nih-gov/www.ncbi.nlm.nih.gov/books/NBK593836/index.html?report=printable
2025-03-17 02:05:34 +00:00

110 lines
No EOL
35 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK593836" /><meta name="ncbi_domain" content="glycopodv2" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK593836/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Sialic acid linkage-specific alkylamidation via ring-opening aminolysis (aminolysis-SALSA) - Glycoscience Protocols (GlycoPODv2) - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Glycoscience Protocols (GlycoPODv2) [Internet]" /><meta name="citation_title" content="Sialic acid linkage-specific alkylamidation via ring-opening aminolysis (aminolysis-SALSA)" /><meta name="citation_publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="citation_date" content="2021/12/23" /><meta name="citation_author" content="Hisatoshi Hanamatsu" /><meta name="citation_author" content="Takashi Nishikaze" /><meta name="citation_author" content="Jun-ichi Furukawa" /><meta name="citation_pmid" content="37590587" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK593836/" /><meta name="citation_keywords" content="sialic acid" /><meta name="citation_keywords" content="linkage-specific derivatization" /><meta name="citation_keywords" content="aminolysis" /><meta name="citation_keywords" content="glycoblotting" /><meta name="citation_keywords" content="mass spectrometry" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Sialic acid linkage-specific alkylamidation via ring-opening aminolysis (aminolysis-SALSA)" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="Japan Consortium for Glycobiology and Glycotechnology" /><meta name="DC.Contributor" content="Hisatoshi Hanamatsu" /><meta name="DC.Contributor" content="Takashi Nishikaze" /><meta name="DC.Contributor" content="Jun-ichi Furukawa" /><meta name="DC.Date" content="2021/12/23" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK593836/" /><meta name="description" content="Sialic acids widely occur as glycoconjugates and are often present on the nonreducing ends of sugars via α2,3-, α2,6-, and α2,8-linkages as structural isomers. Thus, it is difficult to distinguish structural isomers with the same mass using mass spectrometry. Several unique derivatization methods for MS analysis have been developed to facilitate differentiation of sialyl-linkage isomers (13). Previously, we reported a one-pot glycan purificationderivatization method employing a newly developed sialic acid linkage-specific alkylamidation (SALSA) (4). We found that cleavage of intramolecular lactone derived from α2,3- and α2,8-linked sialic acid and its amidation proceed instantaneously via ring-opening aminolysis as shown in Figure 1 (5). Therefore, aminolysis-SALSA can provide a shorter reaction time and a simplified protocol." /><meta name="og:title" content="Sialic acid linkage-specific alkylamidation via ring-opening aminolysis (aminolysis-SALSA)" /><meta name="og:type" content="book" /><meta name="og:description" content="Sialic acids widely occur as glycoconjugates and are often present on the nonreducing ends of sugars via α2,3-, α2,6-, and α2,8-linkages as structural isomers. Thus, it is difficult to distinguish structural isomers with the same mass using mass spectrometry. Several unique derivatization methods for MS analysis have been developed to facilitate differentiation of sialyl-linkage isomers (13). Previously, we reported a one-pot glycan purificationderivatization method employing a newly developed sialic acid linkage-specific alkylamidation (SALSA) (4). We found that cleavage of intramolecular lactone derived from α2,3- and α2,8-linked sialic acid and its amidation proceed instantaneously via ring-opening aminolysis as shown in Figure 1 (5). Therefore, aminolysis-SALSA can provide a shorter reaction time and a simplified protocol." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK593836/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-glycopodv2-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/glycopodv2/g195-amynolysissia/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK593836/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8CBD2F7D669B810000000000D200A9.m_5" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid no_max_width">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div class="header">
