121 lines
No EOL
28 KiB
XML
121 lines
No EOL
28 KiB
XML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
|
|
|
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
|
<!-- AppResources meta begin -->
|
|
<meta name="paf-app-resources" content="" />
|
|
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
|
|
|
<!-- AppResources meta end -->
|
|
|
|
<!-- TemplateResources meta begin -->
|
|
<meta name="paf_template" content="" />
|
|
|
|
<!-- TemplateResources meta end -->
|
|
|
|
<!-- Logger begin -->
|
|
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK549832" /><meta name="ncbi_domain" content="statpearls" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK549832/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
|
|
<!-- Logger end -->
|
|
|
|
<title>Biochemistry, Pseudogenes - StatPearls - NCBI Bookshelf</title>
|
|
|
|
<!-- AppResources external_resources begin -->
|
|
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
|
|
|
|
<!-- AppResources external_resources end -->
|
|
|
|
<!-- Page meta begin -->
|
|
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="StatPearls [Internet]" /><meta name="citation_title" content="Biochemistry, Pseudogenes" /><meta name="citation_publisher" content="StatPearls Publishing" /><meta name="citation_date" content="2023/08/28" /><meta name="citation_author" content="Jennifer Witek" /><meta name="citation_author" content="Shamim S. Mohiuddin" /><meta name="citation_pmid" content="31751022" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK549832/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Biochemistry, Pseudogenes" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="StatPearls Publishing" /><meta name="DC.Contributor" content="Jennifer Witek" /><meta name="DC.Contributor" content="Shamim S. Mohiuddin" /><meta name="DC.Date" content="2023/08/28" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK549832/" /><meta name="description" content="Pseudogenes are universal and plentiful within genomes. They originate from the decay of duplicated genes throughout evolution and resemble functional genes but contain deficiencies within the coding sequence such as stop codons, frameshifts, deletions, etc. These deficiencies may have been acquired during duplication and as a result, may result in a loss of gene function. While it may seem disadvantageous to retain pseudogenes riddled with mutations and stop codons, research has shown that some pseudogenes have beneficial roles. Some pseudogenes have since obtained recognition as having vital roles in the regulation of their parent genes, and many still transcribe into RNA transcripts. These transcripts may form small interfering RNA (siRNA) or even decrease microRNA concentrations (miRNA). Although the exact number of pseudogenes is unknown, extrapolations have approximated around twenty thousand pseudogenes within the human genome. Historically, pseudogenes were synonymous with nonfunctional artifacts as they occur within noncoding regions of the human genome.[1][2][3]" /><meta name="og:title" content="Biochemistry, Pseudogenes" /><meta name="og:type" content="book" /><meta name="og:description" content="Pseudogenes are universal and plentiful within genomes. They originate from the decay of duplicated genes throughout evolution and resemble functional genes but contain deficiencies within the coding sequence such as stop codons, frameshifts, deletions, etc. These deficiencies may have been acquired during duplication and as a result, may result in a loss of gene function. While it may seem disadvantageous to retain pseudogenes riddled with mutations and stop codons, research has shown that some pseudogenes have beneficial roles. Some pseudogenes have since obtained recognition as having vital roles in the regulation of their parent genes, and many still transcribe into RNA transcripts. These transcripts may form small interfering RNA (siRNA) or even decrease microRNA concentrations (miRNA). Although the exact number of pseudogenes is unknown, extrapolations have approximated around twenty thousand pseudogenes within the human genome. Historically, pseudogenes were synonymous with nonfunctional artifacts as they occur within noncoding regions of the human genome.[1][2][3]" /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK549832/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-statpearls-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/statpearls/article-27934/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK549832/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
|
|
|
|
<!-- Page meta end -->
|
|
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8D18847D890BB1000000000078006A.m_5" />
|
|
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
|
|
<body class="book-part">
|
|
<div class="grid no_max_width">
|
|
<div class="col twelve_col nomargin shadow">
|
|
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
|
|
<div class="sysmessages">
|
|
<noscript>
|
|
<p class="nojs">
|
|
<strong>Warning:</strong>
|
|
The NCBI web site requires JavaScript to function.
