108 lines
No EOL
29 KiB
XML
108 lines
No EOL
29 KiB
XML
<?xml version="1.0" encoding="utf-8"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
||
|
||
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||
<!-- AppResources meta begin -->
|
||
<meta name="paf-app-resources" content="" />
|
||
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
||
|
||
<!-- AppResources meta end -->
|
||
|
||
<!-- TemplateResources meta begin -->
|
||
<meta name="paf_template" content="" />
|
||
|
||
<!-- TemplateResources meta end -->
|
||
|
||
<!-- Logger begin -->
|
||
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK593920" /><meta name="ncbi_domain" content="glycopodv2" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK593920/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
|
||
<!-- Logger end -->
|
||
|
||
<title>Protein degradation assay for endoplasmic reticulum-associated degradation (ERAD) in mammalian cells - Glycoscience Protocols (GlycoPODv2) - NCBI Bookshelf</title>
|
||
|
||
<!-- AppResources external_resources begin -->
|
||
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
|
||
|
||
<!-- AppResources external_resources end -->
|
||
|
||
<!-- Page meta begin -->
|
||
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Glycoscience Protocols (GlycoPODv2) [Internet]" /><meta name="citation_title" content="Protein degradation assay for endoplasmic reticulum-associated degradation (ERAD) in mammalian cells" /><meta name="citation_publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="citation_date" content="2022/03/25" /><meta name="citation_author" content="Nobuko Hosokawa" /><meta name="citation_pmid" content="37590659" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK593920/" /><meta name="citation_keywords" content="ERAD (endoplasmic reticulum-associated degradation)" /><meta name="citation_keywords" content="ER (endoplasmic reticulum)" /><meta name="citation_keywords" content="mammalian cells" /><meta name="citation_keywords" content="glycoprotein" /><meta name="citation_keywords" content="ubiquitin-proteasome system" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Protein degradation assay for endoplasmic reticulum-associated degradation (ERAD) in mammalian cells" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="DC.Contributor" content="Nobuko Hosokawa" /><meta name="DC.Date" content="2022/03/25" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK593920/" /><meta name="description" content="The endoplasmic reticulum (ER) is the organelle wherein secretory and membrane proteins are synthesized. Most of the polypeptides synthesized in the ER are covalently modified with N-linked oligosaccharides. The folding of these glycoproteins is monitored and assisted by chaperone proteins and lectins in the ER. Correctly folded proteins are sorted out of the ER into secretory compartments, whereas misfolded polypeptides or unassembled subunits are retained in the ER. After several attempts to correctly fold these polypeptides, terminally misfolded proteins are retro-translocated out of the ER and degraded by the cytoplasmic proteasome. This mechanism is termed ER-associated degradation (ERAD) (1–4) (Figure 1)." /><meta name="og:title" content="Protein degradation assay for endoplasmic reticulum-associated degradation (ERAD) in mammalian cells" /><meta name="og:type" content="book" /><meta name="og:description" content="The endoplasmic reticulum (ER) is the organelle wherein secretory and membrane proteins are synthesized. Most of the polypeptides synthesized in the ER are covalently modified with N-linked oligosaccharides. The folding of these glycoproteins is monitored and assisted by chaperone proteins and lectins in the ER. Correctly folded proteins are sorted out of the ER into secretory compartments, whereas misfolded polypeptides or unassembled subunits are retained in the ER. After several attempts to correctly fold these polypeptides, terminally misfolded proteins are retro-translocated out of the ER and degraded by the cytoplasmic proteasome. This mechanism is termed ER-associated degradation (ERAD) (1–4) (Figure 1)." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK593920/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-glycopodv2-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/glycopodv2/g38-proteinassayendo/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK593920/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
|
||
|
||
<!-- Page meta end -->
|
||
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8CF9387D66E831000000000060004D.m_5" />
|
||
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
|
||
<body class="book-part">
|
||
<div class="grid no_max_width">
|
||
<div class="col twelve_col nomargin shadow">
|
||
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
|
||
<div class="sysmessages">
|
||
<noscript>
|
||
<p class="nojs">
|
||
<strong>Warning:</strong>
|
||
The NCBI web site requires JavaScript to function.