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<div class="container content">
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Nishihara S, Angata K, Aoki-Kinoshita KF, et al., editors. Glycoscience Protocols (GlycoPODv2) [Internet]. Saitama (JP): Japan Consortium for Glycobiology and Glycotechnology; 2021-. </p></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK593836_"><span class="title" itemprop="name">Sialic acid linkage-specific alkylamidation via ring-opening aminolysis (aminolysis-SALSA)</span></h1><div class="contrib half_rhythm"><span itemprop="author">Hisatoshi Hanamatsu</span>, Dr<div class="affiliation small">Hokkaido
Univ<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="pj.ca.iadukoh.dem@ustamanah_h" class="oemail">pj.ca.iadukoh.dem@ustamanah_h</a></div></div></div><div class="contrib half_rhythm"><span itemprop="author">Takashi Nishikaze</span>, Dr<div class="affiliation small">Shimadzu Corporation<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="pj.oc.uzdamihs@zakihsin" class="oemail">pj.oc.uzdamihs@zakihsin</a></div></div></div><div class="contrib half_rhythm"><span itemprop="author">Jun-ichi Furukawa</span>, Dr<div class="affiliation small">Hokkaido
Univ<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="pj.ca.iadukoh.dem@uruf_j" class="oemail">pj.ca.iadukoh.dem@uruf_j</a></div></div><div class="small">Corresponding author.</div></div><p class="small">Created: <span itemprop="datePublished">September 29, 2021</span>; Last Update: <span itemprop="dateModified">December 23, 2021</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><div id="g195-amynolysissia.Introduction"><h2 id="_g195-amynolysissia_Introduction_">Introduction</h2><p>Sialic acids widely occur as glycoconjugates and are often present on the nonreducing ends of sugars via &#x003b1;2,3-, &#x003b1;2,6-, and &#x003b1;2,8-linkages as structural isomers. Thus, it is difficult to distinguish structural isomers with the same mass using mass spectrometry. Several unique derivatization methods for MS analysis have been developed to facilitate differentiation of sialyl-linkage isomers (<a class="bk_pop" href="#g195-amynolysissia.REF.1">1</a>&#x02013;<a class="bk_pop" href="#g195-amynolysissia.REF.3">3</a>). Previously, we reported a one-pot glycan purification&#x02212;derivatization method employing a newly developed sialic acid linkage-specific alkylamidation (SALSA) (<a class="bk_pop" href="#g195-amynolysissia.REF.4">4</a>). We found that cleavage of intramolecular lactone derived from &#x003b1;2,3- and &#x003b1;2,8-linked sialic acid and its amidation proceed instantaneously via ring-opening aminolysis as shown in <a class="figpopup" href="/books/NBK593836/figure/g195-amynolysissia.F1/?report=objectonly" target="object" rid-figpopup="figg195amynolysissiaF1" rid-ob="figobg195amynolysissiaF1">Figure 1</a> (<a class="bk_pop" href="#g195-amynolysissia.REF.5">5</a>). Therefore, aminolysis-SALSA can provide a shorter reaction time and a simplified protocol.</p></div><div id="g195-amynolysissia.Protocol"><h2 id="_g195-amynolysissia_Protocol_">Protocol</h2><p>In this chapter, sialic acid linkage-specific derivatization via ring-opening aminolysis (Aminolysis-SALSA) will be described for analyzing glycosphingolipid (GSL)- and <i>N</i>-glycan (<a class="figpopup" href="/books/NBK593836/figure/g195-amynolysissia.F2/?report=objectonly" target="object" rid-figpopup="figg195amynolysissiaF2" rid-ob="figobg195amynolysissiaF2">Figures 2</a> and <a class="figpopup" href="/books/NBK593836/figure/g195-amynolysissia.F3/?report=objectonly" target="object" rid-figpopup="figg195amynolysissiaF3" rid-ob="figobg195amynolysissiaF3">3</a>). Furthermore, we will describe an isotope labeling of &#x003b1;2,3-linked sialic acid residues (iSALSA) using amine hydrochloride salts in <a class="figpopup" href="/books/NBK593836/figure/g195-amynolysissia.F4/?report=objectonly" target="object" rid-figpopup="figg195amynolysissiaF4" rid-ob="figobg195amynolysissiaF4">Figure 4</a> (<a class="bk_pop" href="#g195-amynolysissia.REF.6">6</a>).