129 lines
No EOL
69 KiB
XML
129 lines
No EOL
69 KiB
XML
<?xml version="1.0" encoding="utf-8"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
||
|
||
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||
<!-- AppResources meta begin -->
|
||
<meta name="paf-app-resources" content="" />
|
||
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
||
|
||
<!-- AppResources meta end -->
|
||
|
||
<!-- TemplateResources meta begin -->
|
||
<meta name="paf_template" content="" />
|
||
|
||
<!-- TemplateResources meta end -->
|
||
|
||
<!-- Logger begin -->
|
||
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK541013" /><meta name="ncbi_domain" content="statpearls" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK541013/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
|
||
<!-- Logger end -->
|
||
|
||
<title>Chronic Traumatic Encephalopathy - StatPearls - NCBI Bookshelf</title>
|
||
|
||
<!-- AppResources external_resources begin -->
|
||
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
|
||
|
||
<!-- AppResources external_resources end -->
|
||
|
||
<!-- Page meta begin -->
|
||
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="StatPearls [Internet]" /><meta name="citation_title" content="Chronic Traumatic Encephalopathy" /><meta name="citation_publisher" content="StatPearls Publishing" /><meta name="citation_date" content="2024/10/06" /><meta name="citation_author" content="Sunil Munakomi" /><meta name="citation_author" content="Yana Puckett" /><meta name="citation_pmid" content="31082057" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK541013/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Chronic Traumatic Encephalopathy" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="StatPearls Publishing" /><meta name="DC.Contributor" content="Sunil Munakomi" /><meta name="DC.Contributor" content="Yana Puckett" /><meta name="DC.Date" content="2024/10/06" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK541013/" /><meta name="description" content="Chronic traumatic encephalopathy (CTE), formerly known as repetitive head injury syndrome, is a progressive neurodegenerative condition commonly observed in individuals involved in contact sports or military service associated with an increased risk of repeated head injuries. This condition is characterized by regional atrophy, ventriculomegaly, and specific brain abnormalities.[1] Historically, CTE has been linked to repeated head trauma, with early descriptions highlighting its association with "punch drunk" syndrome and ''dementia pugilistica" in boxers. The condition has evolved into a significant topic within the sports medicine community, with ongoing investigations into its pathophysiology, diagnostic criteria, and potential therapeutic approaches.[1][2]" /><meta name="og:title" content="Chronic Traumatic Encephalopathy" /><meta name="og:type" content="book" /><meta name="og:description" content="Chronic traumatic encephalopathy (CTE), formerly known as repetitive head injury syndrome, is a progressive neurodegenerative condition commonly observed in individuals involved in contact sports or military service associated with an increased risk of repeated head injuries. This condition is characterized by regional atrophy, ventriculomegaly, and specific brain abnormalities.[1] Historically, CTE has been linked to repeated head trauma, with early descriptions highlighting its association with "punch drunk" syndrome and ''dementia pugilistica" in boxers. The condition has evolved into a significant topic within the sports medicine community, with ongoing investigations into its pathophysiology, diagnostic criteria, and potential therapeutic approaches.[1][2]" /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK541013/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-statpearls-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/statpearls/article-28386/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK541013/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
|
||
|
||
<!-- Page meta end -->
|
||
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8B6ABB7D8A89310000000000C300B3.m_5" />
|
||
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
|
||
<body class="book-part">
|
||
<div class="grid no_max_width">
|
||
<div class="col twelve_col nomargin shadow">
|
||
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
|
||
<div class="sysmessages">
|
||
<noscript>
|
||
<p class="nojs">
|
||
<strong>Warning:</strong>
|
||
The NCBI web site requires JavaScript to function.
