nih-gov/www.ncbi.nlm.nih.gov/books/NBK547658/index.html?report=printable
2025-03-18 22:06:25 +00:00

133 lines
No EOL
47 KiB
XML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK547658" /><meta name="ncbi_domain" content="statpearls" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK547658/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Aerospace Physical Effects - StatPearls - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="StatPearls [Internet]" /><meta name="citation_title" content="Aerospace Physical Effects" /><meta name="citation_publisher" content="StatPearls Publishing" /><meta name="citation_date" content="2022/11/15" /><meta name="citation_author" content="Matt Stein" /><meta name="citation_author" content="Evan Richards" /><meta name="citation_pmid" content="31613438" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK547658/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Aerospace Physical Effects" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="StatPearls Publishing" /><meta name="DC.Contributor" content="Matt Stein" /><meta name="DC.Contributor" content="Evan Richards" /><meta name="DC.Date" content="2022/11/15" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK547658/" /><meta name="description" content="Aerospace medicine involves investigating and optimizing human physiology in esoteric environments such as the undersea, flight, mountain, and space. Unlike the majority of medical disciplines, in which pathophysiology is addressed in a eubaric environment, effects on normal physiology are addressed in an abnormal environment, which presents a myriad of challenges regarding environmental exposures and physiologic function." /><meta name="og:title" content="Aerospace Physical Effects" /><meta name="og:type" content="book" /><meta name="og:description" content="Aerospace medicine involves investigating and optimizing human physiology in esoteric environments such as the undersea, flight, mountain, and space. Unlike the majority of medical disciplines, in which pathophysiology is addressed in a eubaric environment, effects on normal physiology are addressed in an abnormal environment, which presents a myriad of challenges regarding environmental exposures and physiologic function." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK547658/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-statpearls-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/statpearls/article-31897/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK547658/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8E61D87D84F1810000000000CB00B6.m_5" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid no_max_width">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div class="header">
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<div class="container content">
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. </p></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK547658_"><span class="title" itemprop="name">Aerospace Physical Effects</span></h1><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Matt Stein</span>; <span itemprop="author">Evan Richards</span><sup>1</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup> San Antonio Military Medical Center</div><p class="small">Last Update: <span itemprop="dateModified">November 15, 2022</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><div id="article-31897.s1"><h2 id="_article-31897_s1_">Introduction</h2><p>Aerospace medicine involves investigating and optimizing human physiology in esoteric environments such as the undersea, flight, mountain, and space. Unlike the majority of medical disciplines, in which pathophysiology is addressed in a eubaric environment, effects on normal physiology are addressed in an abnormal environment, which presents a myriad of challenges regarding environmental exposures and physiologic function.</p></div><div id="article-31897.s2"><h2 id="_article-31897_s2_">Issues of Concern</h2><p>
<b>Radiation</b>
</p><p>Humans in the aerospace environment are exposed to an increased ionizing radiation index, leading to genetic and cytogenetic changes. One concern is that an unpredicted solar particle event (eg, solar flares) may expose space crew to unacceptably high radiation levels and cause acute radiation syndrome, which typically manifests following whole-body or partial-body exposure greater than 0.5 Gy.<a class="bk_pop" href="#article-31897.r1">[1]</a> Symptoms occur as a spectrum, dependent on the type, route, and exposure dose, and typically lead to hematopoietic, gastrointestinal, neurovascular, and cutaneous manifestations.