nih-gov/www.ncbi.nlm.nih.gov/books/NBK567991/index.html

1905 lines
No EOL
208 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK567991" /><meta name="ncbi_domain" content="dia3ed" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK567991/" /><meta name="ncbi_pagename" content="Prevention of Type 1 Diabetes - Diabetes in America - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="chapter" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Prevention of Type 1 Diabetes - Diabetes in America - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="NOINDEX,NOFOLLOW,NOARCHIVE,NOIMAGEINDEX" /><meta name="citation_inbook_title" content="Diabetes in America. 3rd edition" /><meta name="citation_title" content="Prevention of Type 1 Diabetes" /><meta name="citation_publisher" content="National Institute of Diabetes and Digestive and Kidney Diseases (US)" /><meta name="citation_date" content="2018/08" /><meta name="citation_author" content="Jay S. Skyler" /><meta name="citation_author" content="Jeffrey P. Krischer" /><meta name="citation_author" content="Dorothy J. Becker" /><meta name="citation_author" content="Marian Rewers" /><meta name="citation_pmid" content="33651549" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK567991/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Prevention of Type 1 Diabetes" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="National Institute of Diabetes and Digestive and Kidney Diseases (US)" /><meta name="DC.Contributor" content="Jay S. Skyler" /><meta name="DC.Contributor" content="Jeffrey P. Krischer" /><meta name="DC.Contributor" content="Dorothy J. Becker" /><meta name="DC.Contributor" content="Marian Rewers" /><meta name="DC.Date" content="2018/08" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK567991/" /><meta name="description" content="Type 1 diabetes is a progressive disease. There is a genetic predisposition to type 1 diabetes, particularly conferred by alleles present within the major histocompatibility complex (HLA region) on the short arm of chromosome six. It is thought that in susceptible individuals, an environmental trigger initiates an immune response. Immune infiltration into pancreatic islets results in beta cell damage, impairment of beta cell function, and potential destruction of beta cells. One would expect that if type 1 diabetes is an immunologically mediated disease, then immune intervention should alter the natural history of the disease and potentially abrogate the clinical syndrome." /><meta name="og:title" content="Prevention of Type 1 Diabetes" /><meta name="og:type" content="book" /><meta name="og:description" content="Type 1 diabetes is a progressive disease. There is a genetic predisposition to type 1 diabetes, particularly conferred by alleles present within the major histocompatibility complex (HLA region) on the short arm of chromosome six. It is thought that in susceptible individuals, an environmental trigger initiates an immune response. Immune infiltration into pancreatic islets results in beta cell damage, impairment of beta cell function, and potential destruction of beta cells. One would expect that if type 1 diabetes is an immunologically mediated disease, then immune intervention should alter the natural history of the disease and potentially abrogate the clinical syndrome." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK567991/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-dia3ed-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/dia3ed/ch37/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK567991/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8C66D07C9A5D2100000000011D00EF.m_14" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="nlmcatalog" class="last">NLM Catalog</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Cowie CC, Casagrande SS, Menke A, et al., editors. Diabetes in America. 3rd edition. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US); 2018 Aug. </p></div><div class="bk_msg_box bk_bttm_mrgn clearfix bk_noprnt"><div class="iconblock clearfix"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/diaonline/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-diaonline-lrg.png" alt="Cover" height="100px" width="80px" /></a><div class="icnblk_cntnt"><ul class="messages"><li class="info icon"><span class="icon"><a href="/books/n/diaonline/">Diabetes in America</a></span></li></ul></div></div></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/dia3ed/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-dia3ed-lrg.png" alt="Cover of Diabetes in America" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>Diabetes in America. 3rd edition.</h2><a data-jig="ncbitoggler" href="#__NBK567991_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK567991_dtls__"><div>Cowie CC, Casagrande SS, Menke A, et al., editors.</div><div>Bethesda (MD): <a href="https://www.niddk.nih.gov/" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">National Institute of Diabetes and Digestive and Kidney Diseases (US)</a>; 2018 Aug.</div></div><div class="half_rhythm"><ul class="inline_list"><li style="margin-right:1em"><a class="bk_cntns" href="/books/n/dia3ed/">Contents</a></li><li style="margin-left:1em"><a href="https://www.niddk.nih.gov/about-niddk/strategic-plans-reports/diabetes-in-america-3rd-edition" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">Original Version at NIDDK</a></li></ul></div></div><div class="icnblk_cntnt two_col"><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/dia3ed/section3/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/dia3ed/ch38/" title="Next page in this title">Next &gt;</a></div></div></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK567991_"><span class="label">CHAPTER 37</span><span class="title" itemprop="name">Prevention of Type 1 Diabetes</span></h1><p class="contrib-group"><span itemprop="author">Jay S. Skyler</span>, MD, MACP, <span itemprop="author">Jeffrey P. Krischer</span>, PhD, <span itemprop="author">Dorothy J. Becker</span>, MD, MBBCh, and <span itemprop="author">Marian Rewers</span>, MD, PhD.</p><a data-jig="ncbitoggler" href="#__NBK567991_ai__" style="border:0;text-decoration:none">Author Information and Affiliations</a><div style="display:none" class="ui-widget" id="__NBK567991_ai__"><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Jay S. Skyler</span>, MD, MACP,<sup>1</sup> <span itemprop="author">Jeffrey P. Krischer</span>, PhD,<sup>2</sup> <span itemprop="author">Dorothy J. Becker</span>, MD, MBBCh,<sup>3</sup> and <span itemprop="author">Marian Rewers</span>, MD, PhD<sup>4</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup> Dr. Jay S. Skyler is Professor of Medicine at the Diabetes Research Institute, University of Miami Miller School of Medicine, University of Miami, Miami, FL</div><div class="affiliation"><sup>2</sup> Dr. Jeffrey P. Krischer is Professor at the University of South Florida College of Medicine, and Director of the USF Diabetes Center and USF Health Informatics Institute, Tampa, FL</div><div class="affiliation"><sup>3</sup> Dr. Dorothy J. Becker is Professor of Pediatrics in the Division of Endocrinology and Diabetes, Children&#x02019;s Hospital of Pittsburgh of UPMC, Pittsburgh, PA</div><div class="affiliation"><sup>4</sup> Dr. Marian Rewers is Professor of Pediatrics and Medicine at the Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO</div></div></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="ch37.sum"><h2 id="_ch37_sum_">Summary</h2><p>Type 1 diabetes is a progressive disease. There is a genetic predisposition to type 1 diabetes, particularly conferred by alleles present within the major histocompatibility complex (HLA region) on the short arm of chromosome six. It is thought that in susceptible individuals, an environmental trigger initiates an immune response. Immune infiltration into pancreatic islets results in beta cell damage, impairment of beta cell function, and potential destruction of beta cells. One would expect that if type 1 diabetes is an immunologically mediated disease, then immune intervention should alter the natural history of the disease and potentially abrogate the clinical syndrome.</p><p>Intervention trials have been conducted at a number of stages of the disease process. Primary prevention trials have been conducted in individuals with a genetic predisposition who have not yet developed immunologic markers (&#x0201c;Pre-Stage 1&#x0201d;). Secondary prevention trials have been conducted in individuals with two or more diabetes-related autoantibodies, either during Stage 1 of type 1 diabetes (normal metabolic function) or Stage 2 of type 1 diabetes (abnormal metabolic function). Intervention trials, also called tertiary prevention trials, have been conducted in individuals with Stage 3 of type 1 diabetes (clinical hyperglycemia), usually shortly after clinical onset of disease.</p><p>This chapter provides brief summaries of the randomized controlled clinical trials that have been conducted and also mentions some non-randomized pilot studies. Unfortunately, none of the primary or secondary prevention trials have clearly arrested the disease process. Some tertiary intervention trials have demonstrated improved beta cell function, at least for some period of time, after which beta cell function has generally declined in parallel to that in the respective control group. This could be a consequence of most studies focusing on only a single immunologic mechanism; whereas, what may be required are studies that deal with multiple immunologic mechanisms, including attempting to improve regulatory immunity, while also addressing beta cell function by including interventions that improve beta cell health.</p></div><div id="ch37.s1"><h2 id="_ch37_s1_">Introduction</h2><p>Type 1 diabetes is a slowly progressive disease, with a genetic predisposition, where a putative environmental trigger initiates an immune response that results in pancreatic islet beta cell damage, impairment of beta cell function, and destruction of beta cells (<a class="bk_pop" href="#ch37.ref1">1</a>,<a class="bk_pop" href="#ch37.ref2">2</a>,<a class="bk_pop" href="#ch37.ref3">3</a>). Although the initial characterization suggested a slow, linear progression of disease (<a class="figpopup" href="/books/NBK567991/figure/ch37.fig1/?report=objectonly" target="object" rid-figpopup="figch37fig1" rid-ob="figobch37fig1">Figure 37.1</a>) (<a class="bk_pop" href="#ch37.ref1">1</a>), more recent thought is that there is more variability in the progression, perhaps with waxing and waning or with intermittent immune attacks (<a class="bk_pop" href="#ch37.ref3">3</a>). Moreover, the disease may be a consequence of imbalance between the immune system and the ability of the pancreatic beta cell to withstand attack (<a class="bk_pop" href="#ch37.ref4">4</a>).</p><p>A genetic basis for the disease in association with human leukocyte antigen (HLA) was first described in the early 1970s (<a class="bk_pop" href="#ch37.ref5">5</a>). Subsequently, that relationship has been extensively characterized (<a class="bk_pop" href="#ch37.ref6">6</a>,<a class="bk_pop" href="#ch37.ref7">7</a>,<a class="bk_pop" href="#ch37.ref8">8</a>,<a class="bk_pop" href="#ch37.ref9">9</a>), with both Class II (<a class="bk_pop" href="#ch37.ref9">9</a>,<a class="bk_pop" href="#ch37.ref10">10</a>) and Class I HLA (<a class="bk_pop" href="#ch37.ref11">11</a>) contributing to genetic susceptibility, and even the identification of protective HLA haplotypes (<a class="bk_pop" href="#ch37.ref12">12</a>). Although multiple other potential genes have been identified as possible contributors to type 1 diabetes (<a class="bk_pop" href="#ch37.ref13">13</a>,<a class="bk_pop" href="#ch37.ref14">14</a>), the HLA region remains the major contributor to genetic predisposition (<a class="bk_pop" href="#ch37.ref15">15</a>). Indeed, based on a study of the general population of Denver newborns, children born with the high-risk genotype HLA-DR3/4-DQ8 comprise almost 50% of children who develop anti-islet autoimmunity by age 5 years (<a class="bk_pop" href="#ch37.ref16">16</a>). In addition, the cumulative burden of non-major histocompatibility complex (MHC) susceptibility genes may play a role in determining the rate of disease progression. Genetic factors associated with type 1 diabetes are described in detail in <a href="/books/n/dia3ed/ch12/">Chapter 12</a>
<i>Genetics of Type 1 Diabetes</i>.</p><p>In genetically susceptible individuals, the disease process eventuating in type 1 diabetes likely is initiated by an environmental trigger (<a class="bk_pop" href="#ch37.ref17">17</a>,<a class="bk_pop" href="#ch37.ref18">18</a>). It is unclear whether such a trigger is an infectious agent, such as an enterovirus, a dietary factor, alteration of the intestinal microbiome, or some other factor. Moreover, the association between environmental factors and the course of the disease is complicated by observations that not only initiation of the disease process, but also the rate of progression to clinical onset, may be affected by environmental determinants and that metabolic decompensation at disease onset may be a consequence of another unrelated or nonspecific environmental event. Ongoing observational cohort studies, such as The Environmental Determinants of Diabetes in the Young (TEDDY) study (<a class="bk_pop" href="#ch37.ref19">19</a>,<a class="bk_pop" href="#ch37.ref20">20</a>), are designed to ascertain environmental determinants that may trigger islet autoimmunity and either speed up or slow down the progression to clinical onset in subjects with persistent islet autoimmunity. Please see <a href="/books/n/dia3ed/ch11/">Chapter 11</a>
<i>Risk Factors for Type 1 Diabetes</i> for more discussion of putative environmental triggers of type 1 diabetes.</p><p>The type 1 diabetes immune response is initiated by antigen presentation and then mediated by T lymphocytes (<a class="bk_pop" href="#ch37.ref21">21</a>,<a class="bk_pop" href="#ch37.ref22">22</a>), resulting in a lymphocytic inflammatory response in pancreatic islets that has been called insulitis (<a class="bk_pop" href="#ch37.ref23">23</a>). It appears to involve an autoreactive response by both effector CD4 (<a class="bk_pop" href="#ch37.ref24">24</a>) and cytotoxic CD8 (<a class="bk_pop" href="#ch37.ref25">25</a>) T lymphocytes. These have the capacity to mediate damage both via cytokine effects (possibly involving such cytokines as interleukin-1 [IL-1] and tumor necrosis factor alpha [TNF-&#x003b1;]) or direct cytotoxic T lymphocyte-mediated lysis. This initial immune response, with continued lysis, creates the potential of a vicious cycle of inflammation, which also may engender secondary and tertiary immune responses that contribute to the impairment of beta cell function and potential destruction of beta cells (<a class="bk_pop" href="#ch37.ref3">3</a>,<a class="bk_pop" href="#ch37.ref4">4</a>,<a class="bk_pop" href="#ch37.ref21">21</a>). This insidious process evolves over a variable amount of time&#x02014;even many years in some individuals. The eventual overt manifestation of clinical symptoms becomes apparent only when most beta cells have lost function and many may have been destroyed.</p><p>The initial laboratory manifestation of this beta cell injury is seroconversion, i.e., the appearance of diabetes-related autoantibodies. These antibodies are generally thought not to mediate beta cell injury but rather to be markers of such injury. Diabetes-related autoantibodies were first described in the early 1970s, when islet cell antibodies (ICA) were identified by immunofluorescence (<a class="bk_pop" href="#ch37.ref26">26</a>). Subsequently, additional antibodies were identified with specific antigen targets, including insulin autoantibodies (IAA), antibodies to glutamic acid decarboxylase (GAD), antibodies to an aborted tyrosine phosphatase, which has been called islet antibody-2 (IA2), and antibodies to the zinc transporter (ZnT8) (<a class="bk_pop" href="#ch37.ref27">27</a>), all of which are components of beta cells.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch37fig1" co-legend-rid="figlgndch37fig1"><a href="/books/NBK567991/figure/ch37.fig1/?report=objectonly" target="object" title="FIGURE 37.1" class="img_link icnblk_img figpopup" rid-figpopup="figch37fig1" rid-ob="figobch37fig1"><img class="small-thumb" src="/books/NBK567991/bin/ch37f1.gif" src-large="/books/NBK567991/bin/ch37f1.jpg" alt="Flow chart showing a proposed model of the natural history of type 1 diabetes from genetic predisposition, to insulitis beta-cell injury, to prediabetes, then diabetes." /></a><div class="icnblk_cntnt" id="figlgndch37fig1"><h4 id="ch37.fig1"><a href="/books/NBK567991/figure/ch37.fig1/?report=objectonly" target="object" rid-ob="figobch37fig1">FIGURE 37.1</a></h4><p class="float-caption no_bottom_margin">Natural History of Type 1 Diabetes, 1986. A model of the natural history of type 1 diabetes, as proposed by Dr. George S. Eisenbarth in 1986. GAD65, glutamic acid decarboxylase 65 kD; IA2Ab, islet antibody-2; IAA, insulin autoantibodies; ICA, islet cell <a href="/books/NBK567991/figure/ch37.fig1/?report=objectonly" target="object" rid-ob="figobch37fig1">(more...)</a></p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch37fig2" co-legend-rid="figlgndch37fig2"><a href="/books/NBK567991/figure/ch37.fig2/?report=objectonly" target="object" title="FIGURE 37.2" class="img_link icnblk_img figpopup" rid-figpopup="figch37fig2" rid-ob="figobch37fig2"><img class="small-thumb" src="/books/NBK567991/bin/ch37f2.gif" src-large="/books/NBK567991/bin/ch37f2.jpg" alt="Flow chart showing the stages of type 1 diabetes from genetic predisposition, to autoantibodies, to dysglycemia, and finally symptomatic diabetes." /></a><div class="icnblk_cntnt" id="figlgndch37fig2"><h4 id="ch37.fig2"><a href="/books/NBK567991/figure/ch37.fig2/?report=objectonly" target="object" rid-ob="figobch37fig2">FIGURE 37.2</a></h4><p class="float-caption no_bottom_margin">Stages of Type 1 Diabetes, 2015. A model of type 1 diabetes staging, as proposed in a joint scientific statement of the JDRF, Endocrine Society, and American Diabetes Association in 2015. </p></div></div><p>Seroconversion is an important marker of the type 1 diabetes disease process. Indeed, in longitudinal studies of birth cohorts identified by genetic screening, such as DAISY (Diabetes AutoImmunity Study in the Young) (<a class="bk_pop" href="#ch37.ref28">28</a>), BABYDIAB (<a class="bk_pop" href="#ch37.ref29">29</a>), and DIPP (DIabetes Prediction and Prevention study) (<a class="bk_pop" href="#ch37.ref30">30</a>), if two or more antibodies appear, there is near certain progression to type 1 diabetes over the next two decades (<a class="bk_pop" href="#ch37.ref31">31</a>). This finding has led to a new classification of type 1 diabetes (<a class="figpopup" href="/books/NBK567991/figure/ch37.fig2/?report=objectonly" target="object" rid-figpopup="figch37fig2" rid-ob="figobch37fig2">Figure 37.2</a>), in which the presence of two or more antibodies defines Stage 1 of type 1 diabetes (<a class="bk_pop" href="#ch37.ref32">32</a>).</p><p>During further evolution of the disease, progressive metabolic changes are observable (<a class="bk_pop" href="#ch37.ref33">33</a>). Lack of beta cell sensitivity to glucose, i.e., failure of the beta cell to recognize glucose and appropriately secrete insulin, is an early defect (<a class="bk_pop" href="#ch37.ref34">34</a>), similar to that seen in type 2 diabetes (<a class="bk_pop" href="#ch37.ref35">35</a>). This may be manifested by loss of first phase insulin response to intravenous glucose (<a class="bk_pop" href="#ch37.ref36">36</a>) and dysglycemia (abnormal glucose levels not reaching the threshold for clinical diagnosis), which defines Stage 2 type 1 diabetes. Ultimately, there is progression to clinical type 1 diabetes (<a class="bk_pop" href="#ch37.ref37">37</a>), now also called Stage 3 (<a class="bk_pop" href="#ch37.ref32">32</a>). A risk score, taking into account several of these metabolic changes, has been developed (<a class="bk_pop" href="#ch37.ref38">38</a>) and validated (<a class="bk_pop" href="#ch37.ref39">39</a>). After the clinical onset of type 1 diabetes, there is further progressive decline of beta cell function (<a class="bk_pop" href="#ch37.ref40">40</a>).