|
|
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
|
|
</p>
|
|
</noscript>
|
|
</div>
|
|
<!--/.sysmessage-->
|
|
<div class="wrap">
|
|
<div class="page">
|
|
<div class="top">
|
|
|
|
<div class="header">
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<!--<component id="Page" label="headcontent"/>-->
|
|
|
|
</div>
|
|
<div class="content">
|
|
<!-- site messages -->
|
|
<div class="container content">
|
|
<div class="document">
|
|
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. </p></div></div></div>
|
|
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK549832_"><span class="title" itemprop="name">Biochemistry, Pseudogenes</span></h1><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Jennifer Witek</span><sup>1</sup>; <span itemprop="author">Shamim S. Mohiuddin</span><sup>2</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup> LECOM</div><div class="affiliation"><sup>2</sup> Imam Abdulrahman Bin Faisal University, Dammam</div><p class="small">Last Update: <span itemprop="dateModified">August 28, 2023</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><div id="article-27934.s1"><h2 id="_article-27934_s1_">Introduction</h2><p>Pseudogenes are universal and plentiful within genomes. They originate from the decay of duplicated genes throughout evolution and resemble functional genes but contain deficiencies within the coding sequence such as stop codons, frameshifts, deletions, etc. These deficiencies may have been acquired during duplication and as a result, may result in a loss of gene function. While it may seem disadvantageous to retain pseudogenes riddled with mutations and stop codons, research has shown that some pseudogenes have beneficial roles. Some pseudogenes have since obtained recognition as having vital roles in the regulation of their parent genes, and many still transcribe into RNA transcripts. These transcripts may form small interfering RNA (siRNA) or even decrease microRNA concentrations (miRNA). Although the exact number of pseudogenes is unknown, extrapolations have approximated around twenty thousand pseudogenes within the human genome. Historically, pseudogenes were synonymous with nonfunctional artifacts as they occur within noncoding regions of the human genome.<a class="bk_pop" href="#article-27934.r1">[1]</a><a class="bk_pop" href="#article-27934.r2">[2]</a><a class="bk_pop" href="#article-27934.r3">[3]</a></p></div><div id="article-27934.s2"><h2 id="_article-27934_s2_">Fundamentals</h2><p>Some pseudogenes that researchers studied in different species share conserved mutations. Pseudogenes from humans, chimpanzees, dogs, cows, mice, and rats were found to have conserved point mutations at various gene locations. This idea of shared mutations amongst different organisms is thought to have correlations to a common ancestor or evolutionary descent. Mutations that are not deleterious to pseudogenes allow them to persist and undergo evolution with acquired random mutations and genetic drifts. These established pseudogenes can, therefore, be powerful tools for phylogenetic studies investigating the evolution of specific genes.<a class="bk_pop" href="#article-27934.r4">[4]</a></p><p>Pseudogenes can classify into nonprocessed or processed pseudogenes. Processed pseudogenes appear near their paralogous gene form through retrotransposition. The process of retrotransposition occurs through the reintegration of a reverse transcribed mRNA transcript (cDNA) at a new location within the genome. Unprocessed pseudogenes differ from processed forms by retaining their intron-exon structure.<a class="bk_pop" href="#article-27934.r3">[3]</a></p></div><div id="article-27934.s3"><h2 id="_article-27934_s3_">Issues of Concern</h2><p>Currently, due to the diverse and vast amount of pseudogenes sharing similar coding sequences to their functional gene counterparts, there is no standard method for identifying them without identifying the entire genome. However, many independent groups are currently working to resolve this dilemma and create a standardized and efficient means of pseudogene identification.</p><p>Not many full genome sequencing projects have counted the number of pseudogenes present. One study of human chromosomes 21 and 22 revealed 393 pseudogenes amongst these two chromosomes alone. The study further extrapolated the data and estimated a total of 20000 pseudogenes within the human genome. Other studies estimate as many as 23000 to 33000 pseudogenes.  All studies have estimated that pseudogenes represent up to one-third of the human genome.<a class="bk_pop" href="#article-27934.r2">[2]</a><a class="bk_pop" href="#article-27934.r5">[5]</a><a class="bk_pop" href="#article-27934.r6">[6]</a></p><p>The term "nonfunctional pseudogenes" is also a concern when defining the relationship between pseudogenes and their parental copies. One study found that nitric oxide synthase (NOS) in the snail family, <i>Lymnaea</i>
