208 lines
No EOL
86 KiB
XML
208 lines
No EOL
86 KiB
XML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
|
|
|
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
|
<!-- AppResources meta begin -->
|
|
<meta name="paf-app-resources" content="" />
|
|
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
|
|
|
<!-- AppResources meta end -->
|
|
|
|
<!-- TemplateResources meta begin -->
|
|
<meta name="paf_template" content="" />
|
|
|
|
<!-- TemplateResources meta end -->
|
|
|
|
<!-- Logger begin -->
|
|
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK579924" /><meta name="ncbi_domain" content="glyco4" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK579924/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
|
|
<!-- Logger end -->
|
|
|
|
<title>Microbial Lectins: Hemagglutinins, Adhesins, and Toxins - Essentials of Glycobiology - NCBI Bookshelf</title>
|
|
|
|
<!-- AppResources external_resources begin -->
|
|
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
|
|
|
|
<!-- AppResources external_resources end -->
|
|
|
|
<!-- Page meta begin -->
|
|
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="Essentials of Glycobiology [Internet]. 4th edition" /><meta name="citation_title" content="Microbial Lectins: Hemagglutinins, Adhesins, and Toxins" /><meta name="citation_publisher" content="Cold Spring Harbor Laboratory Press" /><meta name="citation_date" content="2022" /><meta name="citation_author" content="Amanda L. Lewis" /><meta name="citation_author" content="Jennifer J. Kohler" /><meta name="citation_author" content="Markus Aebi" /><meta name="citation_pmid" content="35536938" /><meta name="citation_doi" content="10.1101/glycobiology.4e.37" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK579924/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Microbial Lectins: Hemagglutinins, Adhesins, and Toxins" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="Cold Spring Harbor Laboratory Press" /><meta name="DC.Contributor" content="Amanda L. Lewis" /><meta name="DC.Contributor" content="Jennifer J. Kohler" /><meta name="DC.Contributor" content="Markus Aebi" /><meta name="DC.Date" content="2022" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK579924/" /><meta name="description" content="Symbiotic, commensal, and pathogenic microorganisms employ cell-surface glycans as targets for interaction with the host. Surface proteins (adhesins or agglutinins) mediate binding to such glycan “receptors,” and many microbes depend on these interactions for success in the host. In addition, antagonistic interactions are mediated by secreted toxins that use surface glycan targets for internalization by various mechanisms. This chapter highlights examples of microbial lectins and their roles in pathogenicity. In addition, the modes of action of glycan-dependent toxins is discussed." /><meta name="og:title" content="Microbial Lectins: Hemagglutinins, Adhesins, and Toxins" /><meta name="og:type" content="book" /><meta name="og:description" content="Symbiotic, commensal, and pathogenic microorganisms employ cell-surface glycans as targets for interaction with the host. Surface proteins (adhesins or agglutinins) mediate binding to such glycan “receptors,” and many microbes depend on these interactions for success in the host. In addition, antagonistic interactions are mediated by secreted toxins that use surface glycan targets for internalization by various mechanisms. This chapter highlights examples of microbial lectins and their roles in pathogenicity. In addition, the modes of action of glycan-dependent toxins is discussed." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK579924/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-glyco4-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/glyco4/ch37/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK579924/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
|
|
|
|
<!-- Page meta end -->
|
|
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8CCDE17D66B28100000000005F0050.m_5" />
|
|
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
|
|
<body class="book-part">
|
|
<div class="grid no_max_width">
|
|
<div class="col twelve_col nomargin shadow">
|
|
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
|
|
<div class="sysmessages">
|
|
<noscript>
|
|
<p class="nojs">
|
|
<strong>Warning:</strong>
|
|
The NCBI web site requires JavaScript to function.
|
|
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
|
|
</p>
|
|
</noscript>
|
|
</div>
|
|
<!--/.sysmessage-->
|
|
<div class="wrap">
|
|
<div class="page">
|
|
<div class="top">
|
|
|
|
<div class="header">
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<!--<component id="Page" label="headcontent"/>-->
|
|
|
|
</div>
|
|
<div class="content">
|
|
<!-- site messages -->
|
|
<div class="container content">
|
|
<div class="document">
|
|
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 4th edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. doi: 10.1101/glycobiology.4e.37</p></div></div></div>
|
|
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK579924_"><span class="label">Chapter 37</span><span class="title" itemprop="name">Microbial Lectins: Hemagglutinins, Adhesins, and Toxins</span></h1><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Amanda L. Lewis</span>, <span itemprop="author">Jennifer J. Kohler</span>, and <span itemprop="author">Markus Aebi</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><p>Symbiotic, commensal, and pathogenic microorganisms employ cell-surface glycans as targets for interaction with the host. Surface proteins (adhesins or agglutinins) mediate binding to such glycan “receptors,” and many microbes depend on these interactions for success in the host. In addition, antagonistic interactions are mediated by secreted toxins that use surface glycan targets for internalization by various mechanisms. This chapter highlights examples of microbial lectins and their roles in pathogenicity. In addition, the modes of action of glycan-dependent toxins is discussed.</p><div id="s37.1"><h2 id="_s37_1_">BACKGROUND</h2><p>During the last 70 years, an enormous array of glycan-binding proteins (lectins) of viruses, bacteria, fungi, and protozoa have been discovered and characterized. Many of these microbial lectins were originally detected based on their ability to aggregate or induce the hemagglutination of red blood cells (erythrocytes). The influenza virus hemagglutinin was the first identified pathogen glycan-binding protein, shown by Alfred Gottschalk in the early 1950s to bind erythrocytes and other cells via the sialic acid component of host cell-surface glycoconjugates. Don Wiley and associates crystallized the influenza hemagglutinin and determined its structure in 1981. Later, they solved the structure of hemagglutinin cocrystals bound to sialyllactose, providing molecular insight into the affinity and specificity of the receptor-ligand binding sites.</p><p>Nathan Sharon and colleagues first described bacterial surface lectins in the 1970s. Their primary function is to facilitate the attachment or adherence of bacteria to host cells, a prerequisite for bacterial colonization and infection (<a href="/books/n/glyco4/ch42/">Chapter 42</a>). Thus, bacterial lectins are often called adhesins, and these bind corresponding glycan receptors on the surface of the host cells via carbohydrate-recognition domains (CRDs) (“receptor” in this case is equivalent to “ligand” for animal cell lectins). Microbial adhesins can bind terminal sugar residues or internal sequences found in linear or branched oligosaccharide chains. These interactions are often an important determinant of host and tissue tropism. Detailed studies of the specificity of such microbial lectins have led to the identification and synthesis of powerful inhibitors of adhesion that may form the basis for novel therapeutic agents to combat infectious disease (<a href="/books/n/glyco4/ch42/">Chapter 42</a>). In fact, mammals often produce their own glycan decoys such as secreted mucins and milk oligosaccharides that help prevent binding of pathogen adhesins to their host cell targets.</p><p>Glycan-dependent interactions are important for both antagonistic and mutualistic interactions. For example, bacteria produce multimeric soluble toxins, whose glycan-binding subunits target and deliver the toxic cargo to the cell. In contrast, the normal flora of the lower gastrointestinal tract is determined by appropriate and desirable colonization by beneficial bacteria that engage in binding and digestion of host and dietary glycans. Likewise, the initial formation of nitrogen-fixing nodules in leguminous root tips by species of <i>Rhizobium</i> involves lectins on the root tip binding to glycan-containing Nod factors generated by the bacterium (<a href="/books/n/glyco4/ch24/">Chapter 24</a>).