7120 lines
1 MiB
7120 lines
1 MiB
<!DOCTYPE html>
|
|
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" class="no-js no-jr">
|
|
<head>
|
|
<!-- For pinger, set start time and add meta elements. -->
|
|
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
|
|
|
<!-- Logger begin -->
|
|
<meta name="ncbi_db" content="books">
|
|
<meta name="ncbi_pdid" content="book-toc">
|
|
<meta name="ncbi_acc" content="NBK586311">
|
|
<meta name="ncbi_domain" content="niceng208er8">
|
|
<meta name="ncbi_report" content="reader">
|
|
<meta name="ncbi_type" content="fulltext">
|
|
<meta name="ncbi_objectid" content="">
|
|
<meta name="ncbi_pcid" content="/NBK586311/?report=reader">
|
|
<meta name="ncbi_pagename" content="Evidence review for transcatheter intervention, surgery or conservative management in heart valve disease - NCBI Bookshelf">
|
|
<meta name="ncbi_bookparttype" content="toc">
|
|
<meta name="ncbi_app" content="bookshelf">
|
|
<!-- Logger end -->
|
|
|
|
<!--component id="Page" label="meta"/-->
|
|
<script type="text/javascript" src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.boots.min.js"> </script><title>Evidence review for transcatheter intervention, surgery or conservative management in heart valve disease - NCBI Bookshelf</title>
|
|
<meta charset="utf-8">
|
|
<meta name="apple-mobile-web-app-capable" content="no">
|
|
<meta name="viewport" content="initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no">
|
|
<meta name="jr-col-layout" content="1">
|
|
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE,NOIMAGEINDEX">
|
|
<meta name="citation_title" content="Evidence review for transcatheter intervention, surgery or conservative management in heart valve disease">
|
|
<meta name="citation_publisher" content="National Institute for Health and Care Excellence (NICE)">
|
|
<meta name="citation_date" content="2021/11">
|
|
<meta name="citation_pmid" content="36395292">
|
|
<meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK586311/">
|
|
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/">
|
|
<meta name="DC.Title" content="Evidence review for transcatheter intervention, surgery or conservative management in heart valve disease">
|
|
<meta name="DC.Type" content="Text">
|
|
<meta name="DC.Publisher" content="National Institute for Health and Care Excellence (NICE)">
|
|
<meta name="DC.Date" content="2021/11">
|
|
<meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK586311/">
|
|
<meta name="og:title" content="Evidence review for transcatheter intervention, surgery or conservative management in heart valve disease">
|
|
<meta name="og:type" content="book">
|
|
<meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK586311/">
|
|
<meta name="og:site_name" content="NCBI Bookshelf">
|
|
<meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-niceng208er8-lrg.png">
|
|
<meta name="twitter:card" content="summary">
|
|
<meta name="twitter:site" content="@ncbibooks">
|
|
<meta name="bk-non-canon-loc" content="/books/n/niceng208er8/toc/?report=reader">
|
|
<link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK586311/">
|
|
<link href="https://fonts.googleapis.com/css?family=Archivo+Narrow:400,700,400italic,700italic&subset=latin" rel="stylesheet" type="text/css">
|
|
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/libs.min.css">
|
|
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/jr.min.css">
|
|
<meta name="format-detection" content="telephone=no">
|
|
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css">
|
|
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css//books_print.min.css" type="text/css" media="print">
|
|
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_reader.min.css" type="text/css">
|
|
<style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style>
|
|
|
|
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico">
|
|
<meta name="ncbi_phid" content="CE8DEFE67D7009310000000000010001.m_5">
|
|
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3849091.css"></head>
|
|
<body>
|
|
<!-- Book content! -->
|
|
|
|
|
|
<div id="jr" data-jr-path="/corehtml/pmc/jatsreader/ptpmc_3.22/"><div class="jr-unsupported"><table class="modal"><tr><td><span class="attn inline-block"></span><br />Your browser does not support the NLM PubReader view.<br />Go to <a href="/pmc/about/pr-browsers/">this page</a> to see a list of supported browsers<br />or return to the <br /><a href="/books/NBK586311/?report=classic">regular view</a>.</td></tr></table></div><div id="jr-ui" class="hidden"><nav id="jr-head"><div class="flexh tb"><div id="jr-tb1"><a id="jr-links-sw" class="hidden" title="Links"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" x="0px" y="0px" viewBox="0 0 70.6 85.3" style="enable-background:new 0 0 70.6 85.3;vertical-align:middle" xml:space="preserve" width="24" height="24">
|
|
<style type="text/css">.st0{fill:#939598;}</style>
|
|
<g>
|
|
<path class="st0" d="M36,0C12.8,2.2-22.4,14.6,19.6,32.5C40.7,41.4-30.6,14,35.9,9.8"></path>
|
|
<path class="st0" d="M34.5,85.3c23.2-2.2,58.4-14.6,16.4-32.5c-21.1-8.9,50.2,18.5-16.3,22.7"></path>
|
|
<path class="st0" d="M34.7,37.1c66.5-4.2-4.8-31.6,16.3-22.7c42.1,17.9,6.9,30.3-16.4,32.5h1.7c-66.2,4.4,4.8,31.6-16.3,22.7 c-42.1-17.9-6.9-30.3,16.4-32.5"></path>
|
|
</g>
|
|
</svg> Books</a></div><div class="jr-rhead f1 flexh"></div><div id="jr-tb2"><a id="jr-bkhelp-sw" class="btn wsprkl hidden" title="Help with NLM PubReader">?</a><a id="jr-help-sw" class="btn wsprkl hidden" title="Settings and typography in NLM PubReader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" preserveAspectRatio="none"><path d="M462,283.742v-55.485l-29.981-10.662c-11.431-4.065-20.628-12.794-25.274-24.001 c-0.002-0.004-0.004-0.009-0.006-0.013c-4.659-11.235-4.333-23.918,0.889-34.903l13.653-28.724l-39.234-39.234l-28.72,13.652 c-10.979,5.219-23.68,5.546-34.908,0.889c-0.005-0.002-0.01-0.003-0.014-0.005c-11.215-4.65-19.933-13.834-24-25.273L283.741,50 h-55.484l-10.662,29.981c-4.065,11.431-12.794,20.627-24.001,25.274c-0.005,0.002-0.009,0.004-0.014,0.005 c-11.235,4.66-23.919,4.333-34.905-0.889l-28.723-13.653l-39.234,39.234l13.653,28.721c5.219,10.979,5.545,23.681,0.889,34.91 c-0.002,0.004-0.004,0.009-0.006,0.013c-4.649,11.214-13.834,19.931-25.271,23.998L50,228.257v55.485l29.98,10.661 c11.431,4.065,20.627,12.794,25.274,24c0.002,0.005,0.003,0.01,0.005,0.014c4.66,11.236,4.334,23.921-0.888,34.906l-13.654,28.723 l39.234,39.234l28.721-13.652c10.979-5.219,23.681-5.546,34.909-0.889c0.005,0.002,0.01,0.004,0.014,0.006 c11.214,4.649,19.93,13.833,23.998,25.271L228.257,462h55.484l10.595-29.79c4.103-11.538,12.908-20.824,24.216-25.525 c0.005-0.002,0.009-0.004,0.014-0.006c11.127-4.628,23.694-4.311,34.578,0.863l28.902,13.738l39.234-39.234l-13.66-28.737 c-5.214-10.969-5.539-23.659-0.886-34.877c0.002-0.005,0.004-0.009,0.006-0.014c4.654-11.225,13.848-19.949,25.297-24.021 L462,283.742z M256,331.546c-41.724,0-75.548-33.823-75.548-75.546s33.824-75.547,75.548-75.547 c41.723,0,75.546,33.824,75.546,75.547S297.723,331.546,256,331.546z"></path></svg></a><a id="jr-fip-sw" class="btn wsprkl hidden" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-cmap-sw" class="btn wsprkl hidden" title="Table of Contents"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,20h10v8H20V20zM36,20h44v8H36V20zM20,37.33h10v8H20V37.33zM36,37.33h44v8H36V37.33zM20,54.66h10v8H20V54.66zM36,54.66h44v8H36V54.66zM20,72h10v8 H20V72zM36,72h44v8H36V72z"></path></svg></a></div></div></nav><nav id="jr-dash" class="noselect"><nav id="jr-dash" class="noselect"><div id="jr-pi" class="hidden"><a id="jr-pi-prev" class="hidden" title="Previous page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a><div class="pginfo">Page <i class="jr-pg-pn">0</i> of <i class="jr-pg-lp">0</i></div><a id="jr-pi-next" class="hidden" title="Next page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div><div id="jr-is-tb"><a id="jr-is-sw" class="btn wsprkl hidden" title="Switch between Figures/Tables strip and Progress bar"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><rect x="10" y="40" width="20" height="20"></rect><rect x="40" y="40" width="20" height="20"></rect><rect x="70" y="40" width="20" height="20"></rect></svg></a></div><nav id="jr-istrip" class="istrip hidden"><a id="jr-is-prev" href="#" class="hidden" title="Previous"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M80,40 60,65 80,90 70,90 50,65 70,40z M50,40 30,65 50,90 40,90 20,65 40,40z"></path><text x="35" y="25" textLength="60" style="font-size:25px">Prev</text></svg></a><a id="jr-is-next" href="#" class="hidden" title="Next"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,40 40,65 20,90 30,90 50,65 30,40z M50,40 70,65 50,90 60,90 80,65 60,40z"></path><text x="15" y="25" textLength="60" style="font-size:25px">Next</text></svg></a></nav><nav id="jr-progress"></nav></nav></nav><aside id="jr-links-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">NCBI Bookshelf</div></div><div class="cnt lol f1"><a href="/books/">Home</a><a href="/books/browse/">Browse All Titles</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/sharer/sharer.php?u=https://www.ncbi.nlm.nih.gov/books/NBK586311/"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24" preserveAspectRatio="none"><g><path d="M 17.996,32L 12,32 L 12,16 l-4,0 l0-5.514 l 4-0.002l-0.006-3.248C 11.993,2.737, 13.213,0, 18.512,0l 4.412,0 l0,5.515 l-2.757,0 c-2.063,0-2.163,0.77-2.163,2.209l-0.008,2.76l 4.959,0 l-0.585,5.514L 18,16L 17.996,32z"></path></g></svg> Share on Facebook</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://twitter.com/intent/tweet?url=https://www.ncbi.nlm.nih.gov/books/NBK586311/&text=Evidence%20review%20for%20transcatheter%20intervention%2C%20surgery%20or%20conservative%20management%20in%20heart%20valve%20disease"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24"><g><path d="M 32,6.076c-1.177,0.522-2.443,0.875-3.771,1.034c 1.355-0.813, 2.396-2.099, 2.887-3.632 c-1.269,0.752-2.674,1.299-4.169,1.593c-1.198-1.276-2.904-2.073-4.792-2.073c-3.626,0-6.565,2.939-6.565,6.565 c0,0.515, 0.058,1.016, 0.17,1.496c-5.456-0.274-10.294-2.888-13.532-6.86c-0.565,0.97-0.889,2.097-0.889,3.301 c0,2.278, 1.159,4.287, 2.921,5.465c-1.076-0.034-2.088-0.329-2.974-0.821c-0.001,0.027-0.001,0.055-0.001,0.083 c0,3.181, 2.263,5.834, 5.266,6.438c-0.551,0.15-1.131,0.23-1.73,0.23c-0.423,0-0.834-0.041-1.235-0.118 c 0.836,2.608, 3.26,4.506, 6.133,4.559c-2.247,1.761-5.078,2.81-8.154,2.81c-0.53,0-1.052-0.031-1.566-0.092 c 2.905,1.863, 6.356,2.95, 10.064,2.95c 12.076,0, 18.679-10.004, 18.679-18.68c0-0.285-0.006-0.568-0.019-0.849 C 30.007,8.548, 31.12,7.392, 32,6.076z"></path></g></svg> Share on Twitter</a></div></aside><aside id="jr-cmap-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">In Page Navigation</div></div><div class="cnt lol f1"><a href="/books/n/niceercollect/?report=reader">NICE Evidence Reviews Collection</a><a class="current">Title Information</a></div></aside><aside id="jr-help-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Settings</div></div><div class="cnt f1"><div id="jr-typo-p" class="typo"><div><a class="sf btn wsprkl">A-</a><a class="lf btn wsprkl">A+</a></div><div><a class="bcol-auto btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 100" preserveAspectRatio="none"><text x="10" y="70" style="font-size:60px;font-family: Trebuchet MS, ArialMT, Arial, sans-serif" textLength="180">AUTO</text></svg></a><a class="bcol-1 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M15,25 85,25zM15,40 85,40zM15,55 85,55zM15,70 85,70z"></path></svg></a><a class="bcol-2 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M5,25 45,25z M55,25 95,25zM5,40 45,40z M55,40 95,40zM5,55 45,55z M55,55 95,55zM5,70 45,70z M55,70 95,70z"></path></svg></a></div></div><div class="lol"><a class="" href="/books/NBK586311/?report=classic">Switch to classic view</a><a href="/books/n/niceng208er8/pdf/">PDF (4.4M)</a><a href="/books/n/niceng208er8/toc/?report=printable">Print View</a></div></div></aside><aside id="jr-bkhelp-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Help</div></div><div class="cnt f1 lol"><a id="jr-helpobj-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/help.xml" href="">Help</a><a href="mailto:info@ncbi.nlm.nih.gov?subject=PubReader%20feedback%20%2F%20NBK586311%20%2F%20sid%3ACE8B5AF87C7FFCB1_0191SID%20%2F%20phid%3ACE8DEFE67D7009310000000000010001.4">Send us feedback</a><a id="jr-about-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/about.xml" href="">About PubReader</a></div></aside><aside id="jr-objectbox" class="thidden hidden"><div class="jr-objectbox-close wsprkl">✘</div><div class="jr-objectbox-inner cnt"><div class="jr-objectbox-drawer"></div></div></aside><nav id="jr-pm-left" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Previous Page</text></svg></nav><nav id="jr-pm-right" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Next Page</text></svg></nav><nav id="jr-fip" class="hidden"><nav id="jr-fip-term-p"><input type="search" placeholder="search this page" id="jr-fip-term" autocorrect="off" autocomplete="off" /><a id="jr-fip-mg" class="wsprkl btn" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-fip-done" class="wsprkl btn" title="Dismiss find">✘</a></nav><nav id="jr-fip-info-p"><a id="jr-fip-prev" class="wsprkl btn" title="Jump to previuos match">◀</a><button id="jr-fip-matches">no matches yet</button><a id="jr-fip-next" class="wsprkl btn" title="Jump to next match">▶</a></nav></nav></div><div id="jr-epub-interstitial" class="hidden"></div><div id="jr-content"><article data-type="main"><div class="main-content lit-style"><div class="fm-sec bkr_bottom_sep"><div class="bkr_thumb"><a href="https://www.nice.org.uk" title="National Institute for Health and Care Excellence (NICE)" class="img_link icnblk_img" ref="pagearea=logo&targetsite=external&targetcat=link&targettype=publisher"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-niceng208er8-lrg.png" alt="Cover of Evidence review for transcatheter intervention, surgery or conservative management in heart valve disease" /></a></div><div class="bkr_bib"><h1 id="_NBK586311_"><span itemprop="name">Evidence review for transcatheter intervention, surgery or conservative management in heart valve disease</span></h1><div class="subtitle">Heart valve disease presenting in adults: investigation and management</div><p><b>Evidence review H</b></p><p><i>NICE Guideline, No. 208</i></p><div class="half_rhythm">London: <a href="https://www.nice.org.uk" ref="pagearea=meta&targetsite=external&targetcat=link&targettype=publisher"><span itemprop="publisher">National Institute for Health and Care Excellence (NICE)</span></a>; <span itemprop="datePublished">2021 Nov</span>.<div class="small">ISBN-13: <span itemprop="isbn">978-1-4731-4301-2</span></div></div><div><a href="/books/about/copyright/">Copyright</a> © NICE 2021.</div></div><div class="bkr_clear"></div></div><div id="niceng208er8.s1"><h2 id="_niceng208er8_s1_">1. Interventions</h2><div id="niceng208er8.s1.1"><h3>1.1. Review question: What is the clinical and cost-effectiveness of transcatheter intervention, surgery (with mechanical or biological valves) and conservative management compared with each other for adults with heart valve disease?</h3></div><div id="niceng208er8.s1.2"><h3>1.2. Introduction</h3><p>Valve intervention can be performed with surgical or transcatheter approach, using a range of techniques and a range of types of prosthetic valves.</p><p>Surgical valve interventions comprise valve repair or valve replacement with a prosthetic mechanical or biological valve. Surgical valve repair restores the function of the patient’s own valve, avoiding the need for replacement with a prosthetic valve; however, if the repair fails or the valve disease continues to progress, reintervention may be needed to replace the valve, with a surgical or transcatheter approach. Surgical valve replacement involves removal of the abnormal valve and replacement with a prosthetic valve. Mechanical prosthetic valves may last a lifetime, with no need for reintervention, however they need continuous anticoagulation to prevent clot forming on the valve and impairing the function of the valve or embolising in the arterial circulation resulting, for example, in a stroke. Furthermore, if they do need to be replaced again, the reintervention has to be again surgical, to remove the mechanical prosthetic valve and replace it with a new prosthesis. Surgical biological prosthetic valves degenerate usually several years after replacement and may need to be replaced again. However, the reintervention may be performed with a transcatheter approach, or if not feasible with a second heart operation.</p><p>Transcatheter valve interventions may allow for a quicker recovery after the procedure, if the procedure is uncomplicated, for example access for introduction of the catheter is straightforward and the patient does not require a pacemaker. The abnormal valve cannot be removed for a transcatheter valve “replacement”, it is simply pushed aside to allow a prosthetic valve to be implanted within it. The transcatheter prosthetic valves are always bioprosthetic. As for surgical biological valves, the reintervention may be performed with a transcatheter approach (valve in valve). There is no evidence for TAVI valve durability above 6-7 years and there is evidence of valve leaflet deterioration due to crimping, which cannot be avoided for valve implantation through a catheter.</p><p>Transcatheter valve “repair” reduces the abnormality of the valve function, however distorting the valve structure such that if reintervention is needed, this has to involve surgical replacement of the valve.</p><p>Clinical decisions regarding the right approach (surgical or transcatheter), technique and type of valve to be used are complex because of differences in immediate and long-term outcomes, differences in recovery time following intervention as well as differences in patient characteristics and suitability for a certain type of intervention. This review question aims to inform recommendations to aid those clinical decisions.</p></div><div id="niceng208er8.s1.3"><h3>1.3. PICO table</h3><p>For full details see the review protocol in <a href="#niceng208er8.s1.4.4">1.4.4</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab1"><a href="/books/NBK586311/table/niceng208er8.tab1/?report=objectonly" target="object" title="Table 1" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab1" rid-ob="figobniceng208er8tab1"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab1/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab1/?report=previmg" alt="Table 1. PICO characteristics of review question." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab1"><a href="/books/NBK586311/table/niceng208er8.tab1/?report=objectonly" target="object" rid-ob="figobniceng208er8tab1">Table 1</a></h4><p class="float-caption no_bottom_margin">PICO characteristics of review question. </p></div></div></div><div id="niceng208er8.s1.4"><h3>1.4. Clinical evidence</h3><div id="niceng208er8.s1.4.1"><h4>1.4.1. Included studies</h4><p>A total of 43 randomised controlled trials (RCTs) (from 129 papers) were included in the review;<a class="bibr" href="#niceng208er8.ref1" rid="niceng208er8.ref1"><sup>1</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref2" rid="niceng208er8.ref2"><sup>2</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref4" rid="niceng208er8.ref4"><sup>4</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref20" rid="niceng208er8.ref20"><sup>20</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref28" rid="niceng208er8.ref28"><sup>28</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref50" rid="niceng208er8.ref50"><sup>50</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref58" rid="niceng208er8.ref58"><sup>58</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref59" rid="niceng208er8.ref59"><sup>59</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref61" rid="niceng208er8.ref61"><sup>61</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref69" rid="niceng208er8.ref69"><sup>69</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref75" rid="niceng208er8.ref75"><sup>75</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref89" rid="niceng208er8.ref89"><sup>89</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref101" rid="niceng208er8.ref101"><sup>101</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref102" rid="niceng208er8.ref102"><sup>102</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref107" rid="niceng208er8.ref107"><sup>107</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref110" rid="niceng208er8.ref110"><sup>110</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref111" rid="niceng208er8.ref111"><sup>111</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref120" rid="niceng208er8.ref120"><sup>120</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref121" rid="niceng208er8.ref121"><sup>121</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref216" rid="niceng208er8.ref216"><sup>216</sup></a><sup>–</sup><a class="bibr" href="#niceng208er8.ref218" rid="niceng208er8.ref218"><sup>218</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref234" rid="niceng208er8.ref234"><sup>234</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref237" rid="niceng208er8.ref237"><sup>237</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref238" rid="niceng208er8.ref238"><sup>238</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref242" rid="niceng208er8.ref242"><sup>242</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref253" rid="niceng208er8.ref253"><sup>253</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref262" rid="niceng208er8.ref262"><sup>262</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref265" rid="niceng208er8.ref265"><sup>265</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref270" rid="niceng208er8.ref270"><sup>270</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref273" rid="niceng208er8.ref273"><sup>273</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref279" rid="niceng208er8.ref279"><sup>279</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref282" rid="niceng208er8.ref282"><sup>282</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref308" rid="niceng208er8.ref308"><sup>308</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref320" rid="niceng208er8.ref320"><sup>320</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref323" rid="niceng208er8.ref323"><sup>323</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref331" rid="niceng208er8.ref331"><sup>331</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref333" rid="niceng208er8.ref333"><sup>333</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref356" rid="niceng208er8.ref356"><sup>356</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref368" rid="niceng208er8.ref368"><sup>368</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref376" rid="niceng208er8.ref376"><sup>376</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref401" rid="niceng208er8.ref401"><sup>401</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref409" rid="niceng208er8.ref409"><sup>409</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref423" rid="niceng208er8.ref423"><sup>423</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref439" rid="niceng208er8.ref439"><sup>439</sup></a> these are summarised in <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab2/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab2" rid-ob="figobniceng208er8tab2">Table 2</a> below. Evidence from these RCTs is summarised in the clinical evidence summary below (<a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab3/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab3" rid-ob="figobniceng208er8tab3">Tables 3</a>-<a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab22/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab22" rid-ob="figobniceng208er8tab22">22</a>).</p><div id="niceng208er8.s1.4.1.1"><h5>Aortic valve disease</h5><p>For aortic valve disease, the following RCTs were included for each stratum listed in the protocol:
|
|
<ul><li class="half_rhythm"><div>Aortic stenosis (non-bicuspid): n=10 studies covering comparisons between the following interventions: minimally invasive surgery replacement vs. standard surgery replacement (n=1)<a class="bibr" href="#niceng208er8.ref234" rid="niceng208er8.ref234"><sup>234</sup></a>; transcatheter replacement vs. standard surgery replacement (n=8)<a class="bibr" href="#niceng208er8.ref2" rid="niceng208er8.ref2"><sup>2</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref218" rid="niceng208er8.ref218"><sup>218</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref237" rid="niceng208er8.ref237"><sup>237</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref279" rid="niceng208er8.ref279"><sup>279</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref308" rid="niceng208er8.ref308"><sup>308</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref320" rid="niceng208er8.ref320"><sup>320</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref368" rid="niceng208er8.ref368"><sup>368</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref401" rid="niceng208er8.ref401"><sup>401</sup></a>; transcatheter replacement vs. pharmacological management (n=1)<a class="bibr" href="#niceng208er8.ref217" rid="niceng208er8.ref217"><sup>217</sup></a></div></li><li class="half_rhythm"><div>Aortic stenosis (mixed non-bicuspid and bicuspid or unclear): n=5 studies covering comparisons between the following interventions: minimally invasive surgery replacement vs. standard surgery replacement (n=5)<a class="bibr" href="#niceng208er8.ref20" rid="niceng208er8.ref20"><sup>20</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref61" rid="niceng208er8.ref61"><sup>61</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref69" rid="niceng208er8.ref69"><sup>69</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref89" rid="niceng208er8.ref89"><sup>89</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref333" rid="niceng208er8.ref333"><sup>333</sup></a></div></li></ul></p><p>Note that no evidence was identified for the following aortic valve disease strata:
|
|
<ul><li class="half_rhythm"><div>Aortic stenosis (bicuspid)</div></li><li class="half_rhythm"><div>Aortic regurgitation (non-bicuspid)</div></li><li class="half_rhythm"><div>Aortic regurgitation (bicuspid)</div></li><li class="half_rhythm"><div>Aortic regurgitation (mixed non-bicuspid and bicuspid or unclear)</div></li></ul></p><p>In addition to the pre-specified aortic valve disease strata, due to the limited number of studies identified for the various comparisons, the following evidence from populations with mixed/unclear aortic valve disease were included but downgraded for indirectness, which consisted of RCTs where there was a mixture of aortic stenosis and aortic regurgitation within the study (i.e. neither aortic stenosis nor aortic regurgitation made up ≥75% of the population) or RCTs where the population was only described as ‘aortic valve disease’ and the proportion of those with stenosis and regurgitation was not specified:
|
|
<ul><li class="half_rhythm"><div>Minimally invasive surgery replacement vs. standard surgery replacement (n=5)<a class="bibr" href="#niceng208er8.ref59" rid="niceng208er8.ref59"><sup>59</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref102" rid="niceng208er8.ref102"><sup>102</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref270" rid="niceng208er8.ref270"><sup>270</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref356" rid="niceng208er8.ref356"><sup>356</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref423" rid="niceng208er8.ref423"><sup>423</sup></a></div></li></ul></p></div><div id="niceng208er8.s1.4.1.2"><h5>Mitral valve disease</h5><p>For mitral valve disease, the following RCTs were included for each stratum listed in the protocol:
|
|
<ul><li class="half_rhythm"><div class="half_rhythm">Mitral stenosis: n=7 studies covering comparisons between the following interventions: minimally invasive surgery repair vs. standard surgery repair (n=1)<a class="bibr" href="#niceng208er8.ref50" rid="niceng208er8.ref50"><sup>50</sup></a>; transcatheter repair vs. standard surgery repair (n=2)<a class="bibr" href="#niceng208er8.ref50" rid="niceng208er8.ref50"><sup>50</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref323" rid="niceng208er8.ref323"><sup>323</sup></a>; transcatheter repair vs. minimally invasive surgery repair (n=5)<a class="bibr" href="#niceng208er8.ref28" rid="niceng208er8.ref28"><sup>28</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref50" rid="niceng208er8.ref50"><sup>50</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref262" rid="niceng208er8.ref262"><sup>262</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref331" rid="niceng208er8.ref331"><sup>331</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref409" rid="niceng208er8.ref409"><sup>409</sup></a>; transcatheter repair vs. surgical repair (unclear/mixed invasiveness) (n=1)<a class="bibr" href="#niceng208er8.ref75" rid="niceng208er8.ref75"><sup>75</sup></a>.</div><div class="half_rhythm">Note the total for mitral stenosis does not add up to 7 as one study involved three different intervention arms and is therefore included under three of the above listed comparisons.</div></li><li class="half_rhythm"><div class="half_rhythm">Mitral regurgitation: n=8 studies covering comparisons between the following interventions: minimally invasive surgical repair vs. standard surgery repair (n=1)<a class="bibr" href="#niceng208er8.ref273" rid="niceng208er8.ref273"><sup>273</sup></a>; minimally invasive surgery (mixture of repair and replacement/) vs. standard surgery (mixture of repair and replacement) (n=1)<a class="bibr" href="#niceng208er8.ref101" rid="niceng208er8.ref101"><sup>101</sup></a>; surgical replacement (unclear/mixed invasiveness) vs. surgical repair (unclear/mixed invasiveness) (n=2)<a class="bibr" href="#niceng208er8.ref1" rid="niceng208er8.ref1"><sup>1</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref58" rid="niceng208er8.ref58"><sup>58</sup></a>; transcatheter repair vs. pharmacological management (n=3)<a class="bibr" href="#niceng208er8.ref282" rid="niceng208er8.ref282"><sup>282</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref376" rid="niceng208er8.ref376"><sup>376</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref439" rid="niceng208er8.ref439"><sup>439</sup></a>; transcatheter repair vs. surgical repair/replacement (unclear/mixed invasiveness) (n=1)<a class="bibr" href="#niceng208er8.ref121" rid="niceng208er8.ref121"><sup>121</sup></a>; standard surgery replacement vs. standard surgery repair (n=1)<a class="bibr" href="#niceng208er8.ref253" rid="niceng208er8.ref253"><sup>253</sup></a>.</div></li></ul></p><p>In addition to the pre-specified mitral valve disease strata, due to the limited number of studies identified for the various comparisons, the following evidence from populations with mixed/unclear mitral valve disease were included, which consisted of RCTs where there was a mixture of mitral stenosis and mitral regurgitation within the study (i.e. neither mitral stenosis nor mitral regurgitation made up ≥75% of the population) or RCTs where the population was only described as ‘mitral valve disease’ and the proportion of those with stenosis and regurgitation was not specified:
|
|
<ul><li class="half_rhythm"><div>Minimally invasive surgery replacement vs. standard surgery replacement (n=3)<a class="bibr" href="#niceng208er8.ref110" rid="niceng208er8.ref110"><sup>110</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref111" rid="niceng208er8.ref111"><sup>111</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref242" rid="niceng208er8.ref242"><sup>242</sup></a></div></li></ul></p></div><div id="niceng208er8.s1.4.1.3"><h5>Tricuspid regurgitation</h5><p>One RCT was identified that compared a transcatheter repair procedure + optimal medical treatment with optimal treatment alone for tricuspid regurgitation<a class="bibr" href="#niceng208er8.ref107" rid="niceng208er8.ref107"><sup>107</sup></a>. This RCT was extremely small with only 14 participants in each arm of the study.</p></div><div id="niceng208er8.s1.4.1.4"><h5>Methodology</h5><ul><li class="half_rhythm"><div class="half_rhythm"><b>Mixed/unclear populations and interventions</b>: Evidence that came from mixed/unclear populations (for example mixed or unclear mitral valve disease populations) and/or mixed/unclear intervention strategies (for example, where the invasiveness of surgical strategy was not specified or where there was a mixture of repair and replacement procedures performed) were downgraded for indirectness, as the protocol for this review intended to stratify for the different populations and interventions and these studies did not fit accurately into the pre-specified categories.</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Inconsistency:</b>
|
|
<ul class="circle"><li class="half_rhythm"><div>There were a number of outcomes where inconsistency was identified within meta-analyses – the majority of these were meta-analyses of only two or three studies so the pre-specified subgrouping strategies could not be performed. Random effects analysis was therefore used and the evidence downgraded due to inconsistency. Where Peto odds ratios had been used due to a small number of events or zero events, studies were not pooled and presented separately, as random effects is not possible when Peto odds ratios are used.</div></li><li class="half_rhythm"><div>Similarly, subgrouping strategies for other meta-analyses with four or more studies could not explain heterogeneity as all studies fell within the same subgroup, for example for the age subgrouping strategy all had a population <75 years. In these cases, random effects analysis was used with downgrading for inconsistency.</div></li><li class="half_rhythm"><div>For other meta-analyses with inconsistency, the studies did fall into separate subgroups (for example, studies could be separated into low, intermediate and high operative risk within the aortic stenosis non-bicuspid stratum), however the subgrouping strategies did not fully explain the heterogeneity, with high statistical heterogeneity values remaining within at least one of the subgroups. Again, in these cases random effects analysis was used with downgrading for inconsistency.</div></li></ul></div></li><li class="half_rhythm"><div class="half_rhythm"><b>Sensitivity analysis:</b> Of the included studies, two did not present the raw number of events for each outcome and instead presented estimates of the event rate for each intervention using Bayesian analysis estimates<a class="bibr" href="#niceng208er8.ref308" rid="niceng208er8.ref308"><sup>308</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref320" rid="niceng208er8.ref320"><sup>320</sup></a>. As this different method of reporting and analysing events may lead to differences in the results compared with similar studies, these results were included as reported but sensitivity analysis was performed where relevant to remove these studies from the analysis for each outcome and determine whether the removal of the studies made a difference to the overall meta-analysis results. Both of these studies were included in the aortic stenosis (non-bicuspid) stratum.</div><div class="half_rhythm">Both studies<a class="bibr" href="#niceng208er8.ref308" rid="niceng208er8.ref308"><sup>308</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref320" rid="niceng208er8.ref320"><sup>320</sup></a> were meta-analysed with up to 6 other studies for 15 outcomes as part of the transcatheter replacement vs. standard surgery replacement comparison for this stratum. Overall, the removal of this study from the meta-analysis made no difference to the majority of the outcomes in terms of effect estimates. There were some differences for a number of outcomes, but as the analysis method was used across all outcomes and there was no reason to expect the different analysis method to affect some but not other outcomes, these studies were retained within the meta-analyses for all outcomes.</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Intervention-related mortality outcome:</b> Throughout the review this outcome was captured as all-cause mortality at 30 days, as the majority of studies only reported all-cause mortality, or it was difficult to determine which deaths were intervention-related and which were not.</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Operative risk:</b> Although studies were not stratified by operative risk for analysis, operative risk for each study has been indicated within forest plots (low, intermediate, high or unclear operative risk)</div></li></ul><p>See also the study selection flow chart in <a href="#niceng208er8.appc">Appendix C</a>:, study evidence tables in <a href="#niceng208er8.appd">Appendix D</a>:, forest plots in <a href="#niceng208er8.appe">Appendix E</a>:and GRADE tables in <a href="#niceng208er8.appf">Appendix F</a>:</p></div></div><div id="niceng208er8.s1.4.2"><h4>1.4.2. Excluded studies</h4><p>Two Cochrane reviews related to this area were identified but excluded from the review<a class="bibr" href="#niceng208er8.ref200" rid="niceng208er8.ref200"><sup>200</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref205" rid="niceng208er8.ref205"><sup>205</sup></a>. One was excluded because it was a meta-analysis of RCTs comparing transcatheter replacement with surgical replacement in people with aortic stenosis specifically in those at low operative risk<a class="bibr" href="#niceng208er8.ref205" rid="niceng208er8.ref205"><sup>205</sup></a> while this review aimed to pool all studies comparing these two interventions, regardless of operative risk. The other review was a meta-analysis of RCTs comparing limited sternotomy with full sternotomy for aortic valve disease<a class="bibr" href="#niceng208er8.ref200" rid="niceng208er8.ref200"><sup>200</sup></a> and was excluded as it pooled aortic stenosis and aortic regurgitation together, whereas our review aimed to look at evidence for these populations separately where possible, and it also excluded others types of minimally invasive procedure (mini-thoracotomies, port access, transapical, transfemoral or robotic procedures) that we did not wish to exclude in the protocol for this review. The reference lists of these reviews were however used to identify studies relevant for inclusion in this review.</p><p>See the excluded studies list in <a href="#niceng208er8.appi">Appendix I</a>:.</p></div><div id="niceng208er8.s1.4.3"><h4>1.4.3. Summary of clinical studies included in the evidence review</h4><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab2"><a href="/books/NBK586311/table/niceng208er8.tab2/?report=objectonly" target="object" title="Table 2" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab2" rid-ob="figobniceng208er8tab2"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab2/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab2/?report=previmg" alt="Table 2. Summary of studies included in the evidence review." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab2"><a href="/books/NBK586311/table/niceng208er8.tab2/?report=objectonly" target="object" rid-ob="figobniceng208er8tab2">Table 2</a></h4><p class="float-caption no_bottom_margin">Summary of studies included in the evidence review. </p></div></div><p>See <a href="#niceng208er8.appd">Appendix D</a>:for full evidence tables.</p></div><div id="niceng208er8.s1.4.4"><h4>1.4.4. Quality assessment of clinical studies included in the evidence review</h4><div id="niceng208er8.s1.4.4.1"><h5>1.4.4.1. Aortic stenosis (non-bicuspid)</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab3"><a href="/books/NBK586311/table/niceng208er8.tab3/?report=objectonly" target="object" title="Table 3" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab3" rid-ob="figobniceng208er8tab3"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab3/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab3/?report=previmg" alt="Table 3. Clinical evidence summary: Evidence not suitable for GRADE analysis." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab3"><a href="/books/NBK586311/table/niceng208er8.tab3/?report=objectonly" target="object" rid-ob="figobniceng208er8tab3">Table 3</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Evidence not suitable for GRADE analysis. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab4"><a href="/books/NBK586311/table/niceng208er8.tab4/?report=objectonly" target="object" title="Table 4" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab4" rid-ob="figobniceng208er8tab4"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab4/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab4/?report=previmg" alt="Table 4. Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab4"><a href="/books/NBK586311/table/niceng208er8.tab4/?report=objectonly" target="object" rid-ob="figobniceng208er8tab4">Table 4</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab5"><a href="/books/NBK586311/table/niceng208er8.tab5/?report=objectonly" target="object" title="Table 5" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab5" rid-ob="figobniceng208er8tab5"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab5/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab5/?report=previmg" alt="Table 5. Clinical evidence summary: Transcatheter replacement vs. standard surgery replacement." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab5"><a href="/books/NBK586311/table/niceng208er8.tab5/?report=objectonly" target="object" rid-ob="figobniceng208er8tab5">Table 5</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Transcatheter replacement vs. standard surgery replacement. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab6"><a href="/books/NBK586311/table/niceng208er8.tab6/?report=objectonly" target="object" title="Table 6" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab6" rid-ob="figobniceng208er8tab6"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab6/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab6/?report=previmg" alt="Table 6. Clinical evidence summary: Transcatheter replacement vs. pharmacological management." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab6"><a href="/books/NBK586311/table/niceng208er8.tab6/?report=objectonly" target="object" rid-ob="figobniceng208er8tab6">Table 6</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Transcatheter replacement vs. pharmacological management. </p></div></div></div><div id="niceng208er8.s1.4.4.2"><h5>1.4.4.2. Aortic stenosis (bicuspid)</h5><p>No evidence was identified for this stratum.</p></div><div id="niceng208er8.s1.4.4.3"><h5>1.4.4.3. Aortic stenosis (mixed non-bicuspid and bicuspid or unclear)</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab7"><a href="/books/NBK586311/table/niceng208er8.tab7/?report=objectonly" target="object" title="Table 7" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab7" rid-ob="figobniceng208er8tab7"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab7/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab7/?report=previmg" alt="Table 7. Clinical evidence summary: Evidence not suitable for GRADE analysis." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab7"><a href="/books/NBK586311/table/niceng208er8.tab7/?report=objectonly" target="object" rid-ob="figobniceng208er8tab7">Table 7</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Evidence not suitable for GRADE analysis. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab8"><a href="/books/NBK586311/table/niceng208er8.tab8/?report=objectonly" target="object" title="Table 8" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab8" rid-ob="figobniceng208er8tab8"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab8/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab8/?report=previmg" alt="Table 8. Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab8"><a href="/books/NBK586311/table/niceng208er8.tab8/?report=objectonly" target="object" rid-ob="figobniceng208er8tab8">Table 8</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement. </p></div></div></div><div id="niceng208er8.s1.4.4.4"><h5>1.4.4.4. Aortic regurgitation (non-bicuspid)</h5><p>No evidence was identified for this stratum.</p></div><div id="niceng208er8.s1.4.4.5"><h5>1.4.4.5. Aortic regurgitation (bicuspid)</h5><p>No evidence was identified for this stratum.</p></div><div id="niceng208er8.s1.4.4.6"><h5>1.4.4.6. Aortic regurgitation (mixed non-bicuspid and bicuspid or unclear)</h5><p>No evidence was identified for this stratum.</p></div><div id="niceng208er8.s1.4.4.7"><h5>1.4.4.7. Mixed/unclear aortic valve disease</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab9"><a href="/books/NBK586311/table/niceng208er8.tab9/?report=objectonly" target="object" title="Table 9" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab9" rid-ob="figobniceng208er8tab9"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab9/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab9/?report=previmg" alt="Table 9. Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab9"><a href="/books/NBK586311/table/niceng208er8.tab9/?report=objectonly" target="object" rid-ob="figobniceng208er8tab9">Table 9</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement. </p></div></div></div><div id="niceng208er8.s1.4.4.8"><h5>1.4.4.8. Mitral stenosis</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab10"><a href="/books/NBK586311/table/niceng208er8.tab10/?report=objectonly" target="object" title="Table 10" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab10" rid-ob="figobniceng208er8tab10"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab10/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab10/?report=previmg" alt="Table 10. Clinical evidence summary: Minimally invasive surgery repair vs. standard surgery repair." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab10"><a href="/books/NBK586311/table/niceng208er8.tab10/?report=objectonly" target="object" rid-ob="figobniceng208er8tab10">Table 10</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Minimally invasive surgery repair vs. standard surgery repair. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab11"><a href="/books/NBK586311/table/niceng208er8.tab11/?report=objectonly" target="object" title="Table 11" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab11" rid-ob="figobniceng208er8tab11"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab11/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab11/?report=previmg" alt="Table 11. Clinical evidence summary: Transcatheter repair vs. standard surgery repair." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab11"><a href="/books/NBK586311/table/niceng208er8.tab11/?report=objectonly" target="object" rid-ob="figobniceng208er8tab11">Table 11</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Transcatheter repair vs. standard surgery repair. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab12"><a href="/books/NBK586311/table/niceng208er8.tab12/?report=objectonly" target="object" title="Table 12" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab12" rid-ob="figobniceng208er8tab12"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab12/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab12/?report=previmg" alt="Table 12. Clinical evidence summary: Transcatheter repair vs. minimally invasive surgery repair." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab12"><a href="/books/NBK586311/table/niceng208er8.tab12/?report=objectonly" target="object" rid-ob="figobniceng208er8tab12">Table 12</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Transcatheter repair vs. minimally invasive surgery repair. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab13"><a href="/books/NBK586311/table/niceng208er8.tab13/?report=objectonly" target="object" title="Table 13" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab13" rid-ob="figobniceng208er8tab13"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab13/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab13/?report=previmg" alt="Table 13. Clinical evidence summary: Transcatheter repair vs. surgical repair (unclear/mixed invasiveness)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab13"><a href="/books/NBK586311/table/niceng208er8.tab13/?report=objectonly" target="object" rid-ob="figobniceng208er8tab13">Table 13</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Transcatheter repair vs. surgical repair (unclear/mixed invasiveness). </p></div></div></div><div id="niceng208er8.s1.4.4.9"><h5>1.4.4.9. Mitral regurgitation</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab14"><a href="/books/NBK586311/table/niceng208er8.tab14/?report=objectonly" target="object" title="Table 14" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab14" rid-ob="figobniceng208er8tab14"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab14/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab14/?report=previmg" alt="Table 14. Clinical evidence summary: Evidence not suitable for GRADE analysis." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab14"><a href="/books/NBK586311/table/niceng208er8.tab14/?report=objectonly" target="object" rid-ob="figobniceng208er8tab14">Table 14</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Evidence not suitable for GRADE analysis. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab15"><a href="/books/NBK586311/table/niceng208er8.tab15/?report=objectonly" target="object" title="Table 15" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab15" rid-ob="figobniceng208er8tab15"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab15/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab15/?report=previmg" alt="Table 15. Clinical evidence summary: Standard surgery replacement vs. standard surgery repair." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab15"><a href="/books/NBK586311/table/niceng208er8.tab15/?report=objectonly" target="object" rid-ob="figobniceng208er8tab15">Table 15</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Standard surgery replacement vs. standard surgery repair. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab16"><a href="/books/NBK586311/table/niceng208er8.tab16/?report=objectonly" target="object" title="Table 16" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab16" rid-ob="figobniceng208er8tab16"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab16/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab16/?report=previmg" alt="Table 16. Clinical evidence summary: Minimally invasive surgery repair vs. standard surgery repair." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab16"><a href="/books/NBK586311/table/niceng208er8.tab16/?report=objectonly" target="object" rid-ob="figobniceng208er8tab16">Table 16</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Minimally invasive surgery repair vs. standard surgery repair. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab17"><a href="/books/NBK586311/table/niceng208er8.tab17/?report=objectonly" target="object" title="Table 17" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab17" rid-ob="figobniceng208er8tab17"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab17/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab17/?report=previmg" alt="Table 17. Clinical evidence summary: Minimally invasive surgery (mixed repair/replacement) vs. standard surgery (mixed repair/replacement)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab17"><a href="/books/NBK586311/table/niceng208er8.tab17/?report=objectonly" target="object" rid-ob="figobniceng208er8tab17">Table 17</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Minimally invasive surgery (mixed repair/replacement) vs. standard surgery (mixed repair/replacement). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab18"><a href="/books/NBK586311/table/niceng208er8.tab18/?report=objectonly" target="object" title="Table 18" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab18" rid-ob="figobniceng208er8tab18"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab18/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab18/?report=previmg" alt="Table 18. Clinical evidence summary: Surgical replacement (unclear/mixed invasiveness) vs. surgical repair (unclear/mixed invasiveness)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab18"><a href="/books/NBK586311/table/niceng208er8.tab18/?report=objectonly" target="object" rid-ob="figobniceng208er8tab18">Table 18</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Surgical replacement (unclear/mixed invasiveness) vs. surgical repair (unclear/mixed invasiveness). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab19"><a href="/books/NBK586311/table/niceng208er8.tab19/?report=objectonly" target="object" title="Table 19" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab19" rid-ob="figobniceng208er8tab19"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab19/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab19/?report=previmg" alt="Table 19. Clinical evidence summary: Transcatheter repair vs. pharmacological management." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab19"><a href="/books/NBK586311/table/niceng208er8.tab19/?report=objectonly" target="object" rid-ob="figobniceng208er8tab19">Table 19</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Transcatheter repair vs. pharmacological management. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab20"><a href="/books/NBK586311/table/niceng208er8.tab20/?report=objectonly" target="object" title="Table 20" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab20" rid-ob="figobniceng208er8tab20"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab20/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab20/?report=previmg" alt="Table 20. Clinical evidence summary: Transcatheter repair vs. surgery (mixed repair/replacement and unclear/mixed invasiveness)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab20"><a href="/books/NBK586311/table/niceng208er8.tab20/?report=objectonly" target="object" rid-ob="figobniceng208er8tab20">Table 20</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Transcatheter repair vs. surgery (mixed repair/replacement and unclear/mixed invasiveness). </p></div></div></div><div id="niceng208er8.s1.4.4.10"><h5>1.4.4.10. Unclear/mixed mitral valve disease</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab21"><a href="/books/NBK586311/table/niceng208er8.tab21/?report=objectonly" target="object" title="Table 21" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab21" rid-ob="figobniceng208er8tab21"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab21/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab21/?report=previmg" alt="Table 21. Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab21"><a href="/books/NBK586311/table/niceng208er8.tab21/?report=objectonly" target="object" rid-ob="figobniceng208er8tab21">Table 21</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement. </p></div></div></div><div id="niceng208er8.s1.4.4.11"><h5>1.4.4.11. Tricuspid regurgitation</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab22"><a href="/books/NBK586311/table/niceng208er8.tab22/?report=objectonly" target="object" title="Table 22" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab22" rid-ob="figobniceng208er8tab22"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab22/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab22/?report=previmg" alt="Table 22. Clinical evidence summary: Transcatheter repair + medical vs. medical alone." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab22"><a href="/books/NBK586311/table/niceng208er8.tab22/?report=objectonly" target="object" rid-ob="figobniceng208er8tab22">Table 22</a></h4><p class="float-caption no_bottom_margin">Clinical evidence summary: Transcatheter repair + medical vs. medical alone. </p></div></div><p>See <a href="#niceng208er8.appf">Appendix F</a>: for full GRADE tables.</p></div></div></div><div id="niceng208er8.s1.5"><h3>1.5. Economic evidence</h3><div id="niceng208er8.s1.5.1"><h4>1.5.1. Included studies</h4><div id="niceng208er8.s1.5.1.1"><h5>Aortic stenosis (non-bicuspid)</h5><p>Eleven health economic studies with relevant comparisons were included in this review: 2 comparing only transcatheter aortic valve implantation to medical management<a class="bibr" href="#niceng208er8.ref290" rid="niceng208er8.ref290"><sup>290</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref432" rid="niceng208er8.ref432"><sup>432</sup></a> and 7 comparing transcatheter aortic valve implantation to surgical aortic valve implantation.<a class="bibr" href="#niceng208er8.ref117" rid="niceng208er8.ref117"><sup>117</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref143" rid="niceng208er8.ref143"><sup>143</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref280" rid="niceng208er8.ref280"><sup>280</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref390" rid="niceng208er8.ref390"><sup>390</sup></a><sup>–</sup><a class="bibr" href="#niceng208er8.ref392" rid="niceng208er8.ref392"><sup>392</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref448" rid="niceng208er8.ref448"><sup>448</sup></a> Two studies compared both transcatheter aortic valve implantation to medical management and transcatheter aortic valve implantation to surgical aortic valve implantation.<a class="bibr" href="#niceng208er8.ref100" rid="niceng208er8.ref100"><sup>100</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref203" rid="niceng208er8.ref203"><sup>203</sup></a> These are summarised in the health economic evidence profiles below (<a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab23/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab23" rid-ob="figobniceng208er8tab23">Table 23</a> to <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab27/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab27" rid-ob="figobniceng208er8tab27">Table 27</a>) and the health economic evidence tables in <a href="#niceng208er8.apph">Appendix H</a>:.</p></div><div id="niceng208er8.s1.5.1.2"><h5>Mixed/unclear aortic valve disease</h5><p>One health economic study with the relevant comparison was included comparing mini-sternotomy to full median sternotomy.<a class="bibr" href="#niceng208er8.ref270" rid="niceng208er8.ref270"><sup>270</sup></a> This is summarised in the health economic evidence profile below (<a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab29/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab29" rid-ob="figobniceng208er8tab29">Table 29</a>) and the health economic evidence table in <a href="#niceng208er8.apph">Appendix H</a>:.</p></div><div id="niceng208er8.s1.5.1.3"><h5>Mitral regurgitation</h5><p>Three health economic studies with the relevant comparisons were included comparing percutaneous mitral valve repair with MitraClip device versus medical management.<a class="bibr" href="#niceng208er8.ref252" rid="niceng208er8.ref252"><sup>252</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref336" rid="niceng208er8.ref336"><sup>336</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref357" rid="niceng208er8.ref357"><sup>357</sup></a> These are summarised in the health economic evidence profile below (<a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab30/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab30" rid-ob="figobniceng208er8tab30">Table 30</a>) and the health economic evidence table in <a href="#niceng208er8.apph">Appendix H</a>:.</p></div><div id="niceng208er8.s1.5.1.4"><h5>Unclear/mixed mitral valve disease</h5><p>One health economic study with the relevant comparison was included comparing minimally invasive surgery to full median sternotomy<a class="bibr" href="#niceng208er8.ref418" rid="niceng208er8.ref418"><sup>418</sup></a>. This is summarised in the health economic evidence profile below (<a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab30/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab30" rid-ob="figobniceng208er8tab30">Table 30</a>) and the health economic evidence table in <a href="#niceng208er8.apph">Appendix H</a>:.</p></div><div id="niceng208er8.s1.5.1.5"><h5>Other populations</h5><p>No health economic studies were included for populations with:
|
|
<ul><li class="half_rhythm"><div>aortic stenosis (bicuspid)</div></li><li class="half_rhythm"><div>aortic stenosis (mixed non-bicuspid and bicuspid or unclear)</div></li><li class="half_rhythm"><div>aortic regurgitation (non-bicuspid)</div></li><li class="half_rhythm"><div>aortic regurgitation (bicuspid)</div></li><li class="half_rhythm"><div>aortic regurgitation (mixed non-bicuspid and bicuspid or unclear)</div></li><li class="half_rhythm"><div>tricuspid regurgitation.</div></li></ul></p></div></div><div id="niceng208er8.s1.5.2"><h4>1.5.2. Excluded studies</h4><p>Thirty economic studies relating to this review question were identified but were excluded due to methodological limitations or the availability of more applicable evidence.<a class="bibr" href="#niceng208er8.ref21" rid="niceng208er8.ref21"><sup>21</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref33" rid="niceng208er8.ref33"><sup>33</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref53" rid="niceng208er8.ref53"><sup>53</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref62" rid="niceng208er8.ref62"><sup>62</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref64" rid="niceng208er8.ref64"><sup>64</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref70" rid="niceng208er8.ref70"><sup>70</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref73" rid="niceng208er8.ref73"><sup>73</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref84" rid="niceng208er8.ref84"><sup>84</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref132" rid="niceng208er8.ref132"><sup>132</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref152" rid="niceng208er8.ref152"><sup>152</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref155" rid="niceng208er8.ref155"><sup>155</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref160" rid="niceng208er8.ref160"><sup>160</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref161" rid="niceng208er8.ref161"><sup>161</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref169" rid="niceng208er8.ref169"><sup>169</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref170" rid="niceng208er8.ref170"><sup>170</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref181" rid="niceng208er8.ref181"><sup>181</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref182" rid="niceng208er8.ref182"><sup>182</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref266" rid="niceng208er8.ref266"><sup>266</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref276" rid="niceng208er8.ref276"><sup>276</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref304" rid="niceng208er8.ref304"><sup>304</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref309" rid="niceng208er8.ref309"><sup>309</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref329" rid="niceng208er8.ref329"><sup>329</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref342" rid="niceng208er8.ref342"><sup>342</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref347" rid="niceng208er8.ref347"><sup>347</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref348" rid="niceng208er8.ref348"><sup>348</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref374" rid="niceng208er8.ref374"><sup>374</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref395" rid="niceng208er8.ref395"><sup>395</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref414" rid="niceng208er8.ref414"><sup>414</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref433" rid="niceng208er8.ref433"><sup>433</sup></a><sup>,</sup>
|
|
<a class="bibr" href="#niceng208er8.ref447" rid="niceng208er8.ref447"><sup>447</sup></a></p><p>These are listed in <a href="#niceng208er8.appi">Appendix I</a>: with reasons for exclusion given.</p><p>See also the health economic study selection flow chart in <a href="#niceng208er8.appg">Appendix G</a>:.</p></div><div id="niceng208er8.s1.5.3"><h4>1.5.3. Summary of studies included in the economic evidence review</h4><div id="niceng208er8.s1.5.3.1"><h5>1.5.3.1. Aortic stenosis</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab23"><a href="/books/NBK586311/table/niceng208er8.tab23/?report=objectonly" target="object" title="Table 23" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab23" rid-ob="figobniceng208er8tab23"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab23/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab23/?report=previmg" alt="Table 23. Health economic evidence profile: Transcatheter aortic valve implantation versus medical management (inoperable)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab23"><a href="/books/NBK586311/table/niceng208er8.tab23/?report=objectonly" target="object" rid-ob="figobniceng208er8tab23">Table 23</a></h4><p class="float-caption no_bottom_margin">Health economic evidence profile: Transcatheter aortic valve implantation versus medical management (inoperable). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab24"><a href="/books/NBK586311/table/niceng208er8.tab24/?report=objectonly" target="object" title="Table 24" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab24" rid-ob="figobniceng208er8tab24"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab24/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab24/?report=previmg" alt="Table 24. Health economic evidence profile: Transcatheter aortic valve implantation versus standard therapy and transcatheter aortic valve implantation versus surgical aortic valve implantation (inoperable and high operative risk)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab24"><a href="/books/NBK586311/table/niceng208er8.tab24/?report=objectonly" target="object" rid-ob="figobniceng208er8tab24">Table 24</a></h4><p class="float-caption no_bottom_margin">Health economic evidence profile: Transcatheter aortic valve implantation versus standard therapy and transcatheter aortic valve implantation versus surgical aortic valve implantation (inoperable and high operative risk). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab25"><a href="/books/NBK586311/table/niceng208er8.tab25/?report=objectonly" target="object" title="Table 25" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab25" rid-ob="figobniceng208er8tab25"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab25/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab25/?report=previmg" alt="Table 25. Health economic evidence profile: Transcatheter aortic valve implantation versus medical therapy and transcatheter aortic valve implantation surgical aortic valve implantation (inoperable and intermediate operative risk)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab25"><a href="/books/NBK586311/table/niceng208er8.tab25/?report=objectonly" target="object" rid-ob="figobniceng208er8tab25">Table 25</a></h4><p class="float-caption no_bottom_margin">Health economic evidence profile: Transcatheter aortic valve implantation versus medical therapy and transcatheter aortic valve implantation surgical aortic valve implantation (inoperable and intermediate operative risk). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab26"><a href="/books/NBK586311/table/niceng208er8.tab26/?report=objectonly" target="object" title="Table 26" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab26" rid-ob="figobniceng208er8tab26"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab26/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab26/?report=previmg" alt="Table 26. Health economic evidence profile: Transcatheter aortic valve implantation versus surgical aortic valve implantation (high operative risk)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab26"><a href="/books/NBK586311/table/niceng208er8.tab26/?report=objectonly" target="object" rid-ob="figobniceng208er8tab26">Table 26</a></h4><p class="float-caption no_bottom_margin">Health economic evidence profile: Transcatheter aortic valve implantation versus surgical aortic valve implantation (high operative risk). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab27"><a href="/books/NBK586311/table/niceng208er8.tab27/?report=objectonly" target="object" title="Table 27" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab27" rid-ob="figobniceng208er8tab27"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab27/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab27/?report=previmg" alt="Table 27. Health economic evidence profile: Transcatheter aortic valve implantation versus surgical aortic valve implantation (intermediate operative risk)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab27"><a href="/books/NBK586311/table/niceng208er8.tab27/?report=objectonly" target="object" rid-ob="figobniceng208er8tab27">Table 27</a></h4><p class="float-caption no_bottom_margin">Health economic evidence profile: Transcatheter aortic valve implantation versus surgical aortic valve implantation (intermediate operative risk). </p></div></div></div><div id="niceng208er8.s1.5.3.2"><h5>1.5.3.2. </h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab28"><a href="/books/NBK586311/table/niceng208er8.tab28/?report=objectonly" target="object" title="Table 28" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab28" rid-ob="figobniceng208er8tab28"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab28/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab28/?report=previmg" alt="Table 28. Health economic evidence profile: Transcatheter aortic valve implantation versus surgical aortic valve implantation (low operative risk)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab28"><a href="/books/NBK586311/table/niceng208er8.tab28/?report=objectonly" target="object" rid-ob="figobniceng208er8tab28">Table 28</a></h4><p class="float-caption no_bottom_margin">Health economic evidence profile: Transcatheter aortic valve implantation versus surgical aortic valve implantation (low operative risk). </p></div></div></div><div id="niceng208er8.s1.5.3.3"><h5>1.5.3.3. Mixed/unclear aortic valve disease</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab29"><a href="/books/NBK586311/table/niceng208er8.tab29/?report=objectonly" target="object" title="Table 29" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab29" rid-ob="figobniceng208er8tab29"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab29/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab29/?report=previmg" alt="Table 29. Health economic evidence profile: Mini-sternotomy versus Full median sternotomy." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab29"><a href="/books/NBK586311/table/niceng208er8.tab29/?report=objectonly" target="object" rid-ob="figobniceng208er8tab29">Table 29</a></h4><p class="float-caption no_bottom_margin">Health economic evidence profile: Mini-sternotomy versus Full median sternotomy. </p></div></div></div><div id="niceng208er8.s1.5.3.4"><h5>1.5.3.4. Mitral regurgitation</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab30"><a href="/books/NBK586311/table/niceng208er8.tab30/?report=objectonly" target="object" title="Table 30" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab30" rid-ob="figobniceng208er8tab30"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab30/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab30/?report=previmg" alt="Table 30. Health economic evidence profile: Percutaneous mitral valve repair versus medical management." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab30"><a href="/books/NBK586311/table/niceng208er8.tab30/?report=objectonly" target="object" rid-ob="figobniceng208er8tab30">Table 30</a></h4><p class="float-caption no_bottom_margin">Health economic evidence profile: Percutaneous mitral valve repair versus medical management. </p></div></div></div><div id="niceng208er8.s1.5.3.5"><h5>1.5.3.5. Mixed/unclear mitral disease</h5><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab31"><a href="/books/NBK586311/table/niceng208er8.tab31/?report=objectonly" target="object" title="Table 31" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab31" rid-ob="figobniceng208er8tab31"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab31/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab31/?report=previmg" alt="Table 31. Health economic evidence profile: Full median sternotomy versus minimally invasive surgery." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab31"><a href="/books/NBK586311/table/niceng208er8.tab31/?report=objectonly" target="object" rid-ob="figobniceng208er8tab31">Table 31</a></h4><p class="float-caption no_bottom_margin">Health economic evidence profile: Full median sternotomy versus minimally invasive surgery. </p></div></div></div></div><div id="niceng208er8.s1.5.4"><h4>1.5.4. Health economic modelling</h4><p>Two health economics models were developed to assess the cost-effectiveness of TAVI compared to standard surgery in operable people with aortic stenosis and edge-to-edge repair with MitraClip device in inoperable people with severe functional mitral regurgitation.</p><div id="niceng208er8.s1.5.4.1"><h5>1.5.4.1. MitraClip model</h5><div id="niceng208er8.s1.5.4.1.1"><h5>Population and strategies</h5><p>The model population were people with severe mitral regurgitation secondary to heart failure and the strategies compared were
|
|
<ul><li class="half_rhythm"><div>Medical management</div></li><li class="half_rhythm"><div>Edge-to-edge mitral valve repair with MitraClip device</div></li></ul></p></div><div id="niceng208er8.s1.5.4.1.2"><h5>Methods and data sources</h5></div><div id="niceng208er8.s1.5.4.1.3"><h5>Model structure</h5><ul><li class="half_rhythm"><div>A two-part model was developed which included a decision tree to model post-procedural outcomes (up to 30 days) followed by a Markov model for long-term extrapolation of outcomes and costs.</div></li><li class="half_rhythm"><div>The Markov model was run for 30 cycles simulating 30 years of life.</div></li><li class="half_rhythm"><div>The decision tree model includes the following outcomes: stable, major bleeding, vascular complication, stroke and dead. Major bleeding and vascular complication were assumed to be only temporary states. Stroke was assumed to have long-term consequence and modelled as a Markov state</div></li><li class="half_rhythm"><div>The Markov model includes the following outcomes: heart transplant first year, heart transplant >1 year, stable, reintervention, stroke and post-stroke and dead.</div></li><li class="half_rhythm"><div>Reintervention, heart transplant first year and stroke were assumed to be tunnel states, so people spend only one cycle in those states before moving to the next state</div></li><li class="half_rhythm"><div>People transiting to the reintervention state move to a new decision tree model simulating the outcomes of the new intervention and then re-enter the Markov model in the states determined by the decision tree</div></li><li class="half_rhythm"><div>Both people in the medical management and MitraClip arm can undergo a reintervention, which is assumed to be always a MitraClip.</div></li></ul></div><div id="niceng208er8.s1.5.4.1.4"><h5>Treatment effect and data sources</h5><ul><li class="half_rhythm"><div>Treatment effects were sought from the COAPT trial since it better reflects the population of interest</div></li><li class="half_rhythm"><div>Mortality rates after MitraClip were taken from the 3-year results of the COAPT trial and extrapolated over 30 years using a Weibull function</div></li><li class="half_rhythm"><div>Utility scores were extracted from the COAPT trial and converted to EQ-5D using a mapping algorithm</div></li><li class="half_rhythm"><div>For post-procedural outcomes, an UK registry (CtE) on MitraClip was used and supplemented with data from the Mitra-FR trial when necessary</div></li></ul></div><div id="niceng208er8.s1.5.4.1.5"><h5>Costs</h5><ul><li class="half_rhythm"><div>Cost for the MitraClip device was extracted from the Commission through Evaluation (CtE) study. A cost of £32,910 was used in the base case scenario while an upper case estimation of £34,500 and a lower case estimation of £29,900 were both tested in the sensitivity analysis</div></li><li class="half_rhythm"><div>The cost of the drugs for the medical management of heart failure and immunosuppressive therapy were calculated using BNF and the Prescription Cost Analysis database. The price and dosage of the drugs were informed from the BNF and the Prescription Cost Analysis was used to calculate the average cost per mg</div></li><li class="half_rhythm"><div>The cost associated with stroke and post-stroke was extracted from an UK costing study on the burden of stroke in the UK and inflated to 2018/2019</div></li><li class="half_rhythm"><div>Other costs, such as the cost associated with a heart failure hospitalisation or of a major bleeding and vascular complication events were recovered from the NHS Reference Costs 2018/2019</div></li></ul></div><div id="niceng208er8.s1.5.4.1.6"><h5>Results</h5><p>The base case results can be found in <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab32/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab32" rid-ob="figobniceng208er8tab32">Table 32</a> and <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab33/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab33" rid-ob="figobniceng208er8tab33">table 33</a> whereas <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab34/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab34" rid-ob="figobniceng208er8tab34">table 34</a> offers a breakdown of costs. Mitraclip was more expensive than medical management but has a greater quality of life treatment effect. At a threshold of £20,000 per QALY, MitraClip was not cost-effective and it was slightly above the threshold of £30,000 per QALY gained.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab32"><a href="/books/NBK586311/table/niceng208er8.tab32/?report=objectonly" target="object" title="Table 32" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab32" rid-ob="figobniceng208er8tab32"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab32/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab32/?report=previmg" alt="Table 32. Base case results – costs (probabilistic)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab32"><a href="/books/NBK586311/table/niceng208er8.tab32/?report=objectonly" target="object" rid-ob="figobniceng208er8tab32">Table 32</a></h4><p class="float-caption no_bottom_margin">Base case results – costs (probabilistic). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab33"><a href="/books/NBK586311/table/niceng208er8.tab33/?report=objectonly" target="object" title="Table 33" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab33" rid-ob="figobniceng208er8tab33"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab33/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab33/?report=previmg" alt="Table 33. Base case results - cost-effectiveness (probabilistic)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab33"><a href="/books/NBK586311/table/niceng208er8.tab33/?report=objectonly" target="object" rid-ob="figobniceng208er8tab33">Table 33</a></h4><p class="float-caption no_bottom_margin">Base case results - cost-effectiveness (probabilistic). </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab34"><a href="/books/NBK586311/table/niceng208er8.tab34/?report=objectonly" target="object" title="Table 34" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab34" rid-ob="figobniceng208er8tab34"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab34/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab34/?report=previmg" alt="Table 34. cost breakdown per patient (probabilistic)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab34"><a href="/books/NBK586311/table/niceng208er8.tab34/?report=objectonly" target="object" rid-ob="figobniceng208er8tab34">Table 34</a></h4><p class="float-caption no_bottom_margin">cost breakdown per patient (probabilistic). </p></div></div><p>Several one-way sensitivity analyses were conducted and are illustrated in <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab35/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab35" rid-ob="figobniceng208er8tab35">table 35</a>. The incremental cost-effectiveness ratio was found to be sensitive to the price of the intervention and to the assumption on utility and mortality distribution. Overall, they suggest that incremental cost-effectiveness ratio of MitraClip compared to medical management is above £30,000 per QALY gained.</p><p>A threshold analysis on the price of a MitraClip device was conducted to determine the threshold value of the price at which MitraClip becomes cost-effective at a threshold of £20,000. This was achieved through excel by varying the price of the device from £1,000 to £20,000 and looking at the corresponding incremental cost effectiveness ratio. The results are shown in <a class="figpopup" href="/books/NBK586311/figure/niceng208er8.fig1/?report=objectonly" target="object" rid-figpopup="figniceng208er8fig1" rid-ob="figobniceng208er8fig1">figure 1</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab35"><a href="/books/NBK586311/table/niceng208er8.tab35/?report=objectonly" target="object" title="Table 35" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab35" rid-ob="figobniceng208er8tab35"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab35/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab35/?report=previmg" alt="Table 35. Scenario analysis (deterministic)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab35"><a href="/books/NBK586311/table/niceng208er8.tab35/?report=objectonly" target="object" rid-ob="figobniceng208er8tab35">Table 35</a></h4><p class="float-caption no_bottom_margin">Scenario analysis (deterministic). </p></div></div><p>A threshold analysis on the price of a MitraClip device was conducted to determine the threshold value of the price at which MitraClip becomes cost-effective at a threshold of £20,000. This was achieved through excel by varying the price of the device from £1,000 to £20,000 and looking at the corresponding incremental cost effectiveness ratio. The results are shown in <a class="figpopup" href="/books/NBK586311/figure/niceng208er8.fig1/?report=objectonly" target="object" rid-figpopup="figniceng208er8fig1" rid-ob="figobniceng208er8fig1">figure 1</a>.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figniceng208er8fig1" co-legend-rid="figlgndniceng208er8fig1"><a href="/books/NBK586311/figure/niceng208er8.fig1/?report=objectonly" target="object" title="Figure 1" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8fig1" rid-ob="figobniceng208er8fig1"><img class="small-thumb" src="/books/NBK586311/bin/niceng208er8f1.gif" src-large="/books/NBK586311/bin/niceng208er8f1.jpg" alt="Figure 1. MitraClip price threshold analysis." /></a><div class="icnblk_cntnt" id="figlgndniceng208er8fig1"><h4 id="niceng208er8.fig1"><a href="/books/NBK586311/figure/niceng208er8.fig1/?report=objectonly" target="object" rid-ob="figobniceng208er8fig1">Figure 1</a></h4><p class="float-caption no_bottom_margin">MitraClip price threshold analysis. </p></div></div><p>The results of the analysis demonstrate that MitraClip intervention becomes cost effective at a threshold of £30,000 when the price drops below £18,200 (equal to a price discount of 8%) and at a threshold of £20,000 when the price drops below £8,600 (equal to a discount of 56%). This analysis assumed that the initial price of a MitraClip device is £19,800 as reported in the NHS Supply Chain Catalogue.</p></div></div><div id="niceng208er8.s1.5.4.2"><h5>1.5.4.2. TAVI model</h5><div id="niceng208er8.s1.5.4.2.1"><h5>Population and strategies</h5><p>The model population were adults with operable aortic stenosis (non-bicuspid) requiring intervention at intermediate or high surgical risk and the following strategies were compared:
|
|
<ul><li class="half_rhythm"><div>Standard (surgical) aortic valve replacement (SAVR) with biological valves</div></li><li class="half_rhythm"><div>Transcatheter aortic valve implantation (TAVI)</div></li></ul></p></div><div id="niceng208er8.s1.5.4.2.2"><h5>Methods and data sources</h5></div><div id="niceng208er8.s1.5.4.2.3"><h5>Model structure</h5><ul><li class="half_rhythm"><div>A two-part model was developed which included a decision tree to model post-procedural outcomes (up to 30 days) followed by a Markov model for long-term extrapolation of outcomes and costs.</div></li><li class="half_rhythm"><div>The Markov model was run for 15 cycles simulating 15 years of life.</div></li><li class="half_rhythm"><div>The decision tree model includes the following outcomes: stable, major bleeding, vascular complication, stroke, renal injury requiring dialysis, pacemaker implantation, mild paravalvular leak (PVL), moderate/severe paravalvular leak and dead. Major bleeding and vascular complication were assumed to be only temporary states. Stroke, dialysis, pacemaker and PVL were assumed to have long-term consequence and modelled as a Markov state</div></li><li class="half_rhythm"><div>The Markov model includes the following outcomes: stroke, post-stroke, dialysis, SVD requiring reintervention, mild PVL, moderate/severe PVL and dead.</div></li><li class="half_rhythm"><div>Reintervention and stroke were assumed to be tunnel states, so people spend only one cycle in those states before moving to the next state</div></li><li class="half_rhythm"><div>People transiting to SVD requiring reintervention state move to a new decision tree model simulating the outcomes of the new intervention and then re-enter the Markov model in the states determined by the decision tree</div></li><li class="half_rhythm"><div>Reintervention is assumed to be an additional surgery or TAVI based on the current activity level in England</div></li></ul></div><div id="niceng208er8.s1.5.4.2.4"><h5>Treatment effect and data sources</h5><ul><li class="half_rhythm"><div>Relative treatment effects were based on a meta-analysis of trials assessing 2<sup>nd</sup> and 3<sup>rd</sup> generation TAVI valves. Studies referring to different risk groups were pooled together</div></li><li class="half_rhythm"><div>Baseline probabilities after TAVI were taken from the latest NICOR UK TAVI data<a class="bibr" href="#niceng208er8.ref229" rid="niceng208er8.ref229"><sup>229</sup></a>. Mortality at 30 days was informed by the latest surgery NACSA audit<a class="bibr" href="#niceng208er8.ref144" rid="niceng208er8.ref144"><sup>144</sup></a>.</div></li><li class="half_rhythm"><div>Mortality in the intermediate risk group was based on a study<a class="bibr" href="#niceng208er8.ref245" rid="niceng208er8.ref245"><sup>245</sup></a> comparing mortality in the UK TAVI registry with the one of the general population. Mortality in the other groups was calculated using relevant hazard ratios from the literature<a class="bibr" href="#niceng208er8.ref38" rid="niceng208er8.ref38"><sup>38</sup></a></div></li><li class="half_rhythm"><div>Utility score were extracted from Gleason 2018<a class="bibr" href="#niceng208er8.ref136" rid="niceng208er8.ref136"><sup>136</sup></a>, Baron 2018<a class="bibr" href="#niceng208er8.ref44" rid="niceng208er8.ref44"><sup>44</sup></a> and Baron 2019<a class="bibr" href="#niceng208er8.ref43" rid="niceng208er8.ref43"><sup>43</sup></a> for, respectively, high risk, intermediate and low risk people</div></li></ul></div><div id="niceng208er8.s1.5.4.2.5"><h5>Costs</h5><ul><li class="half_rhythm"><div>The cost of a SAVR and TAVI interventions were sought from the NHS Reference Costs 2018-2019. The cost associated with hospital stay and ICU were recalculated using data provided by the latest UK evidence on low risk people, the UK TAVI trial<a class="bibr" href="#niceng208er8.ref405" rid="niceng208er8.ref405"><sup>405</sup></a>, and extrapolated for higher risks</div></li><li class="half_rhythm"><div>The cost of a biological valve was already included in the HRG for SAVR. The average cost of a TAVI valve was estimated to be 17,500 by the NHS Supply Chain. Other prices of the valve were tested in the sensitivity analysis.</div></li><li class="half_rhythm"><div>The cost associated with rehabilitation in a rehab centre or at home was sought from the Intermediate Care audit 2017</div></li><li class="half_rhythm"><div>The cost associated with stroke and post-stroke was extracted from an UK costing study on the burden of stroke in the UK and inflated to 2018/2019</div></li><li class="half_rhythm"><div>Other costs, such as the cost associated with a heart failure hospitalisation or of a major bleeding and vascular complication events were recovered from the NHS Reference Costs 2018/2019</div></li></ul></div><div id="niceng208er8.s1.5.4.2.6"><h5>Results</h5><p>The base case probabilistic results can be found in <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab36/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab36" rid-ob="figobniceng208er8tab36">Table 36</a>. TAVI is more costly but has a great quality of life treatment effect. The incremental cost-effectiveness ratio suggests that TAVI is cost effective in people at high surgical risk, but not cost effective in people at intermediate or low surgical risk.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab36"><a href="/books/NBK586311/table/niceng208er8.tab36/?report=objectonly" target="object" title="Table 36" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab36" rid-ob="figobniceng208er8tab36"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab36/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab36/?report=previmg" alt="Table 36. base case results (probabilistic)." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab36"><a href="/books/NBK586311/table/niceng208er8.tab36/?report=objectonly" target="object" rid-ob="figobniceng208er8tab36">Table 36</a></h4><p class="float-caption no_bottom_margin">base case results (probabilistic). </p></div></div><p>Several one-way sensitivity analyses were conducted and are illustrated in <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab37/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab37" rid-ob="figobniceng208er8tab37">tables 37</a>, <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab38/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab38" rid-ob="figobniceng208er8tab38">38</a>, and <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab39/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab39" rid-ob="figobniceng208er8tab39">39</a>. The incremental cost-effectiveness ratio was found to be sensitive to the price of the valve. If the price of the valve dropped to £15,000, TAVI becomes cost effective in people at intermediate surgical risk and potentially cost effective in people at low surgical risk.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab37"><a href="/books/NBK586311/table/niceng208er8.tab37/?report=objectonly" target="object" title="Table 37" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab37" rid-ob="figobniceng208er8tab37"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab37/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab37/?report=previmg" alt="Table 37. Deterministic results of the scenario analyses for the high-risk cohort." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab37"><a href="/books/NBK586311/table/niceng208er8.tab37/?report=objectonly" target="object" rid-ob="figobniceng208er8tab37">Table 37</a></h4><p class="float-caption no_bottom_margin">Deterministic results of the scenario analyses for the high-risk cohort. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab38"><a href="/books/NBK586311/table/niceng208er8.tab38/?report=objectonly" target="object" title="Table 38" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab38" rid-ob="figobniceng208er8tab38"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab38/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab38/?report=previmg" alt="Table 38. Deterministic results of the scenario analyses for the intermediate-risk cohort." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab38"><a href="/books/NBK586311/table/niceng208er8.tab38/?report=objectonly" target="object" rid-ob="figobniceng208er8tab38">Table 38</a></h4><p class="float-caption no_bottom_margin">Deterministic results of the scenario analyses for the intermediate-risk cohort. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figniceng208er8tab39"><a href="/books/NBK586311/table/niceng208er8.tab39/?report=objectonly" target="object" title="Table 39" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8tab39" rid-ob="figobniceng208er8tab39"><img class="small-thumb" src="/books/NBK586311/table/niceng208er8.tab39/?report=thumb" src-large="/books/NBK586311/table/niceng208er8.tab39/?report=previmg" alt="Table 39. Deterministic results of the scenario analyses for the low-risk cohort." /></a><div class="icnblk_cntnt"><h4 id="niceng208er8.tab39"><a href="/books/NBK586311/table/niceng208er8.tab39/?report=objectonly" target="object" rid-ob="figobniceng208er8tab39">Table 39</a></h4><p class="float-caption no_bottom_margin">Deterministic results of the scenario analyses for the low-risk cohort. </p></div></div><p>A threshold analysis on the price of a TAVI valve was conducted to determine the threshold value of the price at which a TAVI procedure becomes cost effective in intermediate and high-risk patients in England. This was achieved through excel by varying the price of the valve from £10,000 to £20,000 and looking at the corresponding incremental cost effectiveness ratio. The results are presented in <a href="#niceng208er8.appc.et1">figure 2</a>.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figniceng208er8fig2" co-legend-rid="figlgndniceng208er8fig2"><a href="/books/NBK586311/figure/niceng208er8.fig2/?report=objectonly" target="object" title="Figure 1" class="img_link icnblk_img figpopup" rid-figpopup="figniceng208er8fig2" rid-ob="figobniceng208er8fig2"><img class="small-thumb" src="/books/NBK586311/bin/niceng208er8f2.gif" src-large="/books/NBK586311/bin/niceng208er8f2.jpg" alt="Figure 1. TAVI price threshold analysis." /></a><div class="icnblk_cntnt" id="figlgndniceng208er8fig2"><h4 id="niceng208er8.fig2"><a href="/books/NBK586311/figure/niceng208er8.fig2/?report=objectonly" target="object" rid-ob="figobniceng208er8fig2">Figure 1</a></h4><p class="float-caption no_bottom_margin">TAVI price threshold analysis. </p></div></div><p>The results showed that for intermediate-risk patients, TAVI becomes cost effective at a threshold of £20,000 per QALY gained when the price drops below £15,500. For low-risk patients TAVI becomes cost effective at the same threshold when the price of the valve is reduced to 14,800£. These prices are not too distant from the prices TAVI valves are purchased in other countries. For instance, the price of a Sapien 3 in Canada appears to be exactly £14,400<a class="bibr" href="#niceng208er8.ref395" rid="niceng208er8.ref395"><sup>395</sup></a>, which would make TAVI cost effective in low and intermediate risk patients according to our analysis. In other European countries, like France, a Sapien 3 is purchased at an even lower price<a class="bibr" href="#niceng208er8.ref257" rid="niceng208er8.ref257"><sup>257</sup></a>. If similar prices can be reached in the UK too, TAVI would become highly cost effective for people at lower surgical risks.</p></div></div></div></div><div id="niceng208er8.s1.6"><h3>1.6. Evidence statements</h3><div id="niceng208er8.s1.6.1"><h4>1.6.1. Clinical evidence statements</h4><p>See the summary of evidence in <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab3/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab3" rid-ob="figobniceng208er8tab3">Table 3</a> to <a class="figpopup" href="/books/NBK586311/table/niceng208er8.tab22/?report=objectonly" target="object" rid-figpopup="figniceng208er8tab22" rid-ob="figobniceng208er8tab22">Table 22</a>. Results from studies that could not be analysed in GRADE are summarised below:
|
|
<ul><li class="half_rhythm"><div>Weak evidence from 3 RCTs<a class="bibr" href="#niceng208er8.ref218" rid="niceng208er8.ref218"><sup>218</sup></a><sup>,</sup><a class="bibr" href="#niceng208er8.ref237" rid="niceng208er8.ref237"><sup>237</sup></a><sup>,</sup><a class="bibr" href="#niceng208er8.ref368" rid="niceng208er8.ref368"><sup>368</sup></a> (n=3681) suggested a reduced length of hospital stay, ranging from 3 to 4 days less, in the transcatheter group compared to the standard surgery group for adults with non-bicuspid aortic stenosis having surgical aortic valve replacement.</div></li><li class="half_rhythm"><div>Weak evidence from 1 RCT<a class="bibr" href="#niceng208er8.ref89" rid="niceng208er8.ref89"><sup>89</sup></a> (n=40) suggested a that the length of hospital stay for adults with aortic stenosis having surgical aortic valve replacement was similar following minimally invasive and standard surgery, with the median stay being 1 day longer in the minimally invasive group, but the interquartile ranges largely overlapping.</div></li><li class="half_rhythm"><div>Weak evidence from 1 RCT<a class="bibr" href="#niceng208er8.ref253" rid="niceng208er8.ref253"><sup>253</sup></a> (n=80) suggested a that the length of hospital stay for adults with mitral regurgitation having surgical mitral valve replacement may be lower than those having valve repair, with a mean difference of 1.5 days shorter stay.</div></li></ul></p></div><div id="niceng208er8.s1.6.2"><h4>1.6.2. Health economic evidence statements</h4><ul><li class="half_rhythm"><div class="half_rhythm">Two cost-utility analyses found that TAVI was cost effective compared to medical management for treating aortic stenosis in an inoperable population (ICERs: £12,900 per QALY gained and £16,200 per QALY gained respectively). These analyses were assessed as directly applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">One cost-utility analysis found that for treating aortic stenosis:
|
|
<ul class="circle"><li class="half_rhythm"><div>In inoperable patients TAVI was cost effective compared to standard therapy at a threshold of £30,000 (ICER: £29,506 per QALY gained)</div></li><li class="half_rhythm"><div>In high operative risk patients surgical aortic valve implantation dominated TAVI.</div></li></ul></div><div class="half_rhythm">The analysis was assessed as partially applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">One cost-utility analysis found that for treating aortic stenosis:
|
|