|
|
<i>stagnalis</i>, and its pseudogene have an inhibitory relationship with each other. The NOS pseudogene transcript was revealed to act as an antisense RNA through hybridization and decrease the expression of the functional mRNA. However, the NOS pseudogene itself has numerous defects and is unable to code for an actual protein like its functional copy.<a class="bk_pop" href="#article-27934.r7">[7]</a></p></div><div id="article-27934.s4"><h2 id="_article-27934_s4_">Molecular Level
|
|
</h2><p>On a molecular level, pseudogenes have associations with several roles. Numerous studies have revealed that specific genes and their associated pseudogenes display regulatory roles in the cell. Some pseudogenes have exhibited antisense RNA properties, siRNA properties, and even an ability to affect mRNA stability. Through these molecular functions, pseudogene transcripts can modulate the number of parental copy transcripts expressed.</p></div><div id="article-27934.s5"><h2 id="_article-27934_s5_">Function</h2><p>Scientists have studied specific examples of pseudogenes for their observed roles regarding the regulation of biochemical processes. An example of pseudogene regulation is with Oct4, a transcription factor, and its associated pseudogene. The Oct4 pseudogene’s RNA transcript has been observed to inhibit differentiation with the original Oct4’s RNA transcript. Additionally, researchers found a knockdown or Oct4 pseudogene antisense RNA to increase concentrations of Oct4 and its associated pseudogene.<a class="bk_pop" href="#article-27934.r1">[1]</a><a class="bk_pop" href="#article-27934.r8">[8]</a></p><p>siRNAs additionally regulate gene expression. In one study, pseudogene transcripts were observed to form hairpin structures through folding and become functional siRNAs that repressed gene expression. The study additionally removed Dicer, a protein responsible for producing siRNAs, and observed a decreased concentration of pseudogene-derived siRNAs with subsequent increased expression of the coding gene’s mRNA products. The study further supports the idea of pseudogene derived siRNA regulation.</p><p>Another mechanism of pseudogene function lies in its ability to affect mRNA stability through interactions with miRNA.  miRNA typically pairs with the 3’ untranslated region of an mRNA transcript and causes degradation or lower expression levels. One example of how pseudogene mRNA transcripts interact with miRNA is in the relationship between PTEN, a tumor suppressor, and its pseudogene PTENP1. In one study, the PTENP1 pseudogene mRNA binds to miRNA and has decreased the concentration of the functional miRNA within the cell. In this way, PTENP1 allows the PTEN mRNA to escape miRNA repression.  Another study is exploring the regulatory relationship between heat shock proteins, Hsp90, and its associated pseudogenes HSP90AA1 and HSP90AA2. Heat shock proteins actively express and account for two percent of all expressed proteins. These proteins, through microarray data, have numerous retrotransposed pseudogenes.<a class="bk_pop" href="#article-27934.r3">[3]</a><a class="bk_pop" href="#article-27934.r4">[4]</a></p></div><div id="article-27934.s6"><h2 id="_article-27934_s6_">Mechanism</h2><p>Historically, pseudogenes were referred to as "junk DNA" due to their location in non-coding sequences of the genome. However, recent studies have begun to unravel various functions of pseudogenes and their mRNA transcripts. These functions vary in regulatory roles, and they include antisense RNA, siRNA, miRNA-like, and miRNA binding or inhibiting properties.</p></div><div id="article-27934.s7"><h2 id="_article-27934_s7_">Testing</h2><p>Pseudogenes are located diffusely throughout the genome. Due to the sequence similarity between pseudogenes and their functional counterparts, it is often difficult for scientists as misidentification errors can and do occur frequently. Additionally, not every gene within the genome has associated pseudogenes. Some genes even have paralogous pseudogenes, that, with evolution, have been able to insert into different chromosomes from their functional gene copies. However, the identification of pseudogenes is significant and necessary to understand their molecular role in disease as well as their relationship to their functional gene copy.