|
||
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
|
||
</p>
|
||
</noscript>
|
||
</div>
|
||
<!--/.sysmessage-->
|
||
<div class="wrap">
|
||
<div class="page">
|
||
<div class="top">
|
||
|
||
<div class="header">
|
||
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<!--<component id="Page" label="headcontent"/>-->
|
||
|
||
</div>
|
||
<div class="content">
|
||
<!-- site messages -->
|
||
<div class="container content">
|
||
<div class="document">
|
||
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Nishihara S, Angata K, Aoki-Kinoshita KF, et al., editors. Glycoscience Protocols (GlycoPODv2) [Internet]. Saitama (JP): Japan Consortium for Glycobiology and Glycotechnology; 2021-. </p></div></div></div>
|
||
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK593920_"><span class="title" itemprop="name">Protein degradation assay for endoplasmic reticulum-associated degradation (ERAD) in mammalian cells</span></h1><div class="contrib half_rhythm"><span itemprop="author">Nobuko Hosokawa</span>, M.D.<div class="affiliation small">Institute for Frontier Life and Medical Sciences, Kyoto University<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="pj.ca.u-otoyk.tnorfni@hokubon" class="oemail">pj.ca.u-otoyk.tnorfni@hokubon</a></div></div><div class="small">Corresponding author.</div></div><p class="small">Created: <span itemprop="datePublished">September 21, 2021</span>; Last Revision: <span itemprop="dateModified">March 25, 2022</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><div id="g38-proteinassayendo.Introduction"><h2 id="_g38-proteinassayendo_Introduction_">Introduction</h2><p>The endoplasmic reticulum (ER) is the organelle wherein secretory and membrane proteins are synthesized. Most of the polypeptides synthesized in the ER are covalently modified with <i>N</i>-linked oligosaccharides. The folding of these glycoproteins is monitored and assisted by chaperone proteins and lectins in the ER. Correctly folded proteins are sorted out of the ER into secretory compartments, whereas misfolded polypeptides or unassembled subunits are retained in the ER. After several attempts to correctly fold these polypeptides, terminally misfolded proteins are retro-translocated out of the ER and degraded by the cytoplasmic proteasome. This mechanism is termed ER-associated degradation (ERAD) (<a class="bk_pop" href="#g38-proteinassayendo.REF.1">1</a>–<a class="bk_pop" href="#g38-proteinassayendo.REF.4">4</a>) (<a class="figpopup" href="/books/NBK593920/figure/g38-proteinassayendo.F1/?report=objectonly" target="object" rid-figpopup="figg38proteinassayendoF1" rid-ob="figobg38proteinassayendoF1">Figure 1</a>).</p><p>Many steps are required for ERAD, including recognition of misfolded ERAD substrates, extraction of these proteins from the ER to the cytosol, polyubiquitination, deglycosylation, and finally protein degradation by the proteasome. To analyze the function of molecules involved in these processes, the degradation of ERAD substrates transfected into mammalian cells is monitored.</p></div><div id="g38-proteinassayendo.Protocol"><h2 id="_g38-proteinassayendo_Protocol_">Protocol</h2><p>Here, two kinds of protocol will be described to detect the degradation of ERAD substrates in mammalian cells: 1) pulse-chase experiment and 2) cycloheximide (CHX)-chase experiment. It is useful to add proteasome inhibitors to confirm the degradation of the substrate by ERAD pathway. The degradation kinetics estimated by pulse-chase and CHX-chase experiments of the same substrate sometimes differ (<a class="bk_pop" href="#g38-proteinassayendo.REF.5">5</a>). In pulse-chase experiments, the degradation kinetics of proteins synthesized during the pulse-labeling period are monitored, whereas in CHX-chase experiments, all ERAD substrates retained in the cells are detected. Furthermore, all protein synthesis is halted by the addition of CHX, including secretory proteins newly synthesized in the ER, which may affect the ER protein quality control machinery.