<ul class="circle"><li class="half_rhythm"><div>In inoperable patients TAVI was cost effective compared to medical therapy at a threshold of £30,000 (ICER: £26,673 per QALY gained)</div></li><li class="half_rhythm"><div>In intermediate operative risk patients TAVI was not cost effective compared to surgical aortic valve implantation (ICER: £51,210 per QALY gained).</div></li></ul></div><div class="half_rhythm">The analysis was assessed as partially applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">One cost-utility analysis found that TAVI dominated surgical aortic valve implantation for treating aortic stenosis in a high operative risk population. The analysis was assessed as partially applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">One cost-utility analysis found that TAVI dominated surgical aortic valve implantation for treating aortic stenosis in an intermediate operative risk population. The analysis was assessed as partially applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">Another cost-utility analysis found that TAVI was cost-effective compared to surgical aortic valve implantation at a threshold of £30,000 for treating aortic stenosis in an intermediate operative risk population (ICER: £25,856 per QALY gained). The analysis was assessed as partially applicable with potentially serious limitations</div></li><li class="half_rhythm"><div class="half_rhythm">Two cost-utility analyses found that TAVI was not cost-effective compared to surgical aortic valve implantation for treating aortic stenosis in an intermediate operative risk population (ICER: £43,055 per QALY gained and £74,182 per QALY gained respectively). The analyses were assessed to be partially applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">Two cost-utility analysis found that balloon expandable TAVI was cost effective compared to surgical aortic valve implantation for treating aortic stenosis in a low operative risk population (ICER: £15,900 per QALY gained and £1,664 per QALY gained respectively). The analyses were assessed to be partially applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">One cost-utility analysis found that mini-sternotomy was dominated by full median sternotomy for treating aortic valve disease. The analysis was assessed to be directly applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">Two cost-utility analyses found that percutaneous mitral valve repair was cost effective compared to medical management at a threshold of £30,000 for treating primary and secondary mitral regurgitation in an inoperable population (ICERs: £22,153 per QALY gained and £13,549 per QALY gained respectively). The analyses were assessed as directly applicable and partially applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">One cost-utility analysis found that percutaneous mitral valve repair was not cost effective compared with medical management for treating a secondary mitral regurgitation in an inoperable population (ICER: 30,057 per QALY gained). The analysis was assessed as directly applicable with minor limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">One cost-comparison analysis found that minimally invasive surgery costed £411 less per person for treating mixed mitral disease. The analysis was assessed as partially applicable with potentially serious limitations.</div></li><li class="half_rhythm"><div class="half_rhythm">One original cost-utility analysis found that for treating aortic stenosis:
|
|
<ul class="circle"><li class="half_rhythm"><div>In people at low surgical risk TAVI is not cost effective compared to surgical aortic valve implantation (ICER: £132,078 per QALY gained)</div></li><li class="half_rhythm"><div>In people at intermediate surgical risk TAVI is not cost effective compared to surgical aortic valve implantation (ICER: £47,324 per QALY gained)</div></li><li class="half_rhythm"><div>In people at high surgical risk TAVI is cost effective compared to surgical aortic valve implantation (ICER: £7,014 per QALY gained)</div></li></ul></div><div class="half_rhythm">The analysis was assessed as directly applicable with minor limitations</div></li><li class="half_rhythm"><div class="half_rhythm">One original cost-utility analysis found that percutaneous edge-to-edge repair with MitraClip device is not cost effective compared to medical management at a £30,000 threshold in an inoperable population (ICER: £30,175 per QALY gained). The analysis was assessed as directly applicable with minor limitations.</div></li></ul></div></div><div id="niceng208er8.s1.7"><h3>1.7. The committee’s discussion of the evidence</h3><div id="niceng208er8.s1.7.1"><h4>1.7.1. Interpreting the evidence</h4><div id="niceng208er8.s1.7.1.1"><h5>1.7.1.1. The outcomes that matter most</h5><p>Outcomes considered to be critical as listed in the protocol were all-cause mortality at ≥12 months, cardiac mortality at ≥12 months, intervention-related mortality at 30 days, onset or exacerbation of heart failure at ≥12 months, intervention-related stroke or TIA at 30 days, intervention-related major bleeding at 30 days and need for re-intervention at ≥12 months.</p><p>Outcomes listed as important in the protocol were length of stay (following initial intervention), re-hospitalisation at ≥12 months, intervention-related pacemaker implantation at 30 days, intervention-related atrial fibrillation at 30 days, intervention-related major vascular complications at 30 days (defined as those requiring intervention for a vascular complication) and prosthetic valve endocarditis at ≥12 months.</p><p>Renal failure and myocardial infarction were discussed as additional outcomes relevant to this review, however due to the large number of outcomes already included, the GC agreed that these two outcomes were less important to consider than those listed above. It was agreed that renal failure would still be considered in terms of any health economic modelling that will be performed due to the costs that can be associated with renal failure, but that myocardial infarction did not need to be included in the protocol. This was because renal failure directly related to the TAVI procedure was considered to be more common than myocardial infarction directly related to the TAVI procedure according to clinical experience, meaning it was more importantto capture these costs than those of myocardial infarction.</p><p>All listed outcomes were reported when all of the strata and comparisons are considered together, however, for certain strata and comparisons the number of outcomes reported was limited. Overall, the studies covering aortic valve disease covered more of the outcomes listed in the protocol, whereas studies included in the various mitral valve disease strata reported fewer outcomes. All outcomes reported for a particular comparison were considered when discussing the evidence as a committee and making decisions, and were considered alongside health economic analysis and other factors, such as the importance of shared decision-making, as described below under ‘Other factors the committee took into account’.</p></div><div id="niceng208er8.s1.7.1.2"><h5>1.7.1.2. The quality of the evidence</h5><p>No relevant RCTs were identified for the following populations: aortic stenosis (bicuspid) and aortic regurgitation.</p><p>Fourty-three RCTs were included in this review, covering various comparisons for different types of heart valve disease as detailed below.</p><div id="niceng208er8.s1.7.1.2.1"><h5>Aortic valve disease</h5><p>Aortic stenosis (non-bicuspid):
|
|
<ul><li class="half_rhythm"><div>Minimally invasive surgery replacement vs. standard surgery replacement (n=1 study)</div></li><li class="half_rhythm"><div>Transcatheter replacement vs. standard surgery replacement (n=8 studies)</div></li><li class="half_rhythm"><div>Transcatheter replacement vs. pharmacological management (n=1 study)</div></li></ul></p><p>Aortic stenosis (mixed bicuspid and non-bicuspid or unclear):
|
|
<ul><li class="half_rhythm"><div>Minimally invasive surgery replacement vs. standard surgery replacement (n=5 studies)</div></li></ul></p><p>Mixed/unclear aortic valve disease:
|
|
<ul><li class="half_rhythm"><div>Minimally invasive surgery replacement vs. standard surgery replacement (n=7 studies)</div></li></ul></p></div><div id="niceng208er8.s1.7.1.2.2"><h5>Mitral valve disease</h5><p>Mitral stenosis:
|
|
<ul><li class="half_rhythm"><div>Minimally invasive surgery repair vs. standard surgery repair (n=1 study)</div></li><li class="half_rhythm"><div>Transcatheter repair vs. standard surgery repair (n=2 studies)</div></li><li class="half_rhythm"><div>Transcatheter repair vs. minimally invasive surgery repair (n=5 studies)</div></li><li class="half_rhythm"><div>Transcatheter repair vs. surgery repair (mixed invasiveness, n=1 study)</div></li></ul></p><p>Mitral regurgitation:
|
|
<ul><li class="half_rhythm"><div>Standard surgery replacement vs. standard surgery repair (n=1 study)</div></li><li class="half_rhythm"><div>Minimally invasive surgery repair vs. standard surgery repair (n=1 study)</div></li><li class="half_rhythm"><div>Minimally invasive surgery (mixed repair/replacement) vs. standard surgery (mixed repair/replacement, n=1 study)</div></li><li class="half_rhythm"><div>Surgical replacement (unclear invasiveness) vs. surgical repair (unclear invasiveness, n=1 study)</div></li><li class="half_rhythm"><div>Transcatheter repair vs. pharmacological management (n=3 studies)</div></li><li class="half_rhythm"><div>Transcatheter repair vs. surgery (mixed repair/replacement and unclear invasiveness, n=1 study)</div></li></ul></p><p>Unclear/mixed mitral valve disease:
|
|
<ul><li class="half_rhythm"><div>Minimally invasive surgery replacement vs. standard surgery replacement (n=3 studies)</div></li></ul></p><p>Evidence ranged from high to very low quality, with the majority of the evidence being of low or very low quality, primarily due to risk of bias and imprecision. Population and/or intervention indirectness was also a reason for downgrading the quality of some of the evidence as they did not match the specific groups described in the protocol. For example, studies where the population was mixed (i.e. some had aortic stenosis and some had aortic regurgitation, with no 75% majority within the study) were downgraded for indirectness. Similarly, studies where the type of intervention being received was mixed (i.e. some receiving repair and some receiving replacement procedures) or unclear (e.g. the invasiveness of the surgery was not specified) were also downgraded for indirectness. Additionally, some studies only reported short-term data (e.g. in-hospital) for outcomes the committee were interested in at longer follow-up times (such as mortality and re-intervention), which was also a reason for downgrading for the relevant outcomes.</p><p>Despite the number of included studies, the overall evidence for each comparison and type of heart valve disease was limited in most cases, with only one relatively small included study for the majority of the reported comparisons across aortic and mitral valve disease strata. However, in terms of the number of included studies and total number of participants, the evidence base was stronger in particular for the comparison between transcatheter replacement and standard surgery (median sternotomy) replacement in the aortic stenosis (non-bicuspid) stratum, though most outcomes were graded low or very low quality as with other strata.</p><div id="niceng208er8.s1.7.1.2.2.1"><h5>Factors specific to TAVI vs. surgical intervention in non-bicuspid aortic stenosis</h5><p>In terms of the comparisons between TAVI and surgical intervention for non-bicuspid aortic stenosis, the committee agreed that were was a lack of long-term evidence as follow-up was only up to 5 years for most outcomes and much longer term data would improve the comparison of outcomes between these two interventions. However, they noted that the importance of longer term follow up will be more important for younger patients. TAVI in the UK is still predominantly performed in people older than 80, many of whom are declined for surgical AVR, so the current lack of very long term data may not be relevant in an older population.</p><p>The committee acknowledged that need for reintervention may reduce with more contemporary valves and agreed to explore the impact of this in the economic model.</p></div></div></div><div id="niceng208er8.s1.7.1.3"><h5>1.7.1.3. Benefits and harms</h5><div id="niceng208er8.s1.7.1.3.1"><h5>Aortic stenosis (non-bicuspid)</h5><div id="niceng208er8.s1.7.1.3.1.1"><h5>Transcatheter replacement</h5><ul><li class="half_rhythm"><div>When compared with standard surgery replacement across eight RCTs, both benefits and harms of transcatheter replacement were identified in those with non-bicuspid aortic stenosis at various operative risks (low, intermediate or high). Four studies focused on low operative risk patients, two studies on intermediate operative risk patients and two studies on high operative risk patients. Clinically important benefits were identified for the following outcomes: cardiac mortality at ≥12 months (studies reporting time-to-event data), mortality at 30 days, major bleeding, length of stay and atrial fibrillation. However, the following clinically important harms of transcatheter replacement were also identified: all-cause mortality at ≥12 months (time-to-event and dichotomous data), cardiac mortality at ≥12 months (studies reporting only dichotomous data), re-hospitalisation (studies reporting only dichotomous data) andpacemaker implantation. Results for quality of life, onset or exacerbation of heart failure, stroke or TIA, need for re-intervention, re-hospitalisation based on time-to-event data, major vascular complications and prosthetic valve endocarditis suggested no clinically important difference between transcatheter replacement and standard surgery replacement. There was uncertainty in the direction of the effect for all outcomes apart from onset or exacerbation of heart failure, major bleeding, need for re-intervention, re-hospitalisation (studies reporting only dichotomous data), pacemaker implantation, atrial fibrillation and major vascular complications. However, uncertainty was still present for all of these outcomes apart from onset or exacerbation of heart failure, need for re-intervention and atrial fibrillation in terms of the size of the effect, meaning for those where the absolute effect suggested a clinically important difference between groups there was uncertainty about whether the true difference was clinically important.</div></li></ul><p>Although no major differences were observed between TAVI and standard surgery replacement across the eight included RCTs for most of the outcomes that were reported, the health economic model (see discussion below) demonstrated that TAVI was not cost-effective in patients where surgery was an alternative, regardless of the operative risk (intermediate or high) and the age group. The committee therefore agreed that, based on the clinical and cost-effectiveness evidence combined, surgery should be offered to patients that require intervention for aortic stenosis. Despite all of the evidence being from the non-bicuspid aortic stenosis population, the recommendation was also extrapolated to the bicuspid aortic stenosis population as it was agreed that the type of aortic stenosis (bicuspid or non-bicuspid) would not change the fact that surgery is a suitable procedure for aortic stenosis requiring intervention. In addition, it was noted that TAVI is more difficult in bicuspid aortic stenosis and is not performed widely currently, meaning surgery would usually be the choice in this population currently.</p><ul><li class="half_rhythm"><div>In one study that compared transcatheter replacement with pharmacological management in those where surgical intervention is not suitable, benefits and harms of transcatheter replacement were identified. Clinically important benefits were reported for the following outcomes: all-cause mortality at ≥12 months, cardiac mortality at ≥12 months, need for reintervention and rehospitalisation. For all of these outcomes, confidence intervals were also consistent with a clinically important benefit and there was no uncertainty about this conclusion. However, clinically important harms associated with transcatheter replacement were mortality at 30 days, stroke or TIA, major bleeding and major vascular complications. There was uncertainty in the direction of the effect for the outcome of mortality at 30 days and uncertainty in terms of the size of the effect was present for stroke or TIA, major bleeding and major vascular complications, meaning there was uncertainty about whether the true difference for these outcomes was clinically important. Results reported for pacemaker implantation, atrial fibrillation and valve endocarditis suggested no clinically important difference between transcatheter replacement and pharmacological management in those where surgery is not suitable, though there was uncertainty in this conclusion for endocarditis based on the confidence intervals as the upper confidence interval was consistent with a harm of the transcatheter procedure.</div></li></ul><blockquote><p>The committee agreed that given TAVI is the only option for intervention for those with inoperable aortic stenosis, because pharmacological management is not sufficient to help symptoms in severe aortic stenosis and severe aortic stenosis can be fatal in some cases when left without intervention, as well as because the evidence from one study highlighted benefits of TAVI in terms of all-cause mortality, cardiac mortality, need for reintervention and rehospitalisation, it should be offered as an option for this population. Although clinical data was only available from a single study, with all outcomes being graded low-very low quality, an offer recommendation was made as it was agreed that it was the only option for those with inoperable aortic stenosis and the option of an intervention should be provided, even if not all patients wish to have the procedure. The recommendation was limited to the non-bicuspid aortic stenosis population as this was the population covered in the included study. In addition, it was noted that TAVI is more difficult in bicuspid aortic stenosis and is not performed widely currently, meaning evidence should not be extrapolated and this area was not prioritised for a research recommendation for the same reasons.</p></blockquote><p>The committee agreed that a cross referral to the NICE interventional procedure guidance (IPG586) on transcatheter aortic valve implantation for aortic stenosis was relevant.</p></div><div id="niceng208er8.s1.7.1.3.1.2"><h5>Invasiveness of surgery</h5><ul><li class="half_rhythm"><div>Evidence from one study comparing minimally invasive surgery replacement with standard surgery replacement suggested more harms than benefits of minimally invasive replacement. Clinically important harms associated with the minimally invasive procedure were all-cause mortality at ≥12 months, mortality at 30 days and prosthetic valve endocarditis. However, there was uncertainty in the direction of the effect for all three of these outcomes based on the confidence intervals, meaning there was uncertainty about whether the true difference was clinically important. The only clinically important benefit identified for minimally invasive replacement was atrial fibrillation development. For this outcome, confidence intervals were also consistent with a clinically important benefit and there was no uncertainty about this conclusion. In addition, no clinically important difference was reported for the following outcomes: stroke or TIA, major bleeding, need for re-intervention and pacemaker implantation; however, there was uncertainty in this conclusion for all outcomes based on the confidence intervals as the upper confidence interval was consistent with a harm of the transcatheter procedure for stroke or TIA, major bleeding and need for re-intervention, and the lower and upper confidence intervals for pacemaker implantation were consistent with a benefit or harm of the transcatheter procedure, respectively.</div></li><li class="half_rhythm"><div>Fewer outcomes were reported for this particular comparison relative to the other comparisons mentioned for this stratum.</div></li></ul><p>See concluding paragraphs under ‘<a href="#niceng208er8.s1.7.1.3.3">mixed/unclear aortic valve disease</a>’ section below for information about how the above evidence contributed to the recommendations.</p></div></div><div id="niceng208er8.s1.7.1.3.2"><h5>Aortic stenosis (mixed bicuspid and non-bicuspid or unclear)</h5><p>This stratum includes studies where it was unclear whether bicuspid valve disease was excluded from the study population and was included as indirect evidence, as the protocol had initially stratified by bicuspid and non-bicuspid aortic stenosis from the outset. Five studies were included within this stratum and all compared minimally invasive surgery replacement with standard surgery replacement.</p><ul><li class="half_rhythm"><div>Based on absolute effects, a clinically important benefit in terms of mortality at 30 days was identified for minimally invasive surgery replacement; however clinically important harms were identified for all-cause mortality at ≥12 months and cardiac mortality at ≥12 months. For all three of these outcomes, there was uncertainty in the direction of the effect based on confidence intervals, meaning there was uncertainty about whether the true difference represented a clinically important harm or benefit of minimally invasive replacement. No clinically important difference was reported for the following additional outcomes: quality of life, stroke or TIA, major bleeding, need for re-intervention, length of hospital or intensive care unit stay, pacemaker implantation, atrial fibrillation and prosthetic valve endocarditis; however, based on the confidence intervals, there was uncertainty in this conclusion for all outcomes other than need for re-intervention and length of hospital stay intervals as confidence intervals were consistent with a harm or benefit (or both in some cases) of minimally invasive surgery replacement.</div></li></ul><p>See concluding paragraphs under ‘<a href="#niceng208er8.s1.7.1.3.3">mixed/unclear aortic valve disease</a>’ section below for information about how the above evidence contributed to the recommendations.</p></div><div id="niceng208er8.s1.7.1.3.3"><h5>Mixed/unclear aortic valve disease</h5><p>This stratum includes studies where the type of aortic valve disease included was unclear or the population was mixed, with no 75% majority (i.e. some people had aortic stenosis and some had aortic regurgitation) and was included as indirect evidence, as the protocol had initially stratified by the two types of aortic valve disease from the outset. Seven studies were included within this stratum and all compared minimally invasive surgery replacement with standard surgery replacement.</p><ul><li class="half_rhythm"><div>Clinically important benefits in terms of quality of life, major bleeding, length of hospital stay and atrial fibrillation were identified for minimally invasive surgery replacement; however, clinically important harms were identified for all-cause mortality at ≥12 months, cardiac mortality at ≥12 months and pacemaker implantation. For all of these outcomes there was uncertainty in the direction or size of the effect based on confidence intervals, meaning there was uncertainty about whether the true difference was clinically important and for some outcomes whether a clinically important harm rather than benefit, or vice versa, was present. No clinically important difference was reported for the following additional outcomes: mortality at 30 days, stroke or TIA, need for re-intervention and length of intensive care unit stay; however, based on the confidence intervals, there was uncertainty in this conclusion for all outcomes other than length of intensive care unit stay as confidence intervals were consistent with a harm or benefit (or both in the case of mortality at 30 days) of minimally invasive surgery replacement.</div></li></ul><p>Evidence from 14 RCTs comparing minimally invasive surgery replacement with standard surgery replacement by median sternotomy across different aortic valve disease populations informed the recommendation on the invasiveness of surgery in aortic valve disease. There was 1 study covering non-bicuspid aortic stenosis, 5 studies covering aortic stenosis where it was unclear whether bicuspid disease was excluded and 7 studies covering populations where some patients had aortic stenosis and some patients had aortic regurgitation or the population was only described as aortic valve disease, representing a general aortic valve disease population rather than focussing specifically on stenosis or regurgitation.</p><p>Despite some clinically important harms of minimally invasive surgery being identified across the included studies, and a health economic study that suggested minimally invasive surgery was not cost-effective compared with median sternotomy replacement, it was noted that all RCTs were small and for many outcomes only a small number of events were observed. The health economic study was also limited for the same reasons, as it was based on one of the RCTs included in the clinical evidence. It was also limited to a 12 month time-horizon, which may be too short to draw conclusions about cost effectiveness over a lifetime, though the committee agreed it is likely there would not be a large difference in outcomes after 12 months. In addition, the committee agreed that in their clinical experience there was no difference between minimally invasive and standard surgery replacement in terms of outcomes when performed by those with expertise in minimally invasive surgery, which could be supported by a large amount of non-randomised evidence not included in this review of RCTs.</p><p>It was agreed that the evidence included was insufficient to limit the use of minimally invasive surgery and a decision was made to offer either in those undergoing surgical replacement of the aortic valve, with the decision to be based on patient characteristics and preferences. For example, median sternotomy may be more appropriate if a patient requires concomitant procedures such as other valve or coronary interventions at the same time as the aortic valve operation. It was noted that a lack of expertise in minimally invasive surgery locally should not be used as a reason for not performing a minimally invasive procedure and patients should be referred to a centre where there is expertise if this procedure is deemed most suitable for the patient.</p><p>Though no or limited evidence was included for bicuspid aortic stenosis, aortic regurgitation (bicuspid or non-bicuspid) and those with mixed aortic valve disease (aortic stenosis and regurgitation in same patient), the recommendation on the invasiveness of surgery was applied to all aortic valve disease, as the type of aortic valve disease does not affect decisions about the invasiveness of surgery and evidence can therefore be extrapolated to these populations.</p></div><div id="niceng208er8.s1.7.1.3.4"><h5>Mitral stenosis</h5><div id="niceng208er8.s1.7.1.3.4.1"><h5>Transcatheter repair</h5><ul><li class="half_rhythm"><div>Two studies compared transcatheter repair with standard surgery repair in those with rheumatic mitral stenosis. No clinically important benefits of transcatheter repair over standard surgery repair were identified. Although the absolute effect demonstrated clinically important harms associated with transcatheter repair (all-cause mortality and cardiac mortality at ≥12 months), this was based on a very small number of events with 1 event in the transcatheter arm and 0 events in the surgery arm and there was uncertainty in the direction of the effect based on confidence intervals – there is therefore insufficient evidence to conclude there is a harm of transcatheter repair for these outcomes. Results also indicated no clinically important difference for mortality at 30 days, stroke or TIA, need for re-intervention and atrial fibrillation based on absolute effects; however, based on the confidence intervals, there was uncertainty in this conclusion for all outcomes as confidence intervals were consistent with a harm or benefit (or both for all apart from need for re-intervention) of transcatheter repair. Only six of the fourteen outcomes listed in the protocol were reported across the studies.</div></li><li class="half_rhythm"><div>Five studies compared transcatheter repair with minimally invasive surgery repair in those with rheumatic mitral stenosis. As above when compared to standard surgery repair, no clinically important benefits of transcatheter repair over minimally invasive surgery repair were identified. For this comparison, the only clinically important harm associated with transcatheter repair was major vascular complications; however, based on confidence intervals there was uncertainty in the size of the effect, meaning there was uncertainty about whether the true difference was clinically important. No clinically important difference was reported for the following outcomes: all-cause mortality ≥12 months, cardiac mortality at ≥12 months, mortality at 30 days, stroke or TIA, major bleeding and need for re-intervention; however, based on the confidence intervals, there was uncertainty in this conclusion for the three mortality outcomes and need for re-intervention as upper and lower confidence intervals were consistent with a harm or benefit of transcatheter repair, respectively, in all three cases. Only seven of the fourteen outcomes listed in the protocol were reported across the studies.</div></li><li class="half_rhythm"><div>An additional study compared transcatheter repair with surgical repair (where the invasiveness of the surgery was different for different patients) in those with rheumatic mitral stenosis. For this comparison, clinically important benefits of transcatheter repair were identified in terms of major bleeding, pacemaker implantation and atrial fibrillation. Major vascular complications was identified as a clinically important harm associated with transcatheter repair. However, this was based on a single study with a small population, and the difference between arms in terms of number of events was between 2 and 6 for each of these outcomes. In addition, for all of the above outcomes, there was uncertainty in the size of the effect as the lower confidence interval was consistent with no clinically important difference, meaning there was uncertainty about whether the true difference was clinically important. No clinically important difference between transcatheter repair and surgical repair was identified for all-cause mortality ≥12 months, cardiac mortality at ≥12 months, mortality at 30 days and need for re-intervention; however, based on the confidence intervals, there was uncertainty in this conclusion for all outcomes as upper and lower confidence intervals were consistent with a harm or benefit of transcatheter repair, respectively, in all cases. Only eight of the fourteen outcomes listed in the protocol were reported within the study.</div></li></ul><p>Although the evidence discussed above demonstrates few clinically important differences between transcatheter valvotomy and surgical valvotomy for rheumatic mitral stenosis, a decision based on committee experience and current practice was made to recommend the transcatheter procedure over the surgical procedure, as it was agreed that surgical valvotomy is no longer commonly used in practice as it is established that similar results can be achieved with the transcatheter procedure with less trauma and scarring. The strength of the recommendation was consider rather than offer based on limitations with the included evidence, including small studies with only a small number of events in many cases, as well as the majority of outcomes being graded very low quality.</p><p>A further recommendation was made to offer mitral valve replacement in those with rheumatic mitral stenosis requiring an intervention where transcatheter valvotomy would not be suitable. This recommendation was made based on current practice as no evidence was included in the review to support this, but it was agreed this was an important recommendation to make to cover patients where the transcatheter valvotomy procedure would not be an option but where intervention is required. Despite there being no evidence for this, the committee noted that as this is a population who are considered to need intervention, replacement is the only alternative where transcatheter valvotomy is not suitable and it would therefore be current practice to offer valve replacement in these circumstances. As they have been deemed to need intervention then it would be unethical to withhold this if suitable for the procedure, possibly explaining the lack of studies comparing replacement with no treatment in this population. One example of where a transcatheter valvotomy is contraindicated in current practice is where there is co-existent mitral regurgitation. The degree of calcification that has developed may also affect whether or not transcatheter valvotomy is a suitable procedure.</p><p>It was agreed that it would not be appropriate to extrapolate evidence from the rheumatic mitral stenosis population to the calcific degenerative mitral stenosis population as they are two very different pathologies. Rheumatic mitral stenosis occurs as a result of rheumatic fever, whereas calcific degenerative mitral stenosis occurs due to calcific degeneration. The onset of rheumatic mitral stenosis is usually at a younger age than that of calcific degenerative mitral stenosis. It was noted that although some patients with rheumatic stenosis may present with some calcification of the rheumatic valve as they age, the valve disease is still considered to be rheumatic and is different to calcific degenerative mitral stenosis where calcification of the valve is the main driver of the valve disease. As there was no evidence included to cover calcific degenerative mitral stenosis in the review, a research recommendation covering the management of this population was therefore agreed (see Appendix J.1.1 for details).</p></div><div id="niceng208er8.s1.7.1.3.4.2"><h5>Invasiveness of surgery</h5><ul><li class="half_rhythm"><div>One study compared minimally invasive surgery repair with standard surgery repair in those with rheumatic mitral stenosis. No clinically important benefits of minimally invasive surgery repair were identified when compared to standard surgery repair and a clinically important harm was reported in terms of need for re-intervention. There was no uncertainty in this conclusion for need for re-intervention as the confidence interval was also consistent with a clinically important harm. No clinically important difference was reported for all-cause mortality at ≥12 months, cardiac mortality at ≥12 months, mortality at 30 days and stroke or TIA; however, based on the confidence intervals, there was uncertainty in this conclusion for all outcomes as upper and lower confidence intervals were consistent with a harm or benefit of minimally invasive surgery repair, respectively, in all cases. Only five of the fourteen outcomes listed in the protocol were reported within the study.</div></li></ul><p>As it was agreed that surgical valvotomy is no longer commonly used in UK practice, with the transcatheter valvotomy procedure being performed where suitable and replacement where this was not possible, surgical repair was not included in the recommendations because it is very rarely performed currently in rheumatic mitral valve disease and this evidence on minimally invasive vs. standard surgery repair was therefore not used to inform any of the recommendations. Research recommendations were also not made in this area for the same reasons.</p></div></div><div id="niceng208er8.s1.7.1.3.5"><h5>Mitral regurgitation</h5><div id="niceng208er8.s1.7.1.3.5.1"><h5>Replacement or repair</h5><ul><li class="half_rhythm"><div>One study compared standard surgery replacement with standard surgery repair in those with mitral regurgitation of various aetiologies (including myxamatous, rheumatic, ischaemic or due to endocarditis). Although clinically important benefits of replacement in terms of in-hospital all-cause mortality, in-hospital cardiac mortality and in-hospital need for re-intervention were identified based on the absolute effect, for all three outcomes this was based on differences of only 1-2 events between the arms in a single, small study and there was uncertainty in the direction of the effect for these outcomes as confidence intervals indicated that the true effect could also be a clinically important harm of standard surgery replacement compared to repair. In addition, no long-term follow-up data was available for these outcomes. No clinically important harms were identified. No clinically important difference was reported for stroke or TIA between the two groups; however, based on the confidence intervals, there was uncertainty in this conclusion as the upper confidence interval was consistent with a harm of replacement for this outcome. Only four of the fourteen outcomes listed in the protocol were reported within the study.</div></li><li class="half_rhythm"><div>Two studies compared surgical replacement (unclear invasiveness) with surgical repair (unclear invasiveness) in those with secondary mitral regurgitation. Clinically important benefits of replacement identified were quality of life measured on the Minnesota Living with Heart Failure questionnaire and the need for re-intervention; however, there was uncertainty in the size of the effect for both outcomes, meaning there was uncertainty about whether the true difference was clinically important. Clinically important harms associated with replacement over repair were all-cause mortality at ≥12 months, cardiac mortality at ≥12 months and mortality at 30 days, though there was uncertainty in the direction of the effect for these outcomes as confidence intervals indicated that the true effect could also be a clinically important benefit of surgical replacement compared to surgical repair. No clinically important difference was reported for the following outcomes: quality of life measured on EQ-5D and SF-12 questionnaires, onset or exacerbation of heart failure, stroke or TIA, major bleeding, length of stay, pacemaker implantation, major vascular complications and valve endocarditis; however, based on the confidence intervals, there was uncertainty in this conclusion for all outcomes apart from valve endocarditis as confidence intervals were consistent with a harm or benefit (or both for some outcomes) of surgical replacement. These results were based on two small studies and in most cases a small number of events, with uncertainty present based on confidence intervals, even for those outcomes where a harm or benefit was suggested by the absolute effect. The strongest effect observed was for need for re-intervention at 24 months, where fewer events occurred in the replacement group.</div></li></ul><p>Evidence from the included studies was limited based on the small number of participants included in each trial, a substantial amount of uncertainty in the direction of effect for most outcomes and the small number of events reported for the majority of outcomes. In addition, most outcomes were graded very low quality. It was highlighted that the lack of stronger evidence may be due to the fact that surgical repair has been the preferred option in recent decades due to strong non-randomised evidence and that randomising patients to repair or replacement was not considered ethical. Therefore, based on the limitations of the included evidence, recommendations in line with current practice were made, with surgical mitral valve repair recommended where repair was suitable and surgical mitral valve replacement recommended where repair was not possible. Based on evidence discussed in the following section under ‘invasiveness of surgery’, the recommendations specified this should be by minimally invasive surgery or median sternotomy, with the decision based on patient characteristics and preferences.</p><p>The committee noted that there are differences in the aetiology and treatment of primary and secondary mitral regurgitation in practice. Primary mitral regurgitation is a result of degeneration of the valve components whereas secondary mitral regurgitation develops as a result of underlying enlargement of cardiac chambers (left ventricle or left atrium) rather than valve degeneration. In those with primary mitral regurgitation and an indication for intervention, it is established that valve intervention should be performed to for those suitable for intervention, as remaining on conservative management would lead to deterioration of condition. For this reason, offer recommendations were made for primary mitral regurgitation where intervention is required. However, those with secondary mitral regurgitation requiring intervention are usually treated for their underlying cause (heart failure or atrial fibrillation) initially, with a decision about whether a valve intervention is also required or appropriate following this. For this reason, recommendations for surgery in secondary mitral regurgitation were consider recommendations among those already needing cardiac surgery for another indication. The different strength of recommendations for primary and secondary mitral regurgitation for those where intervention is required were used to capture the difference in aetiology and current practice, as intervention for the mitral regurgitation may not always be required in secondary mitral regurgitation as treating the underlying cause may mean that the mitral regurgitation is improved or resolved and no longer needs intervention, while primary mitral regurgitation is caused by degenerated valves and therefore the heart valve itself needs to be treated as there is no other underlying cause that could be treated instead.</p></div><div id="niceng208er8.s1.7.1.3.5.2"><h5>Invasiveness of surgery</h5><ul><li class="half_rhythm"><div>One study compared minimally invasive surgery repair with median sternotomy repair in those with mitral regurgitation due to Barlow disease. A clinically important benefit was identified in terms of length of stay in the minimally invasive group, though there was some uncertainty in the size of this effect, and no clinically important harms of minimally invasive surgery repair were identified. No clinically important difference was reported for the following outcomes: all-cause mortality at ≥12 months, intra/postoperative mortality, quality of life on the SF-36 questionnaire, stroke or TIA, major bleeding, need for re-intervention and valve endocarditis; however, based on the confidence intervals, there was uncertainty in this conclusion for all outcomes apart from the social activities domain on the SF-36 questionnaire and valve endocarditis as confidence intervals were consistent with a harm or benefit of minimally invasive surgery repair compared to median sternotomy repair. Only eight of the fourteen outcomes listed in the protocol were reported within the study.</div></li><li class="half_rhythm"><div>One study compared minimally invasive surgery (mixed repair and replacement) with median sternotomy (mixed repair and replacement) in those with mitral regurgitation of unclear aetiology. Although clinically important benefits of minimally invasive surgery were identified in terms of major bleeding and pacemaker implantation based on the absolute effects, there was only 1 event in the standard surgery arm and 0 events in the minimally invasive surgery arm of a single study with only 40 participants. The confidence intervals indicated uncertainty in the direction of the effect and that the true effect could also be a clinically important harm of minimally invasive surgery compared to median sternotomy. No clinically important harms of minimally invasive surgery were identified. No clinically important difference was reported for the following outcomes, though no long-term follow-up data was available for the mortality outcomes: in-hospital all-cause mortality, in hospital cardiac mortality, onset/exacerbation of heart failure postoperatively and stroke or TIA; however, based on the confidence intervals, there was uncertainty in this conclusion for all outcomes as confidence intervals were consistent with a harm (or both a benefit and harm for the mortality outcomes) of minimally invasive surgery compared to median sternotomy. Only six of the fourteen outcomes listed in the protocol were reported within the study.</div></li></ul><p>Overall, although some clinically important differences were observed, suggesting benefits of minimally invasive procedures in terms of length of stay and reduced cost per person compared to median sternotomy procedures, limitations of the included studies, including small participant numbers and a small number of events for many reported outcomes, a lack of long-term data for many outcomes and most outcomes being graded low-very low quality, meant there was insufficient evidence to recommend one over the other. Therefore, it was agreed that recommendations, which were consider or offer based on the specific type of procedure being recommended (for example, repair or replacement) or type of mitral regurgitation specified (primary or secondary), should include minimally invasive and standard surgery as options for those with mitral regurgitation requiring mitral valve surgery was made, with the decision being based on patient characteristics and preferences. For example, median sternotomy may be more appropriate if a patient requires concomitant procedures such as other valve or coronary interventions at the same time as the mitral valve operation. It was noted that lack of expertise in minimally invasive surgery locally should not be used as a reason for not performing a minimally invasive procedure and patients should be referred to a centre where there is expertise if this procedure is deemed most suitable for the patient. It was also noted that observational evidence suggests higher likelihood of successful mitral valve repair rather than replacement when median sternotomy rather than minimally invasive surgery approach is used, particularly for complex mitral valve morphology.</p></div><div id="niceng208er8.s1.7.1.3.5.3"><h5>Transcatheter repair</h5><ul><li class="half_rhythm"><div>Three studies compared transcatheter repair with pharmacological management in those with secondary mitral regurgitation. Clinically important benefits associated with transcatheter repair were all-cause mortality at ≥12 months, cardiac mortality at ≥12 months, quality of life on the EQ-5D, KCCQ and SF-36 physical questionnaires (note no difference was reported for the SF-36 mental component questionnaire), onset/exacerbation of heart failure, need for re-intervention and rehospitalisation. However, there was heterogeneity in the results for all-cause mortality, cardiac mortality and onset/exacerbation of heart failure between the studies as some suggested a benefit while others suggested a harm or no difference for all three outcomes. In addition, for all of these outcomes apart from need for re-intervention, there was uncertainty in the direction or size of the effect based on confidence intervals, meaning there was uncertainty about whether the true difference was clinically important or, for mortality and re-hospitalisation outcomes, whether there was actually a clinically important harm of transcatheter repair rather than benefit. Though a clinically important harm of transcatheter repair was identified for mortality at 30 days based on the absolute effect, there was a difference of only 3 events between the two study arms across the 2 studies reporting this outcome and the confidence intervals demonstrated uncertainty in the direction of the effect, meaning the true effect could also be a clinically important benefit of transcatheter repair for this outcome. No clinically important difference was reported for the following outcomes: stroke or TIA, major bleeding, major vascular complications and prosthetic valve endocarditis; however, based on the confidence intervals, there was uncertainty in this conclusion for major bleeding, major vascular complications and prosthetic valve endocarditis as the upper confidence interval was consistent with a harm of transcatheter repair.</div></li></ul><p>Two studies were specifically in a population where surgery was not suitable, while the operative risk of the third study was unclear. Health economic modelling performed as part of the guideline focused specifically on secondary mitral regurgitation when surgery is not suitable. The included evidence highlighted uncertainty in the direction of the effect for some outcomes in secondary mitral regurgitation, and this uncertainty was still present even between the two studies focusing on the population where surgery was not suitable. Very few outcomes were reported by all of the included studies, with some reported outcomes only covered by a single study. There was uncertainty in the direction of the 3 outcomes, including all-cause mortality, cardiac mortality and onset/exacerbation of heart failure at 1-2 years.</p><p>The differences in the results obtained from 2 clinical studies included that covered the inoperable population are possibly explained by the fact that patients from the trial where benefits were not observed (MITRA-FR) were considered to have more advanced heart failure and less severe mitral regurgitation, with a larger proportion having moderate rather than severe mitral regurgitation, than those in the other trial (COAPT). The type of transcatheter procedure used in these two studies was transcatheter mitral edge-to-edge repair. Despite some clinical evidence of benefits of transcatheter intervention over pharmacological treatment in one of these studies, the health economic model that was developed as part of the guideline demonstrated that at its current list price, this procedure was not cost-effective for the secondary mitral regurgitation population where surgery is unsuitable. Therefore, it was recommended that medical management is offered in preference to transcatheter mitral edge-to-edge repair for adults with heart failure and severe secondary mitral regurgitation, if surgery is unsuitable.</p><ul><li class="half_rhythm"><div>One study compared transcatheter repair with surgery (mixed repair and replacement, unclear invasiveness) in a population that had some patients with primary disease and some with secondary disease. The clinically important benefits identified for transcatheter repair were all-cause mortality at ≥12 months and mortality at 30 days. However, there was uncertainty present for both of these outcomes in terms of the direction of the effect based on confidence intervals. The largest difference observed between the groups was a clinically important harm of transcatheter repair in terms of need for re-intervention; however, uncertainty based on the confidence interval was present as the lower confidence interval was consistent with there being no clinically important difference. In addition, no clinically important difference was reported for the following outcomes: quality of life as measured by the SF-36 questionnaire for physical and mental components, stroke or TIA, atrial fibrillation and major vascular complications; however, there was uncertainty in this conclusion for the SF-36 quality of life outcomes and stroke or TIA, as the confidence intervals were consistent with a clinically important benefit or harm, or both for the SF-36 physical component outcome. Only seven of the fourteen outcomes listed in the protocol were reported within the study.</div></li></ul><p>No clinical evidence was identified comparing transcatheter mitral valve repair with medical management in those with primary mitral regurgitation where surgery is not suitable. However, it was noted that the lack of evidence in this area may be because it is well established that medical management in those with primary mitral regurgitation that need intervention does not improve the outcomes of patients and therefore transcatheter mitral valve repair would be useful in patients where surgery cannot be performed. One health economic study based on a non-randomised EVEREST II high risk registry found that transcatheter repair was cost effective over medical management in those not eligible for surgery with severe mitral regurgitation. This was from a UK NHS perspective; however, it was not limited to primary mitral regurgitation as it also included patients with secondary mitral regurgitation. It was also considered to have potentially serious limitations due to its design, as data was obtained from a prospective, single arm registry with a control group that was obtained retrospectively. Therefore, a consider recommendation for transcatheter mitral valve repair in primary mitral regurgitation where surgery was not suitable was made. A research recommendation was not made despite the absence of clinical evidence for this population as it was not prioritised due to it being established that medical management alone in those with primary mitral regurgitation that need intervention does not improve outcomes.</p></div></div><div id="niceng208er8.s1.7.1.3.6"><h5>Mixed/unclear mitral valve disease</h5><p>This stratum includes studies where the type of mitral valve disease included was unclear or the population was mixed, with no 75% majority (i.e. some people had mitral stenosis and some had mitral regurgitation) and was included as indirect evidence, as the protocol had initially stratified by the two types of mitral valve disease from the outset. Three studies were included within this stratum and all compared minimally invasive surgery replacement with standard surgery replacement.</p><ul><li class="half_rhythm"><div>Clinically important benefits of minimally invasive surgery replacement were identified in terms of in-hospital/postoperative need for re-intervention and length of hospital stay; however, there was uncertainty in the size of this effect based on confidence intervals, meaning there was uncertainty as to whether the true difference was clinically important. Though a clinically important benefit was also identified for in-hospital/postoperative all-cause mortality based on the absolute effect, this was driven by a single study as two other included studies demonstrated no difference between the groups. In addition, no long-term follow-up data was available for the mortality and need for re-intervention outcomes. No clinically important harms of minimally invasive surgery replacement were identified when compared to standard surgery replacement and no clinically important difference was reported for in-hospital/postoperative cardiac mortality, stroke or TIA and prosthetic valve endocarditis; however, there was uncertainty in this conclusion for all three of these outcomes as the upper confidence intervals were consistent with a clinically important harm of minimally invasive surgery replacement, or for cardiac mortality the upper and lower confidence intervals suggested a clinically important harm or benefit, respectively. Despite more benefits than harms being identified, only six of the fourteen outcomes listed in the protocol were reported by these studies and long-term follow-up data was missing for the mortality and re-intervention outcomes. All outcomes were also graded very low quality.</div></li></ul><blockquote><p>Evidence from these studies contributed to the decision to include minimally invasive and standard surgery as options for those requiring surgery for mitral regurgitation, as the type of mitral valve disease does not usually affect decisions about the invasiveness of surgery in current practice and this was included as indirect evidence. Limitations with this evidence and a lack of strong differences between the groups meant there was insufficient evidence to support recommending one option over the other. This area was not prioritised as a research recommendation due to the small patient population.</p></blockquote></div><div id="niceng208er8.s1.7.1.3.7"><h5>Tricuspid regurgitation</h5><p>A single, very small RCT was included in the review, which compared transcatheter repair + optimal medical therapy according to heart failure guidelines with optimal medical therapy alone in a population with severe, symptomatic tricuspid regurgitation and a high surgical risk score.</p><ul><li class="half_rhythm"><div>Based on absolute effects, clinically important benefits of transcatheter repair were quality of life and NYHA class worsening by 1 or 2 classes at 3 months follow-up; however, there was uncertainty in the size of the effect for quality of life and the direction of effect for NYHA class worsening, meaning there was uncertainty as to whether the true difference was clinically important for quality of life and whether the true effect was actually a clinically important harm of transcatheter repair for NYHA class worsening. Clinically important harms were identified for in-hospital mortality and mortality at 12 months, haemorrhage at 30 days and reintervention at 48 h; however, uncertainty was present in the direction of effect for the mortality and haemorrhage outcomes and in the size of the effect for the reintervention outcome, meaning there was uncertainty as to whether the true effect was actually a clinically important benefit for the mortality and haemorrhage outcomes and whether the true difference was clinically important for reintervention. The results indicated no clinically important difference between the two groups for the other outcomes reported in this study (rehospitalisation at 12 months and major vascular complications at 30 days), but there was uncertainty in this conclusion for both outcomes based on confidence intervals as upper and lower confidence intervals were consistent with a harm and benefit, respectively, of transcatheter repair for both outcomes.</div></li></ul><p>The committee noted that patients with associated tricuspid regurgitation have worse prognosis after mitral valve intervention than those with mild or no tricuspid regurgitation. There is strong evidence (not reviewed here) that secondary functional tricuspid regurgitation that is severe does not improve after fixing the mitral lesion. Moderate tricuspid regurgitation does remain stable in a few patients after mitral correction. However, in a significant number, it does not improve and may get worse. Tricuspid annuloplasty by an experienced surgeon is a quick procedure that does reduce the amount of tricuspid regurgiation and may improve prognosis of these patients.</p><p>The committee noted that patients with associated tricuspid regurgitation have a worse prognosis after aortic valve intervention than those with mild or no tricuspid regurgitation. There is strong evidence (but not reviewed here) that secondary functional tricuspid regurgitation that is severe does not improve after fixing the left sided lesion. Tricuspid annuloplasty by an experienced surgeon is a quick procedure that does reduce the amount of tricuspid regurgitation and may improve prognosis of these patients
|
|
<ul><li class="half_rhythm"><div>A recommendation for research was instead made covering the management of tricuspid regurgitation with an indication for intervention (see Appendix J.1.5 for details).</div></li></ul></p></div></div></div><div id="niceng208er8.s1.7.2"><h4>1.7.2. Cost effectiveness and resource use</h4><p>According to The Society for Cardiothoracic Surgery in Great Britain & Ireland there were a combined 10,000 isolated first-time aortic valve replacements in 2018/2019 with the number of TAVI cases roughly equal to half this number. A rough estimate provided by the committee is a ratio of 80:20 biological to mechanical valve ratio for aortic valve replacement, and 50:50 biological to surgical valves for mitral procedures.</p><div id="niceng208er8.s1.7.2.1"><h5>Aortic stenosis</h5><p>Eleven economic studies with relevant comparisons were included in this review. These were separated by operative risk. All were in a non-bicuspid population.</p><div id="niceng208er8.s1.7.2.1.1"><h5>Inoperable (unsuitable for surgery)</h5><p>Two cost-utility analyses included inoperable cohorts comparing transcatheter aortic valve implantation (TAVI) to medical management, with a UK NHS perspective. TAVI is a costly intervention especially the cost of the valve but there is a significant benefit in terms of survival. The two studies concluded that TAVI was cost effective in the base case. Both studies used the same RCT (PARTNER 1B) to inform the treatment effect. There were some differences between the studies in terms of their model structures, how utility data was incorporated and how observational data was used to inform some parameters that were not reported in the PARTNER 1B trial. Both studies were assessed as directly applicable with potentially serious limitation.</p><p>A third UK cost-utility analysis was excluded because the one-year survival and quality-adjusted life-years gained did not accurately reflect the evidence base.</p><p>The committee felt that the evidence was in favour of TAVI being cost effective for the inoperable population, and this was in line with current practice for this group of patients. Therefore, a recommendation was made to consider TAVI for inoperable patients.</p></div><div id="niceng208er8.s1.7.2.1.2"><h5>Operable (suitable for surgery)</h5><p>Nine of the studies included operable cohorts, (stratified by operative risk) comparing TAVI to surgical aortic valve replacement (SAVR). TAVI is a much more costly intervention due to the cost of the valve but there are fewer complications and faster recovery.</p><p>Two of these included studies had high operative risk groups. These two studies had conflicting results, with one finding TAVI dominated by SAVR and the other one finding TAVI dominating SAVR. It is worth mentioning that the study finding TAVI dominating SAVR uses a very low price for a TAVI valve. A threshold analysis shows that as the valve price rises, TAVI ceases to be cost effective at a threshold price of £19,000, which is above the current price in the UK.</p><p>Five studies included papers considered intermediate operative risk groups. Again, the conclusions across these studies were highly variable, ranging from TAVI dominating SAVR, to TAVI costing an extra £74,000 per QALY gained. A limitation common across all of these studies was that they used a single RCT to inform the treatment effect when seven eligible RCTs were includable from the clinical review. All four papers were assessed as partially applicable (none took a UK perspective) with potentially serious limitations.</p><p>Two studies were included that evaluated TAVI for people at low surgical risk. They were based on recent trials of third generation valves (Evolut and PARTNER 3) and found Balloon-expandable TAVI and self-expanding TAVI to be cost effective compared with SAVR. Several methodological limitations were identified such as the use of sources not applicable to a low risk population to estimate quality of life and the absence of important outcomes associated with the intervention, such as reintervention. However, the biggest limitation regarded the price of the valve. Both studies were conducted in settings where the price of TAVI is considerably lower than the UK NHS (Canada and Australia). When the price of the device was adjusted to reflect the current UK average valve price, TAVI was not cost-effective at a £20,000 per QALY threshold.</p><p>Given the uncertainty in the results, and potential for a large resource impact, the committee agreed that original economic modelling was necessary for operable aortic stenosis (non-bicuspid), in order to make a recommendation.</p><p>The model found that TAVI was cost effective in people at high surgical risk, but not cost effective in people at intermediate or low surgical risk. The committee noted that the price of the device, reported by the NHS Supply Chain to be on average £17,500, was a key driver of cost effectiveness, and its heterogeneity across different settings could partly explain the absence of consensus in the published literature. The committee agreed that, although some analyses found TAVI to be cost effective in people at intermediate or low risk, these studies were often conducted in countries where TAVI is purchased at a lower price (e.g. Canada or France). A threshold analysis on the price of a TAVI valve showed that below £15,000 TAVI would likely become cost effective for all risk categories in the UK. This price is very close to the price charged in other countries with similar healthcare system, such as Canada.</p><p>Following the discussion of the results, the committee agreed to make a recommendation offering TAVI to people with aortic stenosis at high surgical risk or inoperable. As at the current UK price TAVI was shown to be not cost effective in people at intermediate or low surgical risk, the committee recommended surgery as a first-line treatment for these two risk groups.</p></div></div><div id="niceng208er8.s1.7.2.2"><h5>Mixed/unclear aortic valve disease</h5><p>One study that compared minimally invasive surgery (MIS) to standard surgery was included. The study was an RCT (MINI-STERN trial) study and was directly applicable to a UK NHS perspective. The study concluded that MIS was dominated by conventional surgery (MIS was more costly and gave less QALYs gain). A 12-month time horizon was used, however the committee agreed that there is unlikely to be a large difference in outcomes after 12 months.</p><p>Despite this, limitations in the clinical evidence were highlighted, including small numbers of participants and small event numbers for many outcomes, and the results did not reflect the experience of the committee. As this health economic study was based on a single RCT, the same limitation therefore applies. The committee decided to recommend either conventional or minimally invasive surgery based on patient characteristics and preference and it was noted that lack of expertise in minimally invasive surgery locally should not be used as a reason for not performing a minimally invasive procedure and patients should be referred to a centre where there is expertise if this procedure is deemed most suitable for the patient.</p></div><div id="niceng208er8.s1.7.2.3"><h5>Mitral regurgitation</h5><p>A modelling analysis was undertaken to assess the cost-effectiveness of offering MitraClip to inoperable patients with severe mitral regurgitation secondary to heart failure. The analysis found MitraClip compared to medical management alone was not cost effective at a threshold of £20,000 per QALY and was slightly above £30,000 per QALY gained. The committee was presented with the results of the models together with the results of published analyses, which happened to have comparable results.</p><p>Three studies that compared percutaneous mitral valve repair (MitraClip) to medical management in a primary and secondary mitral regurgitation population were included.</p><p>The first study was assessed as directly applicable taking a UK NHS perspective, with potentially serious limitations and looking at a population with primary mitral regurgitation. The study found that MitraClip costs £22,153 per QALY gained compared to medical management. The committee agreed the study was of poor quality as it used registry data to inform the treatment effect. However, they thought that the cost per QALY gained was plausible, being lower than that found in the model looking at severe mitral regurgitation secondary to heart failure.</p><p>A second study on a mixed population with primary and secondary mitral regurgitation was assessed as partially applicable (Japanese public health care perspective) and with potentially serious limitations as relative treatment effects were informed from a propensity score matched study rather than a RCT. MitraClip was found to cost £13,549 per QALY gained, considerably lower than the UK study arguably due to differences in setting and population.</p><p>Finally, a third study on a population with <u>secondary</u> MR only was assessed as directly applicable taking a UK NHS perspective, with minor limitations. The relative treatment effects were based on the COAPT randomized controlled trial, the same source used for the NGC model and found MitraClip to cost £30,057 per QALY gained. The committee noted that the results were in line with the ones of the original modelling analysis, which was reassuring as both were based on the same RCT, looked at the same population and were conducted from an UK NHS perspective.</p><p>Following the discussion of the available evidence, the committee agreed to make a consider recommendation for transcatheter mitral repair for adults with primary mitral regurgitation. The cost per QALY gained was too high for MitraClip to be recommended for secondary mitral regurgitation at its current price.</p></div><div id="niceng208er8.s1.7.2.4"><h5>Mixed/unclear mitral valve disease</h5><p>One study that compared median sternotomy with minimally invasive surgery was included.</p><p>The study was assessed as partially applicable (Belgian perspective) with potentially serious limitations because it was a non-randomised retrospective analysis, the study found that minimally invasive surgery cost £411 less per person compared to full median sternotomy.</p><p>The committee agreed to recommend either median sternotomy or minimally invasive surgery based on patient characteristics and preference. It was noted that lack of expertise in minimally invasive surgery locally should not be used as a reason for not performing a minimally invasive procedure and patients should be referred to a centre where there is expertise if this procedure is deemed most suitable for the patient.</p></div><div id="niceng208er8.s1.7.2.5"><h5>Mitral stenosis</h5><p>No economic evidence was found for this subgroup. Transcatheter valvotomy for adults with rheumatic severe mitral stenosis is a long-established procedure, which is a less costly procedure than surgery and does not require patients to spend time in intensive care, Therefore, the committee made a recommendation in favour of transcatheter valvotomy for this population, which is in line with current practice.</p></div></div><div id="niceng208er8.s1.7.3"><h4>1.7.3. Other factors the committee took into account</h4><p>The committee highlighted the importance of discussing the risks and benefits of intervention in the context of shared decision making. As well as taking into consideration the needs and preferences of person, aspects specific to heart valve need to be discussed including the short and long-term benefits in terms of quality of life, valve durability, the risks associated with the procedure specific to each person’s circumstances (for example, taking into consideration the frailty of the person and how this may affect risk), type of access and the possible need for other cardiac procedures in the future. A cross-reference to the NICE guideline on patient experience in adult NHS services was also made to enable shared decision making.</p><p>The committee highlighted that the amount and distribution of calcium in the aortic valve should be taken into account as part of the decision-making process between surgical and transcatheter intervention.</p><p>The committee noted that follow-up can be useful to reduce the risk of endocarditis by ensuring that dental surveillance is being undertaken and the need for antibiotic prophylaxis before invasive dental procedures. It may be also pick up a new arrhythmia particularly atrial fibrillation in a patient with a biological valve which therefore leads to a significant change in management by initiating anticoagulation.</p><p>The committee highlighted the importance of pre-procedural rehabilitation assessment and referral to post-recovery comprehensive rehabilitation.</p><p>The committee noted that the vast majority of valve interventions would not be covered within RCTs as where there is an indication for intervention and patients are operable, it is well established that patients have poor outcomes if they are not operated on. For example, although no evidence was included in the review to compare transcatheter or surgical intervention with pharmacological or conservative management in operable aortic stenosis patients with a need for intervention, the committee considered that it is well established that interventions should be performed over conservative management and the reason there are no RCTs currently is because it would be unethical to include such a comparison within an RCT for the inoperable population. The committee highlighted that it is considered best practice for decisions on when to perform interventions and which intervention to perform to be made as part of a multidisciplinary heart team. However, it was also noted that in practice, the use of these and their structure vary. As the review did not investigate whether these decisions should be made by a multidisciplinary team and current practice varies, this detail was not incorporated into the recommendations.</p><p>The committee supported the collection of outcome data and submission to national audits.</p><p>The committee highlighted that people who misuse intravenous drugs are at a higher risk of developing endocarditis and requiring heart valve interventions. They highlighted the importance of support from services for the drug misuse and were aware of the NICE guideline on drug misuse: psychosocial interventions.</p></div></div><div id="niceng208er8.s1.8"><h3>1.8. Recommendations supported by this evidence review</h3><p>This evidence review supports recommendations 1.3.1,1.5.1-1.5.13 and the research recommendations on interventions.</p></div></div><div id="niceng208er8.rl.r1"><h2 id="_niceng208er8_rl_r1_">References</h2><dl class="temp-labeled-list"><dl class="bkr_refwrap"><dt>1.</dt><dd><div class="bk_ref" id="niceng208er8.ref1">Acker
|
|
MA, Parides
|
|
MK, Perrault
|
|
LP, Moskowitz
|
|
AJ, Gelijns
|
|
AC, Voisine
|
|
P
|
|
et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. New England Journal of Medicine. 2014; 370(1):23–32 [<a href="/pmc/articles/PMC4128011/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4128011</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24245543" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24245543</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>2.</dt><dd><div class="bk_ref" id="niceng208er8.ref2">Adams
|
|
DH, Popma
|
|
JJ, Reardon
|
|
MJ, Yakubov
|
|
SJ, Coselli
|
|
JS, Deeb
|
|
GM
|
|
et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. New England Journal of Medicine. 2014; 370(19):1790–1798 [<a href="https://pubmed.ncbi.nlm.nih.gov/24678937" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24678937</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>3.</dt><dd><div class="bk_ref" id="niceng208er8.ref3">Afanasyev
|
|
A, Bogachev-Prokophiev
|
|
A, Lenko
|
|
E, Sharifulin
|
|
R, Ovcharov
|
|
M, Kozmin
|
|
D
|
|
et al. Myectomy with mitral valve repair versus replacement in adult patients with hypertrophic obstructive cardiomyopathy: a systematic review and meta-analysis. Interactive Cardiovascular and Thoracic Surgery. 2019; 28(3):465–472 [<a href="https://pubmed.ncbi.nlm.nih.gov/30184144" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30184144</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>4.</dt><dd><div class="bk_ref" id="niceng208er8.ref4">Ahangar
|
|
AG, Charag
|
|
AH, Wani
|
|
ML, Ganie
|
|
FA, Singh
|
|
S, Ahmad Qadri
|
|
SA
|
|
et al. Comparing aortic valve replacement through right anterolateral thoracotomy with median sternotomy. International Cardiovascular Research Journal. 2013; 7(3):90–94 [<a href="/pmc/articles/PMC3987439/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3987439</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24757629" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24757629</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>5.</dt><dd><div class="bk_ref" id="niceng208er8.ref5">Ailawadi
|
|
G, Lim
|
|
DS, Mack
|
|
MJ, Trento
|
|
A, Kar
|
|
S, Grayburn
|
|
PA
|
|
et al. One-year outcomes after mitraclip for functional mitral regurgitation. Circulation. 2019; 139(1):37–47 [<a href="https://pubmed.ncbi.nlm.nih.gov/30586701" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30586701</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>6.</dt><dd><div class="bk_ref" id="niceng208er8.ref6">Ak
|
|
A, Porokhovnikov
|
|
I, Kuethe
|
|
F, Schulze
|
|
PC, Noutsias
|
|
M, Schlattmann
|
|
P. Transcatheter vs. surgical aortic valve replacement and medical treatment: Systematic review and meta-analysis of randomized and non-randomized trials. Herz. 2018; 43(4):325–337 [<a href="https://pubmed.ncbi.nlm.nih.gov/28451702" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28451702</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>7.</dt><dd><div class="bk_ref" id="niceng208er8.ref7">Akowuah
|
|
E, Goodwin
|
|
AT, Owens
|
|
WA, Hancock
|
|
HC, Maier
|
|
R, Kasim
|
|
A
|
|
et al. Manubrium-limited ministernotomy versus conventional sternotomy for aortic valve replacement (MAVRIC): study protocol for a randomised controlled trial. Trials. 2017; 18(1):46 [<a href="/pmc/articles/PMC5273792/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5273792</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28129780" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28129780</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>8.</dt><dd><div class="bk_ref" id="niceng208er8.ref8">Al Musa
|
|
T, Uddin
|
|
A, Fairbairn
|
|
TA, Dobson
|
|
LE, Steadman
|
|
CD, Kidambi
|
|
A. Right ventricular function following surgical aortic valve replacement and transcatheter aortic valve implantation: a cardiovascular MR study
|
|
International Journal of Cardiology. 2016; 223:639–644 [<a href="https://pubmed.ncbi.nlm.nih.gov/27565842" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27565842</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>9.</dt><dd><div class="bk_ref" id="niceng208er8.ref9">Al Otaibi
|
|
A, Gupta
|
|
S, Belley-Cote
|
|
EP, Alsagheir
|
|
A, Spence
|
|
J, Parry
|
|
D
|
|
et al. Mini-thoracotomy vs. conventional sternotomy mitral valve surgery: A systematic review and meta-analysis. Journal of Cardiovascular Surgery. 2017; 58(3):489–496 [<a href="https://pubmed.ncbi.nlm.nih.gov/27588617" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27588617</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>10.</dt><dd><div class="bk_ref" id="niceng208er8.ref10">Ali Elbey
|
|
M, Palma Dalan
|
|
LA, Ferragut Attizzani
|
|
G. Value of MitraClip in reducing functional mitral regurgitation. US Cardiology Review. 2019; 13(1):30–34</div></dd></dl><dl class="bkr_refwrap"><dt>11.</dt><dd><div class="bk_ref" id="niceng208er8.ref11">Amione-Guerra
|
|
J, Mattathil
|
|
S, Prasad
|
|
A. A meta-analysis of clinical outcomes of transcatheter aortic valve replacement in patients with end-stage renal disease. Structural Heart. 2018; 2(6):548–556</div></dd></dl><dl class="bkr_refwrap"><dt>12.</dt><dd><div class="bk_ref" id="niceng208er8.ref12">Amrane
|
|
H, Deeb
|
|
GM, Popma
|
|
JJ, Yakubov
|
|
SJ, Gleason
|
|
TG, Van Mieghem
|
|
NM
|
|
et al. Causes of death in intermediate-risk patients: The randomized surgical replacement and transcatheter aortic valve implantation trial. Journal of Thoracic and Cardiovascular Surgery. 2019; 158(3):718–728.e713. [<a href="https://pubmed.ncbi.nlm.nih.gov/30709668" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30709668</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>13.</dt><dd><div class="bk_ref" id="niceng208er8.ref13">Ando
|
|
T, Ashraf
|
|
S, Villablanca
|
|
P, Kuno
|
|
T, Pahuja
|
|
M, Shokr
|
|
M
|
|
et al. Meta-analysis of effectiveness and safety of transcatheter aortic valve implantation versus surgical aortic valve replacement in low-to-intermediate surgical risk cohort. American Journal of Cardiology. 2019; 124(4):580–585 [<a href="https://pubmed.ncbi.nlm.nih.gov/31200922" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31200922</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>14.</dt><dd><div class="bk_ref" id="niceng208er8.ref14">Ando
|
|
T, Ashraf
|
|
S, Villablanca
|
|
PA, Telila
|
|
TA, Takagi
|
|
H, Grines
|
|
CL
|
|
et al. Meta-analysis comparing the incidence of infective endocarditis following transcatheter aortic valve implantation versus surgical aortic valve replacement. American Journal of Cardiology. 2019; 123(5):827–832 [<a href="https://pubmed.ncbi.nlm.nih.gov/30545481" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30545481</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>15.</dt><dd><div class="bk_ref" id="niceng208er8.ref15">Ando
|
|
T, Takagi
|
|
H. Comparison of late mortality after transcatheter aortic valve implantation versus surgical aortic valve replacement: insights from a meta-analysis. European Journal of Internal Medicine. 2017; 40:43–49 [<a href="https://pubmed.ncbi.nlm.nih.gov/28162851" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28162851</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>16.</dt><dd><div class="bk_ref" id="niceng208er8.ref16">Ando
|
|
T, Takagi
|
|
H, Briasoulis
|
|
A, Grines
|
|
CL, Afonso
|
|
L. Comparison of health related quality of life in transcatheter versus surgical aortic valve replacement: A meta-analysis. Heart, Lung & Circulation. 2019; 28(8):1235–1245 [<a href="https://pubmed.ncbi.nlm.nih.gov/30172465" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30172465</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>17.</dt><dd><div class="bk_ref" id="niceng208er8.ref17">Ando
|
|
T, Takagi
|
|
H, Grines
|
|
CL. Transfemoral, transapical and transcatheter aortic valve implantation and surgical aortic valve replacement: a meta-analysis of direct and adjusted indirect comparisons of early and mid-term deaths. Interactive Cardiovascular and Thoracic Surgery. 2017; 25(3):484–492 [<a href="https://pubmed.ncbi.nlm.nih.gov/28549125" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28549125</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>18.</dt><dd><div class="bk_ref" id="niceng208er8.ref18">Ansari
|
|
MT, Ahmadzai
|
|
N, Coyle
|
|
K, Coyle
|
|
D, Moher
|
|
D. Mitral valve clip for treatment of mitral regurgitation: An evidence-based analysis. Ontario Health Technology Assessment Series. 2015; 15(12):1–104 [<a href="/pmc/articles/PMC4561766/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4561766</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26379810" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26379810</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>19.</dt><dd><div class="bk_ref" id="niceng208er8.ref19">Aris
|
|
A, Camara
|
|
ML, Casan
|
|
P, Litvan
|
|
H. Pulmonary function following aortic valve replacement: a comparison between ministernotomy and median sternotomy. Journal of Heart Valve Disease. 1999; 8(6):605–608 [<a href="https://pubmed.ncbi.nlm.nih.gov/10616235" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 10616235</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>20.</dt><dd><div class="bk_ref" id="niceng208er8.ref20">Aris
|
|
A, Cámara
|
|
ML, Montiel
|
|
J, Delgado
|
|
LJ, Galán
|
|
J, Litvan
|
|
H. Ministernotomy versus median sternotomy for aortic valve replacement: a prospective, randomized study. Annals of Thoracic Surgery. 1999; 67(6):1583–1587; discussion 1587-1588 [<a href="https://pubmed.ncbi.nlm.nih.gov/10391259" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 10391259</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>21.</dt><dd><div class="bk_ref" id="niceng208er8.ref21">Armoiry
|
|
X, Obadia
|
|
JF, Pascal
|
|
L, Polazzi
|
|
S, Duclos
|
|
A. Comparison of transcatheter versus surgical aortic valve implantation in high-risk patients: A nationwide study in France. Journal of Thoracic and Cardiovascular Surgery. 2018; 156(3):1017–1025.e1014 [<a href="https://pubmed.ncbi.nlm.nih.gov/29764686" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29764686</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>22.</dt><dd><div class="bk_ref" id="niceng208er8.ref22">Arnold
|
|
SV, Chinnakondepalli
|
|
KM, Magnuson
|
|
EA, Reardon
|
|
MJ, Deeb
|
|
GM, Gleason
|
|
T
|
|
et al. Five-year health status after self-expanding transcatheter or surgical aortic valve replacement in high-risk patients with severe aortic stenosis. JAMA Cardiology. 2020; 10.1001/jamacardio.2020.4397 [<a href="/pmc/articles/PMC7527937/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7527937</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32997095" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32997095</span></a>] [<a href="http://dx.crossref.org/10.1001/jamacardio.2020.4397" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>23.</dt><dd><div class="bk_ref" id="niceng208er8.ref23">Arnold
|
|
SV, Chinnakondepalli
|
|
KM, Spertus
|
|
JA, Magnuson
|
|
EA, Baron
|
|
SJ, Kar
|
|
S
|
|
et al. Health status after transcatheter mitral-valve repair in heart failure and secondary mitral regurgitation: COAPT trial. Journal of the American College of Cardiology. 2019; 73(17):2123–2132 [<a href="/pmc/articles/PMC6499691/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6499691</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30894288" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30894288</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>24.</dt><dd><div class="bk_ref" id="niceng208er8.ref24">Arnold
|
|
SV, Reynolds
|
|
MR, Lei
|
|
Y, Magnuson
|
|
E, Kirtane
|
|
AJ, Kodali
|
|
S
|
|
et al. Predictors of poor outcomes after transcatheter aortic valve replacement: results from the PARTNER (Placement of Aortic Transcatheter Valve) trial
|
|
Circulation. 2014; 129(25):2682–2690 [<a href="/pmc/articles/PMC4198056/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4198056</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24958751" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24958751</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>25.</dt><dd><div class="bk_ref" id="niceng208er8.ref25">Arnold
|
|
SV, Reynolds
|
|
MR, Wang
|
|
K, Magnuson
|
|
EA, Baron
|
|
SJ, Chinnakondepalli
|
|
KM
|
|
et al. Health status after transcatheter or surgical aortic valve replacement in patients with severe aortic stenosis at increased surgical risk results from the CoreValve US pivotal trial. JACC: Cardiovascular Interventions. 2015; 8(9):1207–1217 [<a href="/pmc/articles/PMC4599371/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4599371</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26292584" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26292584</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>26.</dt><dd><div class="bk_ref" id="niceng208er8.ref26">Arnold
|
|
SV, Spertus
|
|
JA, Lei
|
|
Y, Allen
|
|
KB, Chhatriwalla
|
|
AK, Leon
|
|
MB
|
|
et al. Use of the Kansas City cardiomyopathy questionnaire for monitoring health status in patients with aortic stenosis. Circulation: Heart Failure. 2013; 6(1):61–67 [<a href="https://pubmed.ncbi.nlm.nih.gov/23230306" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23230306</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>27.</dt><dd><div class="bk_ref" id="niceng208er8.ref27">Arnold
|
|
SV, Stone
|
|
GW, Mack
|
|
MJ, Chhatriwalla
|
|
AK, Austin
|
|
BA, Zhang
|
|
Z
|
|
et al. Health status changes and outcomes in patients with heart failure and mitral regurgitation: COAPT trial. Journal of the American College of Cardiology. 2020; 75(17):2099–2106 [<a href="https://pubmed.ncbi.nlm.nih.gov/32194195" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32194195</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>28.</dt><dd><div class="bk_ref" id="niceng208er8.ref28">Arora
|
|
R, Nair
|
|
M, Kalra
|
|
GS, Nigam
|
|
M, Khalilullah
|
|
M. Immediate and long-term results of balloon and surgical closed mitral valvotomy: a randomized comparative study. American Heart Journal. 1993; 125(4):1091–1094 [<a href="https://pubmed.ncbi.nlm.nih.gov/8465732" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 8465732</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>29.</dt><dd><div class="bk_ref" id="niceng208er8.ref29">Arora
|
|
S, Misenheimer
|
|
JA, Jones
|
|
W, Bahekar
|
|
A, Caughey
|
|
M, Ramm
|
|
CJ
|
|
et al. Transcatheter versus surgical aortic valve replacement in intermediate risk patients: A meta-Analysis. Cardiovascular Diagnosis and Therapy. 2016; 6(3):241–249 [<a href="/pmc/articles/PMC4880757/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4880757</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27280087" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27280087</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>30.</dt><dd><div class="bk_ref" id="niceng208er8.ref30">Arora
|
|
S, Strassle
|
|
PD, Ramm
|
|
CJ, Rhodes
|
|
JA, Vaidya
|
|
SR, Caranasos
|
|
TG
|
|
et al. Transcatheter versus surgical aortic valve replacement in patients with lower surgical risk scores: A systematic review and meta-analysis of early outcomes. Heart, Lung & Circulation. 2017; 26(8):840–845 [<a href="https://pubmed.ncbi.nlm.nih.gov/28169084" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28169084</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>31.</dt><dd><div class="bk_ref" id="niceng208er8.ref31">Arora
|
|
S, Vaidya
|
|
SR, Strassle
|
|
PD, Misenheimer
|
|
JA, Rhodes
|
|
JA, Ramm
|
|
CJ
|
|
et al. Meta-analysis of transfemoral TAVR versus surgical aortic valve replacement. Catheterization and Cardiovascular Interventions. 2018; 91(4):806–812 [<a href="https://pubmed.ncbi.nlm.nih.gov/29068166" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29068166</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>32.</dt><dd><div class="bk_ref" id="niceng208er8.ref32">Asch
|
|
FM, Grayburn
|
|
PA, Siegel
|
|
RJ, Kar
|
|
S, Lim
|
|
DS, Zaroff
|
|
JG
|
|
et al. Echocardiographic outcomes after transcatheter leaflet approximation in patients with secondary mitral regurgitation: The COAPT Trial. Journal of the American College of Cardiology. 2019; 74(24):2969–2979 [<a href="https://pubmed.ncbi.nlm.nih.gov/31574303" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31574303</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>33.</dt><dd><div class="bk_ref" id="niceng208er8.ref33">Asgar
|
|
AW, Khairy
|
|
P, Guertin
|
|
MC, Cournoyer
|
|
D, Ducharme
|
|
A, Bonan
|
|
R
|
|
et al. Clinical outcomes and economic impact of transcatheter mitral leaflet repair in heart failure patients. Journal of Medical Economics. 2017; 20(1):82–90 [<a href="https://pubmed.ncbi.nlm.nih.gov/27552378" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27552378</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>34.</dt><dd><div class="bk_ref" id="niceng208er8.ref34">Azraai
|
|
M, Gao
|
|
L, Ajani
|
|
AE. Cost-effectiveness of transcatheter aortic valve intervention (TAVI) compared to surgical aortic valve replacement (SAVR) in low-intermediate surgical risk patients. Cardiovascular Revascularization Medicine. 2020; 21(9):1164–1168 [<a href="https://pubmed.ncbi.nlm.nih.gov/31980399" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31980399</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>35.</dt><dd><div class="bk_ref" id="niceng208er8.ref35">Bail
|
|
DH. (Meta)-analysis of safety and efficacy following edge-to-edge mitral valve repair using the MitraClip system. Journal of Interventional Cardiology. 2015; 28(1):69–75 [<a href="https://pubmed.ncbi.nlm.nih.gov/25689550" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25689550</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>36.</dt><dd><div class="bk_ref" id="niceng208er8.ref36">Banovic
|
|
M, Iung
|
|
B, Bartunek
|
|
J, Asanin
|
|
M, Beleslin
|
|
B, Biocina
|
|
B
|
|
et al. Rationale and design of the Aortic Valve replAcemenT versus conservative treatment in Asymptomatic seveRe aortic stenosis (AVATAR trial): a randomized multicenter controlled event-driven trial. American Heart Journal. 2016; 174:147–153 [<a href="https://pubmed.ncbi.nlm.nih.gov/26995381" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26995381</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>37.</dt><dd><div class="bk_ref" id="niceng208er8.ref37">Barbanti
|
|
M, Webb
|
|
JG, Hahn
|
|
RT, Feldman
|
|
T, Boone
|
|
RH, Smith
|
|
CR
|
|
et al. Impact of preoperative moderate/severe mitral regurgitation on 2-year outcome after transcatheter and surgical aortic valve replacement: insight from the Placement of Aortic Transcatheter Valve (PARTNER) Trial Cohort A. Circulation. 2013; 128(25):2776–2784 [<a href="https://pubmed.ncbi.nlm.nih.gov/24152861" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24152861</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>38.</dt><dd><div class="bk_ref" id="niceng208er8.ref38">Barbash
|
|
IM, Finkelstein
|
|
A, Barsheshet
|
|
A, Segev
|
|
A, Steinvil
|
|
A, Assali
|
|
A
|
|
et al. Outcomes of patients at estimated low, intermediate, and high risk undergoing transcatheter aortic valve implantation for aortic stenosis. American Journal of Cardiology. 2015; 116(12):1916–1922 [<a href="https://pubmed.ncbi.nlm.nih.gov/26602076" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26602076</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>39.</dt><dd><div class="bk_ref" id="niceng208er8.ref39">Barbero
|
|
C, Ricci
|
|
D, Cura Stura
|
|
E, Pellegrini
|
|
A, Marchetto
|
|
G, ElQarra
|
|
S
|
|
et al. Magnetic resonance imaging for cerebral lesions during minimal invasive mitral valve surgery: study protocol for a randomized controlled trial. Trials. 2017; 18(1):76 [<a href="/pmc/articles/PMC5319023/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5319023</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28222779" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28222779</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>40.</dt><dd><div class="bk_ref" id="niceng208er8.ref40">Barili
|
|
F, Freemantle
|
|
N, Pilozzi Casado
|
|
A, Rinaldi
|
|
M, Folliguet
|
|
T, Musumeci
|
|
F
|
|
et al. Mortality in trials on transcatheter aortic valve implantation versus surgical aortic valve replacement: a pooled meta-analysis of Kaplan-Meier-derived individual patient data. European Journal of Cardio-Thoracic Surgery. 2020; 58(2):221–229 [<a href="https://pubmed.ncbi.nlm.nih.gov/32236543" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32236543</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>41.</dt><dd><div class="bk_ref" id="niceng208er8.ref41">Barker
|
|
CM, Reardon
|
|
MJ. The CoreValve US pivotal trial. Seminars in Thoracic and Cardiovascular Surgery. 2014; 26(3):179–186 [<a href="https://pubmed.ncbi.nlm.nih.gov/25527011" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25527011</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>42.</dt><dd><div class="bk_ref" id="niceng208er8.ref42">Baron
|
|
SJ, Arnold
|
|
SV, Wang
|
|
K, Magnuson
|
|
EA, Chinnakondepali
|
|
K, Makkar
|
|
R
|
|
et al. Health status benefits of transcatheter vs surgical aortic valve replacement in patients with severe aortic stenosis at intermediate surgical risk: results from the PARTNER 2 randomized clinical trial. JAMA Cardiology. 2017; 2(8):837–845 [<a href="/pmc/articles/PMC5710586/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5710586</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28658491" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28658491</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>43.</dt><dd><div class="bk_ref" id="niceng208er8.ref43">Baron
|
|
SJ, Magnuson
|
|
EA, Lu
|
|
M, Wang
|
|
K, Chinnakondepalli
|
|
K, Mack
|
|
M
|
|
et al. Health status after transcatheter versus surgical aortic valve replacement in low-risk patients with aortic stenosis. Journal of the American College of Cardiology. 2019; 74(23):2833–2842 [<a href="https://pubmed.ncbi.nlm.nih.gov/31577923" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31577923</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>44.</dt><dd><div class="bk_ref" id="niceng208er8.ref44">Baron
|
|
SJ, Thourani
|
|
VH, Kodali
|
|
S, Arnold
|
|
SV, Wang
|
|
K, Magnuson
|
|
EA
|
|
et al. Effect of SAPIEN 3 transcatheter valve implantation on health status in patients with severe aortic stenosis at intermediate surgical risk: Results from the PARTNER S3i trial. JACC: Cardiovascular Interventions. 2018; 11(12):1188–1198 [<a href="/pmc/articles/PMC6636916/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6636916</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29860075" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29860075</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>45.</dt><dd><div class="bk_ref" id="niceng208er8.ref45">Baron
|
|
SJ, Wang
|
|
K, Arnold
|
|
SV, Magnussen
|
|
K, Whisenant
|
|
B, Brieke
|
|
A
|
|
et al. Cost-effectiveness of transcatheter mitral valve repair versus medical therapy in patients with heart failure and secondary mitral regurgitation: Results from the COAPT trial. Circulation. 2019; 140(23):1881–1891 [<a href="https://pubmed.ncbi.nlm.nih.gov/31564137" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31564137</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>46.</dt><dd><div class="bk_ref" id="niceng208er8.ref46">Baron
|
|
SJ, Wang
|
|
K, House
|
|
JA, Magnuson
|
|
EA, Reynolds
|
|
MR, Makkar
|
|
R
|
|
et al. Cost-effectiveness of transcatheter versus surgical aortic valve replacement in patients with severe aortic stenosis at intermediate risk: Results from the partner 2 trial. Circulation. 2019; 139(7):877–888 [<a href="https://pubmed.ncbi.nlm.nih.gov/30586747" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30586747</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>47.</dt><dd><div class="bk_ref" id="niceng208er8.ref47">Barros da Silva
|
|
P, Sousa
|
|
JP, Oliveiros
|
|
B, Donato
|
|
H, Costa
|
|
M, Goncalves
|
|
L
|
|
et al. Stroke after transcatheter edge-to-edge mitral valve repair: a systematic review and meta-analysis. EuroIntervention. 2020; 15(16):1401–1408 [<a href="https://pubmed.ncbi.nlm.nih.gov/31829941" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31829941</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>48.</dt><dd><div class="bk_ref" id="niceng208er8.ref48">Bates
|
|
MGD, Matthews
|
|
IG, Fazal
|
|
IA, Turley
|
|
AJ. Postoperative permanent pacemaker implantation in patients undergoing trans-catheter aortic valve implantation: What is the incidence and are there any predicting factors?