</p><p>The identification of pseudogenes is especially difficult when they originate from mitochondrial DNA that retrotransposed into nuclear DNA. The complexity of identification may be able to be overcome using in silico analysis, which utilizes a homology-based, whole-genome approach. While the identification of pseudogenes is continually evolving and is a current work in progress. Many independent groups, such as REGEXP, PseudoFinder, RetroFinder, PseudoPipe, and GIS-PET, have an ongoing effort to standardize the identification of pseudogenes.<a class="bk_pop" href="#article-27934.r3">[3]</a><a class="bk_pop" href="#article-27934.r9">[9]</a><a class="bk_pop" href="#article-27934.r10">[10]</a></p></div><div id="article-27934.s8"><h2 id="_article-27934_s8_">Clinical Significance</h2><p>Pseudogenes play an essential role in comparative studies regarding genomics as they can provide a record of ancient genes. They are used to determine the rate of gene duplication and follow the evolution of sequence changes in organisms. Thus, pseudogenes are unique and helpful for phylogenetic studies.</p><p>Additionally, pseudogenes play essential parts in gene regulation. Research has shown that pseudogenes code for RNA transcripts that can regulate their respective parental copy genes. Through this level of regulation, pseudogene products can increase or decrease the level of expression of these parental genes and their protein products.</p></div><div id="article-27934.s9"><h2 id="_article-27934_s9_">Review Questions</h2><ul><li class="half_rhythm"><div>
|
|
<a href="https://www.statpearls.com/account/trialuserreg/?articleid=27934&utm_source=pubmed&utm_campaign=reviews&utm_content=27934" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Access free multiple choice questions on this topic.</a>
|
|
</div></li><li class="half_rhythm"><div>
|
|
<a href="https://www.statpearls.com/articlelibrary/commentarticle/27934/?utm_source=pubmed&utm_campaign=comments&utm_content=27934" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Comment on this article.</a>
|
|
</div></li></ul></div><div id="article-27934.s10"><h2 id="_article-27934_s10_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="article-27934.r1">Han YJ, Ma SF, Yourek G, Park YD, Garcia JG. A transcribed pseudogene of MYLK promotes cell proliferation. <span><span class="ref-journal">FASEB J. </span>2011 Jul;<span class="ref-vol">25</span>(7):2305-12.</span> [<a href="/pmc/articles/PMC6137860/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6137860</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21441351" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21441351</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="article-27934.r2">Torrents D, Suyama M, Zdobnov E, Bork P. A genome-wide survey of human pseudogenes. <span><span class="ref-journal">Genome Res. </span>2003 Dec;<span class="ref-vol">13</span>(12):2559-67.</span> [<a href="/pmc/articles/PMC403797/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC403797</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14656963" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 14656963</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="article-27934.r3">Tutar Y. Pseudogenes. <span><span class="ref-journal">Comp Funct Genomics. </span>2012;<span class="ref-vol">2012</span>:424526.</span> [<a href="/pmc/articles/PMC3352212/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3352212</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22611337" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22611337</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="article-27934.r4">Devor EJ. Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes. <span><span class="ref-journal">J Hered. </span>2006 Mar-Apr;<span class="ref-vol">97</span>(2):186-90.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16489141" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 16489141</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="article-27934.r5">Bischof JM, Chiang AP, Scheetz TE, Stone EM, Casavant TL, Sheffield VC, Braun TA. Genome-wide identification of pseudogenes capable of disease-causing gene conversion. <span><span class="ref-journal">Hum Mutat. </span>2006 Jun;<span class="ref-vol">27</span>(6):545-52.