108 lines
No EOL
41 KiB
XML
108 lines
No EOL
41 KiB
XML
<?xml version="1.0" encoding="utf-8"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
||
|
||
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||
<!-- AppResources meta begin -->
|
||
<meta name="paf-app-resources" content="" />
|
||
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
||
|
||
<!-- AppResources meta end -->
|
||
|
||
<!-- TemplateResources meta begin -->
|
||
<meta name="paf_template" content="" />
|
||
|
||
<!-- TemplateResources meta end -->
|
||
|
||
<!-- Logger begin -->
|
||
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK593926" /><meta name="ncbi_domain" content="glycopodv2" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK593926/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
|
||
<!-- Logger end -->
|
||
|
||
<title>Analysis of sphingolipid activator protein activity for sphingolipid hydrolases - Glycoscience Protocols (GlycoPODv2) - NCBI Bookshelf</title>
|
||
|
||
<!-- AppResources external_resources begin -->
|
||
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
|
||
|
||
<!-- AppResources external_resources end -->
|
||
|
||
<!-- Page meta begin -->
|
||
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Glycoscience Protocols (GlycoPODv2) [Internet]" /><meta name="citation_title" content="Analysis of sphingolipid activator protein activity for sphingolipid hydrolases" /><meta name="citation_publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="citation_date" content="2022/03/16" /><meta name="citation_author" content="Junko Matsuda" /><meta name="citation_author" content="Kazuhito Tsuboi" /><meta name="citation_author" content="Azusa Yoneshige" /><meta name="citation_pmid" content="37590665" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK593926/" /><meta name="citation_keywords" content="sphingolipid" /><meta name="citation_keywords" content="sphingolipid activator protein" /><meta name="citation_keywords" content="saposin-A" /><meta name="citation_keywords" content="saposin-B" /><meta name="citation_keywords" content="saposin-C" /><meta name="citation_keywords" content="saposin-D" /><meta name="citation_keywords" content="prosaposin" /><meta name="citation_keywords" content="lysosome" /><meta name="citation_keywords" content="hydrolase" /><meta name="citation_keywords" content="acid ceramidase" /><meta name="citation_keywords" content="glucosylceramide-β-glucosidase" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Analysis of sphingolipid activator protein activity for sphingolipid hydrolases" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="DC.Contributor" content="Junko Matsuda" /><meta name="DC.Contributor" content="Kazuhito Tsuboi" /><meta name="DC.Contributor" content="Azusa Yoneshige" /><meta name="DC.Date" content="2022/03/16" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK593926/" /><meta name="description" content="Sphingolipids are essential for cell functions as plasma membrane components and bioactive metabolites and defects in their lysosomal degradation cause lysosomal storage diseases, more specifically sphingolipidoses. The efficient in vivo degradation of sphingolipids in lysosome requires specific hydrolases and sphingolipid activator proteins, including the GM2 activator protein and four saposins (1,2) (Figure 1). Four saposins, A, B, C, D, are small hydrophobic glycoproteins produced by the sequential proteolytic cleavage of the precursor protein prosaposin (PSAP) in the lysosome. All saposins have a highly homologous structure with three disulfide bonds and at least one N-glycan. Instead of their structural similarities, their specificity for lysosomal hydrolases differs among saposins; saposin-A for galactosylceramide (GalCer)-β-galactosidase (GALC), saposin-B for arylsulfatase A (ARSA), saposin-C for glucosylceramide (GlcCer)-β-glucosidase (GBA1), and saposin-D for acid ceramidase (ASAH1). Mutations in the saposin-A, B, and C domains of the PSAP gene in human and mouse cause sphingolipidoses with characteristic sphingolipid accumulations, resembling Krabbe’s disease, metachromatic leukodystrophy, and Gaucher’s disease, respectively (1,3,4,5). Furthermore, mutations in the saposin-D domain of PSAP gene cause autosomal dominant form of hereditary Parkinson’s disease (6). Saposin-D-deficient mice show the accumulation of α-hydroxyl fatty acid-containing ceramide in the brain tissues and progressive motor decline accompanied by neuronal loss of cerebellar Purkinje cells and dopaminergic neurons in the substantia nigra (4,6). These findings highlight the critical role of saposins in sphingolipid degradation. Since saposins facilitate interactions between membrane-bound hydrophobic sphingolipids and water-soluble hydrolases, either by direct binding with their respective enzymes or as biological detergents that lift substrates out of the membrane (7), to determine the activator function for lysosomal hydrolase, it is ideal to use the labeled natural glycolipid substrates with minimal usage of detergents. However, due to their unavailability, the enzyme activities can be alternatively assayed with artificial fluorescent substrates embedded into the liposome mimicking the intra-lysosomal membrane." /><meta name="og:title" content="Analysis of sphingolipid activator protein activity for sphingolipid hydrolases" /><meta name="og:type" content="book" /><meta name="og:description" content="Sphingolipids are essential for cell functions as plasma membrane components and bioactive metabolites and defects in their lysosomal degradation cause lysosomal storage diseases, more specifically sphingolipidoses. The efficient in vivo degradation of sphingolipids in lysosome requires specific hydrolases and sphingolipid activator proteins, including the GM2 activator protein and four saposins (1,2) (Figure 1). Four saposins, A, B, C, D, are small hydrophobic glycoproteins produced by the sequential proteolytic cleavage of the precursor protein prosaposin (PSAP) in the lysosome. All saposins have a highly homologous structure with three disulfide bonds and at least one N-glycan. Instead of their structural similarities, their specificity for lysosomal hydrolases differs among saposins; saposin-A for galactosylceramide (GalCer)-β-galactosidase (GALC), saposin-B for arylsulfatase A (ARSA), saposin-C for glucosylceramide (GlcCer)-β-glucosidase (GBA1), and saposin-D for acid ceramidase (ASAH1). Mutations in the saposin-A, B, and C domains of the PSAP gene in human and mouse cause sphingolipidoses with characteristic sphingolipid accumulations, resembling Krabbe’s disease, metachromatic leukodystrophy, and Gaucher’s disease, respectively (1,3,4,5). Furthermore, mutations in the saposin-D domain of PSAP gene cause autosomal dominant form of hereditary Parkinson’s disease (6). Saposin-D-deficient mice show the accumulation of α-hydroxyl fatty acid-containing ceramide in the brain tissues and progressive motor decline accompanied by neuronal loss of cerebellar Purkinje cells and dopaminergic neurons in the substantia nigra (4,6). These findings highlight the critical role of saposins in sphingolipid degradation. Since saposins facilitate interactions between membrane-bound hydrophobic sphingolipids and water-soluble hydrolases, either by direct binding with their respective enzymes or as biological detergents that lift substrates out of the membrane (7), to determine the activator function for lysosomal hydrolase, it is ideal to use the labeled natural glycolipid substrates with minimal usage of detergents. However, due to their unavailability, the enzyme activities can be alternatively assayed with artificial fluorescent substrates embedded into the liposome mimicking the intra-lysosomal membrane." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK593926/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-glycopodv2-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/glycopodv2/g49-analsphingolipid/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK593926/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
|
||
|
||
<!-- Page meta end -->
|
||
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8B183C7D661FD100000000010600E2.m_5" />
|
||
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
|
||
<body class="book-part">
|
||
<div class="grid no_max_width">
|
||
<div class="col twelve_col nomargin shadow">
|
||
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
|
||
<div class="sysmessages">
|
||
<noscript>
|
||
<p class="nojs">
|
||
<strong>Warning:</strong>
|
||
The NCBI web site requires JavaScript to function.