</p></div><div id="s37.2"><h2 id="_s37_2_">VIRAL GLYCAN-BINDING PROTEINS</h2><p>The first discovered and most well-studied example of a viral glycan-binding protein is the influenza virus hemagglutinin. Similar to most other lectin–glycan interactions, the affinity of this sialic acid–binding lectin is low. Avidity is increased by hemagglutinin trimerization and a high density of host cell surface glycan receptors. Binding is required for viral endocytosis and the subsequent pH-dependent fusion of the viral envelope with the endosomal membrane, ultimately triggering release of the viral RNA into the cytosol. The specificity of the host glycan–hemagglutinin interaction varies considerably for different subtypes of influenza. For example, human strains of influenza-A and -B viruses bind primarily to cells containing <i>N</i>-acetylneuraminic acid (Neu5Acα)2–6Gal-containing receptors. However, avian influenza viruses preferentially bind to receptors expressing Neu5Acα2–3Gal-, and porcine strains bind to both Neu5Acα2–6Gal- and -3Gal-containing receptors (Table <a class="figpopup" href="/books/NBK579924/table/CSHLP5087CH37TB1/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37TB1" rid-ob="figobCSHLP5087CH37TB1">37.1</a>). This linkage preference is a result of structural differences in the hemagglutinin (Figure <a class="figpopup" href="/books/NBK579924/figure/CSHLP5087CH37F1/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37F1" rid-ob="figobCSHLP5087CH37F1">37.1</a>). Viral adherence also depends on receptor abundance, such that tracheal epithelial cells in humans express glycans with a preponderance of Neu5Acα2–6Gal linkages, whereas other deeper airway surfaces contain many more Neu5Acα2–3Gal-terminated glycans. Thus, the specificity of the hemagglutinin determines the tropism of the virus with respect to species and target cells. As a result, avian-derived strains have a greater likelihood of producing lower respiratory tract infection (pneumonia) than common human strains because of the high abundance of Neu5Acα2-3Gal linkages deep in the lung. Conversely, avian-derived strains have a reduced likelihood of human-to-human transmission compared to human strains because of the paucity of Neu5Acα2-3Gal in the upper respiratory tract. The hemagglutinin is the major antigen against which neutralizing antibodies are produced and influenza strains continuously acquire genetic changes that affect both glycan binding and antigenicity. Such changes are responsible in part for new outbreaks and are considered during formulation of the annual influenza vaccine.</p><p>In addition to the hemagglutinin “H,” influenza-A and -B virions express a sialidase (traditionally called neuraminidase “N”, <a href="/books/n/glyco4/ch15/">Chapter 15</a>) that cleaves sialic acids from glycoconjugates. Its functions may include (1) prevention of viral aggregation by removal of sialic acid residues from virion envelope glycoproteins; (2) dissociation of newly synthesized virions inside the cell or as they bud from the cell surface; and (3) desialylation of soluble mucins at sites of infection to improve access to cell surface sialic acids. Inhibitors have been designed based on the crystal structure of the sialidase from influenza-A virus. Some of these (e.g., oseltamivir) inhibit the enzyme activity at nanomolar concentrations and are used clinically as antiviral agents (<a href="/books/n/glyco4/ch57/">Chapter 57</a>). Influenza-C virions (and many coronaviruses) contain a single “hemagglutinin-esterase” that possesses both hemagglutinin and receptor-destroying activities, which in this case is an esterase that cleaves the 9-O-acetyl group from the target O-acetylated sialic acid receptors (Table <a class="figpopup" href="/books/NBK579924/figure/CSHLP5087CH37F1/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37F1" rid-ob="figobCSHLP5087CH37F1">37.1</a>). Some coronaviruses have evolved to adapt the spike “S” proteins to target O-acetylated sialic acid receptors. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative agent of the COVID-19 pandemic, has completely lost its hemagglutinin-esterase protein, but encodes an S protein that has evolved further, to bind more robustly to heparan sulfate (HS) proteoglycans, which can also act as a cofactor facilitating binding to a high-affinity protein receptor ACE2.</p><p>Rotaviruses, the major killer of children worldwide, can also bind to sialic acid residues. These viruses only bind to the intestinal epithelium of newborn infants during a period that appears to correlate with the expression of specific types and arrangements of sialic acids on glycoproteins. Claims regarding “sialic acid–independent” rotaviruses may be explained by internal sialic acids resistant to bacterial sialidases. Many other viruses (e.g., adenovirus, reovirus, Sendai virus, and polyomavirus) also use sialic acids for infection, and crystal structures are now available for several of their sialic acid–binding domains.</p><p>A number of viruses, including herpes simplex virus (HSV), foot-and-mouth disease virus, human immunodeficiency virus (HIV), and dengue flavivirus, use heparan sulfate proteoglycans as adhesion receptors (Table <a class="figpopup" href="/books/NBK579924/table/CSHLP5087CH37TB1/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37TB1" rid-ob="figobCSHLP5087CH37TB1">37.1</a>). In many cases, the proteoglycans may be part of a coreceptor system in which viruses make initial contact with a cell-surface proteoglycan and later with another receptor. For example, HSV infection is thought to initially involve the binding of viral glycoproteins gB and/or gC to cell-surface heparan sulfate proteoglycans. Glycoprotein gB promotes virus-cell fusion, syncytium formation (cell–cell fusion), and adherence, whereas gC binds to the C3b component of complement and blocks complement-mediated inhibition of the virus. These events are followed by HSV glycoprotein gD binding to one of several cell-surface receptors, including protein receptors and heparan sulfate, ultimately leading to fusion of the viral envelope with the host-cell plasma membrane. Interestingly, the interaction of gD with heparan sulfate shows specificity for a particular substructure in heparan sulfate containing a 3-O-sulfated glucosamine residue, the formation of which is catalyzed by specific isozymes of the glucosaminyl 3-O-sulfotransferase gene family. Thus, the heparan sulfate–binding adhesins appear to recognize carbohydrate units within the polysaccharide chains as opposed to binding terminal sugars.</p><p>Dengue flavivirus, the causative agent of dengue hemorrhagic fever, also binds to heparan sulfate. Computational modeling to compare the primary dengue viral envelope protein sequence with the crystal structure of a related virion envelope protein suggests that the heparan sulfate–binding site may lie along a positively charged amino acid groove (Figure <a class="figpopup" href="/books/NBK579924/figure/CSHLP5087CH37F2/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37F2" rid-ob="figobCSHLP5087CH37F2">37.2</a>). The recently emerging Zika virus belongs to the same family. Furthermore, HIV can bind heparan sulfate and other sulfated polysaccharides by way of the V3 loop of its gp120 glycoprotein.</p></div><div id="s37.3"><h2 id="_s37_3_">BACTERIAL ADHESION TO GLYCANS</h2><p>Bacterial lectins occur commonly in the form of elongated multisubunit protein appendages, known as fimbriae (hairs) or pili (threads), which interact with glycoprotein and glycolipid receptors on host cells. Similar to viral glycan-binding proteins, adhesin-receptor binding is generally of low affinity. Because the adhesins and the receptors often cluster in the plane of the membrane, the resulting combinatorial avidity can be great. An analogy for adhesin–receptor binding is the interaction of the two faces of Velcro strips. The most well-characterized bacterial lectins include the mannose-specific type-1 fimbriae, the galabiose-specific P fimbriae, and the <i>N</i>-acetylglucosamine-binding F-17 fimbriae, which are produced by different strains of <a href="https://www.ncbi.nlm.nih.gov/taxonomy/?term=Escherichia+coli" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri"><i>Escherichia coli</i></a>. Fimbriated bacteria express 100 to 400 of these appendages, which typically have a diameter of 5–7 nm and can extend hundreds of nanometers in length (Figure <a class="figpopup" href="/books/NBK579924/figure/CSHLP5087CH37F3/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37F3" rid-ob="figobCSHLP5087CH37F3">37.3</a>) Thus, pili extend well beyond the bacterial glycocalyx comprised of lipopolysaccharide and capsular polysaccharides (see <a href="/books/n/glyco4/ch21/">Chapter 21</a>).