|
||
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
|
||
</p>
|
||
</noscript>
|
||
</div>
|
||
<!--/.sysmessage-->
|
||
<div class="wrap">
|
||
<div class="page">
|
||
<div class="top">
|
||
|
||
<div class="header">
|
||
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<!--<component id="Page" label="headcontent"/>-->
|
||
|
||
</div>
|
||
<div class="content">
|
||
<!-- site messages -->
|
||
<div class="container content">
|
||
<div class="document">
|
||
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. </p></div></div></div>
|
||
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK541013_"><span class="title" itemprop="name">Chronic Traumatic Encephalopathy</span></h1><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Sunil Munakomi</span><sup>1</sup>; <span itemprop="author">Yana Puckett</span>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup> Kathmandu University</div><p class="small">Last Update: <span itemprop="dateModified">October 6, 2024</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><div id="article-28386.s1"><h2 id="_article-28386_s1_">Continuing Education Activity</h2><p>Chronic traumatic encephalopathy (CTE), formerly known as repetitive head injury syndrome, is a progressive neurodegenerative disorder commonly observed in individuals involved in contact sports or military service. This condition is characterized by specific brain abnormalities, including regional atrophy, ventriculomegaly, and the deposition of neurofibrillary tangles and neuropil threads, contributing to a distinct form of tauopathy. Although CTE can only be definitively diagnosed postmortem, recent consensus guidelines provide criteria for identifying its clinical manifestations, referred to as traumatic encephalopathy syndrome. The clinical presentation of CTE varies, with younger individuals often exhibiting mood and behavioral symptoms, while older patients may experience cognitive impairments. The disease progresses through stages, eventually leading to severe cognitive dysfunction and neurodegeneration.</p><p>CTE currently has no cure, and treatment primarily focuses on managing symptoms. Research highlights the need for prospective, longitudinal studies incorporating fluid and imaging biomarkers to improve the understanding and management of the condition. This activity comprehensively reviews chronic transplant rejection, covering its characteristics, historical background, diagnostic criteria, and postmortem diagnosis. This activity also delves into recent advancements in imaging techniques and potential fluid biomarkers alongside current management approaches and preventive strategies. In addition, this activity enhances healthcare providers' knowledge and skills in effective management and prevention strategies for chronic transplant rejection, emphasizing interprofessional collaboration to improve patient outcomes.</p><p>
|
||
<b>Objectives:</b>
|
||
<ul><li class="half_rhythm"><div>Identify the clinical manifestations and progression stages of chronic traumatic encephalopathy to improve early recognition and diagnosis.</div></li><li class="half_rhythm"><div>Screen individuals at high risk for chronic traumatic encephalopathy, including athletes and military personnel, using appropriate diagnostic tools and criteria.</div></li><li class="half_rhythm"><div>Assess the progression of chronic traumatic encephalopathy in patients through regular neurological evaluations and imaging studies, adjusting management strategies as needed.</div></li><li class="half_rhythm"><div>Collaborate with multidisciplinary healthcare teams, including sports medicine professionals, mental health specialists, and researchers, to provide comprehensive care for individuals with chronic traumatic encephalopathy.</div></li></ul>
|
||
<a href="https://www.statpearls.com/account/trialuserreg/?articleid=28386&utm_source=pubmed&utm_campaign=reviews&utm_content=28386" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Access free multiple choice questions on this topic.</a>
|
||
</p></div><div id="article-28386.s2"><h2 id="_article-28386_s2_">Introduction</h2><p>Chronic traumatic encephalopathy (CTE), formerly known as repetitive head injury syndrome, is a progressive neurodegenerative condition commonly observed in individuals involved in contact sports or military service associated with an increased risk of repeated head injuries. This condition is characterized by regional atrophy, ventriculomegaly, and specific brain abnormalities.<a class="bk_pop" href="#article-28386.r1">[1]</a> Historically, CTE has been linked to repeated head trauma, with early descriptions highlighting its association with "punch drunk" syndrome and ''dementia pugilistica" in boxers. The condition has evolved into a significant topic within the sports medicine community, with ongoing investigations into its pathophysiology, diagnostic criteria, and potential therapeutic approaches.<a class="bk_pop" href="#article-28386.r1">[1]</a><a class="bk_pop" href="#article-28386.r2">[2]</a></p><p>
|
||
<b>Historical Background</b>
|
||