<a class="bk_pop" href="#article-31897.r1">[1]</a><a class="bk_pop" href="#article-31897.r2">[2]</a> Of additional concern is chronic exposure to low-dose cosmic radiation. This exposure may be a factor for space crew and long-haul commercial pilots or transport aircrew who experience increased cosmic and ultraviolet radiation at the typical cruising altitudes of modern aircraft (ie, 10000 to 13000 m). Chronic exposure has been shown to increase the risk of nuclear cataracts in pilots compared with non-pilots.<a class="bk_pop" href="#article-31897.r3">[3]</a> Although anecdotal evidence suggests that aircrews are at an increased risk for malignancy, studies have reported conflicting results. Further research is warranted to ascertain how much exposure to cosmic radiation affects subsequent long-term pathology.<a class="bk_pop" href="#article-31897.r4">[4]</a><a class="bk_pop" href="#article-31897.r5">[5]</a><a class="bk_pop" href="#article-31897.r6">[6]</a><a class="bk_pop" href="#article-31897.r7">[7]</a> Aircrew and space crew may also sustain increased radiation exposure from vehicle systems (eg, radar systems) specific to the aircraft. However, there is only limited research regarding this factor. Humans in space are unavoidably exposed to increased amounts of cosmic radiation, and spacecraft employ radiation protection material to mitigate this risk. Additionally, limits to cumulative radiation exposure are enforced.<a class="bk_pop" href="#article-31897.r8">[8]</a></p><p>
<b>Microgravity</b>
</p><p>Microgravity refers to an environment in which gravitational force is less than that experienced at the surface of Earth, including weightlessness. Primary musculoskeletal effects include loss of bone mineral density and deconditioning of skeletal muscle.<a class="bk_pop" href="#article-31897.r9">[9]</a><a class="bk_pop" href="#article-31897.r10">[10]</a> Negative sequelae include reduced strength, increased fracture risk, and potential renal calculi formation due to aberration in calcium metabolism.<a class="bk_pop" href="#article-31897.r11">[11]</a> Reduced gravity also affects the cardiovascular system due to a decrease in hydrostatic pressure, which leads to a fluid shift from extravascular to intravascular spaces, as well as the cephalad movement of intravascular fluid.<a class="bk_pop" href="#article-31897.r10">[10]</a> Carotid baroreceptors perceive a hypervolemic state and enact a compensatory diuresis and reduce peripheral vascular resistance, resulting in orthostatic dysfunction sustained upon reentry and return to the normal gravity environment; the baroreceptor reflex must again reset to normal gravitation force.<a class="bk_pop" href="#article-31897.r12">[12]</a></p><p>
<b>Acceleration</b>
</p><p>Acceleration is typically a factor during flights involving aggressive maneuvering. Importantly, the mechanics of rotational acceleration about various flight axes produce an effective increase in the force of gravity sustained by aircrew in the physiologic vertical axis (cephalad to foot). This effect becomes quantified in multiples of the normal acceleration due to gravitational force, expressed as G. For example, a 70-kg pilot executing a 9-G turn would experience the effects equivalent to a weight of 630 kg, resulting in pooling of blood volume in capacitance vasculature of the lower extremities, which reduces the ability of the cardiovascular system to ensure cerebral perfusion.<a class="bk_pop" href="#article-31897.r13">[13]</a><a class="bk_pop" href="#article-31897.r14">[14]</a> Manifestations of reduced cerebral perfusion range from peripheral vision loss, to total gray-out (temporary loss of full visual field), to G-induced loss of consciousness (G-LOC), in which aircrew are rendered completely unconscious and incapacitated.<a class="bk_pop" href="#article-31897.r13">[13]</a><a class="bk_pop" href="#article-31897.r15">[15]</a> The threshold of susceptibility to G force is individualized. Conversely, negative G force leads to abnormally increased cerebral vascular pressures that may result in &#x0201c;redout&#x0201d; (total reddening of the visual field). Negative G force is not as frequently encountered as it tends to be less comfortable. Acceleration effects are also present in the lateral and longitudinal axes but are generally less substantial.</p><p>
<b>Musculoskeletal Impact</b>
