprop="author">Akihiro Imamura</span>, Ph.D.<div class="affiliation small">Faculty of Applied Biological Sciences, Gifu University<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="pj.ca.u-ufig@arumamia" class="oemail">pj.ca.u-ufig@arumamia</a></div></div><div class="small">Corresponding author.</div></div><p class="small">Created: <span itemprop="datePublished">October 6, 2021</span>; Last Revision: <span itemprop="dateModified">March 17, 2022</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><div id="g208-synthglyfluo.Introduction"><h2 id="_g208-synthglyfluo_Introduction_">Introduction</h2><p>Glycosyl fluorides are widely used for <i>O</i>- and <i>C</i>-glycosidation reactions. An advantage of the glycosyl fluoride as a glycosyl donor is its chemical stability due to the strong C&#x02013;F bond compared with other corresponding glycosyl halides. The C&#x02013;F bond can be efficiently cleaved with specific activating reagents to generate the reactive oxocarbenium intermediate (<a class="bk_pop" href="#g208-synthglyfluo.REF.1">1</a>). Glycosyl fluorides can be derived from thioglycoside (<a class="figpopup" href="/books/NBK593940/figure/g208-synthglyfluo.F1/?report=objectonly" target="object" rid-figpopup="figg208synthglyfluoF1" rid-ob="figobg208synthglyfluoF1">Figure 1</a>), lactol (hemiacetal), acetate, methyl glycoside, epoxide, glycal, etc. (<a class="bk_pop" href="#g208-synthglyfluo.REF.1">1</a>,<a class="bk_pop" href="#g208-synthglyfluo.REF.2">2</a>).</p></div><div id="g208-synthglyfluo.Protocol"><h2 id="_g208-synthglyfluo_Protocol_">Protocol</h2><p>Here, the protocol for the synthesis of a glycosyl fluoride from the corresponding thioglycoside in the presence of DAST and NBS (<b>Note 1</b>) is described (<a class="bk_pop" href="#g208-synthglyfluo.REF.3">3</a>,<a class="bk_pop" href="#g208-synthglyfluo.REF.4">4</a>).</p><div id="g208-synthglyfluo.Materials"><h3>Materials</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Fully protected thioglycoside</p></dd><dt>2.</dt><dd><p class="no_top_margin">(Diethylamino)sulfur trifluoride (DAST)</p></dd><dt>3.</dt><dd><p class="no_top_margin"><i>N</i>-Bromosuccinimide (NBS)</p></dd><dt>4.</dt><dd><p class="no_top_margin">Dry dichloromethane</p></dd><dt>5.</dt><dd><p class="no_top_margin">Saturated aqueous NaHCO<sub>3</sub></p></dd><dt>6.</dt><dd><p class="no_top_margin">Brine</p></dd><dt>7.</dt><dd><p class="no_top_margin">Na<sub>2</sub>SO<sub>4</sub> (or MgSO<sub>4</sub>)</p></dd><dt>8.</dt><dd><p class="no_top_margin">Thin-layer chromatography (TLC) plate</p></dd><dt>9.</dt><dd><p class="no_top_margin">SiO<sub>2</sub></p></dd></dl></div><div id="g208-synthglyfluo.Instruments"><h3>Instruments</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Flask, magnetic stirrer, and stir bar (for reaction)</p></dd><dt>2.</dt><dd><p class="no_top_margin">Rotary evaporator</p></dd><dt>3.</dt><dd><p class="no_top_margin">Cooling bath (for synthesis)</p></dd><dt>4.</dt><dd><p class="no_top_margin">Separating funnel, funnel, and Erlenmeyer flask</p></dd><dt>5.</dt><dd><p class="no_top_margin">Chromatography tube for silica gel chromatography (for purification)</p></dd><dt>6.</dt><dd><p class="no_top_margin">Diaphragm pump (for filtration under reduced pressure, and concentration)</p></dd><dt>7.</dt><dd><p class="no_top_margin">Vacuum pump (for drying up)</p></dd></dl></div><div id="g208-synthglyfluo.Methods"><h3>Methods</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Protocol for synthesizing glycosyl fluoride from thioglycoside</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Dissolve thioglycoside (1.0 equiv.) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL/mmol) under Ar.</p></dd><dt>b.</dt><dd><p class="no_top_margin">Add DAST (1.5 equiv.) to the solution at &#x02212;15&#x000b0;C.</p></dd><dt>c.</dt><dd><p class="no_top_margin">Stir the reaction mixture for 2 min at &#x02212;15&#x000b0;C.</p></dd><dt>d.</dt><dd><p class="no_top_margin">Add NBS (1.3 equiv.) to the solution at &#x02212;15&#x000b0;C.</p></dd><dt>e.</dt><dd><p class="no_top_margin">Stir the reaction mixture at &#x02212;15&#x000b0;C until the starting material is completely consumed as the progress of the reaction is monitored by TLC.</p></dd><dt>f.</dt><dd><p class="no_top_margin">Dilute the mixture with CH<sub>2</sub>Cl<sub>2</sub>.</p></dd><dt>g.</dt><dd><p class="no_top_margin">Quench the reaction by adding ice-cooled sat. aq. NaHCO<sub>3</sub>.</p></dd><dt>h.</dt><dd><p class="no_top_margin">Wash the organic layer with brine.</p></dd><dt>i.</dt><dd><p class="no_top_margin">Dry the organic layer over Na<sub>2</sub>SO<sub>4</sub> (or MgSO<sub>4</sub>), filter the solution, and concentrate under reduced pressure.