</p><div id="g195-amynolysissia.Materials"><h3>Materials</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">MultiScreen Solvinert 0.45 &#x003bc;m of Low-Binding Hydrophilic Polytetrafluoroethylene (PTFE) filter plate (Millipore, Billerica, MA, Cat #MSRLN0410)</p></dd><dt>2.</dt><dd><p class="no_top_margin">Filter plate seal (Greiner Bio-One, Frickenhausen, Germany, Cat #J676060)</p></dd><dt>3.</dt><dd><p class="no_top_margin">BlotGlyco&#x000ae; bead suspension in water (10 mg/mL) (Sumitomo Bakelite Co., Ltd., Tokyo, Japan, Cat #BS-45408)</p></dd><dt>4.</dt><dd><p class="no_top_margin">10 &#x003bc;M of A2GN1 (Neu5Ac2Gal2GlcNAc2 + Man3GlcNAc1) (Tokyo Chemical Industry, Tokyo, Japan, Cat #D4065)</p></dd><dt>5.</dt><dd><p class="no_top_margin">Acetonitrile (FUJIFILM Wako Pure Chemical, Osaka, Japan, Cat #018-19853)</p></dd><dt>6.</dt><dd><p class="no_top_margin">2% Acetic acid (FUJIFILM Wako Pure Chemical, Cat #012-00245) in acetonitrile</p></dd><dt>7.</dt><dd><p class="no_top_margin">2 M Guanidine hydrochloride (FUJIFILM Wako Pure Chemical, Cat #077-02435)</p></dd><dt>8.</dt><dd><p class="no_top_margin">1% Triethylamine (FUJIFILM Wako Pure Chemical, Cat #202-02646) in methanol</p></dd><dt>9.</dt><dd><p class="no_top_margin">10% Acetic anhydride (FUJIFILM Wako Pure Chemical, Cat #011-00271) in methanol</p></dd><dt>10.</dt><dd><p class="no_top_margin">10 mM of Hydrochloric acid (FUJIFILM Wako Pure Chemical, Cat #192-02175)</p></dd><dt>11.</dt><dd><p class="no_top_margin">Methanol (FUJIFILM Wako Pure Chemical, Cat #134-14523)</p></dd><dt>12.</dt><dd><p class="no_top_margin">DMSO: Dimethyl sulfoxide (FUJIFILM Wako Pure Chemical, Cat #040-32815)</p></dd><dt>13.</dt><dd><p class="no_top_margin">SialoCapper&#x02122;-ID Kit (Shimadzu Corporation, Kyoto, Japan, Cat# 225-42160-58 (JP/EN) 225-42160-46 (CN))</p></dd><dt>14.</dt><dd><p class="no_top_margin">N&#x003b1;-((aminooxy)acetyl)tryptophanylarginine methyl ester (aoWR)</p></dd><dt>15.</dt><dd><p class="no_top_margin">Hydrophilic interaction liquid chromatography (HILIC) micro-elution plate (Waters, Milford, MA, Cat #186002780)</p></dd><dt>16.</dt><dd><p class="no_top_margin">HILIC pre-wash solution: 99% H<sub>2</sub>O and 1% acetic acid</p></dd><dt>17.</dt><dd><p class="no_top_margin">HILIC wash solution: 95% acetonitrile, 4% H<sub>2</sub>O, and 1% acetic acid</p></dd><dt>18.</dt><dd><p class="no_top_margin">HILIC loading solution: 99% acetonitrile and 1% acetic acid</p></dd><dt>19.</dt><dd><p class="no_top_margin">HILIC elution solution: 5% acetonitrile, 94% H<sub>2</sub>O, and 1% acetic acid</p></dd><dt>20.</dt><dd><p class="no_top_margin">Matrix solution: 10 mg/mL of 2,5-dihydrobenzoic acid (Sigma-Aldrich, Cat #149357) in 30% acetonitrile</p></dd></dl></div><div id="g195-amynolysissia.Instruments"><h3>Instruments</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Micro Tube mixer (MT-400: TOMY, Tokyo, Japan)</p></dd><dt>2.</dt><dd><p class="no_top_margin">Vacuum manifold for 96-well plates (Waters)</p></dd><dt>3.</dt><dd><p class="no_top_margin">Ultraflex II TOF/TOF MS instrument (Bruker Daltonics, Bremen, Germany)</p></dd><dt>4.</dt><dd><p class="no_top_margin">Matrix-assisted laser desorption/ionization (MALDI) polished steel target plate (Bruker Daltonics, Cat #8280781)</p></dd><dt>5.