</p><p>Musculoskeletal challenges are frequently incurred in high-performance aircraft as they undergo close air combat maneuvering against another maneuvering aircraft. These aircraft routinely attain and sustain 9-G rotational acceleration, subjecting the pilot to an axial force of 9 times the force of gravity. This force frequently coincides with the pilot attempting to maneuver physically within the cockpit to maintain sight of the adversary aircraft, requiring the pilot to aggressively rotate, flex, and extend the neck and upper trunk against this force. As a result, fighter pilots often experience acute strain injuries of the cervical and paraspinal musculature of the upper back. High G force subjects the spinal column to significant stress. Pilots exposed to high G forces have an increased incidence of chronic neck and back pain compared with pilots exposed to low G forces.<a class="bk_pop" href="#article-31897.r16">[16]</a> Additionally, maneuvering under high G forces has been associated with a 4.9-mm decrease in body height.<a class="bk_pop" href="#article-31897.r17">[17]</a> Aircrews exposed to increased whole-body vibration, such as those associated with helicopters, report a high incidence of low back pain.<a class="bk_pop" href="#article-31897.r18">[18]</a> Lastly, life support equipment, cockpit ergonomics, and cockpit posture may not be optimal and may subject the aircrew to increased musculoskeletal stress.</p><p>
<b>Ventilation</b>
</p><p>Ventilation must occur in various environments, from undersea divers breathing compressed air to mountain climbers ascending through hypoxic environments. A range of variables presents to the respiratory system for compensation, including changes in partial pressures of breathing gas and their relative concentrations. Hypoxia, which refers to inadequate delivery of oxygen to the tissues, can occur in the aerospace medicine environment in the form of hypoxic hypoxia, in which there is inadequate environmental partial pressure of oxygen (PO<sup>2</sup>).<a class="bk_pop" href="#article-31897.r19">[19]</a> Symptom onset presents with interpersonal variability but generally begins to occur above 3048 m (10000 ft) and may include dyspnea, fatigue, and reduced cognitive capacity. High-altitude cerebral edema (HACE) and high-altitude pulmonary edema are more severe, potentially lethal sequelae that may occur with altitude sickness.<a class="bk_pop" href="#article-31897.r20">[20]</a> The body compensates for increased altitude and reduced PO<sup>2</sup> with increased respiratory rate, depth of respiration, and cardiac output to maintain oxygenation. Individuals who spend increased amounts of time at high altitudes also develop an increased concentration of hemoglobin to augment the oxygen-carrying capacity of the blood and increased hemoglobin&#x02013;oxygen affinity.<a class="bk_pop" href="#article-31897.r21">[21]</a><a class="bk_pop" href="#article-31897.r22">[22]</a> Above 7620 to 10363 m (25000 to 34000 ft), death occurs without supplemental oxygen in individuals who have not undergone acclimatization to high altitude. At approximately 18300 m (60000 ft), the atmospheric pressure becomes so reduced that physiologic fluids reach their boiling point in a phenomenon known as ebullism. Spacecraft and large aircraft maintain cabin pressurization to permit flight at high altitudes and enable adequate oxygenation for the occupants. High-performance tactical aircraft typically maintain cockpit pressurization and pressurized mask breathing through an independent ventilation circuit for the duration of the flight.</p><p>
<b>Hypobaric Changes</b>
</p><p>Both hyperbaric and hypobaric conditions present unique challenges to the cardiovascular system. The hypobaric environment below 2500 m (8200 ft) is usually well tolerated by healthy individuals without pathological conditions. Still, the rate of ascent, genetic factors, age, and underlying pathophysiology influence changes in the body during ascents.<a class="bk_pop" href="#article-31897.r23">[23]</a> The greatest influencing factor to physiologic changes at altitude is the height of elevation and the resultant reduction in the partial pressure of inspired oxygen (PiO<sup>2</sup>), the partial pressure of alveolar oxygen (PAO<sup>2</sup>), and the partial pressure of arterial oxygen (PaO<sup>2</sup>). Since the fraction of inspired oxygen (FiO<sup>2</sup>) remains relatively constant at all altitudes (21%), reductions in barometric pressure cause a decrease in PiO<sup>2</sup>, PAO<sup>2</sup>, and PaO<sup>2</sup>, leading to relative hypoxia without compensation. In addition to respiratory compensation by increasing minute ventilation, hypobaric hypoxia increases pulmonary artery pressures (hypoxic vasoconstriction), which can contribute to pulmonary edema in some individuals.<a class="bk_pop" href="#article-31897.r24">[24]</a><a class="bk_pop" href="#article-31897.r25">[25]</a> To maximize oxygen delivery to tissues, cardiac output increases with the augmentation of heart rate and stroke volume, increasing myocardial oxygen demand.<a class="bk_pop" href="#article-31897.r26">[26]</a> With repeated or long-term exposures to high-altitude environments, the body undergoes several long-term adaptive mechanisms, including increased red blood cell counts, a rightward shift on the oxygen dissociation curve, and reduced parasympathetic activity to maintain a chronically elevated heart rate.<a class="bk_pop" href="#article-31897.r27">[27]</a></p><p>