</p><p>One would expect that if type 1 diabetes is an immunologically mediated disease, then immune intervention should alter the natural history of the disease and potentially abrogate the clinical syndrome. This has certainly been the case in animal models of type 1 diabetes (<a class="bk_pop" href="#ch37.ref41">41</a>,<a class="bk_pop" href="#ch37.ref42">42</a>,<a class="bk_pop" href="#ch37.ref43">43</a>). The first reported attempt at immune intervention in type 1 diabetes was in the late 1970s in a handful of subjects (<a class="bk_pop" href="#ch37.ref44">44</a>). In the 1980s, a number of small trials were conducted with a variety of immunologic agents (<a class="bk_pop" href="#ch37.ref45">45</a>,<a class="bk_pop" href="#ch37.ref46">46</a>). Since then, initially stimulated by a provocative pilot study with cyclosporine (<a class="bk_pop" href="#ch37.ref47">47</a>), a large number of studies have been conducted, mostly in recent-onset type 1 diabetes in an attempt to interdict the disease process and preserve beta cell function (<a class="bk_pop" href="#ch37.ref48">48</a>,<a class="bk_pop" href="#ch37.ref49">49</a>). A few studies have been conducted prior to any evidence of autoimmunity (primary prevention) or after the development of diabetes-related autoantibodies (secondary prevention) (<a class="bk_pop" href="#ch37.ref50">50</a>). The goal of such primary and secondary interventions is to arrest the immune process and, thus, prevent or delay clinical disease.</p><p><a class="figpopup" href="/books/NBK567991/table/ch37.tab1/?report=objectonly" target="object" rid-figpopup="figch37tab1" rid-ob="figobch37tab1">Table 37.1</a> lists both completed and ongoing primary and secondary prevention trials. <a class="figpopup" href="/books/NBK567991/table/ch37.tab2/?report=objectonly" target="object" rid-figpopup="figch37tab2" rid-ob="figobch37tab2">Table 37.2</a> lists a large number of contemporary intervention trials in subjects with clinical Stage 3 type 1 diabetes, mostly in recent-onset subjects, but some in established disease. Most studies listed are randomized controlled clinical trials, although a few pilot studies of significance are included.</p></div><div id="ch37.s2"><h2 id="_ch37_s2_">Primary Prevention Trials</h2><p>Primary prevention trials (<a class="figpopup" href="/books/NBK567991/table/ch37.tab1/?report=objectonly" target="object" rid-figpopup="figch37tab1" rid-ob="figobch37tab1">Table 37.1</a>) have been conducted in birth cohorts identified by genetic screening, with the interventions initiated at a time when there are neither signs of autoimmunity nor metabolic impairment. Since there is uncertainty as to whether those infants identified by genetic screening will progress to type 1 diabetes, any interventions tested must be extremely safe. As a consequence, virtually all primary prevention trials to date have involved dietary interventions directed at putative environmental triggers of type 1 diabetes (<a class="bk_pop" href="#ch37.ref51">51</a>,<a class="bk_pop" href="#ch37.ref52">52</a>,<a class="bk_pop" href="#ch37.ref53">53</a>,<a class="bk_pop" href="#ch37.ref54">54</a>,<a class="bk_pop" href="#ch37.ref55">55</a>,<a class="bk_pop" href="#ch37.ref56">56</a>).</p><p>A meta-analysis had demonstrated a correlation between onset of type 1 diabetes and either early introduction of cow&#x02019;s milk formula or a short period of breastfeeding (<a class="bk_pop" href="#ch37.ref57">57</a>). Consequently, two studies evaluated whether at the time of weaning, replacement of breast milk with a formula based on casein hydrolysate rather than conventional cow&#x02019;s milk-based formula could reduce the development of autoimmunity (<a class="bk_pop" href="#ch37.ref51">51</a>,<a class="bk_pop" href="#ch37.ref52">52</a>). Eligible infants had HLA-conferred susceptibility to type 1 diabetes and at least one family member with type 1 diabetes. A pilot study in Finland enrolled 230 infants (<a class="bk_pop" href="#ch37.ref51">51</a>). The investigators reported that the group assigned to casein hydrolysate formula had a reduced risk of development of beta cell autoimmunity (appearance of one or more antibodies) (hazard ratio [HR] 0.54, 95% confidence interval [CI] 0.29&#x02013;0.95; HR adjusted for observed difference in duration of exposure to study formula 0.51, 95% CI 0.28&#x02013;0.91) (<a class="bk_pop" href="#ch37.ref51">51</a>). The larger Trial to Reduce IDDM in the Genetically at Risk (TRIGR) study, a multinational trial involving 77 centers in 15 countries, registered over 5,000 newborns and randomized 2,159 newborns with risk genotypes (approximately 45% of those screened) (<a class="bk_pop" href="#ch37.ref52">52</a>). After 7 years, the TRIGR Study Group found no difference in the rate of appearance of diabetes autoantibodies (<a class="bk_pop" href="#ch37.ref52">52</a>). In the group assigned to casein hydrolysate formula, 13.4% had two or more islet autoantibodies versus 11.4% among those randomized to the conventional formula (unadjusted HR 1.21, 95% CI 0.94&#x02013;1.54). When the hazard ratio was adjusted for HLA risk, duration of breastfeeding, vitamin D use, study formula duration and consumption, and region of the world, it was 1.23 (95% CI 0.96&#x02013;1.58). Nonetheless, TRIGR is continuing follow-up because it was designed with a primary outcome of the development of type 1 diabetes by age 10 years.</p><p>To evaluate whether bovine insulin might be the component of cow&#x02019;s milk that serves as a trigger for type 1 diabetes, the Finnish Dietary Intervention Trial for the Prevention of Type 1 Diabetes (FINDIA) compared three formulas: cow&#x02019;s milk formula (control), whey-based hydrolyzed formula, or whey-based FINDIA formula essentially free of bovine insulin, whenever breast milk was not available during the first 6 months of life (<a class="bk_pop" href="#ch37.ref53">53</a>). Of 5,003 infants screened, 1,113 were found eligible, 1,104 were randomized, and 908 provided at least one follow-up sample. By age 3 years, the group assigned to the FINDIA formula had a reduced risk of development of beta cell autoimmunity, defined as the appearance of one or more antibodies (in the intention-to-treat analysis, odds ratio [OR] 0.39, 95% CI 0.17&#x02013;0.91, p=0.03; in the actual treatment-received analysis, OR 0.23, 95% CI 0.08&#x02013;0.69, p&#x0003c;0.01, in the FINDIA group when compared with the cow&#x02019;s milk formula group) (<a class="bk_pop" href="#ch37.ref53">53</a>).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figch37tab1"><a href="/books/NBK567991/table/ch37.tab1/?report=objectonly" target="object" title="TABLE 37.1" class="img_link icnblk_img figpopup" rid-figpopup="figch37tab1" rid-ob="figobch37tab1"><img class="small-thumb" src="/books/NBK567991/table/ch37.tab1/?report=thumb" src-large="/books/NBK567991/table/ch37.tab1/?report=previmg" alt="TABLE 37.1. Trials for Primary and Secondary Prevention of Type 1 Diabetes." /></a><div class="icnblk_cntnt"><h4 id="ch37.tab1"><a href="/books/NBK567991/table/ch37.tab1/?report=objectonly" target="object" rid-ob="figobch37tab1">TABLE 37.1</a></h4><p class="float-caption no_bottom_margin">Trials for Primary and Secondary Prevention of Type 1 Diabetes. </p></div></div><p>The BABYDIET study, a randomized controlled trial, evaluated whether delayed exposure to gluten reduces the risk of diabetes autoimmunity (<a class="bk_pop" href="#ch37.ref54">54</a>). The rationale for the study was based on the investigators&#x02019; earlier observation of increased risk of islet autoimmunity in children who are exposed to gluten early in life (<a class="bk_pop" href="#ch37.ref58">58</a>). The trial randomized 150 infants with a first-degree relative with type 1 diabetes and an HLA genotype consistent with type 1 diabetes risk. They were assigned either to first gluten exposure at age 6 months (control group) or at age 12 months (late-exposure group) and were followed every 3 months until age 3 years and yearly thereafter. BABYDIET found that delaying gluten exposure until the age of 12 months is safe but does not substantially reduce the risk for islet autoimmunity (3-year risk: 12% vs. 13%, p=0.6) (<a class="bk_pop" href="#ch37.ref54">54</a>).</p><p>The TrialNet Nutritional Intervention to Prevent (NIP) Type 1 Diabetes Pilot Trial assessed the feasibility of implementing a study to determine the effect of nutritional supplements with the omega-3 fatty acid docosahexaenoic acid (DHA), which has anti-inflammatory effects, during the last trimester of pregnancy and the first few years of life (<a class="bk_pop" href="#ch37.ref55">55</a>). NIP found that supplementation of infant diets with DHA was safe and resulted in an increased level of DHA in infant erythrocytes but did not find consistent changes in inflammatory cytokines (<a class="bk_pop" href="#ch37.ref55">55</a>).</p><p>Based on putative observations that vitamin D may be protective against type 1 diabetes, a group of Canadian investigators showed in a small pilot study that it was possible to recruit babies from the general population for identification of HLA-associated risk status followed by enrollment by age 1 month to a randomized controlled prevention trial of vitamin D supplementation (<a class="bk_pop" href="#ch37.ref56">56</a>). Therefore, they have proposed a nationwide study (in Canada) to evaluate the hypothesis that vitamin D supplementation can decrease the risk of islet autoimmunity and type 1 diabetes.</p><p>The Primary Oral Insulin Therapy (Pre-POINT) study was a pilot safety study of the use of oral insulin in children age 2&#x02013;7 years at risk of developing type 1 diabetes (<a class="bk_pop" href="#ch37.ref59">59</a>). The study found that daily oral administration of 67.5 mg insulin is safe and can actively engage the immune system with features of immune regulation in children who are genetically at risk of developing type 1 diabetes. Consequently, a larger randomized controlled trial has been initiated (<a class="bk_pop" href="#ch37.ref60">60</a>).</p><p>It would seem desirable to conduct more studies in those with genetic predisposition, particularly if a safe vaccine-type approach can be studied. This might involve an antigen-based vaccine (such as that used in the Pre-POINT study) or a vaccine directed against potential viral triggers of disease. In order to conduct such trials, it will be necessary to screen various populations at or shortly after birth, looking for high-risk genetic predisposition. Theoretically, if such trials resulted in prevention of type 1 diabetes, this would change public health practice, leading to routine screening at birth for high genetic risk of type 1 diabetes. Further, if the intervention were totally safe, it could ultimately be included in routine neonatal or infant vaccination programs.</p></div><div id="ch37.s3"><h2 id="_ch37_s3_">Secondary Prevention Trials</h2><p>Secondary prevention trials (<a class="figpopup" href="/books/NBK567991/table/ch37.tab1/?report=objectonly" target="object" rid-figpopup="figch37tab1" rid-ob="figobch37tab1">Table 37.1</a>) are those conducted in individuals with Stage 1 (autoantibodies alone) or Stage 2 type 1 diabetes (autoantibodies and metabolic dysfunction) (<a class="figpopup" href="/books/NBK567991/figure/ch37.fig2/?report=objectonly" target="object" rid-figpopup="figch37fig2" rid-ob="figobch37fig2">Figure 37.2</a>) (<a class="bk_pop" href="#ch37.ref32">32</a>). Most of these studies have been conducted in individuals, generally first- or second-degree relatives of people with type 1 diabetes, who initially have been identified by screening for diabetes-associated autoantibodies. Because not all of those with antibodies will progress to type 1 diabetes, selection of interventions to be tested has been done cautiously. Indeed, all completed secondary prevention studies have used either nicotinamide (a water soluble vitamin [B6] derived from nicotinic acid) or insulin given in one form or another (<a class="bk_pop" href="#ch37.ref61">61</a>,<a class="bk_pop" href="#ch37.ref62">62</a>,<a class="bk_pop" href="#ch37.ref63">63</a>,<a class="bk_pop" href="#ch37.ref64">64</a>,<a class="bk_pop" href="#ch37.ref65">65</a>,<a class="bk_pop" href="#ch37.ref66">66</a>,<a class="bk_pop" href="#ch37.ref67">67</a>,<a class="bk_pop" href="#ch37.ref68">68</a>,<a class="bk_pop" href="#ch37.ref69">69</a>). Ongoing secondary prevention trials are either antigen-based&#x02014;using insulin (nasal (<a class="bk_pop" href="#ch37.ref70">70</a>) or oral (<a class="bk_pop" href="#ch37.ref71">71</a>)) or GAD (<a class="bk_pop" href="#ch37.ref72">72</a>)&#x02014;or use immunomodulatory therapies that have previously been found to be relatively safe and with beneficial effects on beta cell function in tertiary prevention studies in recent-onset type 1 diabetes, namely teplizumab (<a class="bk_pop" href="#ch37.ref73">73</a>) and abatacept (<a class="bk_pop" href="#ch37.ref74">74</a>).</p><div id="ch37.s3.1"><h3>Nicotinamide Trials</h3><p>Nicotinamide, a water-soluble vitamin, had been shown to prevent diabetes in animal models and was asserted to have beneficial effect in school children. Consequently, two studies evaluated the effects of nicotinamide in at-risk relatives of individuals with type 1 diabetes: the German (Deutsch) Nicotinamide Diabetes Intervention Study (DENIS) (<a class="bk_pop" href="#ch37.ref61">61</a>) and the European Nicotinamide Diabetes Intervention Trial (ENDIT) (<a class="bk_pop" href="#ch37.ref62">62</a>). Both were randomized placebo-controlled trials. DENIS randomized 55 relatives age 3&#x02013;12 years and used a sequential interim analysis design, which provided a 10% probability of a type II error against a reduction of the cumulative diabetes incidence at 3 years from 30% to 6% by nicotinamide. The trial was terminated, after 11 cases of diabetes, when it failed to achieve that endpoint (p=0.97) (<a class="bk_pop" href="#ch37.ref61">61</a>). ENDIT screened over 35,000 relatives age 3&#x02013;40 years and randomized 552 individuals to nicotinamide or placebo. By confining recruitment to ICA-positive, first-degree relatives of individuals in whom type 1 diabetes had onset at age &#x0003c;20 years, the relatives who screened positive were projected to have a 5-year risk of type 1 diabetes of 40%. During 4 years of follow-up, the rate of development of type 1 diabetes was nearly identical in both the nicotinamide and placebo groups, with an unadjusted hazard ratio of 1.07 (95% CI 0.78&#x02013;1.45, p=0.69) (<a class="bk_pop" href="#ch37.ref62">62</a>). Thus, in these two studies, nicotinamide failed to delay the development of type 1 diabetes.</p></div><div id="ch37.s3.2"><h3>Insulin Trials</h3><p>The Diabetes Prevention Trial-Type 1 (DPT-1) Study Group conducted two studies concomitantly: (1) the DPT-1 Parenteral Insulin Trial (<a class="bk_pop" href="#ch37.ref63">63</a>) evaluated injected (parenteral) insulin in individuals with a projected 5-year risk of type 1 diabetes of at least 50% (who had Stage 2 type 1 diabetes) and (2) the DPT-1 Oral Insulin Trial (<a class="bk_pop" href="#ch37.ref64">64</a>) evaluated oral insulin in individuals with a projected 5-year risk of type 1 diabetes of 25%&#x02013;50% (who had Stage 1 type 1 diabetes). DPT-1 screened over 100,000 relatives of patients with type 1 diabetes for ICA by immunofluorescence and randomized 339 and 372 subjects, respectively, in the two trials.</p><p>Eligibility for the DPT-1 Parenteral Insulin Trial required, in addition to antibodies, evidence of decreased metabolic function, manifested by either reduced first phase insulin response to intravenous glucose or glucose intolerance during an oral glucose tolerance test, thus meeting the criteria for Stage 2 type 1 diabetes. The experimental intervention was two daily injections of long-acting ultralente insulin, plus a 96-hour continuous intravenous insulin infusion at baseline and annually thereafter. The randomized control group was closely observed but did not receive placebo. The rate of development of diabetes was the same in both the treated group and the control group (HR 0.96, 95% CI 0.69&#x02013;1.34, p=0.80) (<a class="bk_pop" href="#ch37.ref63">63</a>). The DPT-1 Parenteral Insulin Trial found that the actual 5-year rate of developing type 1 diabetes was 65%, greater than the projected rate of at least 50%.</p><p>Eligibility for the DPT-1 Oral Insulin Trial required, in addition to ICA, IAA, intact first phase insulin response to intravenous glucose, and normal glucose tolerance, thus meeting the criteria for Stage 1 type 1 diabetes. Randomized subjects received either oral insulin or matched placebo taken daily. The rate of development of diabetes was the same in both groups (HR 0.76, 95% CI 0.51&#x02013;1.14, p=0.189) (<a class="bk_pop" href="#ch37.ref64">64</a>). The DPT-1 Oral Insulin Trial found that the actual 5-year rate of developing type 1 diabetes was 35%, within the projected range of 25%&#x02013;50%. In a <i>post hoc</i> analysis, a subgroup (individuals with higher IAA titers at baseline) was identified in which oral insulin appeared to have a beneficial effect. This subgroup had a projected delay of 4.5&#x02013;5 years in onset of type 1 diabetes if baseline IAA titer was &#x0003e;80 nU/mL (<a class="bk_pop" href="#ch37.ref64">64</a>) and a projected delay of 10 years if baseline IAA titer was &#x0003e;300 nU/mL (<a class="bk_pop" href="#ch37.ref65">65</a>). Further follow-up of the DPT-1 oral insulin cohort showed that effects were maintained after administration of oral insulin was ceased (<a class="bk_pop" href="#ch37.ref66">66</a>). Because the subgroup with a potential beneficial effect was identified in a <i>post hoc</i> analysis, an ongoing trial conducted by Type 1 Diabetes TrialNet is examining oral insulin in subjects similar to those in the subgroup with higher titer IAA (<a class="bk_pop" href="#ch37.ref71">71</a>).</p><p>The Belgian Diabetes Registry also evaluated whether parenteral insulin might delay the development of type 1 diabetes (<a class="bk_pop" href="#ch37.ref67">67</a>). In this study, the experimental group received regular insulin twice daily before the most carbohydrate-rich meals, and the randomized control group was closely observed but did not receive placebo. Fifty subjects were randomized&#x02014;25 each to treatment and control. Eligible subjects were age 5&#x02013;40 years, with IA2 antibodies and normal oral glucose tolerance, thus meeting the criteria of Stage 1 type 1 diabetes. There was no difference in diabetes-free survival between the two groups (p=0.97), with 5-year progression of 44% in the treated group and 49% in the control group.