</dt><dd><p class="no_top_margin">FlexAnalysis 3.0 software (Bruker Daltonics)</p></dd></dl></div><div id="g195-amynolysissia.Methods"><h3>Methods</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Glycoblotting combined with Aminolysis-SALSA</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Dispense 5 mg of BlotGlyco&#x000ae; beads on a filter plate (<b>Note 1</b>).</p></dd><dt>b.</dt><dd><p class="no_top_margin">Set the filter plate into a vacuum manifold.</p></dd><dt>c.</dt><dd><p class="no_top_margin">Add up to 50 &#x003bc;L of prepared samples to each well of the filter plate.</p></dd><dt>d.</dt><dd><p class="no_top_margin">Add optimal volume of 10 &#x003bc;M of A2GN1 as an internal standard.</p></dd><dt>e.</dt><dd><p class="no_top_margin">Add 450 &#x003bc;L of 2% acetic acid in acetonitrile (<b>Note 2</b>).</p></dd><dt>f.</dt><dd><p class="no_top_margin">Incubate at 80&#x000b0;C for 60 min (<b>Note 3</b>).</p></dd><dt>g.</dt><dd><p class="no_top_margin">Set the filter plate into a vacuum manifold.</p></dd><dt>h.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of 2 M guanidine hydrochloride and repeat twice (<b>Note 4</b>).</p></dd><dt>i.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of H<sub>2</sub>O and repeat twice.</p></dd><dt>j.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of 1% triethylamine in methanol and repeat twice.</p></dd><dt>k.</dt><dd><p class="no_top_margin">Add 100 &#x003bc;L of 10% acetic anhydride in methanol and stand for 30 min (<b>Note 5</b>).</p></dd><dt>l.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of 10 mM of hydrochloric acid and repeat twice.</p></dd><dt>m.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of methanol and repeat twice.</p></dd><dt>n.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of DMSO and repeat twice.</p></dd><dt>o.</dt><dd><p class="no_top_margin">Add 100 &#x003bc;L of iPA solution prepared from Reagents A and B in SialoCapper-ID Kit and gently shake by micro tube mixer for 1 h (<b>Note 6</b>).</p></dd><dt>p.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of methanol and repeat twice.</p></dd><dt>q.</dt><dd><p class="no_top_margin">Add 100 &#x003bc;L Reagent C in SialoCapper-ID Kit and shake gently to ensure that the beads are immersed in the liquid (<b>Notes 7</b> and <b>8</b>).</p></dd><dt>r.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of methanol and repeat twice.</p></dd><dt>s.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of H<sub>2</sub>O and repeat twice.</p></dd><dt>t.</dt><dd><p class="no_top_margin">Add 20 &#x003bc;L of 20 mM of aoWR (<b>Note 9</b>).</p></dd><dt>u.</dt><dd><p class="no_top_margin">Add 180 &#x003bc;L of 2% acetic acid in acetonitrile.</p></dd><dt>v.</dt><dd><p class="no_top_margin">Incubate at 80&#x000b0;C for 45 min.</p></dd><dt>w.</dt><dd><p class="no_top_margin">Add 100 &#x003bc;L of H<sub>2</sub>O and elute aoWR-labeled glycans.</p></dd></dl></dd><dt>2.</dt><dd><p class="no_top_margin">aoWR-labeled Glycan Purification</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Wash the well of the HILIC micro-elution plate with 200 &#x003bc;L of HILIC prewash solution and repeat.</p></dd><dt>b.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of HILIC wash solution and repeat.</p></dd><dt>c.</dt><dd><p class="no_top_margin">Add 450 &#x003bc;L of HILIC loading solution to 50 &#x003bc;L of the aoWR-labeled glycan sample (Step 1w) and transfer to the HILIC micro-elution plate.</p></dd><dt>d.</dt><dd><p class="no_top_margin">Wash by adding 200 &#x003bc;L of HILIC wash solution and repeat.</p></dd><dt>e.</dt><dd><p class="no_top_margin">Elute with 100 &#x003bc;L of HILIC elution solution.</p></dd><dt>f.</dt><dd><p class="no_top_margin">Analyze by MALDI-time of flight mass spectrometry (MALDI-TOF MS).</p></dd></dl></dd><dt>3.</dt><dd><p class="no_top_margin">MALDI-TOF MS Analysis</p><dl class="temp-labeled-list"><dt>a.</dt><dd><p class="no_top_margin">Mix 0.5 &#x003bc;L of sample (Step 4e) and 0.5 &#x003bc;L of matrix solution on the target plate.</p></dd><dt>b.