<b>Hyperbaric Changes</b>
</p><p>The hyperbaric environment is less frequently encountered and is most commonly associated with scuba diving or artificial depth in a hyperbaric chamber. Although an oversimplification, it is easy to conceptualize the physiologic changes at altitude as an inverse to that which occurs at depth; however, it is important to understand that the significant difference in density between water and air leads to more abrupt changes in partial pressures of gases at depth. Whereas the atmospheric pressure drops to 1-half of its value at nearly 20000 ft, it requires a depth of only 33 ft of seawater to double atmospheric pressure. Thus, the short-term physiologic changes are mostly related to the gas behaviors under pressure (Henry&#x02019;s law and Boyle&#x02019;s law) and give rise to many unique disease states when ascent, descent, and time at depth are not under strict control. Although there are notable and expected cardiovascular changes at normally encountered depths (reduction in heart rate, cardiac output, and preservation of stroke volume), <a class="bk_pop" href="#article-31897.r28">[28]</a> more pronounced changes and concerns relate to barotrauma, arterial gas embolism, and decompression sickness. Since the volume of gas is inversely related to the pressure to which it is subjected, failure to equalize pressure in the sinuses, lungs, ears, and other gas-filled pockets can result in barotrauma. As a diver ascends, especially against a closed glottis, increases in trans-alveolar pressure can cause overexpansion injury, alveolar rupture, pneumomediastinum, and even pneumothorax.<a class="bk_pop" href="#article-31897.r29">[29]</a><a class="bk_pop" href="#article-31897.r30">[30]</a> Both pulmonary barotrauma and the precipitation of gas from blood during ascent can act as a conduit for gaseous infiltration of the cardiovascular system. Venous gas emboli are common after diving and usually well tolerated at low levels without a right-to-left shunt.<a class="bk_pop" href="#article-31897.r31">[31]</a> In circumstances of overwhelming venous gas emboli or shunts (ie, patent foramen ovale or entry of gas into the pulmonary veins), an arterial gas embolism can occur with catastrophic ischemic sequelae in the coronary and cerebral vasculature.<a class="bk_pop" href="#article-31897.r31">[31]</a><a class="bk_pop" href="#article-31897.r32">[32]</a><a class="bk_pop" href="#article-31897.r33">[33]</a><a class="bk_pop" href="#article-31897.r34">[34]</a> As a diver ascends, the partial pressures of gases dissolved in bodily fluids can exceed that of ambient pressure. Depending on the location of gas precipitation, multiple symptoms of decompression sickness can ensue. Mild forms of decompression sickness (type I) occur with small gas embolism in the joints and skin, resulting in musculoskeletal pain and pruritis. More severe forms of decompression sickness (type II) usually result in neurological deficits and pulmonary involvement.<a class="bk_pop" href="#article-31897.r35">[35]</a></p></div><div id="article-31897.s3"><h2 id="_article-31897_s3_">Clinical Significance</h2><p>Traditional medicine involves the diagnosis and treatment of pathology in a normal environment. The aerospace medicine clinician must remain cognizant of the fact that, in general, addressing the physical effects of the aerospace environment on professional aviators, divers, astronauts, etc, does not primarily comprise considerations of pathology but instead focuses on strategies to mitigate the deleterious effects of an extreme environment on normal human physiology. For example, high-performance tactical fighter pilots are exhaustively screened to ensure optimal health. They are also the population most frequently involved in G-LOC occurrences. Interventions to mitigate this have included aircrew training and conditioning to maximize G resistance and the development of novel garments (G suit) to compress the lower extremities under G, reduce blood pooling in the extremities, and optimize cerebral perfusion. Consequently, the frequency of G-LOC has been reduced, augmenting the safety and efficacy of flying operations.<a class="bk_pop" href="#article-31897.r36">[36]</a> Aerospace medicine continues to evolve, integrating the knowledge of environmental factors with a precise understanding of physiology to remain on the frontier of human exploration.</p></div><div id="article-31897.s4"><h2 id="_article-31897_s4_">Review Questions</h2><ul><li class="half_rhythm"><div>