</p><p>The DIPP study was conducted in Finland among newborns from the general population (i.e., without relatives with type 1 diabetes) with high-risk HLA-DQB1 susceptibility alleles for type 1 diabetes (<a class="bk_pop" href="#ch37.ref68">68</a>). Cord blood samples from 116,720 consecutively born infants were screened, which identified 17,397 with high or moderate genetic risk, of whom 10,577 participated in a prospective study with serial follow-up for presence of diabetes autoantibodies. The intervention study required at least two antibodies in two consecutive samples (Stage 1 type 1 diabetes); of 328 subjects who met that criteria, 224 were randomized to receive either intranasal insulin or placebo. DIPP also screened siblings of those infants and followed those siblings who also had increased genetic risk; of 52 siblings who met enrollment criteria, 40 were randomized to receive intranasal insulin or placebo. During follow-up, within each of the cohorts (infants and siblings), the rate of progression to type 1 diabetes was the same in the intranasal insulin group and the placebo group (<a class="bk_pop" href="#ch37.ref68">68</a>).</p><p>Another study, conducted in Australia, the Intranasal Insulin Trial (INIT 1), used a double-blind crossover design to evaluate safety of intranasal insulin (<a class="bk_pop" href="#ch37.ref69">69</a>). The study included 38 subjects at risk of type 1 diabetes, who were treated with either intranasal insulin or placebo, daily for 10 days and then 2 days per week for 6 months, after which they were crossed over to the other treatment. There was no acceleration of onset of type 1 diabetes nor were there other adverse outcomes. Intranasal insulin was associated with an increase in antibody and a decrease in T cell responses to insulin. Since there were no safety issues, the ongoing Intranasal Insulin Trial-II (INIT II), under the auspices of the Diabetes Vaccine Development Centre (DVDC) in Australia, is evaluating whether intranasal insulin can delay or prevent the onset of type 1 diabetes (<a class="bk_pop" href="#ch37.ref70">70</a>).</p></div><div id="ch37.s3.3"><h3>Other Ongoing Secondary Prevention Trials</h3><p>As noted in <a class="figpopup" href="/books/NBK567991/table/ch37.tab1/?report=objectonly" target="object" rid-figpopup="figch37tab1" rid-ob="figobch37tab1">Table 37.1</a>, other ongoing secondary prevention trials include the Diabetes Prevention - Immune Tolerance study (DIAPREV-IT) with a GAD vaccine (<a class="bk_pop" href="#ch37.ref72">72</a>) and Type 1 Diabetes TrialNet studies using teplizumab (<a class="bk_pop" href="#ch37.ref73">73</a>) and abatacept (<a class="bk_pop" href="#ch37.ref74">74</a>). The enrollment criteria for three ongoing TrialNet studies are different. Eligibility for the TrialNet oral insulin study (<a class="bk_pop" href="#ch37.ref71">71</a>) requires at least two antibodies, one of which is IAA, intact first phase insulin response to intravenous glucose, and normal glucose tolerance. Eligibility for the TrialNet abatacept study (<a class="bk_pop" href="#ch37.ref74">74</a>) requires at least two antibodies, one of which is not IAA, and normal glucose tolerance. Eligibility for the TrialNet teplizumab study (<a class="bk_pop" href="#ch37.ref73">73</a>) requires at least one antibody and dysglycemia during an oral glucose tolerance test.</p></div><div id="ch37.s3.4"><h3>Screening and Enrollment for Secondary Prevention Trials</h3><p>Secondary prevention trials involve screening of relatives of people with type 1 diabetes and enrollment of those with early markers of disease, either autoantibodies alone (Stage 1) or autoantibodies and metabolic dysfunction (Stage 2). In cross-sectional screening of relatives for autoantibodies in DPT-1 and TrialNet, &#x0003c;5% of relatives are found to have autoantibodies. Although this rate is tenfold to twentyfold higher than would be seen in the general population of the United States, it still means that to enroll secondary prevention trials, large numbers of subjects need to be screened. For example, DPT-1 screened over 100,000 relatives to enroll a total of 711 subjects in the two arms of that study (parenteral insulin and oral insulin).</p></div></div><div id="ch37.s4"><h2 id="_ch37_s4_">Tertiary Prevention Trials</h2><p>Tertiary prevention trials (<a class="figpopup" href="/books/NBK567991/table/ch37.tab2/?report=objectonly" target="object" rid-figpopup="figch37tab2" rid-ob="figobch37tab2">Table 37.2</a>) have been conducted in subjects with Stage 3 clinical type 1 diabetes (i.e., classic symptomatic type 1 diabetes requiring insulin therapy) (<a class="figpopup" href="/books/NBK567991/figure/ch37.fig2/?report=objectonly" target="object" rid-figpopup="figch37fig2" rid-ob="figobch37fig2">Figure 37.2</a>) (<a class="bk_pop" href="#ch37.ref32">32</a>), mostly recent onset, but some in established disease. As noted, there were many early pilot trials with a variety of immune interventions (<a class="bk_pop" href="#ch37.ref45">45</a>,<a class="bk_pop" href="#ch37.ref46">46</a>) that will not be discussed here. Rather, this discussion is confined to randomized controlled trials and studies that have either tested contemporary immunologic approaches or ones that offer special insights.</p><div id="ch37.s4.1"><h3>Early Intervention Studies</h3><div id="ch37.s4.1.1"><h4>Cyclosporine</h4><p>A pilot study by Stiller <i>et al</i>. (<a class="bk_pop" href="#ch37.ref47">47</a>), reported in 1984, used cyclosporine, an immunosuppressive agent targeting T lymphocytes, which served to stimulate the field, including the conduct of a number of cyclosporine studies (<a class="bk_pop" href="#ch37.ref75">75</a>,<a class="bk_pop" href="#ch37.ref76">76</a>,<a class="bk_pop" href="#ch37.ref77">77</a>,<a class="bk_pop" href="#ch37.ref78">78</a>,<a class="bk_pop" href="#ch37.ref79">79</a>,<a class="bk_pop" href="#ch37.ref80">80</a>). Two large randomized controlled trials compared &#x0201c;remission&#x0201d; rates with cyclosporine versus placebo in subjects with new-onset Stage 3 type 1 diabetes (<a class="bk_pop" href="#ch37.ref75">75</a>,<a class="bk_pop" href="#ch37.ref76">76</a>). In the French study (<a class="bk_pop" href="#ch37.ref75">75</a>), &#x0201c;complete remission&#x0201d; was defined as good metabolic control (aiming at fasting blood glucose &#x0003c;140 mg/dL [&#x0003c;7.77 mmol/L], postprandial blood glucose &#x0003c;200 mg/dL [&#x0003c;11.10 mmol/L], and glycosylated hemoglobin [A1c] &#x0003c;7.5% [&#x0003c;58 mmol/mol]) in the absence of insulin treatment. &#x0201c;Partial remission&#x0201d; was defined by the same metabolic criteria obtained with &#x0003c;0.25 units/kg per day of insulin. In the Canadian-European study (<a class="bk_pop" href="#ch37.ref76">76</a>), the same metabolic targets were used, but &#x0201c;remission&#x0201d; also required a stimulated C-peptide level &#x0003e;0.6 nmol/L or a non-insulin requiring (NIR) state. Doses of cyclosporine were progressively lowered and stopped after a period of time if remission was not achieved.</p><p>Both studies showed a greater proportion of subjects in remission with cyclosporine than with placebo, but the rate of remission progressively declined in both groups during the 1-year course of the study. Two smaller studies, in Miami (<a class="bk_pop" href="#ch37.ref77">77</a>) and Denver (<a class="bk_pop" href="#ch37.ref78">78</a>), also were conducted. The Miami study showed a slower rate of decline of stimulated C-peptide with cyclosporine compared to placebo. The Denver study showed a slightly greater, but not statistically significant, difference in the rate of remission in the cyclosporine group than the placebo group. Meanwhile, buoyed by two randomized controlled trials showing the beneficial effects of cyclosporine, a French team initiated a study of cyclosporine in which all eligible subjects received the drug (<a class="bk_pop" href="#ch37.ref79">79</a>). In that study, 27 of 40 subjects (67.5%), all of whom were children, achieved remission. Enrollment was expanded, and subjects were followed for a protracted period of time, during which subjects lost their remission in spite of continued cyclosporine therapy (<a class="bk_pop" href="#ch37.ref80">80</a>). This lack of long-term benefit, coupled with the then-emerging recognition of cyclosporine side effects (particularly renal disease), led to virtual abandonment of this therapy in type 1 diabetes.</p></div><div id="ch37.s4.1.2"><h4>Azathioprine</h4><p>In the same era, the mid-1980s, several studies were conducted with azathioprine, an immunomodulatory agent, in recent-onset Stage 3 type 1 diabetes (<a class="bk_pop" href="#ch37.ref81">81</a>,<a class="bk_pop" href="#ch37.ref82">82</a>,<a class="bk_pop" href="#ch37.ref83">83</a>). One study initiated therapy with a 10-week course of corticosteroids followed by 1 year of treatment with azathioprine and found better beta cell function at 1 year, as measured by peak C-peptide/glucose ratio, than in the randomized but untreated control group (<a class="bk_pop" href="#ch37.ref81">81</a>). Another, nonrandomized study gave alternate patients azathioprine and found that most azathioprine subjects achieved &#x0201c;remission,&#x0201d; whereas only one comparison subject did (<a class="bk_pop" href="#ch37.ref82">82</a>). A third azathioprine study was a double-masked placebo-controlled study that enrolled 49 people age 2&#x02013;20 years with newly diagnosed type 1 diabetes (<a class="bk_pop" href="#ch37.ref83">83</a>). This study found nearly equal rates of remission in both groups. Given the nonrandomized nature of the other studies and the side effects of azathioprine, further studies with azathioprine were not pursued.</p></div><div id="ch37.s4.1.3"><h4>Linomide</h4><p>The immunomodulatory agent linomide (quinoline-3-carboxamide), thought to activate or modulate regulatory T lymphocytes, was evaluated in a randomized placebo-controlled trial in 63 subjects age 10&#x02013;20 years with recent-onset Stage 3 type 1 diabetes (<a class="bk_pop" href="#ch37.ref84">84</a>). Subjects were treated for 1 year, and beta cell function was evaluated by glucagon-stimulated C-peptide. Although the initial analysis suggested no difference between groups, when the analysis was confined to those with residual C-peptide at baseline (40 of 63 subjects), a beneficial effect was observed. Although side effects were minimal, the manufacturer did not continue development of linomide, and thus, this was not further pursued.</p></div><div id="ch37.s4.1.4"><h4>Bacille Calmette-Guerin Vaccine</h4><p>Two double-masked placebo-controlled trials in the 1990s evaluated the effects of BCG (bacille Calmette-Guerin) vaccine, an immune regulatory agent that showed benefit in animal models, in subjects with recent-onset Stage 3 type 1 diabetes (<a class="bk_pop" href="#ch37.ref85">85</a>,<a class="bk_pop" href="#ch37.ref86">86</a>). One, conducted in Alberta, Canada (<a class="bk_pop" href="#ch37.ref85">85</a>), enrolled 26 subjects with mean age 13 years, while the other, conducted in Colorado and Massachusetts (<a class="bk_pop" href="#ch37.ref86">86</a>), enrolled 94 subjects age 5&#x02013;18 years. Similar outcomes were seen in both studies, namely that there was no effect of BCG on preservation of beta cell function. Indeed, in both studies, there was a trend to greater decline of beta cell function in the BCG group than in the control group.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figch37tab2"><a href="/books/NBK567991/table/ch37.tab2/?report=objectonly" target="object" title="TABLE 37.2" class="img_link icnblk_img figpopup" rid-figpopup="figch37tab2" rid-ob="figobch37tab2"><img class="small-thumb" src="/books/NBK567991/table/ch37.tab2/?report=thumb" src-large="/books/NBK567991/table/ch37.tab2/?report=previmg" alt="TABLE 37.2. Intervention Studies in Recent-Onset Type 1 Diabetes." /></a><div class="icnblk_cntnt"><h4 id="ch37.tab2"><a href="/books/NBK567991/table/ch37.tab2/?report=objectonly" target="object" rid-ob="figobch37tab2">TABLE 37.2</a></h4><p class="float-caption no_bottom_margin">Intervention Studies in Recent-Onset Type 1 Diabetes. </p></div></div></div><div id="ch37.s4.1.5"><h4>Oral Insulin</h4><p>Three studies used oral insulin (in various doses) in recent-onset Stage 3 type 1 diabetes (<a class="bk_pop" href="#ch37.ref87">87</a>,<a class="bk_pop" href="#ch37.ref88">88</a>,<a class="bk_pop" href="#ch37.ref89">89</a>). In the French (<a class="bk_pop" href="#ch37.ref87">87</a>) and Italian (<a class="bk_pop" href="#ch37.ref88">88</a>) studies, no effect was seen on beta cell function. In the study conducted in the United States (<a class="bk_pop" href="#ch37.ref89">89</a>), retention of endogenous beta cell function was said to be dependent upon initial stimulated C-peptide response, age at diabetes onset, and numbers of specific islet cell autoantibodies found. The complex analysis did not permit a clear conclusion to be drawn, particularly in view of the two negative European studies.</p></div><div id="ch37.s4.1.6"><h4>Anti-CD5 Monoclonal Antibody</h4><p>Using an anti-CD5 monoclonal antibody, which targets T lymphocytes, linked to ricin A-chain, a toxin, a small open-label dose-escalation pilot study was conducted in 15 subjects with recent-onset Stage 3 type 1 diabetes (<a class="bk_pop" href="#ch37.ref90">90</a>). With only 5 days of treatment, there appeared to be a slower than anticipated decline in beta cell function (tested by a mixed meal tolerance test [MMTT]) over 1 year, but in the absence of a control group, it was not possible to infer a beneficial effect. Nonetheless, the use of a monoclonal antibody directed at T lymphocytes served to stimulate other investigations of monoclonal antibodies in type 1 diabetes.</p></div></div><div id="ch37.s4.2"><h3>Anti-CD3 Intervention Studies</h3><p>Extensive studies have been conducted with two anti-CD3 monoclonal antibodies targeting T lymphocytes&#x02014;teplizumab and otelixizumab&#x02014;which are humanized Fc-mutated (Fc receptor [FcR] nonbinding) monoclonal antibodies. The first study reported was a small study involving only 12 treated subjects and 12 untreated comparison subjects (<a class="bk_pop" href="#ch37.ref91">91</a>). They received a single 14-day course of treatment with teplizumab within 6 weeks of diagnosis of Stage 3 type 1 diabetes and were found to have slower decline of beta cell function (by MMTT) at 1 year (<a class="bk_pop" href="#ch37.ref91">91</a>). In these and an expanded group of subjects (total of 21 treated, 21 untreated), there was sustained improvement of beta cell function at 2 years (<a class="bk_pop" href="#ch37.ref92">92</a>). Meanwhile, the otelixizumab study was the first randomized placebo-controlled trial with an anti-CD3 monoclonal antibody (<a class="bk_pop" href="#ch37.ref93">93</a>). In it, 80 subjects age 12&#x02013;39 years, within 4 weeks from diagnosis of Stage 3 type 1 diabetes, were randomized to a 6-day course of either otelixizumab or placebo and followed for 18 months. Beta cell function measured using a hyperglycemic clamp followed by glucagon stimulation was found to be better in the otelixizumab than the placebo group, particularly in subjects with higher baseline insulin secretory response (<a class="bk_pop" href="#ch37.ref93">93</a>). After 4 years of follow-up, although beta cell function was not measured, the otelixizumab group had lower insulin requirements despite similar glycemic control as measured by A1c (<a class="bk_pop" href="#ch37.ref94">94</a>). Thus, effects of a 6-day treatment course were evident 4 years later.</p><p>The results from these early Phase 2 studies with anti-CD3 treatment led to the initiation of Phase 3 clinical trials with both agents. However, the Phase 3 studies did not meet their primary outcome criteria. For teplizumab, the primary outcome was the combination of A1c &#x0003c;6.5% (&#x0003c;48 mmol/mol) and insulin dose &#x0003c;0.5 units/kg/day (<a class="bk_pop" href="#ch37.ref95">95</a>,<a class="bk_pop" href="#ch37.ref96">96</a>,<a class="bk_pop" href="#ch37.ref97">97</a>). This outcome measure was arbitrarily selected and highly criticized for a number of reasons. Moreover, by using a composite outcome that requires a subject to meet two criteria, the outcome became a dichotomous measure that dilutes the effect of two continuous variables&#x02014;A1c and insulin dose. More importantly, when the conventional outcome measure of C-peptide was assessed, there was evidence of efficacy both at 1 year (<a class="bk_pop" href="#ch37.ref95">95</a>) and at 2 years (<a class="bk_pop" href="#ch37.ref96">96</a>) following two 14-day courses of teplizumab (at entry and at 26 weeks into the study). This was especially evident in subjects enrolled in the United States (who had lower A1c at entry and during study), in younger subjects (age 8&#x02013;17 years), in subjects enrolled within 6 weeks of diagnosis, and in subjects with higher levels of C-peptide at entry (<a class="bk_pop" href="#ch37.ref95">95</a>). For otelixizumab, the Phase 3 studies used a dose that was one-sixteenth (total of 3.1 mg over 8 days) that used in the positive Phase 2 study described in the previous paragraph (total of 48 mg), in an effort to avoid any side effects (<a class="bk_pop" href="#ch37.ref98">98</a>,<a class="bk_pop" href="#ch37.ref99">99</a>). Not only were side effects completely obviated, but beneficial effects were also obviated. This outcome highlights the challenge with significant dose reduction&#x02014;all effective therapies are likely to have some side effects, and eliminating the side effects of a drug may also eliminate its potential benefits.</p><p>Two other studies with teplizumab are worth noting. In the Autoimmunity-Blocking Antibody for Tolerance in Recently Diagnosed Type 1 Diabetes (AbATE) Trial, conducted by the Immune Tolerance Network (ITN), there was demonstration of efficacy (<a class="bk_pop" href="#ch37.ref100">100</a>). More importantly, however, subjects could be divided into two groups&#x02014;&#x0201c;responders&#x0201d; and &#x0201c;nonresponders&#x0201d; to treatment. Responders were those who maintained C-peptide better than the randomized, but untreated, comparison group at 24 months. This group, which constituted 45% of subjects treated with teplizumab, maintained beta cell function for 2 years, whereas the nonresponders lost beta cell function at a rate similar to the control group (<a class="bk_pop" href="#ch37.ref100">100</a>). In another teplizumab study, the Delay trial, subjects diagnosed with Stage 3 type 1 diabetes at least 4 but not more than 12 months before enrollment (thus &#x0201c;Delayed&#x0201d; compared to recent onset), were randomized to receive infusions of either teplizumab or placebo (<a class="bk_pop" href="#ch37.ref101">101</a>). There was a slowing in the decline of beta cell function in the group as a whole, driven by beneficial effect in those treated within 4&#x02013;8 months of diagnosis, as the effects were not significant in the subgroup treated 9&#x02013;12 months after diagnosis.</p></div><div id="ch37.s4.3"><h3>GAD Intervention Studies</h3><p>A vaccine, consisting of GAD with the adjuvant aluminum hydroxide (GAD-Alum), created much excitement on the basis of an initial report of a Phase 2 trial, in which there was claimed benefit, at least in those subjects enrolled early after diagnosis (<a class="bk_pop" href="#ch37.ref102">102</a>). However, this result was not confirmed in a TrialNet study (<a class="bk_pop" href="#ch37.ref103">103</a>) nor in two Phase 3 trials conducted by the manufacturer (<a class="bk_pop" href="#ch37.ref104">104</a>,<a class="bk_pop" href="#ch37.ref105">105</a>).