|
||
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
|
||
</p>
|
||
</noscript>
|
||
</div>
|
||
<!--/.sysmessage-->
|
||
<div class="wrap">
|
||
<div class="page">
|
||
<div class="top">
|
||
|
||
<div class="header">
|
||
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<!--<component id="Page" label="headcontent"/>-->
|
||
|
||
</div>
|
||
<div class="content">
|
||
<!-- site messages -->
|
||
<div class="container content">
|
||
<div class="document">
|
||
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Nishihara S, Angata K, Aoki-Kinoshita KF, et al., editors. Glycoscience Protocols (GlycoPODv2) [Internet]. Saitama (JP): Japan Consortium for Glycobiology and Glycotechnology; 2021-. </p></div></div></div>
|
||
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK593926_"><span class="title" itemprop="name">Analysis of sphingolipid activator protein activity for sphingolipid hydrolases</span></h1><div class="contrib half_rhythm"><span itemprop="author">Junko Matsuda</span>, Doctor of Medical Science<div class="affiliation small">Kawasaki Medical School<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="pj.ca.m-ikasawak.dem@nujustam" class="oemail">pj.ca.m-ikasawak.dem@nujustam</a></div></div><div class="small">Corresponding author.</div></div><div class="contrib half_rhythm"><span itemprop="author">Kazuhito Tsuboi</span>, Doctor of Pharmacy<div class="affiliation small">Kawasaki Medical School<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="pj.ca.m-ikasawak.dem@iobustk" class="oemail">pj.ca.m-ikasawak.dem@iobustk</a></div></div></div><div class="contrib half_rhythm"><span itemprop="author">Azusa Yoneshige</span>, Doctor of Science<div class="affiliation small">Kindai University<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="pj.ca.iadnik.dem@816asuza" class="oemail">pj.ca.iadnik.dem@816asuza</a></div></div></div><p class="small">Created: <span itemprop="datePublished">September 28, 2021</span>; Last Revision: <span itemprop="dateModified">March 16, 2022</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><div id="g49-analsphingolipid.Introduction"><h2 id="_g49-analsphingolipid_Introduction_">Introduction</h2><p>Sphingolipids are essential for cell functions as plasma membrane components and bioactive metabolites and defects in their lysosomal degradation cause lysosomal storage diseases, more specifically sphingolipidoses. The efficient <i>in vivo</i> degradation of sphingolipids in lysosome requires specific hydrolases and sphingolipid activator proteins, including the GM2 activator protein and four saposins (<a class="bk_pop" href="#g49-analsphingolipid.REF.1">1</a>,<a class="bk_pop" href="#g49-analsphingolipid.REF.2">2</a>) (<a class="figpopup" href="/books/NBK593926/figure/g49-analsphingolipid.F1/?report=objectonly" target="object" rid-figpopup="figg49analsphingolipidF1" rid-ob="figobg49analsphingolipidF1">Figure 1</a>). Four saposins, A, B, C, D, are small hydrophobic glycoproteins produced by the sequential proteolytic cleavage of the precursor protein prosaposin (PSAP) in the lysosome. All saposins have a highly homologous structure with three disulfide bonds and at least one <i>N</i>-glycan. Instead of their structural similarities, their specificity for lysosomal hydrolases differs among saposins; saposin-A for galactosylceramide (GalCer)-β-galactosidase (GALC), saposin-B for arylsulfatase A (ARSA), saposin-C for glucosylceramide (GlcCer)-β-glucosidase (GBA1), and saposin-D for acid ceramidase (ASAH1). Mutations in the saposin-A, B, and C domains of the <i>PSAP</i> gene in human and mouse cause sphingolipidoses with characteristic sphingolipid accumulations, resembling Krabbe’s disease, metachromatic leukodystrophy, and Gaucher’s disease, respectively (<a class="bk_pop" href="#g49-analsphingolipid.REF.1">1</a>,<a class="bk_pop" href="#g49-analsphingolipid.REF.3">3</a>,<a class="bk_pop" href="#g49-analsphingolipid.REF.4">4</a>,<a class="bk_pop" href="#g49-analsphingolipid.REF.5">5</a>). Furthermore, mutations in the saposin-D domain of <i>PSAP</i> gene cause autosomal dominant form of hereditary Parkinson’s disease (<a class="bk_pop" href="#g49-analsphingolipid.REF.6">6</a>). Saposin-D-deficient mice show the accumulation of α-hydroxyl fatty acid-containing ceramide in the brain tissues and progressive motor decline accompanied by neuronal loss of cerebellar Purkinje cells and dopaminergic neurons in