<a href="https://www.statpearls.com/account/trialuserreg/?articleid=31897&#x00026;utm_source=pubmed&#x00026;utm_campaign=reviews&#x00026;utm_content=31897" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Access free multiple choice questions on this topic.</a>
</div></li><li class="half_rhythm"><div>
<a href="https://www.statpearls.com/articlelibrary/commentarticle/31897/?utm_source=pubmed&#x00026;utm_campaign=comments&#x00026;utm_content=31897" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Comment on this article.</a>
</div></li></ul></div><div id="article-31897.s5"><h2 id="_article-31897_s5_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="article-31897.r1">Maci&#x000e0; I Garau M, Lucas Calduch A, L&#x000f3;pez EC. Radiobiology of the acute radiation syndrome. <span><span class="ref-journal">Rep Pract Oncol Radiother. </span>2011 Jul 06;<span class="ref-vol">16</span>(4):123-30.</span> [<a href="/pmc/articles/PMC3863296/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3863296</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24376969" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24376969</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="article-31897.r2">Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, Tsu H, Confer DL, Coleman CN, Seed T, Lowry P, Armitage JO, Dainiak N., Strategic National Stockpile Radiation Working Group. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. <span><span class="ref-journal">Ann Intern Med. </span>2004 Jun 15;<span class="ref-vol">140</span>(12):1037-51.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15197022" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15197022</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="article-31897.r3">Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F. Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study. <span><span class="ref-journal">Arch Ophthalmol. </span>2005 Aug;<span class="ref-vol">123</span>(8):1102-5.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16087845" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16087845</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="article-31897.r4">Hammar N, Eliasch H, Linnersj&#x000f6; A, Dammstr&#x000f6;m BG, Johansson M, Pukkala E. [A certain increase of skin cancer among pilots]. <span><span class="ref-journal">Lakartidningen. </span>2003 Jun 26;<span class="ref-vol">100</span>(26-27):2297-9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12872376" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12872376</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="article-31897.r5">Liu GS, Cook A, Richardson M, Vail D, Holsinger FC, Oakley-Girvan I. Thyroid cancer risk in airline cockpit and cabin crew: a meta-analysis. <span><span class="ref-journal">Cancers Head Neck. </span>2018;<span class="ref-vol">3</span>:7.</span> [<a href="/pmc/articles/PMC6460828/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6460828</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31093360" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31093360</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="article-31897.r6">Gudmundsdottir EM, Hrafnkelsson J, Rafnsson V. Incidence of cancer among licenced commercial pilots flying North Atlantic routes. <span><span class="ref-journal">Environ Health. </span>2017 Aug 16;<span class="ref-vol">16</span>(1):86.</span> [<a href="/pmc/articles/PMC5559846/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5559846</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28814301" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28814301</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="article-31897.r7">Hammer GP, Blettner M, Zeeb H. Epidemiological studies of cancer in aircrew. <span><span class="ref-journal">Radiat Prot Dosimetry. </span>2009 Oct;<span class="ref-vol">136</span>(4):232-9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19608578" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19608578</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="article-31897.r8">Locke PA, Weil MM. Personalized Cancer Risk Assessments for Space Radiation Exposures. <span><span class="ref-journal">Front Oncol. </span>2016;<span class="ref-vol">6</span>:38.</span> [<a href="/pmc/articles/PMC4762001/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4762001</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26942127" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26942127</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="article-31897.r9">Fitts RH, Trappe SW, Costill DL, Gallagher PM, Creer AC, Colloton PA, Peters JR, Romatowski JG, Bain JL, Riley DA. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. <span><span class="ref-journal">J Physiol. </span>2010 Sep 15;<span class="ref-vol">588</span>(Pt 18):3567-92.