</p></div><div id="ch37.s4.4"><h3>DiaPep277 Intervention Studies</h3><p>Several Phase 2 clinical trials were conducted using DiaPep277, a 24 amino acid peptide derived from heat shock protein 60 (<a class="bk_pop" href="#ch37.ref106">106</a>,<a class="bk_pop" href="#ch37.ref107">107</a>,<a class="bk_pop" href="#ch37.ref108">108</a>,<a class="bk_pop" href="#ch37.ref109">109</a>,<a class="bk_pop" href="#ch37.ref110">110</a>). The first of the Phase 2 trials appeared to have promising results (<a class="bk_pop" href="#ch37.ref106">106</a>,<a class="bk_pop" href="#ch37.ref107">107</a>), but the results from the other Phase 2 trials (<a class="bk_pop" href="#ch37.ref108">108</a>,<a class="bk_pop" href="#ch37.ref109">109</a>,<a class="bk_pop" href="#ch37.ref110">110</a>) were conflicting. A Phase 3 trial was reported and had inherently confusing results with improved C-peptide versus placebo during a glucagon-stimulated test, but no difference between groups with an MMTT (<a class="bk_pop" href="#ch37.ref111">111</a>,<a class="bk_pop" href="#ch37.ref112">112</a>). Subsequently, the papers describing this trial were retracted, because there may have been efforts to &#x0201c;manipulate the analyses to obtain a favorable result&#x0201d; (<a class="bk_pop" href="#ch37.ref113">113</a>,<a class="bk_pop" href="#ch37.ref114">114</a>).</p></div><div id="ch37.s4.5"><h3>Other Trialnet Intervention Studies</h3><p>Type 1 Diabetes TrialNet has conducted four other studies with immunologic interventions in subjects with recently diagnosed type 1 diabetes. All studies enrolled subjects within 100 days of diagnosis of recent-onset Stage 3 type 1 diabetes and measured beta cell function by C-peptide in response to serial MMTTs.</p><p>One study evaluated the immunosuppressive agent mycophenolate mofetil, either alone or in combination with the anti-CD25 monoclonal antibody daclizumab, which targets the alpha chain of the IL-2 receptor expressed on T lymphocytes (<a class="bk_pop" href="#ch37.ref115">115</a>). The study enrolled 126 subjects age 8&#x02013;45 years. It was stopped early by the Data and Safety Monitoring Board due to futility of the potential of seeing a beneficial treatment effect (<a class="bk_pop" href="#ch37.ref115">115</a>).</p><p>Another TrialNet study evaluated the anti-CD20 monoclonal antibody rituximab, which depletes B lymphocytes (<a class="bk_pop" href="#ch37.ref116">116</a>). In this study, 87 subjects age 8&#x02013;40 years were randomized in a 2:1 design to receive either four weekly doses of rituximab or placebo. After 1 year, there was better maintenance of beta cell function in the rituximab group than in the placebo group, although a progressive decline was observed in the rituximab group as well (<a class="bk_pop" href="#ch37.ref116">116</a>). Over 2 years, the rate of decline of C-peptide was parallel between groups, but shifted by 8.2 months in rituximab-treated subjects (<a class="bk_pop" href="#ch37.ref117">117</a>). Thus, the effect appeared to be transient, with no fundamental alteration of the disease process.</p><p>TrialNet also evaluated effects of abatacept (soluble CTLA4Ig), which binds to CD80 and CD86, the ligands for CD28, a co-stimulatory molecule on T lymphocytes (<a class="bk_pop" href="#ch37.ref118">118</a>). In this study, 112 subjects age 6&#x02013;45 years were randomized in a 2:1 design to receive either monthly infusions of abatacept or placebo for 2 years. After those 2 years, there was better maintenance of beta cell function in the abatacept group than in the placebo group, although there was a progressive decline in the abatacept group as well (<a class="bk_pop" href="#ch37.ref118">118</a>). After therapy was stopped, subjects were followed for an additional year, with the abatacept group maintaining a difference from the placebo group; a progressive parallel rate of decline was observed in both groups, but shifted by 9.5 months in abatacept-treated subjects (<a class="bk_pop" href="#ch37.ref119">119</a>). Thus, the beneficial effect was sustained for at least 1 year after cessation of abatacept infusions or 3 years from the diagnosis of type 1 diabetes.</p><p>Another treatment strategy evaluated by TrialNet was antagonism of the cytokine IL-1, thought to be a key mediator of innate immunity, as it is a proinflammatory cytokine that recruits effector T lymphocytes in inflamed tissues and also has direct toxic effects on beta cells. In the TrialNet study, which used the anti-IL-1&#x003b2; monoclonal antibody canakinumab, 71 subjects age 6&#x02013;45 years were randomized in a 2:1 design to receive either monthly subcutaneous injections of canakinumab or placebo for 1 year (<a class="bk_pop" href="#ch37.ref120">120</a>). No difference in beta cell function was observed between groups. The canakinumab study was reported together with another study examining antagonism of IL-1, using the human IL-1 receptor antagonist anakinra (<a class="bk_pop" href="#ch37.ref120">120</a>). For the anakinra trial, 69 subjects age 18&#x02013;35 years were randomized to receive either daily subcutaneous injections of anakinra or placebo for 9 months. With anakinra as well, there was no difference in beta cell function between groups. Thus, by itself, antagonism of IL-1 failed to show benefit.</p></div><div id="ch37.s4.6"><h3>Other Immune Tolerance Network Intervention Studies</h3><p>The ITN conducted a study evaluating thymoglobulin in recent-onset type 1 diabetes, the Study of Thymoglobulin to ARrest Type 1 diabetes (START) (<a class="bk_pop" href="#ch37.ref121">121</a>). In this study, 58 subjects age 12&#x02013;35 years with recent-onset Stage 3 type 1 diabetes were randomized in a 2:1 design to receive either thymoglobulin (antithymocyte globulin [ATG]) or placebo over a course of 4 days. There was no between-group difference in beta cell function at 1 year. However, thymoglobulin resulted in generalized depletion of T lymphocytes rather than in the hoped-for specific depletion of effector memory T lymphocytes with preservation of regulatory T cells.</p><p>In another ITN study, the Inducing Remission in New-Onset Type 1 Diabetes with Alefacept (T1DAL) trial, alefacept was used to target memory T lymphocytes (<a class="bk_pop" href="#ch37.ref122">122</a>). In this trial, 49 subjects age 12&#x02013;35 years, with recent-onset Stage 3 type 1 diabetes, were randomized in a 2:1 design to receive either alefacept or placebo, given as two 12-week courses of monthly intramuscular injections, separated by a 12-week hiatus. Because the manufacturer withdrew alefacept from production during the course of the trial, there was a smaller enrollment than planned. Beta cell function appeared to be preserved in the alefacept group, i.e., it did not decline over 12 months, but the results of the primary outcome&#x02014;C-peptide during the first 2 hours of the MMTT&#x02014;just missed statistical significance (p=0.065). In contrast, the secondary outcome&#x02014;C-peptide during the full 4 hours of the MMTT&#x02014;indicated a significant difference in beta cell function (p=0.019) (<a class="bk_pop" href="#ch37.ref122">122</a>). At 24 months, both the 4-hour and the 2-hour C-peptide levels were greater in the alefacept group than the placebo group (<a class="bk_pop" href="#ch37.ref123">123</a>). Thus, had the study been fully enrolled, the primary outcome may have been met. Moreover, alefacept did appear to have a greater impact on central memory and effector memory T lymphocytes with sparing of na&#x000ef;ve and regulatory T lymphocyte populations. Taken together, these findings suggest that targeting memory T lymphocytes may be an attractive immunomodulatory approach.</p><p>ITN also conducted two small pilot studies. One evaluated the safety of a vaccine using human insulin B-chain in incomplete Freund&#x02019;s adjuvant, administered as a single intramuscular injection (<a class="bk_pop" href="#ch37.ref124">124</a>). In this pilot safety study, 12 subjects age 18&#x02013;35 years were randomized to receive either the vaccine or placebo. There were no safety issues. No difference in beta cell function was found, but there was suggestive evidence of generation of antigen-specific regulatory T lymphocytes.</p><p>The other ITN pilot study was an open label Phase 1 study using the combination of IL-2 and rapamycin (<a class="bk_pop" href="#ch37.ref125">125</a>). Nine subjects were enrolled, age 20&#x02013;36 years, between 4 and 48 months from diagnosis of type 1 diabetes if they had a peak C-peptide of at least 0.4 nmol/L during an MMTT. The study was halted due to the reported acute decline in C-peptide during the first 3 months; although, without a comparison group and without much literature data on the rate of C-peptide decline in this time frame after diagnosis, it is not clear whether this was unusual. There appeared to be a subsequent recovery of C-peptide in four of the subjects. Although there was an increase in regulatory T lymphocytes, natural killer cells and eosinophils also increased, with no difference in effector T lymphocytes.</p></div><div id="ch37.s4.7"><h3>Other Recent Intervention Studies</h3><p>A pilot Phase 1 safety study used alpha-1 antitrypsin (AAT), an anti-inflammatory agent that had beneficial effects in animal models (<a class="bk_pop" href="#ch37.ref126">126</a>). No safety issues were identified. The study showed that AAT was associated with a down-modulation of IL-1&#x003b2;, which may indicate potential benefit for type 1 diabetes.</p><p>A study using an insulin B-chain altered peptide ligand enrolled 188 subjects age 10&#x02013;35 years (<a class="bk_pop" href="#ch37.ref127">127</a>). Subjects were randomized to one of four groups&#x02014;three doses of the drug or placebo. After 2 years, there was no difference in beta cell function among the four groups.</p><p>Another study evaluated a plasmid- encoded proinsulin (<a class="bk_pop" href="#ch37.ref128">128</a>). Subjects age 18&#x02013;40 years were randomized to one of five groups&#x02014;four doses of the drug or placebo. Although beta cell function improved at one time point for one of the four doses, the overall intervention failed to show benefit.</p><p>A pilot safety study with a proinsulin peptide enrolled 48 subjects randomized to one of two dose groups or placebo (<a class="bk_pop" href="#ch37.ref129">129</a>). The study showed no safety issues and serves as a basis for additional studies.</p><p>Another small pilot study has been done with the combination of low-dose ATG and pegylated granulocyte colony-stimulating factor (GCSF) (<a class="bk_pop" href="#ch37.ref130">130</a>). This study enrolled 25 subjects age 12&#x02013;45 years with type 1 diabetes of 4&#x02013;24 months duration, randomized 2:1 to active treatment or placebo. Subjects received intravenous ATG (or placebo) over 2 days, followed by subcutaneous GCSF every 2 weeks for six doses. At the end of 1 year, beta cell function was preserved, as measured by MMTT. At the end of 2 years, the difference between groups was no longer statistically significant (<a class="bk_pop" href="#ch37.ref131">131</a>). A larger study in recent-onset Stage 3 type 1 diabetes is being conducted to pursue these observations (<a class="bk_pop" href="#ch37.ref132">132</a>).</p><p>The Diabetes and Atorvastatin (DIATOR) Trial randomized 89 subjects age 18&#x02013;39 years to atorvastatin or placebo, on the basis that atorvastatin appears to have immunomodulatory properties (<a class="bk_pop" href="#ch37.ref133">133</a>). This provocative study did not meet its primary outcome (difference in C-peptide between groups at 18 months). However, when the authors examined the decline in C-peptide within the atorvastatin group, there was a nonsignificant decline, whereas the decline in C-peptide within the placebo group was significant (<a class="bk_pop" href="#ch37.ref133">133</a>). A further analysis suggested that individuals with markers of inflammation may be the ones that benefit (<a class="bk_pop" href="#ch37.ref134">134</a>). Because atorvastatin is a common, orally administered generic drug, further evaluation of atorvastatin may be warranted.</p><p>A small pilot study evaluated etanercept, a blocker of the proinflammatory cytokine TNF (<a class="bk_pop" href="#ch37.ref135">135</a>). Although only 18 subjects were enrolled, the etanercept group had increased beta cell function at 6 months, whereas the placebo group had decreased beta cell function at that time, thus achieving statistical significance between groups.</p><p>A small safety study, involving 24 subjects, evaluated three dosing regimens of a relatively low dose of IL-2 (<a class="bk_pop" href="#ch37.ref136">136</a>). There was an increase in regulatory T lymphocytes, and no safety issues emerged, including no decline in C-peptide that was reported with higher doses of IL-2 in combination with rapamycin (<a class="bk_pop" href="#ch37.ref125">125</a>).</p><p>One study examined the effects of the combination of sitagliptin and lansoprazole in patients with recent-onset Stage 3 type 1 diabetes (<a class="bk_pop" href="#ch37.ref137">137</a>). The rationale of this study was that a dipeptidyl-peptidase 4 (DPP-4) inhibitor (sitagliptin) would increase serum levels of glucagon-like peptide-1 (GLP-1), while a proton pump inhibitor (lansoprazole) would increase serum levels of gastrin. In experimental animals, the combination GLP-1 and gastrin has been shown to increase beta cell mass and function. The human study&#x02014;REPAIR T1D&#x02014;randomized 68 subjects age 11&#x02013;36 years in a 2:1 design to receive either the combination of sitagliptin and lansoprazole or placebo for both drugs. At 1 year, there was no difference in the rate of decline of beta cell function comparing treated subjects and control subjects (<a class="bk_pop" href="#ch37.ref137">137</a>).</p><p>In 2007, a group of investigators from Brazil reported an open label trial of 15 patients with Stage 3 type 1 diabetes age 13&#x02013;31 years diagnosed within the previous 6 weeks, who were treated with the combination of high-dose immunotherapy, with cyclophosphamide and ATG, together with nonmyeloablative autologous hematopoietic stem cell therapy (AHSCT) using CD34+ cells isolated from bone marrow (<a class="bk_pop" href="#ch37.ref138">138</a>). They reported that during 7&#x02013;36 months of follow-up, 14 of 15 subjects became insulin free. Subsequently, they updated their findings in a total of 23 subjects, asserting that 20 had achieved freedom from insulin therapy, with 12 of them maintaining that for a mean of 31 months (<a class="bk_pop" href="#ch37.ref139">139</a>,<a class="bk_pop" href="#ch37.ref140">140</a>). Additional studies from Poland and China were subsequently conducted, and the Polish and Chinese data have been summarized (<a class="bk_pop" href="#ch37.ref141">141</a>). Their findings confirmed that a substantial number of subjects achieved insulin independence. However, substantial side effects occurred, including a death from <i>Pseudomonas</i> sepsis (<a class="bk_pop" href="#ch37.ref141">141</a>), and the death rate in other disease states with AHSCT can be as high as 25%. In addition, these were all nonrandomized open label studies, with incomplete characterization of the subjects, so it is not clear that all had autoimmune type 1 diabetes.</p></div><div id="ch37.s4.8"><h3>Ongoing Intervention Studies</h3><p>Thus, several provocative studies demonstrating at least transient preservation of beta cell function have been conducted, but no controlled studies have demonstrated sufficient sustained beta cell function, such that insulin therapy is not required. Additional studies are underway with a variety of approaches (<a class="bk_pop" href="#ch37.ref132">132</a>,<a class="bk_pop" href="#ch37.ref142">142</a>,<a class="bk_pop" href="#ch37.ref143">143</a>,<a class="bk_pop" href="#ch37.ref144">144</a>,<a class="bk_pop" href="#ch37.ref145">145</a>,<a class="bk_pop" href="#ch37.ref146">146</a>,<a class="bk_pop" href="#ch37.ref147">147</a>,<a class="bk_pop" href="#ch37.ref148">148</a>,<a class="bk_pop" href="#ch37.ref149">149</a>,<a class="bk_pop" href="#ch37.ref150">150</a>,<a class="bk_pop" href="#ch37.ref151">151</a>,<a class="bk_pop" href="#ch37.ref152">152</a>). It may be that a combination approach is needed, perhaps one that combines an anti-inflammatory agent targeting innate immunity, with an immunomodulatory agent targeting adaptive immunity, with agents that stimulate regulatory immunity, and an agent that helps preserve beta cell health (<a class="bk_pop" href="#ch37.ref153">153</a>).</p></div></div><div id="ch37.s5"><h2 id="_ch37_s5_">List of Abbreviations</h2><dl><dt id="ch37_abb_DL1_DI1">A1c</dt><dd><p>glycosylated hemoglobin</p></dd><dt id="ch37_abb_DL1_DI2">AAT</dt><dd><p>alpha-1 antitrypsin</p></dd><dt id="ch37_abb_DL1_DI3">AHSCT</dt><dd><p>autologous hematopoietic stem cell therapy</p></dd><dt id="ch37_abb_DL1_DI4">ATG</dt><dd><p>antithymocyte globulin</p></dd><dt id="ch37_abb_DL1_DI5">BCG</dt><dd><p>bacille Calmette-Guerin</p></dd><dt id="ch37_abb_DL1_DI6">CI</dt><dd><p>confidence interval</p></dd><dt id="ch37_abb_DL1_DI7">DENIS</dt><dd><p>German (Deutsch) Nicotinamide Diabetes Intervention Study</p></dd><dt id="ch37_abb_DL1_DI8">DHA</dt><dd><p>docosahexaenoic acid</p></dd><dt id="ch37_abb_DL1_DI9">DIPP</dt><dd><p>Diabetes Prediction and Prevention Study</p></dd><dt id="ch37_abb_DL1_DI10">DPT-1</dt><dd><p>Diabetes Prevention Trial-Type 1</p></dd><dt id="ch37_abb_DL1_DI11">ENDIT</dt><dd><p>European Nicotinamide Diabetes Intervention Trial</p></dd><dt id="ch37_abb_DL1_DI12">FINDIA</dt><dd><p>Finnish Dietary Intervention Trial for the Prevention of Type 1 Diabetes</p></dd><dt id="ch37_abb_DL1_DI13">GAD</dt><dd><p>glutamic acid decarboxylase</p></dd><dt id="ch37_abb_DL1_DI14">GCSF</dt><dd><p>granulocyte colony-stimulating factor</p></dd><dt id="ch37_abb_DL1_DI15">GLP</dt><dd><p>glucagon-like peptide</p></dd><dt id="ch37_abb_DL1_DI16">HLA</dt><dd><p>human leukocyte antigen</p></dd><dt id="ch37_abb_DL1_DI17">HR</dt><dd><p>hazard ratio</p></dd><dt id="ch37_abb_DL1_DI18">IA2</dt><dd><p>islet antibody-2</p></dd><dt id="ch37_abb_DL1_DI19">IAA</dt><dd><p>insulin autoantibodies</p></dd><dt id="ch37_abb_DL1_DI20">ICA</dt><dd><p>islet cell antibodies</p></dd><dt id="ch37_abb_DL1_DI21">IL</dt><dd><p>interleukin</p></dd><dt id="ch37_abb_DL1_DI22">INIT</dt><dd><p>Intranasal Insulin Trial</p></dd><dt id="ch37_abb_DL1_DI23">ITN</dt><dd><p>Immune Tolerance Network</p></dd><dt id="ch37_abb_DL1_DI24">MMTT</dt><dd><p>mixed meal tolerance test</p></dd><dt id="ch37_abb_DL1_DI25">NIP</dt><dd><p>Nutritional Intervention to Prevent Type 1 Diabetes</p></dd><dt id="ch37_abb_DL1_DI26">OR</dt><dd><p>odds ratio</p></dd><dt id="ch37_abb_DL1_DI27">Pre-POINT</dt><dd><p>Primary Oral Insulin Therapy Study</p></dd><dt id="ch37_abb_DL1_DI28">TNF</dt><dd><p>tumor necrosis factor</p></dd><dt id="ch37_abb_DL1_DI29">TRIGR</dt><dd><p>Trial to Reduce the Incidence of Diabetes in the Genetically at Risk</p></dd></dl></div><div id="ch37.rl.r1"><h2 id="_ch37_rl_r1_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="ch37.ref1">Eisenbarth
GS: Type I diabetes mellitus. A chronic autoimmune disease. <em>N Engl J Med</em>
314:1360&#x02013;1368, 1986 [<a href="https://pubmed.ncbi.nlm.nih.gov/3517648" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3517648</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="ch37.ref2">Bluestone
JA, Herold
K, Eisenbarth
G: Genetics, pathogenesis and clinical interventions in type 1 diabetes. <em>Nature</em>
464:1293&#x02013;1300, 2010 [<a href="/pmc/articles/PMC4959889/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4959889</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20432533" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20432533</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="ch37.ref3">Atkinson
MA, Eisenbarth
GS, Michels
AW: Type 1 diabetes. <em>Lancet</em>
383:69&#x02013;82, 2014 [<a href="/pmc/articles/PMC4380133/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4380133</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23890997" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23890997</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="ch37.ref4">Atkinson