|
|
Interactive Cardiovascular and Thoracic Surgery. 2011; 12(2):243–253 [<a href="https://pubmed.ncbi.nlm.nih.gov/21098508" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21098508</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>49.</dt><dd><div class="bk_ref" id="niceng208er8.ref49">Bekeredjian
|
|
R, Pleger
|
|
ST, Chorianopoulos
|
|
E. High-risk patients with aortic valve stenosis. Interventional therapy. Herz. 2013; 38(2):118–125 [<a href="https://pubmed.ncbi.nlm.nih.gov/23324914" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23324914</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>50.</dt><dd><div class="bk_ref" id="niceng208er8.ref50">Ben Farhat
|
|
M, Ayari
|
|
M, Maatouk
|
|
F, Betbout
|
|
F, Gamra
|
|
H, Jarra
|
|
M
|
|
et al. Percutaneous balloon versus surgical closed and open mitral commissurotomy: seven-year follow-up results of a randomized trial. Circulation. 1998; 97(3):245–250 [<a href="https://pubmed.ncbi.nlm.nih.gov/9462525" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 9462525</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>51.</dt><dd><div class="bk_ref" id="niceng208er8.ref51">Ben Farhat
|
|
M, Boussadia
|
|
H, Gandjbakhch
|
|
I, Mzali
|
|
H, Chouaieb
|
|
A, Ayari
|
|
M
|
|
et al. Closed versus open mitral commissurotomy in pure noncalcific mitral stenosis: Hemodynamic studies before and after operation. Journal of Thoracic and Cardiovascular Surgery. 1990; 99(4):639–644 [<a href="https://pubmed.ncbi.nlm.nih.gov/2319784" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 2319784</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>52.</dt><dd><div class="bk_ref" id="niceng208er8.ref52">Benito-Gonzalez
|
|
T, Estevez-Loureiro
|
|
R, Villablanca
|
|
PA, Armeni
|
|
P, Iglesias-Garriz
|
|
I, Minguito
|
|
C
|
|
et al. Percutaneous mitral valve repair vs. stand-alone medical therapy in patients with functional mitral regurgitation and heart failure
|
|
Cardiovascular Revascularization Medicine. 2020; 21(1):52–60 [<a href="https://pubmed.ncbi.nlm.nih.gov/31326258" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31326258</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>53.</dt><dd><div class="bk_ref" id="niceng208er8.ref53">Beresniak
|
|
A, Sabatier
|
|
B, Achouh
|
|
P, Menasche
|
|
P, Fabiani
|
|
JN. Cost-effectiveness of mitral valve repair versus replacement by biologic or mechanical prosthesis. Annals of Thoracic Surgery. 2013; 95(1):98–104 [<a href="https://pubmed.ncbi.nlm.nih.gov/23063201" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23063201</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>54.</dt><dd><div class="bk_ref" id="niceng208er8.ref54">Bertaina
|
|
M, Galluzzo
|
|
A, D’Ascenzo
|
|
F, Conrotto
|
|
F, Grosso Marra
|
|
W, Frea
|
|
S
|
|
et al. Prognostic impact of MitraClip in patients with left ventricular dysfunction and functional mitral valve regurgitation: A comprehensive meta-analysis of RCTs and adjusted observational studies. International Journal of Cardiology. 2019; 290:70–76 [<a href="https://pubmed.ncbi.nlm.nih.gov/31109777" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31109777</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>55.</dt><dd><div class="bk_ref" id="niceng208er8.ref55">Biancari
|
|
F, Schifano
|
|
P, Pighi
|
|
M, Vasques
|
|
F, Juvonen
|
|
T, Vinco
|
|
G. Pooled estimates of immediate and late outcome of mitral valve surgery in octogenarians: a meta-analysis and meta-regression. Journal of Cardiothoracic and Vascular Anesthesia. 2013; 27(2):213–219 [<a href="https://pubmed.ncbi.nlm.nih.gov/23507013" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23507013</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>56.</dt><dd><div class="bk_ref" id="niceng208er8.ref56">Bing
|
|
R, Everett
|
|
RJ, Tuck
|
|
C, Semple
|
|
S, Lewis
|
|
S, Harkess
|
|
R
|
|
et al. Rationale and design of the randomized, controlled Early Valve Replacement Guided by Biomarkers of Left Ventricular Decompensation in Asymptomatic Patients with Severe Aortic Stenosis (EVOLVED) trial. American Heart Journal. 2019; 212:91–100 [<a href="https://pubmed.ncbi.nlm.nih.gov/30978556" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30978556</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>57.</dt><dd><div class="bk_ref" id="niceng208er8.ref57">Biondi-Zoccai
|
|
G, Peruzzi
|
|
M, Abbate
|
|
A, Gertz
|
|
ZM, Benedetto
|
|
U, Tonelli
|
|
E
|
|
et al. Network meta-analysis on the comparative effectiveness and safety of transcatheter aortic valve implantation with CoreValve or Sapien devices versus surgical replacement. Heart Lung & Vessels. 2014; 6(4):232–243 [<a href="/pmc/articles/PMC4246842/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4246842</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25436205" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25436205</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>58.</dt><dd><div class="bk_ref" id="niceng208er8.ref58">Bogachev-Prokophiev
|
|
A, Afanasyev
|
|
A, Zheleznev
|
|
S, Fomenko
|
|
M, Sharifulin
|
|
R, Kretov
|
|
E
|
|
et al. Mitral valve repair or replacement in hypertrophic obstructive cardiomyopathy: a prospective randomized study. Interactive Cardiovascular and Thoracic Surgery. 2017; 25(3):356–362 [<a href="https://pubmed.ncbi.nlm.nih.gov/28575282" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28575282</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>59.</dt><dd><div class="bk_ref" id="niceng208er8.ref59">Bonacchi
|
|
M, Prifti
|
|
E, Giunti
|
|
G, Frati
|
|
G, Sani
|
|
G. Does ministernotomy improve postoperative outcome in aortic valve operation? A prospective randomized study. Annals of Thoracic Surgery. 2002; 73(2):460–465; discussion 465-466 [<a href="https://pubmed.ncbi.nlm.nih.gov/11845860" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 11845860</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>60.</dt><dd><div class="bk_ref" id="niceng208er8.ref60">Borger
|
|
MA, Dohmen
|
|
PM, Knosalla
|
|
C, Hammerschmidt
|
|
R, Merk
|
|
DR, Richter
|
|
M
|
|
et al. Haemodynamic benefits of rapid deployment aortic valve replacement via a minimally invasive approach: 1-year results of a prospective multicentre randomized controlled trial. European Journal of Cardio-Thoracic Surgery. 2016; 50(4):713–720 [<a href="https://pubmed.ncbi.nlm.nih.gov/26935407" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26935407</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>61.</dt><dd><div class="bk_ref" id="niceng208er8.ref61">Borger
|
|
MA, Moustafine
|
|
V, Conradi
|
|
L, Knosalla
|
|
C, Richter
|
|
M, Merk
|
|
DR
|
|
et al. A randomized multicenter trial of minimally invasive rapid deployment versus conventional full sternotomy aortic valve replacement. Annals of Thoracic Surgery. 2015; 99(1):17–25 [<a href="https://pubmed.ncbi.nlm.nih.gov/25441065" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25441065</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>62.</dt><dd><div class="bk_ref" id="niceng208er8.ref62">Borisenko
|
|
O, Haude
|
|
M, Hoppe
|
|
UC, Siminiak
|
|
T, Lipiecki
|
|
J, Goldberg
|
|
SL
|
|
et al. Cost-utility analysis of percutaneous mitral valve repair in inoperable patients with functional mitral regurgitation in German settings. BMC Cardiovascular Disorders. 2015; 15:43 [<a href="/pmc/articles/PMC4443594/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4443594</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25971307" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25971307</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>63.</dt><dd><div class="bk_ref" id="niceng208er8.ref63">Bouhout
|
|
I, Morgant
|
|
MC, Bouchard
|
|
D. Minimally invasive heart valve surgery. Canadian Journal of Cardiology. 2017; 33(9):1129–1137 [<a href="https://pubmed.ncbi.nlm.nih.gov/28843324" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28843324</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>64.</dt><dd><div class="bk_ref" id="niceng208er8.ref64">Brecker
|
|
S, Mealing
|
|
S, Padhiar
|
|
A, Eaton
|
|
J, Sculpher
|
|
M, Busca
|
|
R
|
|
et al. Cost-utility of transcatheter aortic valve implantation for inoperable patients with severe aortic stenosis treated by medical management: a UK cost-utility analysis based on patient-level data from the ADVANCE study. Open Heart. 2014; 1(1):e000155 [<a href="/pmc/articles/PMC4207938/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4207938</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25349700" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25349700</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>65.</dt><dd><div class="bk_ref" id="niceng208er8.ref65">Brown
|
|
ML, McKellar
|
|
SH, Sundt
|
|
TM, Schaff
|
|
HV. Ministernotomy versus conventional sternotomy for aortic valve replacement: a systematic review and meta-analysis. Journal of Thoracic and Cardiovascular Surgery. 2009; 137(3):670–679.e675 [<a href="https://pubmed.ncbi.nlm.nih.gov/19258087" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 19258087</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>66.</dt><dd><div class="bk_ref" id="niceng208er8.ref66">Burke
|
|
H, Boron
|
|
A, Lee
|
|
JH, Kahlon
|
|
KR. Exploring the difference in post-procedural stroke rates between patients with aortic stenosis who undergo transcatheter aortic valve replacement versus surgical aortic valve replacement. Cureus. 2018; 10(4):e2494 [<a href="/pmc/articles/PMC6003804/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6003804</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29922535" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29922535</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>67.</dt><dd><div class="bk_ref" id="niceng208er8.ref67">Burrage
|
|
M, Moore
|
|
P, Cole
|
|
C, Cox
|
|
S, Lo
|
|
WC, Rafter
|
|
A
|
|
et al. Transcatheter aortic valve replacement is associated with comparable clinical outcomes to open aortic valve surgery but with a reduced length of in-patient hospital stay: A systematic review and meta-analysis of randomised trials. Heart, Lung & Circulation. 2017; 26(3):285–295 [<a href="https://pubmed.ncbi.nlm.nih.gov/27646577" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27646577</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>68.</dt><dd><div class="bk_ref" id="niceng208er8.ref68">Calafiore
|
|
AM, Totaro
|
|
A, Sacra
|
|
C, Foschi
|
|
M, Gaudino
|
|
M, Di Mauro
|
|
M. Failure of annuloplasty alone to correct ischemic mitral regurgitation. What we learned from two randomized controlled trials. Journal of Cardiac Surgery. 2019; 34(4):155–157 [<a href="https://pubmed.ncbi.nlm.nih.gov/30847958" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30847958</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>69.</dt><dd><div class="bk_ref" id="niceng208er8.ref69">Calderon
|
|
J, Richebe
|
|
P, Guibaud
|
|
JP, Coiffic
|
|
A, Branchard
|
|
O, Asselineau
|
|
J
|
|
et al. Prospective randomized study of early pulmonary evaluation of patients scheduled for aortic valve surgery performed by ministernotomy or total median sternotomy. Journal of Cardiothoracic and Vascular Anesthesia. 2009; 23(6):795–801 [<a href="https://pubmed.ncbi.nlm.nih.gov/19450991" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 19450991</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>70.</dt><dd><div class="bk_ref" id="niceng208er8.ref70">Cameron
|
|
H, Bernard
|
|
L, Garmo
|
|
V, Hernandez
|
|
J, Asgar
|
|
A. A Canadian cost-effectiveness analysis of transcatheter mitral valve repair with the MitraClip System in high surgical risk patients with significant mitral regurgitation. Journal of Medical Economics. 2014; 17(8):599–615 [<a href="https://pubmed.ncbi.nlm.nih.gov/24826880" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24826880</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>71.</dt><dd><div class="bk_ref" id="niceng208er8.ref71">Cao
|
|
C, Ang
|
|
SC, Indraratna
|
|
P, Manganas
|
|
C, Bannon
|
|
P, Black
|
|
D
|
|
et al. Systematic review and meta-analysis of transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis. Annals of Cardiothoracic Surgery. 2013; 2(1):10–23 [<a href="/pmc/articles/PMC3741825/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3741825</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23977554" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23977554</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>72.</dt><dd><div class="bk_ref" id="niceng208er8.ref72">Cao
|
|
C, Gupta
|
|
S, Chandrakumar
|
|
D, Nienaber
|
|
TA, Indraratna
|
|
P, Ang
|
|
SC
|
|
et al. A meta-analysis of minimally invasive versus conventional mitral valve repair for patients with degenerative mitral disease. Annals of Cardiothoracic Surgery. 2013; 2(6):693–703 [<a href="/pmc/articles/PMC3857001/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3857001</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24349970" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24349970</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>73.</dt><dd><div class="bk_ref" id="niceng208er8.ref73">Cao
|
|
C, Liou
|
|
KP, Pathan
|
|
FK, Virk
|
|
S, McMonnies
|
|
R, Wolfenden
|
|
H
|
|
et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement: Meta-analysis of clinical outcomes and cost-effectiveness. Current Pharmaceutical Design. 2016; 22(13):1965–1977 [<a href="https://pubmed.ncbi.nlm.nih.gov/26891807" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26891807</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>74.</dt><dd><div class="bk_ref" id="niceng208er8.ref74">Cardoso
|
|
LF, Grinberg
|
|
M, Pomerantzeff
|
|
PMA, Rati
|
|
MAN, Medeiros
|
|
CCJ, Vieira
|
|
ML
|
|
et al. Comparison of open commissurotomy and balloon valvuloplasty in mitral stenosis. A five-year follow-up. Arquivos Brasileiros de Cardiologia. 2004; 83(3):248–252 [<a href="https://pubmed.ncbi.nlm.nih.gov/15375474" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 15375474</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>75.</dt><dd><div class="bk_ref" id="niceng208er8.ref75">Cardoso
|
|
LF, Grinberg
|
|
M, Rati
|
|
MA, Pomerantzeff
|
|
PM, Medeiros
|
|
CCJ, Tarasoutchi
|
|
F
|
|
et al. Comparison between percutaneous balloon valvuloplasty and open commissurotomy for mitral stenosis. A prospective and randomized study. Cardiology. 2002; 98(4):186–190 [<a href="https://pubmed.ncbi.nlm.nih.gov/12566647" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 12566647</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>76.</dt><dd><div class="bk_ref" id="niceng208er8.ref76">Cardoso
|
|
LF, Rati
|
|
MA, Pomerantzeff
|
|
PM, Medeiros
|
|
CC, Tarasoutchi
|
|
F, Rossi
|
|
EG
|
|
et al. Comparison between percutaneous balloon valvuloplasty and open commissurotomy for mitral stenosis. Arquivos Brasileiros de Cardiologia. 1998; 70(6):415–421 [<a href="https://pubmed.ncbi.nlm.nih.gov/9713084" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 9713084</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>77.</dt><dd><div class="bk_ref" id="niceng208er8.ref77">Carnero-Alcazar
|
|
M, Maroto
|
|
LC, Cobiella-Carnicer
|
|
J, Vilacosta
|
|
I, Nombela-Franco
|
|
L, Alswies
|
|
A
|
|
et al. Transcatheter versus surgical aortic valve replacement in moderate and high-risk patients: A meta-analysis. European Journal of Cardio-Thoracic Surgery. 2017; 51(4):644–652 [<a href="https://pubmed.ncbi.nlm.nih.gov/28007879" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28007879</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>78.</dt><dd><div class="bk_ref" id="niceng208er8.ref78">Celik
|
|
M, Milojevic
|
|
MM, Durko
|
|
AP, Oei
|
|
FBS, Bogers
|
|
A, Mahtab
|
|
EAF. Mortality in low-risk patients with aortic stenosis undergoing transcatheter or surgical aortic valve replacement: a reconstructed individual patient data meta-analysis. Interactive Cardiovascular and Thoracic Surgery. 2020; 31(5):587–594 [<a href="https://pubmed.ncbi.nlm.nih.gov/32995837" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32995837</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>79.</dt><dd><div class="bk_ref" id="niceng208er8.ref79">Chang
|
|
C, Raza
|
|
S, Altarabsheh
|
|
SE, Delozier
|
|
S, Sharma
|
|
UM, Zia
|
|
A
|
|
et al. Minimally invasive approaches to surgical aortic valve replacement: A meta-analysis. Annals of Thoracic Surgery. 2018; 106(6):1881–1889 [<a href="https://pubmed.ncbi.nlm.nih.gov/30189193" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30189193</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>80.</dt><dd><div class="bk_ref" id="niceng208er8.ref80">Chateauneuf
|
|
G, Nazif
|
|
TM, Beaupre
|
|
F, Kodali
|
|
S, Rodes-Cabau
|
|
J, Paradis
|
|
JM. Cerebrovascular events after transcatheter mitral valve interventions: a systematic review and meta-analysis. Heart. 2020; 106:1759–1768 [<a href="https://pubmed.ncbi.nlm.nih.gov/32303631" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32303631</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>81.</dt><dd><div class="bk_ref" id="niceng208er8.ref81">Chen
|
|
S, Redfors
|
|
B, Ben-Yehuda
|
|
O, Crowley
|
|
A, Dvir
|
|
D, Hahn
|
|
RT
|
|
et al. Outcomes of patients with significant obesity undergoing tavr or savr in the randomized PARTNER 2A trial. Structural Heart. 2018; 2(6):500–511</div></dd></dl><dl class="bkr_refwrap"><dt>82.</dt><dd><div class="bk_ref" id="niceng208er8.ref82">Chen
|
|
S, Redfors
|
|
B, Ben-Yehuda
|
|
O, Crowley
|
|
A, Greason
|
|
KL, Alu
|
|
MC
|
|
et al. Transcatheter versus surgical aortic valve replacement in patients with prior cardiac surgery in the randomized PARTNER 2A trial. JACC: Cardiovascular Interventions. 2018; 11(21):2207–2216 [<a href="https://pubmed.ncbi.nlm.nih.gov/30409278" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30409278</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>83.</dt><dd><div class="bk_ref" id="niceng208er8.ref83">Cheng
|
|
DCH, Martin
|
|
J, Lal
|
|
A, Diegeler
|
|
A, Folliguet
|
|
TA, Nifong
|
|
LW
|
|
et al. Minimally invasive versus conventional open mitral valve surgery: A meta-analysis and systematic review. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2011; 6(2):84–103 [<a href="https://pubmed.ncbi.nlm.nih.gov/22437892" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22437892</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>84.</dt><dd><div class="bk_ref" id="niceng208er8.ref84">Conradi
|
|
L, Lubos
|
|
E, Treede
|
|
H, Pietzsch
|
|
JB, Weber
|
|
S, Pietzsch
|
|
M
|
|
et al. Evolution of mitral valve procedural volumes in the advent of endovascular treatment options: Experience at an early-adopting center in Germany. Catheterization and Cardiovascular Interventions. 2015; 86(6):1114–1119 [<a href="https://pubmed.ncbi.nlm.nih.gov/25918878" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25918878</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>85.</dt><dd><div class="bk_ref" id="niceng208er8.ref85">Conte
|
|
JV, Gleason
|
|
TG, Resar
|
|
JR, Adams
|
|
DH, Deeb
|
|
GM, Popma
|
|
JJ
|
|
et al. Transcatheter or surgical aortic valve replacement in patients with prior coronary artery bypass grafting. Annals of Thoracic Surgery. 2016; 101(1):72–79 [<a href="https://pubmed.ncbi.nlm.nih.gov/26433523" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26433523</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>86.</dt><dd><div class="bk_ref" id="niceng208er8.ref86">Conte
|
|
JV, Hermiller
|
|
J, Jr., Resar
|
|
JR, Deeb
|
|
GM, Gleason
|
|
TG, Adams
|
|
DH
|
|
et al. Complications after self-expanding transcatheter or surgical aortic valve replacement. Seminars in Thoracic and Cardiovascular Surgery. 2017; 29(3):321–330 [<a href="https://pubmed.ncbi.nlm.nih.gov/29195573" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29195573</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>87.</dt><dd><div class="bk_ref" id="niceng208er8.ref87">Cremer
|
|
PC, Zhang
|
|
Y, Alu
|
|
M, Rodriguez
|
|
LL, Lindman
|
|
BR, Zajarias
|
|
A
|
|
et al. The incidence and prognostic implications of worsening right ventricular function after surgical or transcatheter aortic valve replacement: insights from PARTNER IIA. European Heart Journal. 2018; 39(28):2659–2667 [<a href="https://pubmed.ncbi.nlm.nih.gov/29741615" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29741615</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>88.</dt><dd><div class="bk_ref" id="niceng208er8.ref88">Cubero-Gallego
|
|
H, Hernandez-Vaquero
|
|
D, Avanzas
|
|
P, Almendarez
|
|
M, Adeba
|
|
A, Lorca
|
|
R
|
|
et al. Outcomes with percutaneous mitral repair vs. optimal medical treatment for functional mitral regurgitation: systematic review. Annals of Translational Medicine. 2020; 8(15):962 [<a href="/pmc/articles/PMC7475445/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7475445</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32953762" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32953762</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>89.</dt><dd><div class="bk_ref" id="niceng208er8.ref89">Dalén
|
|
M, Oliveira Da Silva
|
|
C, Sartipy
|
|
U, Winter
|
|
R, Franco-Cereceda
|
|
A, Barimani
|
|
J
|
|
et al. Comparison of right ventricular function after ministernotomy and full sternotomy aortic valve replacement: a randomized study. Interactive Cardiovascular and Thoracic Surgery. 2018; 26(5):790–797 [<a href="https://pubmed.ncbi.nlm.nih.gov/29325064" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29325064</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>90.</dt><dd><div class="bk_ref" id="niceng208er8.ref90">Daneault
|
|
B, Kirtane
|
|
AJ, Kodali
|
|
SK, Williams
|
|
MR, Genereux
|
|
P, Reiss
|
|
GR
|
|
et al. Stroke associated with surgical and transcatheter treatment of aortic stenosis: A comprehensive review. Journal of the American College of Cardiology. 2011; 58(21):2143–2150 [<a href="https://pubmed.ncbi.nlm.nih.gov/22078419" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22078419</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>91.</dt><dd><div class="bk_ref" id="niceng208er8.ref91">Danielsen
|
|
SO, Moons
|
|
P, Sandven
|
|
I, Leegaard
|
|
M, Solheim
|
|
S, Tonnessen
|
|
T
|
|
et al. Thirty-day readmissions in surgical and transcatheter aortic valve replacement: A systematic review and meta-analysis. International Journal of Cardiology. 2018; 268:85–91 [<a href="https://pubmed.ncbi.nlm.nih.gov/29779575" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29779575</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>92.</dt><dd><div class="bk_ref" id="niceng208er8.ref92">Daubert
|
|
MA, Weissman
|
|
NJ, Hahn
|
|
RT, Pibarot
|
|
P, Parvataneni
|
|
R, Mack
|
|
MJ
|
|
et al. Long-term valve performance of TAVR and SAVR: A report from the PARTNER I trial
|
|
JACC: Cardiovascular Imaging. 2017; 10(1):15–25 [<a href="https://pubmed.ncbi.nlm.nih.gov/28017714" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28017714</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>93.</dt><dd><div class="bk_ref" id="niceng208er8.ref93">David
|
|
TE, Armstrong
|
|
S, Sun
|
|
Z. Left ventricular function after mitral valve surgery. Journal of Heart Valve Disease. 1995; 4 (Suppl 2):S175–180 [<a href="https://pubmed.ncbi.nlm.nih.gov/8563995" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 8563995</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>94.</dt><dd><div class="bk_ref" id="niceng208er8.ref94">Dayan
|
|
V, Vignolo
|
|
G, Soca
|
|
G, Paganini
|
|
JJ, Brusich
|
|
D, Pibarot
|
|
P. Predictors and outcomes of prosthesis-patient mismatch after aortic valve replacement. JACC: Cardiovascular Imaging. 2016; 9(8):924–933 [<a href="https://pubmed.ncbi.nlm.nih.gov/27236530" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27236530</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>95.</dt><dd><div class="bk_ref" id="niceng208er8.ref95">Dean
|
|
LS. Percutaneous transvenous mitral commissurotomy: a comparison to the closed and open surgical techniques. Catheterization and Cardiovascular Diagnosis. 1994; Suppl 2:76–81 [<a href="https://pubmed.ncbi.nlm.nih.gov/7994745" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 7994745</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>96.</dt><dd><div class="bk_ref" id="niceng208er8.ref96">Deeb
|
|
GM, Reardon
|
|
MJ, Chetcuti
|
|
S, Patel
|
|
HJ, Grossman
|
|
PM, Yakubov
|
|
SJ
|
|
et al. 3-year outcomes in high-risk patients who underwent surgical or transcatheter aortic valve replacement. Journal of the American College of Cardiology. 2016; 67(22):2565–2574 [<a href="https://pubmed.ncbi.nlm.nih.gov/27050187" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27050187</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>97.</dt><dd><div class="bk_ref" id="niceng208er8.ref97">Dewey
|
|
TM, Bowers
|
|
B, Thourani
|
|
VH, Babaliaros
|
|
V, Smith
|
|
CR, Leon
|
|
MB
|
|
et al. Transapical aortic valve replacement for severe aortic stenosis: Results from the nonrandomized continued access cohort of the PARTNER Trial. Annals of Thoracic Surgery. 2013; 96(6):2083–2089 [<a href="https://pubmed.ncbi.nlm.nih.gov/23968764" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23968764</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>98.</dt><dd><div class="bk_ref" id="niceng208er8.ref98">Dhaliwal
|
|
RS, Goyal
|
|
S, Luthra
|
|
S, Das
|
|
D, Singh
|
|
J. Open-heart surgery with better cosmetic results. Bulletin, Postgraduate Institute of Medical Education and Research, Chandigarh. 2005; 39(2):69–74</div></dd></dl><dl class="bkr_refwrap"><dt>99.</dt><dd><div class="bk_ref" id="niceng208er8.ref99">Ding
|
|
C, Jiang
|
|
DM, Tao
|
|
KY, Duan
|
|
QJ, Li
|
|
J, Kong
|
|
MJ
|
|
et al. Anterolateral minithoracotomy versus median sternotomy for mitral valve disease: a meta-analysis. Journal of Zhejiang University Science B. 2014; 15(6):522–532 [<a href="/pmc/articles/PMC4116853/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4116853</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24903989" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24903989</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>100.</dt><dd><div class="bk_ref" id="niceng208er8.ref100">Doble
|
|
B, Blackhouse
|
|
G, Goeree
|
|
R, Xie
|
|
F. Cost-effectiveness of the Edwards SAPIEN transcatheter heart valve compared with standard management and surgical aortic valve replacement in patients with severe symptomatic aortic stenosis: a Canadian perspective. Journal of Thoracic and Cardiovascular Surgery. 2013; 146(1):52–60 [<a href="https://pubmed.ncbi.nlm.nih.gov/22795437" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22795437</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>101.</dt><dd><div class="bk_ref" id="niceng208er8.ref101">Dogan
|
|
S, Aybek
|
|
T, Risteski
|
|
PS, Detho
|
|
F, Rapp
|
|
A, Wimmer-Greinecker
|
|
G
|
|
et al. Minimally invasive port access versus conventional mitral valve surgery: Prospective randomized study. Annals of Thoracic Surgery. 2005; 79(2):492–498 [<a href="https://pubmed.ncbi.nlm.nih.gov/15680822" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 15680822</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>102.</dt><dd><div class="bk_ref" id="niceng208er8.ref102">Dogan
|
|
S, Dzemali
|
|
O, Wimmer-Greinecker
|
|
G, Derra
|
|
P, Doss
|
|
M, Khan
|
|
MF
|
|
et al. Minimally invasive versus conventional aortic valve replacement: A prospective randomized trial. Journal of Heart Valve Disease. 2003; 12(1):76–80 [<a href="https://pubmed.ncbi.nlm.nih.gov/12578340" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 12578340</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>103.</dt><dd><div class="bk_ref" id="niceng208er8.ref103">Donato
|
|
A, Elgin
|
|
E. In HF with secondary mitral regurgitation, transcatheter mitral valve repair reduced HF hospitalizations at 2 years. Annals of Internal Medicine. 2019; 170(2):JC7–JC8 [<a href="https://pubmed.ncbi.nlm.nih.gov/30641558" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30641558</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>104.</dt><dd><div class="bk_ref" id="niceng208er8.ref104">Douglas
|
|
PS, Hahn
|
|
RT, Pibarot
|
|
P, Weissman
|
|
NJ, Stewart
|
|
WJ, Xu
|
|
K
|
|
et al. Hemodynamic outcomes of transcatheter aortic valve replacement and medical management in severe, inoperable aortic stenosis: a longitudinal echocardiographic study of cohort B of the PARTNER trial. Journal of the American Society of Echocardiography. 2015; 28(2):210–217.e219 [<a href="https://pubmed.ncbi.nlm.nih.gov/25455544" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25455544</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>105.</dt><dd><div class="bk_ref" id="niceng208er8.ref105">Douglas
|
|
PS, Leon
|
|
MB, Mack
|
|
MJ, Svensson
|
|
LG, Webb
|
|
JG, Hahn
|
|
RT
|
|
et al. Longitudinal hemodynamics of transcatheter and surgical aortic valves in the PARTNER Trial. JAMA Cardiology. 2017; 2(11):1197–1206 [<a href="/pmc/articles/PMC5710363/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5710363</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28973520" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28973520</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>106.</dt><dd><div class="bk_ref" id="niceng208er8.ref106">Dowling
|
|
C, Kondapally Seshasai
|
|
SR, Firoozi
|
|
S, Brecker
|
|
SJ. Transcatheter aortic valve replacement versus surgery for symptomatic severe aortic stenosis: A reconstructed individual patient data meta-analysis. Catheterization and Cardiovascular Interventions. 2020; 96(1):158–166 [<a href="https://pubmed.ncbi.nlm.nih.gov/31566902" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31566902</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>107.</dt><dd><div class="bk_ref" id="niceng208er8.ref107">Dreger
|
|
H, Mattig
|
|
I, Hewing
|
|
B, Knebel
|
|
F, Lauten
|
|
A, Lembcke
|
|
A
|
|
et al. Treatment of Severe TRIcuspid Regurgitation in Patients with Advanced Heart Failure with CAval Vein Implantation of the Edwards Sapien XT VALve (TRICAVAL): a randomised controlled trial. EuroIntervention. 2020; 15(17):1506–1513 [<a href="https://pubmed.ncbi.nlm.nih.gov/31929100" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31929100</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>108.</dt><dd><div class="bk_ref" id="niceng208er8.ref108">Durko
|
|
AP, Reardon
|
|
MJ, Kleiman
|
|
NS, Popma
|
|
JJ, Van Mieghem
|
|
NM, Gleason
|
|
TG
|
|
et al. Neurological complications after transcatheter versus surgical aortic valve replacement in intermediate-risk patients. Journal of the American College of Cardiology. 2018; 72(18):2109–2119 [<a href="https://pubmed.ncbi.nlm.nih.gov/30360820" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30360820</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>109.</dt><dd><div class="bk_ref" id="niceng208er8.ref109">Dvir
|
|
D, Waksman
|
|
R, Barbash
|
|
IM, Kodali
|
|
SK, Svensson
|
|
LG, Tuzcu
|
|
EM
|
|
et al. Outcomes of patients with chronic lung disease and severe aortic stenosis treated with transcatheter versus surgical aortic valve replacement or standard therapy: insights from the PARTNER trial (placement of AoRTic TraNscathetER Valve). Journal of the American College of Cardiology. 2014; 63(3):269–279 [<a href="https://pubmed.ncbi.nlm.nih.gov/24140659" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24140659</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>110.</dt><dd><div class="bk_ref" id="niceng208er8.ref110">El-Fiky
|
|
MM, El-Sayegh
|
|
T, El-Beishry
|
|
AS, Abdul Aziz
|
|
M, Aboul Enein
|
|
H, Waheid
|
|
S
|
|
et al. Limited right anterolateral thoracotomy for mitral valve surgery. European Journal of Cardio-Thoracic Surgery. 2000; 17(6):710–713 [<a href="https://pubmed.ncbi.nlm.nih.gov/10856864" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 10856864</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>111.</dt><dd><div class="bk_ref" id="niceng208er8.ref111">El Ashkar
|
|
AM, Khallaf
|
|
AN. Video-assisted minimally invasive mitral valve surgery: Early experience. Journal of the Egyptian Society of Cardio-Thoracic Surgery. 2016; 24(3):223–227</div></dd></dl><dl class="bkr_refwrap"><dt>112.</dt><dd><div class="bk_ref" id="niceng208er8.ref112">Elgendy
|
|
IY, Mahmoud
|
|
AN, Gad
|
|
MM, Elbadawi
|
|
A, Rivero
|
|
F, Alfonso
|
|
F. Transcatheter or surgical aortic valve replacement for low surgical risk patients: Meta-analysis of randomized trials. JACC: Cardiovascular Interventions. 2019; 12(14):1399–1401 [<a href="https://pubmed.ncbi.nlm.nih.gov/31320035" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31320035</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>113.</dt><dd><div class="bk_ref" id="niceng208er8.ref113">Elmaraezy
|
|
A, Ismail
|
|
A, Abushouk
|
|
AI, Eltoomy
|
|
M, Saad
|
|
S, Negida
|
|
A
|
|
et al. Efficacy and safety of transcatheter aortic valve replacement in aortic stenosis patients at low to moderate surgical risk: a comprehensive meta-analysis. BMC Cardiovascular Disorders. 2017; 17:234 [<a href="/pmc/articles/PMC5571502/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5571502</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28836953" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28836953</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>114.</dt><dd><div class="bk_ref" id="niceng208er8.ref114">Elmariah
|
|
S, Palacios
|
|
IF, McAndrew
|
|
T, Hueter
|
|
I, Inglessis
|
|
I, Baker
|
|
JN
|
|
et al. Outcomes of transcatheter and surgical aortic valve replacement in high-risk patients with aortic stenosis and left ventricular dysfunction: results from the placement of aortic transcatheter valves (PARTNER) trial (cohort A). Circulation: Cardiovascular Interventions. 2013; 6(6):604–614 [<a href="https://pubmed.ncbi.nlm.nih.gov/24221391" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24221391</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>115.</dt><dd><div class="bk_ref" id="niceng208er8.ref115">Eltchaninoff
|
|
H, Bonaros
|
|
N, Prendergast
|
|
B, Nietlispach
|
|
F, Vasa-Nicotera
|
|
M, Chieffo
|
|
A
|
|
et al. Rationale and design of a prospective, randomized, controlled, multicenter study to evaluate the safety and efficacy of transcatheter heart valve replacement in female patients with severe symptomatic aortic stenosis requiring aortic valve intervention (Randomized researcH in womEn all comers wIth Aortic stenosis [RHEIA] trial). American Heart Journal. 2020; 228:27–35 [<a href="https://pubmed.ncbi.nlm.nih.gov/32745733" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32745733</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>116.</dt><dd><div class="bk_ref" id="niceng208er8.ref116">Enezate
|
|
TH, Kumar
|
|
A, Fadel
|
|
MA, Patel
|
|
M, Al Dadah
|
|
A, Omran
|
|
J. Transcatheter versus surgical aortic valve replacement in patients with non-high surgical risk severe aortic stenosis: A systematic review. Cardiovascular Revascularization Medicine. 2017; 18(5S1):S40–S48 [<a href="https://pubmed.ncbi.nlm.nih.gov/28410995" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28410995</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>117.</dt><dd><div class="bk_ref" id="niceng208er8.ref117">Fairbairn
|
|
TA, Meads
|
|
DM, Hulme
|
|
C, Mather
|
|
AN, Plein
|
|
S, Blackman
|
|
DJ
|
|
et al. The cost-effectiveness of transcatheter aortic valve implantation versus surgical aortic valve replacement in patients with severe aortic stenosis at high operative risk. Heart. 2013; 99(13):914–920 [<a href="https://pubmed.ncbi.nlm.nih.gov/23696198" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23696198</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>118.</dt><dd><div class="bk_ref" id="niceng208er8.ref118">Falk
|
|
V, Cheng
|
|
DC, Martin
|
|
J, Diegeler
|
|
A, Folliguet
|
|
TA, Nifong
|
|
LW
|
|
et al. Minimally invasive versus open mitral valve surgery: a consensus statement of the international society of minimally invasive coronary surgery (ISMICS) 2010. Innovations: Technology & Techniques in Cardiothoracic & Vascular Surgery. 2011; 6(2):66–76 [<a href="https://pubmed.ncbi.nlm.nih.gov/22437890" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22437890</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>119.</dt><dd><div class="bk_ref" id="niceng208er8.ref119">Fang
|
|
F, Tang
|
|
J, Zhao
|
|
Y, He
|
|
J, Xu
|
|
P, Faramand
|
|
A. Transcatheter aortic valve implantation versus surgical aortic valve replacement in patients at low and intermediate risk: A risk specific meta-analysis of randomized controlled trials. PloS One. 2019; 14(9):e0221922 [<a href="/pmc/articles/PMC6759164/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6759164</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31550263" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31550263</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>120.</dt><dd><div class="bk_ref" id="niceng208er8.ref120">Fareed
|
|
S, Bassiony
|
|
A. Early outcome of mini aortic valve replacement surgery. Journal of the Egyptian Society of Cardio-Thoracic Surgery. 2018; 26(1):1–7</div></dd></dl><dl class="bkr_refwrap"><dt>121.</dt><dd><div class="bk_ref" id="niceng208er8.ref121">Feldman
|
|
T, Foster
|
|
E, Glower
|
|
DD, Glower
|
|
DG, Kar
|
|
S, Rinaldi
|
|
MJ
|
|
et al. Percutaneous repair or surgery for mitral regurgitation. New England Journal of Medicine. 2011; 364(15):1395–1406 [<a href="https://pubmed.ncbi.nlm.nih.gov/21463154" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21463154</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>122.</dt><dd><div class="bk_ref" id="niceng208er8.ref122">Feldman
|
|
T, Kar
|
|
S, Elmariah
|
|
S, Smart
|
|
SC, Trento
|
|
A, Siegel
|
|
RJ
|
|
et al. Randomized comparison of percutaneous repair and surgery for mitral regurgitation: 5-year results of EVEREST II. Journal of the American College of Cardiology. 2015; 66(25):2844–2854 [<a href="https://pubmed.ncbi.nlm.nih.gov/26718672" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26718672</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>123.</dt><dd><div class="bk_ref" id="niceng208er8.ref123">Ferlini
|
|
M, Fortuni
|
|
F, Di Giacomo
|
|
C, Cornara
|
|
S, Somaschini
|
|
A, Oltrona Visconti
|
|
L
|
|
et al. Transcatheter aortic valve replacement versus surgery in low-risk patients: a meta-analysis of randomized studies. Journal of Cardiovascular Medicine. 2020; 21(2):168–170 [<a href="https://pubmed.ncbi.nlm.nih.gov/31568091" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31568091</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>124.</dt><dd><div class="bk_ref" id="niceng208er8.ref124">Ferrero Guadagnoli
|
|
A, De Carlo
|
|
C, Maisano
|
|
F, Ho
|
|
E, Saccocci
|
|
M, Cuevas
|
|
O
|
|
et al. Cardioband system as a treatment for functional mitral regurgitation. Expert Review of Medical Devices. 2018; 15(6):415–421 [<a href="https://pubmed.ncbi.nlm.nih.gov/29877743" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29877743</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>125.</dt><dd><div class="bk_ref" id="niceng208er8.ref125">Figulla
|
|
L, Neumann
|
|
A, Figulla
|
|
HR, Kahlert
|
|
P, Erbel
|
|
R, Neumann
|
|
T. Transcatheter aortic valve implantation: Evidence on safety and efficacy compared with medical therapy. A systematic review of current literature. Clinical Research in Cardiology. 2011; 100(4):265–276 [<a href="https://pubmed.ncbi.nlm.nih.gov/21165626" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21165626</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>126.</dt><dd><div class="bk_ref" id="niceng208er8.ref126">Forbes
|
|
TL. The PARTNER trial. Journal of Vascular Surgery. 2011; 53(1):239–240 [<a href="https://pubmed.ncbi.nlm.nih.gov/21184936" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21184936</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>127.</dt><dd><div class="bk_ref" id="niceng208er8.ref127">Fu
|
|
J, Popal
|
|
MS, Li
|
|
Y, Li
|
|
G, Qi
|
|
Y, Fang
|
|
F
|
|
et al. Transcatheter versus surgical aortic valve replacement in low and intermediate risk patients with severe aortic stenosis: Systematic review and meta-analysis of randomized controlled trials and propensity score matching observational studies. Journal of Thoracic Disease. 2019; 11(5):1945–1962 [<a href="/pmc/articles/PMC6588740/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6588740</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31285888" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31285888</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>128.</dt><dd><div class="bk_ref" id="niceng208er8.ref128">Gada
|
|
H, Kirtane
|
|
AJ, Wang
|
|
K, Lei
|
|
Y, Magnuson
|
|
E, Reynolds
|
|
MR
|
|
et al. Temporal trends in quality of life outcomes after transapical transcatheter aortic valve replacement: A Placement of AoRTic TraNscathetER Valve (PARTNER) Trial substudy. Circulation: Cardiovascular Quality and Outcomes. 2015; 8(4):338–346 [<a href="/pmc/articles/PMC4786368/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4786368</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26058718" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26058718</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>129.</dt><dd><div class="bk_ref" id="niceng208er8.ref129">Garg
|
|
A, Rao
|
|
SV, Visveswaran
|
|
G, Agrawal
|
|
S, Sharma
|
|
A, Garg
|
|
L
|
|
et al. Transcatheter aortic valve replacement versus surgical valve replacement in low-intermediate surgical risk patients: A systematic review and meta-analysis. Journal of Invasive Cardiology. 2017; 29(6):209–216 [<a href="https://pubmed.ncbi.nlm.nih.gov/28570236" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28570236</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>130.</dt><dd><div class="bk_ref" id="niceng208er8.ref130">Gargiulo
|
|
G, Sannino
|
|
A, Capodanno
|
|
D, Barbanti
|
|
M, Buccheri
|
|
S, Perrino
|
|
C
|
|
et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement: A Systematic review and meta-analysis. Annals of Internal Medicine. 2016; 165(5):334–344 [<a href="https://pubmed.ncbi.nlm.nih.gov/27272666" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27272666</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>131.</dt><dd><div class="bk_ref" id="niceng208er8.ref131">Gaudiani
|
|
V, Deeb
|
|
GM, Popma
|
|
JJ, Adams
|
|
DH, Gleason
|
|
TG, Conte
|
|
JV
|
|
et al. Causes of death from the randomized CoreValve US Pivotal High-Risk Trial. Journal of Thoracic and Cardiovascular Surgery. 2017; 153(6):1293–1301.e1291 [<a href="https://pubmed.ncbi.nlm.nih.gov/28249691" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28249691</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>132.</dt><dd><div class="bk_ref" id="niceng208er8.ref132">Geisler
|
|
BP, Huygens
|
|
SA, Reardon
|
|
MJ, Van Mieghem
|
|
N, Kappetein
|
|
AP, Osnabrugge
|
|
RLJ
|
|
et al. Cost-effectiveness and projected survival of self-expanding transcatheter versus surgical aortic valve replacement for high risk patients in a european setting: A dutch analysis based on the corevalve high risk trial. Structural Heart. 2017; 1(5–6):267–274</div></dd></dl><dl class="bkr_refwrap"><dt>133.</dt><dd><div class="bk_ref" id="niceng208er8.ref133">Généreux
|
|
P, Cohen
|
|
DJ, Williams
|
|
MR, Mack
|
|
M, Kodali
|
|
SK, Svensson
|
|
LG
|
|
et al. Bleeding complications after surgical aortic valve replacement compared with transcatheter aortic valve replacement: insights from the PARTNER I Trial (Placement of Aortic Transcatheter Valve). Journal of the American College of Cardiology. 2014; 63(11):1100–1109 [<a href="https://pubmed.ncbi.nlm.nih.gov/24291283" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24291283</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>134.</dt><dd><div class="bk_ref" id="niceng208er8.ref134">Ghanta
|
|
RK, Kron
|
|
IL. Patient-prosthesis mismatch: surgical aortic valve replacement versus transcatheter aortic valve replacement in high risk patients with aortic stenosis. Journal of Thoracic Disease. 2016; 8(10):E1441–E1443 [<a href="/pmc/articles/PMC5107449/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5107449</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27867654" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27867654</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>135.</dt><dd><div class="bk_ref" id="niceng208er8.ref135">Giustino
|
|
G, Overbey
|
|
J, Taylor
|
|
D, Ailawadi
|
|
G, Kirkwood
|
|
K, DeRose
|
|
J
|
|
et al. Sex-based differences in outcomes after mitral valve surgery for severe ischemic mitral regurgitation: From the cardiothoracic surgical trials network. JACC: Heart Failure. 2019; 7(6):481–490 [<a href="/pmc/articles/PMC6676484/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6676484</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31146872" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31146872</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>136.</dt><dd><div class="bk_ref" id="niceng208er8.ref136">Gleason
|
|
TG, Reardon
|
|
MJ, Popma
|
|
JJ, Deeb
|
|
GM, Yakubov
|
|
SJ, Lee
|
|
JS
|
|
et al. 5-year outcomes of self-expanding transcatheter versus surgical aortic valve replacement in high-risk patients. Journal of the American College of Cardiology. 2018; 72(22):2687–2696 [<a href="https://pubmed.ncbi.nlm.nih.gov/30249462" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30249462</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>137.</dt><dd><div class="bk_ref" id="niceng208er8.ref137">Gleason
|
|
TG, Schindler
|
|
JT, Adams
|
|
DH, Reardon
|
|
MJ, Kleiman
|
|
NS, Caplan
|
|
LR
|
|
et al. The risk and extent of neurologic events are equivalent for high-risk patients treated with transcatheter or surgical aortic valve replacement. Journal of Thoracic and Cardiovascular Surgery. 2016; 152(1):85–96 [<a href="https://pubmed.ncbi.nlm.nih.gov/27085389" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27085389</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>138.</dt><dd><div class="bk_ref" id="niceng208er8.ref138">Glower
|
|
D, Ailawadi
|
|
G, Argenziano
|
|
M, Mack
|
|
M, Trento
|
|
A, Wang
|
|
A
|
|
et al. EVEREST II randomized clinical trial: predictors of mitral valve replacement in de novo surgery or after the MitraClip procedure. Journal of Thoracic and Cardiovascular Surgery. 2012; 143(4 Suppl):S60–63 [<a href="https://pubmed.ncbi.nlm.nih.gov/22423604" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22423604</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>139.</dt><dd><div class="bk_ref" id="niceng208er8.ref139">Goel
|
|
S, Pasam
|
|
RT, Wats
|
|
K, Chava
|
|
S, Gotesman
|
|
J, Sharma
|
|
A
|
|
et al. Mitraclip plus medical therapy versus medical therapy alone for functional mitral regurgitation: A meta-analysis. Cardiology & Therapy. 2020; 9(1):5–17 [<a href="/pmc/articles/PMC7237594/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7237594</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31820395" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31820395</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>140.</dt><dd><div class="bk_ref" id="niceng208er8.ref140">Goldberg
|
|
SL, Meredith
|
|
I, Marwick
|
|
T, Haluska
|
|
BA, Lipiecki
|
|
J, Siminiak
|
|
T
|
|
et al. A randomized double-blind trial of an interventional device treatment of functional mitral regurgitation in patients with symptomatic congestive heart failure-Trial design of the REDUCE FMR study. American Heart Journal. 2017; 188:167–174 [<a href="https://pubmed.ncbi.nlm.nih.gov/28577672" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28577672</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>141.</dt><dd><div class="bk_ref" id="niceng208er8.ref141">Goldstein
|
|
D, Moskowitz
|
|
AJ, Gelijns
|
|
AC, Ailawadi
|
|
G, Parides
|
|
MK, Perrault
|
|
LP
|
|
et al. Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. New England Journal of Medicine. 2016; 374(4):344–353 [<a href="/pmc/articles/PMC4908819/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4908819</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26550689" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26550689</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>142.</dt><dd><div class="bk_ref" id="niceng208er8.ref142">Gonzalez
|
|
FM, Finch
|
|
AP, Armeni
|
|
P, Boscolo
|
|
PR, Tarricone
|
|
R. Comparative effectiveness of Mitraclip plus medical therapy versus medical therapy alone in high-risk surgical patients: a comprehensive review. Expert Review of Medical Devices. 2015; 12(4):471–485 [<a href="https://pubmed.ncbi.nlm.nih.gov/26051009" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26051009</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>143.</dt><dd><div class="bk_ref" id="niceng208er8.ref143">Goodall
|
|
G, Lamotte
|
|
M, Ramos
|
|
M, Maunoury
|
|
F, Pejchalova
|
|
B, de Pouvourville
|
|
G. Cost-effectiveness analysis of the SAPIEN 3 TAVI valve compared with surgery in intermediate-risk patients
|
|
Journal of Medical Economics. 2019; 22(4):289–296 [<a href="https://pubmed.ncbi.nlm.nih.gov/30547704" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30547704</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>144.</dt><dd><div class="bk_ref" id="niceng208er8.ref144">Goodwin
|
|
A, Perwaiz
|
|
S, Wang
|
|
J, Okafor
|
|
E. National adult cardiac surgery audit (NACSA) 2020 Summary Report (2016/17-2018/19 data). London, England. National Institute for Cardiovascular Outcomes Research (NICOR), 2020. Available from: <a href="https://www.nicor.org.uk/national-cardiac-audit-programme/adult-cardiac-surgery-surgery-audit/" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">https://www<wbr style="display:inline-block"></wbr>​.nicor.org<wbr style="display:inline-block"></wbr>​.uk/national-cardiac-audit-programme<wbr style="display:inline-block"></wbr>​/adult-cardiac-surgery-surgery-audit/</a></div></dd></dl><dl class="bkr_refwrap"><dt>145.</dt><dd><div class="bk_ref" id="niceng208er8.ref145">Grabert
|
|
S, Lange
|
|
R, Bleiziffer
|
|
S. Incidence and causes of silent and symptomatic stroke following surgical and transcatheter aortic valve replacement: a comprehensive review. Interactive Cardiovascular and Thoracic Surgery. 2016; 23(3):469–476 [<a href="https://pubmed.ncbi.nlm.nih.gov/27241049" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27241049</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>146.</dt><dd><div class="bk_ref" id="niceng208er8.ref146">Grayburn
|
|
PA, Oh
|
|
JK, Reardon
|
|
MJ, Popma
|
|
JJ, Deeb
|
|
GM, Boulware
|
|
M
|
|
et al. Effect of baseline aortic regurgitation on mortality in patients treated with transcatheter or surgical aortic valve replacement (from the CoreValve US Pivotal Trial). American Journal of Cardiology. 2018; 122(9):1527–1535 [<a href="https://pubmed.ncbi.nlm.nih.gov/30172363" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30172363</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>147.</dt><dd><div class="bk_ref" id="niceng208er8.ref147">Greason
|
|
KL, Blackstone
|
|
EH, Rajeswaran
|
|
J, Lowry
|
|
AM, Svensson
|
|
LG, Webb
|
|
JG
|
|
et al. Inter- and intrasite variability of mortality and stroke for sites performing both surgical and transcatheter aortic valve replacement for aortic valve stenosis in intermediate-risk patients. Journal of Thoracic and Cardiovascular Surgery. 2020; 159(4):1233–1244.e1234 [<a href="https://pubmed.ncbi.nlm.nih.gov/31350027" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31350027</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>148.</dt><dd><div class="bk_ref" id="niceng208er8.ref148">Greason
|
|
KL, Mathew
|
|
V, Suri
|
|
RM, Holmes
|
|
DR, Rihal
|
|
CS, McAndrew
|
|
T
|
|
et al. Transcatheter versus surgical aortic valve replacement in patients with prior coronary artery bypass graft operation: a PARTNER trial subgroup analysis. Annals of Thoracic Surgery. 2014; 98(1):1–7; discussion 7-8 [<a href="https://pubmed.ncbi.nlm.nih.gov/24881859" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24881859</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>149.</dt><dd><div class="bk_ref" id="niceng208er8.ref149">Gronlykke
|
|
L, Ihlemann
|
|
N, Ngo
|
|
AT, Thyregod
|
|
HG, Kjaergaard
|
|
J, Korshin
|
|
A
|
|
et al. Measures of right ventricular function after transcatheter versus surgical aortic valve replacement. Interactive Cardiovascular and Thoracic Surgery. 2017; 24(2):181–187 [<a href="https://pubmed.ncbi.nlm.nih.gov/27811168" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27811168</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>150.</dt><dd><div class="bk_ref" id="niceng208er8.ref150">Grossi
|
|
EA, Galloway
|
|
AC, Miller
|
|
JS, Ribakove
|
|
GH, Culliford
|
|
AT, Esposito
|
|
R
|
|
et al. Valve repair versus replacement for mitral insufficiency: when is a mechanical valve still indicated?