</p><div id="g38-proteinassayendo.Materials"><h3>Materials</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Transfection reagents (Lipofectamine 2000 [Invitrogen, Waltham, MA, USA], PEI [polyethylenimine] [Sigma-Aldrich, St. Louise, MO, USA], and others)</p></dd><dt>2.</dt><dd><p class="no_top_margin">[<sup>35</sup>S]-methionine or [<sup>35</sup>S]-protein labeling mixture</p></dd><dt>3.</dt><dd><p class="no_top_margin">Dulbecco’s modified eagle medium (DMEM) lacking methionine/cysteine</p></dd><dt>4.</dt><dd><p class="no_top_margin">Dialyzed fetal bovine serum (FBS)</p></dd><dt>5.</dt><dd><p class="no_top_margin">Dulbecco’s phosphate-buffered saline (PBS)</p></dd><dt>6.</dt><dd><p class="no_top_margin">Protein A- or Protein G-Sepharose beads (GE Healthcare Life Science, Uppsala, Sweden and others)</p></dd><dt>7.</dt><dd><p class="no_top_margin">Cycloheximide</p></dd><dt>8.</dt><dd><p class="no_top_margin">Proteasome inhibitors (lactacystin, MG-132, epoxomicin, and others)</p></dd><dt>9.</dt><dd><p class="no_top_margin">Lysis buffer (1% NP-40, 150 mM of NaCl, and 50 mM of Tris-HCl [pH 7.5] supplemented with protease inhibitors)</p></dd><dt>10.</dt><dd><p class="no_top_margin">Protease inhibitors (2 mM of N-Ethylmaleimide (NEM), 0.2 mM of AEBSF (4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride), 1 μg/mL of pepstatin, and 1 μg/mL of leupeptin)</p></dd><dt>11.</dt><dd><p class="no_top_margin">High ionic wash buffer (1% NP-40, 400 mM of NaCl, and 50 mM of Tris-HCl [pH 7.5])</p></dd><dt>12.</dt><dd><p class="no_top_margin">Imaging plate</p></dd></dl></div><div id="g38-proteinassayendo.Instruments"><h3>Instruments</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">CO<sub>2</sub> incubator</p></dd><dt>2.</dt><dd><p class="no_top_margin">Radioisotope experiment facility</p></dd><dt>3.</dt><dd><p class="no_top_margin">Rotator</p></dd><dt>4.</dt><dd><p class="no_top_margin">Phosphorimager</p></dd><dt>5.</dt><dd><p class="no_top_margin">Luminoimage analyzer</p></dd></dl></div><div id="g38-proteinassayendo.Methods"><h3>Methods</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Pulse-chase experiment</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Plate cells on a 3.5-cm tissue culture dish.</p></dd><dt>b.</dt><dd><p class="no_top_margin">Transfect plasmids encoding an ERAD substrate and proteins of interest (<b>Note 1</b>).</p></dd><dt>c.</dt><dd><p class="no_top_margin">After washing once with prewarmed PBS, incubate cells in DMEM lacking methionine/cysteine supplemented with dialyzed FBS for 15–30 min.</p></dd><dt>d.</dt><dd><p class="no_top_margin">Pulse-label cells with [<sup>35</sup>S]-methionine/cysteine for 15 min in DMEM lacking methionine/cysteine supplemented with dialyzed FBS (<b>Note 2</b>).</p></dd><dt>e.</dt><dd><p class="no_top_margin">Remove the medium, and incubate cells in a normal growth medium for the time required.</p></dd><dt>f.</dt><dd><p class="no_top_margin">After washing cells twice with PBS, harvest and extract cells by adding a buffer containing an appropriate detergent to the dish and keep on ice for 20 min (<b>Note 3</b>).</p></dd><dt>g.</dt><dd><p class="no_top_margin">Collect cell lysate using a rubber policeman, centrifuge at 13,000 ×<i>g</i> at 4°C for 20 min, and transfer the supernatant to a new microtube.</p></dd><dt>h.</dt><dd><p class="no_top_margin">Add ~30% (v/v) of glycerol and antibodies, and incubate at 4°C for the time required (<b>Note 4</b>).</p></dd><dt>i.</dt><dd><p class="no_top_margin">Add Protein A- or Protein G-Sepharose beads (bed volume of 10–20 μL).</p></dd><dt>j.</dt><dd><p class="no_top_margin">Rotate at 4°C for 1–2 h.</p></dd><dt>k.</dt><dd><p class="no_top_margin">Collect beads by centrifugation at 1,500 ×<i>g</i> at 4°C for 3 min.</p></dd><dt>l.