MA, Bluestone
JA, Eisenbarth
GS, Hebrok
M, Herold
KC, Accili
D, Pietropaolo
M, Arvan
PR, Von Herrath
M, Markel
DS, Rhodes
CJ: How does type 1 diabetes develop? The notion of homicide or &#x003b2;-cell suicide revisited. <em>Diabetes</em>
60:1370&#x02013;1379, 2011 [<a href="/pmc/articles/PMC3292309/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3292309</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21525508" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21525508</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="ch37.ref5">Nerup
J, Platz
P, Andersen
OO, Christy
M, Lyngsoe
J, Poulsen
JE, Ryder
LP, Nielsen
LS, Thomsen
M, Svejgaard
A: HL-A antigens and diabetes mellitus. <em>Lancet</em>
2:864&#x02013;866, 1974 [<a href="https://pubmed.ncbi.nlm.nih.gov/4137711" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4137711</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="ch37.ref6">Schenker
M, Hummel
M, Ferber
K, Walter
M, Keller
E, Albert
ED, Janka
HU, Kastendiek
C, Sorger
M, Louwen
F, Ziegler
AG: Early expression and high prevalence of islet autoantibodies for DR3/4 heterozygous and DR4/4 homozygous offspring of parents with type I diabetes: the German BABYDIAB study. <em>Diabetologia</em>
42:671&#x02013;677, 1999 [<a href="https://pubmed.ncbi.nlm.nih.gov/10382586" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10382586</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="ch37.ref7">Redondo
MJ, Fain
PR, Eisenbarth
GS: Genetics of type 1A diabetes. <em>Recent Prog Horm Res</em>
56:69&#x02013;89, 2001 [<a href="https://pubmed.ncbi.nlm.nih.gov/11237226" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11237226</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="ch37.ref8">Lambert
AP, Gillespie
KM, Thomson
G, Cordell
HJ, Todd
JA, Gale
EA, Bingley
PJ: Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. <em>J Clin Endocrinol Metab</em>
89:4037&#x02013;4043, 2004 [<a href="https://pubmed.ncbi.nlm.nih.gov/15292346" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15292346</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="ch37.ref9">Thomson
G, Valdes
AM, Noble
JA, Kockum
I, Grote
MN, Najman
J, Erlich
HA, Cucca
F, Pugliese
A, Steenkiste
A, Dorman
JS, Caillat-Zucman
S, Hermann
R, Ilonen
J, Lambert
AP, Bingley
PJ, Gillespie
KM, Lernmark
A, Sanjeevi
CB, Ronningen
KS, Undlien
DE, Thorsby
E, Petrone
A, Buzzetti
R, Koeleman
BP, Roep
BO, Saruhan-Direskeneli
G, Uyar
FA, Gunoz
H, Gorodezky
C, Alaez
C, Boehm
BO, Mlynarski
W, Ikegami
H, Berrino
M, Fasano
ME, Dametto
E, Israel
S, Brautbar
C, Santiago-Cortes
A, Frazer de Llado
T, She
JX, Bugawan
TL, Rotter
JI, Raffel
L, Zeidler
A, Leyva-Cobian
F, Hawkins
BR, Chan
SH, Castano
L, Pociot
F, Nerup
J: Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. <em>Tissue Antigens</em>
70:110&#x02013;127, 2007 [<a href="https://pubmed.ncbi.nlm.nih.gov/17610416" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17610416</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="ch37.ref10">Erlich
H, Valdes
AM, Noble
J, Carlson
JA, Varney
M, Concannon
P, Mychaleckyj
JC, Todd
JA, Bonella
P, Fear
AL, Lavant
E, Louey
A, Moonsamy
P; Type 1 Diabetes Genetics Consortium: HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the Type 1 Diabetes Genetics Consortium families. <em>Diabetes</em>
57:1084&#x02013;1092, 2008 [<a href="/pmc/articles/PMC4103420/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4103420</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18252895" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18252895</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="ch37.ref11">Noble
JA, Valdes
AM, Varney
MD, Carlson
JA, Moonsamy
P, Fear
AL, Lane
JA, Lavant
E, Rappner
R, Louey
A, Concannon
P, Mychaleckyj
JC, Erlich
HA; Type 1 Diabetes Genetics Consortium: HLA class I and genetic susceptibility to type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium. <em>Diabetes</em>
59:2972&#x02013;2979, 2010 [<a href="/pmc/articles/PMC2963558/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2963558</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20798335" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20798335</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="ch37.ref12">Pugliese
A, Gianani
R, Moromisato
R, Awdeh
ZL, Alper
CA, Erlich
HA, Jackson
RA, Eisenbarth
GS: HLA-DQB1*0602 is associated with dominant protection from diabetes even among islet cell antibody-positive first-degree relatives of patients with IDDM. <em>Diabetes</em>
44:608&#x02013;613, 1995 [<a href="https://pubmed.ncbi.nlm.nih.gov/7789622" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7789622</span></a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="ch37.ref13">Concannon
P, Rich
SS, Nepom
GT: Genetics of type 1A diabetes. <em>N Engl J Med</em>
360:1646&#x02013;1654, 2009 [<a href="https://pubmed.ncbi.nlm.nih.gov/19369670" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19369670</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="ch37.ref14">Barrett
JC, Clayton
DG, Concannon
P, Akolkar
B, Cooper
JD, Erlich
HA, Julier
C, Morahan
G, Nerup
J, Nierras
C, Plagnol
V, Pociot
F, Schuilenburg
H, Smyth
DJ, Stevens
H, Todd
JA, Walker
NM, Rich
SS; Type 1 Diabetes Genetics Consortium: Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. <em>Nat Genet</em>
41:703&#x02013;707, 2009 [<a href="/pmc/articles/PMC2889014/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2889014</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19430480" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19430480</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="ch37.ref15">Noble
JA, Erlich
HA: Genetics of type 1 diabetes. <em>Cold Spring Harb Perspect Med</em>
2:a007732, 2012 [<a href="/pmc/articles/PMC3253030/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3253030</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22315720" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22315720</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="ch37.ref16">Steck
AK, Rewers
MJ: Genetics of type 1 diabetes. <em>Clin Chem</em>
57:176&#x02013;185, 2011 [<a href="/pmc/articles/PMC4874193/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4874193</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21205883" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21205883</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="ch37.ref17">Knip
M, Simell
O: Environmental triggers of type 1 diabetes. <em>Cold Spring Harb Perspect Med</em>
2:a007690, 2012 [<a href="/pmc/articles/PMC3385937/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3385937</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22762021" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22762021</span></a>]</div></dd><dt>18.</dt><dd><div class="bk_ref" id="ch37.ref18">Eringsmark Regnell
SE, Lernmark
A: The environment and the origins of islet autoimmunity and type 1 diabetes. <em>Diabet Med</em>
30:155&#x02013;160, 2013 [<a href="/pmc/articles/PMC3552102/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3552102</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23252770" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23252770</span></a>]</div></dd><dt>19.</dt><dd><div class="bk_ref" id="ch37.ref19">TEDDY Study Group: The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. <em>Pediatr Diabetes</em>
8:286&#x02013;298, 2007 [<a href="https://pubmed.ncbi.nlm.nih.gov/17850472" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17850472</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="ch37.ref20">Hagopian
WA, Erlich
H, Lernmark
A, Rewers
M, Ziegler
AG, Simell
O, Akolkar
B, Vogt
R, Jr., Blair
A, Ilonen
J, Krischer
J, She
J; TEDDY Study Group: The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants. <em>Pediatr Diabetes</em>
12:733&#x02013;743, 2011 [<a href="/pmc/articles/PMC3315186/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3315186</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21564455" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21564455</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="ch37.ref21">Peakman
M: Immunological pathways to &#x003b2;-cell damage in type 1 diabetes. <em>Diabet Med</em>
30:147&#x02013;154, 2013 [<a href="https://pubmed.ncbi.nlm.nih.gov/23199020" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23199020</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="ch37.ref22">Roep
BO, Tree
TI: Immune modulation in humans: implications for type 1 diabetes mellitus. <em>Nat Rev Endocrinol</em>
10:229&#x02013;242, 2014 [<a href="https://pubmed.ncbi.nlm.nih.gov/24468651" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24468651</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="ch37.ref23">Gepts
W: Pathologic anatomy of the pancreas in juvenile diabetes mellitus. <em>Diabetes</em>
14:619&#x02013;633, 1965 [<a href="https://pubmed.ncbi.nlm.nih.gov/5318831" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 5318831</span></a>]</div></dd><dt>24.</dt><dd><div class="bk_ref" id="ch37.ref24">Arif
S, Tree
TI, Astill
TP, Tremble
JM, Bishop
AJ, Dayan
CM, Roep
BO, Peakman
M: Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. <em>J Clin Invest</em>
113:451&#x02013;463, 2004 [<a href="/pmc/articles/PMC324541/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC324541</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14755342" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14755342</span></a>]</div></dd><dt>25.</dt><dd><div class="bk_ref" id="ch37.ref25">Coppieters
KT, Dotta
F, Amirian
N, Campbell
PD, Kay
TW, Atkinson
MA, Roep
BO, von Herrath
MG: Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. <em>J Exp Med</em>
209:51&#x02013;60, 2012 [<a href="/pmc/articles/PMC3260877/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3260877</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22213807" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22213807</span></a>]</div></dd><dt>26.</dt><dd><div class="bk_ref" id="ch37.ref26">Bottazzo
GF, Florin-Christensen
A, Doniach
D: Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. <em>Lancet</em>
2:1279&#x02013;1283, 1974 [<a href="https://pubmed.ncbi.nlm.nih.gov/4139522" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4139522</span></a>]</div></dd><dt>27.</dt><dd><div class="bk_ref" id="ch37.ref27">Ziegler
AG, Nepom
GT: Prediction and pathogenesis in type 1 diabetes. <em>Immunity</em>
32:468&#x02013;478, 2010 [<a href="/pmc/articles/PMC2861716/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2861716</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20412757" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20412757</span></a>]</div></dd><dt>28.</dt><dd><div class="bk_ref" id="ch37.ref28">Barker
JM, Barriga
KJ, Yu
L, Miao
D, Erlich
HA, Norris
JM, Eisenbarth
GS, Rewers
M; Diabetes Autoimmunity Study in the Young: Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). <em>J Clin Endocrinol Metab</em>
89:3896&#x02013;3902, 2004 [<a href="https://pubmed.ncbi.nlm.nih.gov/15292324" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15292324</span></a>]</div></dd><dt>29.</dt><dd><div class="bk_ref" id="ch37.ref29">Hummel
S, Ziegler
AG: Early determinants of type 1 diabetes: experience from the BABYDIAB and BABYDIET studies. <em>Am J Clin Nutr</em>
94(6 Suppl):1821S&#x02013;1823S, 2011 [<a href="https://pubmed.ncbi.nlm.nih.gov/21633073" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21633073</span></a>]</div></dd><dt>30.</dt><dd><div class="bk_ref" id="ch37.ref30">Kupila
A, Muona
P, Simell
T, Arvilommi
P, Savolainen
H, Hamalainen
AM, Korhonen
S, Kimpimaki
T, Sjoroos
M, Ilonen
J, Knip
M, Simell
O; Juvenile Diabetes Research Foundation Centre for the Prevention of Type I Diabetes in Finland: Feasibility of genetic and immunological prediction of type 1 diabetes in a population-based cohort. <em>Diabetologia</em>
44:290&#x02013;297, 2001 [<a href="https://pubmed.ncbi.nlm.nih.gov/11317658" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11317658</span></a>]</div></dd><dt>31.</dt><dd><div class="bk_ref" id="ch37.ref31">Ziegler
AG, Rewers
M, Simell
O, Simell
T, Lempainen
J, Steck
A, Winkler
C, Ilonen
J, Veijola
R, Knip
M, Bonifacio
E, Eisenbarth
GS: Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. <em>JAMA</em>
309:2473&#x02013;2479, 2013 [<a href="/pmc/articles/PMC4878912/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4878912</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23780460" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23780460</span></a>]</div></dd><dt>32.</dt><dd><div class="bk_ref" id="ch37.ref32">Insel
RA, Dunne
JL, Atkinson
MA, Chiang
JL, Dabelea
D, Gottlieb
PA, Greenbaum
CJ, Herold
KC, Krischer
JP, Lernmark
A, Ratner
RE, Rewers
MJ, Schatz
DA, Skyler
JS, Sosenko
JM, Ziegler
AG: Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. <em>Diabetes Care</em>
38:1964&#x02013;1974, 2015 [<a href="/pmc/articles/PMC5321245/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5321245</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26404926" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26404926</span></a>]</div></dd><dt>33.</dt><dd><div class="bk_ref" id="ch37.ref33">Sosenko
JM, Skyler
JS, Herold
KC, Palmer
JP; Type 1 Diabetes TrialNet and Diabetes Prevention Trial-Type 1 Study Groups: The metabolic progression to type 1 diabetes as indicated by serial oral glucose tolerance testing in the Diabetes Prevention Trial-Type 1. <em>Diabetes</em>
61:1331&#x02013;1337, 2012 [<a href="/pmc/articles/PMC3357303/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3357303</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22618768" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22618768</span></a>]</div></dd><dt>34.</dt><dd><div class="bk_ref" id="ch37.ref34">Ferrannini
E, Mari
A, Nofrate
V, Sosenko
JM, Skyler
JS; DPT-1 Study Group: Progression to diabetes in relatives of type 1 diabetic patients: mechanisms and mode of onset. <em>Diabetes</em>
59:679&#x02013;685, 2010 [<a href="/pmc/articles/PMC2828663/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2828663</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20028949" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20028949</span></a>]</div></dd><dt>35.</dt><dd><div class="bk_ref" id="ch37.ref35">Ferrannini
E, Mari
A: &#x003b2;-cell function in type 2 diabetes. <em>Metabolism</em>
63:1217&#x02013;1227, 2014 [<a href="https://pubmed.ncbi.nlm.nih.gov/25070616" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25070616</span></a>]</div></dd><dt>36.</dt><dd><div class="bk_ref" id="ch37.ref36">Sosenko
JM, Skyler
JS, Beam
CA, Krischer
JP, Greenbaum
CJ, Mahon
J, Rafkin
LE, Matheson
D, Herold
KC, Palmer
JP; Type 1 Diabetes TrialNet and Diabetes Prevention Trial-Type 1 Study Groups: Acceleration of the loss of the first-phase insulin response during the progression to type 1 diabetes in Diabetes Prevention Trial-Type 1 participants. <em>Diabetes</em>
62:4179&#x02013;4183, 2013 [<a href="/pmc/articles/PMC3837047/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3837047</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23863814" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23863814</span></a>]</div></dd><dt>37.</dt><dd><div class="bk_ref" id="ch37.ref37">Sosenko
JM, Palmer
JP, Rafkin-Mervis
L, Krischer
JP, Cuthbertson
D, Mahon
J, Greenbaum
CJ, Cowie
CC, Skyler
JS; Diabetes Prevention Trial-Type 1 Study Group: Incident dysglycemia and progression to type 1 diabetes among participants in the Diabetes Prevention Trial-Type 1. <em>Diabetes Care</em>
32:1603&#x02013;1607, 2009 [<a href="/pmc/articles/PMC2732147/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2732147</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19487644" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19487644</span></a>]</div></dd><dt>38.</dt><dd><div class="bk_ref" id="ch37.ref38">Sosenko
JM, Krischer
JP, Palmer
JP, Mahon
J, Cowie
C, Greenbaum
CJ, Cuthbertson
D, Lachin
JM, Skyler
JS; Diabetes Prevention Trial-Type 1 Study Group: A risk score for type 1 diabetes derived from autoantibody-positive participants in the Diabetes Prevention Trial-Type 1. <em>Diabetes Care</em>
31:528&#x02013;533, 2008 [<a href="https://pubmed.ncbi.nlm.nih.gov/18000175" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18000175</span></a>]</div></dd><dt>39.</dt><dd><div class="bk_ref" id="ch37.ref39">Sosenko
JM, Skyler
JS, Mahon
J, Krischer
JP, Beam
CA, Boulware
DC, Greenbaum
CJ, Rafkin
LE, Cowie
C, Cuthbertson
D, Palmer
JP; Type 1 Diabetes TrialNet and Diabetes Prevention Trial-Type 1 Study Groups: Validation of the Diabetes Prevention Trial-Type 1 Risk Score in the TrialNet Natural History Study. <em>Diabetes Care</em>
34:1785&#x02013;1787, 2011 [<a href="/pmc/articles/PMC3142063/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3142063</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21680724" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21680724</span></a>]</div></dd><dt>40.</dt><dd><div class="bk_ref" id="ch37.ref40">Greenbaum
CJ, Beam
CA, Boulware
D, Gitelman
SE, Gottlieb
PA, Herold
KC, Lachin
JM, McGee
P, Palmer
JP, Pescovitz
MD, Krause-Steinrauf
H, Skyler
JS, Sosenko
JM; Type 1 Diabetes TrialNet Study Group: Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. <em>Diabetes</em>
61:2066&#x02013;2073, 2012 [<a href="/pmc/articles/PMC3402330/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3402330</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22688329" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22688329</span></a>]</div></dd><dt>41.</dt><dd><div class="bk_ref" id="ch37.ref41">Mordes
JP, Desemone
J, Rossini
AA: The BB rat. <em>Diabetes Metab Rev</em>
3:725&#x02013;750, 1987 [<a href="https://pubmed.ncbi.nlm.nih.gov/3301238" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3301238</span></a>]</div></dd><dt>42.</dt><dd><div class="bk_ref" id="ch37.ref42">Anderson
MS, Bluestone
JA: The NOD mouse: a model of immune dysregulation. <em>Annu Rev Immunol</em>
23:447&#x02013;485, 2005 [<a href="https://pubmed.ncbi.nlm.nih.gov/15771578" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15771578</span></a>]</div></dd><dt>43.</dt><dd><div class="bk_ref" id="ch37.ref43">Shoda
LK, Young
DL, Ramanujan
S, Whiting
CC, Atkinson
MA, Bluestone
JA, Eisenbarth
GS, Mathis
D, Rossini
AA, Campbell
SE, Kahn
R, Kreuwel
HT: A comprehensive review of interventions in the NOD mouse and implications for translation. <em>Immunity</em>
23:115&#x02013;126, 2005 [<a href="https://pubmed.ncbi.nlm.nih.gov/16111631" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16111631</span></a>]</div></dd><dt>44.</dt><dd><div class="bk_ref" id="ch37.ref44">Leslie
RD, Pyke
DA: Immunosuppression of acute insulin-dependent diabetes. In <em>Immunology of Diabetes</em>. Irvine
WJ, Ed. Edinburgh, Teviot Scientific Publications Ltd, 1980, p. 345&#x02013;347</div></dd><dt>45.</dt><dd><div class="bk_ref" id="ch37.ref45">Skyler
JS: Immune intervention studies in insulin-dependent diabetes mellitus. <em>Diabetes Metab Rev</em>
3:1017&#x02013;1035, 1987 [<a href="https://pubmed.ncbi.nlm.nih.gov/3315520" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3315520</span></a>]</div></dd><dt>46.</dt><dd><div class="bk_ref" id="ch37.ref46">Skyler
JS, Marks
JB: Immune intervention in type 1 diabetes mellitus. <em>Diabetes Reviews</em>
1:15&#x02013;42, 1993</div></dd><dt>47.</dt><dd><div class="bk_ref" id="ch37.ref47">Stiller
CR, Dupre
J, Gent
M, Jenner
MR, Keown
PA, Laupacis
A, Martell
R, Rodger
NW, von Graffenried
B, Wolfe
BM: Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. <em>Science</em>
223:1362&#x02013;1367, 1984 [<a href="https://pubmed.ncbi.nlm.nih.gov/6367043" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6367043</span></a>]</div></dd><dt>48.</dt><dd><div class="bk_ref" id="ch37.ref48">Skyler