the substantia nigra (<a class="bk_pop" href="#g49-analsphingolipid.REF.4">4</a>,<a class="bk_pop" href="#g49-analsphingolipid.REF.6">6</a>). These findings highlight the critical role of saposins in sphingolipid degradation. Since saposins facilitate interactions between membrane-bound hydrophobic sphingolipids and water-soluble hydrolases, either by direct binding with their respective enzymes or as biological detergents that lift substrates out of the membrane (<a class="bk_pop" href="#g49-analsphingolipid.REF.7">7</a>), to determine the activator function for lysosomal hydrolase, it is ideal to use the labeled natural glycolipid substrates with minimal usage of detergents. However, due to their unavailability, the enzyme activities can be alternatively assayed with artificial fluorescent substrates embedded into the liposome mimicking the intra-lysosomal membrane.</p></div><div id="g49-analsphingolipid.Protocol"><h2 id="_g49-analsphingolipid_Protocol_">Protocol</h2><p>In this chapter, two kinds of protocols are described for determining saposin activity for sphingolipid hydrolase: 1) that using labeled natural glycolipid substrates and tissue homogenates and 2) that using fluorescent substrates embedded in the liposome and synthesized or recombinant saposin protein.</p><div id="g49-analsphingolipid.Materials"><h3>Materials</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Tissue or cell homogenates</p></dd><dt>2.</dt><dd><p class="no_top_margin">N-[<sup>14</sup>C] lauroyl-sphingenine ([<sup>14</sup>C] C12:0-ceramide) prepared from D-erythro-sphingenine (Biomol/Enzo Life Sciences, NY, USA) and [1-<sup>14</sup>C] lauric acid (GE Healthcare, NJ, USA) (<a class="bk_pop" href="#g49-analsphingolipid.REF.8">8</a>) (<b>Note 1</b>)</p></dd><dt>3.</dt><dd><p class="no_top_margin">Dithiothreitol (DTT) (GE Healthcare)</p></dd><dt>4.</dt><dd><p class="no_top_margin">Nonidet P-40 (Nacalai Tesque, Kyoto, Japan)</p></dd><dt>5.</dt><dd><p class="no_top_margin">Butylated hydroxyanisole (BHA) (Sigma-Aldrich, MO, USA)</p></dd><dt>6.</dt><dd><p class="no_top_margin">Precoated silica gel 60 F254 aluminum sheets for thin-layer chromatography (TLC) (20 × 20 cm, 0.2-mm thickness) (Merck, Darmstadt, Germany)</p></dd><dt>7.</dt><dd><p class="no_top_margin">Synthetic or recombinant saposin-C (<a class="bk_pop" href="#g49-analsphingolipid.REF.9">9</a>)</p></dd><dt>8.</dt><dd><p class="no_top_margin">Imiglucerase (Cerezyme®, Sanofi Genzyme, MA, USA)</p></dd><dt>9.</dt><dd><p class="no_top_margin">4-Nitrobenzo-2-oxa-1,3-diazole (NBD) labeled C12:0-glucosylceramide (GlcCer) (Avanti Polar Lipids, AL, USA)</p></dd><dt>10.</dt><dd><p class="no_top_margin">L-α-Phosphatidyl choline (Avanti Polar Lipids)</p></dd><dt>11.</dt><dd><p class="no_top_margin">Cholesterol (Sigma-Aldrich)</p></dd><dt>12.</dt><dd><p class="no_top_margin">Bis (monoacylglycerol) phosphate (BMP) (Avanti Polar Lipids)</p></dd><dt>13.</dt><dd><p class="no_top_margin">L-α-Phosphatidyl serine (Avanti Polar Lipids)</p></dd><dt>14.</dt><dd><p class="no_top_margin">A silica gel column (Inertsil SIL-150A, GL Science, Tokyo, Japan) of high-performance liquid chromatography (HPLC)</p></dd></dl></div><div id="g49-analsphingolipid.Instruments"><h3>Instruments</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Physcotron homogenizer (Microtec, Funabashi, Japan)</p></dd><dt>2.</dt><dd><p class="no_top_margin">Image analyzer (Typhoon 9400, GE Healthcare)</p></dd><dt>3.</dt><dd><p class="no_top_margin">HPLC with a fluorescence detector (Prominence LC-20AT, CTO-20A, RF-20A, SHIMADZU, Kyoto, Japan)</p></dd></dl></div><div id="g49-analsphingolipid.Methods"><h3>Methods</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">The determination of saposin-D activity for acid ceramidase activity using tissue homogenates (<a class="bk_pop" href="#g49-analsphingolipid.REF.10">10</a>)</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">The tissues (brains, kidneys, and livers) dissected from <i>Saposin-D</i><sup>-/-</sup> mice and their wild-type littermates are cut into small pieces, homogenized in 9 times the volume (v/w) of 20 mM of Tris-HCl (pH 7.4)/0.32 M sucrose, and centrifuged at 800 g for 15 min at 4°C. The resultant supernatants are used as homogenates. Protein concentrations are determined by the Bradford method.</p></dd><dt>b.