</dt><dd><p class="no_top_margin">Wash beads twice with high ionic wash buffer and collect beads as in Step k.</p></dd><dt>m.</dt><dd><p class="no_top_margin">Elute immunoprecipitates with Laemmli sample buffer.</p></dd><dt>n.</dt><dd><p class="no_top_margin">Separate proteins by SDS-PAGE.</p></dd><dt>o.</dt><dd><p class="no_top_margin">Dry the gel and expose to an imaging plate (<b>Note 5</b>).</p></dd><dt>p.</dt><dd><p class="no_top_margin">Analyze using a phosphorimager (<a class="figpopup" href="/books/NBK593920/figure/g38-proteinassayendo.F2/?report=objectonly" target="object" rid-figpopup="figg38proteinassayendoF2" rid-ob="figobg38proteinassayendoF2">Figure 2</a>).</p></dd></dl></dd><dt>2.</dt><dd><p class="no_top_margin">CHX-chase experiment</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Plate cells on a 3.5-cm tissue culture dish.</p></dd><dt>b.</dt><dd><p class="no_top_margin">Transfect plasmids encoding an ERAD substrate and proteins of interest.</p></dd><dt>c.</dt><dd><p class="no_top_margin">Add 50–100 μg/mL of CHX to the medium (<b>Note 6</b>).</p></dd><dt>d.</dt><dd><p class="no_top_margin">After washing cells twice with PBS, harvest and extract cells by adding a buffer containing an appropriate detergent to the dish and keep on ice for 20 min.</p></dd><dt>e.</dt><dd><p class="no_top_margin">Collect cell lysate using a rubber policeman, centrifuge at 13,000 ×<i>g</i> at 4°C for 20 min, and transfer the supernatant to a new microtube.</p></dd><dt>f.</dt><dd><p class="no_top_margin">Add 2× Laemmli sample buffer to cell extracts (final; in 1× Laemmli sample buffer), and separate proteins by SDS-PAGE.</p></dd><dt>g.</dt><dd><p class="no_top_margin">Transfer the separated proteins in the gel to a nitrocellulose or a polyvinylidene fluoride membrane.</p></dd><dt>h.</dt><dd><p class="no_top_margin">Detect specific proteins using appropriate antibodies (Western blotting) (<a class="figpopup" href="/books/NBK593920/figure/g38-proteinassayendo.F3/?report=objectonly" target="object" rid-figpopup="figg38proteinassayendoF3" rid-ob="figobg38proteinassayendoF3">Figure 3</a>).</p></dd></dl></dd></dl></div><div id="g38-proteinassayendo.Notes"><h3>Notes</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Approximately 1 μg of plasmid encoding an ERAD substrate is used. For the co-transfection with other plasmids, the amount of each plasmid should be adjusted to obtain the appropriate expression level of each protein. The confluency of cells at the time of transfection should be modified as recommended for transfection reagents.</p></dd><dt>2.</dt><dd><p class="no_top_margin">Normally 8.2 MBq/mL of [<sup>35</sup>S]-protein labeling mixture is used for pulse labeling.</p></dd><dt>3.</dt><dd><p class="no_top_margin">Other detergents, such as CHAPS and digitonin, are used.</p></dd><dt>4.</dt><dd><p class="no_top_margin">The amount of antibodies used and the period of incubation required to immunoprecipitate proteins vary and depend on the antibodies. Glycerol was added to increase the stability of proteins in the lysate.</p></dd><dt>5.</dt><dd><p class="no_top_margin">The period required for exposure depends on the radioactivity incorporated, the quality of imaging plate, and the sensitivity of the phosphorimager.</p></dd><dt>6.</dt><dd><p class="no_top_margin">The concentration of cycloheximide added should be optimized depending on the cell lines used based on previous publications.</p></dd></dl></div></div><div id="g38-proteinassayendo.References"><h2 id="_g38-proteinassayendo_References_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="g38-proteinassayendo.REF.1">Helenius A, Aebi M. Roles of N-Linked Glycans in the Endoplasmic Reticulum. <span><span class="ref-journal">Annu Rev Biochem. </span>2004;<span class="ref-vol">73</span>:1019–49.