JS, Pugliese
A: Immunotherapy trials for type 1 diabetes: the contribution of George Eisenbarth. <em>Diabetes Technol Ther</em>
15(Suppl 2):S2-13&#x02013;S2-20, 2013 [<a href="/pmc/articles/PMC3676656/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3676656</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23786294" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23786294</span></a>]</div></dd><dt>49.</dt><dd><div class="bk_ref" id="ch37.ref49">von Herrath
M, Peakman
M, Roep
B: Progress in immune-based therapies for type 1 diabetes. <em>Clin Exp Immunol</em>
172:186&#x02013;202, 2013 [<a href="/pmc/articles/PMC3628322/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3628322</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23574316" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23574316</span></a>]</div></dd><dt>50.</dt><dd><div class="bk_ref" id="ch37.ref50">Skyler
JS: Primary and secondary prevention of type 1 diabetes. <em>Diabet Med</em>
30:161&#x02013;169, 2013 [<a href="/pmc/articles/PMC3580116/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3580116</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23231526" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23231526</span></a>]</div></dd><dt>51.</dt><dd><div class="bk_ref" id="ch37.ref51">Knip
M, Virtanen
SM, Seppa
K, Ilonen
J, Savilahti
E, Vaarala
O, Reunanen
A, Teramo
K, Hamalainen
AM, Paronen
J, Dosch
HM, Hakulinen
T, Akerblom
HK; Finnish TRIGR Study Group: Dietary intervention in infancy and later signs of beta-cell autoimmunity. <em>N Engl J Med</em>
363:1900&#x02013;1908, 2010 [<a href="/pmc/articles/PMC4242902/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4242902</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21067382" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21067382</span></a>]</div></dd><dt>52.</dt><dd><div class="bk_ref" id="ch37.ref52">Knip
M, Akerblom
HK, Becker
D, Dosch
HM, Dupre
J, Fraser
W, Howard
N, Ilonen
J, Krischer
JP, Kordonouri
O, Lawson
ML, Palmer
JP, Savilahti
E, Vaarala
O, Virtanen
SM; TRIGR Study Group: Hydrolyzed infant formula and early &#x003b2;-cell autoimmunity: a randomized clinical trial. <em>JAMA</em>
311:2279&#x02013;2287, 2014 [<a href="/pmc/articles/PMC4225544/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4225544</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24915259" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24915259</span></a>]</div></dd><dt>53.</dt><dd><div class="bk_ref" id="ch37.ref53">Vaarala
O, Ilonen
J, Ruohtula
T, Pesola
J, Virtanen
SM, Harkonen
T, Koski
M, Kallioinen
H, Tossavainen
O, Poussa
T, Jarvenpaa
AL, Komulainen
J, Lounamaa
R, Akerblom
HK, Knip
M: Removal of bovine insulin from cow&#x02019;s milk formula and early initiation of beta-cell autoimmunity in the FINDIA pilot study. <em>Arch Pediatr Adolesc Med</em>
166:608&#x02013;614, 2012 [<a href="https://pubmed.ncbi.nlm.nih.gov/22393174" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22393174</span></a>]</div></dd><dt>54.</dt><dd><div class="bk_ref" id="ch37.ref54">Hummel
S, Pfluger
M, Hummel
M, Bonifacio
E, Ziegler
AG: Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. <em>Diabetes Care</em>
34:1301&#x02013;1305, 2011 [<a href="/pmc/articles/PMC3114350/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3114350</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21515839" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21515839</span></a>]</div></dd><dt>55.</dt><dd><div class="bk_ref" id="ch37.ref55">Chase
HP, Boulware
D, Rodriguez
H, Donaldson
D, Chritton
S, Rafkin-Mervis
L, Krischer
J, Skyler
JS, Clare-Salzler
M; Type 1 Diabetes TrialNet Nutritional Intervention to Prevent (NIP) Type 1 Diabetes Study Group: Effect of docosahexaenoic acid supplementation on inflammatory cytokine levels in infants at high genetic risk for type 1 diabetes. <em>Pediatr Diabetes</em>
16:271&#x02013;279, 2015 [<a href="/pmc/articles/PMC4291300/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4291300</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25039804" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25039804</span></a>]</div></dd><dt>56.</dt><dd><div class="bk_ref" id="ch37.ref56">Wicklow
BA, Taback
SP: Feasibility of a type 1 diabetes primary prevention trial using 2000 IU vitamin D3 in infants from the general population with increased HLA-associated risk. <em>Ann N Y Acad Sci</em>
1079:310&#x02013;312, 2006 [<a href="https://pubmed.ncbi.nlm.nih.gov/17130571" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17130571</span></a>]</div></dd><dt>57.</dt><dd><div class="bk_ref" id="ch37.ref57">Gerstein
HC: Cow&#x02019;s milk exposure and type I diabetes mellitus. A critical overview of the clinical literature. <em>Diabetes Care</em>
17:13&#x02013;19, 1994 [<a href="https://pubmed.ncbi.nlm.nih.gov/8112184" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8112184</span></a>]</div></dd><dt>58.</dt><dd><div class="bk_ref" id="ch37.ref58">Ziegler
AG, Schmid
S, Huber
D, Hummel
M, Bonifacio
E: Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. <em>JAMA</em>
290:1721&#x02013;1728, 2003 [<a href="https://pubmed.ncbi.nlm.nih.gov/14519706" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14519706</span></a>]</div></dd><dt>59.</dt><dd><div class="bk_ref" id="ch37.ref59">Bonifacio
E, Ziegler
AG, Klingensmith
G, Schober
E, Bingley
PJ, Rottenkolber
M, Theil
A, Eugster
A, Puff
R, Peplow
C, Buettner
F, Lange
K, Hasford
J, Achenbach
P; Pre-POINT Study Group: Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. <em>JAMA</em>
313:1541&#x02013;1549, 2015 [<a href="https://pubmed.ncbi.nlm.nih.gov/25898052" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25898052</span></a>]</div></dd><dt>60.</dt><dd><div class="bk_ref" id="ch37.ref60">Raab
J, Haupt
F, Scholz
M, Matzke
C, Warncke
K, Lange
K, Assfalg
R, Weininger
K, Wittich
S, Lobner
S, Beyerlein
A, Nennstiel-Ratzel
U, Lang
M, Laub
O, Dunstheimer
D, Bonafacio
E, Achenbach
P, Winkler
C, Zeigler
AG, Fr1da Study Group: Capillary blood islet autoantibody screening for identifying pre-type 1 diabetes in the general population: design and initial results of the Fr1da study. <em>BMJ Open</em>
6:e011144, 2016 [<a href="/pmc/articles/PMC4874167/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4874167</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27194320" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27194320</span></a>]</div></dd><dt>61.</dt><dd><div class="bk_ref" id="ch37.ref61">Lampeter
EF, Klinghammer
A, Scherbaum
WA, Heinze
E, Haastert
B, Giani
G, Kolb
H: The Deutsche Nicotinamide Intervention Study: an attempt to prevent type 1 diabetes. DENIS Group. <em>Diabetes</em>
47:980&#x02013;984, 1998 [<a href="https://pubmed.ncbi.nlm.nih.gov/9604880" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9604880</span></a>]</div></dd><dt>62.</dt><dd><div class="bk_ref" id="ch37.ref62">Gale
EA, Bingley
PJ, Emmett
CL, Collier
T; European Nicotinamide Diabetes Intervention Trial (ENDIT) Group: European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. <em>Lancet</em>
363:925&#x02013;931, 2004 [<a href="https://pubmed.ncbi.nlm.nih.gov/15043959" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15043959</span></a>]</div></dd><dt>63.</dt><dd><div class="bk_ref" id="ch37.ref63">Diabetes Prevention Trial-Type 1 Diabetes Study Group: Effects of insulin in relatives of patients with type 1 diabetes mellitus. <em>N Engl J Med</em>
346:1685&#x02013;1691, 2002 [<a href="https://pubmed.ncbi.nlm.nih.gov/12037147" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12037147</span></a>]</div></dd><dt>64.</dt><dd><div class="bk_ref" id="ch37.ref64">Skyler
JS, Krischer
JP, Wolfsdorf
J, Cowie
C, Palmer
JP, Greenbaum
C, Cuthbertson
D, Rafkin-Mervis
LE, Chase
HP, Leschek
E: Effects of oral insulin in relatives of patients with type 1 diabetes mellitus: the Diabetes Prevention Trial-Type 1. <em>Diabetes Care</em>
28:1068&#x02013;1076, 2005 [<a href="https://pubmed.ncbi.nlm.nih.gov/15855569" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15855569</span></a>]</div></dd><dt>65.</dt><dd><div class="bk_ref" id="ch37.ref65">Skyler
JS; Type 1 Diabetes TrialNet Study Group: Update on worldwide efforts to prevent type 1 diabetes. <em>Ann N Y Acad Sci</em>
1150:190&#x02013;196, 2008 [<a href="/pmc/articles/PMC2928677/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2928677</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19120293" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19120293</span></a>]</div></dd><dt>66.</dt><dd><div class="bk_ref" id="ch37.ref66">Vehik
K, Cuthbertson
D, Ruhlig
H, Schatz
DA, Peakman
M, Krischer
JP; DPT-1 and TrialNet Study Groups: Long-term outcome of individuals treated with oral insulin: Diabetes Prevention Trial-Type 1 (DPT-1) oral insulin trial. <em>Diabetes Care</em>
34:1585&#x02013;1590, 2011 [<a href="/pmc/articles/PMC3120180/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3120180</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21610124" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21610124</span></a>]</div></dd><dt>67.</dt><dd><div class="bk_ref" id="ch37.ref67">Vandemeulebroucke
E, Gorus
F, Decochez
K, Weets
I, Keymeulen
B, De Block
C, Tits
J, Pipeleers
DG, Mathieu
C; Belgian Diabetes Registry: Insulin treatment in IA-2A-positive relatives of type 1 diabetic patients. <em>Diabetes Metab</em>
35:319&#x02013;327, 2009 [<a href="https://pubmed.ncbi.nlm.nih.gov/19647467" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19647467</span></a>]</div></dd><dt>68.</dt><dd><div class="bk_ref" id="ch37.ref68">Nanto-Salonen
K, Kupila
A, Simell
S, Siljander
H, Salonsaari
T, Hekkala
A, Korhonen
S, Erkkola
R, Sipila
JI, Haavisto
L, Siltala
M, Tuominen
J, Hakalax
J, Hyoty
H, Ilonen
J, Veijola
R, Simell
T, Knip
M, Simell
O: Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. <em>Lancet</em>
372:1746&#x02013;1755, 2008 [<a href="https://pubmed.ncbi.nlm.nih.gov/18814906" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18814906</span></a>]</div></dd><dt>69.</dt><dd><div class="bk_ref" id="ch37.ref69">Harrison
LC, Honeyman
MC, Steele
CE, Stone
NL, Sarugeri
E, Bonafacio
E, Couper
JJ, Colman
PG: Pancreatic beta-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. <em>Diabetes Care</em>
27:2348&#x02013;2355, 2004 [<a href="https://pubmed.ncbi.nlm.nih.gov/15451899" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15451899</span></a>]</div></dd><dt>70.</dt><dd><div class="bk_ref" id="ch37.ref70">Trial of intranasal insulin in children and young adults at risk of type 1 diabetes (INITII) [article online], 2016. Available from <a href="https://clinicaltrials.gov/ct2/show/NCT00336674?term=NCT00336674" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://clinicaltrials.gov/ct2/show/NCT00336674?term=NCT00336674</a>. Accessed 3 December 2016</div></dd><dt>71.</dt><dd><div class="bk_ref" id="ch37.ref71">Oral insulin for prevention of diabetes in relatives at risk for type 1 diabetes mellitus [article online], 2016. Available from <a href="https://clinicaltrials.gov/ct2/show/NCT00419562?term=NCT00419562" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://clinicaltrials.gov/ct2/show/NCT00419562?term=NCT00419562</a>. Accessed 3 December 2016</div></dd><dt>72.</dt><dd><div class="bk_ref" id="ch37.ref72">Diabetes Prevention - Immune Tolerance (DIAPREV-IT) [article online], 2016. Available from <a href="https://clinicaltrials.gov/ct2/show/NCT01122446?term=NCT01122446" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://clinicaltrials.gov/ct2/show/NCT01122446?term=NCT01122446</a>. Accessed 3 December 2016</div></dd><dt>73.</dt><dd><div class="bk_ref" id="ch37.ref73">Teplizumab for prevention of type 1 diabetes in relatives &#x0201c;at-risk&#x0201d; [article online], 2016. Available from <a href="https://clinicaltrials.gov/ct2/show/NCT01030861?term=NCT01030861" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://clinicaltrials.gov/ct2/show/NCT01030861?term=NCT01030861</a>. Accessed 3 December 2016</div></dd><dt>74.</dt><dd><div class="bk_ref" id="ch37.ref74">CTLA-4 Ig (Abatacept) for prevention of abnormal glucose tolerance and diabetes in relatives at-risk for type 1 diabetes mellitus [article online], 2016. Available from <a href="https://clinicaltrials.gov/ct2/show/NCT01773707?term=NCT01773707" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://clinicaltrials.gov/ct2/show/NCT01773707?term=NCT01773707</a>. Accessed 3 December 2016</div></dd><dt>75.</dt><dd><div class="bk_ref" id="ch37.ref75">Feutren
G, Assan
R, Karsenty
G, Du Rostu
H, Sirmai
J, Papoz
L, Vialettes
B, Vexiau
P, Rodier
M, Lallemand
A, Bach
JF; Cyclosporin/Diabetes French Study Group: Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. <em>Lancet</em>
2:119&#x02013;124, 1986 [<a href="https://pubmed.ncbi.nlm.nih.gov/2873396" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2873396</span></a>]</div></dd><dt>76.</dt><dd><div class="bk_ref" id="ch37.ref76">Cyclosporin-induced remission of IDDM after early intervention. Association of 1 yr of cyclosporin treatment with enhanced insulin secretion. The Canadian-European Randomized Control Trial Group. <em>Diabetes</em>
37:1574&#x02013;1582, 1988 [<a href="https://pubmed.ncbi.nlm.nih.gov/2903105" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2903105</span></a>]</div></dd><dt>77.</dt><dd><div class="bk_ref" id="ch37.ref77">Skyler
JS, Rabinovitch
A: Cyclosporine in recent onset type I diabetes mellitus. Effects on islet beta cell function. Miami Cyclosporine Diabetes Study Group. <em>J Diabetes Complications</em>
6:77&#x02013;88, 1992 [<a href="https://pubmed.ncbi.nlm.nih.gov/1611143" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1611143</span></a>]</div></dd><dt>78.</dt><dd><div class="bk_ref" id="ch37.ref78">Chase
HP, Butler-Simon
N, Garg
SK, Hayward
A, Klingensmith
GJ, Hamman
RF, O&#x02019;Brien
D: Cyclosporine A for the treatment of new-onset insulin-dependent diabetes mellitus. <em>Pediatrics</em>
85:241&#x02013;245, 1990 [<a href="https://pubmed.ncbi.nlm.nih.gov/2304776" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2304776</span></a>]</div></dd><dt>79.</dt><dd><div class="bk_ref" id="ch37.ref79">Bougneres
PF, Carel
JC, Castano
L, Boitard
C, Gardin
JP, Landais
P, Hors
J, Mihatsch
MJ, Paillard
M, Chaussain
JL, Bach
JF: Factors associated with early remission of type I diabetes in children treated with cyclosporine. <em>N Engl J Med</em>
318:663&#x02013;670, 1988 [<a href="https://pubmed.ncbi.nlm.nih.gov/3125434" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3125434</span></a>]</div></dd><dt>80.</dt><dd><div class="bk_ref" id="ch37.ref80">Bougneres
PF, Landais
P, Boisson
C, Carel
JC, Frament
N, Boitard
C, Chaussain
JL, Bach
JF: Limited duration of remission of insulin dependency in children with recent overt type I diabetes treated with low-dose cyclosporin. <em>Diabetes</em>
39:1264&#x02013;1272, 1990 [<a href="https://pubmed.ncbi.nlm.nih.gov/2210078" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2210078</span></a>]</div></dd><dt>81.</dt><dd><div class="bk_ref" id="ch37.ref81">Silverstein
J, Maclaren
N, Riley
W, Spillar
R, Radjenovic
D, Johnson
S: Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. <em>N Engl J Med</em>
319:599&#x02013;604, 1988 [<a href="https://pubmed.ncbi.nlm.nih.gov/3045545" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3045545</span></a>]</div></dd><dt>82.</dt><dd><div class="bk_ref" id="ch37.ref82">Harrison
LC, Colman
PG, Dean
B, Baxter
R, Martin
FI: Increase in remission rate in newly diagnosed type I diabetic subjects treated with azathioprine. <em>Diabetes</em>
34:1306&#x02013;1308, 1985 [<a href="https://pubmed.ncbi.nlm.nih.gov/3905463" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3905463</span></a>]</div></dd><dt>83.</dt><dd><div class="bk_ref" id="ch37.ref83">Cook
JJ, Hudson
I, Harrison
LC, Dean
B, Colman
PG, Werther
GA, Warne
GL, Court
JM: Double-blind controlled trial of azathioprine in children with newly diagnosed type I diabetes. <em>Diabetes</em>
38:779&#x02013;783, 1989 [<a href="https://pubmed.ncbi.nlm.nih.gov/2656346" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2656346</span></a>]</div></dd><dt>84.</dt><dd><div class="bk_ref" id="ch37.ref84">Coutant
R, Landais
P, Rosilio
M, Johnsen
C, Lahlou
N, Chatelain
P, Carel
JC, Ludvigsson
J, Boitard
C, Bougneres
PF: Low dose linomide in type 1 juvenile diabetes of recent onset: a randomised placebo-controlled double blind trial. <em>Diabetologia</em>
41:1040&#x02013;1046, 1998 [<a href="https://pubmed.ncbi.nlm.nih.gov/9754822" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9754822</span></a>]</div></dd><dt>85.</dt><dd><div class="bk_ref" id="ch37.ref85">Elliott
JF, Marlin
KL, Couch
RM: Effect of bacille Calmette-Guerin vaccination on C-peptide secretion in children newly diagnosed with IDDM. <em>Diabetes Care</em>
21:1691&#x02013;1693, 1998 [<a href="https://pubmed.ncbi.nlm.nih.gov/9773732" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9773732</span></a>]</div></dd><dt>86.</dt><dd><div class="bk_ref" id="ch37.ref86">Allen
HF, Klingensmith
GJ, Jensen
P, Simoes
E, Hayward
A, Chase
HP: Effect of Bacillus Calmette-Guerin vaccination on new-onset type 1 diabetes. A randomized clinical study. <em>Diabetes Care</em>
22:1703&#x02013;1707, 1999 [<a href="https://pubmed.ncbi.nlm.nih.gov/10526739" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10526739</span></a>]</div></dd><dt>87.</dt><dd><div class="bk_ref" id="ch37.ref87">Chaillous
L, Lefevre
H, Thivolet
C, Boitard
C, Lahlou
N, Atlan-Gepner
C, Bouhanick
B, Mogenet
A, Nicolino
M, Carel
JC, Lecomte
P, Marechaud
R, Bougneres
P, Charbonnel
B, Sai
P: Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. <em>Lancet</em>
356:545&#x02013;549, 2000 [<a href="https://pubmed.ncbi.nlm.nih.gov/10950231" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10950231</span></a>]</div></dd><dt>88.</dt><dd><div class="bk_ref" id="ch37.ref88">Pozzilli
P, Pitocco
D, Visalli
N, Cavallo
MG, Buzzetti
R, Crino
A, Spera
S, Suraci
C, Multari
G, Cervoni
M, Manca Bitti
ML, Matteoli
MC, Marietti
G, Ferrazzoli
F, Cassone Faldetta
MR, Giordano
C, Sbriglia
M, Sarugeri
E, Ghirlanda
G: No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. <em>Diabetologia</em>
43:1000&#x02013;1004, 2000 [<a href="https://pubmed.ncbi.nlm.nih.gov/10990077" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10990077</span></a>]</div></dd><dt>89.</dt><dd><div class="bk_ref" id="ch37.ref89">Ergun-Longmire
B, Marker
J, Zeidler
A, Rapaport
R, Raskin
P, Bode
B, Schatz
D, Vargas
A, Rogers
D, Schwartz
S, Malone
J, Krischer
J, Maclaren
NK: Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. <em>Ann N Y Acad Sci</em>
1029:260&#x02013;277, 2004 [<a href="https://pubmed.ncbi.nlm.nih.gov/15681764" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15681764</span></a>]</div></dd><dt>90.</dt><dd><div class="bk_ref" id="ch37.ref90">Skyler
JS, Lorenz
TJ, Schwartz
S, Eisenbarth
GS, Einhorn
D, Palmer
JP, Marks
JB, Greenbaum
C, Saria
EA, Byers
V: Effects of an anti-CD5 immunoconjugate (CD5-plus) in recent onset type I diabetes mellitus: a preliminary investigation. The CD5 Diabetes Project Team. <em>J Diabetes Complications</em>
7:224&#x02013;232, 1993 [<a href="https://pubmed.ncbi.nlm.nih.gov/7693056" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7693056</span></a>]</div></dd><dt>91.</dt><dd><div class="bk_ref" id="ch37.ref91">Herold
KC, Hagopian
W, Auger
JA, Poumian-Ruiz
E, Taylor
L, Donaldson
D, Gitelman
SE, Harlan
DM, Xu
D, Zivin
RA, Bluestone
JA: Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. <em>N Engl J Med</em>