|
|
Journal of Thoracic and Cardiovascular Surgery. 1998; 115(2):389–394 [<a href="https://pubmed.ncbi.nlm.nih.gov/9475534" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 9475534</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>151.</dt><dd><div class="bk_ref" id="niceng208er8.ref151">Gucuk Ipek
|
|
E, Singh
|
|
S, Viloria
|
|
E, Feldman
|
|
T, Grayburn
|
|
P, Foster
|
|
E
|
|
et al. Impact of the MitraClip procedure on left atrial strain and strain rate. Circulation Cardiovascular Imaging. 2018; 11(3):e006553 [<a href="https://pubmed.ncbi.nlm.nih.gov/29535132" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29535132</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>152.</dt><dd><div class="bk_ref" id="niceng208er8.ref152">Guerin
|
|
P, Bourguignon
|
|
S, Jamet
|
|
N, Marque
|
|
S. MitraClip therapy in mitral regurgitation: a Markov model for the cost-effectiveness of a new therapeutic option. Journal of Medical Economics. 2016; 19(7):696–701 [<a href="https://pubmed.ncbi.nlm.nih.gov/26909557" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26909557</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>153.</dt><dd><div class="bk_ref" id="niceng208er8.ref153">Hahn
|
|
RT, Pibarot
|
|
P, Stewart
|
|
WJ, Weissman
|
|
NJ, Gopalakrishnan
|
|
D, Keane
|
|
MG
|
|
et al. Comparison of transcatheter and surgical aortic valve replacement in severe aortic stenosis: a longitudinal study of echocardiography parameters in cohort A of the PARTNER trial (placement of aortic transcatheter valves). Journal of the American College of Cardiology. 2013; 61(25):2514–2521 [<a href="/pmc/articles/PMC3931006/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3931006</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23623915" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23623915</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>154.</dt><dd><div class="bk_ref" id="niceng208er8.ref154">Hamano
|
|
K, Kawamura
|
|
T, Gohra
|
|
H, Katoh
|
|
T, Fujimura
|
|
Y, Zempo
|
|
N
|
|
et al. Stress caused by minimally invasive cardiac surgery versus conventional cardiac surgery: incidence of systemic inflammatory response syndrome. World Journal of Surgery. 2001; 25(2):117–121 [<a href="https://pubmed.ncbi.nlm.nih.gov/11338008" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 11338008</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>155.</dt><dd><div class="bk_ref" id="niceng208er8.ref155">Hancock-Howard
|
|
RL, Feindel
|
|
CM, Rodes-Cabau
|
|
J, Webb
|
|
JG, Thompson
|
|
AK, Banz
|
|
K. Cost effectiveness of transcatheter aortic valve replacement compared to medical management in inoperable patients with severe aortic stenosis: Canadian analysis based on the PARTNER Trial Cohort B findings. Journal of Medical Economics. 2013; 16(4):566–574 [<a href="https://pubmed.ncbi.nlm.nih.gov/23356420" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23356420</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>156.</dt><dd><div class="bk_ref" id="niceng208er8.ref156">Hancock
|
|
HC, Maier
|
|
RH, Kasim
|
|
AS, Mason
|
|
JM, Murphy
|
|
GJ, Goodwin
|
|
AT
|
|
et al. Mini-sternotomy versus conventional sternotomy for aortic valve replacement. Journal of the American College of Cardiology. 2019; 73(19):2491–2492 [<a href="https://pubmed.ncbi.nlm.nih.gov/31097171" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31097171</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>157.</dt><dd><div class="bk_ref" id="niceng208er8.ref157">Hanedan
|
|
MO, Cicekcioglu
|
|
F, Aksoyek
|
|
A, Diken
|
|
AI, Unal
|
|
EU, Parlar
|
|
AI
|
|
et al. Tricuspid valve replacement through right thoracotomy has better outcomes in redo cases. Heart, Lung & Circulation. 2017; 26(1):88–93 [<a href="https://pubmed.ncbi.nlm.nih.gov/27449902" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27449902</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>158.</dt><dd><div class="bk_ref" id="niceng208er8.ref158">Hashemi
|
|
N, Johnson
|
|
J, Brodin
|
|
LA, Gomes-Bernardes
|
|
A, Sartipy
|
|
U, Svenarud
|
|
P
|
|
et al. Right ventricular mechanics and contractility after aortic valve replacement surgery: A randomised study comparing minimally invasive versus conventional approach. Open Heart. 2018; 5:e000842 [<a href="/pmc/articles/PMC6059303/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6059303</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30057770" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30057770</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>159.</dt><dd><div class="bk_ref" id="niceng208er8.ref159">Hauville
|
|
C, Ben-Dor
|
|
I, Lindsay
|
|
J, Pichard
|
|
AD, Waksman
|
|
R. Clinical and silent stroke following aortic valve surgery and transcatheter aortic valve implantation. Cardiovascular Revascularization Medicine. 2012; 13(2):133–140 [<a href="https://pubmed.ncbi.nlm.nih.gov/22226171" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22226171</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>160.</dt><dd><div class="bk_ref" id="niceng208er8.ref160">Health Information and Quality Authority. Health Technology Assessment of transcatheter aortic valve implantation (TAVI) in patients with severe symptomatic aortic stenosis at low and intermediate risk of surgical complications. 2019. Available from: <a href="https://www.hiqa.ie/reports-and-publications/health-technology-assessment/hta-transcatheter-aortic-valve-implantation" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">https://www<wbr style="display:inline-block"></wbr>​.hiqa.ie/reports-and-publications<wbr style="display:inline-block"></wbr>​/health-technology-assessment<wbr style="display:inline-block"></wbr>​/hta-transcatheter-aortic-valve-implantation</a></div></dd></dl><dl class="bkr_refwrap"><dt>161.</dt><dd><div class="bk_ref" id="niceng208er8.ref161">Health Quality Ontario. Transcatheter aortic valve implantation for treatment of aortic valve stenosis: a health technology assessment. Ontario Health Technology Assessment Series. 2016; 16(9):1–94 [<a href="/pmc/articles/PMC5156845/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5156845</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27990197" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27990197</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>162.</dt><dd><div class="bk_ref" id="niceng208er8.ref162">Herrmann
|
|
HC, Gertz
|
|
ZM, Silvestry
|
|
FE, Wiegers
|
|
SE, Woo
|
|
YJ, Hermiller
|
|
J
|
|
et al. Effects of atrial fibrillation on treatment of mitral regurgitation in the EVEREST II (Endovascular Valve Edge-to-Edge Repair Study) randomized trial. Journal of the American College of Cardiology. 2012; 59(14):1312–1319 [<a href="https://pubmed.ncbi.nlm.nih.gov/22464260" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22464260</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>163.</dt><dd><div class="bk_ref" id="niceng208er8.ref163">Herrmann
|
|
HC, Pibarot
|
|
P, Hueter
|
|
I, Gertz
|
|
ZM, Stewart
|
|
WJ, Kapadia
|
|
S
|
|
et al. Predictors of mortality and outcomes of therapy in low-flow severe aortic stenosis: a Placement of Aortic Transcatheter Valves (PARTNER) trial analysis. Circulation. 2013; 127(23):2316–2326 [<a href="https://pubmed.ncbi.nlm.nih.gov/23661722" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23661722</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>164.</dt><dd><div class="bk_ref" id="niceng208er8.ref164">Ho
|
|
C, Cimon
|
|
K, Rabb
|
|
D. Transcatheter aortic valve replacement in severe aortic stenosis: A review of comparative durability and clinical effectiveness beyond 12 months. CADTH Rapid Response Reports
|
|
Ottawa. Canadian Agency for Drugs and Technologies in Health, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/24175357" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24175357</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>165.</dt><dd><div class="bk_ref" id="niceng208er8.ref165">Hofer
|
|
F, Hengstenberg
|
|
C, Goliasch
|
|
G, Grygier
|
|
M, Mascherbauer
|
|
J, Siller-Matula
|
|
JM. Transcatheter versus surgical aortic valve replacement in low-risk patients: a meta-analysis of randomized trials. Clinical Research in Cardiology. 2020; 109(6):761–775 [<a href="https://pubmed.ncbi.nlm.nih.gov/31863174" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31863174</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>166.</dt><dd><div class="bk_ref" id="niceng208er8.ref166">Hoffmann
|
|
CT, Heiner
|
|
JA, Nguyen
|
|
TC. Review of minimal access versus transcatheter aortic valve replacement for patients with severe aortic stenosis. Annals of Cardiothoracic Surgery. 2017; 6(5):498–503 [<a href="/pmc/articles/PMC5639223/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5639223</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29062745" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29062745</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>167.</dt><dd><div class="bk_ref" id="niceng208er8.ref167">Holinski
|
|
S, Staebe
|
|
P, Geyer
|
|
T, Neumann
|
|
K, Uebelhack
|
|
R, Konertz
|
|
W. Transfemoral versus conventional aortic valve implantation - Early postoperative cognitive outcome. Annals of Thoracic and Cardiovascular Surgery. 2013; 19(3):195–200 [<a href="https://pubmed.ncbi.nlm.nih.gov/22971809" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22971809</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>168.</dt><dd><div class="bk_ref" id="niceng208er8.ref168">Hu
|
|
X, Zhao
|
|
Q. Systematic comparison of the effectiveness of percutaneous mitral balloon valvotomy with surgical mitral commissurotomy. Swiss Medical Weekly. 2011; 141:w13180 [<a href="https://pubmed.ncbi.nlm.nih.gov/21494992" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21494992</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>169.</dt><dd><div class="bk_ref" id="niceng208er8.ref169">Huchet
|
|
F, Chan-Peng
|
|
J, d’Acremont
|
|
F, Guerin
|
|
P, Grimandi
|
|
G, Roussel
|
|
JC
|
|
et al. A comparative profitability analysis of transcatheter versus surgical aortic valve replacement in a high-volume French hospital. Health Economics Review. 2019; 9(1):6 [<a href="/pmc/articles/PMC6734332/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6734332</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30762171" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30762171</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>170.</dt><dd><div class="bk_ref" id="niceng208er8.ref170">Huygens
|
|
SA, Goossens
|
|
LMA, van Erkelens
|
|
JA, Takkenberg
|
|
JJM, Rutten-van Molken
|
|
M. How much does a heart valve implantation cost and what are the health care costs afterwards?
|
|
Open Heart. 2018; 5:e000672 [<a href="/pmc/articles/PMC5845412/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5845412</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29531755" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29531755</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>171.</dt><dd><div class="bk_ref" id="niceng208er8.ref171">Indja
|
|
B, Woldendorp
|
|
K, Vallely
|
|
MP, Grieve
|
|
SM. New onset atrial fibrillation following transcatheter and surgical aortic valve replacement: A systematic review and meta-analysis. Heart, Lung & Circulation. 2020; 29(10):1542–1553 [<a href="https://pubmed.ncbi.nlm.nih.gov/32327310" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32327310</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>172.</dt><dd><div class="bk_ref" id="niceng208er8.ref172">Indraratna
|
|
P, Tian
|
|
DH, Yan
|
|
TD, Doyle
|
|
MP, Cao
|
|
C. Transcatheter aortic valve implantation versus surgical aortic valve replacement: A meta-analysis of randomized controlled trials. International Journal of Cardiology. 2016; 224:382–387 [<a href="https://pubmed.ncbi.nlm.nih.gov/27673695" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27673695</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>173.</dt><dd><div class="bk_ref" id="niceng208er8.ref173">Inoue
|
|
S, Nakao
|
|
K, Hanyu
|
|
M, Hayashida
|
|
K, Shibahara
|
|
H, Kobayashi
|
|
M
|
|
et al. Cost-effectiveness of transcatheter aortic valve implantation using a balloon-expandable valve in Japan: Experience from the Japanese Pilot Health Technology Assessment. Value in Health Regional Issues. 2020; 21:82–90 [<a href="https://pubmed.ncbi.nlm.nih.gov/31670112" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31670112</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>174.</dt><dd><div class="bk_ref" id="niceng208er8.ref174">Iung
|
|
B, Armoiry
|
|
X, Boutitie
|
|
F, Mewton
|
|
N, Trochu
|
|
JN, Lefevre
|
|
T
|
|
et al. Percutaneous repair or medical treatment for secondary mitral regurgitation: outcomes at 2 years. European Journal of Heart Failure. 2019; 21(12):1619–1627 [<a href="https://pubmed.ncbi.nlm.nih.gov/31476260" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31476260</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>175.</dt><dd><div class="bk_ref" id="niceng208er8.ref175">Jilaihawi
|
|
H, Chakravarty
|
|
T, Weiss
|
|
RE, Fontana
|
|
GP, Forrester
|
|
J, Makkar
|
|
RR. Meta-analysis of complications in aortic valve replacement: Comparison of Medtronic-Corevalve, Edwards-Sapien and surgical aortic valve replacement in 8,536 patients. Catheterization and Cardiovascular Interventions. 2012; 80(1):128–138 [<a href="https://pubmed.ncbi.nlm.nih.gov/22415849" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22415849</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>176.</dt><dd><div class="bk_ref" id="niceng208er8.ref176">Jiritano
|
|
F, Santarpino
|
|
G, Serraino
|
|
GF, Ten Cate
|
|
H, Matteucci
|
|
M, Fina
|
|
D
|
|
et al. Peri-procedural thrombocytopenia after aortic bioprosthesis implant: A systematic review and meta-analysis comparison among conventional, stentless, rapid-deployment, and transcatheter valves. International Journal of Cardiology. 2019; 296:43–50 [<a href="https://pubmed.ncbi.nlm.nih.gov/31351790" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31351790</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>177.</dt><dd><div class="bk_ref" id="niceng208er8.ref177">Jørgensen
|
|
TH, Thyregod
|
|
HG, Tarp
|
|
JB, Svendsen
|
|
JH, Søndergaard
|
|
L. Temporal changes of new-onset atrial fibrillation in patients randomized to surgical or transcatheter aortic valve replacement. International Journal of Cardiology. 2017; 234:16–21 [<a href="https://pubmed.ncbi.nlm.nih.gov/28258844" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28258844</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>178.</dt><dd><div class="bk_ref" id="niceng208er8.ref178">Juliard
|
|
JM. Percutaneous valve replacement or surgical treatment for aortic stenosis in elderly high-risk: A randomized PARTNER. Sang Thrombose Vaisseaux. 2011; 23(7):334–335</div></dd></dl><dl class="bkr_refwrap"><dt>179.</dt><dd><div class="bk_ref" id="niceng208er8.ref179">Junquera
|
|
L, Ferreira-Neto
|
|
A, Guimaraes
|
|
L, Asmarats
|
|
L, Delval
|
|
D, Wintzer-Wehekind
|
|
J
|
|
et al. Transcatheter aortic valve replacement in low risk patients. Minerva Cardioangiologica. 2019; 67(1):19–38 [<a href="https://pubmed.ncbi.nlm.nih.gov/30260144" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30260144</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>180.</dt><dd><div class="bk_ref" id="niceng208er8.ref180">Kadkhodayan
|
|
A, Lin
|
|
G, Popma
|
|
JJ, Reardon
|
|
MJ, Little
|
|
SH, Adams
|
|
DH
|
|
et al. A paradox between LV mass regression and hemodynamic improvement after surgical and transcatheter aortic valve replacement. Structural Heart. 2017; 1(1–2):51–61</div></dd></dl><dl class="bkr_refwrap"><dt>181.</dt><dd><div class="bk_ref" id="niceng208er8.ref181">Kaier
|
|
K, von Kampen
|
|
F, Baumbach
|
|
H, von Zur Muhlen
|
|
C, Hehn
|
|
P, Vach
|
|
W
|
|
et al. Two-year post-discharge costs of care among patients treated with transcatheter or surgical aortic valve replacement in Germany. BMC Health Services Research. 2017; 17:473 [<a href="/pmc/articles/PMC5504607/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5504607</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28693565" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28693565</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>182.</dt><dd><div class="bk_ref" id="niceng208er8.ref182">Kaier
|
|
K, von Zur Muhlen
|
|
C, Zirlik
|
|
A, Bothe
|
|
W, Hehn
|
|
P, Zehender
|
|
M
|
|
et al. Estimating the additional costs per life saved due to transcatheter aortic valve replacement: a secondary data analysis of electronic health records in Germany. European Journal of Health Economics. 2019; 20(4):625–632 [<a href="https://pubmed.ncbi.nlm.nih.gov/30600467" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30600467</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>183.</dt><dd><div class="bk_ref" id="niceng208er8.ref183">Kang
|
|
WS, Yoon
|
|
TG, Kim
|
|
TY, Kim
|
|
SH. Comparison of the PaO2/FiO2 ratio in sternotomy vs. thoracotomy in mitral valve repair: a randomised controlled trial. European Journal of Anaesthesiology. 2011; 28(11):807–812 [<a href="https://pubmed.ncbi.nlm.nih.gov/21897262" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21897262</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>184.</dt><dd><div class="bk_ref" id="niceng208er8.ref184">Kapadia
|
|
S, Stewart
|
|
WJ, Anderson
|
|
WN, Babaliaros
|
|
V, Feldman
|
|
T, Cohen
|
|
DJ
|
|
et al. Outcomes of inoperable symptomatic aortic stenosis patients not undergoing aortic valve replacement: insight into the impact of balloon aortic valvuloplasty from the PARTNER trial (Placement of AoRtic TraNscathetER Valve Trial). JACC: Cardiovascular Interventions. 2015; 8(2):324–333 [<a href="https://pubmed.ncbi.nlm.nih.gov/25700756" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25700756</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>185.</dt><dd><div class="bk_ref" id="niceng208er8.ref185">Kapadia
|
|
SR, Huded
|
|
CP, Kodali
|
|
SK, Svensson
|
|
LG, Tuzcu
|
|
EM, Baron
|
|
SJ
|
|
et al. Stroke after surgical versus transfemoral transcatheter aortic valve replacement in the PARTNER trial. Journal of the American College of Cardiology. 2018; 72(20):2415–2426 [<a href="https://pubmed.ncbi.nlm.nih.gov/30442284" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30442284</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>186.</dt><dd><div class="bk_ref" id="niceng208er8.ref186">Kapadia
|
|
SR, Leon
|
|
MB, Makkar
|
|
RR, Tuzcu
|
|
EM, Svensson
|
|
LG, Kodali
|
|
S
|
|
et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015; 385(9986):2485–2491 [<a href="https://pubmed.ncbi.nlm.nih.gov/25788231" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25788231</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>187.</dt><dd><div class="bk_ref" id="niceng208er8.ref187">Kapadia
|
|
SR, Tuzcu
|
|
EM, Makkar
|
|
RR, Svensson
|
|
LG, Agarwal
|
|
S, Kodali
|
|
S. Long-term outcomes of inoperable patients with aortic stenosis randomly assigned to transcatheter aortic valve replacement or standard therapy. Circulation. 2014; 130(17):1483–1492 [<a href="https://pubmed.ncbi.nlm.nih.gov/25205802" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25205802</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>188.</dt><dd><div class="bk_ref" id="niceng208er8.ref188">Khan
|
|
AR, Khan
|
|
S, Riaz
|
|
H, Luni
|
|
FK, Simo
|
|
H, Bin Abdulhak
|
|
A
|
|
et al. Efficacy and safety of transcatheter aortic valve replacement in intermediate surgical risk patients: A systematic review and meta-analysis. Catheterization and Cardiovascular Interventions. 2016; 88(6):934–944 [<a href="https://pubmed.ncbi.nlm.nih.gov/26946091" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26946091</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>189.</dt><dd><div class="bk_ref" id="niceng208er8.ref189">Khan
|
|
MR, Kayani
|
|
WT, Manan
|
|
M, Munir
|
|
A, Hamzeh
|
|
I, Virani
|
|
SS
|
|
et al. Comparison of surgical versus transcatheter aortic valve replacement for patients with aortic stenosis at low-intermediate risk. Cardiovascular Diagnosis & Therapy. 2020; 10(2):135–144 [<a href="/pmc/articles/PMC7225446/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7225446</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32420093" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32420093</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>190.</dt><dd><div class="bk_ref" id="niceng208er8.ref190">Khan
|
|
MS, Mir
|
|
T, Ullah
|
|
W, Ali
|
|
Z, Idris
|
|
O, Khan
|
|
G
|
|
et al. Comparing transcatheter aortic valve replacement (avr) with surgical avr in lower risk patients: A comprehensive meta-analysis and systematic review. Cardiology Research. 2020; 11(3):168–178 [<a href="/pmc/articles/PMC7239597/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7239597</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32494326" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32494326</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>191.</dt><dd><div class="bk_ref" id="niceng208er8.ref191">Khan
|
|
SU, Lone
|
|
AN, Saleem
|
|
MA, Kaluski
|
|
E. Transcatheter vs surgical aortic-valve replacement in low- to intermediate-surgical-risk candidates: A meta-analysis and systematic review. Clinical Cardiology. 2017; 40(11):974–981 [<a href="/pmc/articles/PMC6490337/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6490337</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29168984" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29168984</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>192.</dt><dd><div class="bk_ref" id="niceng208er8.ref192">Khan
|
|
SU, Riaz
|
|
H, Khan
|
|
MU, Zarak
|
|
MS, Khan
|
|
MZ, Khan
|
|
MS
|
|
et al. Meta-analysis of temporal and surgical risk dependent associations with outcomes after transcatheter versus surgical aortic valve implantation. American Journal of Cardiology. 2019; 124(10):1608–1614 [<a href="/pmc/articles/PMC7453964/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7453964</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31521258" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31521258</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>193.</dt><dd><div class="bk_ref" id="niceng208er8.ref193">Kheiri
|
|
B, Osman
|
|
M, Abubakar
|
|
H, Subahi
|
|
A, Chahine
|
|
A, Ahmed
|
|
S
|
|
et al. Transcatheter versus surgical aortic valve replacement in low-risk surgical patients: A meta-analysis of randomized clinical trials. Cardiovascular Revascularization Medicine. 2019; 20(10):838–842 [<a href="https://pubmed.ncbi.nlm.nih.gov/30638890" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30638890</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>194.</dt><dd><div class="bk_ref" id="niceng208er8.ref194">Kheiri
|
|
B, Osman
|
|
M, Bakhit
|
|
A, Radaideh
|
|
Q, Barbarawi
|
|
M, Zayed
|
|
Y
|
|
et al. Meta-analysis of transcatheter aortic valve replacement in low-risk patients
|
|
American Journal of Medicine. 2020; 133(2):e38–e41 [<a href="https://pubmed.ncbi.nlm.nih.gov/31295442" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31295442</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>195.</dt><dd><div class="bk_ref" id="niceng208er8.ref195">Kheiri
|
|
B, Zayed
|
|
Y, Barbarawi
|
|
M, Osman
|
|
M, Chahine
|
|
A, Ahmed
|
|
S
|
|
et al. Interventions for secondary mitral regurgitation in patients with heart failure: A network meta-analysis of randomized controlled comparisons of surgery, medical therapy & transcatheter intervention. Cardiovascular Revascularization Medicine. 2020; 21(2):155–163 [<a href="https://pubmed.ncbi.nlm.nih.gov/31201060" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31201060</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>196.</dt><dd><div class="bk_ref" id="niceng208er8.ref196">Khoshbin
|
|
E, Prayaga
|
|
S, Kinsella
|
|
J, Sutherland
|
|
FW. Mini-sternotomy for aortic valve replacement reduces the length of stay in the cardiac intensive care unit: meta-analysis of randomised controlled trials. BMJ Open. 2011; 1(2):e000266 [<a href="/pmc/articles/PMC3225590/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3225590</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22116090" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22116090</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>197.</dt><dd><div class="bk_ref" id="niceng208er8.ref197">Kim
|
|
CA, Rasania
|
|
SP, Afilalo
|
|
J, Popma
|
|
JJ, Lipsitz
|
|
LA, Kim
|
|
DH. Functional status and quality of life after transcatheter aortic valve replacement: a systematic review. Annals of Internal Medicine. 2014; 160(4):243–254 [<a href="/pmc/articles/PMC4039034/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4039034</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24727842" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24727842</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>198.</dt><dd><div class="bk_ref" id="niceng208er8.ref198">Kim
|
|
SJ, Samad
|
|
Z, Bloomfield
|
|
GS, Douglas
|
|
PS. A critical review of hemodynamic changes and left ventricular remodeling after surgical aortic valve replacement and percutaneous aortic valve replacement. American Heart Journal. 2014; 168(2):150–159.e157 [<a href="https://pubmed.ncbi.nlm.nih.gov/25066553" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25066553</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>199.</dt><dd><div class="bk_ref" id="niceng208er8.ref199">Kirklin
|
|
JW. Percutaneous balloon versus surgical closed commissurotomy for mitral stenosis. Circulation. 1991; 83(4):1450–1451 [<a href="https://pubmed.ncbi.nlm.nih.gov/2013161" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 2013161</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>200.</dt><dd><div class="bk_ref" id="niceng208er8.ref200">Kirmani
|
|
B, Jones
|
|
S, Malaisrie
|
|
S, Chung
|
|
D, Williams
|
|
R. Limited versus full sternotomy for aortic valve replacement. Cochrane Database of Systematic Reviews
|
|
2017, Issue 4. Art. No.: CD011793. DOI: 10.1002/14651858.CD011793.pub2. [<a href="/pmc/articles/PMC6478148/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6478148</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28394022" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28394022</span></a>] [<a href="http://dx.crossref.org/10.1002/14651858.CD011793.pub2" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>201.</dt><dd><div class="bk_ref" id="niceng208er8.ref201">Kodali
|
|
SHK, Nkomo
|
|
V, Svensson
|
|
L, Weissman
|
|
N, Cohen
|
|
D, Thourani. Outcomes of transcatheter aortic valve replacement versus standard therapy among women deemed too high risk for surgery in the PARTNER Trial. Journal of the American College of Cardiology. 2012; 60(17 Suppl B):B259</div></dd></dl><dl class="bkr_refwrap"><dt>202.</dt><dd><div class="bk_ref" id="niceng208er8.ref202">Kodali
|
|
SK, Williams
|
|
MR, Smith
|
|
CR, Svensson
|
|
LG, Webb
|
|
JG, Makkar
|
|
RR
|
|
et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. New England Journal of Medicine. 2012; 366(18):1686–1695 [<a href="https://pubmed.ncbi.nlm.nih.gov/22443479" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22443479</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>203.</dt><dd><div class="bk_ref" id="niceng208er8.ref203">Kodera
|
|
S, Kiyosue
|
|
A, Ando
|
|
J, Komuro
|
|
I. Cost effectiveness of transcatheter aortic valve implantation in patients with aortic stenosis in Japan. Journal of Cardiology. 2018; 71(3):223–229 [<a href="https://pubmed.ncbi.nlm.nih.gov/29153740" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29153740</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>204.</dt><dd><div class="bk_ref" id="niceng208er8.ref204">Kolkailah
|
|
AA, Doukky
|
|
R, Pelletier
|
|
MP, Kaneko
|
|
T, Nabhan
|
|
AF. Transcatheter versus surgical aortic valve replacement for severe aortic stenosis in people with low surgical risk. Cochrane Database of Systematic Reviews
|
|
2019, Issue 4. Art. No.: CD013319. DOI: 10.1002/14651858.CD013319. [<a href="/pmc/articles/PMC6984621/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6984621</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31860123" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31860123</span></a>] [<a href="http://dx.crossref.org/10.1002/14651858.CD013319" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>205.</dt><dd><div class="bk_ref" id="niceng208er8.ref205">Kolkailah
|
|
AA, Doukky
|
|
R, Pelletier
|
|
MP, Volgman
|
|
AS, Kaneko
|
|
T, Nabhan
|
|
AF. Transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis in people with low surgical risk. Cochrane Database of Systematic Reviews
|
|
2019, Issue 12. Art. No.: CD013319. DOI: 10.1002/14651858.CD013319.pub2. [<a href="/pmc/articles/PMC6984621/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6984621</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31860123" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31860123</span></a>] [<a href="http://dx.crossref.org/10.1002/14651858.CD013319.pub2" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>206.</dt><dd><div class="bk_ref" id="niceng208er8.ref206">Kolte
|
|
D, Vlahakes
|
|
GJ, Palacios
|
|
IF, Sakhuja
|
|
R, Passeri
|
|
JJ, Inglessis
|
|
I
|
|
et al. Transcatheter versus surgical aortic valve replacement in low-risk patients. Journal of the American College of Cardiology. 2019; 74(12):1532–1540 [<a href="https://pubmed.ncbi.nlm.nih.gov/31537261" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31537261</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>207.</dt><dd><div class="bk_ref" id="niceng208er8.ref207">Koshy
|
|
AN, Murphy
|
|
A, Farouque
|
|
O, Horrigan
|
|
M, Yudi
|
|
MB. Outcomes of transcatheter versus surgical aortic valve replacement in low-risk patients. Heart, Lung & Circulation. 2020; 29(10):1527–1533 [<a href="https://pubmed.ncbi.nlm.nih.gov/32280013" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32280013</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>208.</dt><dd><div class="bk_ref" id="niceng208er8.ref208">Kotronias
|
|
RA, Bray
|
|
JH, Scarsini
|
|
R, Rajasundaram
|
|
S, Terentes-Printzios
|
|
D, De Maria
|
|
GL
|
|
et al. Transcatheter aortic valve replacement and percutaneous coronary intervention versus surgical aortic valve replacement and coronary artery bypass grafting in patients with severe aortic stenosis and concomitant coronary artery disease: A systematic review and meta-analysis. Catheterization and Cardiovascular Interventions. 2020; 96(5):1113–1125 [<a href="https://pubmed.ncbi.nlm.nih.gov/32662594" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32662594</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>209.</dt><dd><div class="bk_ref" id="niceng208er8.ref209">Kuck
|
|
KH, Eggebrecht
|
|
H, Elsasser
|
|
A, Hamm
|
|
C, Haude
|
|
M, Ince
|
|
H
|
|
et al. Quality criteria for the implementation of transcatheter aortic valve implantation: update of the position paper of the German Cardiac Society. Kardiologe. 2016; 10(5):282–300</div></dd></dl><dl class="bkr_refwrap"><dt>210.</dt><dd><div class="bk_ref" id="niceng208er8.ref210">Kumar
|
|
A, Al-Khafaji
|
|
J, Shariff
|
|
M, Vaz
|
|
IP, Adalja
|
|
D, Doshi
|
|
R. Percutaneous mitral valve repair for secondary mitral valve regurgitation: A systematic review and meta-analysis. European Journal of Internal Medicine. 2020; 78:107–112 [<a href="https://pubmed.ncbi.nlm.nih.gov/32094019" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32094019</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>211.</dt><dd><div class="bk_ref" id="niceng208er8.ref211">Kumar
|
|
A, Shariff
|
|
M. Rate of reoperation at 1 year for aortic repair vs replacement in aortic regurgitation. A trial sequence analysis of published meta-analysis results. Journal of Cardiac Surgery. 2019; 34(8):714–716 [<a href="https://pubmed.ncbi.nlm.nih.gov/31376176" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31376176</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>212.</dt><dd><div class="bk_ref" id="niceng208er8.ref212">Latif
|
|
A, Lateef
|
|
N, Ahsan
|
|
MJ, Kapoor
|
|
V, Usman
|
|
RM, Cooper
|
|
S
|
|
et al. Transcatheter versus surgical aortic valve replacement in patients with cardiac surgery: Meta-analysis and systematic review of the literature. Journal of Cardiovascular Development & Disease. 2020; 7(3):10 [<a href="/pmc/articles/PMC7570107/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7570107</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32927705" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32927705</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>213.</dt><dd><div class="bk_ref" id="niceng208er8.ref213">Lau
|
|
KW, Ding
|
|
ZP, Hung
|
|
JS. Percutaneous transvenous mitral commissurotomy versus surgical commissurotomy in the treatment of mitral stenosis. Clinical Cardiology. 1997; 20(2):99–106 [<a href="/pmc/articles/PMC6656037/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6656037</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9034637" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 9034637</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>214.</dt><dd><div class="bk_ref" id="niceng208er8.ref214">Laule
|
|
M, Mattig
|
|
I, Schobel
|
|
C, Knebel
|
|
F, Lauten
|
|
A, Lembcke
|
|
A
|
|
et al. Inferior caval valve implantation versus optimal medical therapy for severe tricuspid regurgitation. Journal of the American College of Cardiology. 2019; 74(3):473–475 [<a href="https://pubmed.ncbi.nlm.nih.gov/31319922" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31319922</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>215.</dt><dd><div class="bk_ref" id="niceng208er8.ref215">Lazkani
|
|
M, Singh
|
|
N, Howe
|
|
C, Patel
|
|
N, Colon
|
|
MJ, Tasset
|
|
M
|
|
et al. An updated meta-analysis of TAVR in patients at intermediate risk for SAVR. Cardiovascular Revascularization Medicine. 2019; 20(1):57–69 [<a href="https://pubmed.ncbi.nlm.nih.gov/29748086" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29748086</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>216.</dt><dd><div class="bk_ref" id="niceng208er8.ref216">Leon
|
|
MB, Mack
|
|
MJ, Hahn
|
|
RT, Thourani
|
|
VH, Makkar
|
|
R, Kodali
|
|
SK
|
|
et al. Outcomes 2 Years After Transcatheter Aortic Valve Replacement in Patients at Low Surgical Risk. Journal of the American College of Cardiology. 2021; 77(9):1149–1161 [<a href="https://pubmed.ncbi.nlm.nih.gov/33663731" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 33663731</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>217.</dt><dd><div class="bk_ref" id="niceng208er8.ref217">Leon
|
|
MB, Smith
|
|
CR, Mack
|
|
M, Miller
|
|
DC, Moses
|
|
JW, Svensson
|
|
LG
|
|
et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. New England Journal of Medicine. 2010; 363(17):1597–1607 [<a href="https://pubmed.ncbi.nlm.nih.gov/20961243" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 20961243</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>218.</dt><dd><div class="bk_ref" id="niceng208er8.ref218">Leon
|
|
MB, Smith
|
|
CR, Mack
|
|
MJ, Makkar
|
|
RR, Svensson
|
|
LG, Kodali
|
|
SK
|
|
et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. New England Journal of Medicine. 2016; 374(17):1609–1620 [<a href="https://pubmed.ncbi.nlm.nih.gov/27040324" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27040324</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>219.</dt><dd><div class="bk_ref" id="niceng208er8.ref219">Ler
|
|
A, Ying
|
|
YJ, Sazzad
|
|
F, Choong
|
|
A, Kofidis
|
|
T. Structural durability of early-generation Transcatheter aortic valve replacement valves compared with surgical aortic valve replacement valves in heart valve surgery: a systematic review and meta-analysis. Journal of Cardiothoracic Surgery. 2020; 15(1):127 [<a href="/pmc/articles/PMC7278207/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7278207</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32513222" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32513222</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>220.</dt><dd><div class="bk_ref" id="niceng208er8.ref220">Levett
|
|
JY, Windle
|
|
SB, Filion
|
|
KB, Brunetti
|
|
VC, Eisenberg
|
|
MJ. Meta-analysis of transcatheter versus surgical aortic valve replacement in low surgical risk patients. American Journal of Cardiology. 2020; 125(8):1230–1238 [<a href="https://pubmed.ncbi.nlm.nih.gov/32089249" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32089249</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>221.</dt><dd><div class="bk_ref" id="niceng208er8.ref221">Lim
|
|
DS, Reynolds
|
|
MR, Feldman
|
|
T, Kar
|
|
S, Herrmann
|
|
HC, Wang
|
|
A
|
|
et al. Improved functional status and quality of life in prohibitive surgical risk patients with degenerative mitral regurgitation after transcatheter mitral valve repair. Journal of the American College of Cardiology. 2014; 64(2):182–192 [<a href="https://pubmed.ncbi.nlm.nih.gov/24184254" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24184254</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>222.</dt><dd><div class="bk_ref" id="niceng208er8.ref222">Lim
|
|
JY, Deo
|
|
SV, Altarabsheh
|
|
SE, Jung
|
|
SH, Erwin
|
|
PJ, Markowitz
|
|
AH
|
|
et al. Conventional versus minimally invasive aortic valve replacement: Pooled analysis of propensity-matched data. Journal of Cardiac Surgery. 2015; 30(2):125–134 [<a href="https://pubmed.ncbi.nlm.nih.gov/25533177" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25533177</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>223.</dt><dd><div class="bk_ref" id="niceng208er8.ref223">Lindman
|
|
BR, Pibarot
|
|
P, Arnold
|
|
SV, Suri
|
|
RM, McAndrew
|
|
TC, Maniar
|
|
HS
|
|
et al. Transcatheter versus surgical aortic valve replacement in patients with diabetes and severe aortic stenosis at high risk for surgery: an analysis of the PARTNER Trial (Placement of Aortic Transcatheter Valve). Journal of the American College of Cardiology. 2014; 63(11):1090–1099 [<a href="/pmc/articles/PMC3962709/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3962709</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24291272" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24291272</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>224.</dt><dd><div class="bk_ref" id="niceng208er8.ref224">Lindqvist
|
|
P, Holmgren
|
|
A, Zhao
|
|
Y, Henein
|
|
MY. Effect of pericardial repair after aortic valve replacement on septal and right ventricular function. International Journal of Cardiology. 2012; 155(3):388–393 [<a href="https://pubmed.ncbi.nlm.nih.gov/21112100" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21112100</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>225.</dt><dd><div class="bk_ref" id="niceng208er8.ref225">Little
|
|
SH, Oh
|
|
JK, Gillam
|
|
L, Sengupta
|
|
PP, Orsinelli
|
|
DA, Cavalcante
|
|
JL
|
|
et al. Self-expanding transcatheter aortic valve replacement versus surgical valve replacement in patients at high risk for surgery: A study of echocardiographic change and risk prediction. Circulation: Cardiovascular Interventions. 2016; 9(6):e003426 [<a href="https://pubmed.ncbi.nlm.nih.gov/27313280" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27313280</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>226.</dt><dd><div class="bk_ref" id="niceng208er8.ref226">Liu
|
|
Z, Kidney
|
|
E, Bem
|
|
D, Bramley
|
|
G, Bayliss
|
|
S, De Belder
|
|
MA
|
|
et al. Transcatheter aortic valve implantation for aortic stenosis in high surgical risk patients: A systematic review and meta-analysis. PloS One. 2018; 13(5):e0196877 [<a href="/pmc/articles/PMC5944928/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5944928</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29746546" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29746546</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>227.</dt><dd><div class="bk_ref" id="niceng208er8.ref227">Lloyd
|
|
D, Luc
|
|
JGY, Indja
|
|
BE, Leung
|
|
V, Wang
|
|
N, Phan
|
|
K. Transcatheter, sutureless and conventional aortic-valve replacement: A network meta-analysis of 16,432 patients. Journal of Thoracic Disease. 2019; 11(1):188–199 [<a href="/pmc/articles/PMC6384334/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6384334</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30863588" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30863588</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>228.</dt><dd><div class="bk_ref" id="niceng208er8.ref228">Lodhi
|
|
MU, Usman
|
|
MS, Siddiqi
|
|
TJ, Khan
|
|
MS, Khan
|
|
MAA, Khan
|
|
SU
|
|
et al. Percutaneous mitral valve repair versus optimal medical therapy in patients with functional mitral regurgitation: A systematic review and meta-analysis. Journal of Interventional Cardiology. 2019; 2019:2753146 [<a href="/pmc/articles/PMC6739764/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6739764</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31772521" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31772521</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>229.</dt><dd><div class="bk_ref" id="niceng208er8.ref229">Ludman
|
|
PF. UK national audit transcatheter aortic valve implantation - 1st April 2019 to 31st March 2020. Lutterworth, England. British Cardiovascular Intervention Society (BCIS), 2020.</div></dd></dl><dl class="bkr_refwrap"><dt>230.</dt><dd><div class="bk_ref" id="niceng208er8.ref230">Luo
|
|
X, Zhao
|
|
Z, Chai
|
|
H, Zhang
|
|
C, Liao
|
|
Y, Li
|
|
Q
|
|
et al. Efficacy of transcatheter aortic valve implantation in patients with aortic stenosis and reduced LVEF. A systematic review. Herz. 2015; 40(Suppl 2):168–180 [<a href="https://pubmed.ncbi.nlm.nih.gov/25712464" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25712464</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>231.</dt><dd><div class="bk_ref" id="niceng208er8.ref231">Luthra
|
|
S, Leiva-Juarez
|
|
MM, Ohri
|
|
SK. Surgical vs transfemoral aortic valve replacement in low-risk patients: An updated meta-analysis of trial and registry data. Journal of Cardiac Surgery. 2020; 35(9):2264–2274 [<a href="https://pubmed.ncbi.nlm.nih.gov/32652702" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32652702</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>232.</dt><dd><div class="bk_ref" id="niceng208er8.ref232">Lytvyn
|
|
L, Guyatt
|
|
GH, Manja
|
|
V, Siemieniuk
|
|
RA, Zhang
|
|
Y, Agoritsas
|
|
T
|
|
et al. Patient values and preferences on transcatheter or surgical aortic valve replacement therapy for aortic stenosis: a systematic review. BMJ Open. 2016; 6(9):e014327 [<a href="/pmc/articles/PMC5051506/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5051506</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27687903" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27687903</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>233.</dt><dd><div class="bk_ref" id="niceng208er8.ref233">Macedo
|
|
LGR, Kosmidou
|
|
I, Crowley
|
|
A, Alu
|
|
M, Praz
|
|
F, Chen
|
|
S. Impact of resting heart rate at 30 days following transcatheter or surgical aortic valve replacement and cardiovascular outcomes: Insights from the PARTNER 2 trial
|
|
Structural Heart. 2018; 2(5):441–447</div></dd></dl><dl class="bkr_refwrap"><dt>234.</dt><dd><div class="bk_ref" id="niceng208er8.ref234">Mächler
|
|
HE, Bergmann
|
|
P, Anelli-Monti
|
|
M, Dacar
|
|
D, Rehak
|
|
P, Knez
|
|
I
|
|
et al. Minimally invasive versus conventional aortic valve operations: a prospective study in 120 patients. Annals of Thoracic Surgery. 1999; 67(4):1001–1005 [<a href="https://pubmed.ncbi.nlm.nih.gov/10320242" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 10320242</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>235.</dt><dd><div class="bk_ref" id="niceng208er8.ref235">Mack
|
|
MJ, Abraham
|
|
WT, Lindenfeld
|
|
J, Bolling
|
|
SF, Feldman
|
|
TE, Grayburn
|
|
PA
|
|
et al. Cardiovascular outcomes assessment of the mitraclip in patients with heart failure and secondary mitral regurgitation: design and rationale of the COAPT trial. American Heart Journal. 2018; 205:1–11 [<a href="https://pubmed.ncbi.nlm.nih.gov/30134187" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30134187</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>236.</dt><dd><div class="bk_ref" id="niceng208er8.ref236">Mack
|
|
MJ, Leon
|
|
MB, Smith
|
|
CR, Miller
|
|
DC, Moses
|
|
JW, Tuzcu
|
|
EM
|
|
et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015; 385(9986):2477–2484 [<a href="https://pubmed.ncbi.nlm.nih.gov/25788234" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25788234</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>237.</dt><dd><div class="bk_ref" id="niceng208er8.ref237">Mack
|
|
MJ, Leon
|
|
MB, Thourani
|
|
VH, Makkar
|
|
R, Kodali
|
|
SK, Russo
|
|
M
|
|
et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. New England Journal of Medicine. 2019; 380(18):1695–1705 [<a href="https://pubmed.ncbi.nlm.nih.gov/30883058" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30883058</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>238.</dt><dd><div class="bk_ref" id="niceng208er8.ref238">Mack
|
|
MJ, Lindenfeld
|
|
J, Abraham
|
|
WT, Kar
|
|
S, Lim
|
|
DS, Mishell
|
|
JM
|
|
et al. 3-Year Outcomes of Transcatheter Mitral Valve Repair in Patients With Heart Failure. Journal of the American College of Cardiology. 2021; 77(8):1029–1040 [<a href="https://pubmed.ncbi.nlm.nih.gov/33632476" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 33632476</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>239.</dt><dd><div class="bk_ref" id="niceng208er8.ref239">Makkar
|
|
RR, Fontana
|
|
GP, Jilaihawi
|
|
H, Kapadia
|
|
S, Pichard
|
|
AD, Douglas
|
|
PS
|
|
et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. New England Journal of Medicine. 2012; 366(18):1696–1704 [<a href="https://pubmed.ncbi.nlm.nih.gov/22443478" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22443478</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>240.</dt><dd><div class="bk_ref" id="niceng208er8.ref240">Makkar
|
|
RR, Thourani
|
|
VH, Mack
|
|
MJ, Kodali
|
|
SK, Kapadia
|
|
S, Webb
|
|
JG
|
|
et al. Five-year outcomes of transcatheter or surgical aortic-valve replacement. New England Journal of Medicine. 2020; 382(9):799–809 [<a href="https://pubmed.ncbi.nlm.nih.gov/31995682" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31995682</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>241.</dt><dd><div class="bk_ref" id="niceng208er8.ref241">Malaisrie
|
|
SC, Hodson
|
|
RW, McAndrew
|
|
TC, Davidson
|
|
C, Swanson
|
|
J, Hahn
|
|
RT
|
|
et al. Outcomes after transcatheter and surgical aortic valve replacement in intermediate risk patients with preoperative mitral regurgitation: Analysis of PARTNER II randomized cohort. Structural Heart. 2018; 2(4):336–343</div></dd></dl><dl class="bkr_refwrap"><dt>242.</dt><dd><div class="bk_ref" id="niceng208er8.ref242">Malik
|
|
A, Asghar
|
|
M, Farman
|
|
T, Laiq
|
|
N, Shah
|
|
SMA, Khan
|
|
RA. Standard median sternotomy versus right anterolateral thoracotomy for mitral valve replacement. Journal of Medical Sciences (Peshawar). 2015; 23(1):42–45</div></dd></dl><dl class="bkr_refwrap"><dt>243.</dt><dd><div class="bk_ref" id="niceng208er8.ref243">Malik
|
|
AH, Zaid
|
|
S, Ahmad
|
|
H, Goldberg
|
|
J, Dutta
|
|
T, Undemir
|
|
C
|
|
et al. A meta-analysis of 1-year outcomes of transcatheter versus surgical aortic valve replacement in low-risk patients with severe aortic stenosis. Journal of Geriatric Cardiology. 2020; 17(1):43–50 [<a href="/pmc/articles/PMC7008096/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7008096</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32095133" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32095133</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>244.</dt><dd><div class="bk_ref" id="niceng208er8.ref244">Marmagkiolis
|
|
K, Hakeem
|
|
A, Ebersole
|
|
DG, Iliescu
|
|
C, Ates
|
|
I, Cilingiroglu
|
|
M. Clinical outcomes of percutaneous mitral valve repair with MitraClip for the management of functional mitral regurgitation. Catheterization and Cardiovascular Interventions. 2019; 94(6):820–826 [<a href="https://pubmed.ncbi.nlm.nih.gov/30938045" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30938045</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>245.</dt><dd><div class="bk_ref" id="niceng208er8.ref245">Martin
|
|
GP, Sperrin
|
|
M, Hulme
|
|
W, Ludman
|
|
PF, de Belder
|
|
MA, Toff
|
|
WD
|
|
et al. Relative survival after transcatheter aortic valve implantation: How do patients undergoing transcatheter aortic valve implantation fare relative to the general population?
|
|
Journal of the American Heart Association. 2017; 6(10):10.1161/JAHA.1117.007229 [<a href="/pmc/articles/PMC5721896/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5721896</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29042426" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29042426</span></a>] [<a href="http://dx.crossref.org/10.1161/JAHA.1117.007229" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>246.</dt><dd><div class="bk_ref" id="niceng208er8.ref246">Martin Gutierrez
|
|
E, Martinez Comendador
|
|
JM, Gualis Cardona
|
|
J, Maiorano
|
|
P, Castillo Pardo
|
|
L, Cuellas Ramon
|
|
C
|
|
et al. Transcatheter aortic valve implantation versus aortic valve replacement in intermediate surgical risk patients. Review of literature and meta-analysis. Cirugia Cardiovascular. 2018; 25(4):191–203</div></dd></dl><dl class="bkr_refwrap"><dt>247.</dt><dd><div class="bk_ref" id="niceng208er8.ref247">Matsuda
|
|
Y, Nai Fovino
|
|
L, Giacoppo
|
|
D, Scotti
|
|
A, Massussi
|
|
M, Ueshima
|
|
D
|
|
et al. Association between surgical risk and 30-day stroke after transcatheter versus surgical aortic valve replacement: a systematic review and meta-analysis. Catheterization and Cardiovascular Interventions. 2020; 10.1002/ccd.29105 [<a href="https://pubmed.ncbi.nlm.nih.gov/32584507" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32584507</span></a>] [<a href="http://dx.crossref.org/10.1002/ccd.29105" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>248.</dt><dd><div class="bk_ref" id="niceng208er8.ref248">Mauri
|
|
L, Foster
|
|
E, Glower
|
|
DD, Apruzzese
|
|
P, Massaro
|
|
JM, Herrmann
|
|
HC
|
|
et al. 4-year results of a randomized controlled trial of percutaneous repair versus surgery for mitral regurgitation. Journal of the American College of Cardiology. 2013; 62(4):317–328 [<a href="https://pubmed.ncbi.nlm.nih.gov/23665364" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23665364</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>249.</dt><dd><div class="bk_ref" id="niceng208er8.ref249">Mauri
|
|
L, Garg
|
|
P, Massaro
|
|
JM, Foster
|
|
E, Glower
|
|
D, Mehoudar
|
|
P
|
|
et al. The EVEREST II Trial: design and rationale for a randomized study of the evalve mitraclip system compared with mitral valve surgery for mitral regurgitation. American Heart Journal. 2010; 160(1):23–29 [<a href="https://pubmed.ncbi.nlm.nih.gov/20598968" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 20598968</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>250.</dt><dd><div class="bk_ref" id="niceng208er8.ref250">McCarthy
|
|
PM, Kislitsina
|
|
ON, Malaisrie
|
|
SC, Davidson
|
|
CJ. Transcatheter mitral valve replacement with intrepid. Interventional Cardiology Clinics. 2019; 8(3):287–294 [<a href="https://pubmed.ncbi.nlm.nih.gov/31078184" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31078184</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>251.</dt><dd><div class="bk_ref" id="niceng208er8.ref251">McNeely
|
|
CA, Vassileva
|
|
CM. Long-term outcomes of mitral valve repair versus replacement for degenerative disease: A systematic review. Current Cardiology Reviews. 2015; 11(2):157–162 [<a href="/pmc/articles/PMC4356723/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4356723</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25158683" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25158683</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>252.</dt><dd><div class="bk_ref" id="niceng208er8.ref252">Mealing
|
|
S, Feldman
|
|
T, Eaton
|
|
J, Singh
|
|
M, Scott
|
|
DA. Everest II High Risk Study based UK cost-effectiveness analysis of MitraClip in patients with severe Mitral Regurgitation ineligible for conventional repair/replacement surgery. Journal of Medical Economics. 2013; 16(11):1317–1326 [<a href="https://pubmed.ncbi.nlm.nih.gov/24040937" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24040937</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>253.</dt><dd><div class="bk_ref" id="niceng208er8.ref253">Medved
|
|
I, Anic
|
|
D, Ostric
|
|
M, Zrnic
|
|
B, Ivancic
|
|
A, Tomulic
|
|
V. Is mitral valve repair safe procedure in elderly patients?
|
|
Collegium Antropologicum. 2010; 34(Suppl. 2):213–215 [<a href="https://pubmed.ncbi.nlm.nih.gov/21302724" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21302724</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>254.</dt><dd><div class="bk_ref" id="niceng208er8.ref254">Mihos
|
|
CG, Santana
|
|
O. Mitral valve repair for ischemic mitral regurgitation: Lessons from the Cardiothoracic Surgical Trials Network randomized study. Journal of Thoracic Disease. 2016; 8(1):E94–E99 [<a href="/pmc/articles/PMC4740150/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4740150</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26904260" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26904260</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>255.</dt><dd><div class="bk_ref" id="niceng208er8.ref255">Mihos
|
|
CG, Yucel
|
|
E, Santana
|
|
O. A systematic review and meta-analysis of chordal replacement versus leaflet resection for isolated posterior mitral valve prolapse. Journal of Cardiovascular Surgery. 2017; 58(5):779–786 [<a href="https://pubmed.ncbi.nlm.nih.gov/28124513" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28124513</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>256.</dt><dd><div class="bk_ref" id="niceng208er8.ref256">Miller
|
|
DC, Blackstone
|
|
EH, Mack
|
|
MJ, Svensson
|
|
LG, Kodali
|
|
SK, Kapadia
|
|
S
|
|
et al. Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial. Journal of Thoracic and Cardiovascular Surgery. 2012; 143(4):832–843.e813 [<a href="https://pubmed.ncbi.nlm.nih.gov/22424519" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22424519</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>257.</dt><dd><div class="bk_ref" id="niceng208er8.ref257">Ministère des Solidarités et de la Santé. Décision du 24 janvier 2018 fixant le tarif de responsabilité et le prix limite de vente au public (PLV) en euros TTC des valves percutanées de la gamme SAPIEN inscrites sur la liste visée à l’article L. 165-1 du code de la sécurité sociale. NOR: SSAS1803616S. Paris, France. Journal officiel de la République française, 2018. Available from: <a href="https://www.legifrance.gouv.fr/eli/decision/2018/1/24/SSAS1803616S/jo/texte" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">https://www<wbr style="display:inline-block"></wbr>​.legifrance<wbr style="display:inline-block"></wbr>​.gouv.fr/eli/decision<wbr style="display:inline-block"></wbr>​/2018/1/24/SSAS1803616S/jo/texte</a></div></dd></dl><dl class="bkr_refwrap"><dt>258.</dt><dd><div class="bk_ref" id="niceng208er8.ref258">Mobinizadeh
|
|
M, Olyaeemanesh
|
|
A, Zargar
|
|
S, Ghiasvand
|
|
H, Akbarisari
|
|
A. The application of mitraclip in the treatment of mitral regurgitation: a clinical policy. Shiraz E-Medical Journal. 2018; 19(6):e64244</div></dd></dl><dl class="bkr_refwrap"><dt>259.</dt><dd><div class="bk_ref" id="niceng208er8.ref259">Modi
|
|
P, Hassan
|
|
A, Chitwood
|
|
WR, Jr. Minimally invasive mitral valve surgery: a systematic review and meta-analysis. European Journal of Cardio-Thoracic Surgery. 2008; 34(5):943–952 [<a href="https://pubmed.ncbi.nlm.nih.gov/18829343" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 18829343</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>260.</dt><dd><div class="bk_ref" id="niceng208er8.ref260">Mohammadi
|
|
M, Hill
|
|
C, Chaney
|
|
S. Is transcatheter aortic valve replacement a safe treatment for elderly patients with severe aortic valve stenosis?
|
|
Journal of the American Association of Nurse Practitioners. 2016; 28(7):387–392 [<a href="https://pubmed.ncbi.nlm.nih.gov/26728319" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26728319</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>261.</dt><dd><div class="bk_ref" id="niceng208er8.ref261">Mohananey
|
|
D, Sengodan
|
|
P, Banerjee
|
|
K, Kumar
|
|
A, Jobanputra
|
|
Y, Sankaramangalam
|
|
K
|
|
et al. Comparative analysis of cerebrovascular events in transcatheter and surgical aortic valve replacement: A systematic review and meta-analysis of randomised trials. EuroIntervention. 2018; 14(1):69–77 [<a href="https://pubmed.ncbi.nlm.nih.gov/29437037" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29437037</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>262.</dt><dd><div class="bk_ref" id="niceng208er8.ref262">Momtahen
|
|
M, Mohebbi
|
|
A, Kiavar
|
|
M, Tabatabaie
|
|
MB, Basiri
|
|
HA, Noohi
|
|
F
|
|
et al. Short term clinical outcome of percutaneous balloon mitral valvuloplasty versus surgical closed mitral commissurotomy. Medical Journal of the Islamic Republic of Iran. 1997; 10(4):259–262</div></dd></dl><dl class="bkr_refwrap"><dt>263.</dt><dd><div class="bk_ref" id="niceng208er8.ref263">Moore
|
|
M, Barnhart
|
|
GR, Chitwood
|
|
WR, Rizzo
|
|
JA, Gunnarsson
|
|
C, Palli
|
|
SR
|
|
et al. The economic value of INTUITY in aortic valve replacement. Journal of Medical Economics. 2016; 19(10):1011–1017 [<a href="https://pubmed.ncbi.nlm.nih.gov/27549435" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27549435</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>264.</dt><dd><div class="bk_ref" id="niceng208er8.ref264">Moscarelli
|
|
M, Fattouch
|
|
K, Gaudino
|
|
M, Nasso
|
|
G, Paparella
|
|
D, Punjabi
|
|
P
|
|
et al. Minimal access versus sternotomy for complex mitral valve repair: A meta-analysis. Annals of Thoracic Surgery. 2020; 109(3):737–744 [<a href="https://pubmed.ncbi.nlm.nih.gov/31479637" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31479637</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>265.</dt><dd><div class="bk_ref" id="niceng208er8.ref265">Moustafa
|
|
MA, Abdelsamad
|
|
AA, Zakaria
|
|
G, Omarah
|
|
MM. Minimal vs median sternotomy for aortic valve replacement. Asian Cardiovascular & Thoracic Annals. 2007; 15(6):472–475 [<a href="https://pubmed.ncbi.nlm.nih.gov/18042770" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 18042770</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>266.</dt><dd><div class="bk_ref" id="niceng208er8.ref266">Murphy
|
|
A, Fenwick
|
|
E, Toff
|
|
WD, Neilson
|
|
MP, Berry
|
|
C, Uren
|
|
N
|
|
et al. Transcatheter aortic valve implantation for severe aortic stenosis: the cost-effectiveness case for inoperable patients in the United Kingdom. International Journal of Technology Assessment in Health Care. 2013; 29(1):12–19 [<a href="https://pubmed.ncbi.nlm.nih.gov/23298511" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23298511</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>267.</dt><dd><div class="bk_ref" id="niceng208er8.ref267">Murtuza
|
|
B, Pepper
|
|
JR, Stanbridge
|
|
RD, Darzi
|
|
A, Athanasiou
|
|
T. Does minimal-access aortic valve replacement reduce the incidence of postoperative atrial fibrillation?
|
|
Texas Heart Institute Journal. 2008; 35(4):428–438 [<a href="/pmc/articles/PMC2607094/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC2607094</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19156237" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 19156237</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>268.</dt><dd><div class="bk_ref" id="niceng208er8.ref268">Murtuza
|
|
B, Pepper
|
|
JR, Stanbridge
|
|
RD, Jones
|
|
C, Rao
|
|
C, Darzi
|
|
A
|
|
et al. Minimal access aortic valve replacement: is it worth it?
|
|
Annals of Thoracic Surgery. 2008; 85(3):1121–1131 [<a href="https://pubmed.ncbi.nlm.nih.gov/18291224" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 18291224</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>269.</dt><dd><div class="bk_ref" id="niceng208er8.ref269">Nagaraja
|
|
V, Raval
|
|
J, Eslick
|
|
GD, Ong
|
|
ATL. Transcatheter versus surgical aortic valve replacement: A systematic review and meta-analysis of randomised and non-randomised trials. Open Heart. 2014; 1:e000013 [<a href="/pmc/articles/PMC4189306/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4189306</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25332780" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25332780</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>270.</dt><dd><div class="bk_ref" id="niceng208er8.ref270">Nair
|
|
SK, Sudarshan
|
|
CD, Thorpe
|
|
BS, Singh
|
|
J, Pillay
|
|
T, Catarino
|
|
P
|
|
et al. Mini-Stern Trial: A randomized trial comparing mini-sternotomy to full median sternotomy for aortic valve replacement. Journal of Thoracic and Cardiovascular Surgery. 2018; 156(6):2124–2132.e2131 [<a href="https://pubmed.ncbi.nlm.nih.gov/30075959" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30075959</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>271.</dt><dd><div class="bk_ref" id="niceng208er8.ref271">Nappi
|
|
F, Antoniou
|
|
GA, Nenna
|
|
A, Michler
|
|
R, Benedetto
|
|
U, Avtaar Singh
|
|
SS
|
|
et al. Treatment options for ischemic mitral regurgitation: A meta-analysis. Journal of Thoracic and Cardiovascular Surgery. 2020; 10.1016/j.jtcvs.2020.05.041 [<a href="https://pubmed.ncbi.nlm.nih.gov/32713629" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32713629</span></a>] [<a href="http://dx.crossref.org/10.1016/j.jtcvs.2020.05.041" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>272.</dt><dd><div class="bk_ref" id="niceng208er8.ref272">Nappi
|
|
F, Avtaar Singh
|
|
SS, Padala
|
|
M, Attias
|
|
D, Nejjari
|
|
M, Mihos
|
|
CG
|
|
et al. The choice of treatment in ischemic mitral regurgitation with reduced left ventricular function. Annals of Thoracic Surgery. 2019; 108(6):1901–1912 [<a href="/pmc/articles/PMC7424599/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7424599</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31445916" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31445916</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>273.</dt><dd><div class="bk_ref" id="niceng208er8.ref273">Nasso
|
|
G, Bonifazi
|
|
R, Romano
|
|
V, Bartolomucci
|
|
F, Rosano
|
|
G, Massari
|
|
F
|
|
et al. Three-year results of repaired Barlow mitral valves via right minithoracotomy versus median sternotomy in a randomized trial. Cardiology. 2014; 128(2):97–105 [<a href="https://pubmed.ncbi.nlm.nih.gov/24714349" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24714349</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>274.</dt><dd><div class="bk_ref" id="niceng208er8.ref274">National Institute for Health and Care Excellence. Developing NICE guidelines: the manual [updated 2020]. London. National Institute for Health and Care Excellence, 2014. Available from: <a href="http://www.nice.org.uk/article/PMG20/chapter/1%20Introduction%20and%20overview" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">http://www<wbr style="display:inline-block"></wbr>​.nice.org.uk<wbr style="display:inline-block"></wbr>​/article/PMG20/chapter<wbr style="display:inline-block"></wbr>​/1%20Introduction%20and%20overview</a> [<a href="https://pubmed.ncbi.nlm.nih.gov/26677490" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26677490</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>275.</dt><dd><div class="bk_ref" id="niceng208er8.ref275">Nemec
|
|
P, Ondrasek
|
|
J, Malik
|
|
P, Tretina
|
|
M, Pokorny
|
|
P, Poloczek
|
|
M
|
|
et al. Comparison of the surgical and transcatheter aortic valve replacement in high-risk patients. Cor et Vasa. 2012; 54(2):E76–E83</div></dd></dl><dl class="bkr_refwrap"><dt>276.</dt><dd><div class="bk_ref" id="niceng208er8.ref276">Neyt
|
|
M, Van Brabandt
|
|
H, Devriese
|
|
S, Van De Sande
|
|
S. A cost-utility analysis of transcatheter aortic valve implantation in Belgium: focusing on a well-defined and identifiable population. BMJ Open. 2012; 2(3):e001032 [<a href="/pmc/articles/PMC3358616/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3358616</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22561354" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22561354</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>277.</dt><dd><div class="bk_ref" id="niceng208er8.ref277">Ngo
|
|
A, Hassager
|
|
C, Thyregod
|
|
HGH, Søndergaard
|
|
L, Olsen
|
|
PS, Steinbrüchel
|
|
D
|
|
et al. Differences in left ventricular remodelling in patients with aortic stenosis treated with transcatheter aortic valve replacement with corevalve prostheses compared to surgery with porcine or bovine biological prostheses. European Heart Journal Cardiovascular Imaging. 2018; 19(1):39–46 [<a href="https://pubmed.ncbi.nlm.nih.gov/28158582" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28158582</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>278.</dt><dd><div class="bk_ref" id="niceng208er8.ref278">Nielsen
|
|
HH. Transcatheter aortic valve implantation. Danish Medical Journal. 2012; 59(12):B4556 [<a href="https://pubmed.ncbi.nlm.nih.gov/23290293" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23290293</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>279.</dt><dd><div class="bk_ref" id="niceng208er8.ref279">Nielsen
|
|
HH, Klaaborg
|
|
KE, Nissen
|
|
H, Terp
|
|
K, Mortensen
|
|
PE, Kjeldsen
|
|
BJ
|
|
et al. A prospective, randomised trial of transapical transcatheter aortic valve implantation vs. surgical aortic valve replacement in operable elderly patients with aortic stenosis: the STACCATO trial. EuroIntervention. 2012; 8(3):383–389 [<a href="https://pubmed.ncbi.nlm.nih.gov/22581299" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22581299</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>280.</dt><dd><div class="bk_ref" id="niceng208er8.ref280">Norwegian Institue of Public Health. Health technology assessment: Transcatether aortic valve implantation (TAVI) as treatment of patients with severe aortic stenosis and intermediate surgical risk – Part 2. Health economic evaluation. 2019. Available from: <a href="https://www.fhi.no/en/publ/2019/Transcatether-aortic-valve-implantation-as-treatment-of-patients-with-severe-aortic-stenosis-and-intermediate-surgical-risk/" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">https://www<wbr style="display:inline-block"></wbr>​.fhi.no/en<wbr style="display:inline-block"></wbr>​/publ/2019/Transcatether-aortic-valve-implantation-as-treatment-of-patients-with-severe-aortic-stenosis-and-intermediate-surgical-risk/</a></div></dd></dl><dl class="bkr_refwrap"><dt>281.</dt><dd><div class="bk_ref" id="niceng208er8.ref281">Obadia
|
|
JF, Armoiry
|
|
X, Iung
|
|
B, Lefèvre
|
|
T, Mewton
|
|
N, Messika-Zeitoun
|
|
D
|
|
et al. The MITRA-FR study: design and rationale of a randomised study of percutaneous mitral valve repair compared with optimal medical management alone for severe secondary mitral regurgitation. EuroIntervention. 2015; 10(11):1354–1360 [<a href="https://pubmed.ncbi.nlm.nih.gov/25798568" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25798568</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>282.</dt><dd><div class="bk_ref" id="niceng208er8.ref282">Obadia
|
|
JF, Messika-Zeitoun
|
|
D, Leurent
|
|
G, Iung
|
|
B, Bonnet
|
|
G, Piriou
|
|
N
|
|
et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. New England Journal of Medicine. 2018; 379(24):2297–2306 [<a href="https://pubmed.ncbi.nlm.nih.gov/30145927" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30145927</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>283.</dt><dd><div class="bk_ref" id="niceng208er8.ref283">Okada
|
|
DR, Rahmouni
|
|
HW, Herrmann
|
|
HC, Bavaria
|
|
JE, Forfia
|
|
PR, Han
|
|
Y. Assessment of right ventricular function by transthoracic echocardiography following aortic valve replacement. Echocardiography. 2014; 31(5):552–557 [<a href="https://pubmed.ncbi.nlm.nih.gov/24304365" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24304365</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>284.</dt><dd><div class="bk_ref" id="niceng208er8.ref284">Oldham
|
|
MA, Vachon
|
|
J, Yuh
|
|
D, Lee
|
|
HB. Cognitive outcomes after heart valve surgery: A systematic review and meta-analysis. Journal of the American Geriatrics Society. 2018; 66(12):2327–2334 [<a href="https://pubmed.ncbi.nlm.nih.gov/30307031" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30307031</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>285.</dt><dd><div class="bk_ref" id="niceng208er8.ref285">Olmos
|
|
A, Gjardo
|
|
J, Seguel
|
|
I, Ghyra
|
|
A, Santander
|
|
C, Lama
|
|
A
|
|
et al. Randomized prospective study comparing percutaneous mitral valvuloplasty and mitral commissurotomy with cardiopulmonary bypass for the treatment of mitral stenosis. Preliminary results. Revista Chilena de Cardiología. 1992; 11(4):220</div></dd></dl><dl class="bkr_refwrap"><dt>286.</dt><dd><div class="bk_ref" id="niceng208er8.ref286">Olmos
|
|
A, Seguel
|
|
I, Gajardo
|
|
J, Ghyra
|
|
A, Santander
|
|
C, Alarcón
|
|
E
|
|
et al. Percutaneous mitral valvuloplasty and open mitral commissurotomy: comparison of 2 techniques in immediate results. Revista Medica de Chile. 1994; 122(3):274–282 [<a href="https://pubmed.ncbi.nlm.nih.gov/7809517" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 7809517</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>287.</dt><dd><div class="bk_ref" id="niceng208er8.ref287">Olmos
|
|
A, Seguel
|
|
I, Gajardo
|
|
J, Gyhra
|
|
A, Santander
|
|
C, Alarcón
|
|
E
|
|
et al. Comparing long-term results between percutaneous mitral valvuloplasty and surgical commissurotomy for mitral stenosis. Revista Chilena de Cardiología. 1999; 18(3):131–132</div></dd></dl><dl class="bkr_refwrap"><dt>288.</dt><dd><div class="bk_ref" id="niceng208er8.ref288">Ontario Health (Quality). Transcatheter aortic valve implantation in patients with severe, symptomatic aortic valve stenosis at intermediate surgical risk: A health technology assessment. Ontario Health Technology Assessment Series. 2020; 20(2):1–121 [<a href="/pmc/articles/PMC7080451/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7080451</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32194880" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32194880</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>289.</dt><dd><div class="bk_ref" id="niceng208er8.ref289">Organisation for Economic Co-operation and Development (OECD). Purchasing power parities (PPP). Available from: <a href="http://www.oecd.org/sdd/prices-ppp/" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">http://www<wbr style="display:inline-block"></wbr>​.oecd.org/sdd/prices-ppp/</a> Last accessed: 18/11/2020.</div></dd></dl><dl class="bkr_refwrap"><dt>290.</dt><dd><div class="bk_ref" id="niceng208er8.ref290">Orlando
|
|
R, Pennant
|
|
M, Rooney
|
|
S, Khogali
|
|
S, Bayliss
|
|
S, Hassan
|
|
A
|
|
et al. Cost-effectiveness of transcatheter aortic valve implantation (TAVI) for aortic stenosis in patients who are high risk or contraindicated for surgery: a model-based economic evaluation. Health Technology Assessment. 2013; 17(33) [<a href="/pmc/articles/PMC4781377/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4781377</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23948359" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23948359</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>291.</dt><dd><div class="bk_ref" id="niceng208er8.ref291">Pagnesi
|
|
M, Chiarito
|
|
M, Stefanini
|
|
GG, Testa
|
|
L, Reimers
|
|
B, Colombo
|
|
A
|
|
et al. Is transcatheter aortic valve replacement superior to surgical aortic valve replacement?: A meta-analysis of randomized controlled trials. JACC: Cardiovascular Interventions. 2017; 10(18):1899–1901 [<a href="https://pubmed.ncbi.nlm.nih.gov/28935083" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28935083</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>292.</dt><dd><div class="bk_ref" id="niceng208er8.ref292">Panchal
|
|
HB, Ladia
|
|
V, Desai
|
|
S, Shah
|
|
T, Ramu
|
|
V. A meta-analysis of mortality and major adverse cardiovascular and cerebrovascular events following transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis. American Journal of Cardiology. 2013; 112(6):850–860 [<a href="https://pubmed.ncbi.nlm.nih.gov/23756547" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23756547</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>293.</dt><dd><div class="bk_ref" id="niceng208er8.ref293">Panchal
|
|
HB, Leon
|
|
MB, Kirtane
|
|
AJ, Kodali
|
|
SK, McCarthy
|
|
P, Davidson
|
|
CJ
|
|
et al. Transcatheter versus surgical aortic valve replacement in patients with moderate to severe chronic kidney disease: A systematic review and analysis. Structural Heart. 2018; 2(2):129–136</div></dd></dl><dl class="bkr_refwrap"><dt>294.</dt><dd><div class="bk_ref" id="niceng208er8.ref294">Panoulas
|
|
VF, Francis
|
|
DP, Ruparelia
|
|
N, Malik
|
|
IS, Chukwuemeka
|
|
A, Sen
|
|
S
|
|
et al. Female-specific survival advantage from transcatheter aortic valve implantation over surgical aortic valve replacement: meta-analysis of the gender subgroups of randomised controlled trials including 3758 patients. International Journal of Cardiology. 2018; 250:66–72 [<a href="https://pubmed.ncbi.nlm.nih.gov/29169764" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29169764</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>295.</dt><dd><div class="bk_ref" id="niceng208er8.ref295">Passeri
|
|
JJ, Elmariah
|
|
S, Xu
|
|
K, Inglessis
|
|
I, Baker
|
|
JN, Alu
|
|
M
|
|
et al. Transcatheter aortic valve replacement and standard therapy in inoperable patients with aortic stenosis and low EF. Heart. 2015; 101(6):463–471 [<a href="https://pubmed.ncbi.nlm.nih.gov/25586156" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25586156</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>296.</dt><dd><div class="bk_ref" id="niceng208er8.ref296">Patel
|
|
JJ, Shama
|
|
D, Mitha
|
|
AS, Blyth
|
|
D, Hassen
|
|
F, Le Roux
|
|
BT
|
|
et al. Balloon valvuloplasty versus closed commissurotomy for pliable mitral stenosis: A prospective hemodynamic study. Journal of the American College of Cardiology. 1991; 18(5):1318–1322 [<a href="https://pubmed.ncbi.nlm.nih.gov/1918709" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 1918709</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>297.</dt><dd><div class="bk_ref" id="niceng208er8.ref297">Perrault
|
|
LP, Moskowitz
|
|
AJ, Kron
|
|
IL, Acker
|
|
MA, Miller
|
|
MA, Horvath
|
|
KA
|
|
et al. Optimal surgical management of severe ischemic mitral regurgitation: to repair or to replace?