</dt><dd><p class="no_top_margin">The 100 μg of protein from tissue homogenate is incubated with 100 μM of [<sup>14</sup>C] C12:0-ceramide (10,000 cpm, dissolved in 5 μL of ethanol) as a substrate in 100 μL of 100 mM of sodium acetate buffer (pH 4.5) containing 3 mM of DTT, 150 mM of NaCl, 0.05% bovine serum albumin (BSA), and 0.1% (w/v) Nonidet P-40 (<b>Note 2</b>) at 37°C for 30 min.</p></dd><dt>c.</dt><dd><p class="no_top_margin">The reactions are terminated by adding 0.32 mL of a mixture of chloroform/methanol/1 M citric acid (8:4:1, by vol.) containing 5 mM of BHA. Centrifuge at 800 g for 5 min at 4°C.</p></dd><dt>d.</dt><dd><p class="no_top_margin">The lower organic phase (100 μL) is subjected to TLC at 4°C for 15 min with a mixture of chloroform/methanol/acetic acid (94:1:5, by vol.) as a developing solvent.</p></dd><dt>e.</dt><dd><p class="no_top_margin">Dry the TLC sheet, and expose the TLC sheet to imaging plate overnight.</p></dd><dt>f.</dt><dd><p class="no_top_margin">The radioactivity of [<sup>14</sup>C] C12:0-ceramide as the substrate and [<sup>14</sup>C] free lauric acid as the product on the plate is quantified using an image analyzer.</p></dd><dt>g.</dt><dd><p class="no_top_margin">For each TLC lane, the radioactivity of the product is divided by the total radioactivity, including the substrate and product, to obtain the conversion rate. The amount of product in each reaction is calculated by multiplying the amount of used substrate (10 nmol) by the conversion rate, and the enzyme activity is then obtained (<a class="figpopup" href="/books/NBK593926/figure/g49-analsphingolipid.F2/?report=objectonly" target="object" rid-figpopup="figg49analsphingolipidF2" rid-ob="figobg49analsphingolipidF2">Figures 2A and B</a>).</p></dd></dl></dd><dt>2.</dt><dd><p class="no_top_margin">The determination of saposin-C activity for GlcCer-β-glucosidase (GBA1) activity using synthetic or recombinant protein (<a class="bk_pop" href="#g49-analsphingolipid.REF.11">11</a>).</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Prepare liposomes containing 64% L-α-phosphatidyl choline, 23% cholesterol, 10% BMP, and 3% C12-NBD-GlcCer (<b>Note 3</b>).</p></dd><dt>b.</dt><dd><p class="no_top_margin">Liposomes composed only of L-α-phosphatidyl serine are prepared as a control.</p></dd><dt>c.</dt><dd><p class="no_top_margin">NBD-GlcCer containing liposomes (2.5 µM) are preincubated with 0–1 µM of chemically synthesized saposin-C (<a class="bk_pop" href="#g49-analsphingolipid.REF.9">9</a>,<a class="bk_pop" href="#g49-analsphingolipid.REF.11">11</a>) in 100 µL of 0.1 M sodium citrate-phosphate buffer (pH 5.5) at room temperature for 30 min.</p></dd><dt>d.</dt><dd><p class="no_top_margin">1 nM of imiglucerase (<b>Note 4</b>) in 100 µL of 0.1 M sodium citrate-phosphate buffer (pH 5.5) with 1 µM of BSA is added to the reaction mixture, which is then incubated at 37°C for 30 min.</p></dd><dt>e.</dt><dd><p class="no_top_margin">The reaction is stopped by adding 1 mL of chloroform/methanol (2:1, by vol.).</p></dd><dt>f.</dt><dd><p class="no_top_margin">The sample is briefly vortexed and then centrifuged.</p></dd><dt>g.</dt><dd><p class="no_top_margin">The organic phase is dried under nitrogen gas and dissolved in 500 µL of 2-propanol/n-hexane/water (55:44:1, by vol.).</p></dd><dt>h.</dt><dd><p class="no_top_margin">The 50 µL aliquot of each sample is injected into a HPLC with a silica gel column (Inertsil SIL-150A) and eluted with 2-propanol/n-hexane/water (55:44:1, by vol.) at a flow rate of 1 mL/min (<a class="bk_pop" href="#g49-analsphingolipid.REF.12">12</a>).</p></dd><dt>i.</dt><dd><p class="no_top_margin">Fluorescence under excitation and emission wave lengths of 470 and 530 nm, respectively, is detected using a fluorescence detector (<a class="figpopup" href="/books/NBK593926/figure/g49-analsphingolipid.F3/?report=objectonly" target="object" rid-figpopup="figg49analsphingolipidF3" rid-ob="figobg49analsphingolipidF3">Figure 3A</a>).</p></dd><dt>j.</dt><dd><p class="no_top_margin">GBA1 activity is calculated on the basis of the amount of NBD-Cer converted from NBD-GlcCer (<a class="figpopup" href="/books/NBK593926/figure/g49-analsphingolipid.F3/?report=objectonly" target="object" rid-figpopup="figg49analsphingolipidF3" rid-ob="figobg49analsphingolipidF3">Figure 3B</a>).</p></dd></dl></dd></dl></div><div id="g49-analsphingolipid.Notes"><h3>Notes</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Purified saposin-D is reported to stimulate acid ceramidase activity when incubated with [<sup>14</sup>C] C12:0-ceramide (<a class="bk_pop" href="#g49-analsphingolipid.REF.13">13</a>).