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15189166" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 15189166</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="g38-proteinassayendo.REF.2">Smith MH, Ploegh HL, Weissman JS. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. <span><span class="ref-journal">Science. </span>2011;<span class="ref-vol">334</span>(6059):1086–90.</span> [<a href="/pmc/articles/PMC3864754/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3864754</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22116878" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22116878</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="g38-proteinassayendo.REF.3">Preston GM, Brodsky JL. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. <span><span class="ref-journal">Biochem J. </span>2017;<span class="ref-vol">474</span>(4):445–69.</span> [<a href="/pmc/articles/PMC5425155/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5425155</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28159894" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28159894</span></a>] [<a href="http://dx.crossref.org/10.1042/BCJ20160582" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="g38-proteinassayendo.REF.4">Amm I, Sommer T, Wolf DH. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. <span><span class="ref-journal">Biochim Biophys Acta. </span>2014;<span class="ref-vol">1843</span>(1):182–96.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/23850760" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23850760</span></a>] [<a href="http://dx.crossref.org/10.1016/j.bbamcr.2013.06.031" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="g38-proteinassayendo.REF.5">Wu Y, Termine DJ, Swulius MT, Moremen KW, Sifers RN. Human endoplasmic reticulum mannosidase I is subject to regulated proteolysis. <span><span class="ref-journal">J Biol Chem. </span>2007;<span class="ref-vol">282</span>(7):4841–9.</span> [<a href="/pmc/articles/PMC3969733/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3969733</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17166854" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17166854</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="g38-proteinassayendo.REF.2_1">Hirao K, Natsuka Y, Tamura T, Wada I, Morito D, Natsuka S, Romero P, Sleno B, Tremblay LO, Herscovics A, Nagata K, Hosokawa N. EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. <span><span class="ref-journal">J Biol Chem. </span>2006;<span class="ref-vol">281</span>(14):9650–8.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16431915" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 16431915</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="g38-proteinassayendo.REF.3_1">Hattori T, Hanafusa K, Wada I, Hosokawa N. SEL1L degradation intermediates stimulate cytosolic aggregation of polyglutamine-expanded protein. <span><span class="ref-journal">FEBS J. </span>2021;<span class="ref-vol">288</span>(15):4637–54.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/33576152" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 33576152</span></a>] [<a href="http://dx.crossref.org/10.1111/febs.15761" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl></div><h2 id="NBK593920_footnotes">Footnotes</h2><dl class="temp-labeled-list small"><dt></dt><dd><div id="g38-proteinassayendo.FN1"><p class="no_top_margin">The authors declare no competing or financial interests.</p></div></dd></dl><div class="bk_prnt_sctn"><h2>Figures</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="g38-proteinassayendo.F1" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593920/bin/g38-proteinassayendo-Image001.jpg" alt="Figure 1: . Scheme of endoplasmic reticulum-associated degradation (ERAD)." /></div><h3><span class="label">Figure 1: </span></h3><div class="caption"><p>Scheme of endoplasmic reticulum-associated degradation (ERAD).