|
|
Journal of Thoracic and Cardiovascular Surgery. 2012; 143(6):1396–1403 [<a href="/pmc/articles/PMC4052705/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4052705</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22054660" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22054660</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>298.</dt><dd><div class="bk_ref" id="niceng208er8.ref298">Phan
|
|
K, Xie
|
|
A, Di Eusanio
|
|
M, Yan
|
|
TD. A meta-analysis of minimally invasive versus conventional sternotomy for aortic valve replacement. Annals of Thoracic Surgery. 2014; 98(4):1499–1511 [<a href="https://pubmed.ncbi.nlm.nih.gov/25064516" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25064516</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>299.</dt><dd><div class="bk_ref" id="niceng208er8.ref299">Phan
|
|
K, Xie
|
|
A, Tsai
|
|
YC, Black
|
|
D, Di Eusanio
|
|
M, Yan
|
|
TD. Ministernotomy or minithoracotomy for minimally invasive aortic valve replacement: a Bayesian network meta-analysis. Annals of Cardiothoracic Surgery. 2015; 4(1):3–14 [<a href="/pmc/articles/PMC4311162/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4311162</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25694971" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25694971</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>300.</dt><dd><div class="bk_ref" id="niceng208er8.ref300">Phankingthongkum
|
|
R, Chotinaiwattarakul
|
|
C, Panchavinnin
|
|
P, Tresukosol
|
|
D, Jakrapanichakul
|
|
D, Sahasakul
|
|
Y
|
|
et al. Efficacy and safety of percutaneous metallic mitral valvuloplasty in rheumatic mitral stenosis at Siriraj Hospital. Journal of the Medical Association of Thailand. 2002; 85(4):405–415 [<a href="https://pubmed.ncbi.nlm.nih.gov/12118486" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 12118486</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>301.</dt><dd><div class="bk_ref" id="niceng208er8.ref301">Philip
|
|
F, Athappan
|
|
G, Tuzcu
|
|
EM, Svensson
|
|
LG, Kapadia
|
|
SR. MitraClip for severe symptomatic mitral regurgitation in patients at high surgical risk: A comprehensive systematic review. Catheterization and Cardiovascular Interventions. 2014; 84(4):581–590 [<a href="https://pubmed.ncbi.nlm.nih.gov/24905665" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24905665</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>302.</dt><dd><div class="bk_ref" id="niceng208er8.ref302">Pibarot
|
|
P, Salaun
|
|
E, Dahou
|
|
A, Avenatti
|
|
E, Guzzetti
|
|
E, Annabi
|
|
MS
|
|
et al. Echocardiographic results of transcatheter versus surgical aortic valve replacement in low-risk patients: The PARTNER 3 trial. Circulation. 2020; 141(19):1527–1537 [<a href="https://pubmed.ncbi.nlm.nih.gov/32272848" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32272848</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>303.</dt><dd><div class="bk_ref" id="niceng208er8.ref303">Pibarot
|
|
P, Weissman
|
|
NJ, Stewart
|
|
WJ, Hahn
|
|
RT, Lindman
|
|
BR, McAndrew
|
|
T
|
|
et al. Incidence and sequelae of prosthesis-patient mismatch in transcatheter versus surgical valve replacement in high-risk patients with severe aortic stenosis: a PARTNER trial cohort--a analysis. Journal of the American College of Cardiology. 2014; 64(13):1323–1334 [<a href="/pmc/articles/PMC4237285/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4237285</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25257633" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25257633</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>304.</dt><dd><div class="bk_ref" id="niceng208er8.ref304">Pinar
|
|
E, Garcia de Lara
|
|
J, Hurtado
|
|
J, Robles
|
|
M, Leithold
|
|
G, Marti-Sanchez
|
|
B
|
|
et al. Cost-effectiveness analysis of the SAPIEN 3 transcatheter aortic valve implant in patients with symptomatic severe aortic stenosis. Rev Esp Cardiol (Engl Ed). 2021; [<a href="https://pubmed.ncbi.nlm.nih.gov/34016548" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 34016548</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>305.</dt><dd><div class="bk_ref" id="niceng208er8.ref305">Pineda
|
|
AM, Kevin Harrison
|
|
J, Kleiman
|
|
NS, Reardon
|
|
MJ, Conte
|
|
JV, O’Hair
|
|
DP
|
|
et al. Clinical impact of baseline chronic kidney disease in patients undergoing transcatheter or surgical aortic valve replacement. Catheterization and Cardiovascular Interventions. 2019; 93(4):740–748 [<a href="https://pubmed.ncbi.nlm.nih.gov/30341970" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30341970</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>306.</dt><dd><div class="bk_ref" id="niceng208er8.ref306">Piriou
|
|
N, Al Habash
|
|
O, Donal
|
|
E, Senage
|
|
T, Le Tourneau
|
|
T, Pattier
|
|
S
|
|
et al. The MITRA-HR study: design and rationale of a randomised study of MITRACLIP transcatheter mitral valve repair in patients with severe primary mitral regurgitation eligible for high-risk surgery. EuroIntervention. 2019; 15:e329–e335 [<a href="https://pubmed.ncbi.nlm.nih.gov/30987963" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30987963</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>307.</dt><dd><div class="bk_ref" id="niceng208er8.ref307">Polimeni
|
|
A, Sorrentino
|
|
S, De Rosa
|
|
S, Spaccarotella
|
|
C, Mongiardo
|
|
A, Sabatino
|
|
J
|
|
et al. Transcatheter versus surgical aortic valve replacement in low-risk patients for the treatment of severe aortic stenosis. Journal of Clinical Medicine. 2020; 9(2):439 [<a href="/pmc/articles/PMC7074202/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7074202</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32041189" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32041189</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>308.</dt><dd><div class="bk_ref" id="niceng208er8.ref308">Popma
|
|
JJ, Michael Deeb
|
|
G, Yakubov
|
|
SJ, Mumtaz
|
|
M, Gada
|
|
H, O’Hair
|
|
D
|
|
et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. New England Journal of Medicine. 2019; 380(18):1706–1715 [<a href="https://pubmed.ncbi.nlm.nih.gov/30883053" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30883053</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>309.</dt><dd><div class="bk_ref" id="niceng208er8.ref309">Povero
|
|
M, Miceli
|
|
A, Pradelli
|
|
L, Ferrarini
|
|
M, Pinciroli
|
|
M, Glauber
|
|
M. Cost-utility of surgical sutureless bioprostheses vs TAVI in aortic valve replacement for patients at intermediate and high surgical risk. Clinicoeconomics & Outcomes Research. 2018; 10:733–745 [<a href="/pmc/articles/PMC6231515/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6231515</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30510436" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30510436</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>310.</dt><dd><div class="bk_ref" id="niceng208er8.ref310">Powell
|
|
R, Pelletier
|
|
MP, Chu
|
|
MWA, Bouchard
|
|
D, Melvin
|
|
KN, Adams
|
|
C. The perceval sutureless aortic valve review of outcomes, complications, and future direction. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2017; 12(3):155–173 [<a href="https://pubmed.ncbi.nlm.nih.gov/28570342" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28570342</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>311.</dt><dd><div class="bk_ref" id="niceng208er8.ref311">Praz
|
|
F, Siontis
|
|
GCM, Verma
|
|
S, Windecker
|
|
S, Juni
|
|
P. Latest evidence on transcatheter aortic valve implantation vs. surgical aortic valve replacement for the treatment of aortic stenosis in high and intermediate-risk patients. Current Opinion in Cardiology. 2017; 32(2):117–122 [<a href="https://pubmed.ncbi.nlm.nih.gov/28079554" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28079554</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>312.</dt><dd><div class="bk_ref" id="niceng208er8.ref312">Qureshi
|
|
SH, Boulemden
|
|
A, Szafranek
|
|
A, Vohra
|
|
H. Meta-analysis of sutureless technology versus standard aortic valve replacement and transcatheter aortic valve replacement. European Journal of Cardio-Thoracic Surgery. 2018; 53(2):463–471 [<a href="https://pubmed.ncbi.nlm.nih.gov/28957996" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28957996</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>313.</dt><dd><div class="bk_ref" id="niceng208er8.ref313">Raja
|
|
SG, Navaratnarajah
|
|
M. Impact of minimal access valve surgery on clinical outcomes: current best available evidence. Journal of Cardiac Surgery. 2009; 24(1):73–79 [<a href="https://pubmed.ncbi.nlm.nih.gov/19120680" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 19120680</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>314.</dt><dd><div class="bk_ref" id="niceng208er8.ref314">Rajani
|
|
R. In people with severe aortic stenosis unsuitable for surgery transcatheter aortic valve implantation reduces 1-year mortality compared with standard care. Evidence-Based Medicine. 2011; 16(3):74–75 [<a href="https://pubmed.ncbi.nlm.nih.gov/21228050" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21228050</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>315.</dt><dd><div class="bk_ref" id="niceng208er8.ref315">Rau
|
|
S, Wessely
|
|
M, Lange
|
|
P, Kupatt
|
|
C, Steinbeck
|
|
G, Fischereder
|
|
M
|
|
et al. Transcatheter aortic valve implantation in dialysis patients. Nephron. 2012; 120(2):c86–90 [<a href="https://pubmed.ncbi.nlm.nih.gov/22377618" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22377618</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>316.</dt><dd><div class="bk_ref" id="niceng208er8.ref316">Rawasia
|
|
WF, Usman
|
|
MS, Mujeeb
|
|
FA, Zafar
|
|
M, Khan
|
|
SU, Alkhouli
|
|
M. Transcatheter versus surgical aortic valve replacement in low-surgical-risk patients: A meta-analysis of randomized-controlled trials and propensity-matched studies. Cardiovascular Revascularization Medicine. 2020; 21(5):612–618 [<a href="https://pubmed.ncbi.nlm.nih.gov/31672536" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31672536</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>317.</dt><dd><div class="bk_ref" id="niceng208er8.ref317">Reardon
|
|
MJ, Adams
|
|
DH, Kleiman
|
|
NS, Yakubov
|
|
SJ, Coselli
|
|
JS, Deeb
|
|
GM
|
|
et al. 2-Year outcomes in patients undergoing surgical or self-expanding transcatheter aortic valve replacement. Journal of the American College of Cardiology. 2015; 66(2):113–121 [<a href="https://pubmed.ncbi.nlm.nih.gov/26055947" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26055947</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>318.</dt><dd><div class="bk_ref" id="niceng208er8.ref318">Reardon
|
|
MJ, Heijmen
|
|
RH, Van Mieghem
|
|
NM, Williams
|
|
MR, Yakubov
|
|
SJ, Watson
|
|
D
|
|
et al. Comparison of outcomes after transcatheter vs surgical aortic valve replacement among patients at intermediate operative risk with a history of coronary artery bypass graft surgery: A post hoc analysis of the SURTAVI randomized clinical trial. JAMA Cardiology. 2019; 4(8):810–814 [<a href="/pmc/articles/PMC6584891/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6584891</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31215985" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31215985</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>319.</dt><dd><div class="bk_ref" id="niceng208er8.ref319">Reardon
|
|
MJ, Kleiman
|
|
NS, Adams
|
|
DH, Yakubov
|
|
SJ, Coselli
|
|
JS, Deeb
|
|
GM
|
|
et al. Outcomes in the randomized corevalve us pivotal high risk trial in patients with a society of thoracic surgeons risk score of 7% or less. JAMA Cardiology. 2016; 1(8):945–949 [<a href="https://pubmed.ncbi.nlm.nih.gov/27541162" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27541162</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>320.</dt><dd><div class="bk_ref" id="niceng208er8.ref320">Reardon
|
|
MJ, Van Mieghem
|
|
NM, Popma
|
|
JJ, Kleiman
|
|
NS, Søndergaard
|
|
L, Mumtaz
|
|
M
|
|
et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. New England Journal of Medicine. 2017; 376(14):1321–1331 [<a href="https://pubmed.ncbi.nlm.nih.gov/28304219" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28304219</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>321.</dt><dd><div class="bk_ref" id="niceng208er8.ref321">Ren
|
|
B, Spitzer
|
|
E, Geleijnse
|
|
ML, Zijlstra
|
|
F, de Jaegere
|
|
PPT, Van Mieghem
|
|
NM
|
|
et al. Right ventricular systolic function in patients undergoing transcatheter aortic valve implantation: A systematic review and meta-analysis. International Journal of Cardiology. 2018; 257:40–45 [<a href="https://pubmed.ncbi.nlm.nih.gov/29422266" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29422266</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>322.</dt><dd><div class="bk_ref" id="niceng208er8.ref322">Rex
|
|
CE, Heiberg
|
|
J, Klaaborg
|
|
KE, Hjortdal
|
|
VE. Health-related quality-of-life after transapical transcatheter aortic valve implantation. Scandinavian Cardiovascular Journal. 2016; 50(5–6):377–382 [<a href="https://pubmed.ncbi.nlm.nih.gov/27615712" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27615712</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>323.</dt><dd><div class="bk_ref" id="niceng208er8.ref323">Reyes
|
|
VP, Raju
|
|
BS, Wynne
|
|
J, Stephenson
|
|
LW, Raju
|
|
R, Fromm
|
|
BS
|
|
et al. Percutaneous balloon valvuloplasty compared with open surgical commissurotomy for mitral stenosis. New England Journal of Medicine. 1994; 331(15):961–967 [<a href="https://pubmed.ncbi.nlm.nih.gov/8084354" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 8084354</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>324.</dt><dd><div class="bk_ref" id="niceng208er8.ref324">Reynolds
|
|
MR, Lei
|
|
Y, Wang
|
|
K, Chinnakondepalli
|
|
K, Vilain
|
|
KA, Magnuson
|
|
EA
|
|
et al. Cost-effectiveness of transcatheter aortic valve replacement with a self-expanding prosthesis versus surgical aortic valve replacement. Journal of the American College of Cardiology. 2016; 67(1):29–38 [<a href="/pmc/articles/PMC4959424/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4959424</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26764063" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26764063</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>325.</dt><dd><div class="bk_ref" id="niceng208er8.ref325">Reynolds
|
|
MR, Magnuson
|
|
EA, Lei
|
|
Y, Leon
|
|
MB, Smith
|
|
CR, Svensson
|
|
LG
|
|
et al. Health-related quality of life after transcatheter aortic valve replacement in inoperable patients with severe aortic stenosis. Circulation. 2011; 124(18):1964–1972 [<a href="https://pubmed.ncbi.nlm.nih.gov/21969017" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21969017</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>326.</dt><dd><div class="bk_ref" id="niceng208er8.ref326">Reynolds
|
|
MR, Magnuson
|
|
EA, Lei
|
|
Y, Wang
|
|
K, Vilain
|
|
K, Li
|
|
H
|
|
et al. Cost-effectiveness of transcatheter aortic valve replacement compared with surgical aortic valve replacement in high-risk patients with severe aortic stenosis: results of the PARTNER (Placement of Aortic Transcatheter Valves) trial (Cohort A). Journal of the American College of Cardiology. 2012; 60(25):2683–2692 [<a href="https://pubmed.ncbi.nlm.nih.gov/23122802" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23122802</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>327.</dt><dd><div class="bk_ref" id="niceng208er8.ref327">Reynolds
|
|
MR, Magnuson
|
|
EA, Wang
|
|
K, Lei
|
|
Y, Vilain
|
|
K, Walczak
|
|
J
|
|
et al. Cost-effectiveness of transcatheter aortic valve replacement compared with standard care among inoperable patients with severe aortic stenosis: results from the placement of aortic transcatheter valves (PARTNER) trial (cohort B). Circulation. 2012; 125(9):1102–1109 [<a href="https://pubmed.ncbi.nlm.nih.gov/22308299" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22308299</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>328.</dt><dd><div class="bk_ref" id="niceng208er8.ref328">Reynolds
|
|
MR, Magnuson
|
|
EA, Wang
|
|
K, Thourani
|
|
VH, Williams
|
|
M, Zajarias
|
|
A
|
|
et al. Health-related quality of life after transcatheter or surgical aortic valve replacement in high-risk patients with severe aortic stenosis: results from the PARTNER (Placement of AoRTic TraNscathetER Valve) Trial (Cohort A). Journal of the American College of Cardiology. 2012; 60(6):548–558 [<a href="https://pubmed.ncbi.nlm.nih.gov/22818074" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22818074</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>329.</dt><dd><div class="bk_ref" id="niceng208er8.ref329">Ribera
|
|
A, Slof
|
|
J, Andrea
|
|
R, Falces
|
|
C, Gutierrez
|
|
E, Del Valle-Fernandez
|
|
R
|
|
et al. Transfemoral transcatheter aortic valve replacement compared with surgical replacement in patients with severe aortic stenosis and comparable risk: cost-utility and its determinants. International Journal of Cardiology. 2015; 182:321–328 [<a href="https://pubmed.ncbi.nlm.nih.gov/25585368" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25585368</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>330.</dt><dd><div class="bk_ref" id="niceng208er8.ref330">Richardson
|
|
L, Richardson
|
|
M, Hunter
|
|
S. Is a port-access mitral valve repair superior to the sternotomy approach in accelerating postoperative recovery?
|
|
Interactive Cardiovascular and Thoracic Surgery. 2008; 7(4):678–683 [<a href="https://pubmed.ncbi.nlm.nih.gov/18407961" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 18407961</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>331.</dt><dd><div class="bk_ref" id="niceng208er8.ref331">Rifaie
|
|
O, Abdel-Dayem
|
|
MK, Ramzy
|
|
A, Ezz-El-din
|
|
H, El-Ziady
|
|
G, El-Itriby
|
|
A
|
|
et al. Percutaneous mitral valvotomy versus closed surgical commissurotomy. Up to 15 years of follow-up of a prospective randomized study. Journal of Cardiology. 2009; 53(1):28–34 [<a href="https://pubmed.ncbi.nlm.nih.gov/19167635" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 19167635</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>332.</dt><dd><div class="bk_ref" id="niceng208er8.ref332">Rodés-Cabau
|
|
J, Pibarot
|
|
P, Suri
|
|
RM, Kodali
|
|
S, Thourani
|
|
VH, Szeto
|
|
WY
|
|
et al. Impact of aortic annulus size on valve hemodynamics and clinical outcomes after transcatheter and surgical aortic valve replacement: insights from the PARTNER Trial. Circulation Cardiovascular interventions. 2014; 7(5):701–711 [<a href="https://pubmed.ncbi.nlm.nih.gov/25270901" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25270901</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>333.</dt><dd><div class="bk_ref" id="niceng208er8.ref333">Rodriguez-Caulo
|
|
EA, Guijarro-Contreras
|
|
A, Guzon
|
|
A, Otero-Forero
|
|
J, Mataro
|
|
MJ, Sanchez-Espin
|
|
G
|
|
et al. Quality of life after ministernotomy versus full sternotomy aortic valve replacement. Seminars in Thoracic and Cardiovascular Surgery. 2020; 10.1053/j.semtcvs.2020.07.013 [<a href="https://pubmed.ncbi.nlm.nih.gov/32853740" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32853740</span></a>] [<a href="http://dx.crossref.org/10.1053/j.semtcvs.2020.07.013" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>334.</dt><dd><div class="bk_ref" id="niceng208er8.ref334">Rodriguez-Caulo
|
|
EA, Guijarro-Contreras
|
|
A, Otero-Forero
|
|
J, Mataro
|
|
MJ, Sanchez-Espin
|
|
G, Guzon
|
|
A
|
|
et al. Quality of life, satisfaction and outcomes after ministernotomy versus full sternotomy isolated aortic valve replacement (QUALITY-AVR): study protocol for a randomised controlled trial. Trials. 2018; 19(1):114 [<a href="/pmc/articles/PMC5816540/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5816540</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29454380" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29454380</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>335.</dt><dd><div class="bk_ref" id="niceng208er8.ref335">Sa
|
|
MPBO, Van den Eynde
|
|
J, Cavalcanti
|
|
LRP, Kadyraliev
|
|
B, Enginoev
|
|
S, Zhigalov
|
|
K
|
|
et al. Mitral valve repair with minimally invasive approaches vs sternotomy: A meta-analysis of early and late results in randomized and matched observational studies. Journal of Cardiac Surgery. 2020; 35(9):2307–2323 [<a href="https://pubmed.ncbi.nlm.nih.gov/32668091" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32668091</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>336.</dt><dd><div class="bk_ref" id="niceng208er8.ref336">Sakamaki
|
|
H, Nakao
|
|
K, Matsumoto
|
|
T, Inoue
|
|
S. Cost-effectiveness analysis of percutaneous mitral valve repair with the MitraClip delivery system for patients with mitral regurgitation in Japan. Journal of Medical Economics. 2019; 22(12):1312–1320 [<a href="https://pubmed.ncbi.nlm.nih.gov/31516049" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31516049</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>337.</dt><dd><div class="bk_ref" id="niceng208er8.ref337">Salcher
|
|
M, Naci
|
|
H, Pender
|
|
S, Kuehne
|
|
T, Consortium
|
|
C, Kelm
|
|
M. Bicuspid aortic valve disease: systematic review and meta-analysis of surgical aortic valve repair. Open Heart. 2016; 3(2):e000502 [<a href="/pmc/articles/PMC5174788/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5174788</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28008357" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28008357</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>338.</dt><dd><div class="bk_ref" id="niceng208er8.ref338">Saleem
|
|
S, Younas
|
|
S, Syed
|
|
MA. Meta-analysis comparing transcatheter aortic valve implantation to surgical aortic valve replacement in low surgical risk patients. American Journal of Cardiology. 2019; 124(8):1257–1264 [<a href="https://pubmed.ncbi.nlm.nih.gov/31439283" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31439283</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>339.</dt><dd><div class="bk_ref" id="niceng208er8.ref339">Salmasi
|
|
MY, Acharya
|
|
M, Humayun
|
|
N, Baskaran
|
|
D, Hubbard
|
|
S, Vohra
|
|
H. Is valve repair preferable to valve replacement in ischaemic mitral regurgitation? A systematic review and meta-analysis. European Journal of Cardio-Thoracic Surgery. 2016; 50(1):17–28 [<a href="https://pubmed.ncbi.nlm.nih.gov/27009102" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27009102</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>340.</dt><dd><div class="bk_ref" id="niceng208er8.ref340">Sansone
|
|
F, Punta
|
|
G, Parisi
|
|
F, Dato
|
|
GMA, Zingarelli
|
|
E, Flocco
|
|
R
|
|
et al. Right minithoracotomy versus full sternotomy for the aortic valve replacement: Preliminary results. Heart Lung and Circulation. 2012; 21(3):169–173 [<a href="https://pubmed.ncbi.nlm.nih.gov/22071201" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22071201</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>341.</dt><dd><div class="bk_ref" id="niceng208er8.ref341">Santana
|
|
O, Singla
|
|
S, Mihos
|
|
CG, Pineda
|
|
AM, Stone
|
|
GW, Kurlansky
|
|
PA
|
|
et al. Outcomes of a combined approach of percutaneous coronary revascularization and cardiac valve surgery. Innovations: Technology & Techniques in Cardiothoracic & Vascular Surgery. 2017; 12(1):4–8 [<a href="https://pubmed.ncbi.nlm.nih.gov/28092294" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28092294</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>342.</dt><dd><div class="bk_ref" id="niceng208er8.ref342">Santarpino
|
|
G, Pfeiffer
|
|
S, Jessl
|
|
J, Dell’Aquila
|
|
A, Vogt
|
|
F, von Wardenburg
|
|
C
|
|
et al. Clinical outcome and cost analysis of sutureless versus transcatheter aortic valve implantation with propensity score matching analysis. American Journal of Cardiology. 2015; 116(11):1737–1743 [<a href="https://pubmed.ncbi.nlm.nih.gov/26433277" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26433277</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>343.</dt><dd><div class="bk_ref" id="niceng208er8.ref343">Sardar
|
|
P, Kundu
|
|
A, Chatterjee
|
|
S, Feldman
|
|
DN, Owan
|
|
T, Kakouros
|
|
N
|
|
et al. Transcatheter versus surgical aortic valve replacement in intermediate-risk patients: Evidence from a meta-analysis. Catheterization and Cardiovascular Interventions. 2017; 90(3):504–515 [<a href="https://pubmed.ncbi.nlm.nih.gov/28398671" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28398671</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>344.</dt><dd><div class="bk_ref" id="niceng208er8.ref344">Saung
|
|
MT, McCracken
|
|
C, Sachdeva
|
|
R, Petit
|
|
CJ. Outcomes following balloon aortic valvuloplasty versus surgical valvotomy in congenital aortic valve stenosis: A meta-analysis. Journal of Invasive Cardiology. 2019; 31(6):E133–E142 [<a href="https://pubmed.ncbi.nlm.nih.gov/31158809" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31158809</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>345.</dt><dd><div class="bk_ref" id="niceng208er8.ref345">Sawa
|
|
Y, Matsuda
|
|
H. Minimally invasive cardiac surgery-the efficacy of right parasterna approach. Nihon Geka Gakkai Zasshi. 1998; 99(12):825–830 [<a href="https://pubmed.ncbi.nlm.nih.gov/10063494" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 10063494</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>346.</dt><dd><div class="bk_ref" id="niceng208er8.ref346">Sechtem
|
|
U. Good results after transcatheter aortic-valve replacement in patients with intermediate risk. Deutsche Medizinische Wochenschrift. 2016; 141(13):923 [<a href="https://pubmed.ncbi.nlm.nih.gov/27359307" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27359307</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>347.</dt><dd><div class="bk_ref" id="niceng208er8.ref347">Sehatzadeh
|
|
S, Doble
|
|
B, Xie
|
|
F, Blackhouse
|
|
G, Campbell
|
|
K, Kaulback
|
|
K
|
|
et al. Transcatheter aortic valve implantation (TAVI) for treatment of aortic valve stenosis: an evidence-based Analysis (part B). Ontario Health Technology Assessment Series. 2012; 12(14):1–62 [<a href="/pmc/articles/PMC3377530/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3377530</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23074424" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23074424</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>348.</dt><dd><div class="bk_ref" id="niceng208er8.ref348">Sehatzadeh
|
|
S, Doble
|
|
B, Xie
|
|
F, Blackhouse
|
|
G, Campbell
|
|
K, Kaulback
|
|
K
|
|
et al. Transcatheter aortic valve implantation (TAVI) for treatment of aortic valve stenosis: an evidence update. Ontario Health Technology Assessment Series. 2013; 13(1):1–40 [<a href="/pmc/articles/PMC3697799/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3697799</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23837106" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23837106</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>349.</dt><dd><div class="bk_ref" id="niceng208er8.ref349">Seiffert
|
|
M, Walther
|
|
T, Hamm
|
|
C, Falk
|
|
V, Frey
|
|
N, Thiele
|
|
H
|
|
et al. The DEDICATE Trial: An independent all-comers trial of transcatheter aortic valve implantation vs. surgical aortic valve replacement in patients at low to intermediate operative risk is recruiting patients. European Heart Journal. 2019; 40(4):331–333 [<a href="https://pubmed.ncbi.nlm.nih.gov/30668699" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30668699</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>350.</dt><dd><div class="bk_ref" id="niceng208er8.ref350">Sergi
|
|
D, Acconcia
|
|
MC, Muscoli
|
|
S, Perrone
|
|
MA, Cammalleri
|
|
V, Di Luozzo
|
|
M
|
|
et al. Meta-analysis of the impact on early and late mortality of TAVI compared to surgical aortic valve replacement in high and low-intermediate surgical risk patients. European Review for Medical and Pharmacological Sciences. 2019; 23(12):5402–5412 [<a href="https://pubmed.ncbi.nlm.nih.gov/31298393" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31298393</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>351.</dt><dd><div class="bk_ref" id="niceng208er8.ref351">Serruys
|
|
PW, Modolo
|
|
R, Reardon
|
|
M, Miyazaki
|
|
Y, Windecker
|
|
S, Popma
|
|
J
|
|
et al. One-year outcomes of patients with severe aortic stenosis and an STS PROM of less than three percent in the SURTAVI trial. EuroIntervention. 2018; 14(8):877–883 [<a href="https://pubmed.ncbi.nlm.nih.gov/29992904" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29992904</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>352.</dt><dd><div class="bk_ref" id="niceng208er8.ref352">Shah
|
|
K, Chaker
|
|
Z, Busu
|
|
T, Badhwar
|
|
V, Alqahtani
|
|
F, Alvi
|
|
M
|
|
et al. Meta-analysis comparing the frequency of stroke after transcatheter versus surgical aortic valve replacement. American Journal of Cardiology. 2018; 122(7):1215–1221 [<a href="/pmc/articles/PMC6503855/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6503855</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30089530" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30089530</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>353.</dt><dd><div class="bk_ref" id="niceng208er8.ref353">Shah
|
|
K, Chaker
|
|
Z, Busu
|
|
T, Shah
|
|
R, Osman
|
|
M, Alqahtani
|
|
F
|
|
et al. Meta-analysis comparing renal outcomes after transcatheter versus surgical aortic valve replacement. Journal of Interventional Cardiology. 2019; 2019:3537256 [<a href="/pmc/articles/PMC6739771/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6739771</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31772526" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31772526</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>354.</dt><dd><div class="bk_ref" id="niceng208er8.ref354">Shang
|
|
XK, Zhong
|
|
L, Lu
|
|
R, Zhang
|
|
GC, Liu
|
|
M, Shen
|
|
QS
|
|
et al. Comparison of outcomes of transcatheter and surgical procedure in perimembranous ventricular septal defect patients with tricuspid regurgitation. Annals of the Academy of Medicine, Singapore. 2016; 45(7):322–325 [<a href="https://pubmed.ncbi.nlm.nih.gov/27523514" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27523514</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>355.</dt><dd><div class="bk_ref" id="niceng208er8.ref355">Shehada
|
|
SE, Elhmidi
|
|
Y, Ozturk
|
|
O, Kasel
|
|
M, Frangieh
|
|
AH, Mourad
|
|
F
|
|
et al. Transcatheter versus surgical aortic valve replacement after previous cardiac surgery: A systematic review and meta-analysis. Cardiology Research and Practice. 2018; 2018:4615043 [<a href="/pmc/articles/PMC5907513/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5907513</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29850227" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29850227</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>356.</dt><dd><div class="bk_ref" id="niceng208er8.ref356">Shneider
|
|
YA, Tsoi
|
|
MD, Fomenko
|
|
MS, Pavlov
|
|
AA, Shilenko
|
|
PA. Aortic valve replacement via J-shaped partial upper sternotomy: randomized trial, mid-term results. Khirurgiia. 2020; (7):25–30 [<a href="https://pubmed.ncbi.nlm.nih.gov/32736460" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32736460</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>357.</dt><dd><div class="bk_ref" id="niceng208er8.ref357">Shore
|
|
J, Russell
|
|
J, Frankenstein
|
|
L, Candolfi
|
|
P, Green
|
|
M. An analysis of the cost-effectiveness of transcatheter mitral valve repair for people with secondary mitral valve regurgitation in the UK. Journal of Medical Economics. 2020:1–20 [<a href="https://pubmed.ncbi.nlm.nih.gov/33236939" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 33236939</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>358.</dt><dd><div class="bk_ref" id="niceng208er8.ref358">Shuhaiber
|
|
J, Anderson
|
|
RJ. Meta-analysis of clinical outcomes following surgical mitral valve repair or replacement. European Journal of Cardio-Thoracic Surgery. 2007; 31(2):267–275 [<a href="https://pubmed.ncbi.nlm.nih.gov/17175161" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17175161</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>359.</dt><dd><div class="bk_ref" id="niceng208er8.ref359">Siddiqui
|
|
WJ, Alvarez
|
|
C, Aslam
|
|
M, Bakar
|
|
A, Khan
|
|
MH, Aslam
|
|
A
|
|
et al. Meta-analysis comparing outcomes and need for renal replacement therapy of transcatheter aortic valve implantation versus surgical aortic valve replacement. American Journal of Cardiology. 2018; 122(3):468–476 [<a href="https://pubmed.ncbi.nlm.nih.gov/29958709" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29958709</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>360.</dt><dd><div class="bk_ref" id="niceng208er8.ref360">Siddiqui
|
|
WJ, Sadaf
|
|
MI, Zain
|
|
M, Mazhar
|
|
R, Abbas
|
|
R, Khan
|
|
MH
|
|
et al. Renal injury in all-comers after transcatheter aortic valve replacement: A systematic review and meta-analysis. Cureus. 2020; 12(5):e7985 [<a href="/pmc/articles/PMC7273432/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7273432</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32523841" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32523841</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>361.</dt><dd><div class="bk_ref" id="niceng208er8.ref361">Siemieniuk
|
|
RA, Agoritsas
|
|
T, Manja
|
|
V, Devji
|
|
T, Chang
|
|
Y, Bala
|
|
MM
|
|
et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic stenosis at low and intermediate risk: Systematic review and meta-analysis. BMJ. 2016; 354:i5130 [<a href="/pmc/articles/PMC5040923/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5040923</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27683246" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27683246</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>362.</dt><dd><div class="bk_ref" id="niceng208er8.ref362">Singh
|
|
AD, Mian
|
|
A, Devasenapathy
|
|
N, Guyatt
|
|
G, Karthikeyan
|
|
G. Percutaneous mitral commissurotomy versus surgical commissurotomy for rheumatic mitral stenosis: a systematic review and meta-analysis of randomised controlled trials. Heart. 2020; 106(14):1094–1101 [<a href="https://pubmed.ncbi.nlm.nih.gov/31974210" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31974210</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>363.</dt><dd><div class="bk_ref" id="niceng208er8.ref363">Singh
|
|
K, Carson
|
|
K, Rashid
|
|
MK, Jayasinghe
|
|
R, AlQahtani
|
|
A, Dick
|
|
A
|
|
et al. Transcatheter aortic valve implantation in intermediate surgical risk patients with severe aortic stenosis: A systematic review and meta-analysis. Heart, Lung & Circulation. 2018; 27(2):227–234 [<a href="https://pubmed.ncbi.nlm.nih.gov/28473216" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28473216</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>364.</dt><dd><div class="bk_ref" id="niceng208er8.ref364">Siontis
|
|
GCM, Overtchouk
|
|
P, Cahill
|
|
TJ, Modine
|
|
T, Prendergast
|
|
B, Praz
|
|
F
|
|
et al. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: an updated meta-analysis. European Heart Journal. 2019; 40(38):3143–3153 [<a href="https://pubmed.ncbi.nlm.nih.gov/31329852" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31329852</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>365.</dt><dd><div class="bk_ref" id="niceng208er8.ref365">Siontis
|
|
GCM, Praz
|
|
F, Pilgrim
|
|
T, Mavridis
|
|
D, Verma
|
|
S, Salanti
|
|
G
|
|
et al. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of severe aortic stenosis: A meta-analysis of randomized trials. European Heart Journal. 2016; 37(47):3503–3512a [<a href="https://pubmed.ncbi.nlm.nih.gov/27389906" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27389906</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>366.</dt><dd><div class="bk_ref" id="niceng208er8.ref366">Siordia
|
|
JA, Loera
|
|
JM, Scanlon
|
|
M, Evans
|
|
J, Knight
|
|
PA. Three-year survival comparison between transcatheter and surgical aortic valve replacement for intermediate- and low-risk patients. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2018; 13(3):153–162 [<a href="https://pubmed.ncbi.nlm.nih.gov/29912140" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29912140</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>367.</dt><dd><div class="bk_ref" id="niceng208er8.ref367">Skelding
|
|
KA, Yakubov
|
|
SJ, Kleiman
|
|
NS, Reardon
|
|
MJ, Adams
|
|
DH, Huang
|
|
J
|
|
et al. Transcatheter aortic valve replacement versus surgery in women at high risk for surgical aortic valve replacement (from the CoreValve US High Risk Pivotal Trial). American Journal of Cardiology. 2016; 118(4):560–566 [<a href="https://pubmed.ncbi.nlm.nih.gov/27381665" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27381665</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>368.</dt><dd><div class="bk_ref" id="niceng208er8.ref368">Smith
|
|
CR, Leon
|
|
MB, Mack
|
|
MJ, Miller
|
|
DC, Moses
|
|
JW, Svensson
|
|
LG
|
|
et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. New England Journal of Medicine. 2011; 364(23):2187–2198 [<a href="https://pubmed.ncbi.nlm.nih.gov/21639811" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21639811</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>369.</dt><dd><div class="bk_ref" id="niceng208er8.ref369">Sondergaard
|
|
L, Ihlemann
|
|
N, Capodanno
|
|
D, Jorgensen
|
|
TH, Nissen
|
|
H, Kjeldsen
|
|
BJ
|
|
et al. Durability of transcatheter and surgical bioprosthetic aortic valves in patients at lower surgical risk. Journal of the American College of Cardiology. 2019; 73(5):546–553 [<a href="https://pubmed.ncbi.nlm.nih.gov/30732707" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30732707</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>370.</dt><dd><div class="bk_ref" id="niceng208er8.ref370">Sondergaard
|
|
L, Popma
|
|
JJ, Reardon
|
|
MJ, Van Mieghem
|
|
NM, Deeb
|
|
GM, Kodali
|
|
S
|
|
et al. Comparison of a complete percutaneous versus surgical approach to aortic valve replacement and revascularization in patients at intermediate surgical risk: Results from the randomized SURTAVI trial. Circulation. 2019; 140(16):1296–1305 [<a href="https://pubmed.ncbi.nlm.nih.gov/31476897" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31476897</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>371.</dt><dd><div class="bk_ref" id="niceng208er8.ref371">Sondergaard
|
|
L, Steinbruchel
|
|
DA, Ihlemann
|
|
N, Nissen
|
|
H, Kjeldsen
|
|
BJ, Petursson
|
|
P
|
|
et al. Two-year outcomes in patients with severe aortic valve stenosis randomized to transcatheter versus surgical aortic valve replacement: the all-comers nordic aortic valve intervention randomized clinical trial. Circulation: Cardiovascular Interventions. 2016; 9(6):e003665 [<a href="https://pubmed.ncbi.nlm.nih.gov/27296202" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27296202</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>372.</dt><dd><div class="bk_ref" id="niceng208er8.ref372">Spertus
|
|
JV, Hatfield
|
|
LA, Cohen
|
|
DJ, Arnold
|
|
SV, Ho
|
|
M, Jones
|
|
PG
|
|
et al. Integrating quality of life and survival outcomes in cardiovascular clinical trials: Results from the PARTNER trial. Circulation: Cardiovascular Quality and Outcomes. 2019; 12(e005420) [<a href="/pmc/articles/PMC6579042/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6579042</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31189406" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31189406</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>373.</dt><dd><div class="bk_ref" id="niceng208er8.ref373">Speziale
|
|
G, Nasso
|
|
G, Esposito
|
|
G, Conte
|
|
M, Greco
|
|
E, Fattouch
|
|
K
|
|
et al. Results of mitral valve repair for Barlow disease (bileaflet prolapse) via right minithoracotomy versus conventional median sternotomy: A randomized trial. Journal of Thoracic and Cardiovascular Surgery. 2011; 142(1):77–83 [<a href="https://pubmed.ncbi.nlm.nih.gov/20926105" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 20926105</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>374.</dt><dd><div class="bk_ref" id="niceng208er8.ref374">Sponga
|
|
S, Isola
|
|
M, Bagur
|
|
R, Torracchi
|
|
L, Mazzaro
|
|
E, Grillo
|
|
MT
|
|
et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement in patients over 85 years old. Interactive Cardiovascular and Thoracic Surgery. 2017; 25(4):526–532 [<a href="https://pubmed.ncbi.nlm.nih.gov/28962494" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28962494</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>375.</dt><dd><div class="bk_ref" id="niceng208er8.ref375">Stewart
|
|
MH, Jenkins
|
|
JS. The evolving role of percutaneous mitral valve repair. Ochsner Journal. 2016; 16(3):270–276 [<a href="/pmc/articles/PMC5024809/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5024809</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27660576" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27660576</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>376.</dt><dd><div class="bk_ref" id="niceng208er8.ref376">Stone
|
|
GW, Lindenfeld
|
|
J, Abraham
|
|
WT, Kar
|
|
S, Lim
|
|
DS, Mishell
|
|
JM
|
|
et al. Transcatheter mitral-valve repair in patients with heart failure. New England Journal of Medicine. 2018; 379(24):2307–2318 [<a href="https://pubmed.ncbi.nlm.nih.gov/30280640" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30280640</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>377.</dt><dd><div class="bk_ref" id="niceng208er8.ref377">Sultan
|
|
FAT, Moustafa
|
|
SE, Tajik
|
|
J, Warsame
|
|
T, Emani
|
|
U, Alharthi
|
|
M
|
|
et al. Rheumatic tricuspid valve disease: An evidence-based systematic overview. Journal of Heart Valve Disease. 2010; 19(3):374–382 [<a href="https://pubmed.ncbi.nlm.nih.gov/20583402" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 20583402</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>378.</dt><dd><div class="bk_ref" id="niceng208er8.ref378">Sundermann
|
|
SH, Czerny
|
|
M, Falk
|
|
V. Open vs. Minimally invasive mitral valve surgery: Surgical technique, indications and results. Cardiovascular Engineering and Technology. 2015; 6(2):160–166 [<a href="https://pubmed.ncbi.nlm.nih.gov/26577232" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26577232</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>379.</dt><dd><div class="bk_ref" id="niceng208er8.ref379">Sundermann
|
|
SH, Sromicki
|
|
J, Rodriguez Cetina Biefer
|
|
H, Seifert
|
|
B, Holubec
|
|
T, Falk
|
|
V
|
|
et al. Mitral valve surgery: Right lateral minithoracotomy or sternotomy? A systematic review and meta-analysis. Journal of Thoracic and Cardiovascular Surgery. 2014; 148(5):1989–1995.e1985 [<a href="https://pubmed.ncbi.nlm.nih.gov/24589199" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24589199</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>380.</dt><dd><div class="bk_ref" id="niceng208er8.ref380">Svensson
|
|
LG, Blackstone
|
|
EH, Rajeswaran
|
|
J, Brozzi
|
|
N, Leon
|
|
MB, Smith
|
|
CR
|
|
et al. Comprehensive analysis of mortality among patients undergoing TAVR: results of the PARTNER trial. Journal of the American College of Cardiology. 2014; 64(2):158–168 [<a href="https://pubmed.ncbi.nlm.nih.gov/25011720" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25011720</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>381.</dt><dd><div class="bk_ref" id="niceng208er8.ref381">Svensson
|
|
LG, Tuzcu
|
|
M, Kapadia
|
|
S, Blackstone
|
|
EH, Roselli
|
|
EE, Gillinov
|
|
AM
|
|
et al. A comprehensive review of the PARTNER trial. Journal of Thoracic and Cardiovascular Surgery. 2013; 145(3 Suppl):S11–16 [<a href="https://pubmed.ncbi.nlm.nih.gov/23410766" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23410766</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>382.</dt><dd><div class="bk_ref" id="niceng208er8.ref382">Takagi
|
|
H, Ando
|
|
T, Umemoto
|
|
T. A meta-analysis of effects of transcatheter versus surgical aortic valve replacement on left ventricular ejection fraction and mass. International Journal of Cardiology. 2017; 238:31–36 [<a href="https://pubmed.ncbi.nlm.nih.gov/28408105" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28408105</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>383.</dt><dd><div class="bk_ref" id="niceng208er8.ref383">Takagi
|
|
H, Ando
|
|
T, Umemoto
|
|
T. A review of comparative studies of MitraClip versus surgical repair for mitral regurgitation. International Journal of Cardiology. 2017; 228:289–294 [<a href="https://pubmed.ncbi.nlm.nih.gov/27865200" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27865200</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>384.</dt><dd><div class="bk_ref" id="niceng208er8.ref384">Takagi
|
|
H, Hari
|
|
Y, Kawai
|
|
N, Kuno
|
|
T, Ando
|
|
T, Group
|
|
A. Meta-analysis of impact of liver disease on mortality after transcatheter aortic valve implantation. Journal of Cardiovascular Medicine. 2019; 20(4):237–244 [<a href="https://pubmed.ncbi.nlm.nih.gov/30762660" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30762660</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>385.</dt><dd><div class="bk_ref" id="niceng208er8.ref385">Takagi
|
|
H, Hari
|
|
Y, Nakashima
|
|
K, Kuno
|
|
T, Ando
|
|
T, All-Literature Investigation of Cardiovascular Evidence Group. A meta-analysis of >=5-year mortality after transcatheter versus surgical aortic valve replacement. Journal of Cardiovascular Surgery. 2020; 61(1):107–116 [<a href="https://pubmed.ncbi.nlm.nih.gov/31666501" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31666501</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>386.</dt><dd><div class="bk_ref" id="niceng208er8.ref386">Takagi
|
|
H, Hari
|
|
Y, Nakashima
|
|
K, Kuno
|
|
T, Ando
|
|
T, Group
|
|
A. Mortality after transcatheter versus surgical aortic valve replacement: an updated meta-analysis of randomised trials. Netherlands Heart Journal. 2020; 28(6):320–333 [<a href="/pmc/articles/PMC7270388/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7270388</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32166571" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32166571</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>387.</dt><dd><div class="bk_ref" id="niceng208er8.ref387">Takagi
|
|
H, Niwa
|
|
M, Mizuno
|
|
Y, Goto
|
|
SN, Umemoto
|
|
T. A meta-analysis of transcatheter aortic valve implantation versus surgical aortic valve replacement. Annals of Thoracic Surgery. 2013; 96(2):513–519 [<a href="https://pubmed.ncbi.nlm.nih.gov/23816417" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23816417</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>388.</dt><dd><div class="bk_ref" id="niceng208er8.ref388">Takagi
|
|
H, Umemoto
|
|
T. Prosthesis-patient mismatch after transcatheter aortic valve implantation. Annals of Thoracic Surgery. 2016; 101(3):872–880 [<a href="https://pubmed.ncbi.nlm.nih.gov/26830222" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26830222</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>389.</dt><dd><div class="bk_ref" id="niceng208er8.ref389">Takagi
|
|
H, Umemoto
|
|
T, Group
|
|
A. Similar survival after repair vs replacement for ischemic mitral regurgitation. Seminars in Thoracic and Cardiovascular Surgery. 2016; 28(4):748–756 [<a href="https://pubmed.ncbi.nlm.nih.gov/28417860" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28417860</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>390.</dt><dd><div class="bk_ref" id="niceng208er8.ref390">Tam
|
|
DY, Azizi
|
|
PM, Fremes
|
|
SE, Chikwe
|
|
J, Gaudino
|
|
M, Wijeysundera
|
|
HC. The cost-effectiveness of transcatheter aortic valve replacement in low surgical risk patients with severe aortic stenosis. European Heart Journal Quality of Care & Clinical Outcomes. 2020; 10.1093/ehjqcco/qcaa058 [<a href="https://pubmed.ncbi.nlm.nih.gov/32645146" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32645146</span></a>] [<a href="http://dx.crossref.org/10.1093/ehjqcco/qcaa058" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>391.</dt><dd><div class="bk_ref" id="niceng208er8.ref391">Tam
|
|
DY, Hughes
|
|
A, Fremes
|
|
SE, Youn
|
|
S, Hancock-Howard
|
|
RL, Coyte
|
|
PC
|
|
et al. A cost-utility analysis of transcatheter versus surgical aortic valve replacement for the treatment of aortic stenosis in the population with intermediate surgical risk. Journal of Thoracic and Cardiovascular Surgery. 2018; 155(5):1978–1988.e1971 [<a href="https://pubmed.ncbi.nlm.nih.gov/29454487" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29454487</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>392.</dt><dd><div class="bk_ref" id="niceng208er8.ref392">Tam
|
|
DY, Hughes
|
|
A, Wijeysundera
|
|
HC, Fremes
|
|
SE. Cost-effectiveness of self-expandable transcatheter aortic valves in intermediate-risk patients. Annals of Thoracic Surgery. 2018; 106(3):676–683 [<a href="https://pubmed.ncbi.nlm.nih.gov/29730344" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29730344</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>393.</dt><dd><div class="bk_ref" id="niceng208er8.ref393">Tam
|
|
DY, Vo
|
|
TX, Wijeysundera
|
|
HC, Ko
|
|
DT, Rocha
|
|
RV, Friedrich
|
|
J
|
|
et al. Transcatheter vs surgical aortic valve replacement for aortic stenosis in low-intermediate risk patients: A meta-analysis. Canadian Journal of Cardiology. 2017; 33(9):1171–1179 [<a href="https://pubmed.ncbi.nlm.nih.gov/28843328" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28843328</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>394.</dt><dd><div class="bk_ref" id="niceng208er8.ref394">Tan
|
|
MK, Jarral
|
|
OA, Thong
|
|
EH, Kidher
|
|
E, Uppal
|
|
R, Punjabi
|
|
PP
|
|
et al. Quality of life after mitral valve intervention. Interactive Cardiovascular and Thoracic Surgery. 2017; 24(2):265–272 [<a href="https://pubmed.ncbi.nlm.nih.gov/27798059" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27798059</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>395.</dt><dd><div class="bk_ref" id="niceng208er8.ref395">Tarride
|
|
JE, Luong
|
|
T, Goodall
|
|
G, Burke
|
|
N, Blackhouse
|
|
G. A Canadian cost-effectiveness analysis of SAPIEN 3 transcatheter aortic valve implantation compared with surgery, in intermediate and high-risk severe aortic stenosis patients. Clinicoeconomics & Outcomes Research. 2019; 11:477–486 [<a href="/pmc/articles/PMC6677373/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6677373</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31551658" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31551658</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>396.</dt><dd><div class="bk_ref" id="niceng208er8.ref396">Tarus
|
|
A, Tinica
|
|
G, Bacusca
|
|
A, Artene
|
|
B, Popa
|
|
IV, Burlacu
|
|
A. Coronary revascularization during treatment of severe aortic stenosis: A meta-analysis of the complete percutaneous approach (PCI plus TAVR) versus the complete surgical approach (CABG plus SAVR). Journal of Cardiac Surgery. 2020; 35(8):2009–2016 [<a href="https://pubmed.ncbi.nlm.nih.gov/32667080" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32667080</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>397.</dt><dd><div class="bk_ref" id="niceng208er8.ref397">Thongprayoon
|
|
C, Cheungpasitporn
|
|
W, Srivali
|
|
N, Ungprasert
|
|
P, Kittanamongkolchai
|
|
W, Greason
|
|
KL
|
|
et al. Acute kidney injury after transcatheter aortic valve replacement: A systematic review and meta-analysis. American Journal of Nephrology. 2015; 41(4–5):372–382 [<a href="https://pubmed.ncbi.nlm.nih.gov/26113391" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26113391</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>398.</dt><dd><div class="bk_ref" id="niceng208er8.ref398">Thourani
|
|
VH, Jensen
|
|
HA, Babaliaros
|
|
V, Kodali
|
|
SK, Rajeswaran
|
|
J, Ehrlinger
|
|
J
|
|
et al. Outcomes in nonagenarians undergoing transcatheter aortic valve replacement in the PARTNER-I Trial. Annals of Thoracic Surgery. 2015; 100(3):785–792; discussion 793 [<a href="https://pubmed.ncbi.nlm.nih.gov/26242213" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26242213</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>399.</dt><dd><div class="bk_ref" id="niceng208er8.ref399">Thyregod
|
|
HG, Sondergaard
|
|
L, Ihlemann
|
|
N, Franzen
|
|
O, Andersen
|
|
LW, Hansen
|
|
PB
|
|
et al. The Nordic Aortic Valve Intervention (NOTION) trial comparing transcatheter versus surgical valve implantation: study protocol for a randomised controlled trial. Trials. 2013; 14:11 [<a href="/pmc/articles/PMC3551839/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3551839</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23302232" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23302232</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>400.</dt><dd><div class="bk_ref" id="niceng208er8.ref400">Thyregod
|
|
HG, Steinbrüchel
|
|
DA, Ihlemann
|
|
N, Ngo
|
|
TA, Nissen
|
|
H, Kjeldsen
|
|
BJ
|
|
et al. No clinical effect of prosthesis-patient mismatch after transcatheter versus surgical aortic valve replacement in intermediate- and low-risk patients with severe aortic valve stenosis at mid-term follow-up: an analysis from the NOTION trial. European Journal of Cardio-Thoracic Surgery. 2016; 50(4):721–728 [<a href="https://pubmed.ncbi.nlm.nih.gov/27005980" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27005980</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>401.</dt><dd><div class="bk_ref" id="niceng208er8.ref401">Thyregod
|
|
HG, Steinbrüchel
|
|
DA, Ihlemann
|
|
N, Nissen
|
|
H, Kjeldsen
|
|
BJ, Petursson
|
|
P
|
|
et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. Journal of the American College of Cardiology. 2015; 65(20):2184–2194 [<a href="https://pubmed.ncbi.nlm.nih.gov/25787196" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25787196</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>402.</dt><dd><div class="bk_ref" id="niceng208er8.ref402">Thyregod
|
|
HGH, Ihlemann
|
|
N, Jorgensen
|
|
TH, Nissen
|
|
H, Kjeldsen
|
|
BJ, Petursson
|
|
P
|
|
et al. Five-year clinical and echocardiographic outcomes from the Nordic Aortic Valve Intervention (NOTION) randomized clinical trial in lower surgical risk patients. Circulation. 2019; 139(24):2714–2723 [<a href="https://pubmed.ncbi.nlm.nih.gov/30704298" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30704298</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>403.</dt><dd><div class="bk_ref" id="niceng208er8.ref403">Thyregod
|
|
HGH, Moller
|
|
CH, Sondergaard
|
|
L, Gluud
|
|
C, Steinbruchel
|
|
DA. Transcatheter versus optimal medical treatment and surgical aortic valve replacement for aortic valve stenosis. Cochrane Database of Systematic Reviews
|
|
2015, Issue 8. Art. No.: CD010488. DOI: 10.1002/14651858.CD010488.pub2. [<a href="http://dx.crossref.org/10.1002/14651858.CD010488.pub2" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>404.</dt><dd><div class="bk_ref" id="niceng208er8.ref404">Tietge
|
|
WJ, de Heer
|
|
LM, van Hessen
|
|
MWJ, Jansen
|
|
R, Bots
|
|
ML, van Gilst
|
|
W
|
|
et al. Early mitral valve repair versus watchful waiting in patients with severe asymptomatic organic mitral regurgitation; rationale and design of the Dutch AMR trial, a multicenter, randomised trial. Netherlands Heart Journal. 2012; 20(3):94–101 [<a href="/pmc/articles/PMC3286532/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3286532</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22354529" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22354529</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>405.</dt><dd><div class="bk_ref" id="niceng208er8.ref405">Toff
|
|
WD. The United Kingdom transcatheter aortic valve implantation (UK TAVI) trial. Leicester, England. ACC.20 & World Congress of Cardiology, 2020. Available from: <a href="http://www.clinicaltrialresults.org/Slides/ACC%202020/UKTAVI_Toff.pdf" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">http://www<wbr style="display:inline-block"></wbr>​.clinicaltrialresults<wbr style="display:inline-block"></wbr>​.org/Slides<wbr style="display:inline-block"></wbr>​/ACC%202020/UKTAVI_Toff.pdf</a></div></dd></dl><dl class="bkr_refwrap"><dt>406.</dt><dd><div class="bk_ref" id="niceng208er8.ref406">Tokmakoglu
|
|
H, Vural
|
|
KM, Ozatik
|
|
MA, Cehreli
|
|
S, Sener
|
|
E, Tasdemir
|
|
O. Closed commissurotomy versus balloon valvuloplasty for rheumatic mitral stenosis. Journal of Heart Valve Disease. 2001; 10(3):281–287 [<a href="https://pubmed.ncbi.nlm.nih.gov/11380088" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 11380088</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>407.</dt><dd><div class="bk_ref" id="niceng208er8.ref407">Tsu
|
|
LV, Berry
|
|
AJ, Krunic
|
|
N, Penny
|
|
S, Le
|
|
S. A clinical review of surgical vs transcatheter aortic valve replacement in geriatric patients. Consultant Pharmacist. 2017; 32(4):202–214 [<a href="https://pubmed.ncbi.nlm.nih.gov/28376985" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28376985</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>408.</dt><dd><div class="bk_ref" id="niceng208er8.ref408">Tunerir
|
|
B, Aslan
|
|
R. An alternative, less invasive approach to median sternotomy for cardiac operations in adults: Right infra-axillary minithoracotomy. Journal of International Medical Research. 2005; 33(1):77–83 [<a href="https://pubmed.ncbi.nlm.nih.gov/15651718" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 15651718</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>409.</dt><dd><div class="bk_ref" id="niceng208er8.ref409">Turi
|
|
ZG, Reyes
|
|
VP, Raju
|
|
BS, Raju
|
|
AR, Kumar
|
|
DN, Rajagopal
|
|
P
|
|
et al. Percutaneous balloon versus surgical closed commissurotomy for mitral stenosis. A prospective, randomized trial. Circulation. 1991; 83(4):1179–1185 [<a href="https://pubmed.ncbi.nlm.nih.gov/2013139" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 2013139</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>410.</dt><dd><div class="bk_ref" id="niceng208er8.ref410">Ueshima
|
|
D, Fovino
|
|
LN, D’Amico
|
|
G, Brener
|
|
SJ, Esposito
|
|
G, Tarantini
|
|
G. Transcatheter versus surgical aortic valve replacement in low- and intermediate-risk patients: an updated systematic review and meta-analysis
|
|
Cardiovascular Intervention and Therapeutics. 2019; 34:216–225 [<a href="https://pubmed.ncbi.nlm.nih.gov/30232711" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30232711</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>411.</dt><dd><div class="bk_ref" id="niceng208er8.ref411">Ueshima
|
|
D, Masiero
|
|
G, Schiavo
|
|
A, Badawy
|
|
MRA, Fraccaro
|
|
C, Napodano
|
|
M
|
|
et al. Time course of the survival advantage of transcatheter over surgical aortic valve replacement: Interplay between sex and patient risk profile. Catheterization and Cardiovascular Interventions. 2019; 94(5):746–752 [<a href="https://pubmed.ncbi.nlm.nih.gov/30821116" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30821116</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>412.</dt><dd><div class="bk_ref" id="niceng208er8.ref412">Ueyama
|
|
H, Kuno
|
|
T, Ando
|
|
T, Hayashida
|
|
K, Takagi
|
|
H. Network meta-analysis of surgical aortic valve replacement and different transcatheter heart valve systems for symptomatic severe aortic stenosis. Canadian Journal of Cardiology. 2020; 10.1016/j.cjca.2020.02.088 [<a href="https://pubmed.ncbi.nlm.nih.gov/32569594" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32569594</span></a>] [<a href="http://dx.crossref.org/10.1016/j.cjca.2020.02.088" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>413.</dt><dd><div class="bk_ref" id="niceng208er8.ref413">Ullah
|
|
W, Khan
|
|
MS, Gowda
|
|
SN, Alraies
|
|
MC, Fischman
|
|
DL. Prosthetic valve endocarditis in patients undergoing TAVR compared to SAVR: A systematic review and meta-analysis. Cardiovascular Revascularization Medicine. 2020; 10.1016/j.carrev.2020.05.034 [<a href="https://pubmed.ncbi.nlm.nih.gov/32553850" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32553850</span></a>] [<a href="http://dx.crossref.org/10.1016/j.carrev.2020.05.034" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>414.</dt><dd><div class="bk_ref" id="niceng208er8.ref414">University of Glasgow. TAVI CED Pilot Project. Evidence Development Pilot Project: Transcatheter aortic valve implantation in Scotland. Report to Scottish Health Technologies Group. Glasgow. University of Glasgow, 2010. Available from: <a href="https://www.gla.ac.uk/media/media_218806_en.pdf" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">https://www<wbr style="display:inline-block"></wbr>​.gla.ac.uk<wbr style="display:inline-block"></wbr>​/media/media_218806_en.pdf</a></div></dd></dl><dl class="bkr_refwrap"><dt>415.</dt><dd><div class="bk_ref" id="niceng208er8.ref415">Uva
|
|
MS. Transcatheter aortic valve implantation in low-risk patients: Is it too early?
|
|
Heart. 2019; 105(Suppl 2):S51–S56 [<a href="https://pubmed.ncbi.nlm.nih.gov/30846526" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30846526</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>416.</dt><dd><div class="bk_ref" id="niceng208er8.ref416">Van Mieghem
|
|
NM, Popma
|
|
JJ, Deeb
|
|
GM, Yakubov
|
|
SJ, Serruys
|
|
PW, Windecker
|
|
S
|
|
et al. Complete 2-year results confirm bayesian analysis of the SURTAVI trial. JACC: Cardiovascular Interventions. 2020; 13(3):323–331 [<a href="https://pubmed.ncbi.nlm.nih.gov/32029248" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32029248</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>417.</dt><dd><div class="bk_ref" id="niceng208er8.ref417">Vendrik
|
|
J, Baan
|
|
J, Jr. Meta-analysis of randomised trials compares mortality after transcatheter versus surgical aortic valve replacement. Netherlands Heart Journal. 2020; 28(6):309–311 [<a href="/pmc/articles/PMC7271298/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7271298</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32303969" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32303969</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>418.</dt><dd><div class="bk_ref" id="niceng208er8.ref418">Verbrugghe
|
|
P, De Praetere
|
|
H, Meuris
|
|
B, Rega
|
|
F, Meyns
|
|
B, Goodall
|
|
G
|
|
et al. Cost analysis of minimally invasive compared to conventional mitral valve surgery. Acta Cardiologica. 2016; 71(5):527–535 [<a href="https://pubmed.ncbi.nlm.nih.gov/27695009" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27695009</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>419.</dt><dd><div class="bk_ref" id="niceng208er8.ref419">Vilela
|
|
AT, Grande
|
|
AJ, Palma
|
|
JH, Buffolo
|
|
E, Riera
|
|
R. Transcatheter valve implantation versus aortic valve replacement for aortic stenosis in high-risk patients. Cochrane Database of Systematic Reviews
|
|
2015, Issue 7. Art. No.: CD010304. DOI: 10.1002/14651858.CD010304.pub2. [<a href="http://dx.crossref.org/10.1002/14651858.CD010304.pub2" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>420.</dt><dd><div class="bk_ref" id="niceng208er8.ref420">Villablanca
|
|
PA, Mathew
|
|
V, Thourani
|
|
VH, Rodes-Cabau
|
|
J, Bangalore
|
|
S, Makkiya
|
|
M
|
|
et al. A meta-analysis and meta-regression of long-term outcomes of transcatheter versus surgical aortic valve replacement for severe aortic stenosis. International Journal of Cardiology. 2016; 225:234–243 [<a href="https://pubmed.ncbi.nlm.nih.gov/27732927" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27732927</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>421.</dt><dd><div class="bk_ref" id="niceng208er8.ref421">Vipparthy
|
|
SC, Ravi
|
|
V, Avula
|
|
S, Kambhatla
|
|
S, Mahmood
|
|
M, Kabour
|
|
A
|
|
et al. Meta-analysis of transcatheter aortic valve implantation versus surgical aortic valve replacement in patients with low surgical risk. American Journal of Cardiology. 2020; 125(3):459–468 [<a href="https://pubmed.ncbi.nlm.nih.gov/31784051" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31784051</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>422.</dt><dd><div class="bk_ref" id="niceng208er8.ref422">Vohra
|
|
HA, Whistance
|
|
RN, De Kerchove
|
|
L, Punjabi
|
|
P, El Khoury
|
|
G. Valve-preserving surgery on the bicuspid aortic valve. European Journal of Cardio-Thoracic Surgery. 2013; 43(5):888–898 [<a href="https://pubmed.ncbi.nlm.nih.gov/23293321" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23293321</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>423.</dt><dd><div class="bk_ref" id="niceng208er8.ref423">Vukovic
|
|
PM, Milojevic
|
|
P, Stojanovic
|
|
I, Micovic
|
|
S, Zivkovic
|
|
I, Peric
|
|
M
|
|
et al. The role of ministernotomy in aortic valve surgery-A prospective randomized study. Journal of Cardiac Surgery. 2019; 34(6):435–439 [<a href="https://pubmed.ncbi.nlm.nih.gov/31017315" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31017315</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>424.</dt><dd><div class="bk_ref" id="niceng208er8.ref424">Wagner
|
|
G, Steiner
|
|
S, Gartlehner
|
|
G, Arfsten
|
|
H, Wildner
|
|
B, Mayr
|
|
H
|
|
et al. Comparison of transcatheter aortic valve implantation with other approaches to treat aortic valve stenosis: a systematic review and meta-analysis. Systematic Reviews. 2019; 8(1):44 [<a href="/pmc/articles/PMC6362570/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6362570</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30722786" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30722786</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>425.</dt><dd><div class="bk_ref" id="niceng208er8.ref425">Wan
|
|
B, Rahnavardi
|
|
M, Tian
|
|
DH, Bannon
|
|
PG, Yan
|
|
TD. Meta-analysis protocol: MitraClip system versus surgery for treatment of severe mitral regurgitation. Annals of Cardiothoracic Surgery. 2013; 2(5):679 [<a href="/pmc/articles/PMC3791202/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3791202</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24109586" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24109586</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>426.</dt><dd><div class="bk_ref" id="niceng208er8.ref426">Wang
|
|
D, Huang
|
|
L, Zhang
|
|
Y, Cheng
|
|
Z, Zhang
|
|
X, Ren
|
|
P
|
|
et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement for treatment of severe aortic stenosis: comparison of results from randomized controlled trials and real-world data. Brazilian Journal of Cardiovascular Surgery. 2020; 35(3):346–367 [<a href="/pmc/articles/PMC7299574/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7299574</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32549107" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32549107</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>427.</dt><dd><div class="bk_ref" id="niceng208er8.ref427">Wang
|
|
J, Wang
|
|
X, Hou
|
|
F, Yuan
|
|
W, Dong
|
|
R, Wang
|
|
L
|
|
et al. Infective endocarditis after transcatheter versus surgical aortic valve replacement: A meta-analysis. Angiology. 2020; 71(10):955–965 [<a href="https://pubmed.ncbi.nlm.nih.gov/32720508" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32720508</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>428.</dt><dd><div class="bk_ref" id="niceng208er8.ref428">Wang
|
|
X, Zhang
|
|
B, Zhang
|
|
J, Ying
|
|
Y, Zhu
|
|
C, Chen
|
|
B. Repair or replacement for severe ischemic mitral regurgitation: A meta-analysis. Medicine. 2018; 97(31):e11546 [<a href="/pmc/articles/PMC6081181/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6081181</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30075522" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30075522</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>429.</dt><dd><div class="bk_ref" id="niceng208er8.ref429">Wang
|
|
Y, Shi
|
|
X, Wen
|
|
M, Chen
|
|
Y, Zhang
|
|
Q. Repair or replace ischemic mitral regurgitation during coronary artery bypass grafting? A meta-analysis. Journal of Cardiothoracic Surgery. 2016; 11:141 [<a href="/pmc/articles/PMC5008002/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5008002</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27585461" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27585461</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>430.</dt><dd><div class="bk_ref" id="niceng208er8.ref430">Wang
|
|
Y, Zhou
|
|
Y, Zhang
|
|
L, Zhu
|
|
J. Midterm outcome of transcatheter versus surgical aortic valve replacement in low to intermediate risk patients: A meta-analysis of randomized controlled trials. Journal of Cardiology. 2018; 71(6):534–539 [<a href="https://pubmed.ncbi.nlm.nih.gov/29655505" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29655505</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>431.</dt><dd><div class="bk_ref" id="niceng208er8.ref431">Wang
|
|
Z, Zhou
|
|
C, Gu
|
|
H, Zheng
|
|
Z, Hu
|
|
S. Mitral valve repair versus replacement in patients with rheumatic heart disease. Journal of Heart Valve Disease. 2013; 22(3):333–339 [<a href="https://pubmed.ncbi.nlm.nih.gov/24151759" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24151759</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>432.</dt><dd><div class="bk_ref" id="niceng208er8.ref432">Watt
|
|
M, Mealing
|
|
S, Eaton
|
|
J, Piazza
|
|
N, Moat
|
|
N, Brasseur
|
|
P
|
|
et al. Cost-effectiveness of transcatheter aortic valve replacement in patients ineligible for conventional aortic valve replacement. Heart. 2012; 98(5):370–376 [<a href="https://pubmed.ncbi.nlm.nih.gov/22076021" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22076021</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>433.</dt><dd><div class="bk_ref" id="niceng208er8.ref433">Wijeysundera
|
|
HC, Li
|
|
L, Braga
|
|
V, Pazhaniappan
|
|
N, Pardhan
|
|
AM, Lian
|
|
D
|
|
et al. Drivers of healthcare costs associated with the episode of care for surgical aortic valve replacement versus transcatheter aortic valve implantation. Open Heart. 2016; 3(2):e000468 [<a href="/pmc/articles/PMC5013496/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5013496</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27621832" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27621832</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>434.</dt><dd><div class="bk_ref" id="niceng208er8.ref434">Wijeysundera
|
|
HC, Wong
|
|
WWL, Bennell
|
|
MC, Fremes
|
|
SE, Radhakrishnan
|
|
S, Peterson
|
|
M
|
|
et al. Impact of wait times on the effectiveness of transcatheter aortic valve replacement in severe aortic valve disease: Adiscrete event simulation model. Canadian Journal of Cardiology. 2014; 30(10):1162–1169 [<a href="https://pubmed.ncbi.nlm.nih.gov/25047363" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25047363</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>435.</dt><dd><div class="bk_ref" id="niceng208er8.ref435">Williams
|
|
M, Kodali
|
|
SK, Hahn
|
|
RT, Humphries
|
|
KH, Nkomo
|
|
VT, Cohen
|
|
DJ
|
|
et al. Sex-related differences in outcomes after transcatheter or surgical aortic valve replacement in patients with severe aortic stenosis: insights from the PARTNER Trial (Placement of Aortic Transcatheter Valve). Journal of the American College of Cardiology. 2014; 63(15):1522–1528 [<a href="https://pubmed.ncbi.nlm.nih.gov/24561149" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24561149</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>436.</dt><dd><div class="bk_ref" id="niceng208er8.ref436">Williams
|
|
MKS, Humphries
|
|
K, Nkomo
|
|
V, Svensson
|
|
L, Weissman
|
|
N, Cohen. Outcomes of transcatheter vs. Surgical aortic valve replacement in women: insights from the randomized PARTNER trial. Journal of the American College of Cardiology. 2012; 60(17 Suppl B):B30</div></dd></dl><dl class="bkr_refwrap"><dt>437.</dt><dd><div class="bk_ref" id="niceng208er8.ref437">Witberg
|
|
G, Lador
|
|
A, Yahav
|
|
D, Kornowski
|
|
R. Transcatheter versus surgical aortic valve replacement in patients at low surgical risk: A meta-analysis of randomized trials and propensity score matched observational studies. Catheterization and Cardiovascular Interventions. 2018; 92(2):408–416 [<a href="https://pubmed.ncbi.nlm.nih.gov/29388308" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29388308</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>438.</dt><dd><div class="bk_ref" id="niceng208er8.ref438">Witberg
|
|
G, Landes
|
|
U, Lador
|
|
A, Yahav
|
|
D, Kornowski
|
|
R. Meta-analysis of transcatheter aortic valve implantation versus surgical aortic valve replacement in patients at low surgical risk. EuroIntervention. 2019; 15:e1047–e1056 [<a href="https://pubmed.ncbi.nlm.nih.gov/31566571" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31566571</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>439.</dt><dd><div class="bk_ref" id="niceng208er8.ref439">Witte
|
|
KK, Lipiecki
|
|
J, Siminiak
|
|
T, Meredith
|
|
IT, Malkin
|
|
CJ, Goldberg
|
|
SL
|
|
et al. The REDUCE FMR trial: A randomized sham-controlled study of percutaneous mitral annuloplasty in functional mitral regurgitation. JACC Heart Failure. 2019; 7(11):945–955 [<a href="https://pubmed.ncbi.nlm.nih.gov/31521683" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31521683</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>440.</dt><dd><div class="bk_ref" id="niceng208er8.ref440">Wong
|
|
CHM, Chan
|
|
JSK, Sanli
|
|
D, Rahimli
|
|
R, Harky
|
|
A. Aortic valve repair or replacement in patients with aortic regurgitation: A systematic review and meta-analysis. Journal of Cardiac Surgery. 2019; 34(6):377–384 [<a href="https://pubmed.ncbi.nlm.nih.gov/30953445" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30953445</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>441.</dt><dd><div class="bk_ref" id="niceng208er8.ref441">You
|
|
B, Gao
|
|
F, Li
|
|
P, Xu
|
|
Y, Xu
|
|
LL, Liu
|
|
S
|
|
et al. Clinical study of minimally invasive versus conventional sternotomy for aortic valve replacement. Chinese Medical Journal (Taipei). 2012; 92(40):2859–2861 [<a href="https://pubmed.ncbi.nlm.nih.gov/23290218" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23290218</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>442.</dt><dd><div class="bk_ref" id="niceng208er8.ref442">Yun-Dan
|
|
D, Wen-Jing
|
|
D, Xi-Jun
|
|
X. Comparison of outcomes following mitral valve repair versus replacement for chronic ischemic mitral regurgitation: A meta-analysis. Thoracic and Cardiovascular Surgeon. 2017; 65(6):432–441 [<a href="https://pubmed.ncbi.nlm.nih.gov/27056301" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27056301</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>443.</dt><dd><div class="bk_ref" id="niceng208er8.ref443">Zhang
|
|
D, Mao
|
|
X, Liu
|
|
D, Zhang
|
|
J, Luo
|
|
G, Luo
|
|
L. Transcatheter vs surgical aortic valve replacement in low to intermediate surgical risk aortic stenosis patients: A systematic review and meta-analysis of randomized controlled trials. Clinical Cardiology. 2020; 43(12):1414–1422 [<a href="/pmc/articles/PMC7724228/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7724228</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32926456" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32926456</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>444.</dt><dd><div class="bk_ref" id="niceng208er8.ref444">Zhang
|
|
H, Liu
|
|
Y, Bin
|
|
J, Qiu
|
|
S, Chen
|
|
F. Meta-analysis of two different surgical treatments of ischaemic mitral regurgitation with the same outcome: Mitral valve repair vs mitral valve replacement. Acta Cardiologica. 2016; 71(5):573–580 [<a href="https://pubmed.ncbi.nlm.nih.gov/27695015" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27695015</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>445.</dt><dd><div class="bk_ref" id="niceng208er8.ref445">Zhang
|
|
X, Wang
|
|
T, Lan
|
|
R, Dai
|
|
Q, Kang
|
|
L, Wang
|
|
L
|
|
et al. Meta-analysis comparing results of transcatheter versus surgical aortic-valve replacement in patients with severe aortic stenosis. American Journal of Cardiology. 2020; 125(3):449–458 [<a href="https://pubmed.ncbi.nlm.nih.gov/31780077" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31780077</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>446.</dt><dd><div class="bk_ref" id="niceng208er8.ref446">Zhang
|
|
XL, Zhang
|
|
XW, Lan
|
|
RF, Chen
|
|
Z, Wang
|
|
L, Xu
|
|
W
|
|
et al. Long-term and temporal outcomes of transcatheter versus surgical aortic-valve replacement in severe aortic stenosis: A meta-analysis. Annals of Surgery. 2020; 10.1097/SLA.0000000000003906 [<a href="https://pubmed.ncbi.nlm.nih.gov/32502078" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32502078</span></a>] [<a href="http://dx.crossref.org/10.1097/SLA.0000000000003906" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></dd></dl><dl class="bkr_refwrap"><dt>447.</dt><dd><div class="bk_ref" id="niceng208er8.ref447">Zhou
|
|
J, Liew
|
|
D, Duffy
|
|
SJ, Walton
|
|
A, Htun
|
|
N, Stub
|
|
D. Cost-effectiveness of transcatheter aortic valve implantation compared to surgical aortic valve replacement in the intermediate surgical risk population. International Journal of Cardiology. 2019; 294:17–22 [<a href="https://pubmed.ncbi.nlm.nih.gov/31255453" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31255453</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>448.</dt><dd><div class="bk_ref" id="niceng208er8.ref448">Zhou
|
|
JY, Liew
|
|
D, Duffy
|
|
SJ, Walton
|
|
A, Htun
|
|
N, Stub
|
|
D. Cost-Effectiveness of Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Severe Aortic Stenosis. Heart, Lung & Circulation. 2021; 30(4):547–554 [<a href="https://pubmed.ncbi.nlm.nih.gov/33189571" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 33189571</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>449.</dt><dd><div class="bk_ref" id="niceng208er8.ref449">Zhou
|
|
Y, Wang
|
|
Y, Wu
|
|
Y, Zhu
|
|
J. Transcatheter versus surgical aortic valve replacement in low to intermediate risk patients: A meta-analysis of randomized and observational studies. International Journal of Cardiology. 2017; 228:723–728 [<a href="https://pubmed.ncbi.nlm.nih.gov/27886617" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27886617</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>450.</dt><dd><div class="bk_ref" id="niceng208er8.ref450">Zimarino
|
|
M, Ricci
|
|
F, Capodanno
|
|
D, De Innocentiis
|
|
C, Verrengia
|
|
E, Swaans
|
|
MJ
|
|
et al. Left ventricular size predicts clinical benefit after percutaneous mitral valve repair for secondary mitral regurgitation: A systematic review and meta-regression analysis. Cardiovascular Revascularization Medicine. 2020; 21(7):857–864 [<a href="https://pubmed.ncbi.nlm.nih.gov/31761640" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 31761640</span></a>]</div></dd></dl><dl class="bkr_refwrap"><dt>451.</dt><dd><div class="bk_ref" id="niceng208er8.ref451">Zorn
|
|
GL, Little
|
|
SH, Tadros
|
|
P, Deeb
|
|
GM, Gleason
|
|
TG, Heiser
|
|
J
|
|
et al. Prosthesis-patient mismatch in high-risk patients with severe aortic stenosis: a randomized trial of a self-expanding prosthesis. Journal of Thoracic and Cardiovascular Surgery. 2016; 151(4):1014–1023.e1013 [<a href="https://pubmed.ncbi.nlm.nih.gov/26614412" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26614412</span></a>]</div></dd></dl></dl></div><div id="appendixesappgroup1"><h2 id="_appendixesappgroup1_">Appendices</h2><div id="niceng208er8.appa"><h3>Appendix A. Review protocols</h3><p id="niceng208er8.appa.et1"><a href="/books/NBK586311/bin/niceng208er8-appa-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Table 40. Review protocol: transcatheter intervention, surgery or conservative management in heart valve disease</a><span class="small"> (PDF, 256K)</span></p><p id="niceng208er8.appa.et2"><a href="/books/NBK586311/bin/niceng208er8-appa-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Table 41. Health economic review protocol</a><span class="small"> (PDF, 204K)</span></p></div><div id="niceng208er8.appb"><h3>Appendix B. Literature search strategies</h3><p>
|
|
<u>Heart valve disease – search strategy 8 - transcatheter intervention, surgery or conservative management</u>
|
|
</p><p>This literature search strategy was used for the following review:
|
|
<ul><li class="half_rhythm"><div>What is the clinical and cost-effectiveness of transcatheter intervention, surgery (with mechanical or biological valves) and conservative management compared with each other for adults with heart valve disease?</div></li></ul></p><p>The literature searches for this review are detailed below and complied with the methodology outlined in Developing NICE guidelines: the manual.<a class="bibr" href="#niceng208er8.ref274" rid="niceng208er8.ref274"><sup>274</sup></a></p><p>For more information, please see the Methodology review published as part of the accompanying documents for this guideline.</p><p id="niceng208er8.appb.et1"><a href="/books/NBK586311/bin/niceng208er8-appb-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">B.1. Clinical search literature search strategy</a><span class="small"> (PDF, 349K)</span></p><p id="niceng208er8.appb.et2"><a href="/books/NBK586311/bin/niceng208er8-appb-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">B.2. Health Economics literature search strategy</a><span class="small"> (PDF, 364K)</span></p></div><div id="niceng208er8.appc"><h3>Appendix C. Clinical evidence selection</h3><p id="niceng208er8.appc.et1"><a href="/books/NBK586311/bin/niceng208er8-appc-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Figure 2. Flow chart of clinical study selection for the review of the clinical and cost-effectiveness of transcatheter intervention, surgery (with mechanical or biological valves) and conservative management compared with each other for adults with heart valve disease</a><span class="small"> (PDF, 168K)</span></p></div><div id="niceng208er8.appd"><h3>Appendix D. Clinical evidence tables</h3><p id="niceng208er8.appd.et1"><a href="/books/NBK586311/bin/niceng208er8-appd-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (1.9M)</span></p></div><div id="niceng208er8.appe"><h3>Appendix E. Forest plots</h3><div id="niceng208er8.appe.s1"><h4>E.1. Aortic stenosis (non-bicuspid)</h4><p id="niceng208er8.appe.et1"><a href="/books/NBK586311/bin/niceng208er8-appe-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (326K)</span></p></div><div id="niceng208er8.appe.s2"><h4>E.2. Aortic stenosis (bicuspid)</h4><p>No evidence was identified for this stratum.</p></div><div id="niceng208er8.appe.s3"><h4>E.3. Aortic stenosis (mixed non-bicuspid and bicuspid or unclear)</h4><p id="niceng208er8.appe.et2"><a href="/books/NBK586311/bin/niceng208er8-appe-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (186K)</span></p></div><div id="niceng208er8.appe.s4"><h4>E.4. Aortic regurgitation (non-bicuspid)</h4><p>No evidence was identified for this stratum.</p></div><div id="niceng208er8.appe.s5"><h4>E.5. Aortic regurgitation (bicuspid)</h4><p>No evidence was identified for this stratum.</p></div><div id="niceng208er8.appe.s6"><h4>E.6. Aortic regurgitation (mixed non-bicuspid and bicuspid or unclear)</h4><p>No evidence was identified for this stratum.</p></div><div id="niceng208er8.appe.s7"><h4>E.7. Mixed/unclear aortic valve disease</h4><p id="niceng208er8.appe.et3"><a href="/books/NBK586311/bin/niceng208er8-appe-et3.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (226K)</span></p></div><div id="niceng208er8.appe.s8"><h4>E.8. Mitral stenosis</h4><p id="niceng208er8.appe.et4"><a href="/books/NBK586311/bin/niceng208er8-appe-et4.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (248K)</span></p></div><div id="niceng208er8.appe.s9"><h4>E.9. Mitral regurgitation</h4><p id="niceng208er8.appe.et5"><a href="/books/NBK586311/bin/niceng208er8-appe-et5.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (399K)</span></p></div><div id="niceng208er8.appe.s10"><h4>E.10. Unclear/mixed mitral valve disease</h4><p id="niceng208er8.appe.et6"><a href="/books/NBK586311/bin/niceng208er8-appe-et6.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (200K)</span></p></div><div id="niceng208er8.appe.s11"><h4>E.11. Tricuspid regurgitation</h4><p id="niceng208er8.appe.et7"><a href="/books/NBK586311/bin/niceng208er8-appe-et7.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (202K)</span></p></div></div><div id="niceng208er8.appf"><h3>Appendix F. GRADE tables</h3><div id="niceng208er8.appf.s1"><h4>F.1. Aortic stenosis (non-bicuspid)</h4><p id="niceng208er8.appf.et1"><a href="/books/NBK586311/bin/niceng208er8-appf-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (371K)</span></p></div><div id="niceng208er8.appf.s2"><h4>F.2. Aortic stenosis (bicuspid)</h4><p>No evidence identified for this stratum.</p></div><div id="niceng208er8.appf.s3"><h4>F.3. Aortic stenosis (mixed non-bicuspid and bicuspid or unclear)</h4><p id="niceng208er8.appf.et2"><a href="/books/NBK586311/bin/niceng208er8-appf-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (234K)</span></p></div><div id="niceng208er8.appf.s4"><h4>F.4. Aortic regurgitation (non-bicuspid)</h4><p>No evidence identified for this stratum.</p></div><div id="niceng208er8.appf.s5"><h4>F.5. Aortic regurgitation (bicuspid)</h4><p>No evidence identified for this stratum.</p></div><div id="niceng208er8.appf.s6"><h4>F.6. Aortic regurgitation (mixed non-bicuspid and bicuspid or unclear)</h4><p>No evidence identified for this stratum.</p></div><div id="niceng208er8.appf.s7"><h4>F.7. Mixed/unclear aortic valve disease</h4><p id="niceng208er8.appf.et3"><a href="/books/NBK586311/bin/niceng208er8-appf-et3.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (262K)</span></p></div><div id="niceng208er8.appf.s8"><h4>F.8. Mitral stenosis</h4><p id="niceng208er8.appf.et4"><a href="/books/NBK586311/bin/niceng208er8-appf-et4.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (397K)</span></p></div><div id="niceng208er8.appf.s9"><h4>F.9. Mitral regurgitation</h4><p id="niceng208er8.appf.et5"><a href="/books/NBK586311/bin/niceng208er8-appf-et5.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (584K)</span></p></div><div id="niceng208er8.appf.s10"><h4>F.10. Unclear/mixed mitral valve disease</h4><p id="niceng208er8.appf.et6"><a href="/books/NBK586311/bin/niceng208er8-appf-et6.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (219K)</span></p></div><div id="niceng208er8.appf.s11"><h4>F.11. Tricuspid regurgitation</h4><p id="niceng208er8.appf.et7"><a href="/books/NBK586311/bin/niceng208er8-appf-et7.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (203K)</span></p></div></div><div id="niceng208er8.appg"><h3>Appendix G. Health economic evidence selection</h3><p id="niceng208er8.appg.et1"><a href="/books/NBK586311/bin/niceng208er8-appg-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (285K)</span></p></div><div id="niceng208er8.apph"><h3>Appendix H. Health economic evidence tables</h3><div id="niceng208er8.apph.s1"><h4>H.1. Aortic valve (non-bicuspid)</h4><p id="niceng208er8.apph.et1"><a href="/books/NBK586311/bin/niceng208er8-apph-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (425K)</span></p></div><div id="niceng208er8.apph.s2"><h4>H.2. Aortic stenosis (bicuspid)</h4><p>No evidence was found</p></div><div id="niceng208er8.apph.s3"><h4>H.3. Aortic stenosis (mixed non-bicuspid and bicuspid or unclear)</h4><p>No evidence was found</p></div><div id="niceng208er8.apph.s4"><h4>H.4. Aortic regurgitation (non-bicuspid)</h4><p>No evidence was found.</p></div><div id="niceng208er8.apph.s5"><h4>H.5. Aortic regurgitation (bicuspid)</h4><p>No evidence was found.</p></div><div id="niceng208er8.apph.s6"><h4>H.6. Aortic regurgitation (mixed non-bicuspid and bicuspid or unclear)</h4><p>No evidence was found</p></div><div id="niceng208er8.apph.s7"><h4>H.7. Mixed/unclear aortic valve disease</h4><p id="niceng208er8.apph.et2"><a href="/books/NBK586311/bin/niceng208er8-apph-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (193K)</span></p></div><div id="niceng208er8.apph.s8"><h4>H.8. Mitral stenosis</h4><p>No evidence was found.</p></div><div id="niceng208er8.apph.s9"><h4>H.9. Mitral regurgitation</h4><p id="niceng208er8.apph.et3"><a href="/books/NBK586311/bin/niceng208er8-apph-et3.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (233K)</span></p></div><div id="niceng208er8.apph.s10"><h4>H.10. Mixed/unclear mitral valve disease</h4><p id="niceng208er8.apph.et4"><a href="/books/NBK586311/bin/niceng208er8-apph-et4.pdf" class="bk_dwnld_icn bk_dwnld_pdf">Download PDF</a><span class="small"> (189K)</span></p></div></div><div id="niceng208er8.appi"><h3>Appendix I. Excluded studies</h3><p id="niceng208er8.appi.et1"><a href="/books/NBK586311/bin/niceng208er8-appi-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">I.1. Excluded clinical studies</a><span class="small"> (PDF, 318K)</span></p><p id="niceng208er8.appi.et2"><a href="/books/NBK586311/bin/niceng208er8-appi-et2.pdf" class="bk_dwnld_icn bk_dwnld_pdf">I.2. Excluded health economic studies</a><span class="small"> (PDF, 219K)</span></p></div><div id="niceng208er8.appj"><h3>Appendix J. Research recommendations</h3><p id="niceng208er8.appj.et1"><a href="/books/NBK586311/bin/niceng208er8-appj-et1.pdf" class="bk_dwnld_icn bk_dwnld_pdf">J.1. Interventions</a><span class="small"> (PDF, 246K)</span></p></div></div></div><div class="fm-sec"><div><p>Final</p></div><div><p>Intervention evidence review underpinning recommendations 1.3.1, 1.5.1 to 1.5.13 and research recommendations in the NICE guideline</p><p>Developed by the National Guideline Centre, hosted by the Royal College of Physicians</p></div><div><p><b>Disclaimer</b>: The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and, where appropriate, their carer or guardian.</p><p>Local commissioners and providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.</p><p>NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <a href="http://wales.gov.uk/" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Welsh Government</a>, <a href="http://www.scotland.gov.uk/" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Scottish Government</a>, and <a href="http://www.northernireland.gov.uk/" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Northern Ireland Executive</a>. All NICE guidance is subject to regular review and may be updated or withdrawn.</p></div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> © NICE 2021.</div><div class="small"><span class="label">Bookshelf ID: NBK586311</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/36395292" title="PubMed record of this title" ref="pagearea=meta&targetsite=entrez&targetcat=link&targettype=pubmed">36395292</a></span></div></div><div class="small-screen-prev"></div><div class="small-screen-next"></div></article><article data-type="table-wrap" id="figobniceng208er8tab1"><div id="niceng208er8.tab1" class="table"><h3><span class="label">Table 1</span><span class="title">PICO characteristics of review question</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab1_lrgtbl__"><table><tbody><tr><th id="hd_b_niceng208er8.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Population</th><td headers="hd_b_niceng208er8.tab1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Adults 18 years and over presenting with heart valve disease requiring intervention, stratified by disease type as follows:
|
|
<ul><li class="half_rhythm"><div>aortic stenosis (non-bicuspid)</div></li><li class="half_rhythm"><div>aortic stenosis (bicuspid)</div></li><li class="half_rhythm"><div>aortic stenosis (mixed non-bicuspid and bicuspid or unclear)</div></li><li class="half_rhythm"><div>aortic regurgitation (non-bicuspid)</div></li><li class="half_rhythm"><div>aortic regurgitation (bicuspid)</div></li><li class="half_rhythm"><div>aortic regurgitation (mixed non-bicuspid and bicuspid or unclear)</div></li><li class="half_rhythm"><div>mitral stenosis</div></li><li class="half_rhythm"><div>mitral regurgitation</div></li><li class="half_rhythm"><div>tricuspid regurgitation</div></li></ul>
|
|
A threshold of 75% will be used to assign studies to the above strata. For example, to be assigned to the tricuspid regurgitation stratum, 75% of the population of a study would have to have tricuspid regurgitation as the type of heart valve disease driving the need for intervention.</p>
|
|
<p>For populations with multiple valve disease, studies will be classified into strata based on the heart valve disease that drives the need for intervention (e.g. most severe valve disease).</p>
|
|
<p>Only those undergoing their first intervention for heart valve disease (either surgical or transcatheter) will be included – studies where ≥10% of one or more of the groups have had previous attempts at surgical or transcatheter management prior to the trial will not be included. However, trials where patients have previously received medical management will not be excluded from this review. For studies where at least one of the arms is a replacement intervention, they will not be excluded if ≥10% had received a previous repair procedure but will be downgraded for indirectness.</p>
|
|
<p>Exclusion:
|
|
<ul><li class="half_rhythm"><div>Children (aged <18 years).</div></li><li class="half_rhythm"><div>Adults with congenital heart disease (excluding bicuspid aortic valves).</div></li><li class="half_rhythm"><div>Tricuspid stenosis and pulmonary valve disease.</div></li><li class="half_rhythm"><div>Patients undergoing a second or greater number of surgical or transcatheter interventions for heart valve disease</div></li></ul></p>
|
|
</td></tr><tr><th id="hd_b_niceng208er8.tab1_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Interventions</th><td headers="hd_b_niceng208er8.tab1_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><ul><li class="half_rhythm"><div>Transcatheter repair</div></li><li class="half_rhythm"><div>Transcatheter replacement with biological valves</div></li><li class="half_rhythm"><div>Minimally invasive surgery repair</div></li><li class="half_rhythm"><div>Minimally invasive surgery replacement with biological or mechanical valves</div></li><li class="half_rhythm"><div>Standard surgery repair</div></li><li class="half_rhythm"><div>Standard surgery replacement with biological or mechanical valves</div></li></ul>
|
|
Note: Transcatheter intervention and surgical interventions will be stratified by repair and replacement. Within the replacement interventions, biological and mechanical valves will be pooled.</p>
|
|
<p>Note: Sutureless valves will be included within both the standard and minimally invasive surgery interventions as reported in the studies</p>
|
|
<p>Primary studies with a mixed intervention (some in the ‘active’ arm received the intervention of interest and some a different intervention) will be included if at least 90% received the intervention of interest.</p>
|
|
</td></tr><tr><th id="hd_b_niceng208er8.tab1_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Comparisons</th><td headers="hd_b_niceng208er8.tab1_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Conservative management (for example, medical management/treatment or no treatment)</p>
|
|
<p>Other active comparator listed above</p>
|
|
</td></tr><tr><th id="hd_b_niceng208er8.tab1_1_1_4_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Outcomes</th><td headers="hd_b_niceng208er8.tab1_1_1_4_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><b>Primary:</b>
|
|
<ul><li class="half_rhythm"><div>All-cause mortality at ≥12 months</div></li><li class="half_rhythm"><div>Cardiac mortality at ≥12 months</div></li><li class="half_rhythm"><div>Intervention-related mortality at 30 days</div></li><li class="half_rhythm"><div>Health-related quality of life at ≥12 months</div></li><li class="half_rhythm"><div>Onset or exacerbation of heart failure at ≥12 months</div></li><li class="half_rhythm"><div>Intervention-related stroke or TIA at 30 days</div></li><li class="half_rhythm"><div>Intervention-related major bleeding at 30 days</div></li><li class="half_rhythm"><div>Need for re-intervention at ≥12 months</div></li></ul>
|
|
<b>Secondary:</b>
|
|
<ul><li class="half_rhythm"><div>Length of stay (following initial intervention)</div></li><li class="half_rhythm"><div>Re-hospitalisation at ≥12 months</div></li><li class="half_rhythm"><div>Intervention-related pacemaker implantation at 30 days</div></li><li class="half_rhythm"><div>Intervention-related atrial fibrillation at 30 days</div></li><li class="half_rhythm"><div>Intervention-related major vascular complications at 30 days (defined as those requiring intervention for a vascular complication)</div></li><li class="half_rhythm"><div>Prosthetic valve endocarditis at ≥12 months</div></li></ul>
|
|
Follow-up:
|
|
<ul><li class="half_rhythm"><div>Pool outcomes reported at the time-points specified above and take the latest reported time-point for the ≥12 months’ time-point if multiple time points reported in a single study</div></li></ul></td></tr><tr><th id="hd_b_niceng208er8.tab1_1_1_5_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Study design</th><td headers="hd_b_niceng208er8.tab1_1_1_5_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Randomised controlled trials (RCTs) or systematic reviews of RCTs</p>
|
|
<p>If no RCT data are available, observational data will not be considered for this review. This is due to the risk of confounding variables influencing the study results, reducing our confidence in the review results</p>
|
|
</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab2"><div id="niceng208er8.tab2" class="table"><h3><span class="label">Table 2</span><span class="title">Summary of studies included in the evidence review</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab2/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab2_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Study</th><th id="hd_h_niceng208er8.tab2_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention and comparison</th><th id="hd_h_niceng208er8.tab2_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Population</th><th id="hd_h_niceng208er8.tab2_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Outcomes</th><th id="hd_h_niceng208er8.tab2_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Comments</th></tr></thead><tbody><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_1_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Aortic stenosis (non-bicuspid), minimally invasive surgery replacement vs. standard surgery replacement</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Mächler 1999<a class="bibr" href="#niceng208er8.ref234" rid="niceng208er8.ref234"><sup>234</sup></a></p>
|
|
<p>Conducted in Austria</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Minimally invasive surgical replacement with biological or mechanical valve</b> (n = 60)</p>
|
|
<p>L-shaped ministernotomy replacement with either CarboMedics (mechanical prosthesis) and Mosaic or Freestyle valves (bioprosthesis). Proportion of valve types used not stated.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valve</b> (n = 60)</p>
|
|
<p>Median sternotomy. 90% of people received mechanical prosthesis. 10% received bioprosthesis.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 120)</p>
|
|
<p>Adults requiring aortic valve intervention for severe aortic stenosis. Some with regurgitation but majority (>75%) stenosis.</p>
|
|
<p>Mean age: 65 (range: 31-77)</p>
|
|
<p>Operative risk unclear</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 30 to 745 days</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 30 days</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 1 year</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Funding not stated</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_3_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Aortic stenosis (non-bicuspid), transcatheter replacement vs. standard surgery replacement</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Adams 2014<a class="bibr" href="#niceng208er8.ref2" rid="niceng208er8.ref2"><sup>2</sup></a></p>
|
|
<p>Conducted in USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter replacement with biological valves</b> (n = 394)</p>
|
|