346:1692&#x02013;1698, 2002 [<a href="https://pubmed.ncbi.nlm.nih.gov/12037148" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12037148</span></a>]</div></dd><dt>92.</dt><dd><div class="bk_ref" id="ch37.ref92">Herold
KC, Gitelman
SE, Masharani
U, Hagopian
W, Bisikirska
B, Donaldson
D, Rother
K, Diamond
B, Harlan
DM, Bluestone
JA: A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. <em>Diabetes</em>
54:1763&#x02013;1769, 2005 [<a href="/pmc/articles/PMC5315015/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5315015</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15919798" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15919798</span></a>]</div></dd><dt>93.</dt><dd><div class="bk_ref" id="ch37.ref93">Keymeulen
B, Vandemeulebroucke
E, Ziegler
AG, Mathieu
C, Kaufman
L, Hale
G, Gorus
F, Goldman
M, Walter
M, Candon
S, Schandene
L, Crenier
L, De Block
C, Seigneurin
JM, De Pauw
P, Pierard
D, Weets
I, Rebello
P, Bird
P, Berrie
E, Frewin
M, Waldmann
H, Bach
JF, Pipeleers
D, Chatenoud
L: Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. <em>N Engl J Med</em>
352:2598&#x02013;2608, 2005 [<a href="https://pubmed.ncbi.nlm.nih.gov/15972866" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15972866</span></a>]</div></dd><dt>94.</dt><dd><div class="bk_ref" id="ch37.ref94">Keymeulen
B, Walter
M, Mathieu
C, Kaufman
L, Gorus
F, Hilbrands
R, Vandemeulebroucke
E, Van de Velde
U, Crenier
L, De Block
C, Candon
S, Waldmann
H, Ziegler
AG, Chatenoud
L, Pipeleers
D: Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. <em>Diabetologia</em>
53:614&#x02013;623, 2010 [<a href="https://pubmed.ncbi.nlm.nih.gov/20225393" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20225393</span></a>]</div></dd><dt>95.</dt><dd><div class="bk_ref" id="ch37.ref95">Sherry
N, Hagopian
W, Ludvigsson
J, Jain
SM, Wahlen
J, Ferry
RJ, Jr., Bode
B, Aronoff
S, Holland
C, Carlin
D, King
KL, Wilder
RL, Pillemer
S, Bonvini
E, Johnson
S, Stein
KE, Koenig
S, Herold
KC, Daifotis
AG; Protege Trial Investigators: Teplizumab for treatment of type 1 diabetes (Protege Study): 1-year results from a randomised, placebo-controlled trial. <em>Lancet</em>
378:487&#x02013;497, 2011 [<a href="/pmc/articles/PMC3191495/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3191495</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21719095" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21719095</span></a>]</div></dd><dt>96.</dt><dd><div class="bk_ref" id="ch37.ref96">Hagopian
W, Ferry
RJ, Jr., Sherry
N, Carlin
D, Bonvini
E, Johnson
S, Stein
KE, Koenig
S, Daifotis
AG, Herold
KC, Ludvigsson
J; Protege Trial Investigators: Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protege trial. <em>Diabetes</em>
62:3901&#x02013;3908, 2013 [<a href="/pmc/articles/PMC3806608/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3806608</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23801579" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23801579</span></a>]</div></dd><dt>97.</dt><dd><div class="bk_ref" id="ch37.ref97">Protege encore study&#x02014;clinical trial of teplizumab (MGA031) in children and adults with recent-onset type 1 diabetes mellitus [article online], 2013. Available from <a href="https://clinicaltrials.gov/ct2/show/NCT00920582?term=NCT00920582" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://clinicaltrials.gov/ct2/show/NCT00920582?term=NCT00920582</a>. Accessed 3 December 2016</div></dd><dt>98.</dt><dd><div class="bk_ref" id="ch37.ref98">Aronson
R, Gottlieb
PA, Christiansen
JS, Donner
TW, Bosi
E, Bode
BW, Pozzilli
P; DEFEND Investigator Group: Low-dose otelixizumab anti-CD3 monoclonal antibody DEFEND-1 study: results of the randomized phase III study in recent-onset human type 1 diabetes. <em>Diabetes Care</em>
37:2746&#x02013;2754, 2014 [<a href="/pmc/articles/PMC4392937/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4392937</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25011949" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25011949</span></a>]</div></dd><dt>99.</dt><dd><div class="bk_ref" id="ch37.ref99">Ambery
P, Donner
TW, Biswas
N, Donaldson
J, Parkin
J, Dayan
CM: Efficacy and safety of low-dose otelixizumab anti-CD3 monoclonal antibody in preserving C-peptide secretion in adolescent type 1 diabetes: DEFEND-2, a randomized, placebo-controlled, double-blind, multicentre study. <em>Diabet Med</em>
31:399&#x02013;402, 2014 [<a href="https://pubmed.ncbi.nlm.nih.gov/24236828" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24236828</span></a>]</div></dd><dt>100.</dt><dd><div class="bk_ref" id="ch37.ref100">Herold
KC, Gitelman
SE, Ehlers
MR, Gottlieb
PA, Greenbaum
CJ, Hagopian
W, Boyle
KD, Keyes-Elstein
L, Aggarwal
S, Phippard
D, Sayre
PH, McNamara
J, Bluestone
JA; the AbATE Study Team: Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. <em>Diabetes</em>
62:3766&#x02013;3774, 2013 [<a href="/pmc/articles/PMC3806618/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3806618</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23835333" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23835333</span></a>]</div></dd><dt>101.</dt><dd><div class="bk_ref" id="ch37.ref101">Herold
KC, Gitelman
SE, Willi
SM, Gottlieb
PA, Waldron-Lynch
F, Devine
L, Sherr
J, Rosenthal
SM, Adi
S, Jalaludin
MY, Michels
AW, Dziura
J, Bluestone
JA: Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: a randomised controlled trial. <em>Diabetologia</em>
56:391&#x02013;400, 2013 [<a href="/pmc/articles/PMC3537871/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3537871</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23086558" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23086558</span></a>]</div></dd><dt>102.</dt><dd><div class="bk_ref" id="ch37.ref102">Ludvigsson
J, Faresjo
M, Hjorth
M, Axelsson
S, Cheramy
M, Pihl
M, Vaarala
O, Forsander
G, Ivarsson
S, Johansson
C, Lindh
A, Nilsson
NO, Aman
J, Ortqvist
E, Zerhouni
P, Casas
R: GAD treatment and insulin secretion in recent-onset type 1 diabetes. <em>N Engl J Med</em>
359:1909&#x02013;1920, 2008 [<a href="https://pubmed.ncbi.nlm.nih.gov/18843118" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18843118</span></a>]</div></dd><dt>103.</dt><dd><div class="bk_ref" id="ch37.ref103">Wherrett
DK, Bundy
B, Becker
DJ, DiMeglio
LA, Gitelman
SE, Goland
R, Gottlieb
PA, Greenbaum
CJ, Herold
KC, Marks
JB, Monzavi
R, Moran
A, Orban
T, Palmer
JP, Raskin
P, Rodriguez
H, Schatz
D, Wilson
DM, Krischer
JP, Skyler
JS; Type 1 Diabetes TrialNet GAD Study Group: Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. <em>Lancet</em>
378:319&#x02013;327, 2011 [<a href="/pmc/articles/PMC3580128/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3580128</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21714999" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21714999</span></a>]</div></dd><dt>104.</dt><dd><div class="bk_ref" id="ch37.ref104">Ludvigsson
J, Krisky
D, Casas
R, Battelino
T, Castano
L, Greening
J, Kordonouri
O, Otonkoski
T, Pozzilli
P, Robert
JJ, Veeze
HJ, Palmer
J: GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. <em>N Engl J Med</em>
366:433&#x02013;442, 2012 [<a href="https://pubmed.ncbi.nlm.nih.gov/22296077" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22296077</span></a>]</div></dd><dt>105.</dt><dd><div class="bk_ref" id="ch37.ref105">A phase III study to investigate the impact of Diamyd in patients newly diagnosed with type 1 diabetes (USA)&#x02014;DIAPREVENT [article online], 2012. Available from <a href="https://clinicaltrials.gov/ct2/show/NCT00751842?term=NCT00751842" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://clinicaltrials.gov/ct2/show/NCT00751842?term=NCT00751842</a>. Accessed 3 December 2016</div></dd><dt>106.</dt><dd><div class="bk_ref" id="ch37.ref106">Raz
I, Elias
D, Avron
A, Tamir
M, Metzger
M, Cohen
IR: Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. <em>Lancet</em>
358:1749&#x02013;1753, 2001 [<a href="https://pubmed.ncbi.nlm.nih.gov/11734230" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11734230</span></a>]</div></dd><dt>107.</dt><dd><div class="bk_ref" id="ch37.ref107">Raz
I, Avron
A, Tamir
M, Metzger
M, Symer
L, Eldor
R, Cohen
IR, Elias
D: Treatment of new-onset type 1 diabetes with peptide DiaPep277 is safe and associated with preserved beta-cell function: extension of a randomized, double-blind, phase II trial. <em>Diabetes Metab Res Rev</em>
23:292&#x02013;298, 2007 [<a href="https://pubmed.ncbi.nlm.nih.gov/17124720" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17124720</span></a>]</div></dd><dt>108.</dt><dd><div class="bk_ref" id="ch37.ref108">Lazar
L, Ofan
R, Weintrob
N, Avron
A, Tamir
M, Elias
D, Phillip
M, Josefsberg
Z: Heat-shock protein peptide DiaPep277 treatment in children with newly diagnosed type 1 diabetes: a randomised, double-blind phase II study. <em>Diabetes Metab Res Rev</em>
23:286&#x02013;291, 2007 [<a href="https://pubmed.ncbi.nlm.nih.gov/17124721" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17124721</span></a>]</div></dd><dt>109.</dt><dd><div class="bk_ref" id="ch37.ref109">Huurman
VA, Decochez
K, Mathieu
C, Cohen
IR, Roep
BO: Therapy with the hsp60 peptide DiaPep277 in C-peptide positive type 1 diabetes patients. <em>Diabetes Metab Res Rev</em>
23:269&#x02013;275, 2007 [<a href="https://pubmed.ncbi.nlm.nih.gov/17024692" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17024692</span></a>]</div></dd><dt>110.</dt><dd><div class="bk_ref" id="ch37.ref110">Schloot
NC, Meierhoff
G, Lengyel
C, Vandorfi
G, Takacs
J, Panczel
P, Barkai
L, Madacsy
L, Oroszlan
T, Kovacs
P, Suto
G, Battelino
T, Hosszufalusi
N, Jermendy
G: Effect of heat shock protein peptide DiaPep277 on beta-cell function in paediatric and adult patients with recent-onset diabetes mellitus type 1: two prospective, randomized, double-blind phase II trials. <em>Diabetes Metab Res Rev</em>
23:276&#x02013;285, 2007 [<a href="https://pubmed.ncbi.nlm.nih.gov/17103487" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17103487</span></a>]</div></dd><dt>111.</dt><dd><div class="bk_ref" id="ch37.ref111">Raz
I, Ziegler
AG, Linn
T, Schernthaner
G, Bonnici
F, Distiller
LA, Giordano
C, Giorgino
F, de Vries
L, Mauricio
D, Prochazka
V, Wainstein
J, Elias
D, Avron
A, Tamir
M, Eren
R, Peled
D, Dagan
S, Cohen
IR, Pozzilli
P; DIA-AID 1 Writing Group: Treatment of recent-onset type 1 diabetic patients with DiaPep277: results of a double-blind, placebo-controlled, randomized phase 3 trial. <em>Diabetes Care</em>
37:1392&#x02013;1400, 2014 [<a href="https://pubmed.ncbi.nlm.nih.gov/24757230" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24757230</span></a>]</div></dd><dt>112.</dt><dd><div class="bk_ref" id="ch37.ref112">Pozzilli
P, Raz
I, Peled
D, Elias
D, Avron
A, Tamir
M, Eren
R, Dagan
S, Cohen
IR: Evaluation of long-term treatment effect in a type 1 diabetes intervention trial: differences after stimulation with glucagon or a mixed-meal. <em>Diabetes Care</em>
37:1384&#x02013;1391, 2014 [<a href="https://pubmed.ncbi.nlm.nih.gov/24408401" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24408401</span></a>]</div></dd><dt>113.</dt><dd><div class="bk_ref" id="ch37.ref113">Raz
I, Ziegler
AG, Linn
T, Schernthaner
G, Bonnici
F, Distiller
LA, Giordano
C, Giorgino
F, de Vries
L, Mauricio
D, Prochazka
V, Wainstein
J, Elias
D, Avron
A, Tamir
M, Eren
R, Peled
D, Dagan
S, Cohen
IR, Pozzilli
P; DIA-AID 1 Writing Group: Retraction of: &#x0201c;Treatment of recent-onset type 1 diabetic patients with DiaPep277: results of a double-blind, placebo-controlled, randomized phase 3 trial. <em>Diabetes Care</em>
2014; 37:1392&#x02013;1400.&#x0201d; <em>Diabetes Care</em>
38:178, 2015 [<a href="https://pubmed.ncbi.nlm.nih.gov/24757230" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24757230</span></a>]</div></dd><dt>114.</dt><dd><div class="bk_ref" id="ch37.ref114">Pozzilli
P, Raz
I, Peled
D, Elias
D, Avron
A, Tamir
M, Eren
R, Dagan
S, Cohen
IR: Retraction of: &#x0201c;Evaluation of long-term treatment effect in a type 1 diabetes intervention trial: differences after stimulation with glucagon or a mixed meal. <em>Diabetes Care</em>
2014; 37:1384&#x02013;1391.&#x0201d; <em>Diabetes Care</em>
38:179, 2015 [<a href="https://pubmed.ncbi.nlm.nih.gov/24408401" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24408401</span></a>]</div></dd><dt>115.</dt><dd><div class="bk_ref" id="ch37.ref115">Gottlieb
PA, Quinlan
S, Krause-Steinrauf
H, Greenbaum
CJ, Wilson
DM, Rodriguez
H, Schatz
DA, Moran
AM, Lachin
JM, Skyler
JS; Type 1 Diabetes TrialNet MMF/DZB Study Group: Failure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new-onset type 1 diabetes. <em>Diabetes Care</em>
33:826&#x02013;832, 2010 [<a href="/pmc/articles/PMC2845036/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2845036</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20067954" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20067954</span></a>]</div></dd><dt>116.</dt><dd><div class="bk_ref" id="ch37.ref116">Pescovitz
MD, Greenbaum
CJ, Krause-Steinrauf
H, Becker
DJ, Gitelman
SE, Goland
R, Gottlieb
PA, Marks
JB, McGee
PF, Moran
AM, Raskin
P, Rodriguez
H, Schatz
DA, Wherrett
D, Wilson
DM, Lachin
JM, Skyler
JS; The Type 1 Diabetes TrialNet Anti-CD20 Study Group: Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. <em>N Engl J Med</em>
361:2143&#x02013;2152, 2009 [<a href="/pmc/articles/PMC6410357/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6410357</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19940299" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19940299</span></a>]</div></dd><dt>117.</dt><dd><div class="bk_ref" id="ch37.ref117">Pescovitz
MD, Greenbaum
CJ, Bundy
B, Becker
DJ, Gitelman
SE, Goland
R, Gottlieb
PA, Marks
JB, Moran
A, Raskin
P, Rodriguez
H, Schatz
DA, Wherrett
D, Wilson
DM, Krischer
JP, Skyler
JS; Type 1 Diabetes TrialNet Anti-CD20 Study Group: B-lymphocyte depletion with rituximab and &#x003b2;-cell function: two-year results. <em>Diabetes Care</em>
37:453&#x02013;459, 2014 [<a href="/pmc/articles/PMC3898764/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3898764</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24026563" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24026563</span></a>]</div></dd><dt>118.</dt><dd><div class="bk_ref" id="ch37.ref118">Orban
T, Bundy
B, Becker
DJ, DiMeglio
LA, Gitelman
SE, Goland
R, Gottlieb
PA, Greenbaum
CJ, Marks
JB, Monzavi
R, Moran
A, Raskin
P, Rodriguez
H, Russell
WE, Schatz
D, Wherrett
D, Wilson
DM, Krischer
JP, Skyler
JS; Type 1 Diabetes TrialNet Abatacept Study Group: Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised double-blind, placebo-controlled trial. <em>Lancet</em>
378:412&#x02013;419, 2011 [<a href="/pmc/articles/PMC3462593/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3462593</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21719096" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21719096</span></a>]</div></dd><dt>119.</dt><dd><div class="bk_ref" id="ch37.ref119">Orban
T, Bundy
B, Becker
DJ, DiMeglio
LA, Gitelman
SE, Goland
R, Gottlieb
PA, Greenbaum
CJ, Marks
JB, Monzavi
R, Moran
A, Peakman
M, Raskin
P, Russell
WE, Schatz
D, Wherrett
DK, Wilson
DM, Krischer
JP, Skyler
JS; Type 1 Diabetes TrialNet Abatacept Study Group: Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. <em>Diabetes Care</em>
37:1069&#x02013;1075, 2014 [<a href="/pmc/articles/PMC3964491/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3964491</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24296850" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24296850</span></a>]</div></dd><dt>120.</dt><dd><div class="bk_ref" id="ch37.ref120">Moran
A, Bundy
B, Becker
DJ, DiMeglio
LA, Gitelman
SE, Goland
R, Greenbaum
CJ, Herold
KC, Marks
JB, Raskin
P, Sanda
S, Schatz
D, Wherrett
DK, Wilson
DM, Krischer
JP, Skyler
JS; Type 1 Diabetes TrialNet Canakinumab Study Group, Pickersgill
L, de Koning
E, Ziegler
AG, Boehm
B, Badenhoop
K, Schloot
N, Bak
JF, Pozzilli
P, Mauricio
D, Donath
MY, Castano
L, Wagner
A, Lervang
HH, Perrild
H, Mandrup-Poulsen
T; the AIDA Study Group: Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised double-masked, placebo-controlled trials. <em>Lancet</em>
381:1905&#x02013;1915, 2013 [<a href="/pmc/articles/PMC3827771/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3827771</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23562090" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23562090</span></a>]</div></dd><dt>121.</dt><dd><div class="bk_ref" id="ch37.ref121">Gitelman
SE, Gottlieb
PA, Rigby
MR, Felner
EI, Willi
SM, Fisher
LK, Moran
A, Gottschalk
M, Moore
WV, Pinckney
A, Keyes-Elstein
L, Aggarwal
S, Phippard
D, Sayre
PH, Ding
L, Bluestone
JA, Ehlers
MR; START Study Team: Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised placebo-controlled, phase 2 trial. <em>Lancet Diabetes Endocrinol</em>
1:306&#x02013;316, 2013 [<a href="/pmc/articles/PMC6489466/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6489466</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24622416" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24622416</span></a>]</div></dd><dt>122.</dt><dd><div class="bk_ref" id="ch37.ref122">Rigby
MR, DiMeglio
LA, Rendell
MS, Felner
EI, Dostou
JM, Gitelman
SE, Patel
CM, Griffin
KJ, Tsalikian
E, Gottlieb
PA, Greenbaum
CJ, Sherry
NA, Moore
WV, Monzavi
R, Willi
SM, Raskin
P, Moran
A, Russell
WE, Pinckney
A, Keyes-Elstein
L, Howell
M, Aggarwal
S, Lim
N, Phippard
D, Nepom
GT, McNamara
J, Ehlers
MR; T1DAL Study Team: Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. <em>Lancet Diabetes Endocrinol</em>
1:284&#x02013;294, 2013 [<a href="/pmc/articles/PMC3957186/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3957186</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24622414" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24622414</span></a>]</div></dd><dt>123.</dt><dd><div class="bk_ref" id="ch37.ref123">Rigby
MR, Harris
KM, Pinckney
A, DiMeglio
LA, Rendell
MS, Felner
EI, Dostou
JM, Gitelman
SE, Griffin
KJ, Tsalikian
E, Gottlieb
PA, Greenbaum
CJ, Sherry
NA, Moore
WV, Monzavi
R, Willi
SM, Raskin
P, Keyes-Elstein
L, Long
SA, Kanaparthi
S, Lim
N, Phippard
D, Soppe
CL, Fitzgibbon
ML, McNamara
J, Nepom
GT, Ehlers
MR: Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. <em>J Clin Invest</em>
125:3285&#x02013;3296, 2015 [<a href="/pmc/articles/PMC4623571/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4623571</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26193635" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26193635</span></a>]</div></dd><dt>124.</dt><dd><div class="bk_ref" id="ch37.ref124">Orban
T, Farkas
K, Jalahej
H, Kis
J, Treszl
A, Falk
B, Reijonen
H, Wolfsdorf
J, Ricker
A, Matthews
JB, Tchao
N, Sayre
P, Bianchine
P: Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. <em>J Autoimmun</em>
34:408&#x02013;415, 2010 [<a href="/pmc/articles/PMC2860016/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2860016</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19931408" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19931408</span></a>]</div></dd><dt>125.</dt><dd><div class="bk_ref" id="ch37.ref125">Long
SA, Rieck
M, Sanda
S, Bollyky
JB, Samuels
PL, Goland
R, Ahmann
A, Rabinovitch
A, Aggarwal
S, Phippard
D, Turka
LA, Ehlers
MR, Bianchine
PJ, Boyle
KD, Adah
SA, Bluestone
JA, Buckner
JH, Greenbaum
CJ; Diabetes TrialNet and the Immune Tolerance Network: Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs &#x003b2;-cell function. <em>Diabetes</em>
61:2340&#x02013;2348, 2012 [<a href="/pmc/articles/PMC3425404/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3425404</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22721971" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22721971</span></a>]</div></dd><dt>126.</dt><dd><div class="bk_ref" id="ch37.ref126">Gottlieb
PA, Alkanani
AK, Michels
AW, Lewis
EC, Shapiro
L, Dinarello
CA, Zipris
D: &#x003b1;1-Antitrypsin therapy downregulates toll-like receptor-induced IL-1&#x003b2; responses in monocytes and myeloid dendritic cells and may improve islet function in recently diagnosed patients with type 1 diabetes. <em>J Clin Endocrinol Metab</em>
99:E1418&#x02013;E1426, 2014 [<a href="/pmc/articles/PMC4121034/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4121034</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24527714" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24527714</span></a>]</div></dd><dt>127.</dt><dd><div class="bk_ref" id="ch37.ref127">Walter
M, Philotheou
A, Bonnici
F, Ziegler
AG, Jimenez
R; NBI-6024 Study Group: No effect of the altered peptide ligand NBI-6024 on beta-cell residual function and insulin needs in new-onset type 1 diabetes. <em>Diabetes Care</em>
32:2036&#x02013;2040, 2009 [<a href="/pmc/articles/PMC2768201/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2768201</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19690081" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19690081</span></a>]</div></dd><dt>128.</dt><dd><div class="bk_ref" id="ch37.ref128">Roep
BO, Solvason
N, Gottlieb
PA, Abreu
JR, Harrison
LC, Eisenbarth
GS, Yu
L, Leviten
M, Hagopian
WA, Buse
JB, von Herrath
M, Quan
J, King
RS, Robinson
WH, Utz
PJ, Garren
H; BHT-3021 Investigators, Steinman
L: Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8+ T cells in type 1 diabetes. <em>Sci Transl Med</em>
5:191ra82, 2013 [<a href="/pmc/articles/PMC4516024/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4516024</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23803704" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23803704</span></a>]</div></dd><dt>129.</dt><dd><div class="bk_ref" id="ch37.ref129">Thrower
SL, James
L, Hall
W, Green
KM, Arif
S, Allen
JS, Van-Krinks
C, Lozanoska-Ochser
B, Marquesini
L, Brown
S, Wong
FS, Dayan
CM, Peakman
M: Proinsulin peptide immunotherapy in type 1 diabetes: report of a first-in-man phase I safety study. <em>Clin Exp Immunol</em>
155:156&#x02013;165, 2009 [<a href="/pmc/articles/PMC2675245/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2675245</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19040615" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19040615</span></a>]</div></dd><dt>130.</dt><dd><div class="bk_ref" id="ch37.ref130">Haller
MJ, Gitelman
SE, Gottlieb
PA, Michels
AW, Rosenthal
SM, Shuster
JJ, Zou
B, Brusko
TM, Hulme
MA, Wasserfall
CH, Mathews
CE, Atkinson
MA, Schatz
DA: Anti-thymocyte globulin/G-CSF treatment preserves &#x003b2; cell function in patients with established type 1 diabetes. <em>J Clin Invest</em>
125:448&#x02013;455, 2015 [<a href="/pmc/articles/PMC4382237/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4382237</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25500887" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25500887</span></a>]</div></dd><dt>131.</dt><dd><div class="bk_ref" id="ch37.ref131">Haller
MJ, Gitelman
SE, Gottlieb
PA, Michels
AW, Perry
DJ, Schultz
AR, Hulme
MA, Shuster
JJ, Zou
B, Wasserfall
CH, Posgai
AL, Mathews
CE, Brusko
TM, Atkinson
MA, Schatz
DA: Antithymocyte globulin plus G-CSF combination therapy leads to sustained immunomodulatory and metabolic effects in a subset of responders with established type 1 diabetes. <em>Diabetes</em>
65:3765&#x02013;3775, 2016 [<a href="/pmc/articles/PMC5127248/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5127248</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27669730" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27669730</span></a>]</div></dd><dt>132.</dt><dd><div class="bk_ref" id="ch37.ref132">ATG-GCSF in new onset type 1 diabetes (ATG-GCSF) [article online], 2016. Available from <a href="https://clinicaltrials.gov/ct2/show/NCT02215200?term=02215200" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://clinicaltrials.gov/ct2/show/NCT02215200?term=02215200</a>. Accessed 3 December 2016</div></dd><dt>133.</dt><dd><div class="bk_ref" id="ch37.ref133">Martin
S, Herder
C, Schloot
NC, Koenig
W, Heise
T, Heinemann
L, Kolb
H; DIATOR Study Group: Residual beta cell function in newly diagnosed type 1 diabetes after treatment with atorvastatin: the randomized DIATOR trial. <em>PLOS ONE</em>
6:e17554, 2011 [<a href="/pmc/articles/PMC3055882/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3055882</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21412424" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21412424</span></a>]</div></dd><dt>134.</dt><dd><div class="bk_ref" id="ch37.ref134">Strom
A, Kolb
H, Martin
S, Herder
C, Simon
MC, Koenig
W, Heise
T, Heinemann
L, Roden
M, Schloot
NC; DIATOR Study Group: Improved preservation of residual beta cell function by atorvastatin in patients with recent onset type 1 diabetes and high CRP levels (DIATOR trial). <em>PLOS ONE</em>
7:e33108, 2012 [<a href="/pmc/articles/PMC3308960/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3308960</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22448235" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22448235</span></a>]</div></dd><dt>135.</dt><dd><div class="bk_ref" id="ch37.ref135">Mastrandrea
L, Yu
J, Behrens
T, Buchlis
J, Albini
C, Fourtner
S, Quattrin
T: Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. <em>Diabetes Care</em>
32:1244&#x02013;1249, 2009 [<a href="/pmc/articles/PMC2699714/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2699714</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19366957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19366957</span></a>]</div></dd><dt>136.</dt><dd><div class="bk_ref" id="ch37.ref136">Hartemann
A, Bensimon
G, Payan
CA, Jacqueminet
S, Bourron
O, Nicolas
N, Fonfrede
M, Rosenzwajg
M, Bernard
C, Klatzmann
D: Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. <em>Lancet Diabetes Endocrinol</em>
1:295&#x02013;305, 2013 [<a href="https://pubmed.ncbi.nlm.nih.gov/24622415" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24622415</span></a>]</div></dd><dt>137.</dt><dd><div class="bk_ref" id="ch37.ref137">Griffin
KJ, Thompson
PA, Gottschalk
M, Kyllo
JH, Rabinovitch
A: Combination therapy with sitagliptin and lansoprazole in patients with recent-onset type 1 diabetes (REPAIR-T1D): 12-month results of a multicentre, randomised, placebo-controlled, phase 2 trial. <em>Lancet Diabetes Endocrinol</em>
2:710&#x02013;718, 2014 [<a href="/pmc/articles/PMC4283272/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4283272</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24997559" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24997559</span></a>]</div></dd><dt>138.</dt><dd><div class="bk_ref" id="ch37.ref138">Voltarelli
JC, Couri
CE, Stracieri
AB, Oliveira
MC, Moraes
DA, Pieroni
F, Coutinho
M, Malmegrim
KC, Foss-Freitas
MC, Simoes
BP, Foss
MC, Squiers
E, Burt
RK: Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. <em>JAMA</em>
297:1568&#x02013;1576, 2007 [<a href="https://pubmed.ncbi.nlm.nih.gov/17426276" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17426276</span></a>]</div></dd><dt>139.</dt><dd><div class="bk_ref" id="ch37.ref139">Couri
CE, Oliveira
MC, Stracieri
AB, Moraes
DA, Pieroni
F, Barros
GM, Madeira
MI, Malmegrim
KC, Foss-Freitas
MC, Simoes
BP, Martinez
EZ, Foss
MC, Burt
RK, Voltarelli
JC: C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. <em>JAMA</em>
301:1573&#x02013;1579, 2009 [<a href="https://pubmed.ncbi.nlm.nih.gov/19366777" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19366777</span></a>]</div></dd><dt>140.</dt><dd><div class="bk_ref" id="ch37.ref140">Voltarelli
JC, Martinez
EZ, Burt
RK: Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. Author&#x02019;s reply. <em>JAMA</em>
302:624&#x02013;625, 2009 [<a href="https://pubmed.ncbi.nlm.nih.gov/19671901" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19671901</span></a>]</div></dd><dt>141.</dt><dd><div class="bk_ref" id="ch37.ref141">D&#x02019;Addio
F, Valderrama Vasquez
A, Ben Nasr
M, Franek
E, Zhu
D, Li
L, Ning
G, Snarski
E, Fiorina
P: Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis. <em>Diabetes</em>
63:3041&#x02013;3046, 2014 [<a href="https://pubmed.ncbi.nlm.nih.gov/24947362" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24947362</span></a>]</div></dd><dt>142.</dt><dd><div class="bk_ref" id="ch37.ref142">Tocilizumab (TCZ) in new-onset type 1 diabetes (EXTEND) [article online], 2017. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT02293837" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT02293837</a>. Accessed 3 December 2016</div></dd><dt>143.</dt><dd><div class="bk_ref" id="ch37.ref143">Investigation of otelixizumab in new-onset, autoimmune type 1 diabetes mellitus patients [article online], 2016. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT02000817" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT02000817</a>. Accessed 3 December 2016</div></dd><dt>144.</dt><dd><div class="bk_ref" id="ch37.ref144">Phase II-III study to evaluate the efficacy and safety of Glassia&#x000ae; in type-1 diabetes [article online], 2016. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT02005848" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT02005848</a>. Accessed 3 December 2016</div></dd><dt>145.</dt><dd><div class="bk_ref" id="ch37.ref145">Study of human plasma-derived alpha1-proteinase inhibitor in subjects with new-onset type 1 diabetes mellitus [article online], 2016. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT02093221" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT02093221</a>. Accessed 3 December 2016</div></dd><dt>146.</dt><dd><div class="bk_ref" id="ch37.ref146">Pilot clinical trial of ustekinumab in patients with new-onset T1D [article online], 2016. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT02117765" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT02117765</a>. Accessed 3 December 2016</div></dd><dt>147.</dt><dd><div class="bk_ref" id="ch37.ref147">Imatinib treatment in recent onset type 1 diabetes mellitus [article online], 2016. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT01781975" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT01781975</a>. Accessed 3 December 2016</div></dd><dt>148.</dt><dd><div class="bk_ref" id="ch37.ref148">Tauroursodeoxycholic acid (TUDCA) in new-onset type 1 diabetes [article online], 2016. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT02218619" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT02218619</a>. Accessed 3 December 2016</div></dd><dt>149.</dt><dd><div class="bk_ref" id="ch37.ref149">DIABGAD&#x02014;trial to preserve insulin secretion in type 1 diabetes using GAD-alum (Diamyd) in combination with vitamin D and ibuprofen [article online], 2016. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT01785108" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT01785108</a>. Accessed 3 December 2016</div></dd><dt>150.</dt><dd><div class="bk_ref" id="ch37.ref150">Safety study to assess whether proinsulin peptide injections can slow or stop the body damaging its own insulin-making cells in the pancreas in patients newly diagnosed with type 1 diabetes [article online], 2015. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT01536431" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT01536431</a>. Accessed 3 December 2016</div></dd><dt>151.</dt><dd><div class="bk_ref" id="ch37.ref151">Effect of methyldopa on MHC class II antigen presentation in type 1 diabetes [article online], 2016. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT01883804" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT01883804</a>. Accessed 3 December 2016</div></dd><dt>152.</dt><dd><div class="bk_ref" id="ch37.ref152">Dose finding study of IL-2 at ultra-low dose in children with recently diagnosed type 1 diabetes (DFIL2-Child) [article online], 2016. Available from <a href="https://www.clinicaltrials.gov/ct2/show/NCT01862120" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.clinicaltrials.gov/ct2/show/NCT01862120</a>. Accessed 3 December 2016</div></dd><dt>153.</dt><dd><div class="bk_ref" id="ch37.ref153">Skyler
JS: Prevention and reversal of type 1 diabetes&#x02014;past challenges and future opportunities. <em>Diabetes Care</em>
38:997&#x02013;1007, 2015 [<a href="https://pubmed.ncbi.nlm.nih.gov/25998292" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25998292</span></a>]</div></dd></dl></div><div><dl class="temp-labeled-list small"><dt></dt><dd><div id="ch37.fn1"><p class="no_top_margin"><b>CONVERSIONS</b></p><p>Conversions for A1c and glucose values are provided in <i><a href="/books/n/dia3ed/app1/">Diabetes in America Appendix 1 Conversions</a></i>.</p></div></dd><dt></dt><dd><div id="ch37.fn2"><p class="no_top_margin"><b>DUALITY OF INTEREST</b></p><p>Dr. Skyler received personal fees from Dexcom, Debiopharm, Genentech, ImmunoMolecular Therapeutics, Intarcia, Intrexon, INNODIA, Eli Lilly and Company, Merck, Novo Nordisk, Orgenesis, and Sanofi Genzyme outside the submitted work. Drs. Krischer, Becker, and Rewers reported no conflicts of interest.</p></div></dd><dt></dt><dd><div><p class="no_top_margin"><b>ACKNOWLEDGMENTS/FUNDING</b> Dr. Skyler received grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK061041) and JDRF, as well as non-financial support from the American Diabetes Association, non- financial support from Eli Lilly and Company, and grants and non-financial support from the Diabetes Research Institute Foundation.</p></div></dd></dl></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a><p class="small">Diabetes in America is in the public
domain of the United States. You may use the work
without restriction in the United States.</p></div><div class="small"><span class="label">Bookshelf ID: NBK567991</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/33651549" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">33651549</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/dia3ed/">Contents</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/dia3ed/section3/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/dia3ed/ch38/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK567991&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK567991/?report=reader">PubReader</a></li><li><a href="/books/NBK567991/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK567991" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK567991" style="display:none" title="Cite this Page"><div class="bk_tt">Skyler JS, Krischer JP, Becker DJ, et al. Prevention of Type 1 Diabetes. In: Cowie CC, Casagrande SS, Menke A, et al., editors. Diabetes in America. 3rd edition. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US); 2018 Aug. CHAPTER 37.<span class="bk_cite_avail"></span></div></div></li><li><a href="/books/NBK567991/pdf/Bookshelf_NBK567991.pdf">PDF version of this page</a> (1.3M)</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#ch37.sum" ref="log$=inpage&amp;link_id=inpage">Summary</a></li><li><a href="#ch37.s1" ref="log$=inpage&amp;link_id=inpage">Introduction</a></li><li><a href="#ch37.s2" ref="log$=inpage&amp;link_id=inpage">Primary Prevention Trials</a></li><li><a href="#ch37.s3" ref="log$=inpage&amp;link_id=inpage">Secondary Prevention Trials</a></li><li><a href="#ch37.s4" ref="log$=inpage&amp;link_id=inpage">Tertiary Prevention Trials</a></li><li><a href="#ch37.s5" ref="log$=inpage&amp;link_id=inpage">List of Abbreviations</a></li><li><a href="#ch37.rl.r1" ref="log$=inpage&amp;link_id=inpage">References</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/38843373" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Prevention of Type 1 Diabetes.</a><span class="source">[Diabetes in America. 2023]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Prevention of Type 1 Diabetes.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Jacobsen LM, Schatz DA, Herold KC, Skyler JS. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Diabetes in America. 2023</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/21323814" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Immune intervention for type 1 diabetes mellitus.</a><span class="source">[Int J Clin Pract Suppl. 2011]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Immune intervention for type 1 diabetes mellitus.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Skyler JS. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Int J Clin Pract Suppl. 2011 Feb; (170):61-70. </em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/26202050" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention.</a><span class="source">[Pediatr Diabetes. 2015]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Michels A, Zhang L, Khadra A, Kushner JA, Redondo MJ, Pietropaolo M. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Pediatr Diabetes. 2015 Nov; 16(7):465-84. Epub 2015 Jul 23.</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/9822195" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Prediction and prevention of type 1 diabetes.</a><span class="source">[Acta Paediatr Suppl. 1998]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Prediction and prevention of type 1 diabetes.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">Knip M. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">Acta Paediatr Suppl. 1998 Oct; 425:54-62. </em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/30354042" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: An Updated Systematic Review for the U.S. Preventive Services Task Force</a><span class="source">[ 2018]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: An Updated Systematic Review for the U.S. Preventive Services Task Force<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">LeBlanc EL, Patnode CD, Webber EM, Redmond N, Rushkin M, OConnor EA. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">2018 Sep</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=33651549" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=33651549" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67c9b2e8f4a390645e021f3c">Prevention of Type 1 Diabetes - Diabetes in America</a><div class="ralinkpop offscreen_noflow">Prevention of Type 1 Diabetes - Diabetes in America<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_qry two_line"><a class="htb" ref="log$=activity&amp;linkpos=2" href="/portal/utils/pageresolver.fcgi?recordid=67c9b2c9b15b832ebcd76b9f">PMC Links for Books (Select 5615214) <span class="number">(44)</span></a><div class="tertiary">PMC</div></li><li class="ra_qry two_line"><a class="htb" ref="log$=activity&amp;linkpos=3" href="/portal/utils/pageresolver.fcgi?recordid=67c9b29df4a390645effe660">PMC Links for Books (Select 5670150) <span class="number">(94)</span></a><div class="tertiary">PMC</div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=4" href="/portal/utils/pageresolver.fcgi?recordid=67c9b26af4a390645efe5e8e">Medication Use and Self-Care Practices in Persons With Diabetes - Diabetes in Am...</a><div class="ralinkpop offscreen_noflow">Medication Use and Self-Care Practices in Persons With Diabetes - Diabetes in America<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_qry two_line"><a class="htb" ref="log$=activity&amp;linkpos=5" href="/portal/utils/pageresolver.fcgi?recordid=67c9b250b15b832ebcd3b9e8">PMC Links for Books (Select 5540818) <span class="number">(20)</span></a><div class="tertiary">PMC</div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK567991&amp;ncbi_domain=dia3ed&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK567991/&amp;ncbi_pagename=Prevention of Type 1 Diabetes - Diabetes in America - NCBI Bookshelf&amp;ncbi_bookparttype=chapter&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal105 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>