</p><p>Examination of a high-resolution, three-dimensional structure of FimH bound to mannose revealed that, although mannose exists as a mixture of α and β anomers in solution, only the former was found in the complex. Mannose binds FimH at a deep and negatively charged site of FimH (Figure <a class="figpopup" href="/books/NBK579924/figure/CSHLP5087CH37F4/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37F4" rid-ob="figobCSHLP5087CH37F4">37.4</a>). FimH has “catch-bond” properties, such that the binding strength of individual FimH adhesins is augmented by increasing the shear forces on surface-bound <i>E. coli</i> cells. This is relevant for urinary tract infections, in which type-1 fimbriae mediate binding of the bacteria to the glycoprotein uroplakin Ia on the surface of bladder epithelial cells. Uroplakin Ia presents high levels of terminally exposed mannose residues that are capable of specifically interacting with FimH. Alternatively, type-1 fimbriae can bind to high mannose glycans on the soluble urinary Tamm–Horsfall glycoprotein/uromodulin, that forms long fibers. The resulting bacterial aggregates are flushed out of the urinary tract. Mice lacking the gene encoding the Tamm–Horsfall glycoprotein are considerably more susceptible to bladder colonization by type-1-fimbriated <i>E. coli</i> than normal mice.</p><p>Most bacteria (and possibly other microorganisms) have multiple adhesins with diverse carbohydrate specificities. Many of these have been described (examples in Table <a class="figpopup" href="/books/NBK579924/table/CSHLP5087CH37TB2/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37TB2" rid-ob="figobCSHLP5087CH37TB2">37.2</a>), wherein the specificity of lectin binding can help define the range of susceptible tissues in the host (i.e., the microbe's ecological niche). The columnar epithelium that lines the large intestine expresses receptors with Galα1–4Gal-Cer residues, whereas cells lining the small intestine do not. Thus, <i>Bacterioides, Clostridium, E. coli,</i> and <i>Lactobacillus</i> only colonize the large intestine under normal conditions. P-fimbriated <i>E. coli</i> and some toxins bind specifically to galabiose (Galα1–4Gal) and galabiose-containing oligosaccharides, most commonly as constituents of glycolipids. Binding can occur to either internal (i.e., when the disaccharide is capped by other sugars) or terminal nonreducing galabiose units. P-fimbriated <i>E. coli</i> adhere mainly to the upper part of the kidney, where galabiose is abundant. The fine specificity of bacterial surface lectins and their relationship to the animal tropism of the bacteria can be further illustrated by <i>E. coli</i> K99. The K99 strain binds to glycolipids that contain <i>N</i>-glycolylneuraminic acid (Neu5Gc), in the form of Neu5Gcα2–3Galβ1–4Glc, but not to those that contain <i>N</i>-acetylneuraminic acid (Neu5Ac). These two sugars differ by a single hydroxyl group that is present only on Neu5Gc. Interestingly, Neu5Gc-containing receptors are expressed on the intestinal cells of newborn piglets, but disappear as the animals grow and develop. As Neu5Gc is not normally biosynthesized by humans, this may explain why <i>E. coli</i> K99 can cause often lethal diarrhea in piglets but not in adult pigs or humans.</p></div><div id="s37.4"><h2 id="_s37_4_">SECRETED TOXINS THAT BIND GLYCANS</h2><p>A number of secreted bacterial toxins also bind glycans (Table <a class="figpopup" href="/books/NBK579924/table/CSHLP5087CH37TB3/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37TB3" rid-ob="figobCSHLP5087CH37TB3">37.3</a>). The toxin from <a href="https://www.ncbi.nlm.nih.gov/taxonomy/?term=Vibrio+cholera" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri"><i>Vibrio cholera</i></a> (cholera toxin), which consists of A and B subunits in the ratio AB<sub>5</sub>, has been extensively studied. The crystal structure of cholera toxin shows that the carbohydrate-recognition domains are located at the base of the B subunits, which bind to the Galβ1–3GalNAc moiety of GM1 ganglioside (<a href="/books/n/glyco4/ch11/">Chapter 11</a>) receptors (Figure <a class="figpopup" href="/books/NBK579924/figure/CSHLP5087CH37F5/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37F5" rid-ob="figobCSHLP5087CH37F5">37.5</a>). On binding of the B subunits to membrane glycolipids, the AB<sub>5</sub> complex is endocytosed to the Golgi apparatus and then undergoes retrograde transport to the endoplasmic reticulum (ER). The A1 and A2 chains are proteolytically cleaved on toxin secretion, but remain stably associated until arrival in the ER. There, the enzymatic A1 chain unfolds, dissociates from the A2-B<sub>5</sub> complex, and retrotranslocates to the cytosol where it rapidly refolds, thereby avoiding degradation by the proteasome. Catalytically active A1 then ADP-ribosylates a regulatory homotrimeric G-protein to activate adenylyl cyclase, severely altering ion homeostasis of the infected cell.</p><p>Shiga toxin, produced by <a href="https://www.ncbi.nlm.nih.gov/taxonomy/?term=Shigella+dysenteriae" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri"><i>Shigella dysenteriae</i></a>, will bind to Galα1-4Gal determinants on both glycolipids and glycoproteins. However, only binding to the glycosphingolipid receptor Gb3 results in cell death. Similar to cholera toxin, the AB<sub>5</sub> complex is endocytosed and transported to the ER of the target cells, and then the A1 subunit is retrotranslocated to the cytosol. There, the catalytic A1 chain of Shiga toxin inactivates ribosomes, and thus the essential process of cytoplasmic protein synthesis, by an N-glycosidic cleavage event that depurinates 28S rRNA.</p><p>The most common class of bacterial toxins that are characterized by their pore-forming capability and a number of these toxins bind to glycans. For example, toxins produced by the soil-dwelling bacterium <a href="https://www.ncbi.nlm.nih.gov/taxonomy/?term=Bacillus+thuringiensis" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri"><i>Bacillus thuringiensis</i></a> (Bt) are used for crop protection by spraying plants or by genetically engineering crops to express the toxins. As such, these toxins function by binding glycolipids that line the insect gut and generating pores in the membrane. More specifically, the Bt toxin glycolipid receptors include in their structure the characteristic ceramide-linked, mannose-containing core tetrasaccharide GalNAcβ1-4GlcNAcβ1-3Manβ1-4GlcβCer. This structure is conserved between nematodes and insects (see <a href="/books/n/glyco4/ch25/">Chapter 25</a>) but is absent in vertebrates including humans. This explains why Bt can kill larval stages of insects but is harmless to humans.</p><p>Secondary glycan binding sites have been identified on some toxins. For example, cholera toxin can bind fucosylated glycans at a site distinct from the GM1 binding pocket, and <a href="https://www.ncbi.nlm.nih.gov/taxonomy/?term=Clostridium+difficile" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri"><i>Clostridium difficile</i></a> toxin A (TcdA) binds sulfated glycosaminoglycans in addition to GalNAcβ1-3Galβ1-4GlcNAcβ1-3 Galβ1-4GlcβCer. Whereas these secondary interactions are lower affinity that those with the canonical receptors, the glycans recognized are abundant on the surface of host cells. Thus, glycan binding to secondary sites may serve as initial attachment events that capture and concentrate toxins on cell surfaces.