<p>Using the CoreValve device. Includes both iliofemoral and noniliofemoral routes with people randomised after stratification by approach.</p>
|
|
<p>After the procedure, people were started on aspirin 81mg daily and clopidogrel 75mg daily for 3 months, followed by monotherapy at the same dose indefinitely.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valves</b> (n = 401)</p>
|
|
<p>Conventional surgical technique. Choice of type and size of valve was left to the discretion of the operative surgeon.</p>
|
|
<p>People were started on (at the least) aspirin 81mg daily after surgery to be continued indefinitely (including those requiring warfarin). Warfarin was started as indicated by guidelines.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 795)</p>
|
|
<p>Adults with senile degenerative aortic stenosis (calcific) with an operative mortality at ≥15% at 30 days. NYHA class II or greater.</p>
|
|
<p>Mean age: 83.2 (7.1)</p>
|
|
<p>High operative risk:</p>
|
|
<p>STS PROM intervention: 7.3 (3.0),</p>
|
|
<p>STS PROM control: 7.5 (3.2).</p>
|
|
<p>Logistic EuroSCORE intervention: 17.6 (13).</p>
|
|
<p>Logistic EuroSCORE control: 18.4 (12.8).</p>
|
|
<p>~75% with coronary artery disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 5 years</p>
|
|
<p>Cardiac mortality at 5 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 1 or 5 years</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 5 years</p>
|
|
<p>Re-hospitalisation at 5 years</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 5 years</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>CoreValve trial</p>
|
|
<p>Funded by Medtronic</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Leon 2016<a class="bibr" href="#niceng208er8.ref218" rid="niceng208er8.ref218"><sup>218</sup></a></p>
|
|
<p>Conducted in Canada and USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter replacement with biological valves</b> (n = 1011)</p>
|
|
<p>Using SAPIEN XT heart valve. The majority were performed by transfemoral route (76.3%) with the rest being performed transthoracically (23.7%).</p>
|
|
<p><b>Standard surgical replacement with biological valve</b> (n = 1021)</p>
|
|
<p>Median sternotomy. Biological valves used in all patients.</p>
|
|
<p>For both groups: all people received aspirin (91mg) and clopidogrel (≥300mg) after the procedure. Clopidogrel could be used for a minimum of 1 month, while aspirin should be continued indefinitely.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 2032)</p>
|
|
<p>People with senile degenerative aortic valve stenosis of NYHA class II or greater at intermediate operative risk.</p>
|
|
<p>Mean age: 81.5 (6.7)</p>
|
|
<p>Intermediate operative risk:</p>
|
|
<p>STS intervention: 5.8 (2.1)</p>
|
|
<p>STS control: 5.8 (1.9)</p>
|
|
<p>~67-69% had concomitant coronary artery disease.</p>
|
|
<p>Calcified aortic stenosis – non-calcified aortic valve disease was excluded.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 5 years</p>
|
|
<p>Cardiac mortality at 5 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 2 years</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 5 years</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Re-hospitalisation at 5 years</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 5 years</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>PARTNER 2 trial</p>
|
|
<p>Funded by Edwards Lifesciences</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Mack 2019<a class="bibr" href="#niceng208er8.ref237" rid="niceng208er8.ref237"><sup>237</sup></a></p>
|
|
<p>Conducted in Australia, Canada, Japan, New Zealand and USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter replacement with biological valves</b> (n = 503)</p>
|
|
<p>Using a SAPIEN 3 system. Placed by transfemoral route.</p>
|
|
<p>Started on aspirin 81mg and clopidogrel (>300mg) before the procedure and advised to continue taking it for at least 1 month.</p>
|
|
<p><b>Standard surgical replacement with biological valve</b> (n = 497)</p>
|
|
<p>Median sternotomy approach in 75.7% of people. Minimally invasive approach in 24.3%. Biological valves were used.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 1000)</p>
|
|
<p>Adults with severe, calcific aortic stenosis with an STS score <4.</p>
|
|
<p>Mean age: 73.3 (5.8)</p>
|
|
<p>Low operative risk:</p>
|
|
<p>STS score intervention: 1.9 (0.7)</p>
|
|
<p>STS score control: 1.9 (0.6)</p>
|
|
<p>EuroSCORE II intervention: 1.5 (1.2)</p>
|
|
<p>EuroSCORE II control: 1.5 (0.9)</p>
|
|
<p>~28% had concomitant coronary artery disease.</p>
|
|
<p>Calcific aortic stenosis</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 2 years</p>
|
|
<p>Cardiac mortality at 2 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 1-2 years</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 2 years</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Re-hospitalisation at 2 years</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 2 years</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>PARTNER 3 trial</p>
|
|
<p>Funded by Edwards Lifesciences</p>
|
|
<p>Some indirectness as ~25% in the surgery group had minimally invasive surgery rather than standard surgery</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Nielsen 2012<a class="bibr" href="#niceng208er8.ref279" rid="niceng208er8.ref279"><sup>279</sup></a></p>
|
|
<p>Conducted in Denmark</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter replacement with biological valves</b> (n = 36)</p>
|
|
<p>Using an Edwards SAPIEN valve. Approach by the transapical route.</p>
|
|
<p><b>Standard surgery replacement with biological valve</b> (n = 36)</p>
|
|
<p>Median sternotomy approach. Using a PERIMOUNT aortic heart valve.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 59)</p>
|
|
<p>Significant valvular aortic stenosis in adults older than 70 years (later increased to 75 years.</p>
|
|
<p>Mean age: 80 (3.6) years</p>
|
|
<p>Low operative risk:</p>
|
|
<p>Logistic EuroSCORE intervention: 9.4 (3.9)</p>
|
|
<p>Logistic EuroSCORE control: 10.3 (5.8).</p>
|
|
<p>Concomitant coronary artery disease (requiring percutaneous coronary intervention or coronary artery bypass grafting) excluded</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 5 years</p>
|
|
<p>Cardiac mortality at 5 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 5 years</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 30 days</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>STACCATO trial</p>
|
|
<p>Authors (non-principle) funded by Edwards Lifesciences</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Reardon 2017<a class="bibr" href="#niceng208er8.ref320" rid="niceng208er8.ref320"><sup>320</sup></a></p>
|
|
<p>Conducted in Denmark, Germany, Netherlands, Switzerland and USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter replacement</b> (n = 879)</p>
|
|
<p>Majority treated ileofemorally. Transcatheter replacement with biological valve.</p>
|
|
<p><b>Standard surgery replacement</b> (n = 867)</p>
|
|
<p>Standard surgery replacement with biological valve.</p>
|
|
<p>Dual antiplatelet therapy of aspirin and clopidogrel recommended for 3 months in both groups. Followed by lifelong monotherapy.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 1746)</p>
|
|
<p>Symptomatic, severe aortic stenosis at intermediate surgical risk (3-15% risk of 30-day surgical death)</p>
|
|
<p>Mean age: 79.9 (6.2) years</p>
|
|
<p>Operative risk: intermediate</p>
|
|
<p>~63-64% with concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 2 years months</p>
|
|
<p>Cardiac mortality at 2 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 3 months – 2 years</p>
|
|
<p>Intervention-related stroke at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 2 years</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Re-hospitalisation at 2 years</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>SURTAVI trial.</p>
|
|
<p>Funded by Medtronic</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Smith 2011<a class="bibr" href="#niceng208er8.ref368" rid="niceng208er8.ref368"><sup>368</sup></a></p>
|
|
<p>Conducted in Canada, Germany, USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter replacement with biological valves</b> (n = 348)</p>
|
|
<p>Using a SAPIEN heart valve system with either a transfemoral (244) or transapical (104) approach.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valves</b> (n = 351)</p>
|
|
<p>Median sternotomy approach. Type of valve used unclear.</p>
|
|
<p>All people were started on dual antiplatelet therapy (aspirin and clopidogrel) for six months after the procedure.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 699)</p>
|
|
<p>People with severe aortic stenosis and cardiac symptoms (NYHA class II-IV) who were considered as high surgical risk (STS score ≥10%).</p>
|
|
<p>Mean age: 83.6 (6.8) years</p>
|
|
<p>High operative risk:</p>
|
|
<p>STS intervention: 11.8 (3.3)</p>
|
|
<p>STS control: 11.7 (3.5)</p>
|
|
<p>Logistic EuroSCORE intervention: 29.3 (16.5)</p>
|
|
<p>Logistic EuroSCORE control: 29.3 (15.6)</p>
|
|
<p>~75-77% with concomitant coronary artery disease</p>
|
|
<p>Calcified aortic stenosis – non-calcified aortic valve disease was excluded.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 5 years</p>
|
|
<p>Cardiac mortality at 5 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 1 year</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Re-hospitalisation at 5 years</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 5 years</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>PARTNER 1A trial</p>
|
|
<p>Funded by Edwards Lifesciences</p>
|
|
<p>Population indirectness as >10% had prior balloon aortic valvuloplasty</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Thyregod 2015<a class="bibr" href="#niceng208er8.ref401" rid="niceng208er8.ref401"><sup>401</sup></a></p>
|
|
<p>Conducted in Denmark and Sweden</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter replacement with biological valves</b> (n = 145)</p>
|
|
<p>Using a CoreValve system. Performed by a transfemoral approach.</p>
|
|
<p><b>Standard surgery replacement with biological valves</b> (n = 135)</p>
|
|
<p>Conventional median sternotomy with bioprosthesis.</p>
|
|
<p>All people advised to take clopidogrel (75mg once a day) for 3 months and aspirin (75mg once a day lifelong).</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 280)</p>
|
|
<p>Adults (70 years or older) with severe degenerative aortic stenosis with symptoms or without symptoms but with associated left ventricular systolic dysfunction and/or hypertrophy.</p>
|
|
<p>Mean age: 79.2 (4.9) years</p>
|
|
<p>Low operative risk:</p>
|
|
<p>STS-PROM intervention: 2.9 (1.6)</p>
|
|
<p>STS-PROM control: 3.1 (1.7)</p>
|
|
<p>Logistic EuroSCORE intervention: 8.4 (4.0)</p>
|
|
<p>Logistic EuroSCORE control: 8.9 (5.5)</p>
|
|
<p>Coronary artery disease requiring intervention was an exclusion criterion</p>
|
|
<p>Unclear if calcific or rheumatic – calcific as it has been termed degenerative aortic stenosis?</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 6 years</p>
|
|
<p>Cardiac mortality at 5 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 5 years</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 5 years</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>NOTION trial</p>
|
|
<p>Individual authors are funded by Medtronic. Received funding from the Danish Heart Foundation.</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_11_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Aortic stenosis (non-bicuspid), transcatheter replacement vs. pharmacological management</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_11_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Leon 2010<a class="bibr" href="#niceng208er8.ref217" rid="niceng208er8.ref217"><sup>217</sup></a></p>
|
|
<p>Conducted in Canada, Germany and USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_11_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter replacement with biological valves</b> (n = 179)</p>
|
|
<p>Using Edwards SAPIEN heart valve system.</p>
|
|
<p>Route used was transfemoral.</p>
|
|
<p><b>Conservative management – Pharmacological therapy</b> (n = 179)</p>
|
|
<p>Standard therapy including pharmacological management and balloon aortic valvuloplasty (conducted in 140 people by 2 years).</p>
|
|
<p>Route used for balloon aortic valvuloplasty was transfemoral.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_11_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 358)</p>
|
|
<p>People with severe aortic stenosis and cardiac symptoms (NYHA class II-IV) considered at high risk of surgery.</p>
|
|
<p>>10% of the people had previous surgical intervention (balloon aortic valvuloplasty)</p>
|
|
<p>Mean age: 83.1 (8.6)</p>
|
|
<p>Inoperable operative risk:</p>
|
|
<p>STS score intervention: 11.2 (5.8)</p>
|
|
<p>STS score control: 12.1 (6.1)</p>
|
|
<p>Logistic EuroSCORE intervention: 26.4 (17.2)</p>
|
|
<p>Logistic EuroSCORE control: 30.4 (19.1)</p>
|
|
<p>~68-74% had concomitant coronary artery disease. Those requiring revascularisation excluded.</p>
|
|
<p>Calcified aortic stenosis – non-calcified aortic valve disease was excluded.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_11_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 5 years</p>
|
|
<p>Cardiac mortality at 5 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 1 year</p>
|
|
<p>Re-hospitalisation at 5 years</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 2 years</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_11_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>PARTNER 1B trial</p>
|
|
<p>Funded by Edwards Lifesciences</p>
|
|
<p>Population indirectness as >10% had prior balloon aortic valvuloplasty</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_13_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Aortic stenosis (non-bicuspid), transcatheter replacement vs. surgery replacement (unclear/mixed invasiveness)</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_13_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Popma 2019<a class="bibr" href="#niceng208er8.ref308" rid="niceng208er8.ref308"><sup>308</sup></a></p>
|
|
<p>Conducted in Australia, Canada, France, Japan, Netherlands, New Zealand and USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_13_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter replacement with biological valves</b> (n = 734)</p>
|
|
<p>Using one of three valve brands: CoreValve, Evolut R or Evolut PRO. Majority performed iliofemorally (99%).</p>
|
|
<p>Pre-TAVR balloon valvuloplasty performed in 34.9% of people. Post-TAVR balloon dilation performed in 31.3% of people.</p>
|
|
<p>Recommended to have 30 days or more of dual antiplatelet therapy followed by aspirin for 12 months.</p>
|
|
<p><b>Surgical replacement with biological valve</b> (n = 734)</p>
|
|
<p>Type of procedure not clear (invasiveness unclear). Type of valve left to the surgeon’s discretion, but all were biological valves</p>
|
|
<p>Recommended to be started on warfarin or aspirin after the procedure.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_13_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (non-bicuspid)</b> (N = 1468)</p>
|
|
<p>Symptomatic and asymptomatic people with severe (or very severe if asymptomatic) aortic stenosis considered to be at low risk for surgery (predicted mortality of <3% at 30 days).</p>
|
|
<p>Mean age: 74.0 (5.9)</p>
|
|
<p>Low operative risk:</p>
|
|
<p>STS-PROM intervention: 1.9 (0.7)</p>
|
|
<p>STS-PROM control: 1.9 (0.7)</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_13_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 2 years</p>
|
|
<p>Cardiac mortality at 1 year</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 1 year</p>
|
|
<p>Onset or exacerbation of heart failure at 1 year</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 1 year</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 1 year</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_13_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Evolut Low Risk Trial</p>
|
|
<p>Funded by Medtronic</p>
|
|
<p>Intervention indirectness as the invasiveness of the surgery in the surgery group was unclear</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_15_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Aortic stenosis (mixed non-bicuspid and bicuspid or unclear), minimally invasive surgery replacement vs. standard surgery replacement</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Aris 1999<a class="bibr" href="#niceng208er8.ref20" rid="niceng208er8.ref20"><sup>20</sup></a></p>
|
|
<p>Conducted in Spain</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Ministernotomy replacement with mechanical valve</b> (n = 20)</p>
|
|
<p>13 people underwent a reversed “L” ministernotomy. 7 people underwent a reversed “C” incision. All but 1 person in the entire study had a mechanical valve prosthesis.</p>
|
|
<p><b>Standard surgery replacement with mechanical valve</b> (n = 20)</p>
|
|
<p>Median sternotomy. All but 1 person in the entire study had a mechanical prosthesis.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (mixed bicuspid and non-bicuspid or unclear)</b> (N = 40)</p>
|
|
<p>Consecutive people undergoing first-time elective, isolated aortic valve replacement (mixture of some with stenosis and some with regurgitation – 78% stenosis). Unclear whether bicuspid valve disease excluded.</p>
|
|
<p>Mean age: 64 (11)</p>
|
|
<p>Operative risk score intervention: 11.6 (5).</p>
|
|
<p>Operative risk score control: 11.4 (5.5).</p>
|
|
<p>Systolic function not stated.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cardiac mortality at 30 days</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Need for re-intervention at 30 days</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Funding not stated</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Borger 2015<a class="bibr" href="#niceng208er8.ref61" rid="niceng208er8.ref61"><sup>61</sup></a></p>
|
|
<p>Conducted in Germany</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Minimally invasive surgical replacement with biological valves</b> (n = 51)</p>
|
|
<p>Ministernotomy replacement with a biological valve.</p>
|
|
<p><b>Standard surgical replacement with biological valves</b> (n = 49)</p>
|
|
<p>Median sternotomy replacement with a biological valve.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (mixed bicuspid and non-bicuspid or unclear)</b> (N = 100)</p>
|
|
<p>People with aortic stenosis with or without aortic insufficiency or low-to-moderate surgical risk requiring isolated aortic valve surgery. NYHA class II or greater.</p>
|
|
<p>Mean age: 73.0 (5.3)</p>
|
|
<p>Operative risk mixed: Low-to-moderate.</p>
|
|
<p>Logistic EuroSCORE intervention: 6.4 (3.7)</p>
|
|
<p>Logistic EuroSCORE control: 6.7 (3.6)</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 1 year</p>
|
|
<p>Cardiac mortality at 1 year</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 3 months</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 30 days</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 1 year</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CADENCE-MIS trial</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Calderon 2009<a class="bibr" href="#niceng208er8.ref69" rid="niceng208er8.ref69"><sup>69</sup></a></p>
|
|
<p>Conducted in France</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Ministernotomy replacement with biological or mechanical valve</b> (n = 38)</p>
|
|
<p>Reversed-L sternal incision. Does not state the type of valve used during the replacement.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valve</b> (n = 39)</p>
|
|
<p>Median sternotomy. Does not state the type of valve used during the replacement.</p>
|
|
<p>For both groups, postoperative analgesia with patient controlled analgesia (morphine) with IV paracetamol and ketoprofen if insufficient relief achieved.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (mixed bicuspid and non-bicuspid or unclear)</b> (N = 78)</p>
|
|
<p>Adults (≥18 years) with aortic stenosis, ASA grade ≤3 with an LVEF >40%. Some with regurgitation rather than stenosis but majority (75%) stenosis.</p>
|
|
<p>Mean age: 70.9 (11.4)</p>
|
|
<p>Low operative risk:</p>
|
|
<p>EuroSCORE intervention: 5.4 (1.9)</p>
|
|
<p>EuroSCORE control: 5.2 (1.8)</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cardiac mortality at 7 days</p>
|
|
<p>Intervention-related mortality at 7 days</p>
|
|
<p>Intervention-related major bleeding at 7 days</p>
|
|
<p>Need for re-intervention at 7 days</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Academic/government funding from the University Hospital of Bordeaux and the French Ministry of Research</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Dalén 2018<a class="bibr" href="#niceng208er8.ref89" rid="niceng208er8.ref89"><sup>89</sup></a></p>
|
|
<p>Conducted in Sweden</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Ministernotomy replacement with biological or mechanical valves</b> (n=20)</p>
|
|
<p>Using partial J-shaped ministernotomy in the third intercostal space.</p>
|
|
<p>14 people had biological prosthesis. 5 had mechanical prostheses. 1 switched to the control group intraoperatively so valve type unknown.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valves</b> (n = 20)</p>
|
|
<p>Using median sternotomy.</p>
|
|
<p>16 people had a biological valve replacement. 5 had mechanical prostheses.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (mixed bicuspid and non-bicuspid or unclear)</b> (N = 40)</p>
|
|
<p>Adults with severe symptomatic aortic stenosis who were in sinus rhythm. Excluded if LVEF <45%.</p>
|
|
<p>Mean age: 68.6 (8.5)</p>
|
|
<p>Operative risk low: Mean EuroSCORE II 1.35 (0.79).</p>
|
|
<p>Systolic function not stated.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cardiac mortality at 30 days</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for reintervention at 30 days</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>CMILE trial</p>
|
|
<p>Academic funding from Fredrick Lundberg and support from the Hirsch Fellowship.</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Rodriguez-Caulo, 2020<a class="bibr" href="#niceng208er8.ref333" rid="niceng208er8.ref333"><sup>333</sup></a></p>
|
|
<p>Conducted in Spain</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Ministernotomy replacement with biological or mechanical valves</b> (n=50)</p>
|
|
<p>Partial upper hemisternotomy extended into J-shape. All surgeons experienced in ministernotomy procedure. Completed in 94% with 3 converted to full sternotomy due to procedural difficulties. A total of 98% received a biological valve.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valves</b> (n = 50)</p>
|
|
<p>Full median sternotomy aortic valve replacement performed with conventional cardiopulmonary bypass. A total of 96% received a biological valve.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Aortic stenosis (mixed bicuspid and non-bicuspid or unclear)</b> (N = 100)</p>
|
|
<p>Adults with severe symptomatic aortic stenosis or double aortic lesion with predominant stenosis. Excluded if LVEF <40%.</p>
|
|
<p>Mean age: 66-68 years in the two groups</p>
|
|
<p>Logististic EuroSCORE I: 4-5%</p>
|
|
<p>LVEF >60% in both groups</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 1 year</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 72 h</p>
|
|
<p>Need for reintervention at 30 days</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Intervention-related pacemaker implantation at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 1 year</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_15_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_21_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mixed/unclear aortic valve disease, minimally invasive surgery replacement vs. standard surgery replacement</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Ahangar 2013<a class="bibr" href="#niceng208er8.ref4" rid="niceng208er8.ref4"><sup>4</sup></a></p>
|
|
<p>Conducted in India</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Minimally invasive surgical replacement with biological or mechanical valves</b> (n = 30)</p>
|
|
<p>Right anterolateral thoracotomy. A 35cm incision made in the right submammary fold starting at 35cm from the lateral border of the sternum. Entering through the third intercostal space.</p>
|
|
<p>Type of valve used unclear</p>
|
|
<p><b>Standard surgery replacement with biological or mechanical valves</b> (n = 30)</p>
|
|
<p>Conventional median sternotomy.</p>
|
|
<p>For both groups, postoperative IV morphine (3mg four times a day) was given for analgesia. Oral anticoagulation with acenocoumarol was started on the second postoperative day (target INR 2.0-2.5). IV antibiotics (ceftriaxone/sulbactam and amikacin) were administered during hospital stay.</p>
|
|
<p>Type of valve used unclear</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear aortic valve disease</b> (N = 60)</p>
|
|
<p>People requiring aortic valve replacement (type of aortic valve disease unclear). Excludes people at high anaesthetic risk (ASA 3 or 4).</p>
|
|
<p>Mean age: 38.5 (10.6)</p>
|
|
<p>Operative risk unclear – high risk excluded</p>
|
|
<p>Systolic function not stated</p>
|
|
<p>Coronary artery disease exclusion criterion</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of hospital stay after intervention</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>No funding</p>
|
|
<p>Population indirectness due to mixed/unclear aortic valve disease</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Bonacchi 2002<a class="bibr" href="#niceng208er8.ref59" rid="niceng208er8.ref59"><sup>59</sup></a></p>
|
|
<p>Conducted in Italy</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Ministernotomy replacement with mechanical or biological valves</b> (n = 40)</p>
|
|
<p>Reversed-C incision in 15 people, reversed-L incision in 25 people. Using a 6-10cm midline skin incision started at the right border of the fourth-to-fifth intercostal space. Mentions both mechanical and biological valves.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valves</b> (n = 40)</p>
|
|
<p>Median sternotomy by a 20-25cm long midline skin incision from the sternal notch to the xiphoid appendage. Mentions both mechanical and biological valves.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear aortic valve disease</b> (N = 80)</p>
|
|
<p>People with aortic valve pathology (mixture of those with stenosis, regurgitation or both) who underwent aortic valve replacement.</p>
|
|
<p>Mean age: 62.6 (9.5)</p>
|
|
<p>Operative risk not stated</p>
|
|
<p>Excludes people with significant systolic dysfunction (LVEF <0.25).</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Intervention-related mortality during hospital admission</p>
|
|
<p>Intervention-related major bleeding during hospital admission</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Intervention-related atrial fibrillation during hospital admission</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Population indirectness due to mixed/unclear aortic valve disease</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Dogan 2003<a class="bibr" href="#niceng208er8.ref102" rid="niceng208er8.ref102"><sup>102</sup></a></p>
|
|
<p>Conducted in Germany</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Minimally invasive surgery replacement</b> (n=20)</p>
|
|
<p>Limited median skin incision (7-9 cm) and a reversed L-shaped upper partial sternotomy into 4<sup>th</sup> or 5<sup>th</sup> intercostal space. Type of valve unclear.</p>
|
|
<p><b>Standard surgery replacement</b> (n=20)</p>
|
|
<p>Complete sternotomy. Valve type unclear.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear aortic valve disease</b> (N = 40)</p>
|
|
<p>Patients scheduled for elective aortic valve surgery. Aortic stenosis (n=14), aortic insufficiency (n=4), combined (n=22) – mixture of types, no majority.</p>
|
|
<p>Mean age: 65.7 (1.9) years</p>
|
|
<p>Operative risk unclear</p>
|
|
<p>Systolic dysfunction not stated</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cardiac mortality (postoperative)</p>
|
|
<p>Intervention-related mortality (postoperative)</p>
|
|
<p>Intervention-related stroke or TIA (postoperative)</p>
|
|
<p>Intervention-related major bleeding (postoperative)</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Intervention-related pacemaker implantation (postoperative)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Population indirectness due to mixed/unclear aortic valve disease</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Fareed 2018<a class="bibr" href="#niceng208er8.ref120" rid="niceng208er8.ref120"><sup>120</sup></a></p>
|
|
<p>Conducted in Egypt</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Minimally invasive surgical replacement with biological or mechanical valves</b> (n = 30)</p>
|
|
<p>Limited upper ministernotomy to the third right intercostal space. Valve type not stated.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valves</b> (n = 30)</p>
|
|
<p>Median sternotomy replacement. Valve type not stated.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear aortic valve disease</b> (N = 60)</p>
|
|
<p>People with aortic valve disease (type not specified) requiring aortic valve replacement.</p>
|
|
<p>Age not stated</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Systolic function not stated</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Intervention-related atrial fibrillation at <3 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Population indirectness due to mixed/unclear aortic valve disease</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Moustafa 2007<a class="bibr" href="#niceng208er8.ref265" rid="niceng208er8.ref265"><sup>265</sup></a></p>
|
|
<p>Conducted in Egypt</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Ministernotomy replacement with mechanical valve</b> (n = 30)</p>
|
|
<p>Reversed L-shaped ministernotomy from the sternal notch to the third intercostal space. Bicuspid St. Jude medical aortic valve prosthesis (mechanical).</p>
|
|
<p><b>Standard surgical replacement with mechanical valve</b> (n = 30)</p>
|
|
<p>Median sternotomy replacement. Bicuspid St. Jude medical aortic valve prosthesis (mechanical).</p>
|
|
<p>Postoperative analgesia used: Tenoxicam 4g/12 hours while in ITU. Oral paracetamol (500mg) while on the ward.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear aortic valve disease</b> (N = 60)</p>
|
|
<p>50% of people had aortic stenosis, 50% had aortic regurgitation. People undergoing first-time elective aortic valve replacement.</p>
|
|
<p>Mean age: 23.8 (3.49).</p>
|
|
<p>Operative risk not stated.</p>
|
|
<p>No systolic dysfunction, mean LVEF 55% (2.55%).</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of hospital stay after intervention</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Population indirectness due to mixed/unclear aortic valve disease</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Nair 2018<a class="bibr" href="#niceng208er8.ref270" rid="niceng208er8.ref270"><sup>270</sup></a></p>
|
|
<p>Conducted in UK</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Ministernotomy replacement with biological or mechanical valve</b> (n = 118)</p>
|
|
<p>Skin incised from half-way between the suprasternal notch and the sternal angle to the level of the fourth intercostal space, measuring approximately 8cm. Division of the manubrium in the midline from the suprasternal notch and then into the right fourth intercostal space. Mechanical and biological valves mentioned – majority biological.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valves</b> (n = 104)</p>
|
|
<p>Standard median sternotomy procedure. Mechanical and biological valves mentioned – majority biological.</p>
|
|
<p>In both arms, a loading dose of 300 units/kg heparin followed by boluses of 5000 units to achieve an activated clotting time above 450s.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear aortic valve disease</b> (N = 222)</p>
|
|
<p>Adults undergoing first-time isolated aortic valve replacement (type of valve disease not stated).</p>
|
|
<p>Mean age: 71.3 (12.3)</p>
|
|
<p>Intermediate operative risk: Intervention: 5.9 (2.1).</p>
|
|
<p>Control: 6.1 (2.1).</p>
|
|
<p>No systolic dysfunction.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 1 year</p>
|
|
<p>Cardiac mortality at 1 year</p>
|
|
<p>Intervention-related mortality at 6 weeks</p>
|
|
<p>Quality of life at 1 year</p>
|
|
<p>Need for re-intervention at 1 year</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Academic/government funding from the National Institute of Health Research (NIHR).</p>
|
|
<p>Population indirectness due to mixed/unclear aortic valve disease</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Shneider 2020<a class="bibr" href="#niceng208er8.ref356" rid="niceng208er8.ref356"><sup>356</sup></a></p>
|
|
<p>Conducted in Russia</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Ministernotomy replacement with biological or mechanical valve</b> (n = 56)</p>
|
|
<p>J-shaped partial upper sternotomy, with 75% receiving mechanical valves and 25% receiving biological valves.</p>
|
|
<p>Preoperative chest CT performed in all patients.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valves</b> (n = 56)</p>
|
|
<p>Standard median sternotomy procedure, with 69.6% receiving mechanical valves and 30.4% receiving biological valves.</p>
|
|
<p>Preoperative chest CT performed in all patients.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear aortic valve disease</b> (N = 112)</p>
|
|
<p>Adults aged 18-85 years with an indication for isolated aortic valve replacement (type of valve disease not stated).</p>
|
|
<p>Mean age: 53.1 (14.9) and 56.1 (14.3) years in the two groups</p>
|
|
<p>EuroSCORE II ~2 in both groups</p>
|
|
<p>LVEF ~58% in both groups</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 30 months</p>
|
|
<p>Intervention-related mortality (in-hospital)</p>
|
|
<p>Intervention-related stroke or TIA (early postoperative)</p>
|
|
<p>Intervention-related major bleeding (postoperative)</p>
|
|
<p>Need for re-intervention at 30 months</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Intervention-related pacemaker implantation (operative)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Population indirectness due to mixed/unclear aortic valve disease</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Vukovic 2019<a class="bibr" href="#niceng208er8.ref423" rid="niceng208er8.ref423"><sup>423</sup></a></p>
|
|
<p>Conducted in Serbia</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Ministernotomy with biological or mechanical valves</b> (n = 50)</p>
|
|
<p>Reverse J-shaped upper ministernotomy from the sternal notch to the third or fourth intercostal space. Biological prostheses used in people older than 65 years.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valves</b> (n = 50)</p>
|
|
<p>Median sternotomy with a 20-25cm midline skin incision from the sternal notch. Biological prosthesis used in people older than 65 years.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear aortic valve disease</b> (N = 100)</p>
|
|
<p>People with aortic stenosis undergoing elective isolated aortic valve replacement (type of valve disease unclear).</p>
|
|
<p>Mean age: 65 (8.9) years</p>
|
|
<p>Low operative risk:</p>
|
|
<p>EuroSCORE II intervention: 1.87 (1.03)</p>
|
|
<p>EuroSCORE II control: 1.98 (1.8)</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if calcific or rheumatic disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 2 years</p>
|
|
<p>Cardiac mortality at 2 year</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 30 days</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Re-hospitalisation at 2 years</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Prosthetic valve endocarditis at 2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_21_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Population indirectness due to mixed/unclear aortic valve disease</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_30_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral stenosis, minimally invasive surgery repair vs. standard surgery repair</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_30_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Ben Farhat 1998<a class="bibr" href="#niceng208er8.ref50" rid="niceng208er8.ref50"><sup>50</sup></a></p>
|
|
<p>Conducted in Tunisia</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_30_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n=30)</p>
|
|
<p>Balloon mitral commissurotomy. Performed with two pigtail balloons through a single interatrial septum puncture.</p>
|
|
<p><b>Standard surgery repair</b> (n=30)</p>
|
|
<p>Open mitral commissurotomy. Performed by median sternotomy. Both commissures were incised.</p>
|
|
<p><b>Minimally invasive surgery repair</b> (n=30)</p>
|
|
<p>Closed mitral commissurotomy performed through a left lateral thoracotomy. Both commissures could be correctly opened in 20 people.</p>
|
|
<p>Before and after intervention, all people underwent right and left-sided cardiac catheterisation at rest.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_30_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral stenosis</b> (N = 90)</p>
|
|
<p>Rheumatic, severe pliable mitral stenosis.</p>
|
|
<p>Mean age: 29 (12) years.</p>
|
|
<p>Included some under the age of 18.</p>
|
|
<p>Morphology suitable for transcatheter intervention.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Rheumatic mitral valve disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_30_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 7 years</p>
|
|
<p>Cardiac mortality at 7 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Need for re-intervention at 7 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_30_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Funding not stated</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_32_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral stenosis, transcatheter repair vs. standard surgery repair</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Ben Farhat 1998<a class="bibr" href="#niceng208er8.ref50" rid="niceng208er8.ref50"><sup>50</sup></a></p>
|
|
<p>Conducted in Tunisia</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n=30)</p>
|
|
<p>Balloon mitral commissurotomy. Performed with two pigtail balloons through a single interatrial septum puncture.</p>
|
|
<p><b>Standard surgery repair</b> (n=30)</p>
|
|
<p>Open mitral commissurotomy. Performed by median sternotomy. Both commissures were incised.</p>
|
|
<p><b>Minimally invasive surgery repair</b> (n=30)</p>
|
|
<p>Closed mitral commissurotomy performed through a left lateral thoracotomy. Both commissures could be correctly opened in 20 people.</p>
|
|
<p>Before and after intervention, all people underwent right and left-sided cardiac catheterisation at rest.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral stenosis</b> (N = 90)</p>
|
|
<p>Rheumatic, severe pliable mitral stenosis.</p>
|
|
<p>Mean age: 29 (12) years.</p>
|
|
<p>Included some under the age of 18.</p>
|
|
<p>Morphology suitable for transcatheter intervention.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Rheumatic mitral valve disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 7 years</p>
|
|
<p>Cardiac mortality at 7 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Need for re-intervention at 7 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Funding not stated</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Reyes 1994<a class="bibr" href="#niceng208er8.ref323" rid="niceng208er8.ref323"><sup>323</sup></a></p>
|
|
<p>Conducted in India</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n = 30)</p>
|
|
<p>Percutaneous balloon valvuloplasty.</p>
|
|
<p><b>Standard surgery repair</b> (n = 30)</p>
|
|
<p>Open surgical commissurotomy by midline sternotomy</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral stenosis</b> (N = 60)</p>
|
|
<p>People (age 15-75 years) with severe rheumatic mitral stenosis.</p>
|
|
<p>Mean age: 30 (9) years</p>
|
|
<p>Morphology of mitral stenosis not stated</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>No history of other cardiac disease – coronary artery disease potentially excluded?</p>
|
|
<p>Rheumatic mitral stenosis</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 3 years</p>
|
|
<p>Cardiac mortality at 3 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_32_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Academic funding (from the Institute of Medical Sciences, Nizam)</p>
|
|
<p>Population indirectness as includes some under 18 years of age</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_35_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral stenosis, transcatheter repair vs. minimally invasive surgery repair</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Arora 1993<a class="bibr" href="#niceng208er8.ref28" rid="niceng208er8.ref28"><sup>28</sup></a></p>
|
|
<p>Conducted in India</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n=100)</p>
|
|
<p>Percutaneous balloon mitral valvuloplasty. Performed by transvenous transatrial route with a double-balloon technique.</p>
|
|
<p><b>Minimally invasive surgery repair</b> (n=100)</p>
|
|
<p>Surgical closed mitral valvotomy. Performed by lateral thoracic approach.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral stenosis</b> (N = 200)</p>
|
|
<p>Symptomatic people with moderate-to-severe rheumatic mitral stenosis.</p>
|
|
<p>Mean age: 19.4 (5.47) years.</p>
|
|
<p>Included some under the age of 18.</p>
|
|
<p>Morphology suitable for transcatheter intervention.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Rheumatic mitral valve disease. More than minimal calcification of mitral valve an exclusion criterion.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 22 months</p>
|
|
<p>Cardiac mortality at 22 months</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Funding not stated</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Ben Farhat 1998<a class="bibr" href="#niceng208er8.ref50" rid="niceng208er8.ref50"><sup>50</sup></a></p>
|
|
<p>Conducted in Tunisia</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n=30)</p>
|
|
<p>Balloon mitral commissurotomy. Performed with two pigtail balloons through a single interatrial septum puncture.</p>
|
|
<p><b>Standard surgery repair</b> (n=30)</p>
|
|
<p>Open mitral commissurotomy. Performed by median sternotomy. Both commissures were incised.</p>
|
|
<p><b>Minimally invasive surgery repair</b> (n=30)</p>
|
|
<p>Closed mitral commissurotomy performed through a left lateral thoracotomy. Both commissures could be correctly opened in 20 people.</p>
|
|
<p>Before and after intervention, all people underwent right and left-sided cardiac catheterisation at rest.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral stenosis</b> (N = 90)</p>
|
|
<p>Rheumatic, severe pliable mitral stenosis.</p>
|
|
<p>Mean age: 29 (12) years.</p>
|
|
<p>Included some under the age of 18.</p>
|
|
<p>Morphology suitable for transcatheter intervention.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Rheumatic mitral valve disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 7 years</p>
|
|
<p>Cardiac mortality at 7 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Need for re-intervention at 7 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Funding not stated</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Momtahen 1997<a class="bibr" href="#niceng208er8.ref262" rid="niceng208er8.ref262"><sup>262</sup></a></p>
|
|
<p>Conducted in Iran</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n = 450)</p>
|
|
<p>Balloon commissurotomy by a transseptal approach with a single balloon using the Inoue approach</p>
|
|
<p><b>Minimally invasive surgical repair</b> (n = 127)</p>
|
|
<p>Surgical closed commissurotomy approached by left lateral thoracotomy.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral stenosis</b> (N = 577)</p>
|
|
<p>Severe rheumatic mitral stenosis</p>
|
|
<p>Mean age: 32 (range: 15-55) years.</p>
|
|
<p>The majority of the population are women with a mean age of 32 years.</p>
|
|
<p>Morphology suitable for transcatheter intervention.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Rheumatic mitral stenosis</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at during initial hospitalisation</p>
|
|
<p>Cardiac mortality during initial hospitalisation</p>
|
|
<p>Intervention-related stroke or TIA during initial hospitalisation</p>
|
|
<p>Need for reintervention during initial hospitalisation</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Population indirectness as includes some under 18 years of age</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Rifaie 2009<a class="bibr" href="#niceng208er8.ref331" rid="niceng208er8.ref331"><sup>331</sup></a></p>
|
|
<p>Conducted in Egypt</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n = 20)</p>
|
|
<p>Percutaneous mitral valvotomy achieved through standard double balloon technique.</p>
|
|
<p><b>Minimally invasive surgery repair</b> (n = 20)</p>
|
|
<p>Surgical commissurotomy. Left thoracotomy with a Tubb’s dilator (opened to a maximum of 2.5cm in women and 3.5cm in men).</p>
|
|
<p>People in atrial fibrillation received oral anticoagulants for 6 weeks prior aiming for an INR of 2.0-3.0. This was stopped before the procedure so the INR decreased below 1.5.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral stenosis</b> (N = 40)</p>
|
|
<p>Moderate to severe rheumatic mitral stenosis with pulmonary congestion symptoms</p>
|
|
<p>Mean age: 29.7 (7) years</p>
|
|
<p>Morphology suitable for transcatheter intervention.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Those indicated for coronary artery bypass grafting excluded – unclear whether any had coronary artery disease that did not require intervention.</p>
|
|
<p>Rheumatic mitral stenosis</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 8 years</p>
|
|
<p>Cardiac mortality at 8 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Need for re-intervention at 8 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Funding not stated</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Turi 1991<a class="bibr" href="#niceng208er8.ref409" rid="niceng208er8.ref409"><sup>409</sup></a></p>
|
|
<p>Conducted in India</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n = 20)</p>
|
|
<p>Balloon commissurotomy performed immediately after cardiac catheterisation. Used a double balloon technique.</p>
|
|
<p>9 people were taking digitalis, 16 were taking diuretics.</p>
|
|
<p><b>Minimally invasive surgery repair</b> (n = 20)</p>
|
|
<p>Closed mitral commissurotomy by left lateral thoracotomy.</p>
|
|
<p>12 people were taking digitalis, 18 were taking diuretics.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral stenosis</b> (N = 40)</p>
|
|
<p>People with severe rheumatic mitral stenosis (as determined by cardiac catheterisation) in sinus rhythm.</p>
|
|
<p>Mean age: 27.1 (7.6)</p>
|
|
<p>Morphology suitable for transcatheter intervention</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Rheumatic mitral stenosis</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 8 months</p>
|
|
<p>Cardiac mortality at 8 months</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 8 months</p>
|
|
<p>Major vascular events at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_35_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Equipment/drugs provided by industry</p>
|
|
<p>Population indirectness as includes some under 18 years of age</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_41_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral stenosis, transcatheter repair vs. surgical repair (unclear/mixed invasiveness)</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_41_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cardoso 2002<a class="bibr" href="#niceng208er8.ref75" rid="niceng208er8.ref75"><sup>75</sup></a></p>
|
|
<p>Conducted in Brazil</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_41_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n = 40)</p>
|
|
<p>Percutaneous balloon valvuloplasty performed through the transeptal route. Procedure performed by the Inoue technique.</p>
|
|
<p><b>Surgical repair (unclear/mixed invasiveness)</b> (n = 40)</p>
|
|
<p>Open surgical mitral commissurotomy approached through median or right thoracotomy – mixed invasiveness.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_41_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral stenosis</b> (N = 80)</p>
|
|
<p>Adults (age ≤60 years) with tight and pliable mitral stenosis of an NYHA class ≥2.</p>
|
|
<p>Mean age: 32 (9) years.</p>
|
|
<p>Morphology suitable for transcatheter intervention.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Rheumatic mitral stenosis</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_41_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 2 years</p>
|
|
<p>Cardiac mortality at 2 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related major bleeding postoperatively</p>
|
|
<p>Need for re-intervention at 2 years</p>
|
|
<p>Intervention-related pacemaker implantation postoperatively</p>
|
|
<p>Intervention-related atrial fibrillation postoperatively</p>
|
|
<p>Major vascular complications postoperatively</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_41_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Same study also appears to have been reported on in Cardoso 2004 paper<a class="bibr" href="#niceng208er8.ref74" rid="niceng208er8.ref74"><sup>74</sup></a> at 5 year follow-up, however, the numbers randomised differed between the two papers despite other features suggesting they were the same study. For this reason, outcomes were only extracted from the 2002 paper as it is unclear why in the numbers randomised differed in the 2004 paper.</p>
|
|
<p>Population indirectness as includes some under 18 years of age</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_43_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral regurgitation, standard surgery replacement vs. standard surgery repair</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_43_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Medved 2010<a class="bibr" href="#niceng208er8.ref253" rid="niceng208er8.ref253"><sup>253</sup></a></p>
|
|
<p>Conducted in Croatia</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_43_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Median sternotomy replacement with biological or mechanical valves</b> (n=40)</p>
|
|
<p>Conventional median sternotomy valve replacement. Valve type not stated.</p>
|
|
<p><b>Median sternotomy repair</b> (n = 40)</p>
|
|
<p>Conventional median sternotomy valve repair. Type of repair not specified.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_43_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral regurgitation</b> (N = 80)</p>
|
|
<p>Adults (≥70 years) with mitral valve insufficiency (grades III-IV).</p>
|
|
<p>25 people required aortic valve replacement at the same time as mitral valve repair/replacement, and 27 people required tricuspid valve annuloplasty.</p>
|
|
<p>Mean age: 76 (5) years.</p>
|
|
<p>High operative risk (EuroScore): 15.76-16.94%.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Aetiology of mitral regurgitation was different for different patients: myxamatous, rheumatic, ischaemic or due to endocarditis</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_43_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cardiac mortality at <30 days</p>
|
|
<p>Intervention-related mortality at <30 days</p>
|
|
<p>Intervention-related stroke or TIA at <30 days</p>
|
|
<p>Need for re-intervention at <30 days</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_43_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Funding not stated</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_45_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral regurgitation, minimally invasive surgery repair vs. standard surgery repair</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_45_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Nasso 2014<a class="bibr" href="#niceng208er8.ref273" rid="niceng208er8.ref273"><sup>273</sup></a></p>
|
|
<p>Conducted in Italy</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_45_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Minimally invasive surgery repair</b> (n = 80)</p>
|
|
<p>Minithoracotomy (right anterolateral) in the inframammary groove. Working port in the third intercostal space, instrument port in the fifth-seventh intercostal spaces. Annuloplasty performed in all cases.</p>
|
|
<p><b>Standard surgery repair</b> (n = 80)</p>
|
|
<p>Conventional median sternotomy repair. Annuloplasty performed in all cases.</p>
|
|
<p>All people received intravenous ketorolac 30mg each day until the fourth postoperative day. They were subsequently started on indomethacin 50mg twice a day.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_45_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral regurgitation</b> (N = 160)</p>
|
|
<p>Isolated, severe Barlow disease (bileaflet mitral prolapse) with an indication for elective repair.</p>
|
|
<p>Mean age: 53.9 (10.6) years.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Degenerative mitral valve disease</p>
|
|
<p>Concomitant coronary artery disease excluded</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_45_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 3 years</p>
|
|
<p>Intervention-related mortality at <30 days</p>
|
|
<p>Quality of life at 3 years</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 3 years</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Prosthetic valve endocarditis at 3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_45_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Funding not stated</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_47_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral regurgitation, minimally invasive surgery (mixed repair/replacement) vs. standard surgery (mixed repair/replacement)</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_47_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Dogan 2005<a class="bibr" href="#niceng208er8.ref101" rid="niceng208er8.ref101"><sup>101</sup></a></p>
|
|
<p>RCT</p>
|
|
<p>Conducted in Germany</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_47_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Minimally invasive surgery (mixed repair/replacement)</b> (n = 20)</p>
|
|
<p>Minimally invasive surgery by right anterior thoracotomy (incision length = 5-7cm).</p>
|
|
<p><b>Standard surgery (mixed repair/replacement)</b> (n=20)</p>
|
|
<p>Full median sternotomy.</p>
|
|
<p>Replacement procedures were performed with preservation of the subvalvular apparatus.</p>
|
|
<p>A temporary right ventricular pacing wire was placed in all people. All people were maintained on coumarin for the first 3 months after the operation, which was then discontinued if they were in sinus rhythm, or had a bioprosthetic valve replacement or valve repair.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_47_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral regurgitation</b> (N = 40)</p>
|
|
<p>Severe mitral valve disease (stenosis, regurgitation or both) schedules for elective mitral valve operation (>75% of the study population had mitral regurgitation).</p>
|
|
<p>Mean age: 60.1 (12.3) years.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Aetiology of mitral regurgitation not reported</p>
|
|
<p>Unclear if primary or secondary disease</p>
|
|
<p>Haemodynamically significant coronary disease excluded</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
<p>Unclear if ischaemic or degenerative mitral regurgitation</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_47_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cardiac mortality during initial hospitalisation</p>
|
|
<p>Intervention-related mortality during initial hospitalisation</p>
|
|
<p>Onset or exacerbation of heart failure in the postoperative period</p>
|
|
<p>Intervention-related stroke or TIA in the postoperative period</p>
|
|
<p>Intervention-related major bleeding in the postoperative period</p>
|
|
<p>Intervention-related pacemaker implantation in the postoperative period</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_47_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Population indirectness as includes some with mitral stenosis rather than mitral regurgitation</p>
|
|
<p>Intervention indirectness as is a mixture of repair and replacement procedures</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_49_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral regurgitation, surgical replacement (unclear/mixed invasiveness) vs. surgical repair (unclear/missed invasiveness)</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Acker 2014<a class="bibr" href="#niceng208er8.ref1" rid="niceng208er8.ref1"><sup>1</sup></a></p>
|
|
<p>Conducted in Canada and USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Surgical repair (unclear/mixed invasiveness)</b> (n=126)</p>
|
|
<p>Surgical valve repair with or without coronary artery bypass grafting.</p>
|
|
<p>Performed with full or partial sternotomy or with a right thoracotomy – mixed invasiveness. Mitral valve repair accomplished using an approved rigid or semirigid undersized complete annuloplasty ring.</p>
|
|
<p><b>Surgical replacement with a biological or mechanical valve (unclear/mixed invasiveness)</b> (n=125)</p>
|
|
<p>Surgical mitral valve replacement with or without coronary artery bypass grafting.</p>
|
|
<p>Performed with full or partial sternotomy or with a right thoracotomy – mixed invasiveness. Type of valve selected based on surgeon preference.</p>
|
|
<p>All participants received guideline-directed medical therapy by their treating cardiologist (including: aspirin, lipid-lowering agents, beta-blockers and ACE inhibitors).</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral regurgitation</b> (N = 251)</p>
|
|
<p>Adults with chronic, severe ischaemic secondary mitral regurgitation and coronary artery disease.</p>
|
|
<p>Mean age: 69 (10) years.</p>
|
|
<p>Operative risk not mentioned.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 2 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 1 year</p>
|
|
<p>Onset or exacerbation of heart failure at 2 years</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Need for re-intervention at 2 years</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Prosthetic valve endocarditis at 2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Received academic or government funding</p>
|
|
<p>Intervention indirectness as mixed/unclear invasiveness of surgery</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Bogachev-Prokophiev 2017<a class="bibr" href="#niceng208er8.ref58" rid="niceng208er8.ref58"><sup>58</sup></a></p>
|
|
<p>Conducted in Russia</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Surgical replacement with biological or mechanical valve (unclear/mixed invasiveness)</b> (n = 44)</p>
|
|
<p>Surgical replacement (unclear whether standard or minimally invasive) with the on-X prosthesis (mechanical).</p>
|
|
<p>People who received a mechanical mitral valve were kept on lifelong anticoagulation with an INR target range 2.5-3.5.</p>
|
|
<p><b>Surgical repair (unclear/mixed invasiveness)</b> (n=44)</p>
|
|
<p>Surgical repair (unclear whether standard or minimally invasive). Transaortic subvalvular apparatus interventions performed, including retracted secondary chordae cutting and abnormal papillary muscle release and/or resection.</p>
|
|
<p>Low dose aspirin was prescribed post operatively in the repair group.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral regurgitation</b> (N = 88)</p>
|
|
<p>Adults with hypertrophic obstructive cardiomyopathy with severe mitral regurgitation as defined by the European Society of Cardiology guidelines.</p>
|
|
<p>Mean age: 50.8 (14.3) years</p>
|
|
<p>Low operative risk (mean EuroSCORE II <4%).</p>
|
|
<p>Unclear whether primary or secondary valve disease – secondary due to cardiomyopathy?</p>
|
|
<p>Low operative risk</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Unclear if ischaemic or degenerative mitral regurgitation</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 2 years</p>
|
|
<p>Cardiac mortality at 2 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding postoperatively</p>
|
|
<p>Need for re-intervention at 2 years</p>
|
|
<p>Intervention-related pacemaker implantation in the early postoperative period</p>
|
|
<p>Major vascular complications in the intraoperative period</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_49_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Received academic or government funding</p>
|
|
<p>Intervention indirectness as mixed/unclear invasiveness of surgery</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_52_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral regurgitation, transcatheter repair vs. pharmacological management</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Obadia 2018<a class="bibr" href="#niceng208er8.ref282" rid="niceng208er8.ref282"><sup>282</sup></a></p>
|
|
<p>Conducted in France</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n = 152)</p>
|
|
<p>MitraClip percutaneous mitral valve repair by a femoral approach.</p>
|
|
<p>People also received medical therapy: Single implantable cardioverter-defibrillation (48/151), cardiac resynchronisation therapy-defibrillator (46/151), ACE inhibitor/ARB (111/152), angiotensin receptor and neprilysin inhibitors (14/140), beta blockers (134/152), mineralocorticoid receptor antagonist (86/152), loop diuretic (151/152), oral anticoagulants (93/152).</p>
|
|
<p><b>Medical therapy alone</b> (n = 155)</p>
|
|
<p>Single implantable cardioverter-defibrillation (57/152), cardiac resynchronisation therapy-defibrillator (35/152), ACE inhibitor/ARB (113/152), angiotensin receptor and neprilysin inhibitors (17/140), beta blockers (138/152), mineralocorticoid receptor antagonist (80/151), loop diuretic (149/152), oral anticoagulants (93/152).</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral regurgitation</b> (N = 307)</p>
|
|
<p>Adults (>18 years old) with severe secondary mitral regurgitation, NYHA class ≥2, LVEF 15-40%, and a minimum of one hospitalisation for congestive heart failure within 12 months of randomisation.</p>
|
|
<p>Mean age: 70.1 (10.1)</p>
|
|
<p>Inoperable: those considered suitable for mitral valve surgery by the heart team were excluded</p>
|
|
<p>Secondary valve disease – ischaemic cardiomyopathy in 56-62% and non-ischaemic cardiomyopathy in 38-44%</p>
|
|
<p>~42-47% with previous coronary revascularisation</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 2 years</p>
|
|
<p>Cardiac mortality at 2 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 1 year</p>
|
|
<p>Onset or exacerbation of heart failure at 2 years</p>
|
|
<p>Intervention-related stroke or TIA during the periprocedural period</p>
|
|
<p>Intervention-related major bleeding during the periprocedural period</p>
|
|
<p>Major vascular complications during the periprocedural period</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>MITRA-FR trial</p>
|
|
<p>Funded by Abbott Vascular</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Stone 2018<a class="bibr" href="#niceng208er8.ref376" rid="niceng208er8.ref376"><sup>376</sup></a></p>
|
|
<p>Conducted in Canada and USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n = 302)</p>
|
|
<p>Transcatheter mitral valve repair with the MitraClip device.</p>
|
|
<p>People were given intravenous antibiotics pre- and post-procedure. A loading dose of clopidogrel was given before the procedure and post-procedure antithrombotic therapy was achieved with either clopidogrel 75mg once a day and/or aspirin 81mg once a day for 6 months of longer.</p>
|
|
<p><b>Conservative management</b> (n = 312)</p>
|
|
<p>Guideline-directed medical therapy as per each person’s individual needs.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral regurgitation</b> (N = 614)</p>
|
|
<p>Symptomatic secondary mitral regurgitation (3+ or 4+) due to cardiomyopathy of either ischaemic or non-ischaemic aetiology. NYHA functional class II, III or ambulatory IV and at least one hospitalisation for heart failure in 12 months prior to enrolment.</p>
|
|
<p>Mean age: 71.7 (11.8) years</p>
|
|
<p>Inoperable: to be included, cardiothoracic surgeon had to consider mitral valve surgery to be inappropriate</p>
|
|
<p>Secondary valvular disease.</p>
|
|
<p>~43-49% with previous percutaneous coronary intervention and ~40% with previous coronary artery bypass grafting.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 3 years</p>
|
|
<p>Cardiac mortality at 3 years</p>
|
|
<p>Quality of life at 2-3 years</p>
|
|
<p>Onset or exacerbation of heart failure at 3 years</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Need for re-intervention at 3 years</p>
|
|
<p>Re-hospitalisation at 3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>COAPT trial</p>
|
|
<p>Funded by Abbott Vascular</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Witte 2019<a class="bibr" href="#niceng208er8.ref439" rid="niceng208er8.ref439"><sup>439</sup></a></p>
|
|
<p>Conducted in Australia, France, Germany, Poland, Portugal, United Kingdom, USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n = 87)</p>
|
|
<p>Mitral annual reduction. Coronary angiography performed and Carillon delivery catheter used to engage coronary sinus and implant device.</p>
|
|
<p>Also received optimal heart failure medical therapy (optimally tolerated doses according to guidelines).</p>
|
|
<p><b>Conservative management</b> (n = 33)</p>
|
|
<p>Received a sham procedure similar to that described above for transcatheter repair alongside optimal heart failure medical therapy (optimally tolerated doses according to guidelines).</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral regurgitation</b> (N = 120)</p>
|
|
<p>Symptomatic secondary mitral regurgitation (2+, 3+ or 4+) despite stable (≥3 month) guideline-directed medical therapy</p>
|
|
<p>Mean age: ~70 years in both groups</p>
|
|
<p>Unclear whether the population is inoperable</p>
|
|
<p>Secondary valvular disease.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 1 year</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 1 year</p>
|
|
<p>Onset or exacerbation of heart failure at 1 year</p>
|
|
<p>Re-hospitalisation at 1 year</p>
|
|
<p>Prosthetic valve endocarditis at 1 year</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_52_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>REDUCE-FMR trial</p>
|
|
<p>Study funded by cardiac dimensions</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_56_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Mitral regurgitation, transcatheter repair vs. surgery (mixed repair/replacement and unclear/mixed invasiveness)</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_56_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Feldman 2011<a class="bibr" href="#niceng208er8.ref121" rid="niceng208er8.ref121"><sup>121</sup></a></p>
|
|
<p>Conducted in Canada and USA</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_56_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair</b> (n = 184)</p>
|
|
<p>MitraClip device. Procedure performed through the femoral vein.</p>
|
|
<p>After the procedure people receive aspirin 325mg once a day for 6 months and clopidogrel for 30 days.</p>
|
|
<p><b>Surgical repair (unclear/mixed invasiveness)</b> (n = 95)</p>
|
|
<p>Mitral valve repair (86%) or replacement (14%). Method not stated explicitly.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_56_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mitral regurgitation</b> (N = 279)</p>
|
|
<p>Moderate-severe or severe chronic mitral regurgitation in symptomatic people or asymptomatic people with additional features of severity (example: LVEF 25-60%, LVESD ≥40mm, new onset of AF).</p>
|
|
<p>Mean age: 67.3 (12.8) years.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Mixture of primary and secondary disease - ~27% functional and ~73% degenerative</p>
|
|
<p>~47% with concomitant coronary artery disease</p>
|
|
<p>Unclear if rheumatic or calcific disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_56_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 5 years</p>
|
|
<p>Intervention-related mortality at 30 days</p>
|
|
<p>Quality of life at 1 year</p>
|
|
<p>Intervention-related stroke or TIA at 30 days</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 5 years</p>
|
|
<p>Intervention-related atrial fibrillation at 30 days</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_56_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>EVEREST II trial</p>
|
|
<p>Study funded by Abbott Vascular</p>
|
|
<p>Intervention indirectness as surgical repair group contains some that had replacement instead and the invasiveness of surgery is unclear</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_58_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Unclear/mixed mitral valve disease, minimally invasive surgery replacement vs. standard surgery replacement</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>El Ashkar 2016<a class="bibr" href="#niceng208er8.ref111" rid="niceng208er8.ref111"><sup>111</sup></a></p>
|
|
<p>Conducted in Egypt</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Minimally invasive surgical replacement with mechanical valve</b> (n = 17)</p>
|
|
<p>Mitral valve replacement by small anterolateral, video-assisted minithoracotomy (incision size = 7-8cm).</p>
|
|
<p><b>Standard surgery replacement with mechanical valve</b> (n = 17)</p>
|
|
<p>Mitral valve replacement by median sternotomy. Type of valve not explicitly mentioned.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear mitral valve disease</b> (N = 34)</p>
|
|
<p>Isolated rheumatic mitral valve disease requiring mitral valve replacement (unclear proportion with stenosis and regurgitation).</p>
|
|
<p>Mean age: 43.4 (11.41) years.</p>
|
|
<p>Morphology of mitral stenosis not stated.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Aetiology of mitral regurgitation not stated.</p>
|
|
<p>Coronary artery disease (ischaemic heart disease) an exclusion criterion</p>
|
|
<p>Rheumatic mitral valve disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cardiac mortality during the initial hospitalisation</p>
|
|
<p>Intervention-related mortality during the initial hospitalisation</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Population indirectness and mixed/unclear mitral valve disease</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>El-Fiky 2000<a class="bibr" href="#niceng208er8.ref110" rid="niceng208er8.ref110"><sup>110</sup></a></p>
|
|
<p>Conducted in Egypt</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Port access replacement with biological or mechanical valve</b> (n = 50)</p>
|
|
<p>Valve replacement (92%) or repair (8%) by a 10-12cm incision in the right submammary fold 3-5cm from the lateral sternal border with entry from the fourth intercostal space. Type of valve used unclear.</p>
|
|
<p><b>Standard surgical replacement with biological or mechanical valve</b> (n = 50)</p>
|
|
<p>Valve replacement (94% or repair (6%) by a median sternotomy. Type of valve used unclear.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear mitral valve disease</b> (N = 100)</p>
|
|
<p>Mitral valve disease. Majority had both stenosis and regurgitation with it being unclear which is driving the need for intervention.</p>
|
|
<p>Some patients had congenital disease (<10%).</p>
|
|
<p>Mean age: 22 (10) years.</p>
|
|
<p>Majority of the patients in the study are women with a mean age of <45 years.</p>
|
|
<p>Morphology of mitral stenosis not stated.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Aetiology of mitral regurgitation not stated.</p>
|
|
<p>Concomitant coronary artery disease excluded</p>
|
|
<p>Rheumatic aetiology in the majority of patients</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cardiac mortality during the initial hospitalisation</p>
|
|
<p>Intervention-related mortality during the initial hospitalisation</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Funding not stated</p>
|
|
<p>Population indirectness and mixed/unclear mitral valve disease and small proportion with congenital disease</p>
|
|
<p>Intervention indirectness as small proportion had repair rather than replacement in each group</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Malik 2015<a class="bibr" href="#niceng208er8.ref242" rid="niceng208er8.ref242"><sup>242</sup></a></p>
|
|
<p>Conducted in Pakistan</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Minimally invasive replacement with biological or mechanical valve</b> (n = 77)</p>
|
|
<p>Right anterior thoracotomy. Procedure performed through the right submammary fold with access from the fourth intercostal space.</p>
|
|
<p><b>Standard surgery replacement with biological or mechanical valves</b> (n = 204)</p>
|
|
<p>Procedure performed through median sternotomy approach.</p>
|
|
<p>Both groups received acenocoumarol postoperatively with a target INR of 2.0-2.5.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Mixed/unclear mitral valve disease</b> (N = 281)</p>
|
|
<p>People who underwent mitral valve replacement according to the ACC/AHA guidelines (type of valve disease not stated).</p>
|
|
<p>Mean age: 28 (11) years.</p>
|
|
<p>Morphology of mitral stenosis not stated.</p>
|
|
<p>Operative risk unclear.</p>
|
|
<p>Aetiology of mitral regurgitation not stated.</p>
|
|
<p>Unclear if concomitant coronary artery disease</p>
|
|
<p>Majority had rheumatic mitral valve disease</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Intervention-related mortality in the postoperative period</p>
|
|
<p>Intervention-related stroke or TIA in the postoperative period</p>
|
|
<p>Need for reintervention in the postoperative period</p>
|
|
<p>Length of hospital stay after intervention</p>
|
|
<p>Prosthetic valve endocarditis at 2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_58_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>No funding</p>
|
|
<p>Population indirectness and mixed/unclear mitral valve disease</p>
|
|
</td></tr><tr><th headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_h_niceng208er8.tab2_1_1_1_2 hd_h_niceng208er8.tab2_1_1_1_3 hd_h_niceng208er8.tab2_1_1_1_4 hd_h_niceng208er8.tab2_1_1_1_5" id="hd_b_niceng208er8.tab2_1_1_62_1" colspan="5" rowspan="1" style="text-align:left;vertical-align:top;">Tricuspid regurgitation, transcatheter repair vs. pharmacological management</th></tr><tr><td headers="hd_h_niceng208er8.tab2_1_1_1_1 hd_b_niceng208er8.tab2_1_1_62_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Dreger 2020<a class="bibr" href="#niceng208er8.ref107" rid="niceng208er8.ref107"><sup>107</sup></a></p>
|
|
<p>Conducted in Germany</p>
|
|
<p>RCT</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_2 hd_b_niceng208er8.tab2_1_1_62_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Transcatheter repair + medical treatment</b> (n = 14)</p>
|
|
<p>Performed via right transfemoral venous access under local anaesthesia. Edwards SAPIEN XT valve implanted.</p>
|
|
<p>All received oral anticoagulation following the procedure.</p>
|
|
<p>Appears that optimal medical therapy (medical therapy recommended by current heart failure guidelines) also continued but this was unclear.</p>
|
|
<p><b>Medical treatment alone</b> (n = 14)</p>
|
|
<p>Optimal medical therapy (medical therapy recommended by current heart failure guidelines) continued.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_3 hd_b_niceng208er8.tab2_1_1_62_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><b>Tricuspid regurgitation</b> (N=14)</p>
|
|
<p>Severe symptomatic (NYHA class ≥II) tricuspid regurgitation and high surgical risk (logistic EuroSCORE I ≥15% or other contraindications for conventional valve surgery)</p>
|
|
<p>Median age: 77 years in both groups</p>
|
|
<p>Appears to be secondary tricuspid regurgitation as all had heart failure as well</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_4 hd_b_niceng208er8.tab2_1_1_62_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>All-cause mortality at 1 year</p>
|
|
<p>Cardiac mortality at 1 year</p>
|
|
<p>Intervention-related mortality (in-hospital)</p>
|
|
<p>Quality of life at 3 months</p>
|
|
<p>Onset or exacerbation of heart failure at 3 months</p>
|
|
<p>Intervention-related major bleeding at 30 days</p>
|
|
<p>Need for re-intervention at 48 h</p>
|
|
<p>Re-hospitalisation at 1 year</p>
|
|
<p>Major vascular complications at 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab2_1_1_1_5 hd_b_niceng208er8.tab2_1_1_62_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>TRICAVAL trial</p>
|
|
<p>Study funded by Edwards Lifesciences</p>
|
|
</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab3"><div id="niceng208er8.tab3" class="table"><h3><span class="label">Table 3</span><span class="title">Clinical evidence summary: Evidence not suitable for GRADE analysis</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab3/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab3_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Intervention and comparator</th><th id="hd_h_niceng208er8.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Outcome</th><th id="hd_h_niceng208er8.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Intervention results</th><th id="hd_h_niceng208er8.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Intervention group (n)</th><th id="hd_h_niceng208er8.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Comparator results</th><th id="hd_h_niceng208er8.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Comparator group (n)</th><th id="hd_h_niceng208er8.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">P-value</th><th id="hd_h_niceng208er8.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk of bias</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Leon 2016<a class="bibr" href="#niceng208er8.ref218" rid="niceng208er8.ref218"><sup>218</sup></a></td><td headers="hd_h_niceng208er8.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Transcatheter replacement vs. standard surgery replacement</td><td headers="hd_h_niceng208er8.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Hospital length of stay</td><td headers="hd_h_niceng208er8.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Median: 6 days</td><td headers="hd_h_niceng208er8.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1011</td><td headers="hd_h_niceng208er8.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Median: 9 days</td><td headers="hd_h_niceng208er8.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1021</td><td headers="hd_h_niceng208er8.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><0.001</td><td headers="hd_h_niceng208er8.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">High</td></tr><tr><td headers="hd_h_niceng208er8.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mack 2019<a class="bibr" href="#niceng208er8.ref237" rid="niceng208er8.ref237"><sup>237</sup></a></td><td headers="hd_h_niceng208er8.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Transcatheter replacement vs. standard surgery replacement</td><td headers="hd_h_niceng208er8.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Hospital length of stay</td><td headers="hd_h_niceng208er8.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Median (IQR): 3 (2-3) days</td><td headers="hd_h_niceng208er8.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">496</td><td headers="hd_h_niceng208er8.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Median (IQR): 7 (6-8) days</td><td headers="hd_h_niceng208er8.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">454</td><td headers="hd_h_niceng208er8.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><0.001</td><td headers="hd_h_niceng208er8.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Very high</td></tr><tr><td headers="hd_h_niceng208er8.tab3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Smith 2011<a class="bibr" href="#niceng208er8.ref368" rid="niceng208er8.ref368"><sup>368</sup></a></td><td headers="hd_h_niceng208er8.tab3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Transcatheter replacement vs. standard surgery replacement</td><td headers="hd_h_niceng208er8.tab3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Hospital length of stay</td><td headers="hd_h_niceng208er8.tab3_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Median: 8 days</td><td headers="hd_h_niceng208er8.tab3_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">348</td><td headers="hd_h_niceng208er8.tab3_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Median: 12 days</td><td headers="hd_h_niceng208er8.tab3_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">351</td><td headers="hd_h_niceng208er8.tab3_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><0.001</td><td headers="hd_h_niceng208er8.tab3_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">High</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab4"><div id="niceng208er8.tab4" class="table"><h3><span class="label">Table 4</span><span class="title">Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab4/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab4_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab4_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab4_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab4_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab4_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab4_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab4_1_1_1_5" id="hd_h_niceng208er8.tab4_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with standard surgery replacement</th><th headers="hd_h_niceng208er8.tab4_1_1_1_5" id="hd_h_niceng208er8.tab4_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with minimally invasive surgery replacement (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at ≥12 months</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>294 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.5</p>
|
|
<p>(0.26 to 8.66)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">33 per 1000</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>16 more per 1000</p>
|
|
<p>(from 24 fewer to 253 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at ≥12 months</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1 hd_h_niceng208er8.tab4_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 7.39</p>
|
|
<p>(0.15 to 372.38)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 30 fewer to 60 more)<sup>c</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health-related quality of life at ≥12 months</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1 hd_h_niceng208er8.tab4_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at ≥12 months</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1 hd_h_niceng208er8.tab4_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 7.39</p>
|
|
<p>(0.15 to 372.38)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 30 fewer to 60 more)<sup>c</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding (reoperation for bleeding) at 30 days</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.67</p>
|
|
<p>(0.42 to 6.66)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50 per 1000</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>33 more per 1000</p>
|
|
<p>(from 29 fewer to 283 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at ≥12 months (reoperation for paravalvular leakage)</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>3 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 7.39</p>
|
|
<p>(0.15 to 372.38)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 30 fewer to 60 more)<sup>c</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1 hd_h_niceng208er8.tab4_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at ≥12 months</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1 hd_h_niceng208er8.tab4_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation (pacing wire implantation) at 30 days</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.88</p>
|
|
<p>(0.47 to 1.63)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">267 per 1000</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>32 fewer per 1000</p>
|
|
<p>(from 142 fewer to 168 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related AF (supraventricular arrhythmias) at 30 days</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.06</p>
|
|
<p>(0.01 to 0.46)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">267 per 1000</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>251 fewer per 1000</p>
|
|
<p>(from 144 fewer to 264 fewer)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1 hd_h_niceng208er8.tab4_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at ≥12 months</td><td headers="hd_h_niceng208er8.tab4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>294 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 7.65</p>
|
|
<p>(0.78 to 74.93)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab4_1_1_1_5 hd_h_niceng208er8.tab4_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>50 more per 1000</p>
|
|
<p>(from 10 fewer to 110 more)<sup>c</sup></p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab4_1"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab4_2"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab4_3"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in at least one arm of the study</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab4_4"><p class="no_margin">Downgraded by 1 increment as major bleeding that didn’t require reoperation may not be captured in this outcome</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab4_5"><p class="no_margin">Downgraded by 1 increment as outcome defined as supraventricular arrhythmias, which could include events other than atrial fibrillation</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab5"><div id="niceng208er8.tab5" class="table"><h3><span class="label">Table 5</span><span class="title">Clinical evidence summary: Transcatheter replacement vs. standard surgery replacement</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab5/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab5_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab5_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab5_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab5_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab5_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab5_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab5_1_1_1_5" id="hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with standard surgery replacement</th><th headers="hd_h_niceng208er8.tab5_1_1_1_5" id="hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with transcatheter replacement (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>3460</p>
|
|
<p>(4 studies)</p>
|
|
<p>2-6 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.06</p>
|
|
<p>(0.88 to 1.28)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">174 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 more per 1000</p>
|
|
<p>(from 21 fewer to 49 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months (time-to-event)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>4431</p>
|
|
<p>(4 studies)</p>
|
|
<p>2-5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 1.03</p>
|
|
<p>(0.94 to 1.13)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">351 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>8 more per 1000</p>
|
|
<p>(from 17 fewer to 35 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>4165</p>
|
|
<p>(5 studies)</p>
|
|
<p>2-5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>MODERATE<sup>b</sup></p>
|
|
<p>due to imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.09</p>
|
|
<p>(0.93 to 1.27)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">72 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>6 more per 1000</p>
|
|
<p>(from 5 fewer to 19 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months (time-to-event)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>3732</p>
|
|
<p>(3 studies)</p>
|
|
<p>2-5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.99</p>
|
|
<p>(0.85 to 1.15)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">196 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>2 fewer per 1000</p>
|
|
<p>(from 27 fewer to 26 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>7986</p>
|
|
<p>(8 studies)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.81</p>
|
|
<p>(0.57 to 1.15)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">25 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>5 fewer per 1000</p>
|
|
<p>(from 11 fewer to 4 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (KCCQ summary) at 12 months - mix of change and final values</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>5202</p>
|
|
<p>(6 studies)</p>
|
|
<p>2-5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">The mean quality of life (KCCQ summary) at 12 months ranged across control groups from: 18.24-25.23 for change scores (n=3 studies) and 66.0-90.8 for final values (n=3 studies)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (KCCQ summary) at 12 months in the intervention groups was</p>
|
|
<p>0.77 higher</p>
|
|
<p>(0. 12 lower to 1.67 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (SF-12/SF-36 mental summary) at 12 months - mix of change and final values</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>2757</p>
|
|
<p>(5 studies)</p>
|
|
<p>1-5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">The mean quality of life (SF-12/SF-36 mental summary) at 12 ranged across control groups from 2.858-4.449 for change scores (n=3 studies) and 44-50.5 for final values (n=2 studies)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-12/SF-36 mental summary) at 12 months in the intervention groups was</p>
|
|
<p>0.33 lower</p>
|
|
<p>(1.15 lower to 0.49 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-12/SF-36 physical summary) - mix of change and final values</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>4133</p>
|
|
<p>(6 studies)</p>
|
|
<p>3 months - 5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, inconsistency</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">The mean quality of life at 12 months (SF-12/SF-36 physical summary) ranged across control groups from: 2.716-5.598 for change scores (n=4 studies) and 33.2-42 for final values (n=2 studies)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-12/SF-36 physical summary) in the intervention groups was</p>
|
|
<p>0.49 higher</p>
|
|
<p>(0.51 lower to 1.50 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (EQ-5D utility) at 12 months - mix of change and final values</p>
|
|
<p>Scale from: 0 to 1.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>4413</p>
|
|
<p>(5 studies)</p>
|
|
<p>3 months - 2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>h</sup><sup>,</sup><sup>i</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D utility) at 12 months ranged across control groups from</p>
|
|
<p>0.028-0.07 for change scores (n=4 studies) and 0.78-0.78 for final values (n=1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D utility) at 12 months in the intervention groups was</p>
|
|
<p>0 higher</p>
|
|
<p>(0.01 lower to 0.01 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>1468</p>
|
|
<p>(1 study)</p>
|
|
<p>1 year</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>j</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.50</p>
|
|
<p>(0.31 to 0.81)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">65 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>32 fewer per 1000</p>
|
|
<p>(from 12 fewer to 45 fewer)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days (stroke only or storke and TIA included)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>7986</p>
|
|
<p>(8 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.92</p>
|
|
<p>(0.65 to 1.29)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">32 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>3 fewer per 1000</p>
|
|
<p>(from 11 fewer to 9 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days (TIA only)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>1468</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>j</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.00</p>
|
|
<p>(0.25 to 3.98)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">5 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 4 fewer to 15 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>7882</p>
|
|
<p>(8 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.48</p>
|
|
<p>(0.27 to 0.84)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">163 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>85 fewer per 1000</p>
|
|
<p>(from 26 fewer to 119 fewer)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months (dichotomous)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>5178</p>
|
|
<p>(6 studies)</p>
|
|
<p>30 days - 5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, inconsistency</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 2.71</p>
|
|
<p>(1.34 to 5.46)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">7 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>12 more per 1000</p>
|
|
<p>(from 2 more to 31 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months (time-to-event)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>2032</p>
|
|
<p>(1 study)</p>
|
|
<p>5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 3.28</p>
|
|
<p>(1.32 to 8.15)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">6 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>13 more per 1000</p>
|
|
<p>(from 2 more to 41 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay post-intervention</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>2002</p>
|
|
<p>(3 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>k</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">The mean length of stay post-intervention ranged across control groups from 7.6-12.9 days</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of stay post-intervention in the intervention groups was</p>
|
|
<p>2.41 days lower</p>
|
|
<p>(5.33 lower to 0.51 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>3109</p>
|
|
<p>(3 studies)</p>
|
|
<p>2-5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.34</p>
|
|
<p>(1.16 to 1.55)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">159 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>54 more per 1000</p>
|
|
<p>(from 25 more to 87 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months (time-to-event)</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>2982</p>
|
|
<p>(2 studies)</p>
|
|
<p>2-5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>l</sup></p>
|
|
<p>due to risk of bias, inconsistency, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.95</p>
|
|
<p>(0.50 to 1.79)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">179 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>8 fewer per 1000</p>
|
|
<p>(from 85 fewer to 118 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>7900</p>
|
|
<p>(8 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, inconsistency</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 2.45</p>
|
|
<p>(1.56 to 3.85)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">51 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>74 more per 1000</p>
|
|
<p>(from 29 more to 145 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related AF at 30 days</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>7666</p>
|
|
<p>(7 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>MODERATE<sup>a</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to inconsistency</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.29</p>
|
|
<p>(0.23 to 0.38)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">354 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>251 fewer per 1000</p>
|
|
<p>(from 219 fewer to 273 fewer)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>7906</p>
|
|
<p>(8 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, inconsistency</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 2.44</p>
|
|
<p>(1.58 to 3.78)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">24 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>35 more per 1000</p>
|
|
<p>(from 14 more to 67 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab5_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab5_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>6179</p>
|
|
<p>(6 studies)</p>
|
|
<p>1-5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.21</p>
|
|
<p>(0.81 to 1.83)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">16 per 1000</td><td headers="hd_h_niceng208er8.tab5_1_1_1_5 hd_h_niceng208er8.tab5_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>3 more per 1000</p>
|
|
<p>(from 3 fewer to 13 more)</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab5_1"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab5_2"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab5_3"><p class="no_margin">Downgraded by 1 increment as one study included >10% of participants that had received previous aortic valve repair. Also, another study included <25% that had minimally invasive rather than standard surgical replacement.</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab5_4"><p class="no_margin">Downgraded by 1 increment as heterogeneity is present that cannot be explained by subgroup analysis.</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab5_5"><p class="no_margin">MIDs used to address imprecision were ±10.90</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab5_6"><p class="no_margin">MIDs used to address imprecision were ±3.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab5_7"><p class="no_margin">MIDs used to address imprecision were ±2.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>h</dt><dd><div id="niceng208er8.tab5_8"><p class="no_margin">Downgraded by 1 increment as one study included >10% of participants that had received previous aortic valve repair. Also, another study only had 3 months follow-up for this outcome.</p></div></dd></dl><dl class="bkr_refwrap"><dt>i</dt><dd><div id="niceng208er8.tab5_9"><p class="no_margin">MIDs used to address imprecision were ±0.03</p></div></dd></dl><dl class="bkr_refwrap"><dt>j</dt><dd><div id="niceng208er8.tab5_10"><p class="no_margin">Downgraded by 1 increment as >25% received minimally invasive surgery rather than standard surgery</p></div></dd></dl><dl class="bkr_refwrap"><dt>k</dt><dd><div id="niceng208er8.tab5_11"><p class="no_margin">MIDs used to address imprecision were ±4.015</p></div></dd></dl><dl class="bkr_refwrap"><dt>l</dt><dd><div id="niceng208er8.tab5_12"><p class="no_margin">Downgraded 1 by increment as <25% of the surgery arm received minimally invasive surgery rather than standard surgery</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab6"><div id="niceng208er8.tab6" class="table"><h3><span class="label">Table 6</span><span class="title">Clinical evidence summary: Transcatheter replacement vs. pharmacological management</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab6/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab6_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab6_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab6_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab6_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab6_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab6_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab6_1_1_1_5" id="hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with pharmacological management</th><th headers="hd_h_niceng208er8.tab6_1_1_1_5" id="hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with transcatheter replacement (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.5</p>