</p></dd><dt>j.</dt><dd><p class="no_top_margin">Purify the residue by silica gel column chromatography to get the desired product.</p></dd></dl></dd></dl></div><div id="g208-synthglyfluo.Note"><h3>Note</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">The use of DAST-NBS system often produces glycosyl bromide as a byproduct and is limited because NBS reacts with olefinic functionality in the compound and protecting groups. To resolve these issues, an improved method for synthesizing glycosyl fluorides from thioglycosides without NBS has been developed (<a class="bk_pop" href="#g208-synthglyfluo.REF.5">5</a>).</p></dd></dl></div></div><div id="g208-synthglyfluo.References"><h2 id="_g208-synthglyfluo_References_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="g208-synthglyfluo.REF.1">Toshima K. Glycosyl fluorides in glycosidations. <span><span class="ref-journal">Carbohydr Res. </span>2000 July 10;<span class="ref-vol">327</span>(1-2):1526.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10968674" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10968674</span></a>] [<a href="http://dx.crossref.org/10.1016/s0008-6215(99)00325-0" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="g208-synthglyfluo.REF.2">Mukaiyama T, Jona H. Glycosyl fluoride: A superb glycosyl donor in glycosyation. <span><span class="ref-journal">Proc Japan Acad, Ser. B. </span>2002 April 12;<span class="ref-vol">78</span>(4):7383.</span> [<a href="http://dx.crossref.org/10.2183/pjab.78.73" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="g208-synthglyfluo.REF.3">Nicolaou KC, Dolle RE, Papahatjis DP., Randall JL. Practical synthesis of oligosaccharide. Partial synthesis of avermectin B1a. <span><span class="ref-journal">J Am Chem Soc. </span>1984 July 1;<span class="ref-vol">106</span>(15):418992.</span> [<a href="http://dx.crossref.org/10.1021/ja00327a021" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="g208-synthglyfluo.REF.4">Imamura A, Ando H, Ishida H, Kiso M. Ganglioside GQ1b: Efficient total synthesis and the expansion to synthetic derivatives to elucidate its biological roles. 2009 April 17;74(8):3009-23. doi: 10.1021/jo8027888. PMID: 19296672. [<a href="https://pubmed.ncbi.nlm.nih.gov/19296672" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19296672</span></a>] [<a href="http://dx.crossref.org/10.1021/jo8027888" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="g208-synthglyfluo.REF.5">Suzuki K, Ito Y, Kanie O. An improved method for the synthesis of protected glycosyl fluorides from thioglycosides using <em>N,N</em>-diethylaminosulfur trifluoride (DAST). <span><span class="ref-journal">Carbohydr Res. </span>2012 Oct 1;<span class="ref-vol">359</span>:8191.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22925769" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22925769</span></a>] [<a href="http://dx.crossref.org/10.1016/j.carres.2012.07.003" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd></dl></div><h2 id="NBK593940_footnotes">Footnotes</h2><dl class="temp-labeled-list small"><dt></dt><dd><div id="g208-synthglyfluo.FN1"><p class="no_top_margin">The authors declare no competing or financial interests.</p></div></dd></dl><div class="bk_prnt_sctn"><h2>Figures</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="g208-synthglyfluo.F1" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593940/bin/g208-synthglyfluo-Image001.jpg" alt="Figure 1: . Conversion of thioglycoside into glycosyl fluoride." /></div><h3><span class="label">Figure 1: </span></h3><div class="caption"><p>Conversion of thioglycoside into glycosyl fluoride.</p></div></div></div></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a><p class="small">Licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported license. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://creativecommons.org/licenses/by-nc-nd/4.0/</a>.</p></div><div class="small"><span class="label">Bookshelf ID: NBK593940</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/37590677" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">37590677</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/glycopodv2/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/glycopodv2/g207-synthglycophos/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/glycopodv2/g209-azidochrol/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
</div>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK593940&amp;ncbi_domain=glycopodv2&amp;ncbi_report=printable&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK593940/?report=printable&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal104 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
</html>