</dt><dd><p class="no_top_margin">Dry the spots on the target plate at room temperature.</p></dd><dt>c.</dt><dd><p class="no_top_margin">Load the target plate into the instrument and select the appropriate MS method.</p></dd><dt>d.</dt><dd><p class="no_top_margin">Run the instrument in reflector mode.</p></dd><dt>e.</dt><dd><p class="no_top_margin">Collect the MS data with 1,000&#x02013;2,000 laser shots per sample and sum the collected data.</p></dd><dt>f.</dt><dd><p class="no_top_margin">Quantify the detected glycans using the area of the internal standard (<b>Note 10</b>).</p></dd></dl></dd></dl></div><div id="g195-amynolysissia.Notes"><h3>Notes</h3><dl class="temp-labeled-list"><dt>1.</dt><dd><p class="no_top_margin">Cover the unused well with a plate seal and dispense 500 &#x003bc;L of BlotGlyco&#x000ae; bead suspension (10 mg/mL) into a well.</p></dd><dt>2.</dt><dd><p class="no_top_margin">Add nine times the amount of 2% acetic acid in acetonitrile to the filter plate well.</p></dd><dt>3.</dt><dd><p class="no_top_margin">Continue heating until the solvent is completely dry.</p></dd><dt>4.</dt><dd><p class="no_top_margin">After the last wash with various solvents, wipe the bottom of the filter plate with a paper towel.</p></dd><dt>5.</dt><dd><p class="no_top_margin">Freshly prepare 10% acetic anhydride in methanol.</p></dd><dt>6.</dt><dd><p class="no_top_margin">Add 970 &#x003bc;L of Reagent A to Reagent B (both in SialoCapper-ID Kit) and mix with vortex mixer (iPA solution). Reagent B is insoluble and should be mixed carefully (<a class="bk_pop" href="#g195-amynolysissia.REF.4">4</a>,<a class="bk_pop" href="#g195-amynolysissia.REF.5">5</a>).</p></dd><dt>7.</dt><dd><p class="no_top_margin">In this step, &#x003b1;2,3-linked sialic acid can be isotopically labeled with 2.9 M deuterated ethylamine hydrochloride dissolved in 10% tert-butylamine aqueous solution (<a class="bk_pop" href="#g195-amynolysissia.REF.6">6</a>). Since tert-butylamine has a large steric hindrance, the aminolysis-SALSA reaction by this base will not proceed. <i>O</i>-acetylated sialic acids cannot be detected due to cleavage of <i>O</i>-acetyl group under the SALSA containing strong base condition.</p></dd><dt>8.</dt><dd><p class="no_top_margin">If using a 96-well filter plate for glycoblotting purification, refer to reference (<a class="bk_pop" href="#g195-amynolysissia.REF.5">5</a>).</p></dd><dt>9.</dt><dd><p class="no_top_margin">aoWR was prepared as described previously (<a class="bk_pop" href="#g195-amynolysissia.REF.7">7</a>). Labeling of the reducing end by deuterated aoWR is also possible. Moreover, liquid chromatography&#x02013;mass spectrometry analysis is available by labeling the reducing end with 2-aminobenzamide (2-AB) (<a class="bk_pop" href="#g195-amynolysissia.REF.6">6</a>).</p></dd><dt>10.</dt><dd><p class="no_top_margin">Although &#x003b1;2,8- and &#x003b1;2,3-linked sialic acid residues were derivatized with methylamine, these glycan isomers provided the different fragmentation patterns by MALDI-TOF/TOF analysis and could be distinguished.</p></dd></dl></div></div><div id="g195-amynolysissia.References"><h2 id="_g195-amynolysissia_References_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="g195-amynolysissia.REF.1">Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M. High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. <span><span class="ref-journal">Anal Chem. </span>2014 Jun 17;<span class="ref-vol">86</span>(12):578493.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/24831253" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24831253</span></a>] [<a href="http://dx.crossref.org/10.1021/ac500335t" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="g195-amynolysissia.REF.2">Liu X, Qiu H, Lee RK, Chen W, Li J. Methylamidation for sialoglycomics by MALDI-MS: a facile derivatization strategy for both alpha2,3- and alpha2,6-linked sialic acids. <span><span class="ref-journal">Anal Chem. </span>2010 Oct 1;<span class="ref-vol">82</span>(19):83006.