|
|
<p>(0.39 to 0.64)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">832 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>242 fewer per 1000</p>
|
|
<p>(from 151 fewer to 331 fewer)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.41</p>
|
|
<p>(0.31 to 0.54)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">659 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>302 fewer per 1000</p>
|
|
<p>(from 218 fewer to 375 fewer)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.8</p>
|
|
<p>(0.62 to 5.27)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">28 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>22 more per 1000</p>
|
|
<p>(from 11 fewer to 120 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health-related quality of life at 12 months</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1 hd_h_niceng208er8.tab6_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1 hd_h_niceng208er8.tab6_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 4</p>
|
|
<p>(1.15 to 13.93)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">17 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>51 more per 1000</p>
|
|
<p>(from 3 more to 220 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 4.29</p>
|
|
<p>(1.93 to 9.5)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">39 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>128 more per 1000</p>
|
|
<p>(from 36 more to 331 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.06</p>
|
|
<p>(0.02 to 0.14)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">486 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>457 fewer per 1000</p>
|
|
<p>(from 418 fewer to 476 fewer)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1 hd_h_niceng208er8.tab6_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.4</p>
|
|
<p>(0.29 to 0.55)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">531 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>270 fewer per 1000</p>
|
|
<p>(from 190 fewer to 334 fewer)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.67</p>
|
|
<p>(0.24 to 1.83)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>16 fewer per 1000</p>
|
|
<p>(from 38 fewer to 42 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related AF at 30 days</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.51</p>
|
|
<p>(0.05 to 4.95)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">11 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>5 fewer per 1000</p>
|
|
<p>(from 10 fewer to 41 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Major vascular complications</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 14.5</p>
|
|
<p>(3.51 to 59.86)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">11 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>148 more per 1000</p>
|
|
<p>(from 28 more to 647 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab6_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab6_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>358</p>
|
|
<p>(1 study)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 3</p>
|
|
<p>(0.32 to 28.57)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">6 per 1000</td><td headers="hd_h_niceng208er8.tab6_1_1_1_5 hd_h_niceng208er8.tab6_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>12 more per 1000</p>
|
|
<p>(from 4 fewer to 165 more)</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab6_1"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab6_2"><p class="no_margin">Downgraded by 1 increment as >10% of participants had previous surgical intervention (balloon aortic valvuloplasty)</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab6_3"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab7"><div id="niceng208er8.tab7" class="table"><h3><span class="label">Table 7</span><span class="title">Clinical evidence summary: Evidence not suitable for GRADE analysis</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab7/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab7_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab7_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Intervention and comparator</th><th id="hd_h_niceng208er8.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Outcome</th><th id="hd_h_niceng208er8.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Intervention results</th><th id="hd_h_niceng208er8.tab7_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Intervention group (n)</th><th id="hd_h_niceng208er8.tab7_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Comparator results</th><th id="hd_h_niceng208er8.tab7_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Comparator group (n)</th><th id="hd_h_niceng208er8.tab7_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">P-value</th><th id="hd_h_niceng208er8.tab7_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk of bias</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab7_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Dalén 2018<a class="bibr" href="#niceng208er8.ref89" rid="niceng208er8.ref89"><sup>89</sup></a></td><td headers="hd_h_niceng208er8.tab7_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Minimally invasive surgery replacement vs. standard surgery replacement</td><td headers="hd_h_niceng208er8.tab7_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Hospital length of stay</td><td headers="hd_h_niceng208er8.tab7_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Median (IQR): 6 (4-7) days</td><td headers="hd_h_niceng208er8.tab7_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">19</td><td headers="hd_h_niceng208er8.tab7_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Median (IQR): 5 (5-6) days</td><td headers="hd_h_niceng208er8.tab7_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">21</td><td headers="hd_h_niceng208er8.tab7_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.92</td><td headers="hd_h_niceng208er8.tab7_1_1_1_9" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">High</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab8"><div id="niceng208er8.tab8" class="table"><h3><span class="label">Table 8</span><span class="title">Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab8/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab8_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab8_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab8_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab8_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab8_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab8_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab8_1_1_1_5" id="hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with standard surgery replacement</th><th headers="hd_h_niceng208er8.tab8_1_1_1_5" id="hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with minimally invasive surgery replacement (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>97</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.31</p>
|
|
<p>(0.31 to 5.53)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">63 per 1000</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 43 fewer to 285 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>137</p>
|
|
<p>(2 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.59</p>
|
|
<p>(0.12 to 21.43)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50 per 1000</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>30 more per 1000</p>
|
|
<p>(from 80 fewer to 130 more)<sup>d</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>354</p>
|
|
<p>(5 studies)</p>
|
|
<p>7-30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.79</p>
|
|
<p>(0.30 to 2.08)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">40 per 1000</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 fewer per 1000</p>
|
|
<p>(from 50 fewer to 30 more)<sup>d</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (EQ-5D) at 3 months</p>
|
|
<p>Scale from: 0 to 1.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>94</p>
|
|
<p>(1 study)</p>
|
|
<p>3 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (eq-5d) at 3 months in the control groups was</p>
|
|
<p>0.9</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D) at 3 months in the intervention groups was</p>
|
|
<p>0 higher</p>
|
|
<p>(0.04 lower to 0.04 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (EQ-5D-5L index) at 12 months</p>
|
|
<p>Scale from: −0.654 to 1.00.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>94</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D-5L index) at 12 months in the control groups was</p>
|
|
<p>0.90</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D-5L index) at 12 months in the intervention groups was</p>
|
|
<p>0.02 higher</p>
|
|
<p>(0.03 lower to 0.07 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (EQ-5D-5L utilities - health index) at 12 months</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>94</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D-5L utilities - health index) at 12 months in the control groups was</p>
|
|
<p>92.9</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D-5L utilities - health index) at 12 months in the intervention groups was</p>
|
|
<p>1.60 higher</p>
|
|
<p>(2.27 lower to 5.47 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (EQ-5D-5L utilities - severity index) at 12 months</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>94</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>h</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D-5L utilities - severity index) at 12 months in the control groups was</p>
|
|
<p>7.1</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D-5L utilities - severity index) at 12 months in the intervention groups was</p>
|
|
<p>1.70 lower</p>
|
|
<p>(5.57 lower to 2.17 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (EQ-5D-5L utilities - visual scale) at 12 months</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>94</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup>
|
|
<sup>i</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D-5L utilities - visual scale) at 12 months in the control groups was</p>
|
|
<p>80.43</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D-5L utilities - visual scale) at 12 months in the intervention groups was</p>
|
|
<p>1.08 lower</p>
|
|
<p>(7.55 lower to 5.39 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at ≥12 months</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1 hd_h_niceng208er8.tab8_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>234</p>
|
|
<p>(3 studies)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.88</p>
|
|
<p>(0.41 to 8.58)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">20 per 1000</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 30 fewer to 60 more)<sup>d</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>311</p>
|
|
<p>(4 studies)</p>
|
|
<p>72 h -30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>j</sup></p>
|
|
<p>due to risk of bias, indirectness imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.85</p>
|
|
<p>(0.57 to 1.27)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">66 per 1000</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>30 fewer per 1000</p>
|
|
<p>(from 110 fewer to 40 more)<sup>d</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for re-intervention at 12 months</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>351</p>
|
|
<p>(5 studies)</p>
|
|
<p>7-30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>k</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.04</p>
|
|
<p>(0.40 to 2.69)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">40 per 1000</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 more per 1000</p>
|
|
<p>(from 40 fewer to 40 more)<sup>d</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of hospital stay (days)</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>217</p>
|
|
<p>(3 studies)</p>
|
|
<p>in-hospital -30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊕</p>
|
|
<p>HIGH<sup>l</sup></p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of hospital stay (days) ranged across control groups from</p>
|
|
<p>6.18-10.33 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of hospital stay (days) in the intervention groups was</p>
|
|
<p>0.2 lower</p>
|
|
<p>(0.65 lower to 0.25 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of intensive care unit stay (days)</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>100</p>
|
|
<p>(1 study)</p>
|
|
<p>in-hospital</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>m</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of intensive care unit stay in the control groups was</p>
|
|
<p>5.06 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of intensive care unit stay in the intervention groups was</p>
|
|
<p>1.41 days lower</p>
|
|
<p>(3.48 lower to 0.66 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Re-hospitalisation at ≥12 months</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1 hd_h_niceng208er8.tab8_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>234</p>
|
|
<p>(3 studies)</p>
|
|
<p>unclear - 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.70</p>
|
|
<p>(0.11 to 4.66)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">60 per 1000</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 fewer per 1000</p>
|
|
<p>(from 90 fewer to 60 more)<sup>d</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">New-onset atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>180</p>
|
|
<p>(3 studies)</p>
|
|
<p>postoperative - 30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.99</p>
|
|
<p>(0.61 to 1.58)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">286 per 1000</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>3 fewer per 1000</p>
|
|
<p>(from 112 fewer to 166 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1 hd_h_niceng208er8.tab8_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab8_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab8_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>188</p>
|
|
<p>(2 studies)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>n</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab8_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.04 to 0.04)</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">11 per 1000</td><td headers="hd_h_niceng208er8.tab8_1_1_1_5 hd_h_niceng208er8.tab8_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 40 fewer to 40 more)<sup>o</sup></p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab8_1"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab8_2"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab8_3"><p class="no_margin">Downgraded by 1 increment because of heterogeneity that cannot be explained by subgroup analysis.</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab8_4"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in one arm of some studies</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab8_5"><p class="no_margin">MIDs used to assess imprecision were ±0.03</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab8_6"><p class="no_margin">MIDs used to assess imprecision were ±0.075</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab8_7"><p class="no_margin">MIDs used to assess imprecision were ±1.03</p></div></dd></dl><dl class="bkr_refwrap"><dt>h</dt><dd><div id="niceng208er8.tab8_8"><p class="no_margin">MIDs used to assess imprecision were ±6.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>i</dt><dd><div id="niceng208er8.tab8_9"><p class="no_margin">MIDs used to assess imprecision were ±7.21</p></div></dd></dl><dl class="bkr_refwrap"><dt>j</dt><dd><div id="niceng208er8.tab8_10"><p class="no_margin">Downgraded by 1 increment as the study with the most weighting in the meta-analysis reports transfusion only and unclear whether captures all major bleeding events</p></div></dd></dl><dl class="bkr_refwrap"><dt>k</dt><dd><div id="niceng208er8.tab8_11"><p class="no_margin">Downgraded because the outcome was reported at <3 months follow-p</p></div></dd></dl><dl class="bkr_refwrap"><dt>l</dt><dd><div id="niceng208er8.tab8_12"><p class="no_margin">MIDs used to assess imprecision were ±1.20</p></div></dd></dl><dl class="bkr_refwrap"><dt>m</dt><dd><div id="niceng208er8.tab8_13"><p class="no_margin">MIDs used to assess imprecision were ±3.425</p></div></dd></dl><dl class="bkr_refwrap"><dt>n</dt><dd><div id="niceng208er8.tab8_14"><p class="no_margin">Imprecision was assessed based on OIS value as there were zero events in both arms of one of the studies. Downgraded by 2 increments as the OIS was <80%.</p></div></dd></dl><dl class="bkr_refwrap"><dt>o</dt><dd><div id="niceng208er8.tab8_15"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in both arms of one of the studies</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab9"><div id="niceng208er8.tab9" class="table"><h3><span class="label">Table 9</span><span class="title">Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab9/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab9_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab9_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab9_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab9_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab9_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab9_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab9_1_1_1_5" id="hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with Conventional surgical replacement</th><th headers="hd_h_niceng208er8.tab9_1_1_1_5" id="hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with Minimally invasive surgical replacement (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality (time to event)</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>191</p>
|
|
<p>(2 studies)</p>
|
|
<p>12-30 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, inconsistency, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 1.50</p>
|
|
<p>(0.61 to 3.71)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">81 per 1000<sup>a</sup></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>38 more per 1000</p>
|
|
<p>(from 31 fewer to 189 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality (dichotomous)</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>98</p>
|
|
<p>(1 study)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>d</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1</p>
|
|
<p>(0.21 to 4.71)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">61 per 1000</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 48 fewer to 227 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>329</p>
|
|
<p>(3 studies)</p>
|
|
<p>postoperative - 2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RD 0.02</p>
|
|
<p>(−0.02 to 0.07)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">35 per 1000</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 20 fewer to 70 more)<sup>f</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality up to 30 days</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>542</p>
|
|
<p>(5 studies)</p>
|
|
<p><30 days/in-hospital/posto perative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RD 0.00</p>
|
|
<p>(−0.02 to 0.03)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">19 per 1000</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 20 fewer to 30 more)<sup>f</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (EQ-5D, final value)</p>
|
|
<p>EQ-5D. Scale from: 0 to 1.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>187</p>
|
|
<p>(1 study)</p>
|
|
<p>1 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>h</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D, final value) in the control groups was</p>
|
|
<p>0.78</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (EQ-5D, final value) in the intervention groups was</p>
|
|
<p>0.05 higher</p>
|
|
<p>(0.03 lower to 0.13 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (SF-36 bodily pain, final value)</p>
|
|
<p>SF-36 bodily pain subscale. Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>185</p>
|
|
<p>(1 study)</p>
|
|
<p>1 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>i</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 bodily pain, final value) in the control groups was</p>
|
|
<p>72</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 bodily pain, final value) in the intervention groups was</p>
|
|
<p>4 higher</p>
|
|
<p>(5.11 lower to 13.11 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (SF-36 general health, final value)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>186</p>
|
|
<p>(1 study)</p>
|
|
<p>1 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>j</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 general health, final value) in the control groups was</p>
|
|
<p>62</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 general health, final value) in the intervention groups was</p>
|
|
<p>6 higher</p>
|
|
<p>(1.49 lower to 13.49 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (SF-36 mental health, final value)</p>
|
|
<p>SF-36 mental health. Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>186</p>
|
|
<p>(1 study)</p>
|
|
<p>1 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>i</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 mental health, final value) in the control groups was</p>
|
|
<p>73</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 mental health, final value) in the intervention groups was</p>
|
|
<p>3 higher</p>
|
|
<p>(4.04 lower to 10.04 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (SF-36 physical functioning, final value)</p>
|
|
<p>SF-36 physical functioning. Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>186</p>
|
|
<p>(1 study)</p>
|
|
<p>1 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>i</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 physical functioning, final value) in the control groups was</p>
|
|
<p>67</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 physical functioning, final value) in the intervention groups was</p>
|
|
<p>7 higher</p>
|
|
<p>(1.8 lower to 15.8 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (SF-36 role emotional, final value)</p>
|
|
<p>SF-36 role emotional. Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>183</p>
|
|
<p>(1 study)</p>
|
|
<p>1 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>k</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 role emotional, final value) in the control groups was</p>
|
|
<p>71</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 role emotional, final value) in the intervention groups was</p>
|
|
<p>5 higher</p>
|
|
<p>(6.8 lower to 16.8 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (SF-36 role physical, final value)</p>
|
|
<p>SF-36 role physical. Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>183</p>
|
|
<p>(1 study)</p>
|
|
<p>1 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>i</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 role physical, final value) in the control groups was</p>
|
|
<p>52</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 role physical, final value) in the intervention groups was</p>
|
|
<p>12 higher</p>
|
|
<p>(1.1 lower to 25.1 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (SF-36 social functioning, final value)</p>
|
|
<p>SF-36 social functioning. Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>183</p>
|
|
<p>(1 study)</p>
|
|
<p>1 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>i</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 social functioning, final value) in the control groups was</p>
|
|
<p>78</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 social functioning, final value) in the intervention groups was</p>
|
|
<p>3 higher</p>
|
|
<p>(5.72 lower to 11.72 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (SF-36 vitality, final value)</p>
|
|
<p>SF-36 vitality. Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>186</p>
|
|
<p>(1 study)</p>
|
|
<p>1 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>k</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 vitality, final value) in the control groups was</p>
|
|
<p>54</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (SF-36 vitality, final value) in the intervention groups was</p>
|
|
<p>6 higher</p>
|
|
<p>(1.49 lower to 13.49 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at ≥12 months</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1 hd_h_niceng208er8.tab9_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke at 30 days</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>152</p>
|
|
<p>(2 studies)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.10 to 0.02)</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">39 per 1000</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 100 fewer to 20 more)<sup>f</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding (re-exploration for bleeding) at 30 days</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>332</p>
|
|
<p>(4 studies)</p>
|
|
<p><30 days/postoper ative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.33</p>
|
|
<p>(0.12 to 0.95)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">78 per 1000</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>50 fewer per 1000</p>
|
|
<p>(from 100 fewer to 10 more)<sup>l</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for re-intervention at 12 months (30 months)</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>112</p>
|
|
<p>(1 study)</p>
|
|
<p>30 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.87</p>
|
|
<p>(0.17 to 4.45)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">54 per 1000<sup>m</sup></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>7 fewer per 1000</p>
|
|
<p>(from 44 fewer to 164 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for re-intervention</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>180</p>
|
|
<p>(1 study)</p>
|
|
<p>30-354 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 2.51</p>
|
|
<p>(0.52 to 12.1)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">24 per 1000</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>36 more per 1000</p>
|
|
<p>(from 12 fewer to 266 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of hospital stay (final value) after intervention</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>634</p>
|
|
<p>(7 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>n</sup></p>
|
|
<p>due to risk of bias, inconsistency, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of hospital stay (final value) after intervention ranged across control groups from</p>
|
|
<p>8-17.9 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of hospital stay (final value) after intervention in the intervention groups was</p>
|
|
<p>1.67 days lower</p>
|
|
<p>(2.73 to 0.61 lower)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of intensive care unit stay (final value) after intervention</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>112</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>o</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of intensive care unit stay (final value) after intervention in the control groups was</p>
|
|
<p>1.7 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of intensive care unit stay (final value) after intervention in the intervention groups was</p>
|
|
<p>0.10 days lower</p>
|
|
<p>(0.34 lower to 0.14 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Re-hospitalisation</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1 hd_h_niceng208er8.tab9_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>40</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
<p>Dogan 2003</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>p</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 7.39</p>
|
|
<p>(0.15 to 372.38)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>50 more per 1000</p>
|
|
<p>(from 80 fewer to 180 more)<sup>l</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>112</p>
|
|
<p>(1 study)</p>
|
|
<p>operative</p>
|
|
<p>Shneider 2020</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>p</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.14</p>
|
|
<p>(0 to 6.82)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">18 per 1000</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 fewer per 1000</p>
|
|
<p>(from 70 fewer to 30 more)<sup>l</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation and postoperative arrhythmias</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>140</p>
|
|
<p>(2 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>q</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.71</p>
|
|
<p>(0.35 to 1.47)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1 hd_h_niceng208er8.tab9_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">221 per 1000</td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>64 fewer per 1000</p>
|
|
<p>(from 144 fewer to 104 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1 hd_h_niceng208er8.tab9_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab9_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis ≥12 months</td><td headers="hd_h_niceng208er8.tab9_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab9_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab9_1_1_1_5 hd_h_niceng208er8.tab9_1_1_2_1 hd_h_niceng208er8.tab9_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab9_1"><p class="no_margin">Control group risk taken from events in Nair 2018 study as number of events not clear in the other study</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab9_2"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab9_3"><p class="no_margin">Downgraded by 1 increment because of heterogeneity that cannot be explain by subgroup analysis</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab9_4"><p class="no_margin">Downgraded due to the type of aortic valve disease being poorly defined</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab9_5"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab9_6"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in both arms of one study.</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab9_7"><p class="no_margin">Imprecision was assessed based on OIS value as there were zero events in both arms of one of the studies. Downgraded by 2 increments as the OIS was <80%.</p></div></dd></dl><dl class="bkr_refwrap"><dt>h</dt><dd><div id="niceng208er8.tab9_8"><p class="no_margin">MIDs used to assess imprecision were ±0.03</p></div></dd></dl><dl class="bkr_refwrap"><dt>i</dt><dd><div id="niceng208er8.tab9_9"><p class="no_margin">MIDs used to assess imprecision were ±3.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>j</dt><dd><div id="niceng208er8.tab9_10"><p class="no_margin">MIDs used to assess imprecision were ±2.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>k</dt><dd><div id="niceng208er8.tab9_11"><p class="no_margin">MIDs used to assess imprecision were ±4.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>l</dt><dd><div id="niceng208er8.tab9_12"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in one arm of at least one study</p></div></dd></dl><dl class="bkr_refwrap"><dt>m</dt><dd><div id="niceng208er8.tab9_13"><p class="no_margin">Control group risk estimated from data in KM curves</p></div></dd></dl><dl class="bkr_refwrap"><dt>n</dt><dd><div id="niceng208er8.tab9_14"><p class="no_margin">MIDs used to assess imprecision were ±1.15</p></div></dd></dl><dl class="bkr_refwrap"><dt>o</dt><dd><div id="niceng208er8.tab9_15"><p class="no_margin">MIDs used to assess imprecision were ±0.35</p></div></dd></dl><dl class="bkr_refwrap"><dt>p</dt><dd><div id="niceng208er8.tab9_16"><p class="no_margin">For this outcome, the point estimate of one study in opposite direction to the other study. Subgroup analyses could not be performed as only two studies. Studies therefore kept separate rather than pooling.</p></div></dd></dl><dl class="bkr_refwrap"><dt>q</dt><dd><div id="niceng208er8.tab9_17"><p class="no_margin">Downgraded due to inclusion of other types of postoperative arrhythmias than atrial fibrillation</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab10"><div id="niceng208er8.tab10" class="table"><h3><span class="label">Table 10</span><span class="title">Clinical evidence summary: Minimally invasive surgery repair vs. standard surgery repair</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab10/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab10_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab10_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab10_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab10_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab10_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab10_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab10_1_1_1_5" id="hd_h_niceng208er8.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with standard surgery repair</th><th headers="hd_h_niceng208er8.tab10_1_1_1_5" id="hd_h_niceng208er8.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with minimally invasive surgery repair (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>60</p>
|
|
<p>(1 study)</p>
|
|
<p>7 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.06 to 0.06)</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 60 fewer to 60 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>60</p>
|
|
<p>(1 study)</p>
|
|
<p>7 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.06 to 0.06)</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 60 fewer to 60 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>60</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.06 to 0.06)</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 60 fewer to 60 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health-related quality of life at 12 months</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1 hd_h_niceng208er8.tab10_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1 hd_h_niceng208er8.tab10_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>60</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.06 to 0.06)</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 60 fewer to 60 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1 hd_h_niceng208er8.tab10_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>60</p>
|
|
<p>(1 study)</p>
|
|
<p>7 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>MODERATE<sup>b</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 7.5</p>
|
|
<p>(1.88 to 29.99)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">67 per 1000</td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>436 more per 1000</p>
|
|
<p>(from 59 more to 1000 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1 hd_h_niceng208er8.tab10_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1 hd_h_niceng208er8.tab10_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1 hd_h_niceng208er8.tab10_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1 hd_h_niceng208er8.tab10_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1 hd_h_niceng208er8.tab10_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab10_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab10_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab10_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab10_1_1_1_5 hd_h_niceng208er8.tab10_1_1_2_1 hd_h_niceng208er8.tab10_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab10_1"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in both arms of the study</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab10_2"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab10_3"><p class="no_margin">Imprecision assessed using sample size as zero events in both arms of the study. Very serious imprecision as sample size <70.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab11"><div id="niceng208er8.tab11" class="table"><h3><span class="label">Table 11</span><span class="title">Clinical evidence summary: Transcatheter repair vs. standard surgery repair</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab11/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab11_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab11_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab11_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab11_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab11_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab11_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab11_1_1_1_5" id="hd_h_niceng208er8.tab11_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with standard surgery repair</th><th headers="hd_h_niceng208er8.tab11_1_1_1_5" id="hd_h_niceng208er8.tab11_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with transcatheter repair (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(2 studies)</p>
|
|
<p>3-7 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0.02 (−0.04 to 0.07)</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 40 fewer to 70 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(2 studies)</p>
|
|
<p>3-7 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0.02 (−0.04 to 0.07)</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 40 fewer to 70 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(2 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.05 to 0.05)</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 50 fewer to 50 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health-related quality of life at 12 months</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1 hd_h_niceng208er8.tab11_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1 hd_h_niceng208er8.tab11_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(2 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.05 to 0.05)</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 50 fewer to 50 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1 hd_h_niceng208er8.tab11_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>60</p>
|
|
<p>(1 study)</p>
|
|
<p>7 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.5</p>
|
|
<p>(0.27 to 8.34)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">67 per 1000</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>34 more per 1000</p>
|
|
<p>(from 49 fewer to 492 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1 hd_h_niceng208er8.tab11_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1 hd_h_niceng208er8.tab11_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1 hd_h_niceng208er8.tab11_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1 hd_h_niceng208er8.tab11_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>60</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.06 to 0.06)</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 60 fewer to 60 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab11_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab11_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab11_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab11_1_1_1_5 hd_h_niceng208er8.tab11_1_1_2_1 hd_h_niceng208er8.tab11_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab11_1"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in both arms of one or more studies</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab11_2"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab11_3"><p class="no_margin">Downgraded by 1 increment as some patients in one of the studies <18 years old - proportion unclear</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab11_4"><p class="no_margin">Downgraded by 2 increments as imprecision very serious based on OIS calculation</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab11_5"><p class="no_margin">Imprecision assessed using sample size as zero events in both arms of both studies. Serious imprecision as sample size >70 and <350</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab11_6"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab11_7"><p class="no_margin">Imprecision assessed using sample size as zero events in both arms of the study. Very serious imprecision as sample size <70</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab12"><div id="niceng208er8.tab12" class="table"><h3><span class="label">Table 12</span><span class="title">Clinical evidence summary: Transcatheter repair vs. minimally invasive surgery repair</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab12/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab12_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab12_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab12_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab12_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab12_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab12_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab12_1_1_1_5" id="hd_h_niceng208er8.tab12_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with minimally invasive surgery repair</th><th headers="hd_h_niceng208er8.tab12_1_1_1_5" id="hd_h_niceng208er8.tab12_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with transcatheter repair (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>591</p>
|
|
<p>(5 studies)</p>
|
|
<p>unclear-8 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.02 to 0.02)</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 20 fewer to 20 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>591</p>
|
|
<p>(5 studies)</p>
|
|
<p>unclear-8 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.02 to 0.02)</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 20 fewer to 20 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>594</p>
|
|
<p>(5 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.02 to 0.02)</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 20 fewer to 20 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health-related quality of life at 12 months</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1 hd_h_niceng208er8.tab12_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1 hd_h_niceng208er8.tab12_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>590</p>
|
|
<p>(5 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.01 to 0.02)</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 10 fewer to 20 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>236</p>
|
|
<p>(2 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.02 to 0.04)</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 more per 1000</p>
|
|
<p>(from 20 fewer to 40 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>391</p>
|
|
<p>(4 studies)</p>
|
|
<p>unclear-8 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>g</sup><sup>,</sup><sup>h</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.13</p>
|
|
<p>(0.21 to 6.03)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">12 per 1000</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 fewer per 1000</p>
|
|
<p>(from 200 fewer to 150 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1 hd_h_niceng208er8.tab12_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1 hd_h_niceng208er8.tab12_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1 hd_h_niceng208er8.tab12_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1 hd_h_niceng208er8.tab12_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1 hd_h_niceng208er8.tab12_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab12_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab12_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>240</p>
|
|
<p>(2 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>b</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 8.02</p>
|
|
<p>(2.4 to 26.8)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab12_1_1_1_5 hd_h_niceng208er8.tab12_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>90 more per 1000</p>
|
|
<p>(from 40 more to 150 more)<sup>a</sup></p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab12_1"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in one or both arms of one or more studies</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab12_2"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab12_3"><p class="no_margin">Downgraded by 1 increment as two studies include some under 18 years old - proportion unclear. One study follow-up <3 months</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab12_4"><p class="no_margin">Downgraded by 2 increments as imprecision very serious based on OIS calculation</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab12_5"><p class="no_margin">Downgraded by 1 increment as two studies include some under 18 years old - proportion unclear.</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab12_6"><p class="no_margin">Downgraded by 1 increment as two studies include some under 18 years old - proportion unclear. Also one study reports hemiplegia rather than stroke specifically.</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab12_7"><p class="no_margin">Downgraded by 1 increment as heterogeneity is present but could not be explained by subgrouping strategies</p></div></dd></dl><dl class="bkr_refwrap"><dt>h</dt><dd><div id="niceng208er8.tab12_8"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab13"><div id="niceng208er8.tab13" class="table"><h3><span class="label">Table 13</span><span class="title">Clinical evidence summary: Transcatheter repair vs. surgical repair (unclear/mixed invasiveness)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab13/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab13_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab13_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab13_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab13_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab13_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab13_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab13_1_1_1_5" id="hd_h_niceng208er8.tab13_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with surgical repair (unclear/mixed invasiveness)</th><th headers="hd_h_niceng208er8.tab13_1_1_1_5" id="hd_h_niceng208er8.tab13_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with transcatheter repair (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.05 to 0.05)</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 50 fewer to 50 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.05 to 0.05)</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 50 fewer to 50 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.05 to 0.05)</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 50 fewer to 50 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health-related quality of life at 12 months</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1 hd_h_niceng208er8.tab13_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1 hd_h_niceng208er8.tab13_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1 hd_h_niceng208er8.tab13_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.12</p>
|
|
<p>(0.02 to 0.74)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">103 per 1000</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>130 fewer per 1000</p>
|
|
<p>(from 230 fewer to 20 fewer)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.05 to 0.05)</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 50 fewer to 50 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1 hd_h_niceng208er8.tab13_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1 hd_h_niceng208er8.tab13_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>f</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.13</p>
|
|
<p>(0.01 to 2.15)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">52 per 1000</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>50 fewer per 1000</p>
|
|
<p>(from 130 fewer to 30 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.12</p>
|
|
<p>(0.02 to 0.62)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">102 per 1000</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>150 fewer per 1000</p>
|
|
<p>(from 270 fewer to 30 fewer)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>f</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 7.58</p>
|
|
<p>(0.47 to 123.37)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>50 more per 1000</p>
|
|
<p>(from 30 fewer to 130 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab13_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab13_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab13_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab13_1_1_1_5 hd_h_niceng208er8.tab13_1_1_2_1 hd_h_niceng208er8.tab13_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab13_1"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in at least one arm of one or more studies</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab13_2"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab13_3"><p class="no_margin">Downgraded by 1 increment as some patients were <18 years old - proportion unclear</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab13_4"><p class="no_margin">Imprecision assessed using sample size as zero events in both arms of the study. Serious imprecision as sample size >70 and <350</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab13_5"><p class="no_margin">Downgraded by 1 increment as some patients in the study were <18 years old - proportion unclear. Also time-point measured at for this outcome unclear and unclear whether all were major bleeding events</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab13_6"><p class="no_margin">Downgraded by 1 increment as some patients in the study were <18 years old - proportion unclear. Also time-point measured at for this outcome unclear.</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab13_7"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab14"><div id="niceng208er8.tab14" class="table"><h3><span class="label">Table 14</span><span class="title">Clinical evidence summary: Evidence not suitable for GRADE analysis</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab14/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab14_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab14_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab14_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Intervention and comparator</th><th id="hd_h_niceng208er8.tab14_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Outcome</th><th id="hd_h_niceng208er8.tab14_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Intervention results</th><th id="hd_h_niceng208er8.tab14_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Intervention group (n)</th><th id="hd_h_niceng208er8.tab14_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Comparator results</th><th id="hd_h_niceng208er8.tab14_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Comparator group (n)</th><th id="hd_h_niceng208er8.tab14_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk of bias</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab14_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Medved 2010<a class="bibr" href="#niceng208er8.ref253" rid="niceng208er8.ref253"><sup>253</sup></a></td><td headers="hd_h_niceng208er8.tab14_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Standard surgery replacement vs. standard surgery repair</td><td headers="hd_h_niceng208er8.tab14_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of hospital stay post-intervention</td><td headers="hd_h_niceng208er8.tab14_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mean: 13.5 days</td><td headers="hd_h_niceng208er8.tab14_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">40</td><td headers="hd_h_niceng208er8.tab14_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mean:15 days</td><td headers="hd_h_niceng208er8.tab14_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">40</td><td headers="hd_h_niceng208er8.tab14_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">High</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab15"><div id="niceng208er8.tab15" class="table"><h3><span class="label">Table 15</span><span class="title">Clinical evidence summary: Standard surgery replacement vs. standard surgery repair</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab15/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab15_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab15_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab15_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab15_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab15_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab15_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab15_1_1_1_5" id="hd_h_niceng208er8.tab15_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with standard surgery repair</th><th headers="hd_h_niceng208er8.tab15_1_1_1_5" id="hd_h_niceng208er8.tab15_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with standard surgery replacement (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>in-hospital</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.5</p>
|
|
<p>(0.05 to 5.3)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50 per 1000</td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>25 fewer per 1000</p>
|
|
<p>(from 47 fewer to 215 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>in-hospital</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.5</p>
|
|
<p>(0.05 to 5.3)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50 per 1000</td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>25 fewer per 1000</p>
|
|
<p>(from 47 fewer to 215 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health-related quality of life at 12 months</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>in-hospital</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1</p>
|
|
<p>(0.06 to 15.44)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">25 per 1000</td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 24 fewer to 361 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>80</p>
|
|
<p>(1 study)</p>
|
|
<p>in-hospital</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.33</p>
|
|
<p>(0.04 to 3.07)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">75 per 1000</td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>50 fewer per 1000</p>
|
|
<p>(from 72 fewer to 155 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab15_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab15_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab15_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab15_1_1_1_5 hd_h_niceng208er8.tab15_1_1_2_1 hd_h_niceng208er8.tab15_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab15_1"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab15_2"><p class="no_margin">Downgraded for indirectness as follow-up was <3 months</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab15_3"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab15_4"><p class="no_margin">Downgraded for indirectness as neurological dysfunction could include events other than stroke and TIA</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab16"><div id="niceng208er8.tab16" class="table"><h3><span class="label">Table 16</span><span class="title">Clinical evidence summary: Minimally invasive surgery repair vs. standard surgery repair</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab16/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab16_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab16_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab16_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab16_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab16_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab16_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab16_1_1_1_5" id="hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with standard surgery repair</th><th headers="hd_h_niceng208er8.tab16_1_1_1_5" id="hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with minimally invasive surgery repair (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>159</p>
|
|
<p>(1 study)</p>
|
|
<p>3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup></p>
|
|
<p>due to imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.01</p>
|
|
<p>(0.21 to 4.87)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">38 per 1000</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 more per 1000</p>
|
|
<p>(from 30 fewer to 147 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1 hd_h_niceng208er8.tab16_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>160</p>
|
|
<p>(1 study)</p>
|
|
<p>intraoperative/early postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup></p>
|
|
<p>due to imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1</p>
|
|
<p>(0.14 to 6.93)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">25 per 1000</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 22 fewer to 148 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-36 general health domain)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>153</p>
|
|
<p>(1 study)</p>
|
|
<p>3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (sf-36 general health domain) in the control groups was</p>
|
|
<p>84.2</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 general health domain) in the intervention groups was</p>
|
|
<p>1.3 lower</p>
|
|
<p>(4.22 lower to 1.62 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-36 mental health domain)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>153</p>
|
|
<p>(1 study)</p>
|
|
<p>3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 mental health domain) in the control groups was</p>
|
|
<p>81.5</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 mental health domain) in the intervention groups was</p>
|
|
<p>0.9 higher</p>
|
|
<p>(1.99 lower to 3.79 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-36 physical activity domain)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>153</p>
|
|
<p>(1 study)</p>
|
|
<p>3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 physical activity domain) in the control groups was</p>
|
|
<p>79.7</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 physical activity domain) in the intervention groups was</p>
|
|
<p>0.6 lower</p>
|
|
<p>(3.41 lower to 2.21 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-36 role limitation domain)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>153</p>
|
|
<p>(1 study)</p>
|
|
<p>3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 role limitation domain) in the control groups was</p>
|
|
<p>79.5</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 role limitation domain) in the intervention groups was</p>
|
|
<p>1 lower</p>
|
|
<p>(4.05 lower to 2.05 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-36 social activities domain)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>153</p>
|
|
<p>(1 study)</p>
|
|
<p>3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>MODERATE<sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 social activities domain) in the control groups was</p>
|
|
<p>83.8</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 social activities domain) in the intervention groups was</p>
|
|
<p>0.4 higher</p>
|
|
<p>(1.82 lower to 2.62 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-36 vitality domain)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>153</p>
|
|
<p>(1 study)</p>
|
|
<p>3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 vitality domain) in the control groups was</p>
|
|
<p>78.8</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 vitality domain) in the intervention groups was</p>
|
|
<p>1 higher</p>
|
|
<p>(1.66 lower to 3.66 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1 hd_h_niceng208er8.tab16_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>140</p>
|
|
<p>(1 study)</p>
|
|
<p>intraoperative/early postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.5</p>
|
|
<p>(0.05 to 5.39)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">29 per 1000</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>15 fewer per 1000</p>
|
|
<p>(from 28 fewer to 127 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>140</p>
|
|
<p>(1 study)</p>
|
|
<p>intraoperative/early postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup></p>
|
|
<p>due to imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.33</p>
|
|
<p>(0.31 to 5.74)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">43 per 1000</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>14 more per 1000</p>
|
|
<p>(from 30 fewer to 204 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>153</p>
|
|
<p>(1 study)</p>
|
|
<p>3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup></p>
|
|
<p>due to imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 2.03</p>
|
|
<p>(0.19 to 21.88)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">13 per 1000</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>13 more per 1000</p>
|
|
<p>(from 11 fewer to 271 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of hospital stay post-intervention</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>160</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>MODERATE<sup>a</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of hospital stay post-intervention in the control groups was</p>
|
|
<p>11.6 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of hospital stay post-intervention in the intervention groups was</p>
|
|
<p>3.1 days lower</p>
|
|
<p>(4.57 to 1.63 lower)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1 hd_h_niceng208er8.tab16_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1 hd_h_niceng208er8.tab16_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1 hd_h_niceng208er8.tab16_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1 hd_h_niceng208er8.tab16_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab16_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab16_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>153</p>
|
|
<p>(1 study)</p>
|
|
<p>3 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>i</sup><sup>,</sup><sup>j</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab16_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.03 to 0.03)<sup>h</sup></td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab16_1_1_1_5 hd_h_niceng208er8.tab16_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 30 fewer to 30 more)<sup>g</sup></p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab16_1"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab16_2"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab16_3"><p class="no_margin">MIDs used to assess imprecision were ±2.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab16_4"><p class="no_margin">MIDs used to assess imprecision were ±3.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab16_5"><p class="no_margin">Downgraded as neurological complications may include events other than stroke and TIA</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab16_6"><p class="no_margin">MIDs used to assess imprecision were ±2.50</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab16_7"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in both arms.</p></div></dd></dl><dl class="bkr_refwrap"><dt>h</dt><dd><div id="niceng208er8.tab16_8"><p class="no_margin">Presented as risk difference</p></div></dd></dl><dl class="bkr_refwrap"><dt>i</dt><dd><div id="niceng208er8.tab16_9"><p class="no_margin">Downgraded as outcome may not be prosthetic valve endocarditis as specified in the protocol based on the interventions being repair rather than replacement procedures</p></div></dd></dl><dl class="bkr_refwrap"><dt>j</dt><dd><div id="niceng208er8.tab16_10"><p class="no_margin">Imprecision assessed using sample size as zero events in both arms - serious imprecision as sample size is >70 and <350</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab17"><div id="niceng208er8.tab17" class="table"><h3><span class="label">Table 17</span><span class="title">Clinical evidence summary: Minimally invasive surgery (mixed repair/replacement) vs. standard surgery (mixed repair/replacement)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab17/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab17_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab17_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab17_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab17_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab17_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab17_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab17_1_1_1_5" id="hd_h_niceng208er8.tab17_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with standard surgery (mixture of repair and replacement)</th><th headers="hd_h_niceng208er8.tab17_1_1_1_5" id="hd_h_niceng208er8.tab17_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with minimally invasive surgery (mixture of repair and replacement) (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1 hd_h_niceng208er8.tab17_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>40</p>
|
|
<p>(1 study)</p>
|
|
<p>in-hospital</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>c</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.09 to 0.09)<sup>b</sup></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 90 fewer to 90 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>40</p>
|
|
<p>(1 study)</p>
|
|
<p>in-hospital</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>c</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.09 to 0.09)<sup>b</sup></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 90 fewer to 90 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health-related quality of life at 12 months</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1 hd_h_niceng208er8.tab17_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>40</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>c</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1</p>
|
|
<p>(0.07 to 14.9)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50 per 1000</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 47 fewer to 695 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>40</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>c</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1</p>
|
|
<p>(0.07 to 14.9)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50 per 1000</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 47 fewer to 695 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>40</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>c</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.14</p>
|
|
<p>(0 to 6.82)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50 per 1000</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>50 fewer per 1000</p>
|
|
<p>(from 180 fewer to 80 more)<sup>h</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1 hd_h_niceng208er8.tab17_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1 hd_h_niceng208er8.tab17_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1 hd_h_niceng208er8.tab17_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>40</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>c</sup><sup>,</sup><sup>f</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.14</p>
|
|
<p>(0 to 6.82)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">50 per 1000</td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>50 fewer per 1000</p>
|
|
<p>(from 180 fewer to 80 more)<sup>h</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1 hd_h_niceng208er8.tab17_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1 hd_h_niceng208er8.tab17_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab17_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab17_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab17_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab17_1_1_1_5 hd_h_niceng208er8.tab17_1_1_2_1 hd_h_niceng208er8.tab17_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab17_1"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in both arms of the study</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab17_2"><p class="no_margin">Presented as risk difference</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab17_3"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab17_4"><p class="no_margin">Downgraded 2 increments as indirect population and interventions: proportion with mitral stenosis rather than mitral regurgitation and mixture of repair and replacement interventions within each study arm. In addition, follow-up <3 months.</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab17_5"><p class="no_margin">Imprecision assessed using sample size as zero events in both arms of the study. Very serious imprecision as sample size <70.</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab17_6"><p class="no_margin">Downgraded 2 increments as indirect population and interventions: proportion with mitral stenosis rather than mitral regurgitation and mixture of repair and replacement interventions within each study arm.</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab17_7"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>h</dt><dd><div id="niceng208er8.tab17_8"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in one arm of the study</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab18"><div id="niceng208er8.tab18" class="table"><h3><span class="label">Table 18</span><span class="title">Clinical evidence summary: Surgical replacement (unclear/mixed invasiveness) vs. surgical repair (unclear/mixed invasiveness)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab18/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab18_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab18_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab18_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab18_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab18_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab18_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab18_1_1_1_5" id="hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with surgical repair (unclear/mixed invasiveness)</th><th headers="hd_h_niceng208er8.tab18_1_1_1_5" id="hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with surgical replacement (unclear/mixed invasiveness) (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months (time to event, 24 months) - HR</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>339</p>
|
|
<p>(2 studies)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW)<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, inconsistency, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 1.95</p>
|
|
<p>(0.64 to 5.94)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">118 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>99 more per 1000</p>
|
|
<p>(from 41 fewer to 407 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>88</p>
|
|
<p>(1 study)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 6.98</p>
|
|
<p>(0.91 to 53.47)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1 hd_h_niceng208er8.tab18_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">24 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>144 more per 1000</p>
|
|
<p>(from 2 fewer to 1000 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>339</p>
|
|
<p>(2 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 2.54</p>
|
|
<p>(0.6 to 10.77)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">8 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 1 fewer to 60 more)<sup>e</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (EQ-5D)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>171</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (EQ-5D) in the control groups was</p>
|
|
<p>73.7</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (EQ-5D) in the intervention groups was</p>
|
|
<p>0.2 higher</p>
|
|
<p>(5.33 lower to 5.73 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (MLWHF questionnaire)</p>
|
|
<p>Scale from: 0 to 105.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>180</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (MLWHF questionnaire) in the control groups was</p>
|
|
<p>24.5</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (MLWHF questionnaire) in the intervention groups was</p>
|
|
<p>4.9 lower</p>
|
|
<p>(11.11 lower to 1.31 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-12 mental function)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>178</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>h</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-12 mental function) in the control groups was</p>
|
|
<p>46.8</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-12 mental function) in the intervention groups was</p>
|
|
<p>0.1 higher</p>
|
|
<p>(1.88 lower to 2.08 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-12 physical function)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>178</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>i</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-12 physical function) in the control groups was</p>
|
|
<p>43.6</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-12 physical function) in the intervention groups was</p>
|
|
<p>0.6 higher</p>
|
|
<p>(1.63 lower to 2.83 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>169</p>
|
|
<p>(1 study)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.01</p>
|
|
<p>(0.3 to 3.37)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">59 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>1 more per 1000</p>
|
|
<p>(from 41 fewer to 140 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>339</p>
|
|
<p>(2 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.54</p>
|
|
<p>(0.41 to 5.81)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">12 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 more per 1000</p>
|
|
<p>(from 20 fewer to 50 more)<sup>e</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>88</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 6.5</p>
|
|
<p>(0.13 to 330.77)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 40 fewer to 80 more)<sup>e</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months (24 months)</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>339</p>
|
|
<p>(2 studies)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.17</p>
|
|
<p>(0.06 to 0.49)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">74 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>70 fewer per 1000</p>
|
|
<p>(from 30 fewer to 110 fewer)<sup>e</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay post-intervention</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>251</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>j</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of stay post-intervention in the control groups was</p>
|
|
<p>11.5 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of stay post-intervention in the intervention groups was</p>
|
|
<p>0.4 days higher</p>
|
|
<p>(1.78 lower to 2.58 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1 hd_h_niceng208er8.tab18_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>88</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.31</p>
|
|
<p>(0.23 to 7.45)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">49 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>15 more per 1000</p>
|
|
<p>(from 38 fewer to 316 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>88</p>
|
|
<p>(1 study)</p>
|
|
<p>intraoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.87</p>
|
|
<p>(0.06 to 13.51)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">24 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>3 fewer per 1000</p>
|
|
<p>(from 23 fewer to 300 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab18_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab18_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>251</p>
|
|
<p>(1 study)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 7.51</p>
|
|
<p>(0.47 to 120.72)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab18_1_1_1_5 hd_h_niceng208er8.tab18_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 10 fewer to 40 more)<sup>e</sup></p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab18_1"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab18_2"><p class="no_margin">Downgraded by 1 increment as the interventions are indirect due to there being a mixture of minimally invasive and standard surgery replacement</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab18_3"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab18_4"><p class="no_margin">Downgraded by 1 increment because heterogeneity is present and subgrouping strategies cannot be used due to there being only two studies in the meta-analysis: I2=62%, p=0.10.</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab18_5"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in one arm of one of the studies</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab18_6"><p class="no_margin">MIDs used to assess imprecision were ±11.98</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab18_7"><p class="no_margin">MIDs used to assess imprecision were ±5.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>h</dt><dd><div id="niceng208er8.tab18_8"><p class="no_margin">MIDs used to assess imprecision were ±4.20</p></div></dd></dl><dl class="bkr_refwrap"><dt>i</dt><dd><div id="niceng208er8.tab18_9"><p class="no_margin">MIDs used to assess imprecision were ±3.83</p></div></dd></dl><dl class="bkr_refwrap"><dt>j</dt><dd><div id="niceng208er8.tab18_10"><p class="no_margin">MIDs used to assess imprecision were ±4.50</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab19"><div id="niceng208er8.tab19" class="table"><h3><span class="label">Table 19</span><span class="title">Clinical evidence summary: Transcatheter repair vs. pharmacological management</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab19/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab19_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab19_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab19_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab19_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab19_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab19_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab19_1_1_1_5" id="hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with pharmacological management</th><th headers="hd_h_niceng208er8.tab19_1_1_1_5" id="hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with transcatheter repair (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months (time-to-event) - HR</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>918</p>
|
|
<p>(2 studies)</p>
|
|
<p>24-36 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.81</p>
|
|
<p>(0.54 to 1.22)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">435 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>65 fewer per 1000</p>
|
|
<p>(from 170 fewer to 67 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months (dichotomous)</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>110</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.79</p>
|
|
<p>(0.3 to 2.07)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1 hd_h_niceng208er8.tab19_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">172 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>36 fewer per 1000</p>
|
|
<p>(from 120 fewer to 184 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months (time-to-event) - HR</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>918</p>
|
|
<p>(2 studies)</p>
|
|
<p>24-36 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.78</p>
|
|
<p>(0.52 to 1.18)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">364 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>67 fewer per 1000</p>
|
|
<p>(from 154 fewer to 50 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>424</p>
|
|
<p>(2 studies)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>c</sup></p>
|
|
<p>due to imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.35</p>
|
|
<p>(0.41 to 4.45)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">22 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 more per 1000</p>
|
|
<p>(from 20 fewer to 40 more)<sup>d</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (EQ-5D)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>180</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW <sup>a</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (EQ-5D) in the control groups was</p>
|
|
<p>58.6</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (EQ-5D) in the intervention groups was</p>
|
|
<p>2.2 higher</p>
|
|
<p>(3.43 lower to 7.83 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (KCCQ overall) - COAPT</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>405</p>
|
|
<p>(1 study)</p>
|
|
<p>36 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">The mean quality of life at 12 months (KCCQ overall) in the control groups 40.6</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (KCCQ overall) in the intervention groups was</p>
|
|
<p>20.30 higher</p>
|
|
<p>(13.71 to 26.89 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (KCCQ overall) – REDUCE-FMR</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>94</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (KCCQ overall) in the control groups was</p>
|
|
<p>7.63</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (KCCQ overall) in the intervention groups was</p>
|
|
<p>1.86 higher</p>
|
|
<p>(7.45 lower to 11.17 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-36 mental component)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>217</p>
|
|
<p>(1 study)</p>
|
|
<p>24 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>h</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 mental component) in the control groups was</p>
|
|
<p>48.9</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 mental component) in the intervention groups was</p>
|
|
<p>1.2 higher</p>
|
|
<p>(2.06 lower to 4.46 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life at 12 months (SF-36 physical component)</p>
|
|
<p>Scale from: 0 to 100.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>217</p>
|
|
<p>(1 study)</p>
|
|
<p>24 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>i</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 physical component) in the control groups was</p>
|
|
<p>34.1</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 physical component) in the intervention groups was</p>
|
|
<p>4 higher</p>
|
|
<p>(1.25 to 6.75 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset of exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>1038</p>
|
|
<p>(3 studies)</p>
|
|
<p>12-36 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, inconsistency, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.75</p>
|
|
<p>(0.54 to 1.05)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">618 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>154 fewer per 1000</p>
|
|
<p>(from 284 fewer to 31 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>910</p>
|
|
<p>(2 studies)</p>
|
|
<p>periprocedural-30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>k</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 7.76</p>
|
|
<p>(1.09 to 55.28)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 more per 1000</p>
|
|
<p>(from 0 more to 20 more)<sup>j</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>304</p>
|
|
<p>(1 study)</p>
|
|
<p>periprocedural</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>c</sup></p>
|
|
<p>due to imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.83</p>
|
|
<p>(0.7 to 4.83)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">39 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>32 more per 1000</p>
|
|
<p>(from 12 fewer to 149 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months (time-to-event) - HR</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>614</p>
|
|
<p>(1 study)</p>
|
|
<p>36 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.10</p>
|
|
<p>(0.05 to 0.20)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">208 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>185 fewer per 1000</p>
|
|
<p>(from 162 fewer to 196 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1 hd_h_niceng208er8.tab19_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months (time-to-event) - HR</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>614</p>
|
|
<p>(1 study)</p>
|
|
<p>36 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW <sup>a</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>HR 0.70</p>
|
|
<p>(0.58 to 0.84)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">827 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120 fewer per 1000</p>
|
|
<p>(from 56 fewer to 188 fewer)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation (for HF) at 12 months (dichotomous)</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.76</p>
|
|
<p>(0.43 to 1.34)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1 hd_h_niceng208er8.tab19_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">364 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>87 fewer per 1000</p>
|
|
<p>(from 207 fewer to 124 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1 hd_h_niceng208er8.tab19_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1 hd_h_niceng208er8.tab19_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>296</p>
|
|
<p>(1 study)</p>
|
|
<p>periprocedural</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊕⊝</p>
|
|
<p>MODERATE<sup>a</sup></p>
|
|
<p>due to risk of bias</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 8.04</p>
|
|
<p>(1.37 to 46.97)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>30 more per 1000</p>
|
|
<p>(from 0 more to 70 more)<sup>d</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab19_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>120</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 4.02</p>
|
|
<p>(0.18 to 90.74)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1 hd_h_niceng208er8.tab19_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab19_1_1_1_5 hd_h_niceng208er8.tab19_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>20 more per 1000</p>
|
|
<p>(from 30 fewer to 80 more)<sup>d</sup></p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab19_1"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab19_2"><p class="no_margin">Downgraded by 1 increment because heterogeneity is present and subgrouping strategies cannot be used due to the number of studies.</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab19_3"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab19_4"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in one arm of one study</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab19_5"><p class="no_margin">MIDs used to assess imprecision were ±8.95</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab19_6"><p class="no_margin">MIDs used to assess imprecision were ±11.53</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab19_7"><p class="no_margin">MIDs used to assess imprecision were ±8.77</p></div></dd></dl><dl class="bkr_refwrap"><dt>h</dt><dd><div id="niceng208er8.tab19_8"><p class="no_margin">MIDs used to assess imprecision were ±3.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>i</dt><dd><div id="niceng208er8.tab19_9"><p class="no_margin">MIDs used to assess imprecision were ±2.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>j</dt><dd><div id="niceng208er8.tab19_10"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in one arm of both studies</p></div></dd></dl><dl class="bkr_refwrap"><dt>k</dt><dd><div id="niceng208er8.tab19_11"><p class="no_margin">Downgraded by 1 increment as gas embolism included in events for one study</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab20"><div id="niceng208er8.tab20" class="table"><h3><span class="label">Table 20</span><span class="title">Clinical evidence summary: Transcatheter repair vs. surgery (mixed repair/replacement and unclear/mixed invasiveness)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab20/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab20_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab20_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab20_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab20_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab20_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab20_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab20_1_1_1_5" id="hd_h_niceng208er8.tab20_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with surgery (mixed repair/replacement and mixed/unclear invasiveness)</th><th headers="hd_h_niceng208er8.tab20_1_1_1_5" id="hd_h_niceng208er8.tab20_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with transcatheter repair (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>210</p>
|
|
<p>(1 study)</p>
|
|
<p>5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.78</p>
|
|
<p>(0.46 to 1.32)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">268 per 1000</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>59 fewer per 1000</p>
|
|
<p>(from 145 fewer to 86 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1 hd_h_niceng208er8.tab20_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>274</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.52</p>
|
|
<p>(0.07 to 3.65)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">21 per 1000</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 fewer per 1000</p>
|
|
<p>(from 20 fewer to 56 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Quality of life at 12 months (SF-36 mental component)</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>193</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 mental component) in the control groups was</p>
|
|
<p>3.8</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 mental component) in the intervention groups was</p>
|
|
<p>1.9 higher</p>
|
|
<p>(1.2 lower to 5 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Quality of life at 12 months (SF-36 physical component)</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>192</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 physical component) in the control groups was</p>
|
|
<p>4.4</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life at 12 months (SF-36 physical component) in the intervention groups was</p>
|
|
<p>0 higher</p>
|
|
<p>(3.12 lower to 3.12 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1 hd_h_niceng208er8.tab20_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>274</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.52</p>
|
|
<p>(0.07 to 3.65)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">21 per 1000</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 fewer per 1000</p>
|
|
<p>(from 20 fewer to 56 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1 hd_h_niceng208er8.tab20_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>210</p>
|
|
<p>(1 study)</p>
|
|
<p>5 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 3.13</p>
|
|
<p>(1.3 to 7.5)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">89 per 1000</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>190 more per 1000</p>
|
|
<p>(from 27 more to 578 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1 hd_h_niceng208er8.tab20_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1 hd_h_niceng208er8.tab20_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Note reported</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1 hd_h_niceng208er8.tab20_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>274</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 4.61</p>
|
|
<p>(0.25 to 85.84)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 more per 1000</p>
|
|
<p>(from 10 fewer to 30 more)<sup>f</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>274</p>
|
|
<p>(1 study)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>c</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 0.52</p>
|
|
<p>(0.13 to 2.04)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">43 per 1000</td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>21 fewer per 1000</p>
|
|
<p>(from 37 fewer to 45 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab20_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab20_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab20_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab20_1_1_1_5 hd_h_niceng208er8.tab20_1_1_2_1 hd_h_niceng208er8.tab20_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab20_1"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab20_2"><p class="no_margin">Downgraded 1 increment as the surgical arm was a mixture of repair/replacement procedures and unclear/mixed invasiveness of surgery</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab20_3"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab20_4"><p class="no_margin">MIDs used to assess imprecision were ±3.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab20_5"><p class="no_margin">MIDs used to assess imprecision were ±2.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab20_6"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in one arm of the study</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab20_7"><p class="no_margin">Downgraded 2 increments as the surgical arm was a mixture of repair/replacement procedures and unclear/mixed invasiveness of surgery, and it was unclear whether events were all a result of vascular complications</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab21"><div id="niceng208er8.tab21" class="table"><h3><span class="label">Table 21</span><span class="title">Clinical evidence summary: Minimally invasive surgery replacement vs. standard surgery replacement</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab21/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab21_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab21_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab21_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab21_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab21_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab21_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab21_1_1_1_5" id="hd_h_niceng208er8.tab21_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with standard surgery replacement</th><th headers="hd_h_niceng208er8.tab21_1_1_1_5" id="hd_h_niceng208er8.tab21_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with minimally invasive surgery replacement (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1 hd_h_niceng208er8.tab21_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality at 12 months</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>134</p>
|
|
<p>(2 studies)</p>
|
|
<p>in-hospital/postoper ative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>e</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">RD 0 (−0.04 to 0.04)</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 40 fewer to 40 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>415</p>
|
|
<p>(3 studies)</p>
|
|
<p>in-hospital/postoper ative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup></p>
|
|
<p>due to risk of bias, indirectness</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RD −0.01</p>
|
|
<p>(−0.05 to 0.03)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 fewer per 1000</p>
|
|
<p>(from 50 fewer to 30 more)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Health-related quality of life at 12 months</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1 hd_h_niceng208er8.tab21_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure at 12 months</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1 hd_h_niceng208er8.tab21_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>281</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 3.13</p>
|
|
<p>(0.14 to 70.31)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">5 per 1000</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>10 more per 1000</p>
|
|
<p>(from 4 fewer to 256 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding at 30 days</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1 hd_h_niceng208er8.tab21_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>281</p>
|
|
<p>(1 study)</p>
|
|
<p>postoperative</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.24</p>
|
|
<p>(0.06 to 0.99)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">49 per 1000</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>50 fewer per 1000</p>
|
|
<p>(from 80 fewer to 10 fewer)<sup>a</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of hospital stay</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>415</p>
|
|
<p>(3 studies)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup><sup>,</sup><sup>f</sup><sup>,</sup><sup>g</sup></p>
|
|
<p>due to risk of bias, inconsistency, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of hospital stay in the control groups was</p>
|
|
<p>11.5 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean length of hospital stay in the intervention groups was</p>
|
|
<p>1.44 days lower</p>
|
|
<p>(4.09 lower to 1.22 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation at 12 months</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1 hd_h_niceng208er8.tab21_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1 hd_h_niceng208er8.tab21_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1 hd_h_niceng208er8.tab21_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major vascular complications at 30 days</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1 hd_h_niceng208er8.tab21_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab21_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at 12 months</td><td headers="hd_h_niceng208er8.tab21_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>259</p>
|
|
<p>(1 study)</p>
|
|
<p>2 years</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>b</sup><sup>,</sup><sup>c</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.38</p>
|
|
<p>(0.13 to 14.94)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">11 per 1000</td><td headers="hd_h_niceng208er8.tab21_1_1_1_5 hd_h_niceng208er8.tab21_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>4 more per 1000</p>
|
|
<p>(from 10 fewer to 153 more)</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab21_1"><p class="no_margin">Absolute effect calculated manually using risk difference as zero events in at least one arm of one or more studies</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab21_2"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab21_3"><p class="no_margin">Downgraded by 1 increment as the population of all studies was indirect due to it being a mixed/unclear mitral valve disease population.</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab21_4"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab21_5"><p class="no_margin">Downgraded by 2 increments as the population of all studies was indirect due to it being a mixed/unclear mitral valve disease population. Also likely to be <3 months follow-up and the outcome is not well defined - may not be specifically valve reintervention.</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab21_6"><p class="no_margin">Downgraded by 1 increment as inconsistency is present which cannot be explained by subgrouping due to there only being three studies in the meta-analysis.</p></div></dd></dl><dl class="bkr_refwrap"><dt>g</dt><dd><div id="niceng208er8.tab21_7"><p class="no_margin">MIDs used to assess imprecision were ±0.95</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab22"><div id="niceng208er8.tab22" class="table"><h3><span class="label">Table 22</span><span class="title">Clinical evidence summary: Transcatheter repair + medical vs. medical alone</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab22/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab22_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab22_1_1_1_1" style="text-align:left;vertical-align:bottom;">Outcomes</th><th id="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab22_1_1_1_2" style="text-align:left;vertical-align:bottom;">