</p></dd><dt>2.</dt><dd><p class="no_top_margin">The use of Nonidet P-40 as the detergent might be important to observe the activity of saposins.</p></dd><dt>3.</dt><dd><p class="no_top_margin">NBD-GlcCer-containing liposomes, with higher content of characteristic anionic phospholipids, such as BMP and lower content of cholesterol, mimicking physiological intra-lysosomal membrane, are used as the substrate [1, 2].</p></dd><dt>4.</dt><dd><p class="no_top_margin">Cerezyme® (imiglucerase for injection) is a modified form of human GBA1 for enzyme replacement therapy for pediatric and adult patients with a confirmed diagnosis of Gaucher’s disease. It is produced by recombinant DNA technology using a mammalian Chinese Hamster Ovary cell culture and is tagged with mannose for targeting to macrophages.</p></dd></dl></div></div><div id="g49-analsphingolipid.References"><h2 id="_g49-analsphingolipid_References_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.1">Breiden B, Sandhoff K. Lysosomal Glycosphingolipid Storage Diseases. <span><span class="ref-journal">Annu Rev Biochem. </span>2019 Jun 20;<span class="ref-vol">88</span>:461–485.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/31220974" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31220974</span></a>] [<a href="http://dx.crossref.org/10.1146/annurev-biochem-013118-111518" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.2">Sandhoff K. My journey into the world of sphingolipids and sphingolipidoses. <span><span class="ref-journal">Proc Jpn Acad Ser B Phys Biol Sci. </span>2012;<span class="ref-vol">88</span>(10):554–82.</span> [<a href="/pmc/articles/PMC3552047/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3552047</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23229750" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23229750</span></a>] [<a href="http://dx.crossref.org/10.2183/pjab.88.554" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.3">Matsuda J, Vanier MT, Saito Y, Tohyama J, Suzuki K, Suzuki K. A mutation in the saposin A domain of the sphingolipid activator protein (prosaposin) gene results in a late-onset, chronic form of globoid cell leukodystrophy in the mouse. <span><span class="ref-journal">Hum Mol Genet. </span>2001 May 15;<span class="ref-vol">10</span>(11):1191–9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11371512" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 11371512</span></a>] [<a href="http://dx.crossref.org/10.1093/hmg/10.11.1191" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.4">Matsuda J, Kido M, Tadano-Aritomi K, Ishizuka I, Tominaga K, Toida K, Takeda E, Suzuki K, Kuroda Y. Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in the mouse. <span><span class="ref-journal">Hum Mol Genet. </span>2004 Nov 1;<span class="ref-vol">13</span>(21):2709–23.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15345707" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 15345707</span></a>] [<a href="http://dx.crossref.org/10.1093/hmg/ddh281" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.5">Yoneshige A, Suzuki K, Matsuda J. A mutation in the saposin C domain of the sphingolipid activator protein (prosaposin) gene causes neurodegenerative disease in mice. <span><span class="ref-journal">J Neurosci Res. </span>2010 Aug 1;<span class="ref-vol">88</span>(10):2118–34.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20175216" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 20175216</span></a>] [<a href="http://dx.crossref.org/10.1002/jnr.22371" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.6">Oji Y, Hatano T, Ueno SI, Funayama M, Ishikawa KI, Okuzumi A, Noda S, Sato S, Satake W, Toda T, Li Y, Hino-Takai T, Kakuta S, Tsunemi T, Yoshino H, Nishioka K, Hattori T, Mizutani Y, Mutoh T, Yokochi F, Ichinose Y, Koh K, Shindo K, Takiyama Y, Hamaguchi T, Yamada M, Farrer MJ, Uchiyama Y, Akamatsu W, Wu YR, Matsuda J, Hattori N. Variants in saposin D domain of prosaposin gene linked to Parkinson’s disease. <span><span class="ref-journal">Brain. </span>2020 Apr 1;<span class="ref-vol">143</span>(4):1190–1205.