</p></div><div id="s37.5"><h2 id="_s37_5_">PARASITE LECTINS</h2><p>In addition to viruses and bacteria, a number of parasites use glycans as receptors for adhesion (Table <a class="figpopup" href="/books/NBK579924/table/CSHLP5087CH37TB4/?report=objectonly" target="object" rid-figpopup="figCSHLP5087CH37TB4" rid-ob="figobCSHLP5087CH37TB4">37.4</a>). <a href="https://www.ncbi.nlm.nih.gov/taxonomy/?term=Entamoeba+histolytica" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri"><i>Entamoeba histolytica</i></a> expresses a 260-kDa heterodimeric lectin that binds to terminal Gal/GalNAc residues on glycoproteins and glycolipids via a cysteine-rich glycan-binding domain. This adhesin is essential for virulence, such that adhesin-glycan binding is required for parasitic attachment, invasion, and cytolysis of the intestinal epithelium. Furthermore, it may function in binding <i>E. histolytica</i> to bacteria as a food source. This adhesin elicits protective immunity, and is a potential target to manage <i>E. histolytica</i> infection.</p><p>The initial interaction of <a href="https://www.ncbi.nlm.nih.gov/taxonomy/?term=Plasmodium+falciparum" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri"><i>Plasmodium falciparum</i></a> (malaria) merozoites with red blood cells (erythrocytes) depends on sialic acid residues present on the host cell, in particular on the major erythrocyte membrane protein glycophorin. Parasite–host attachment is mediated by a family of sialic acid–binding adhesins on merozoites, the most prominent of which is called erythrocyte-binding antigen-175 (EBA-175). This adhesin preferentially binds Neu5Ac sialic acids, rather than 9-<i>O</i>-acetyl-Neu5Ac or Neu5Gc, and is sensitive to the linkage of the sialic acid to the underlying galactose. This is highlighted by the fact that Neu5Acα2–3Gal-containing oligosaccharides effectively inhibit the binding of EBA-175 to erythrocytes, whereas soluble Neu5Ac and Neu5Acα2–6Gal-containing oligosaccharides do not. Adhesin–glycan binding triggers invasion of the merozoites into red blood cells, where they develop into mature schizonts that rupture and release newly formed merozoites into the bloodstream. Many commonly used clinical antimalarial medications, such as chloroquine, target the parasite during this erythrocytic asexual reproduction stage.</p></div><div id="s37.6"><h2 id="_s37_6_">THERAPEUTIC IMPLICATIONS</h2><p>Various glycan-binding proteins mediate adhesion of microorganisms to host cells or tissues. These interactions are often a prerequisite for infection or symbiosis, with binding-deficient mutants being unable to initiate or maintain these relationships. Interestingly, glycans recognized by microbial surface lectins have been shown to block the adhesion of bacteria to animal cells in vitro and in vivo, and thus may protect animals against infection by such microorganisms. For example, coadministration of methyl α-mannoside with type-1-fimbriated <i>E. coli</i> into the bladder of mice can reduce microbial burden in a mouse model of urinary tract infection, whereas methyl α-glucoside, which does not bind to FimH, has no effect. Furthermore, lacto-N-neotetraose (LNnT) and its α2-3- and α2-6-sialylated derivatives block the adherence of <a href="https://www.ncbi.nlm.nih.gov/taxonomy/?term=Streptococcus+pneumoniae" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri"><i>Streptococcus pneumoniae</i></a> to respiratory epithelial cells in vitro. In addition, these glycans prevent colonization of the nasopharynx and attenuate the course of pneumonia in rodent models of pneumococcal infection. Naturally occurring host glycans can also serve protective roles. For example, secreted mucins and human milk oligosaccharides (HMOs) act as natural receptor decoys, protecting the host from pathogens and shaping the microbiota composition.</p><p>Exogenous heparin and structurally related polysaccharides are known to inhibit viral replication, suggesting a potential approach for the development of polysaccharide-based antiviral pharmaceutical agents. For example, heparin octasaccharide decoy liposomes were recently shown to inhibit the replication of numerous viruses including HSV and respiratory syncytial virus. As more crystal structures are elucidated, the ability to design small molecule inhibitors that fit into the carbohydrate-recognition domains of adhesins should improve. Already, the structures of influenza hemagglutinin and sialidase have suggested numerous ways to modify sialic acid to fit better into the active sites. Some of these compounds are presently in clinical use to limit the spread of influenza.</p></div><div id="ack37"><h2 id="_ack37_">ACKNOWLEDGMENTS</h2><p>The authors acknowledge contributions to the previous version of this chapter from Jeffrey D. Esko, Victor Nizet, and the late Nathan Sharon and helpful comments and suggestions from Frederique Lisacek and Ajit Varki.</p></div><div id="ref37"><h2 id="_ref37_">FURTHER READING</h2><ul class="first-line-outdent"><li><div class="bk_ref" id="CSHLP5087CH37C1">Rostand KS, Esko JD. 1997. Microbial adherence to and invasion through proteoglycans. Infect Immun
|
|
65: 1–8. doi:10.1128/iai.65.1.1-8.1997 [<a href="/pmc/articles/PMC174549/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC174549</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8975885" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 8975885</span></a>] [<a href="http://dx.crossref.org/10.1128/iai.65.1.1-8.1997" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C2">Kitov PI, Sadowska JM, Mulvey G, Armstrong GD, Ling H, Pannu NS, Read RJ, Bundle DR. 2000. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature
|
|
403: 669–672. doi:10.1038/35001095 [<a href="https://pubmed.ncbi.nlm.nih.gov/10688205" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 10688205</span></a>] [<a href="http://dx.crossref.org/10.1038/35001095" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C3">Griffitts JS, Aroian RV. 2005. Many roads to resistance: how invertebrates adapt to Bt toxins. BioEssays
|
|
27: 614–624. doi:10.1002/bies.20239 [<a href="https://pubmed.ncbi.nlm.nih.gov/15892110" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 15892110</span></a>] [<a href="http://dx.crossref.org/10.1002/bies.20239" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C4">Olofsson S, Bergstrom T. 2005. Glycoconjugate glycans as viral receptors. Ann Med
|
|
37: 154–172. doi:10.1080/07853890510007340 [<a href="https://pubmed.ncbi.nlm.nih.gov/16019714" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 16019714</span></a>] [<a href="http://dx.crossref.org/10.1080/07853890510007340" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C5">Mazmanian SK, Kasper DL. 2006. The love–hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol
|
|
6: 849–858. doi:10.1038/nri1956 [<a href="https://pubmed.ncbi.nlm.nih.gov/17024229" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17024229</span></a>] [<a href="http://dx.crossref.org/10.1038/nri1956" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C6">Sinnis P, Coppi A. 2007. A long and winding road: the <em>Plasmodium</em> sporozoite's journey in the mammalian host. Parasitol Int
|
|
56: 171–178. doi:10.1016/j.parint.2007.04.002 [<a href="/pmc/articles/PMC1995443/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC1995443</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17513164" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17513164</span></a>] [<a href="http://dx.crossref.org/10.1016/j.parint.2007.04.002" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C7">Patsos G, Corfield A. 2009. Management of the human mucosal defensive barrier: evidence for glycan legislation. Biol Chem
|
|
390: 581–590. doi:10.1515/bc.2009.052 [<a href="https://pubmed.ncbi.nlm.nih.gov/19335202" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 19335202</span></a>] [<a href="http://dx.crossref.org/10.1515/bc.2009.052" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C8">Krachler AM, Orth K. 2013. Targeting the bacteria–host interface: strategies in anti-adhesion therapy. Virulence
|
|
4: 284–294. doi:10.4161/viru.24606 [<a href="/pmc/articles/PMC3710331/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3710331</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23799663" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 23799663</span></a>] [<a href="http://dx.crossref.org/10.4161/viru.24606" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C9">Edinger TO, Pohl MO, Stertz S. 2014. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol
|
|
95: 263–277. doi:10.1099/vir.0.059477-0 [<a href="https://pubmed.ncbi.nlm.nih.gov/24225499" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 24225499</span></a>] [<a href="http://dx.crossref.org/10.1099/vir.0.059477-0" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C10">Stencel-Baerenwald JE, Reiss K, Reiter DM, Stehle T, Dermody TS. 2014. The sweet spot: defining virus–sialic acid interactions. Nat Rev Microbiol