|
|
<p>No of Participants</p>
|
|
<p>(studies)</p>
|
|
<p>Follow up</p>
|
|
</th><th id="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab22_1_1_1_3" style="text-align:left;vertical-align:bottom;">Quality of the evidence (GRADE)</th><th id="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="2" colspan="1" headers="hd_h_niceng208er8.tab22_1_1_1_4" style="text-align:left;vertical-align:bottom;">Relative effect (95% CI)</th><th id="hd_h_niceng208er8.tab22_1_1_1_5" colspan="2" rowspan="1" style="text-align:left;vertical-align:bottom;">Anticipated absolute effects</th></tr><tr><th headers="hd_h_niceng208er8.tab22_1_1_1_5" id="hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk with medical alone</th><th headers="hd_h_niceng208er8.tab22_1_1_1_5" id="hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Risk difference with transcatheter repair + medical (95% CI)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">All-cause mortality at 12 months (dichotomous)</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>28</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW)<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 2</p>
|
|
<p>(0.78 to 5.14)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">286 per 1000</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>286 more per 1000</p>
|
|
<p>(from 63 fewer to 1000 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Cardiac mortality (right heart failure) at 12 months (dichotomous)</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>28</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1.33</p>
|
|
<p>(0.36 to 4.9)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">214 per 1000</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>71 more per 1000</p>
|
|
<p>(from 137 fewer to 835 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related mortality at 30 days (in-hospital, dichotomous)</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>28</p>
|
|
<p>(1 study)</p>
|
|
<p>in-hospital</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 8.67</p>
|
|
<p>(0.83 to 91.1)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>214 more per 1000</p>
|
|
<p>(from 18 fewer to 447 more)<sup>c</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Quality of life (MLWHF Q) at 12 months (continuous)</p>
|
|
<p>Scale from: 0 to 105.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>19</p>
|
|
<p>(1 study)</p>
|
|
<p>3 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊕⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>d</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">NA</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (MLWHF Q) at 12 months (continuous) in the control groups was</p>
|
|
<p>−7.6</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The mean quality of life (MLWHF Q) at 12 months (continuous) in the intervention groups was</p>
|
|
<p>12.3 lower</p>
|
|
<p>(25.54 lower to 0.94 higher)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Onset or exacerbation of heart failure (NYHA class worsening by 1 or 2 classes) at 12 months (dichotomous)</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>19</p>
|
|
<p>(1 study)</p>
|
|
<p>3 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 0.18</p>
|
|
<p>(0 to 9.42)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">1 per 1000</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>91 fewer per 1000</p>
|
|
<p>(from 331 fewer to 149 more)<sup>c</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related stroke or TIA at 30 days</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related major bleeding (haemorrhage) at 30 days (dichotomous)</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>28</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 7.39</p>
|
|
<p>(0.15 to 372.38)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>71 more per 1000</p>
|
|
<p>(from 106 fewer to 248 more)<sup>c</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Need for reintervention at 12 months (48 h, dichotomous)</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>28</p>
|
|
<p>(1 study)</p>
|
|
<p>48 hours</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW <sup>a</sup><sup>,</sup><sup>b</sup><sup>,</sup><sup>e</sup></p>
|
|
<p>due to risk of bias, indirectness, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>OR 9.49</p>
|
|
<p>(1.19 to 75.86)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>286 more per 1000</p>
|
|
<p>(from 37 more to 535 more)<sup>c</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Length of stay (following initial intervention)</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Rehospitalisation (hospitalisation for HF) at 12 months (dichotomous)</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>28</p>
|
|
<p>(1 study)</p>
|
|
<p>12 months</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>b</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RR 1</p>
|
|
<p>(0.31 to 3.23)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">286 per 1000</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 197 fewer to 638 more)</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related pacemaker implantation at 30 days</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intervention-related atrial fibrillation at 30 days</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">Major vascular complications at 30 days (dichotomous)</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>28</p>
|
|
<p>(1 study)</p>
|
|
<p>30 days</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>⊕⊝⊝⊝</p>
|
|
<p>VERY LOW<sup>a</sup><sup>,</sup><sup>f</sup></p>
|
|
<p>due to risk of bias, imprecision</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>RD: 0.00</p>
|
|
<p>(−0.13 to 0.13)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1 hd_h_niceng208er8.tab22_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:top;"></td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0 per 1000</td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>0 fewer per 1000</p>
|
|
<p>(from 130 fewer to 130 more)<sup>c</sup></p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab22_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Prosthetic valve endocarditis at ≥12 months</td><td headers="hd_h_niceng208er8.tab22_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Not reported</td><td headers="hd_h_niceng208er8.tab22_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td><td headers="hd_h_niceng208er8.tab22_1_1_1_5 hd_h_niceng208er8.tab22_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>a</dt><dd><div id="niceng208er8.tab22_1"><p class="no_margin">Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias</p></div></dd></dl><dl class="bkr_refwrap"><dt>b</dt><dd><div id="niceng208er8.tab22_2"><p class="no_margin">Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs</p></div></dd></dl><dl class="bkr_refwrap"><dt>c</dt><dd><div id="niceng208er8.tab22_3"><p class="no_margin">Absolute effect calculated manually using risk difference as 0 events in one or both arms of one study</p></div></dd></dl><dl class="bkr_refwrap"><dt>d</dt><dd><div id="niceng208er8.tab22_4"><p class="no_margin">MIDs used to assess imprecision were ±5.00</p></div></dd></dl><dl class="bkr_refwrap"><dt>e</dt><dd><div id="niceng208er8.tab22_5"><p class="no_margin">All events said to have occurred within 48 h and unclear if any further reinterventions occurred during follow-p</p></div></dd></dl><dl class="bkr_refwrap"><dt>f</dt><dd><div id="niceng208er8.tab22_6"><p class="no_margin">Graded very serious imprecision as 0 events in both arms and sample size <70</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab23"><div id="niceng208er8.tab23" class="table"><h3><span class="label">Table 23</span><span class="title">Health economic evidence profile: Transcatheter aortic valve implantation versus medical management (inoperable)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab23/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab23_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab23_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab23_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng208er8.tab23_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng208er8.tab23_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng208er8.tab23_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng208er8.tab23_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng208er8.tab23_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng208er8.tab23_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab23_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Orlando 2013<a class="bibr" href="#niceng208er8.ref290" rid="niceng208er8.ref290"><sup>290</sup></a> (UK)</td><td headers="hd_h_niceng208er8.tab23_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Directly applicable<sup>(a)</sup></td><td headers="hd_h_niceng208er8.tab23_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(b)</sup></td><td headers="hd_h_niceng208er8.tab23_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (decision tree) based on an RCT (PARTNER-1B))</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: People with severe AS who cannot undergo surgery<sup>(c)</sup></div></li><li class="half_rhythm"><div>Comparators: TAVI vs MM</div></li><li class="half_rhythm"><div>Time horizon: 25 years</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab23_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI costs £24,147<sup>(d)</sup> more per person</td><td headers="hd_h_niceng208er8.tab23_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI gives 1.87 more QALYs per person</td><td headers="hd_h_niceng208er8.tab23_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£12,900 per QALY gained</td><td headers="hd_h_niceng208er8.tab23_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability TAVI cost effective (£20K threshold): >95%.</p>
|
|
<p>Deterministic analyses varied the proportion of people receiving each intervention. Results remained robust in all analyses.</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab23_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Watt 2012<a class="bibr" href="#niceng208er8.ref432" rid="niceng208er8.ref432"><sup>432</sup></a> (UK)</td><td headers="hd_h_niceng208er8.tab23_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Directly applicable<sup>(h)</sup></td><td headers="hd_h_niceng208er8.tab23_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(i)</sup></td><td headers="hd_h_niceng208er8.tab23_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (Markov model) based on an RCT (PARTNER-1B))</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: People with severe AS who cannot undergo surgery<sup>(c)</sup></div></li><li class="half_rhythm"><div>Comparators: TAVI vs MM</div></li><li class="half_rhythm"><div>Time horizon: 10- years</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab23_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI costs £25,200<sup>(j)</sup> more per person</td><td headers="hd_h_niceng208er8.tab23_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI gives 1.56 more QALYs per person</td><td headers="hd_h_niceng208er8.tab23_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£16,200 per QALY gained</td><td headers="hd_h_niceng208er8.tab23_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability TAVI is cost effective (£20K threshold): 100%.</p>
|
|
<p>Deterministic sensitivity analyses showed that results were most sensitive to short-term treatment effect and the cost of initial hospitalisation. Results were robust to changes in hospitalisation costs and adverse event rates.</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Abbreviations: AS: aortic stenosis; ICER= incremental cost-effectiveness ratio; MM: medical management; QALY= quality-adjusted life years; RCT= randomised controlled trial; TAVI: transcatheter aortic valve implantation</p></div></dd></dl><dl class="bkr_refwrap"><dt>(a)</dt><dd><div id="niceng208er8.tab23_1"><p class="no_margin">UK based cost utility analysis</p></div></dd></dl><dl class="bkr_refwrap"><dt>(b)</dt><dd><div id="niceng208er8.tab23_2"><p class="no_margin">Utility data source refers to a paper that assesses both SF-36 and EQ-5D, it is not specified if EQ-5D or SF-36 has been extracted from the paper. Furthermore this paper specifically assesses utility of a Dutch population with mechanical aortic valve replacement. Observational data is used to assess the incidence of adverse events within 30 days. The PARTNER-B trial only used the Edwards SAPIEN heart-valve system; therefore generalisability of the results to other valves may be limited.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(c)</dt><dd><div id="niceng208er8.tab23_3"><p class="no_margin">‘Cannot undergo surgery’ defined as those with coexisting conditions associated with a predicted probability of ≥50% of death after surgery or a serious irreversible condition</p></div></dd></dl><dl class="bkr_refwrap"><dt>(d)</dt><dd><div id="niceng208er8.tab23_4"><p class="no_margin">2010 GBP costs. Cost components incorporated: adverse events (stroke, MI, arrhythmia, cardiac tamponade, bleeding, heart failure or shock, valve embolism, respiratory failure, renal dialysis, vascular complications), initial hospital stay and procedure cost.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(e)</dt><dd><div id="niceng208er8.tab23_5"><p class="no_margin">UK based cost utility analysis</p></div></dd></dl><dl class="bkr_refwrap"><dt>(f)</dt><dd><div id="niceng208er8.tab23_6"><p class="no_margin">Utility data source refers to a paper that assesses both SF-36 and EQ-5D, is not specified if EQ-5D or SF-36 has been used. Furthermore, this paper specifically assesses utility of those with mechanical aortic valve replacement. Utility of stroke considered the same as death. Discounting factor, if used, not reported for both costs and outcomes. Observational data was used to inform parameters where RCT evidence was not available. Nursing home costs appear to be taken from a PSSRU publication from 1996, there is no description of inflating costs to or near the year of publication. The PARTNER-B trial only used the Edwards SAPIEN heart-valve system; therefore generalisability of the results to other valves may be limited.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(g)</dt><dd><div id="niceng208er8.tab23_7"><p class="no_margin">NR so assumed to be the same year as publication (2013 GBP). Cost components incorporated: TAVI and AVR devices (AVR included where conversion was necessary) and procedures, length of stay, hospitalisations pertaining to NYHA classes, medication costs.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(h)</dt><dd><div id="niceng208er8.tab23_8"><p class="no_margin">UK based cost utility analysis</p></div></dd></dl><dl class="bkr_refwrap"><dt>(i)</dt><dd><div id="niceng208er8.tab23_9"><p class="no_margin">Some parameters were informed by non-randomised data. The PARTNER-B trial only used the Edwards SAPIEN heart-valve system; therefore generalisability of the results to other valves may be limited. Appear to use the costs of the Medtronic CoreValve system, although the clinical data pertains to the Edwards SAPIEN valve system.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(j)</dt><dd><div id="niceng208er8.tab23_10"><p class="no_margin">2010 GBP costs. TAVI and AVR devices (AVR included where conversion was necessary) and procedures, length of stay, hospitalisations pertaining to NYHA classes, medication costs.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab24"><div id="niceng208er8.tab24" class="table"><h3><span class="label">Table 24</span><span class="title">Health economic evidence profile: Transcatheter aortic valve implantation versus standard therapy and transcatheter aortic valve implantation versus surgical aortic valve implantation (inoperable and high operative risk)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab24/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab24_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab24_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab24_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng208er8.tab24_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng208er8.tab24_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng208er8.tab24_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng208er8.tab24_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng208er8.tab24_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng208er8.tab24_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab24_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Doble 2013<a class="bibr" href="#niceng208er8.ref100" rid="niceng208er8.ref100"><sup>100</sup></a> (Canada)</td><td headers="hd_h_niceng208er8.tab24_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(a)</sup></td><td headers="hd_h_niceng208er8.tab24_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(b)</sup></td><td headers="hd_h_niceng208er8.tab24_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (Markov model) based on 1 RCT for each of 2 cohorts (PARTNER-1A and 1B)</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Populations:
|
|
<ul class="circle"><li class="half_rhythm"><div>People with severe AS who cannot undergo surgery<sup>(c)</sup></div></li><li class="half_rhythm"><div>People with severe AS who have a high risk of surgical complications<sup>(d)</sup></div></li></ul></div></li><li class="half_rhythm"><div>Comparators for inoperable and high risk cohorts: TAVI vs Standard therapy and TAVI vs SAVR</div></li><li class="half_rhythm"><div>Time horizon: 20- years</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab24_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>
|
|
<b>Inoperable</b>
|
|
</p>
|
|
<p>TAVI costs £17,838more per person</p>
|
|
<p>
|
|
<b>High risk</b>
|
|
</p>
|
|
<p>TAVI costs £6,412more per person</p>
|
|
</td><td headers="hd_h_niceng208er8.tab24_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>
|
|
<b>Inoperable</b>
|
|
</p>
|
|
<p>TAVI gives 0.85 more QALYs per person</p>
|
|
<p>
|
|
<b>High risk</b>
|
|
</p>
|
|
<p>TAVI gives 0.102 less QALYs per person</p>
|
|
</td><td headers="hd_h_niceng208er8.tab24_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>
|
|
<b>Inoperable</b>
|
|
</p>
|
|
<p>TAVI costs £29,506 per QALY gained</p>
|
|
<p>
|
|
<b>High risk</b>
|
|
</p>
|
|
<p>TAVI is dominated by SAVR (TAVI has higher costs and lower QALYs)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab24_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability TAVI cost effective for inoperable and high risk cohorts (£20K threshold): NR and NR (but 44.1% and 11.6% probability of being cost effective at a £28K threshold).</p>
|
|
<p>Deterministic analyses for the inoperable cohort showed that the model was most sensitive to the procedural costs and 1-year mortality rates for both treatments. TAVI remained dominated by SAVR in all deterministic analyses in the high risk cohort.</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Abbreviations: <i>AS: aortic stenosis; ICER= incremental cost-effectiveness ratio; QALY= quality-adjusted life years; RCT= randomised controlled trial; SAVR: surgical aortic valve replacement; TAVI: transcatheter aortic valve implantation</i></p></div></dd></dl><dl class="bkr_refwrap"><dt>(a)</dt><dd><div id="niceng208er8.tab24_1"><p class="no_margin">2013 Canadian health care payer perspective may not reflect current UK context; QALYs derived from EQ-5D.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(b)</dt><dd><div id="niceng208er8.tab24_2"><p class="no_margin">A single RCT (PARTNER-B) trial was used to inform treatment effect for the TAVI versus standard therapy cohort (the only eligible RCT included in the clinical review for this comparison). A single RCT (PARTNER-A) trial was used to inform treatment effect for TAVI versus SAVR (1/7 eligible included in the clinical review for this comparison). The PARTNER-A and -B trials only use the Edwards SAPIEN valve, generalisability to other valves may be limited. Clinical event rates for (stroke, myocardial infarction and kidney injury) were assumed to remain constant after year 1 of the model due to a lack of data. Rates of temporary and permanent dialysis were also assumed to be the same for all 4 treatments due to a lack of data.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(c)</dt><dd><div id="niceng208er8.tab24_3"><p class="no_margin">‘Cannot undergo surgery’ defined as those with coexisting conditions associated with a predicted probability of ≥50% of death after surgery or a serious irreversible condition</p></div></dd></dl><dl class="bkr_refwrap"><dt>(d)</dt><dd><div id="niceng208er8.tab24_4"><p class="no_margin">High risk defined as patients with a predicted risk of operative mortality of ≥15% or a society of Thoracic Surgery risk score of ≥10%</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab25"><div id="niceng208er8.tab25" class="table"><h3><span class="label">Table 25</span><span class="title">Health economic evidence profile: Transcatheter aortic valve implantation versus medical therapy and transcatheter aortic valve implantation surgical aortic valve implantation (inoperable and intermediate operative risk)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab25/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab25_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab25_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab25_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng208er8.tab25_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng208er8.tab25_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng208er8.tab25_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng208er8.tab25_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng208er8.tab25_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng208er8.tab25_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab25_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Kodera 2018<a class="bibr" href="#niceng208er8.ref203" rid="niceng208er8.ref203"><sup>203</sup></a> (Japan)</td><td headers="hd_h_niceng208er8.tab25_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(a)</sup></td><td headers="hd_h_niceng208er8.tab25_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(b)</sup></td><td headers="hd_h_niceng208er8.tab25_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Two probabilistic models (Markov model) ran separately for 2 cohorts (based on the PARTNER-1B and PARTNER-2A RCTs)</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Populations:
|
|
<ul class="circle"><li class="half_rhythm"><div>People with severe AS who have cannot undergo surgery<sup>(c)</sup></div></li><li class="half_rhythm"><div>People with severe AS who have an intermediate risk of surgical complications<sup>(d)</sup></div></li></ul></div></li><li class="half_rhythm"><div>Comparators for inoperable
|
|
<ul class="circle"><li class="half_rhythm"><div>TAVI vs Medical therapy</div></li></ul></div></li><li class="half_rhythm"><div>Comparators for intermediate risk
|
|
<ul class="circle"><li class="half_rhythm"><div>TAVI vs SAVR</div></li></ul></div></li><li class="half_rhythm"><div>Time horizon: 10- years</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab25_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>
|
|
<b>Inoperable</b>
|
|
</p>
|
|
<p>TAVI costs £43,391more per person</p>
|
|
<p>
|
|
<b>Intermediate risk</b>
|
|
</p>
|
|
<p>TAVI costs £11,731more per person</p>
|
|
</td><td headers="hd_h_niceng208er8.tab25_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>
|
|
<b>Inoperable</b>
|
|
</p>
|
|
<p>TAVI gives 1.75 more QALYs per person</p>
|
|
<p>
|
|
<b>Intermediate risk</b>
|
|
</p>
|
|
<p>TAVI gives 0.22 more QALYs per person</p>
|
|
</td><td headers="hd_h_niceng208er8.tab25_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>
|
|
<b>Inoperable ICER</b>
|
|
</p>
|
|
<p>TAVI costs £26,673 per QALY gained</p>
|
|
<p>
|
|
<b>Intermediate risk ICER</b>
|
|
</p>
|
|
<p>TAVI costs £51,210 per QALY gained</p>
|
|
</td><td headers="hd_h_niceng208er8.tab25_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability TAVI cost effective for inoperable and intermediate risk cohorts (£20K threshold): NR and NR (but 60% and 46% probability of being cost effective at £34K threshold)</p>
|
|
<p>Deterministic sensitivity analyses showed that both models were sensitive to the 1 year mortality rate of TAVI and the cost of the TAVI procedure. TAVI was cost effective for the intermediate operative risk cohort when a 20- year time horizon was used.</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Abbreviations: <i>AS: aortic stenosis; ICER= incremental cost-effectiveness ratio; QALY= quality-adjusted life years; RCT= randomised controlled trial; SAVR: surgical aortic valve replacement; TAVI: transcatheter aortic valve implantation</i></p></div></dd></dl><dl class="bkr_refwrap"><dt>(a)</dt><dd><div id="niceng208er8.tab25_1"><p class="no_margin">Japanese healthcare perspective may not reflect UK NHS</p></div></dd></dl><dl class="bkr_refwrap"><dt>(b)</dt><dd><div id="niceng208er8.tab25_2"><p class="no_margin">The PARTNER-A trial only uses the Edwards SAPIEN valve so generalisability to other valves may be limited. A single RCT (PARTNER-2A) trial was used to inform treatment effect for TAVI versus SAVR (1/7 eligible included in the clinical review for this comparison). The PARTNER- 2A trial only uses the Edwards SAPIEN XT valve so generalisability to other valves may be limited. The methodology used for discounting is unclear and the discount rate applied is 2% (instead of 3.5%). Probabilistic sensitivity analysis conducted using a threshold above the £30,000 threshold recommended in the NICE Reference Case. Mortality partly informed by observational data.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(c)</dt><dd><div id="niceng208er8.tab25_3"><p class="no_margin">‘Cannot undergo surgery’ defined as those with coexisting conditions associated with a predicted probability of ≥50% of death after surgery or a serious irreversible condition</p></div></dd></dl><dl class="bkr_refwrap"><dt>(d)</dt><dd><div id="niceng208er8.tab25_4"><p class="no_margin">Intermediate operative risk defined as those who have a STS risk score of >4% and<8%</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab26"><div id="niceng208er8.tab26" class="table"><h3><span class="label">Table 26</span><span class="title">Health economic evidence profile: Transcatheter aortic valve implantation versus surgical aortic valve implantation (high operative risk)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab26/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab26_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab26_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab26_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng208er8.tab26_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng208er8.tab26_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng208er8.tab26_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng208er8.tab26_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng208er8.tab26_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng208er8.tab26_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab26_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Fairbairn 2013<a class="bibr" href="#niceng208er8.ref117" rid="niceng208er8.ref117"><sup>117</sup></a> (UK)</td><td headers="hd_h_niceng208er8.tab26_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(a)</sup></td><td headers="hd_h_niceng208er8.tab26_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(b)</sup></td><td headers="hd_h_niceng208er8.tab26_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (Markov model) based on an RCT (PARTNER-1A))</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: People with severe AS who have a high risk of surgical complications<sup>(c)</sup></div></li><li class="half_rhythm"><div>Comparators: TAVI vs SAVR</div></li><li class="half_rhythm"><div>Time horizon: 10- years</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab26_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI saves £1,350<sup>(d)</sup> per person</td><td headers="hd_h_niceng208er8.tab26_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI gives 0.063 more QALYs per person</td><td headers="hd_h_niceng208er8.tab26_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>TAVI dominates SAVR (TAVI has lower costs and higher QALYs)</p>
|
|
<p>Threshold analysis shows that TAVI is cost effective up to a device price of £19,000</p>
|
|
</td><td headers="hd_h_niceng208er8.tab26_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability TAVI cost effective (£20K threshold): 64.6%.</p>
|
|
<p>Deterministic sensitivity analyses found that results were sensitive to TAVI procedure costs. TAVI was still dominant or cost effective in all other analyses.</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Abbreviations: AS: aortic stenosis; ICER= incremental cost-effectiveness ratio; QALY= quality-adjusted life years; RCT= randomised controlled trial; SAVR: surgical aortic valve replacement; TAVI: transcatheter aortic valve implantation</p></div></dd></dl><dl class="bkr_refwrap"><dt>(a)</dt><dd><div id="niceng208er8.tab26_1"><p class="no_margin">UK cost utility analysis that uses QALYs derived from EQ-5D. Does not include all comparators eligible for this population (medical management). The price of the device in the base case scenario is lower than current valve cost in the UK. However, the authors conducted a threshold analysis with a price range including the current device price.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(b)</dt><dd><div id="niceng208er8.tab26_2"><p class="no_margin">A single RCT (PARTNER-A) trial was used to inform treatment effect for TAVI versus SAVR (1/7 eligible included in the clinical review). The PARTNER-A trial only uses the Edwards SAPIEN valve, generalisability to other valves may be limited.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(c)</dt><dd><div id="niceng208er8.tab26_3"><p class="no_margin">High risk of surgical complications defined as a predicted risk of operative mortality of ≥15%or a society of Thoracic Surgery risk score of ≥10%</p></div></dd></dl><dl class="bkr_refwrap"><dt>(d)</dt><dd><div id="niceng208er8.tab26_4"><p class="no_margin">2010 GBP costs. Cost components incorporated: TAVI pathway costs included the device, staff time, theatre time, hospital stay, ambulatory monitoring, echocardiograms, ECGs, vascular surgery consultation and three follow up visits in the first year. The SAVR pathway was similar but included a longer hospital stay. Long term costs were those when in a given NYHA class.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab27"><div id="niceng208er8.tab27" class="table"><h3><span class="label">Table 27</span><span class="title">Health economic evidence profile: Transcatheter aortic valve implantation versus surgical aortic valve implantation (intermediate operative risk)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab27/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab27_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab27_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab27_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng208er8.tab27_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng208er8.tab27_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng208er8.tab27_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng208er8.tab27_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng208er8.tab27_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng208er8.tab27_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab27_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Goodall 2019<a class="bibr" href="#niceng208er8.ref143" rid="niceng208er8.ref143"><sup>143</sup></a> (France)</td><td headers="hd_h_niceng208er8.tab27_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(a)</sup></td><td headers="hd_h_niceng208er8.tab27_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(b)</sup></td><td headers="hd_h_niceng208er8.tab27_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (Markov model) based on an RCT (PARTNER-2))</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: People with severe AS who have an intermediate risk of surgical complications<sup>(c)</sup></div></li><li class="half_rhythm"><div>Comparators: TAVI vs SAVR</div></li><li class="half_rhythm"><div>Time horizon: 15- years</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab27_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI saves £386<sup>(d)</sup> per person</td><td headers="hd_h_niceng208er8.tab27_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI gives 0.41 more QALYs per person</td><td headers="hd_h_niceng208er8.tab27_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI dominates SAVR</td><td headers="hd_h_niceng208er8.tab27_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability TAVI cost effective (£20K threshold): NR (but 100% probability of being cost effective at a threshold of £13.2K).</p>
|
|
<p>Results were robust to all deterministic sensitivity analyses</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab27_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Norwegian Institute of Public Health 2019<a class="bibr" href="#niceng208er8.ref280" rid="niceng208er8.ref280"><sup>280</sup></a></td><td headers="hd_h_niceng208er8.tab27_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(e)</sup></td><td headers="hd_h_niceng208er8.tab27_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(f)</sup></td><td headers="hd_h_niceng208er8.tab27_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (Markov model) based on an RCT (PARTNER 2A)</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: People with severe AS who have an intermediate risk of surgical complications</div></li><li class="half_rhythm"><div>Comparators: TAVI vs SAVR</div></li><li class="half_rhythm"><div>Time horizon: 2 years</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab27_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI costs £5,073<sup>(g)</sup> more than SAVR</td><td headers="hd_h_niceng208er8.tab27_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI gives 0.07 more QALYs per person</td><td headers="hd_h_niceng208er8.tab27_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£74,182 per QALY gained</td><td headers="hd_h_niceng208er8.tab27_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>The probabilistic sensitivity analysis showed that in 40-45% of simulations TAVI fell below a threshold £28,000 per QALY gained compared to SAVR.</p>
|
|
<p>A series of deterministic sensitivity analyses showed that the results were most sensitive to the variation of TAVI procedural cost. Extending the time horizon to 15 years did not change the conclusion of the analysis.</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab27_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Tam 2018A<a class="bibr" href="#niceng208er8.ref391" rid="niceng208er8.ref391"><sup>391</sup></a> (Canada)</td><td headers="hd_h_niceng208er8.tab27_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(h)</sup></td><td headers="hd_h_niceng208er8.tab27_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(i)</sup></td><td headers="hd_h_niceng208er8.tab27_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (Markov model) based on an RCT (PARTNER-2))</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: People with severe AS who have an intermediate risk of surgical complications</div></li><li class="half_rhythm"><div>Comparators: TAVI vs SAVR</div></li><li class="half_rhythm"><div>Time horizon: 15- years</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab27_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI costs £5,919<sup>(j)</sup> per person</td><td headers="hd_h_niceng208er8.tab27_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI gives 0.23 more QALYs per person</td><td headers="hd_h_niceng208er8.tab27_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£25,856 per QALY gained</td><td headers="hd_h_niceng208er8.tab27_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability TAVI cost effective (£20K threshold): NR (but 52.7% probability of being cost effective at a threshold of £28K)</p>
|
|
<p>A series of deterministic sensitivity analyses found that it was most sensitive to the cost of the TAVI valve system, length TAVI ICU stay and the peri-procedural mortality rate of TAVI and SAVR.</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab27_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Tam 2018B<a class="bibr" href="#niceng208er8.ref392" rid="niceng208er8.ref392"><sup>392</sup></a> (Canada)</td><td headers="hd_h_niceng208er8.tab27_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(k)</sup></td><td headers="hd_h_niceng208er8.tab27_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(l)</sup></td><td headers="hd_h_niceng208er8.tab27_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (Markov model) based on an RCT (SURTAVI)</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: People with severe AS who have an intermediate risk of surgical complications</div></li><li class="half_rhythm"><div>Comparators: TAVI vs SAVR</div></li><li class="half_rhythm"><div>Time horizon: Lifetime</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab27_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI costs £6,343<sup>(m)</sup> more per person</td><td headers="hd_h_niceng208er8.tab27_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">TAVI gives 0.15 more QALYs per person</td><td headers="hd_h_niceng208er8.tab27_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£43,055 per QALY gained</td><td headers="hd_h_niceng208er8.tab27_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability TAVI cost effective (£20K threshold): NR (but 52.9% probability of being cost effective at a threshold of £28K)</p>
|
|
<p>A series of deterministic sensitivity analyses found that it was most sensitive to the cost of the TAVI valve and both TAVI and SAVR 30 day mortality.</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Abbreviations: AS: aortic stenosis; ICER= incremental cost-effectiveness ratio; MM: medical management; QALY= quality-adjusted life years; RCT= randomised controlled trial; SAVR: surgical aortic valve replacement; TAVI: transcatheter aortic valve implantation</p></div></dd></dl><dl class="bkr_refwrap"><dt>(a)</dt><dd><div id="niceng208er8.tab27_1"><p class="no_margin">French cost utility analysis that may not fully reflect a UK NHS perspective</p></div></dd></dl><dl class="bkr_refwrap"><dt>(b)</dt><dd><div id="niceng208er8.tab27_2"><p class="no_margin">Observational data was used to inform health outcomes where RCT data was not available. A discount rate of 4.0% was applied to costs and health outcomes (instead of 3.5% as per NICE reference case). Treatment effect derived from a single RCT(1/7 eligible included in the clinical review that compared TAVI versus SAVR)</p></div></dd></dl><dl class="bkr_refwrap"><dt>(c)</dt><dd><div id="niceng208er8.tab27_3"><p class="no_margin">Intermediate risk of surgical complications defined as those who have a STS risk score of >4% and <8%</p></div></dd></dl><dl class="bkr_refwrap"><dt>(d)</dt><dd><div id="niceng208er8.tab27_4"><p class="no_margin">2016 Euros presented here as 2016 GBP converted to UK pounds.<a class="bibr" href="#niceng208er8.ref289" rid="niceng208er8.ref289"><sup>289</sup></a>. Cost components incorporated: Index admission costs for TAVI and SAVR. Cost of the TAVI device was added to this separately. Cardiac rehabilitation, hospitalisations, reintervention and adverse events (major stroke, TIA. Major bleeding, major vascular complication, atrial fibrillation, renal replacement therapy, myocardial infarction, endocarditis, pacemaker implantation.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(e)</dt><dd><div id="niceng208er8.tab27_5"><p class="no_margin">Norwegian health care setting though procedural costs are in line with UK NHS costs. 4% discount rate used instead of 3.5% of NICE Reference Case.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(f)</dt><dd><div id="niceng208er8.tab27_6"><p class="no_margin">A single RCT (PARTNER2) trial was used to inform treatment effects. In the base case scenario a time horizon of 2 years was assumed, which is too short to capture long-term impacts of the intervention. Costs of the interventions were estimated using a single centre. Quality of life scores from a high-risk RCT (PARTNER 1) were applied to an intermediate risk-cohort. In the scenario analysis, mortality beyond 2 years was assumed to be equal to mortality in the general population which is unlikely for an intermediate risk cohort.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(g)</dt><dd><div id="niceng208er8.tab27_7"><p class="no_margin">2018 Norwegian kroner reported here as 2019 GBP. Cost components incorporated: Procedure, Rehabilitation, pacemaker implantation, major vascular complication, thretment life threatening bleeding, valve endocarditis, moderate or severe paravalvular leak, treatment of acute myocardial infarction, acute stroke treatment, treatment of acute kidney injury, treatment of new onset atrial fibrillation, reintervention.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(h)</dt><dd><div id="niceng208er8.tab27_8"><p class="no_margin">Canadian cost utility analysis that may not fully reflect a UK NHS perspective</p></div></dd></dl><dl class="bkr_refwrap"><dt>(i)</dt><dd><div id="niceng208er8.tab27_9"><p class="no_margin">A single RCT (PARTNER-2) trial was used to inform treatment effect (1/7 eligible included in the clinical review). The proportion of patients with acute kidney injury progressing to dialysis was not provided in the PARTNER 2 Trial and was estimated from the PARTNER 1A trial that used a different valve. Some observational data was used to inform health outcomes where RCT data was not available. A discount rate of 1.5% was applied to costs and health outcomes (instead of 3.5% as per NICE reference case).</p></div></dd></dl><dl class="bkr_refwrap"><dt>(j)</dt><dd><div id="niceng208er8.tab27_10"><p class="no_margin">2016 Canadian dollars presented here as 2016 GBP converted to UK pounds.<a class="bibr" href="#niceng208er8.ref289" rid="niceng208er8.ref289"><sup>289</sup></a>. Cost components incorporated: Procedure costs (valve, ward stay, ICU stay, staff, anaesthesia, insertion of temporary pacemaker wire, angiogram, angioplasty, and catheterisation). Long term costs (disabling and non-disabling stroke, hospitalisation, major bleeding, vascular injury, acute kidney injury, atrial fibrillation.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(k)</dt><dd><div id="niceng208er8.tab27_11"><p class="no_margin">A single RCT (SURTAVI) trial was used to inform treatment effect (1/7 eligible included in the clinical review). utility data was obtained from an RCT (CoreValve trial) that looked at patients who were if high risk (as opposed to intermediate risk). A discount rate of 1.5% was applied to costs and health outcomes (instead of 3.5% as per NICE reference case).</p></div></dd></dl><dl class="bkr_refwrap"><dt>(l)</dt><dd><div id="niceng208er8.tab27_12"><p class="no_margin">2016 Canadian dollars presented here as 2016 GBP. Cost components incorporated: Procedure costs (Valve, ward stay, ICU stay, staff, anaesthesia, insertion of temporary pacemaker wire, angiogram, angioplasty, and catheterisation). Peri-procedural complications. Long term disabling and non-disabling stroke</p></div></dd></dl><dl class="bkr_refwrap"><dt>(m)</dt><dd><div id="niceng208er8.tab27_13"><p class="no_margin">Canadian cost utility analysis that may not fully reflect a UK NHS perspective</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab28"><div id="niceng208er8.tab28" class="table"><h3><span class="label">Table 28</span><span class="title">Health economic evidence profile: Transcatheter aortic valve implantation versus surgical aortic valve implantation (low operative risk)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab28/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab28_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab28_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab28_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng208er8.tab28_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng208er8.tab28_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng208er8.tab28_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng208er8.tab28_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng208er8.tab28_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng208er8.tab28_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab28_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Tam 2020<a class="bibr" href="#niceng208er8.ref390" rid="niceng208er8.ref390"><sup>390</sup></a> (Canada)</td><td headers="hd_h_niceng208er8.tab28_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(a)</sup></td><td headers="hd_h_niceng208er8.tab28_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(b)</sup></td><td headers="hd_h_niceng208er8.tab28_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><ul><li class="half_rhythm"><div>Probabilistic model based on PARTNER 3, and Evolut trial</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: Patients with severe aortic stenosis undergoing SAVR or TAVI low risk</div></li></ul>
|
|
Comparators: Balloon-expandable TAVI</p>
|
|
<p>versus Self-expandable TAVI</p>
|
|
<p>versus SAVR</p>
|
|
<p>Time horizon: Lifetime</p>
|
|
</td><td headers="hd_h_niceng208er8.tab28_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Balloon-expandable TAVI costs £1,590<sup>(c)</sup> more per person compared to SAVR</p>
|
|
<p>Self-expandable TAVI costs £2,917<sup>(c)</sup> more per person compared to SAVR<sup>)</sup></p>
|
|
</td><td headers="hd_h_niceng208er8.tab28_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Balloon-expandable TAVI gave 0.1 more QALYs per person compared to SAVR</p>
|
|
<p>Self-expanding TAVI gave 0.08 more QALYs per person compared to SAVR</p>
|
|
</td><td headers="hd_h_niceng208er8.tab28_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Balloon-expandable TAVI costs £15,900 per QALY gained compared to SAVR. With UK price for device estimated ICER increases to £48,420 per QALY gained.</p>
|
|
<p>Self-expandable TAVI costs</p>
|
|
<p>£36,463 per QALY gained compared to SAVR.</p>
|
|
<p>With UK price for device estimated ICER increases to £77,112 per QALY gained.</p>
|
|
</td><td headers="hd_h_niceng208er8.tab28_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>PARTNER 3 data for SAVR event rates;</p>
|
|
<p>Balloon-expandable TAVI costs <b>£38,118</b> per QALY gained compared to SAVR</p>
|
|
<p>Self-expandable TAVI costs <b>£57,581</b> per QALY gained compared to SAVR</p>
|
|
<p>Evoult data for SAVR event rates;</p>
|
|
<p>Balloon-expandable TAVI costs is <b>dominant</b> compared to SAVR</p>
|
|
<p>Self-expandable TAVI costs <b>£14,717</b> per QALY gained compared to SAVR</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab28_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Zhou 2021<a class="bibr" href="#niceng208er8.ref448" rid="niceng208er8.ref448"><sup>448</sup></a></td><td headers="hd_h_niceng208er8.tab28_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(d)</sup></td><td headers="hd_h_niceng208er8.tab28_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(e)</sup></td><td headers="hd_h_niceng208er8.tab28_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p><ul><li class="half_rhythm"><div>Probabilistic Markov model based on PARTNER 3 and Evolut trials</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: Patients with severe aortic stenosis undergoing SAVR or TAVI at low surgical risk</div></li></ul>
|
|
Comparators: SAVR, Balloon-expandable TAVI</p>
|
|
<p>and Self-expandable TAVI</p>
|
|
<p>Time horizon: Lifetime</p>
|
|
</td><td headers="hd_h_niceng208er8.tab28_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Balloon-expandable TAVI costs £332<sup>(f)</sup> more per person compared to SAVR</p>
|
|
<p>Self-expandable TAVI costs £240(i) less per person compared to SAVR)</p>
|
|
</td><td headers="hd_h_niceng208er8.tab28_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Balloon-expandable TAVI gave 0.20 more QALYs compared to SAVR</p>
|
|
<p>Self-expanding TAVI gave 0.08 more QALYs per person compared to SAVR</p>
|
|
</td><td headers="hd_h_niceng208er8.tab28_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Baloonexpandable TAVI costs £1,664 per QALY gained compared to SAVR</p>
|
|
<p>With UK price for device estimated ICER increases to £27,139 per QALY gained</p>
|
|
<p>Self-expanding TAVI dominates SAVR. With UK price for device estimated ICER increases to £60,701 per QALY gained</p>
|
|
</td><td headers="hd_h_niceng208er8.tab28_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Cost-effectiveness results were insensitive to changes in the discount rate or time horizon, with TAVI remaining cost-effective in all scenarios.</p>
|
|
<p>When the cost of the TAVI valve was reduced by 15%, balloon-expandable TAVI became economically dominant compared to SAVR. Conversely, increasing the cost of the TAVI valve by 15% led to lower estimates of cost effectiveness, but balloon-expandable and self-expanding TAVI remained cost-effective in 69% and 65% of iterations, respectively.</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Abbreviations: RCT= randomised controlled trial, QALY= quality adjusted life years; SAVR= Surgical aortic valve replacement; TAVI= Transcatheter aortic valve implantation;</p></div></dd></dl><dl class="bkr_refwrap"><dt>(a)</dt><dd><div id="niceng208er8.tab28_1"><p class="no_margin">Canadian third-party payers’ perspective</p></div></dd></dl><dl class="bkr_refwrap"><dt>(b)</dt><dd><div id="niceng208er8.tab28_2"><p class="no_margin">Non-UK perspective and not systematic review. The calculated incremental costs and QALYs vary from the reported ones, the ones presented here in the table are the calculated ICER. Third party payer perspective. Non-UK study. Limited sensitivity analysis. As the sources used where for older population with a mean age of 74 years the results may not be generalisable to younger populations.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(c)</dt><dd><div id="niceng208er8.tab28_3"><p class="no_margin">2019 Canadian dollars converted to UK pounds.<a class="bibr" href="#niceng208er8.ref289" rid="niceng208er8.ref289"><sup>289</sup></a> Cost components incorporated: Upfront procedural costs (TAVI systems, valve, cardiology fees, surgeon fees, surgical assistant fees, anaesthesiologist fee, ward and ICU stay).</p></div></dd></dl><dl class="bkr_refwrap"><dt>(d)</dt><dd><div id="niceng208er8.tab28_4"><p class="no_margin">Australian Medicare’s perspective, with TAVI devices costing significantly less than in the UK.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(e)</dt><dd><div id="niceng208er8.tab28_5"><p class="no_margin">Prices in Australia not comparable with the UK settings. Quality of life of an intermediate-risk population applied to a population at low surgical risk. Renal replacement therapy not included. The durability of the valves assumed to be life-long and no-reintervention is assumed to occur, which may overestimate TAVI cost-effectiveness.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(f)</dt><dd><div id="niceng208er8.tab28_6"><p class="no_margin">2019 Australian Dollars converted to UK pounds.<a class="bibr" href="#niceng208er8.ref289" rid="niceng208er8.ref289"><sup>289</sup></a> Cost components incorporated: Cost of SE-TAVI, BE-TAVI and SAVR devices, procedural costs, ICU and hospital ward costs, rehabilitation costs, complication costs and long-term stroke health care costs.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab29"><div id="niceng208er8.tab29" class="table"><h3><span class="label">Table 29</span><span class="title">Health economic evidence profile: Mini-sternotomy versus Full median sternotomy</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab29/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab29_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab29_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab29_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng208er8.tab29_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng208er8.tab29_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng208er8.tab29_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng208er8.tab29_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng208er8.tab29_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng208er8.tab29_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab29_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Nair 2018<a class="bibr" href="#niceng208er8.ref270" rid="niceng208er8.ref270"><sup>270</sup></a> (UK)</td><td headers="hd_h_niceng208er8.tab29_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Directly applicable<sup>(a)</sup></td><td headers="hd_h_niceng208er8.tab29_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(b)</sup></td><td headers="hd_h_niceng208er8.tab29_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic within-RCT analysis (MINI-STERN Trial)</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: Adult patients undergoing first-time isolated AVR were included</div></li><li class="half_rhythm"><div>Comparators: Mini-sternotomy versus Full median sternotomy</div></li><li class="half_rhythm"><div>Time horizon: 12-months</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab29_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mini-sternotomy costs £2,154<sup>(d)</sup> more per person</td><td headers="hd_h_niceng208er8.tab29_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mini-sternotomy gives 0.122 less QALYs per person</td><td headers="hd_h_niceng208er8.tab29_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mini-sternotomy is dominated by full median sternotomy (Mini-sternotomy had higher costs and lower QALYs)</td><td headers="hd_h_niceng208er8.tab29_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability mini-sternotomy is cost effective (£20k/£30K threshold): NR/5.1%.</p>
|
|
<p>Deterministic sensitivity analyses found that results robust to all analyses apart from the complete case analysis where Mini-sternotomy was cost effective.</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Abbreviations: AVR: aortic valve replacement; EQ-5D: Euroqol 5 dimensions (scale: 0.0 [death] to 1.0 [full health], negative values mean worse than death); QALYs: quality-adjusted life years; RCT= randomised controlled trial</p></div></dd></dl><dl class="bkr_refwrap"><dt>(a)</dt><dd><div id="niceng208er8.tab29_1"><p class="no_margin">UK cost-utility analysis. The study does not compare all interventions available (transcatheter interventions) to this population.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(b)</dt><dd><div id="niceng208er8.tab29_2"><p class="no_margin">Time horizon of 12 months may not fully capture costs and QALYs. Unclear what the adjusted QALY gain is for each intervention. Intervention effect is estimated from a single RCT.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(c)</dt><dd><div id="niceng208er8.tab29_3"><p class="no_margin">2015 GBP costs. Cost components incorporated: Primary admission (theatre use, surgical items, critical care, cardiac ward, physio- and occupational therapy, rehabilitation, acute hospital). Post initial stay costs (hospital re-admission, follow up tests, follow up healthcare visits, drugs).</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab30"><div id="niceng208er8.tab30" class="table"><h3><span class="label">Table 30</span><span class="title">Health economic evidence profile: Percutaneous mitral valve repair versus medical management</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab30/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab30_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab30_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab30_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng208er8.tab30_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng208er8.tab30_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng208er8.tab30_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng208er8.tab30_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng208er8.tab30_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng208er8.tab30_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab30_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mealing 2013<a class="bibr" href="#niceng208er8.ref252" rid="niceng208er8.ref252"><sup>252</sup></a> (UK)</td><td headers="hd_h_niceng208er8.tab30_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Directly applicable<sup>(a)</sup></td><td headers="hd_h_niceng208er8.tab30_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(b)</sup></td><td headers="hd_h_niceng208er8.tab30_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (decision tree) based on registry data (EVEREST 2 High Risk Registry)</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population: Patients with severe mitral regurgitation ineligible for surgical intervention<sup>(c)</sup></div></li><li class="half_rhythm"><div>Comparators: Percutaneous mitral valve repair versus medical management</div></li><li class="half_rhythm"><div>Time horizon: 5 years</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab30_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Percutaneous mitral valve repair costs £26,989<sup>(c)</sup> more per person</td><td headers="hd_h_niceng208er8.tab30_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Percutaneous mitral valve repair gives 1.22 more QALYs per person</td><td headers="hd_h_niceng208er8.tab30_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£22,153 per QALY gained</td><td headers="hd_h_niceng208er8.tab30_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability transcatheter mitral valve repair is cost effective (£20K/£30K threshold): 37%/93%.</p>
|
|
<p>The deterministic analyses showed that when the time horizon was 10 years, the ICER was £14,800 per QALY gained. The model was relatively insensitive to procedural costs, device costs and mortality.</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab30_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Sakamaki 2019<a class="bibr" href="#niceng208er8.ref336" rid="niceng208er8.ref336"><sup>336</sup></a> (Japan)</td><td headers="hd_h_niceng208er8.tab30_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(d)</sup></td><td headers="hd_h_niceng208er8.tab30_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(e)</sup></td><td headers="hd_h_niceng208er8.tab30_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (Markov model) based on a propensity score matching study (Velazquez 2015) comparing 4 observational studies</div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population with symptomatic severe MR at high surgical risk</div></li><li class="half_rhythm"><div>Comparators: percutaneous mitral valve repair with MitraClip versus medical management</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab30_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MitraClip costs £19,558 more per person<sup>(f)</sup></td><td headers="hd_h_niceng208er8.tab30_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MitraClip gives 1.42 more QALYs per person</td><td headers="hd_h_niceng208er8.tab30_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£13,549 per QALY gained</td><td headers="hd_h_niceng208er8.tab30_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probability MitraClip cost effective (£34,415 threshold): 96.7%</p>
|
|
<p>The deterministic analyses showed that MitraClip ceases to be cost-effective when the HR for Overall Survival for MitraClip procedure against medical management exceeds 0.97. The model is sensitive to the assumption on rate of hospitalisation in the two arms.</p>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab30_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Shore 2020<a class="bibr" href="#niceng208er8.ref357" rid="niceng208er8.ref357"><sup>357</sup></a> (UK)</td><td headers="hd_h_niceng208er8.tab30_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Directly applicable</td><td headers="hd_h_niceng208er8.tab30_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Minor limitations<sup>(g)</sup></td><td headers="hd_h_niceng208er8.tab30_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Probabilistic model (partition survival model) based on COAPT randomized trial<a class="bibr" href="#niceng208er8.ref376" rid="niceng208er8.ref376"><sup>376</sup></a></div></li><li class="half_rhythm"><div>Cost-utility analysis (QALYs)</div></li><li class="half_rhythm"><div>Population with severe functional MR at high surgical risk or deemed inoperable</div></li><li class="half_rhythm"><div>Comparators: transcatheter mitral valve repair with MitraClip versus guideline directed medical therapy</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab30_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MitraClip costs £32,267 more per person<sup>(h)</sup></td><td headers="hd_h_niceng208er8.tab30_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MitraClip gives 1.07 more QALYs per person</td><td headers="hd_h_niceng208er8.tab30_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£30,057 per QALY gained</td><td headers="hd_h_niceng208er8.tab30_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<p>Probabilistic MitraClip cost effective (£20k/£30k threshold): 0%/65%</p>
|
|
<p>The deterministic analyses showed that the results are sensitive to the HR for mortality, to the rate of repeat intervention and MV surgery and to the cost of the procedure.</p>
|
|
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Abbreviations: EQ-5D: Euroqol 5 dimensions (scale: 0.0 [death] to 1.0 [full health], negative values mean worse than death); QALYs: quality-adjusted life years</p></div></dd></dl><dl class="bkr_refwrap"><dt>(a)</dt><dd><div id="niceng208er8.tab30_1"><p class="no_margin">The study does not include mitral valve replacement as a comparator</p></div></dd></dl><dl class="bkr_refwrap"><dt>(b)</dt><dd><div id="niceng208er8.tab30_2"><p class="no_margin">Treatment effect was informed by the EVEREST II High Risk Registry, which is a prospective, single arm registry; it is non-randomised and therefore not included in the clinical review.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(c)</dt><dd><div id="niceng208er8.tab30_3"><p class="no_margin">2011 GBP costs. Cost components incorporated: Drug costs, MitraClip delivery system, Hospitalisation costs including: ICU stay, non-ICU stay, stroke, cardiovascular surgery, myocardial infarction, renal failure, deep wound infection</p></div></dd></dl><dl class="bkr_refwrap"><dt>(d)</dt><dd><div id="niceng208er8.tab30_4"><p class="no_margin">The study was conducted from the perspective of the Japanese health care payer</p></div></dd></dl><dl class="bkr_refwrap"><dt>(e)</dt><dd><div id="niceng208er8.tab30_5"><p class="no_margin">Treatment effect was informed by a propensity score matching study, not a RCT. The assumption that no adverse event occurs in the medical management arm is unrealistic albeit conservative. Resource usage was sought from expert opinion instead of a trial</p></div></dd></dl><dl class="bkr_refwrap"><dt>(f)</dt><dd><div id="niceng208er8.tab30_6"><p class="no_margin">2018 Japanese Yen reported as 2018 UK pounds. Cost components incorporated: Device cost (MitraClip), technical fee, cost other than device cost and technical fee, MitraClip procedure hospitalisation, MV surgery, congestive heart failure hospitalisation, treatment cost for MitraClip complications (vascular complications, major bleeding, non-cerebral thromboembolism, drug cost, follow-up cost, adverse events costs (MI, stroke, renal failure, non-elective cardiovascular surgery, mechanical ventilation, GI complication requiring surgery, septicemia, blood transfusion).</p></div></dd></dl><dl class="bkr_refwrap"><dt>(g)</dt><dd><div id="niceng208er8.tab30_7"><p class="no_margin">Treatment effect was derived by a single RCT rather than a systematic review. Some outcomes with potentially long-term consequences on survival, NHS resource use and QALYs were not modelled as long-term health states. The proportion of people in each NYHA was assumed to be constant beyond the last follow-up</p></div></dd></dl><dl class="bkr_refwrap"><dt>(h)</dt><dd><div id="niceng208er8.tab30_8"><p class="no_margin">2020 GBP costs. Cost components incorporated: Device cost (MitraClip), pre-procedural cost, peri-procedural cost, cost of the initial hospital stay, rehabilitation cost, hospitalization cost, MV surgery and repeat MV intervention cost, background medication cost per month NYHA, outpatient care cost per month NYHA, replacement ICD/CRT cost, cost of stroke, cost of MI, cost of heart transplant</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab31"><div id="niceng208er8.tab31" class="table"><h3><span class="label">Table 31</span><span class="title">Health economic evidence profile: Full median sternotomy versus minimally invasive surgery</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab31/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab31_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab31_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Study</th><th id="hd_h_niceng208er8.tab31_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Applicability</th><th id="hd_h_niceng208er8.tab31_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Limitations</th><th id="hd_h_niceng208er8.tab31_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Other comments</th><th id="hd_h_niceng208er8.tab31_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental cost</th><th id="hd_h_niceng208er8.tab31_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental effects</th><th id="hd_h_niceng208er8.tab31_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost effectiveness</th><th id="hd_h_niceng208er8.tab31_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Uncertainty</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab31_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Verbrugghe 2016<a class="bibr" href="#niceng208er8.ref341" rid="niceng208er8.ref341"><sup>341</sup></a> (Belgium)</td><td headers="hd_h_niceng208er8.tab31_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Partially applicable<sup>(a)</sup></td><td headers="hd_h_niceng208er8.tab31_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Potentially serious limitations<sup>(b)</sup></td><td headers="hd_h_niceng208er8.tab31_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<ul><li class="half_rhythm"><div>Retrospective cohort analysis</div></li><li class="half_rhythm"><div>Cost comparison</div></li><li class="half_rhythm"><div>Population: People who went isolated mitral valve</div></li><li class="half_rhythm"><div>Comparators: Full median sternotomy versus minimally invasive surgery</div></li><li class="half_rhythm"><div>Time horizon: initial inpatient stay</div></li></ul>
|
|
</td><td headers="hd_h_niceng208er8.tab31_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Minimally invasive surgery costs £411less per person</td><td headers="hd_h_niceng208er8.tab31_1_1_1_6" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Minimally invasive surgery had 27 less complication occurring<sup>(c)</sup></td><td headers="hd_h_niceng208er8.tab31_1_1_1_7" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£411 less per person</td><td headers="hd_h_niceng208er8.tab31_1_1_1_8" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No sensitivity analysis was conducted</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Abbreviations: Euroqol 5 dimensions (scale: 0.0 [death] to 1.0 [full health], negative values mean worse than death); QALYs: quality-adjusted life years; RCT= randomised controlled trial</p></div></dd></dl><dl class="bkr_refwrap"><dt>(a)</dt><dd><div id="niceng208er8.tab31_1"><p class="no_margin">Cost comparison from a single Belgian hospital perspective.</p></div></dd></dl><dl class="bkr_refwrap"><dt>(b)</dt><dd><div id="niceng208er8.tab31_2"><p class="no_margin">Cost of implants was excluded. Non-randomised retrospective analysis. Quality adjusted life years not used as an outcome. Sensitivity analyses not conducted</p></div></dd></dl><dl class="bkr_refwrap"><dt>#1</dt><dd><div id="niceng208er8.tab31_3"><p class="no_margin">Health outcomes: included mortality, any complication, reoperation, arrhythmia, neurologic complication, renal complication, pneumonia and wound infection</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab32"><div id="niceng208er8.tab32" class="table"><h3><span class="label">Table 32</span><span class="title">Base case results – costs (probabilistic)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab32/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab32_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Cost</th><th id="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Medical management</th><th id="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Mitraclip</th><th id="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Difference (Mitraclip – MM)</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MitraClip</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£32,910</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£0</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£32,910</td></tr><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">HF drugs</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£1,058</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£442</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£616</td></tr><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Vascular complications</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£48</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£0</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£48</td></tr><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Bleeding</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£29</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£21</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£9</td></tr><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Stroke</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£417</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£122</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£296</td></tr><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Hospitalisation</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£6,515</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£8,897</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£2,382</td></tr><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Reintervention</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£2,573</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£12,480</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£9,907</td></tr><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Heart transplant</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£1,232</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£1,694</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£462</td></tr><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Immunosuppressive drugs</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£474</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£723</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£249</td></tr><tr><td headers="hd_h_niceng208er8.tab32_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Total</td><td headers="hd_h_niceng208er8.tab32_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
|
|
<b>£45,257</b>
|
|
</td><td headers="hd_h_niceng208er8.tab32_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
|
|
<b>£24,378</b>
|
|
</td><td headers="hd_h_niceng208er8.tab32_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">
|
|
<b>£20,879</b>
|
|
</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab33"><div id="niceng208er8.tab33" class="table"><h3><span class="label">Table 33</span><span class="title">Base case results - cost-effectiveness (probabilistic)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab33/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab33_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_niceng208er8.tab33_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;"></th><th id="hd_h_niceng208er8.tab33_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Medical management</th><th id="hd_h_niceng208er8.tab33_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Mitraclip</th></tr></thead><tbody><tr><th headers="hd_h_niceng208er8.tab33_1_1_1_1" id="hd_b_niceng208er8.tab33_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Costs</th><td headers="hd_h_niceng208er8.tab33_1_1_1_2 hd_b_niceng208er8.tab33_1_1_1_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£24,378</td><td headers="hd_h_niceng208er8.tab33_1_1_1_3 hd_b_niceng208er8.tab33_1_1_1_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£45,257</td></tr><tr><th headers="hd_h_niceng208er8.tab33_1_1_1_1" id="hd_b_niceng208er8.tab33_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">QALYs</th><td headers="hd_h_niceng208er8.tab33_1_1_1_2 hd_b_niceng208er8.tab33_1_1_2_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.22</td><td headers="hd_h_niceng208er8.tab33_1_1_1_3 hd_b_niceng208er8.tab33_1_1_2_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">2.91</td></tr><tr><th headers="hd_h_niceng208er8.tab33_1_1_1_1" id="hd_b_niceng208er8.tab33_1_1_3_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cost per QALY gained (vs conservative management)</th><td headers="hd_h_niceng208er8.tab33_1_1_1_2 hd_b_niceng208er8.tab33_1_1_3_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-</td><td headers="hd_h_niceng208er8.tab33_1_1_1_3 hd_b_niceng208er8.tab33_1_1_3_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£30,175</td></tr><tr><th headers="hd_h_niceng208er8.tab33_1_1_1_1" id="hd_b_niceng208er8.tab33_1_1_4_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Incremental net monetary benefit (INMB)<sup>*</sup></th><td headers="hd_h_niceng208er8.tab33_1_1_1_2 hd_b_niceng208er8.tab33_1_1_4_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-</td><td headers="hd_h_niceng208er8.tab33_1_1_1_3 hd_b_niceng208er8.tab33_1_1_4_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£7,041</td></tr><tr><th headers="hd_h_niceng208er8.tab33_1_1_1_1" id="hd_b_niceng208er8.tab33_1_1_5_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Incremental net monetary benefit (INMB)<sup>**</sup></th><td headers="hd_h_niceng208er8.tab33_1_1_1_2 hd_b_niceng208er8.tab33_1_1_5_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-</td><td headers="hd_h_niceng208er8.tab33_1_1_1_3 hd_b_niceng208er8.tab33_1_1_5_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£121</td></tr><tr><th headers="hd_h_niceng208er8.tab33_1_1_1_1" id="hd_b_niceng208er8.tab33_1_1_6_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Probability cost-effective at 20k threshold</th><td headers="hd_h_niceng208er8.tab33_1_1_1_2 hd_b_niceng208er8.tab33_1_1_6_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">97%</td><td headers="hd_h_niceng208er8.tab33_1_1_1_3 hd_b_niceng208er8.tab33_1_1_6_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">3%</td></tr><tr><th headers="hd_h_niceng208er8.tab33_1_1_1_1" id="hd_b_niceng208er8.tab33_1_1_7_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Probability cost-effective at 30k threshold</th><td headers="hd_h_niceng208er8.tab33_1_1_1_2 hd_b_niceng208er8.tab33_1_1_7_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">52%</td><td headers="hd_h_niceng208er8.tab33_1_1_1_3 hd_b_niceng208er8.tab33_1_1_7_1" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">48%</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>*</dt><dd><div id="niceng208er8.tab33_1"><p class="no_margin">at a threshold of £20,000 per QALY gained</p></div></dd></dl><dl class="bkr_refwrap"><dt>**</dt><dd><div id="niceng208er8.tab33_2"><p class="no_margin">at a threshold of £30,000 per QALY gained</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab34"><div id="niceng208er8.tab34" class="table"><h3><span class="label">Table 34</span><span class="title">cost breakdown per patient (probabilistic)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab34/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab34_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Age</th><th id="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">MitraClip strategy</th><th id="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">MM strategy</th><th id="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Difference</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">MitraClip</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£32,910</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£0</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£32,910</td></tr><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Heart failure drugs</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£1,058</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£442</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£616</td></tr><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Vascular complications</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£48</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£0</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£48</td></tr><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Bleeding</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£29</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£21</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£9</td></tr><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Stroke</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£417</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£122</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£296</td></tr><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Hospitalisation</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£6,515</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£8,897</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£2,382</td></tr><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Reintervention</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£2,573</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£12,480</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£9,907</td></tr><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Heart transplant</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£1,232</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£1,694</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£462</td></tr><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Immunosuppresssive drugs</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£474</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£723</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">-£249</td></tr><tr><td headers="hd_h_niceng208er8.tab34_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Total cost</td><td headers="hd_h_niceng208er8.tab34_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£45,257</td><td headers="hd_h_niceng208er8.tab34_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£24,378</td><td headers="hd_h_niceng208er8.tab34_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£20,879</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab35"><div id="niceng208er8.tab35" class="table"><h3><span class="label">Table 35</span><span class="title">Scenario analysis (deterministic)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab35/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab35_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Scenario</th><th id="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Incremental cost</th><th id="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Incremental QALYs</th><th id="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Cost per QALY gained</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Deterministic results</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£21,738</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.69</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£31,581</td></tr><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Probabilistic results</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£20,879</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.69</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£30,175</td></tr><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Lower case Mitraclip cost</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£19,609</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.69</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£28,488</td></tr><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Upper case Mitraclip cost</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£22,863</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.69</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£33,215</td></tr><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">No transplant</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£21,738</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.7</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£30,829</td></tr><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">CtE data</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£18,276</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.56</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£32,399</td></tr><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Utility difference is persistent</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£21,739</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.78</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£27,990</td></tr><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Exponential distribution for mortality</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£21,683</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.73</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£29,480</td></tr><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Benefits last for the duration of the trial only</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£21,078</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.51</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£41,426</td></tr><tr><td headers="hd_h_niceng208er8.tab35_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Exclude vascular complication</td><td headers="hd_h_niceng208er8.tab35_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£21,705</td><td headers="hd_h_niceng208er8.tab35_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.69</td><td headers="hd_h_niceng208er8.tab35_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£31,532</td></tr></tbody></table></div></div></article><article data-type="fig" id="figobniceng208er8fig1"><div id="niceng208er8.fig1" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%201.%20MitraClip%20price%20threshold%20analysis.&p=BOOKS&id=586311_niceng208er8f1.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK586311/bin/niceng208er8f1.jpg" alt="Figure 1. MitraClip price threshold analysis." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 1</span><span class="title">MitraClip price threshold analysis</span></h3></div></article><article data-type="table-wrap" id="figobniceng208er8tab36"><div id="niceng208er8.tab36" class="table"><h3><span class="label">Table 36</span><span class="title">base case results (probabilistic)</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab36/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab36_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab36_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Surgical risk</th><th id="hd_h_niceng208er8.tab36_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Incremental cost</th><th id="hd_h_niceng208er8.tab36_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">Incremental QALYs</th><th id="hd_h_niceng208er8.tab36_1_1_1_4" rowspan="1" colspan="1" style="text-align:center;vertical-align:top;">Cost per QALY gained</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab36_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">High risk</td><td headers="hd_h_niceng208er8.tab36_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£815</td><td headers="hd_h_niceng208er8.tab36_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.12</td><td headers="hd_h_niceng208er8.tab36_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£7,014</td></tr><tr><td headers="hd_h_niceng208er8.tab36_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Intermediate risk</td><td headers="hd_h_niceng208er8.tab36_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£2,261</td><td headers="hd_h_niceng208er8.tab36_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.048</td><td headers="hd_h_niceng208er8.tab36_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£47,324</td></tr><tr><td headers="hd_h_niceng208er8.tab36_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Low risk</td><td headers="hd_h_niceng208er8.tab36_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£2,418</td><td headers="hd_h_niceng208er8.tab36_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">0.018</td><td headers="hd_h_niceng208er8.tab36_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£132,078</td></tr><tr><td headers="hd_h_niceng208er8.tab36_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Total</td><td headers="hd_h_niceng208er8.tab36_1_1_1_2" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£43,613</td><td headers="hd_h_niceng208er8.tab36_1_1_1_3" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£31,994</td><td headers="hd_h_niceng208er8.tab36_1_1_1_4" rowspan="1" colspan="1" style="text-align:right;vertical-align:top;">£11,619</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab37"><div id="niceng208er8.tab37" class="table"><h3><span class="label">Table 37</span><span class="title">Deterministic results of the scenario analyses for the high-risk cohort</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab37/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab37_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Scenario</th><th id="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental costs</th><th id="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Incremental QALYs</th><th id="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Incremental cost per QALY gain</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Base case (deterministic)</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£1,487</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.098</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">£15,209</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Time horizon 5 years</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£1,774</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.093</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">£19,087</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Time horizon 10 years</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£1,476</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.098</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">£14,997</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Time horizon 30 years</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£1,488</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.098</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">£15,227</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Treatment effects estimated using all trials</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£2,767</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.078</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£35,643</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Reintervention treatment effect estimated from Evolut and PARTNER 3 only</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£942</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.101</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">£9,292</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All PVLs affect mortality</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£1,433</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.049</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#e36c0a">£29,068</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PVLs do not affect mortality</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£1,491</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.108</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">£13,781</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cost of the valve reduced to £15,000</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">-£1,085</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.098</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">TAVI dominates SAVR</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ICU and LOS from TAVI trial not scaled up for higher risks</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,689</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.098</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£37,730</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cost of short-term complications costed separately</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£1,476</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.098</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">£15,093</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab37_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mortality in low risk equal to general population</td><td headers="hd_h_niceng208er8.tab37_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£971</td><td headers="hd_h_niceng208er8.tab37_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.093</td><td headers="hd_h_niceng208er8.tab37_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">£10,455</span>
|
|
</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab38"><div id="niceng208er8.tab38" class="table"><h3><span class="label">Table 38</span><span class="title">Deterministic results of the scenario analyses for the intermediate-risk cohort</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab38/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab38_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Scenario</th><th id="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental costs</th><th id="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Incremental QALYs</th><th id="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Incremental cost per QALY gain</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Base case (deterministic)</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,124</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.056</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£55,686</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Time horizon 5 years</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,965</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.063</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£62,934</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Time horizon 10 years</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,186</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.063</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£50,692</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Time horizon 30 years</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,108</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.052</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£59,388</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Treatment effects estimated using all trials</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£5,021</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.029</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£175,923</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Reintervention treatment effect estimated from Evolut and PARTNER 3 only</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£2,286</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.064</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£35,891</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All PVLs affect mortality</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,014</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">-0.014</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">SAVR dominates</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PVLs do not affect mortality</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,149</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.079</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£40,007</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cost of the valve reduced to £15,000</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£502</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.056</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#00b050">£8,953</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ICU and LOS from TAVI trial not scaled up for higher risks</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£4,518</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.056</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£80,544</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cost of short-term complications costed separately</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,116</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.056</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£55,560</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab38_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mortality in low risk equal to general population</td><td headers="hd_h_niceng208er8.tab38_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£2,582</td><td headers="hd_h_niceng208er8.tab38_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.051</td><td headers="hd_h_niceng208er8.tab38_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£50,294</span>
|
|
</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobniceng208er8tab39"><div id="niceng208er8.tab39" class="table"><h3><span class="label">Table 39</span><span class="title">Deterministic results of the scenario analyses for the low-risk cohort</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK586311/table/niceng208er8.tab39/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__niceng208er8.tab39_lrgtbl__"><table><thead><tr><th id="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Scenario</th><th id="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:bottom;">Incremental costs</th><th id="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Incremental QALYs</th><th id="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Incremental cost per QALY gain</th></tr></thead><tbody><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Base case (deterministic)</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,300</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.024</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£139,799</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Time horizon 5 years</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£5,199</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.044</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£119,493</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Time horizon 10 years</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,687</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.041</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£89,661</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Time horizon 30 years</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,035</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">-0.010</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">SAVR dominates</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Treatment effects estimated using all trials</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£6,123</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">-0.011</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">SAVR dominates</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Reintervention treatment effect estimated from Evolut and PARTNER 3 only</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£1,985</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.036</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£54,750</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">All PVLs affect mortality</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,210</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">-0.034</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">SAVR dominates</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">PVLs do not affect mortality</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,335</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.052</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£64,259</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cost of the valve reduced to £15,000</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£600</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.024</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#e36c0a">£25,413</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">ICU and LOS from TAVI trial not scaled up for higher risks</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,300</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.024</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£139,799</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Cost of short-term complications costed separately</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£3,300</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.024</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£139,789</span>
|
|
</td></tr><tr><td headers="hd_h_niceng208er8.tab39_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Mortality in low risk equal to general population</td><td headers="hd_h_niceng208er8.tab39_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">£2,391</td><td headers="hd_h_niceng208er8.tab39_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">0.023</td><td headers="hd_h_niceng208er8.tab39_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
|
|
<span style="color:#ff0000">£103,242</span>
|
|
</td></tr></tbody></table></div></div></article><article data-type="fig" id="figobniceng208er8fig2"><div id="niceng208er8.fig2" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%201.%20TAVI%20price%20threshold%20analysis.&p=BOOKS&id=586311_niceng208er8f2.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK586311/bin/niceng208er8f2.jpg" alt="Figure 1. TAVI price threshold analysis." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 1</span><span class="title">TAVI price threshold analysis</span></h3></div></article></div><div id="jr-scripts"><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/libs.min.js"> </script><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.min.js"> </script></div></div>
|
|
|
|
|
|
|
|
|
|
<!-- Book content -->
|
|
|
|
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
|
|
|
|
|
|
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
|
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
|
|
|
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3968615.js" snapshot="books"></script></body>
|
|
</html>
|