</p></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="g38-proteinassayendo.F2" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593920/bin/g38-proteinassayendo-Image002.jpg" alt="Figure 2: . Pulse-chase experiment of an endoplasmic reticulum-associated degradation (ERAD) substrate NHK (α1-antitrypsin variant null Hong Kong)." /></div><h3><span class="label">Figure 2: </span></h3><div class="caption"><p>Pulse-chase experiment of an endoplasmic reticulum-associated degradation (ERAD) substrate NHK (α1-antitrypsin variant null Hong Kong). HEK (human embryonic kidney) 293 cells were transfected with plasmids encoding NHK, together with an empty vector or EDEM3-HA, and labeled with [<sup>35</sup>S]-protein labeling mixture for 15 min. NHK and EDEM3 were immunoprecipitated with an anti-α1-antitrypsin antibody (lanes 1–6) or with an anti-HA-tag antibody (lanes 7–9). Immunoprecipitates were separated on a 10% SDS-PAGE gel (A), and radioactive signal was quantified (B). Cells were treated with 20 μM of lactacystin for 3 h before pulse labeling (lanes 4–6, indicated as +) or were untreated (lanes 1–3, indicated as −) (C). This figure was originally published in (6).</p></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="g38-proteinassayendo.F3" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593920/bin/g38-proteinassayendo-Image003.jpg" alt="Figure 3: . CHX-chase experiment of NHK." /></div><h3><span class="label">Figure 3: </span></h3><div class="caption"><p>CHX-chase experiment of NHK. HEK293 cells co-transfected with NHK, HRD1-myc, and S-SEL1L were chased for the indicated period after the addition of CHX. The cell lysate was separated by 10% SDS-PAGE and analyzed by Western blotting. The signal intensity of NHK is quantified in the graph. This figure was originally published in (7).</p></div></div></div></div><div id="bk_toc_contnr"></div></div></div>
|
||
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a><p class="small">Licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported license. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&targetsite=external&targetcat=link&targettype=uri">http://creativecommons.org/licenses/by-nc-nd/4.0/</a>.</p></div><div class="small"><span class="label">Bookshelf ID: NBK593920</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/37590659" title="PubMed record of this page" ref="pagearea=meta&targetsite=entrez&targetcat=link&targettype=pubmed">37590659</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/glycopodv2/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/glycopodv2/g37-enzymeassayendo/" title="Previous page in this title">< Prev</a><a class="active page_link next" href="/books/n/glycopodv2/g39-assaynucleo/" title="Next page in this title">Next ></a></div></div></div></div>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="bottom">
|
||
|
||
<div id="NCBIFooter_dynamic">
|
||
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
|
||
<component id="Breadcrumbs" label="helpdesk"/>-->
|
||
|
||
</div>
|
||
|
||
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
|
||
</div>
|
||
</div>
|
||
<!--/.page-->
|
||
</div>
|
||
<!--/.wrap-->
|
||
</div><!-- /.twelve_col -->
|
||
</div>
|
||
<!-- /.grid -->
|
||
|
||
<span class="PAFAppResources"></span>
|
||
|
||
<!-- BESelector tab -->
|
||
|
||
|
||
|
||
<noscript><img alt="statistics" src="/stat?jsdisabled=true&ncbi_db=books&ncbi_pdid=book-part&ncbi_acc=NBK593920&ncbi_domain=glycopodv2&ncbi_report=printable&ncbi_type=fulltext&ncbi_objectid=&ncbi_pcid=/NBK593920/?report=printable&ncbi_app=bookshelf" /></noscript>
|
||
|
||
|
||
<!-- usually for JS scripts at page bottom -->
|
||
<!--<component id="PageFixtures" label="styles"></component>-->
|
||
|
||
|
||
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal105 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
||
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
||
|
||
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
|
||
</html> |