|
|
12: 739–749. doi:10.1038/nrmicro3346 [<a href="/pmc/articles/PMC4791167/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4791167</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25263223" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25263223</span></a>] [<a href="http://dx.crossref.org/10.1038/nrmicro3346" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C11">Bode L. 2015. The functional biology of human milk oligosaccharides. Early Hum Dev
|
|
91: 619–622. doi:10.1016/j.earlhumdev.2015.09.001 [<a href="https://pubmed.ncbi.nlm.nih.gov/26375354" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26375354</span></a>] [<a href="http://dx.crossref.org/10.1016/j.earlhumdev.2015.09.001" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C12">Zajonc DM, Girardi E. 2015. Recognition of microbial glycolipids by natural killer T cells. Front Immunol
|
|
6: 400. doi:10.3389/fimmu.2015.00400 [<a href="/pmc/articles/PMC4523824/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4523824</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26300885" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26300885</span></a>] [<a href="http://dx.crossref.org/10.3389/fimmu.2015.00400" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C13">Juge N, Tailford L, Owen CD. 2017. Sialidases from gut bacteria: a mini-review. Biochem Soc Trans
|
|
44: 166–175. doi:10.1042/bst20150226 [<a href="/pmc/articles/PMC4747158/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4747158</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26862202" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26862202</span></a>] [<a href="http://dx.crossref.org/10.1042/bst20150226" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C14">Moonens K, Remaut H. 2017. Evolution and structural dynamics of bacterial glycan binding adhesins. Curr Opin Struct Biol
|
|
44: 48–58. doi:10.1016/j.sbi.2016.12.003 [<a href="https://pubmed.ncbi.nlm.nih.gov/28043017" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28043017</span></a>] [<a href="http://dx.crossref.org/10.1016/j.sbi.2016.12.003" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C15">Raman R, Tharakaraman K, Sasisekharan V, Sasisekharan R. 2017. Glycan–protein interactions in viral pathogenesis. Curr Opin Struct Biol
|
|
40: 153–162. doi:10.1016/j.sbi.2016.10.003 [<a href="/pmc/articles/PMC5526076/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5526076</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27792989" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27792989</span></a>] [<a href="http://dx.crossref.org/10.1016/j.sbi.2016.10.003" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C16">Ramani S, Hu L, Venkataram Prasad BV, Estes MK. 2017. Diversity in rotavirus–host glycan interactions: a “sweet” spectrum. Cell Mol Gastroenterol Hepatol
|
|
2: 263–273. doi:10.1016/j.jcmgh.2016.03.002 [<a href="/pmc/articles/PMC5042371/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5042371</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28090561" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28090561</span></a>] [<a href="http://dx.crossref.org/10.1016/j.jcmgh.2016.03.002" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C17">Thomas GH. 2017. Sialic acid acquisition in bacteria—one substrate, many transporters. Biochem Soc Trans
|
|
44: 760–765. doi:10.1042/bst20160056 [<a href="https://pubmed.ncbi.nlm.nih.gov/27284039" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27284039</span></a>] [<a href="http://dx.crossref.org/10.1042/bst20160056" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C18">Tytgat HL, de Vos WM. 2017. Sugar coating the envelope: glycoconjugates for microbe–host crosstalk. Trends Microbiol
|
|
24: 853–861. doi:10.1016/j.tim.2016.06.004 [<a href="https://pubmed.ncbi.nlm.nih.gov/27374775" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27374775</span></a>] [<a href="http://dx.crossref.org/10.1016/j.tim.2016.06.004" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C19">Valguarnera E, Kinsella RL, Feldman MF. 2017. Sugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesis. J Mol Biol
|
|
428: 3206–3220. doi:10.1016/j.jmb.2016.04.013 [<a href="https://pubmed.ncbi.nlm.nih.gov/27107636" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27107636</span></a>] [<a href="http://dx.crossref.org/10.1016/j.jmb.2016.04.013" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C20">Wasik BR, Barnard KN, Parrish CR. 2017. Effects of sialic acid modifications on virus binding and infection. Trends Microbiol
|
|
24: 991–1001. doi:10.1016/j.tim.2016.07.005 [<a href="/pmc/articles/PMC5123965/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5123965</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27491885" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 27491885</span></a>] [<a href="http://dx.crossref.org/10.1016/j.tim.2016.07.005" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C21">Poole J, Day CJ, von Itzstein M, Paton JC, Jennings MP. 2018. Glycointeractions in bacterial pathogenesis. Nat Rev Microbiol
|
|
16: 440–452. doi:10.1038/s41579-018-0007-2 [<a href="https://pubmed.ncbi.nlm.nih.gov/29674747" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29674747</span></a>] [<a href="http://dx.crossref.org/10.1038/s41579-018-0007-2" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li><li><div class="bk_ref" id="CSHLP5087CH37C22">Thompson AJ, de Vries RP, Paulson JC. 2019. Virus recognition of glycan receptors. Curr Opin Virol
|
|
34:
|
|
117–129. doi:10.1016/j.coviro.2019.01.004 [<a href="/pmc/articles/PMC6476673/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6476673</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30849709" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30849709</span></a>] [<a href="http://dx.crossref.org/10.1016/j.coviro.2019.01.004" ref="pagearea=cite-ref&targetsite=external&targetcat=link&targettype=uri">CrossRef</a>]</div></li></ul></div><div class="bk_prnt_sctn"><h2>Figures</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="CSHLP5087CH37F1" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=FIGURE%2037.1..%20Structure%20of%20the%20influenza%20virus%20hemagglutinin%20(HA)%20ectodomain.&p=BOOKS&id=579924_ch37f01.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK579924/bin/ch37f01.jpg" alt="FIGURE 37.1.. Structure of the influenza virus hemagglutinin (HA) ectodomain." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">FIGURE 37.1.</span></h3><div class="caption"><p>Structure of the influenza virus hemagglutinin (HA) ectodomain. (<i>A</i>) A schematic diagram of the trimeric ectodomain of the H3 avian HA from A/duck/Ukr/63 showing residues HA1 9–326 and HA2 1–172. Modeled carbohydrate side chains (<i>gray</i>, <i>red</i>, <i>blue</i>); disulfide bonds (<i>black</i>, <i>green</i>). The six polypeptide chains are shown in <i>light blue</i> (HA1), <i>magenta</i> (HA2), <i>dark blue</i> (HA1′), <i>light red</i> (HA2′), <i>green</i> (HA1″), and <i>yellow</i> (HA2″). (Redrawn, with permission of Elsevier, from Ha Y, et al. 2003. <i>Virology</i>
|
|
<b>309:</b> 209–218.) (<i>B</i>) Receptor binding site of human influenza virus HA in complex with the human trisaccharide receptor NeuAcα2-6Galβ1-4GlcNAc. Hydrogen bonds (<i>dashed lines</i>); residues making interactions via main-chain carbonyl groups (<i>red spheres</i>) or nitrogens (<i>blue spheres</i>); trisaccharide carbon (<i>yellow</i>), nitrogen (<i>blue</i>), and oxygen (<i>red</i>) atoms; water molecules (<i>green spheres</i>). (Redrawn, with permission of AAAS, from Gamblin SJ, et al. 2004. <i>Science</i>
|
|
<b>303:</b> 1838–1842.)</p></div><p><a href="/books/NBK579924/bin/ch37f01.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 11M)</span></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="CSHLP5087CH37F2" class="figure bk_fig"><div class="graphic"><img src="/books/NBK579924/bin/ch37f02.jpg" alt="FIGURE 37.2.. Two views of a putative heparin sulfate–binding site on the dengue virus envelope protein." /></div><h3><span class="label">FIGURE 37.2.</span></h3><div class="caption"><p>Two views of a putative heparin sulfate–binding site on the dengue virus envelope protein. The envelope protein monomer is shown in <i>ribbon</i> form, displayed along its longitudinal axis and as an external side view. Note the alignment of positively charged amino acids along an open face of the protein (<i>top</i>). (Redrawn, with permission, from Chen YP, et al. 1997. <i>Nat Med</i>