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20831242" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20831242</span></a>] [<a href="http://dx.crossref.org/10.1021/ac101831t" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="g195-amynolysissia.REF.3">Holst S, Heijs B, de Haan N, van Zeijl RJ, Briaire-de Bruijn IH, van Pelt GW, Mehta AS, Angel PM, Mesker WE, Tollenaar RA, Drake RR, Bovee JV, McDonnell LA, Wuhrer M. Linkage-specific in situ sialic acid derivatization for N-glycan mass spectrometry imaging of formalin-fixed paraffin-embedded tissues. <span><span class="ref-journal">Anal Chem. </span>2016 Jun 7;<span class="ref-vol">88</span>(11):590413.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/27145236" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27145236</span></a>] [<a href="http://dx.crossref.org/10.1021/acs.analchem.6b00819" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="g195-amynolysissia.REF.4">Nishikaze T, Tsumoto H, Sekiya S, Iwamoto S, Miura Y, Tanaka K. Differentiation of sialyl linkage isomers by one-pot sialic acid derivatization for mass spectrometry-based glycan profiling. <span><span class="ref-journal">Anal Chem. </span>2017 Feb 21;<span class="ref-vol">89</span>(4):235360.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/28194959" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28194959</span></a>] [<a href="http://dx.crossref.org/10.1021/acs.analchem.6b04150" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="g195-amynolysissia.REF.5">Hanamatsu H, Nishikaze T, Miura N, Piao J, Okada K, Sekiya S, Iwamoto S, Sakamoto N, Tanaka K, Furukawa JI. Sialic acid linkage specific derivatization of glycosphingolipid glycans by ring-opening aminolysis of lactones. <span><span class="ref-journal">Anal Chem. </span>2018 Nov 20;<span class="ref-vol">90</span>(22):131939.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/30335964" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30335964</span></a>] [<a href="http://dx.crossref.org/10.1021/acs.analchem.8b02775" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="g195-amynolysissia.REF.6">Hanamatsu H, Nishikaze T, Tsumoto H, Ogawa K, Kobayashi T, Yokota I, Morikawa K, Suda G, Sho T, Nakai M, Miura N, Higashino K, Sekiya S, Iwamoto S, Miura Y, Furukawa JI, Tanaka K, Sakamoto N. Comparative glycomic analysis of sialyl linkage Isomers by sialic acid linkage-specific alkylamidation in combination with stable isotope labeling of alpha2,3-linked sialic acid residues. <span><span class="ref-journal">Anal Chem. </span>2019 Nov 5;<span class="ref-vol">91</span>(21):133438.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/31577134" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31577134</span></a>] [<a href="http://dx.crossref.org/10.1021/acs.analchem.9b03617" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="g195-amynolysissia.REF.7">Uematsu R, Furukawa J, Nakagawa H, Shinohara Y, Deguchi K, Monde K, Nishimura SI. High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis. <span><span class="ref-journal">Mol Cell Proteomics. </span>2005 Dec;<span class="ref-vol">4</span>(12):197789.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16170054" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16170054</span></a>] [<a href="http://dx.crossref.org/10.1074/mcp.M500203-MCP200" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></dd></dl></div><h2 id="NBK593836_footnotes">Footnotes</h2><dl class="temp-labeled-list small"><dt></dt><dd><div id="g195-amynolysissia.FN1"><p class="no_top_margin">The authors declare no competing or financial interests.