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16671097" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 16671097</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="article-27934.r6">Zhang Z, Gerstein M. Large-scale analysis of pseudogenes in the human genome. <span><span class="ref-journal">Curr Opin Genet Dev. </span>2004 Aug;<span class="ref-vol">14</span>(4):328-35.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15261647" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 15261647</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="article-27934.r7">Zheng D, Gerstein MB. The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they? <span><span class="ref-journal">Trends Genet. </span>2007 May;<span class="ref-vol">23</span>(5):219-24.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17382428" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17382428</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="article-27934.r8">Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DR. Pseudogenes: pseudo-functional or key regulators in health and disease? <span><span class="ref-journal">RNA. </span>2011 May;<span class="ref-vol">17</span>(5):792-8.</span> [<a href="/pmc/articles/PMC3078729/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3078729</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21398401" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21398401</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="article-27934.r9">Nettesheim P. Cells of origin of primary pulmonary neoplasms in mice. <span><span class="ref-journal">Exp Lung Res. </span>1991 Mar-Apr;<span class="ref-vol">17</span>(2):215-7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/2050026" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 2050026</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="article-27934.r10">Chen SM, Ma KY, Zeng J. Pseudogene: lessons from PCR bias, identification and resurrection. <span><span class="ref-journal">Mol Biol Rep. </span>2011 Aug;<span class="ref-vol">38</span>(6):3709-15.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21116863" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21116863</span></a>]</div></dd></dl></div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_top_margin">
|
|
<b>Disclosure: </b>Jennifer Witek declares no relevant financial relationships with ineligible companies.</p></div></dd><dt></dt><dd><div><p class="no_top_margin">
|
|
<b>Disclosure: </b>Shamim Mohiuddin declares no relevant financial relationships with ineligible companies.</p></div></dd></dl></div></div></div>
|
|
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> © 2025, StatPearls Publishing LLC.<p class="small">
|
|
This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
|
|
(<a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&targetsite=external&targetcat=link&targettype=uri">
|
|
http://creativecommons.org/licenses/by-nc-nd/4.0/
|
|
</a>), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.
|
|
</p></div><div class="small"><span class="label">Bookshelf ID: NBK549832</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/31751022" title="PubMed record of this page" ref="pagearea=meta&targetsite=entrez&targetcat=link&targettype=pubmed">31751022</a></span></div></div></div>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div class="bottom">
|
|
|
|
<div id="NCBIFooter_dynamic">
|
|
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
|
|
<component id="Breadcrumbs" label="helpdesk"/>-->
|
|
|
|
</div>
|
|
|
|
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
|
|
</div>
|
|
</div>
|
|
<!--/.page-->
|
|
</div>
|
|
<!--/.wrap-->
|
|
</div><!-- /.twelve_col -->
|
|
</div>
|
|
<!-- /.grid -->
|
|
|
|
<span class="PAFAppResources"></span>
|
|
|
|
<!-- BESelector tab -->
|
|
|
|
|
|
|
|
<noscript><img alt="statistics" src="/stat?jsdisabled=true&ncbi_db=books&ncbi_pdid=book-part&ncbi_acc=NBK549832&ncbi_domain=statpearls&ncbi_report=printable&ncbi_type=fulltext&ncbi_objectid=&ncbi_pcid=/NBK549832/?report=printable&ncbi_app=bookshelf" /></noscript>
|
|
|
|
|
|
<!-- usually for JS scripts at page bottom -->
|
|
<!--<component id="PageFixtures" label="styles"></component>-->
|
|
|
|
|
|
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
|
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
|
|
|
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
|
|
</html> |