</span> [<a href="/pmc/articles/PMC2988519/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2988519</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20660569" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20660569</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="article-31897.r10">Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, Angeloni D. Human Pathophysiological Adaptations to the Space Environment. <span><span class="ref-journal">Front Physiol. </span>2017;<span class="ref-vol">8</span>:547.</span> [<a href="/pmc/articles/PMC5539130/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5539130</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28824446" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28824446</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="article-31897.r11">Smith SM, Heer M, Shackelford LC, Sibonga JD, Spatz J, Pietrzyk RA, Hudson EK, Zwart SR. Bone metabolism and renal stone risk during International Space Station missions. <span><span class="ref-journal">Bone. </span>2015 Dec;<span class="ref-vol">81</span>:712-720.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/26456109" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26456109</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="article-31897.r12">Eckberg DL, Fritsch JM. Human autonomic responses to actual and simulated weightlessness. <span><span class="ref-journal">J Clin Pharmacol. </span>1991 Oct;<span class="ref-vol">31</span>(10):951-5.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/1761726" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1761726</span></a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="article-31897.r13">Scott JM, Esch BT, Goodman LS, Bredin SS, Haykowsky MJ, Warburton DE. Cardiovascular consequences of high-performance aircraft maneuvers: implications for effective countermeasures and laboratory-based simulations. <span><span class="ref-journal">Appl Physiol Nutr Metab. </span>2007 Apr;<span class="ref-vol">32</span>(2):332-9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17486177" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17486177</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="article-31897.r14">Nicol ED, Rienks R, Gray G, Guettler NJ, Manen O, Syburra T, d'Arcy JL, Bron D, Davenport ED. An introduction to aviation cardiology. <span><span class="ref-journal">Heart. </span>2019 Jan;<span class="ref-vol">105</span>(Suppl 1):s3-s8.</span> [<a href="/pmc/articles/PMC6256299/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6256299</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30425080" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30425080</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="article-31897.r15">Tripp LD, Warm JS, Matthews G, Chiu PY, Bracken RB. On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness. <span><span class="ref-journal">Hum Factors. </span>2009 Dec;<span class="ref-vol">51</span>(6):775-84.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20415154" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20415154</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="article-31897.r16">Shiri R, Frilander H, Sainio M, Karvala K, Sovelius R, Vehmas T, Viikari-Juntura E. Cervical and lumbar pain and radiological degeneration among fighter pilots: a systematic review and meta-analysis. <span><span class="ref-journal">Occup Environ Med. </span>2015 Feb;<span class="ref-vol">72</span>(2):145-50.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/25180267" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25180267</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="article-31897.r17">H&#x000e4;m&#x000e4;l&#x000e4;inen O, Vanharanta H, Hupli M, Karhu M, Kuronen P, Kinnunen H. Spinal shrinkage due to +Gz forces. <span><span class="ref-journal">Aviat Space Environ Med. </span>1996 Jul;<span class="ref-vol">67</span>(7):659-61.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/8830946" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8830946</span></a>]</div></dd><dt>18.</dt><dd><div class="bk_ref" id="article-31897.r18">K&#x000e5;sin JI, Mansfield N, Wagstaff A. Whole body vibration in helicopters: risk assessment in relation to low back pain. <span><span class="ref-journal">Aviat Space Environ Med. </span>2011 Aug;<span class="ref-vol">82</span>(8):790-6.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21853857" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21853857</span></a>]</div></dd><dt>19.</dt><dd><div class="bk_ref" id="article-31897.r19">Bhutta BS, Alghoula F, Berim I. <span class="ref-journal">StatPearls [Internet].