|
|
<b>3:</b> 866–871, © Macmillan Publishers Ltd.)</p></div><p><a href="/books/NBK579924/bin/ch37f02.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 9.8M)</span></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="CSHLP5087CH37F3" class="figure bk_fig"><div class="graphic"><img src="/books/NBK579924/bin/ch37f03.jpg" alt="FIGURE 37.3.. Escherichia coli express hundreds of pili, as indicated by the fine filaments extending from the bacterium." /></div><h3><span class="label">FIGURE 37.3.</span></h3><div class="caption"><p><i>Escherichia coli</i> express hundreds of pili, as indicated by the fine filaments extending from the bacterium. (Reprinted, with permission of Elsevier, from Sharon N. 2006. <i>Biochim Biophys Acta</i>
|
|
<b>1760:</b> 527–537; courtesy of David L. Hasty, University of Tennessee, Memphis, TN.)</p></div><p><a href="/books/NBK579924/bin/ch37f03.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 9.5M)</span></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="CSHLP5087CH37F4" class="figure bk_fig"><div class="graphic"><img src="/books/NBK579924/bin/ch37f04.jpg" alt="FIGURE 37.4.. The α anomer of mannose in the binding site of FimH." /></div><h3><span class="label">FIGURE 37.4.</span></h3><div class="caption"><p>The α anomer of mannose in the binding site of FimH. The mannose residue is buried in a unique site at the tip of the carbohydrate-recognition domain (<i>left</i>) in a deep and negatively charged pocket (<i>right</i>). FimH prefers to bind D-mannose in the α-anomeric configuration. The hydroxyl groups of D-mannose interact with residues Phe1, Asn46, Asp47, Asp54, Gln133, Asn135, Asp140, and Phe142 by hydrogen-bonding and hydrophobic interactions. Residues in direct contact are shown as a <i>ball-and-stick</i> model. W1, Water. (Redrawn, with permission, from Hung CS, et al. 2002. <i>Mol Microbiol</i>
|
|
<b>44:</b> 903–915, © John Wiley and Sons.)</p></div><p><a href="/books/NBK579924/bin/ch37f04.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 10M)</span></p></div></div><div class="whole_rhythm bk_prnt_obj"><div id="CSHLP5087CH37F5" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=FIGURE%2037.5..%20Crystal%20structure%20of%20the%20cholera%20toxin%20B-subunit%20pentamer%20bound%20to%20GM1%20pentasaccharide%2C%20shown%20from%20the%20bottom%20(A)%20and%20the%20side%20(B).&p=BOOKS&id=579924_ch37f05.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK579924/bin/ch37f05.jpg" alt="FIGURE 37.5.. Crystal structure of the cholera toxin B-subunit pentamer bound to GM1 pentasaccharide, shown from the bottom (A) and the side (B)." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">FIGURE 37.5.</span></h3><div class="caption"><p>Crystal structure of the cholera toxin B-subunit pentamer bound to GM1 pentasaccharide, shown from the bottom (<i>A</i>) and the side (<i>B</i>). (Redrawn, with permission, from Merritt EA, et al. 1994. <i>Protein Sci</i>
|
|
<b>3:</b> 166–175.) (<i>C</i>) Crystal structure of the Shiga toxin pentamer bound to an artificial pentavalent ligand, a powerful inhibitor of the toxin. The carbohydrate ligands are shown in a <i>ball-and-stick</i> representation. Possible conformation of the linker is indicated by the <i>dashed magenta lines</i>. (Redrawn, from Kitov PI, et al. 2000. <i>Nature</i>
|
|
<b>403:</b> 669–672, © Macmillan Publisher Ltd.)</p></div><p><a href="/books/NBK579924/bin/ch37f05.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 11M)</span></p></div></div></div><div class="bk_prnt_sctn"><h2>Tables</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="CSHLP5087CH37TB1" class="table"><h3><span class="label">TABLE 37.1.</span></h3><div class="caption"><p>Examples of viral lectins and hemagglutinins</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK579924/table/CSHLP5087CH37TB1/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CSHLP5087CH37TB1_lrgtbl__"><table><colgroup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:xi="http://www.w3.org/2001/XInclude" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:pmc="http://www.pubmedcentral.gov/pmc" xmlns:xlink="http://www.w3.org/1999/xlink" span="1"><col align="left" span="1" /><col align="left" span="1" /><col align="left" span="1" /><col align="left" span="1" /></colgroup><thead><tr><th id="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Virus</th><th id="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Lectin</th><th id="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Glycan-receptor preference</th><th id="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Site of infection</th></tr></thead><tbody><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1 hd_h_CSHLP5087CH37TB1_1_1_1_2 hd_h_CSHLP5087CH37TB1_1_1_1_3 hd_h_CSHLP5087CH37TB1_1_1_1_4" colspan="4" rowspan="1" style="vertical-align:top;">
|
|
<b>Myxoviruses</b>
|
|
</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Influenza A and B (human, ferret, and porcine)</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">hemagglutinin</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Neu5Acα2-6Gal-</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">upper respiratory tract mucosa (tracheal epithelial cells)</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Influenza A and B (avian and porcine)</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">hemagglutinin</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Neu5Acα2-3Gal-</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">intestinal mucosa</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Influenza C</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">hemagglutinin-esterase</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">9-<i>O</i>-acetyl-Siaα-</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">unknown</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Newcastle disease</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">hemagglutinin-neuraminidase</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Neu5Acα2-3Gal-</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">unknown</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Sendai virus</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">hemagglutinin-neuraminidase</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Neu5Acα2-8Neu5Ac-</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">upper respiratory tract mucosa</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1 hd_h_CSHLP5087CH37TB1_1_1_1_2 hd_h_CSHLP5087CH37TB1_1_1_1_3 hd_h_CSHLP5087CH37TB1_1_1_1_4" colspan="4" rowspan="1" style="vertical-align:top;">
|
|
<b>Polyomaviruses</b>
|
|
</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Polyoma</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">capsid protein VP1</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Neu5Acα2-3Gal-, Neu5Acα2-3Galβ1-3 (Neu5Acα2-6)GalNAc- on gangliosides such as GM1 and GT1b/GD1a</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">kidney and brain glial cells</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1 hd_h_CSHLP5087CH37TB1_1_1_1_2 hd_h_CSHLP5087CH37TB1_1_1_1_3 hd_h_CSHLP5087CH37TB1_1_1_1_4" colspan="4" rowspan="1" style="vertical-align:top;">
|
|
<b>Herpesviruses</b>
|
|
</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Herpes simplex</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">glycoproteins gB, gC, and gD</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">3-O-sulfated heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">mucosal surfaces of the mouth, eyes, genital, and respiratory tracts</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1 hd_h_CSHLP5087CH37TB1_1_1_1_2 hd_h_CSHLP5087CH37TB1_1_1_1_3 hd_h_CSHLP5087CH37TB1_1_1_1_4" colspan="4" rowspan="1" style="vertical-align:top;">
|
|
<b>Picornaviruses</b>
|
|
</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Foot-and-mouth disease (enterovirus)</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">caspid proteins</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">gastrointestinal and upper respiratory tracts</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1 hd_h_CSHLP5087CH37TB1_1_1_1_2 hd_h_CSHLP5087CH37TB1_1_1_1_3 hd_h_CSHLP5087CH37TB1_1_1_1_4" colspan="4" rowspan="1" style="vertical-align:top;">
|
|
<b>Retroviruses</b>
|
|