</p></div></dd></dl><div class="bk_prnt_sctn"><h2>Figures</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="g195-amynolysissia.F1" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593836/bin/g195-amynolysissia-Image001.jpg" alt="Figure 1: . Analytical scheme of ring-opening-aminolysis-sialic acid linkage-specific alkylamidation (SALSA)." /></div><h3><span class="label">Figure 1: </span></h3><div class="caption"><p>Analytical scheme of ring-opening-aminolysis-sialic acid linkage-specific alkylamidation (SALSA). The ring-opening-aminolysis reaction proceeds via cleavage of lactone derived from &#x003b1;2,3- and &#x003b1;2,8-linked sialic acids and their instantaneous and simultaneous amidation. Reprinted and modified with permission from (<a class="bk_pop" href="#g195-amynolysissia.REF.5">5</a>).</p></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="g195-amynolysissia.F2" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593836/bin/g195-amynolysissia-Image002.jpg" alt="Figure 2: . Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) spectra showing GSL-glycans by various modifications of sialic acids." /></div><h3><span class="label">Figure 2: </span></h3><div class="caption"><p>Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) spectra showing GSL-glycans by various modifications of sialic acids. (A) GSL- glycans analyzed by conventional methods, including methyl esterification of sialic acid. (B) General sialic acid linkage-specific alkylamidation (SALSA) method for GSL-glycan analysis wherein &#x003b1;2,3- and &#x003b1;2,8-linked sialic acids are derivatized with methylamine. (C) GSL-glycans analyzed by the aminolysis-SALSA method. Reprinted and modified with permission from (<a class="bk_pop" href="#g195-amynolysissia.REF.5">5</a>).</p></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="g195-amynolysissia.F3" class="figure bk_fig"><div class="graphic"><img src="/books/NBK593836/bin/g195-amynolysissia-Image003.jpg" alt="Figure 3: . Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) spectra of N-glycans of human serum by aminolysis- sialic acid linkage-specific alkylamidation (SALSA) method." /></div><h3><span class="label">Figure 3: </span></h3><div class="caption"><p>Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) spectra of <i>N</i>-glycans of human serum by aminolysis- sialic acid linkage-specific alkylamidation (SALSA) method.</p></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="g195-amynolysissia.F4" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%204%3A%20.%20Schematic%20illustration%20of%20comparative%20N-Glycomics%20using%20dual%20isotope%20labeling.&amp;p=BOOKS&amp;id=593836_g195-amynolysissia-Image004.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK593836/bin/g195-amynolysissia-Image004.jpg" alt="Figure 4: . Schematic illustration of comparative N-Glycomics using dual isotope labeling." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 4: </span></h3><div class="caption"><p>Schematic illustration of comparative <i>N</i>-Glycomics using dual isotope labeling. Reprinted and modified with permission from (<a class="bk_pop" href="#g195-amynolysissia.REF.6">6</a>).</p></div></div></div></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a><p class="small">Licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported license. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://creativecommons.org/licenses/by-nc-nd/4.0/</a>.</p></div><div class="small"><span class="label">Bookshelf ID: NBK593836</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/37590587" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">37590587</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/glycopodv2/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/glycopodv2/g138-pyrazolone/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/glycopodv2/g139-massdatabase/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
</div>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK593836&amp;ncbi_domain=glycopodv2&amp;ncbi_report=printable&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK593836/?report=printable&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal105 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
</html>