</span> StatPearls Publishing; Treasure Island (FL): Mar 4, 2024. Hypoxia. [<a href="https://pubmed.ncbi.nlm.nih.gov/29493941" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29493941</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="article-31897.r20">Luks AM, Swenson ER, B&#x000e4;rtsch P. Acute high-altitude sickness. <span><span class="ref-journal">Eur Respir Rev. </span>2017 Jan;<span class="ref-vol">26</span>(143)</span> [<a href="/pmc/articles/PMC9488514/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9488514</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28143879" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28143879</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="article-31897.r21">Storz JF. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? <span><span class="ref-journal">J Exp Biol. </span>2016 Oct 15;<span class="ref-vol">219</span>(Pt 20):3190-3203.</span> [<a href="/pmc/articles/PMC5091379/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5091379</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27802149" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27802149</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="article-31897.r22">Winslow RM. The role of hemoglobin oxygen affinity in oxygen transport at high altitude. <span><span class="ref-journal">Respir Physiol Neurobiol. </span>2007 Sep 30;<span class="ref-vol">158</span>(2-3):121-7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17449336" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17449336</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="article-31897.r23">Richalet JP, Larmignat P, Poitrine E, Letournel M, Canou&#x000ef;-Poitrine F. Physiological risk factors for severe high-altitude illness: a prospective cohort study. <span><span class="ref-journal">Am J Respir Crit Care Med. </span>2012 Jan 15;<span class="ref-vol">185</span>(2):192-8.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22071330" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22071330</span></a>]</div></dd><dt>24.</dt><dd><div class="bk_ref" id="article-31897.r24">Jones JG, Bakewell SE, Heneghan CP, Jones SE, Snape SL. Profound hypoxemia in pulmonary patients in airline-equivalent hypoxia: roles of VA/Q and shunt. <span><span class="ref-journal">Aviat Space Environ Med. </span>2008 Feb;<span class="ref-vol">79</span>(2):81-6.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18309903" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18309903</span></a>]</div></dd><dt>25.</dt><dd><div class="bk_ref" id="article-31897.r25">Maggiorini M, M&#x000e9;lot C, Pierre S, Pfeiffer F, Greve I, Sartori C, Lepori M, Hauser M, Scherrer U, Naeije R. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. <span><span class="ref-journal">Circulation. </span>2001 Apr 24;<span class="ref-vol">103</span>(16):2078-83.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11319198" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11319198</span></a>]</div></dd><dt>26.</dt><dd><div class="bk_ref" id="article-31897.r26">Nishihara F, Shimada H, Saito S. Rate pressure product and oxygen saturation in tourists at approximately 3000 m above sea level. <span><span class="ref-journal">Int Arch Occup Environ Health. </span>1998 Nov;<span class="ref-vol">71</span>(8):520-4.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9860159" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9860159</span></a>]</div></dd><dt>27.</dt><dd><div class="bk_ref" id="article-31897.r27">Siebenmann C, Rasmussen P, Hug M, Keiser S, Fl&#x000fc;ck D, Fisher JP, Hilty MP, Maggiorini M, Lundby C. Parasympathetic withdrawal increases heart rate after 2&#x000a0;weeks at 3454&#x000a0;m altitude. <span><span class="ref-journal">J Physiol. </span>2017 Mar 01;<span class="ref-vol">595</span>(5):1619-1626.</span> [<a href="/pmc/articles/PMC5330924/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5330924</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27966225" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27966225</span></a>]</div></dd><dt>28.</dt><dd><div class="bk_ref" id="article-31897.r28">Gawthrope IC, Playford DA, King B, Brown K, Wilson C, McKeown B. The cardiac effects of hyperbaric oxygen at 243 kPa using inchamber echocardiography. <span><span class="ref-journal">Diving Hyperb Med. </span>2014 Sep;<span class="ref-vol">44</span>(3):141-5.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/25311320" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25311320</span></a>]</div></dd><dt>29.</dt><dd><div class="bk_ref" id="article-31897.r29">Slade JB, Hattori T, Ray CS, Bove AA, Cianci P. Pulmonary edema associated with scuba diving : case reports and review. <span><span class="ref-journal">Chest. </span>2001 Nov;<span class="ref-vol">120</span>(5):1686-94.