</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">HIV</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">gp120 V3 loop</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">CD4 lymphocytes</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1 hd_h_CSHLP5087CH37TB1_1_1_1_2 hd_h_CSHLP5087CH37TB1_1_1_1_3 hd_h_CSHLP5087CH37TB1_1_1_1_4" colspan="4" rowspan="1" style="vertical-align:top;">
|
|
<b>Flaviviruses</b>
|
|
</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Dengue</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">envelope protein</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">macrophages?</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1 hd_h_CSHLP5087CH37TB1_1_1_1_2 hd_h_CSHLP5087CH37TB1_1_1_1_3 hd_h_CSHLP5087CH37TB1_1_1_1_4" colspan="4" rowspan="1" style="vertical-align:top;">
|
|
<b>Calciviruses</b>
|
|
</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Norovirus</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">capsid proteins</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">fucose, GalNAc, or Gal on A and B blood group antigens</td><td headers="hd_h_CSHLP5087CH37TB1_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">secretory cells of the intestinal epithelium</td></tr></tbody></table></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="CSHLP5087CH37TB2" class="table"><h3><span class="label">TABLE 37.2.</span></h3><div class="caption"><p>Examples of interactions of bacterial adhesins with glycans</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK579924/table/CSHLP5087CH37TB2/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CSHLP5087CH37TB2_lrgtbl__"><table><colgroup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:xi="http://www.w3.org/2001/XInclude" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:pmc="http://www.pubmedcentral.gov/pmc" xmlns:xlink="http://www.w3.org/1999/xlink" span="1"><col align="left" span="1" /><col align="left" span="1" /><col align="left" span="1" /><col align="left" span="1" /></colgroup><thead><tr><th id="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Microorganism</th><th id="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Adhesin</th><th id="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Glycan-receptor specificity</th><th id="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Site of infection</th></tr></thead><tbody><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Actinomyces naeslundii</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">fimbriae</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Galβ1–3GalNAcβ-</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">oral</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Bordetella pertussis</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">filamentous hemagglutinin (FHA)</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">sulfated glycolipids, heparin</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">ciliated epithelium in respiratory tract</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Borrelia burgdorferi</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">ErpG protein</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">endothelium, epithelium, and extracellular matrix</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Campylobacter jejuni</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">flagella, LPS</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Fucα1-2Galβ1-4GlcNAcβ- (H-antigen)</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">intestinal cells</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="4" colspan="1" style="vertical-align:top;">
|
|
<i>Escherichia coli</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">P fimbriae</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Galα1-4Galβ-</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">urinary tract</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">S fimbriae</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">gangliosides GM3, GM2</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">neural</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">type-1 fimbriae</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Manα1-3(Manα6Manα1-6) Man</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">urinary tract</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">K99 fimbriae</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">gangliosides GM3, Neu5Gcα2-3Galβ1-4Glc</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">intestinal cells</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Haemophilus influenzae</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">HMW1 adhesin</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Neu5Acα2-3Galβ1-4 GlcNAcβ-, heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">respiratory epithelium</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Helicobacter pylori</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">BabA</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">sialyl Lewis x</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">stomach</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>H. pylori</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">SabA</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Lewis b</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">stomach and stomach duodenum</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Mycobacterium tuberculosis</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">heparin-binding hemagglutinin adhesin (HBHA)</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">respiratory epithelium</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Neisseria gonorrhoeae</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">Opa proteins</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">LacCer; Neu5Acα2-3Galβ1-4 GlcNAcβ-, syndecans, heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">genital tract</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Pseudomonas aeruginosa</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">type IV pili</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">asialo GM1 and GM2</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">respiratory tract</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Staphylococcus aureus</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">signal peptide of panton valentine leukocidin</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">connective tissues and endothelial cells</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Streptococcus agalactiae</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">αC protein</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">brain endothelial cells</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Streptococcus pneumoniae</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">carbohydrate-binding modules of β-galactosidase, BgaA</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">lactose or <i>N</i>-acetyl-lactosamine</td><td headers="hd_h_CSHLP5087CH37TB2_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">respiratory tract</td></tr></tbody></table></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="CSHLP5087CH37TB3" class="table"><h3><span class="label">TABLE 37.3.</span></h3><div class="caption"><p>Examples of glycan receptors for bacterial toxins</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK579924/table/CSHLP5087CH37TB3/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CSHLP5087CH37TB3_lrgtbl__"><table class="no_bottom_margin"><colgroup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:xi="http://www.w3.org/2001/XInclude" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:pmc="http://www.pubmedcentral.gov/pmc" xmlns:xlink="http://www.w3.org/1999/xlink" span="1"><col align="left" span="1" /><col align="left" span="1" /><col align="left" span="1" /><col align="left" span="1" /></colgroup><thead><tr><th id="hd_h_CSHLP5087CH37TB3_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Microorganism</th><th id="hd_h_CSHLP5087CH37TB3_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Toxin</th><th id="hd_h_CSHLP5087CH37TB3_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Glycan-receptor specificity</th><th id="hd_h_CSHLP5087CH37TB3_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Site of infection</th></tr></thead><tbody><tr><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Bacillus thuringiensis</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">crystal toxins</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Galβ1-3/6Galα/β1-3(±Glcβ1-6) GalNAcβ GlcNAcβ1-3Manβ1-4 GlcβCer</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">intestinal epithelium of insects/nematodes</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Clostridium botulinum</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">botulinum toxins (A–E)</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">gangliosides GT1b and GQ1b</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">nerve membrane</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Clostridium difficile</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">toxin A</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">GalNAcβ1-3Galβ1-4GlcNAcβ1-3 Galβ1-4GlcβCer</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">large intestine</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Clostridium tetani</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">tetanus toxin</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">ganglioside GT1b</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">nerve membrane</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Escherichia coli</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">heat-labile toxin</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">GM1</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">intestine</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Shigella dysenteriae</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">Shiga toxin</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Galα1-4GalβCer,; Galα1-4Galβ1-4 GlcβCer</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">large intestine</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Vibrio cholerae</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">cholera toxin</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">GM1</td><td headers="hd_h_CSHLP5087CH37TB3_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">small intestine</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">Gangliosides are defined using the Svennerholm nomenclature (see <a href="/books/n/glyco4/ch11/">Chapter 11</a>).</p></div></dd><dt></dt><dd><div><p class="no_margin">Cer, Ceramide.</p></div></dd></dl></div></div></div></div><div class="whole_rhythm bk_prnt_obj"><div id="CSHLP5087CH37TB4" class="table"><h3><span class="label">TABLE 37.4.</span></h3><div class="caption"><p>Examples of glycan receptors for parasites</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK579924/table/CSHLP5087CH37TB4/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CSHLP5087CH37TB4_lrgtbl__"><table><colgroup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:xi="http://www.w3.org/2001/XInclude" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:pmc="http://www.pubmedcentral.gov/pmc" xmlns:xlink="http://www.w3.org/1999/xlink" span="1"><col align="left" span="1" /><col align="left" span="1" /><col align="left" span="1" /><col align="left" span="1" /></colgroup><thead><tr><th id="hd_h_CSHLP5087CH37TB4_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Parasite</th><th id="hd_h_CSHLP5087CH37TB4_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Adhesin</th><th id="hd_h_CSHLP5087CH37TB4_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Glycan-receptor specificity</th><th id="hd_h_CSHLP5087CH37TB4_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Site of infection</th></tr></thead><tbody><tr><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Entamoeba histolytica</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">260-kDa surface-anchored lectin on trophozoites</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">terminal Gal/GalNAc residues</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">mucosa of human colon</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Plasmodium falciparum</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">EBA-175; circumsporozoite (CS) protein</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">sialic acid–containing O-glycans (Neu5Acα2-3Galβ-) on glycophorins; heparan sulfate proteoglycans</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">erythrocytes (infected cells bind to placental vasculature) and hepatocytes</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Trypanosoma cruzi</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">surface “mucins”</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">sialic acid–containing glycans and heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">multiple cell types</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Leishmania amazonensis</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">unknown</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">heparan sulfate</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">macrophages, fibroblasts, and epithelium</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Cryptosporidium parum</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">lectin p30</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">terminal Gal-GalNAc</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">intestinal epithelium</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Giardia lamblia</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">unknown</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">mannose-terminated oligosaccharides</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">duodenum and small intestine</td></tr><tr><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
|
|
<i>Toxoplasma gondii</i>
|
|
</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">microneme protein 1 (TgMIC1)</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">α2-3-linked sialyl-<i>N</i>-acetyllactosamine sequences</td><td headers="hd_h_CSHLP5087CH37TB4_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">intestinal epithelium</td></tr></tbody></table></div></div></div></div><div id="bk_toc_contnr"></div></div></div>
|
|
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> © 2022 The Consortium of Glycobiology Editors, La Jolla, California; published by Cold Spring Harbor Laboratory Press; doi:<a href="https://doi.org/10.1101/glycobiology.4e.37" ref="pagearea=meta&targetsite=external&targetcat=link&targettype=uri">10.1101/glycobiology.4e.37</a>. All rights reserved.<p class="small">The content of this book is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported license. To view the terms and conditions of this license, visit <a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&targetsite=external&targetcat=link&targettype=uri">https://creativecommons.org/licenses/by-nc-nd/4.0/</a></p></div><div class="small"><span class="label">Bookshelf ID: NBK579924</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/35536938" title="PubMed record of this page" ref="pagearea=meta&targetsite=entrez&targetcat=link&targettype=pubmed">35536938</a></span>DOI: <a href="http://dx.crossref.org/10.1101/glycobiology.4e.37" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">10.1101/glycobiology.4e.37</a></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/glyco4/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/glyco4/ch36/" title="Previous page in this title">< Prev</a><a class="active page_link next" href="/books/n/glyco4/ch38/" title="Next page in this title">Next ></a></div></div></div></div>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div class="bottom">
|
|
|
|
<div id="NCBIFooter_dynamic">
|
|
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
|
|
<component id="Breadcrumbs" label="helpdesk"/>-->
|
|
|
|
</div>
|
|
|
|
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
|
|
</div>
|
|
</div>
|
|
<!--/.page-->
|
|
</div>
|
|
<!--/.wrap-->
|
|
</div><!-- /.twelve_col -->
|
|
</div>
|
|
<!-- /.grid -->
|
|
|
|
<span class="PAFAppResources"></span>
|
|
|
|
<!-- BESelector tab -->
|
|
|
|
|
|
|
|
<noscript><img alt="statistics" src="/stat?jsdisabled=true&ncbi_db=books&ncbi_pdid=book-part&ncbi_acc=NBK579924&ncbi_domain=glyco4&ncbi_report=printable&ncbi_type=fulltext&ncbi_objectid=&ncbi_pcid=/NBK579924/?report=printable&ncbi_app=bookshelf" /></noscript>
|
|
|
|
|
|
<!-- usually for JS scripts at page bottom -->
|
|
<!--<component id="PageFixtures" label="styles"></component>-->
|
|
|
|
|
|
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal105 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
|
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
|
|
|
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
|
|
</html> |