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/32201884" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32201884</span></a>] [<a href="http://dx.crossref.org/10.1093/brain/awaa064" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.7">Hill CH, Cook GM, Spratley SJ, Fawke S, Graham SC, Deane JE. The mechanism of glycosphingolipid degradation revealed by a GALC-SapA complex structure. <span><span class="ref-journal">Nat Commun. </span>2018 Jan 11;<span class="ref-vol">9</span>(1):151.</span> [<a href="/pmc/articles/PMC5764952/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5764952</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29323104" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29323104</span></a>] [<a href="http://dx.crossref.org/10.1038/s41467-017-02361-y" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.8">Ueda N, Yamanaka K, Yamamoto S. Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. <span><span class="ref-journal">J Biol Chem. </span>2001 Sep 21;<span class="ref-vol">276</span>(38):35552–7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11463796" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 11463796</span></a>] [<a href="http://dx.crossref.org/10.1074/jbc.M106261200" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.9">Hojo H, Tanaka H, Hagiwara M, Asahina Y, Ueki A, Katayama H, Nakahara Y, Yoneshige A, Matsuda J, Ito Y, Nakahara Y. Chemoenzymatic synthesis of hydrophobic glycoprotein: Synthesis of saposin C carrying complex-type carbohydrate. <span><span class="ref-journal">J Org Chem. </span>2012 Nov 2;<span class="ref-vol">77</span>(21):9437–46.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22800502" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22800502</span></a>] [<a href="http://dx.crossref.org/10.1021/jo3010155" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.10">Tsuboi K, Tai T, Yamashita R, Ali H, Watanabe T, Uyama T, Okamoto Y, Kitakaze K, Takenouchi Y, Go S, Rahman I.A.S, Houchi H, Tanaka T, Okamoto Y, Tokumura A, Matsuda J, Ueda N. Involvement of acid ceramidase in the degradation of bioactive N-acylethanolamines. <span><span class="ref-journal">Biochim Biophys Acta Mol Cell Biol Lipids. </span>2021 Sep;<span class="ref-vol">1866</span>(9):158972. </span> [<a href="https://pubmed.ncbi.nlm.nih.gov/34033896" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 34033896</span></a>] [<a href="http://dx.crossref.org/10.1016/j.bbalip.2021.158972" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.11">Yoneshige A, Muto M, Watanabe T, Hojo H, Matsuda J. The effects of chemically synthesized saposin C on glucosylceramide-β-glucosidase. <span><span class="ref-journal">Clin Biochem. </span>2015 Nov;<span class="ref-vol">48</span>(16-17):1177–80.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/26068040" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26068040</span></a>] [<a href="http://dx.crossref.org/10.1016/j.clinbiochem.2015.06.004" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.12">Hayashi Y, Zama K, Abe E, Okino N, Inoue T, Ohno K. Makoto Ito. A sensitive and reproducible fluorescent-based HPLC assay to measure the activity of acid as well as neutral β-glucocerebrosidases. <span><span class="ref-journal">Anal Biochem. </span>2008 Dec 1;<span class="ref-vol">383</span>(1):122–9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18708024" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 18708024</span></a>] [<a href="http://dx.crossref.org/10.1016/j.ab.2008.07.024" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="g49-analsphingolipid.REF.13">Azuma N, O’Brien JS, Moser HW, Kishimoto Y. Stimulation of acid ceramidase activity by saposin D. <span><span class="ref-journal">Arch Biochem Biophys. </span>1994 Jun;<span class="ref-vol">311</span>(2):354–7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8203897" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 8203897</span></a>] [<a href="http://dx.crossref.org/10.1006/abbi.1994.1248" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl></div><h2 id="NBK593926_footnotes">Footnotes</h2><dl class="temp-labeled-list small"><dt></dt><dd><div id="g49-analsphingolipid.FN1"><p class="no_top_margin">The authors declare no competing or financial interests.</p></div></dd></dl><div class="bk_prnt_sctn"><h2>Figures</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="g49-analsphingolipid.F1" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593926/bin/g49-analsphingolipid-Image001.jpg" alt="Figure 1: . Pathway of glycosphingolipid degradation in lysosome." /></div><h3><span class="label">Figure 1: </span></h3><div class="caption"><p>Pathway of glycosphingolipid degradation in lysosome.