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11713154" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11713154</span></a>]</div></dd><dt>30.</dt><dd><div class="bk_ref" id="article-31897.r30">British Thoracic Society Fitness to Dive Group, Subgroup of the British Thoracic Society Standards of Care Committee. British Thoracic Society guidelines on respiratory aspects of fitness for diving. <span><span class="ref-journal">Thorax. </span>2003 Jan;<span class="ref-vol">58</span>(1):3-13.</span> [<a href="/pmc/articles/PMC1746450/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1746450</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12511710" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12511710</span></a>]</div></dd><dt>31.</dt><dd><div class="bk_ref" id="article-31897.r31">Gawthrope IC, Summers M, Macey DJ, Playford DA. An observation of venous gas emboli in divers and susceptibility to decompression sickness. <span><span class="ref-journal">Diving Hyperb Med. </span>2015 Mar;<span class="ref-vol">45</span>(1):25-9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/25964035" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25964035</span></a>]</div></dd><dt>32.</dt><dd><div class="bk_ref" id="article-31897.r32">Gerriets T, Tetzlaff K, Liceni T, Sch&#x000e4;fer C, Rosengarten B, Kopiske G, Algermissen C, Struck N, Kaps M. Arteriovenous bubbles following cold water sport dives: relation to right-to-left shunting. <span><span class="ref-journal">Neurology. </span>2000 Dec 12;<span class="ref-vol">55</span>(11):1741-3.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11113236" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11113236</span></a>]</div></dd><dt>33.</dt><dd><div class="bk_ref" id="article-31897.r33">Schwerzmann M, Seiler C, Lipp E, Guzman R, L&#x000f6;vblad KO, Kraus M, Kucher N. Relation between directly detected patent foramen ovale and ischemic brain lesions in sport divers. <span><span class="ref-journal">Ann Intern Med. </span>2001 Jan 02;<span class="ref-vol">134</span>(1):21-4.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11187416" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11187416</span></a>]</div></dd><dt>34.</dt><dd><div class="bk_ref" id="article-31897.r34">SPENCER FC, ROSSI NP, YU SC, KOEPKE JA. THE SIGNIFICANCE OF AIR EMBOLISM DURING CARDIOPULMONARY BYPASS. <span><span class="ref-journal">J Thorac Cardiovasc Surg. </span>1965 Apr;<span class="ref-vol">49</span>:615-34.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14274344" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14274344</span></a>]</div></dd><dt>35.</dt><dd><div class="bk_ref" id="article-31897.r35">Green RD, Leitch DR. Twenty years of treating decompression sickness. <span><span class="ref-journal">Aviat Space Environ Med. </span>1987 Apr;<span class="ref-vol">58</span>(4):362-6.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/3579827" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3579827</span></a>]</div></dd><dt>36.</dt><dd><div class="bk_ref" id="article-31897.r36">Lyons TJ, Davenport C, Copley GB, Binder H, Grayson K, Kraft NO. Preventing G-induced loss of consciousness: 20 years of operational experience. <span><span class="ref-journal">Aviat Space Environ Med. </span>2004 Feb;<span class="ref-vol">75</span>(2):150-3.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/14960050" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14960050</span></a>]</div></dd></dl></div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_top_margin">
<b>Disclosure: </b>Matt Stein declares no relevant financial relationships with ineligible companies.</p></div></dd><dt></dt><dd><div><p class="no_top_margin">
<b>Disclosure: </b>Evan Richards declares no relevant financial relationships with ineligible companies.</p></div></dd></dl></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> © 2025, StatPearls Publishing LLC.<p class="small">
This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
(<a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">
http://creativecommons.org/licenses/by-nc-nd/4.0/
</a>), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.
</p></div><div class="small"><span class="label">Bookshelf ID: NBK547658</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/31613438" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">31613438</a></span></div></div></div>
</div>
</div>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK547658&amp;ncbi_domain=statpearls&amp;ncbi_report=printable&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK547658/?report=printable&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal107 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
</html>