</p><p>Lysosomal glycosphingolipids are degraded in a stepwise manner. (Red) sphindolipidosis, (Blue) hydrolase, and (Black) sphingolipid activator protein. Sap, saposin; LacCer, lactosylceramide.</p></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="g49-analsphingolipid.F2" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593926/bin/g49-analsphingolipid-Image002.jpg" alt="Figure 2: . Hydrolysis of ceramide using acid ceramidase in the tissue homogenates from wild-type (WT) and Saposin-D-/- (KO) mice." /></div><h3><span class="label">Figure 2: </span></h3><div class="caption"><p>Hydrolysis of ceramide using acid ceramidase in the tissue homogenates from wild-type (WT) and <i>Saposin-D</i><sup>-/-</sup> (KO) mice.</p><p>B: The C12:0-ceramide-hydrolyzing activities of the tissue homogenates from KO mice were significantly lower than those from WT mice. Bars represent mean values ± S.D. (n = 3). *, <i>p</i> < 0.01 versus WT mice (Student’s <i>t</i>-test).</p><p>A: Representative thin-layer chromatography (TLC) to show the produced <sup>14</sup>C labeled free fatty acids (FFA).</p></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="g49-analsphingolipid.F3" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593926/bin/g49-analsphingolipid-Image003.jpg" alt="Figure 3: " /></div><h3><span class="label">Figure 3: </span></h3><div class="caption"><p>GBA1 activity in the presence of various concentrations of synthetic saposin-C</p><p>B: Imiglucerase (1 nM) was incubated with 2.5 μM of NBD-GlcCer-containing liposomes and the indicated concentrations of saposin-C. GBA1 activity (pmol/h/ng GBA1) was defined on the basis of the amount of NBD-Cer converted from NBD-GlcCer. The averages and standard errors of three to five experiments are plotted.</p><p>A: Representative high-performance liquid chromatography (HPLC) profiles show the amount of NBD-Cer converted from NBD-GlcCer lipids. Standard mixture containing 20 pmol of NBD-Cer and NBD-GlcCer was incubated: in the absence of saposin-C and in the presence of 2 µM of saposin-C. The addition of saposin-C resulted in the highest hydrolytic conversion of NBD-GlcCer to NBD-Cer.</p></div></div></div></div><div id="bk_toc_contnr"></div></div></div>
|
||
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a><p class="small">Licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported license. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&targetsite=external&targetcat=link&targettype=uri">http://creativecommons.org/licenses/by-nc-nd/4.0/</a>.</p></div><div class="small"><span class="label">Bookshelf ID: NBK593926</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/37590665" title="PubMed record of this page" ref="pagearea=meta&targetsite=entrez&targetcat=link&targettype=pubmed">37590665</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/glycopodv2/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/glycopodv2/g48-hydrosphingolipid/" title="Previous page in this title">< Prev</a><a class="active page_link next" href="/books/n/glycopodv2/transferases/" title="Next page in this title">Next ></a></div></div></div></div>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="bottom">
|
||
|
||
<div id="NCBIFooter_dynamic">
|
||
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
|
||
<component id="Breadcrumbs" label="helpdesk"/>-->
|
||
|
||
</div>
|
||
|
||
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
|
||
</div>
|
||
</div>
|
||
<!--/.page-->
|
||
</div>
|
||
<!--/.wrap-->
|
||
</div><!-- /.twelve_col -->
|
||
</div>
|
||
<!-- /.grid -->
|
||
|
||
<span class="PAFAppResources"></span>
|
||
|
||
<!-- BESelector tab -->
|
||
|
||
|
||
|
||
<noscript><img alt="statistics" src="/stat?jsdisabled=true&ncbi_db=books&ncbi_pdid=book-part&ncbi_acc=NBK593926&ncbi_domain=glycopodv2&ncbi_report=printable&ncbi_type=fulltext&ncbi_objectid=&ncbi_pcid=/NBK593926/?report=printable&ncbi_app=bookshelf" /></noscript>
|
||
|
||
|
||
<!-- usually for JS scripts at page bottom -->
|
||
<!--<component id="PageFixtures" label="styles"></component>-->
|
||
|
||
|
||
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal104 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
||
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
||
|
||
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
|
||
</html> |