</p><p>Harrison Martland was the first to mention "perivascular microhemorrhages" that progressively evolved into "replacement gliosis," resulting in punch drunk syndrome. Abram Bowman and Karl Blau then coined the term CTE to better characterize the condition. N. Corsellis subsequently identified neurofibrillary tangles (NFTs), along with ventricular dilatation, cavum septum pellucidum, thinning of the corpus callosum, and cerebellar tonsillar scarring in affected individuals. Additional neuropathological changes in CTE were later documented by Jennian Geddes, who noted perivascular neurofibrillary encasement within cortical sulci, and Bennet Omalu, who described amyloid plaques, tau-positive neurofibrillary tangles, and neuropil threads associated with the condition.</p><p>Ann McKee proposed neuropathological diagnostic and grading criteria for CTE, characterized by patchy deposits of phosphorylated tau (p-tau)–positive NFTs and astrocytic tangles located perivascularly within the neocortex, at the depths of cerebral sulci, and in the superficial layers of the cortex, primarily in the temporal lobe. The National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) have established criteria for diagnosing CTE, focusing on perivascular foci of p-tau NFTs and astrocytic tangles in the cortex, with a preference for their presence at sulcal depths and in the superficial layers of the cerebral cortex. </p><p>In 2021, the panel refined the definition of the pathognomonic lesion to emphasize that perivascular p-tau aggregates must involve neurons and extend deeper than the subpial layer. Additionally, the panel introduced the classifications "Low CTE" and "High CTE" to indicate the presence of NFTs in specific brain regions, such as the thalamus, mammillary bodies, hippocampus, amygdala, and entorhinal cortex, to assist neuropathologists in their assessments.<a class="bk_pop" href="#article-28386.r3">[3]</a> </p><p>While CTE can only be definitively diagnosed through postmortem examination, recent consensus guidelines have established criteria for identifying its clinical manifestations, referred to as traumatic encephalopathy syndrome (TES).<a class="bk_pop" href="#article-28386.r4">[4]</a> Montenegro et al proposed the clinical diagnostic criteria for CTE comprising cognitive, behavioral, and mood symptomatology as 3 core elements alongside 9 other supportive features, including impulsivity, anxiety, apathy, paranoia, suicidality, headache, motor signs, documented decline, and delayed onset.<a class="bk_pop" href="#article-28386.r5">[5]</a></p></div><div id="article-28386.s3"><h2 id="_article-28386_s3_">Etiology</h2><p>Repeated head injury is crucial in the genesis of CTE, with a strong causal relationship established between repeated trauma and the condition.<a class="bk_pop" href="#article-28386.r3">[3]</a> Repeated head injury exposure is the only known unifying factor and is present in 97% of patients among the more than 600 CTE cases reported in the literature.<a class="bk_pop" href="#article-28386.r3">[3]</a> Computational models and animal studies involving Musk oxen and bighorn sheep—both with gyrencephalic brains (with sulci) and engaged in combative headbutting—have shown positive correlations between repeated head injury and CTE.<a class="bk_pop" href="#article-28386.r3">[3]</a> </p><p>An association exists between cognitive reserve, demographic factors (eg, early age of first exposure), and exposure metrics (eg, cumulative head impact index) with the severity of future neurological sequelae.<a class="bk_pop" href="#article-28386.r1">[1]</a><a class="bk_pop" href="#article-28386.r6">[6]</a> A consistent dose-response relationship has been validated between cumulative years of playing contact sports, such as American football and ice hockey, and both the onset and severity of CTE.<a class="bk_pop" href="#article-28386.r3">[3]</a> Additionally, the APOE epsilon-4 allele has been shown to predict an increased risk of developing cognitive decline following repeated head impacts.<a class="bk_pop" href="#article-28386.r1">[1]</a></p></div><div id="article-28386.s4"><h2 id="_article-28386_s4_">Epidemiology</h2><p>Approximately 4 million sports-related concussions are reported annually in the United States alone.<a class="bk_pop" href="#article-28386.r1">[1]</a> The incidence of sport-related neurological conditions among boxers is reported to be 17%. In a study conducted by the Mayo Clinic Brain Bank, CTE pathology was found in 32% of athletes who participated in contact sports. Similarly, in the largest case series of 177 former professional football players, CTE was diagnosed in up to 87% of the patients.<a class="bk_pop" href="#article-28386.r1">[1]</a> A recent study has also revealed significant neuropathological evidence of CTE among football players who donated their brains for research.<a class="bk_pop" href="#article-28386.r7">[7]</a></p></div><div id="article-28386.s5"><h2 id="_article-28386_s5_">Pathophysiology</h2><p>Tau protein regulates the assembly of tubulin into microtubules, thereby maintaining the structural integrity of axons. Tau phosphorylation mediates tau's binding to microtubules. Tau proteins dissociate from microtubules in axons due to calcium influx and glutamate hyperexcitotoxicity. Calcium influx activates caspases, while glutamate hyperexcitotoxicity causes cytoskeletal failure. These disruptions lead to kinase-mediated hyperphosphorylation, misfolding, and aggregation of tau, which is then proteolytically cleaved by calpains and caspases.<a class="bk_pop" href="#article-28386.r8">[8]</a><a class="bk_pop" href="#article-28386.r9">[9]</a> These processes, including tau phosphorylation, misfolding, shortening, and aggregation, contribute to NFT deposition.<a class="bk_pop" href="#article-28386.r9">[9]</a> </p><p>TAR DNA-binding protein 43 (TDP-43) inclusions and amyloid-β deposition are also observed in CTE. Perivascular polarization of astroglial aquaporin-4 impairs glymphatic clearance.<a class="bk_pop" href="#article-28386.r9">[9]</a> The combination of excessive protein deposition and reduced clearance aggravates the neurodegenerative process. Oxidative stress, neuroinflammation, and glutaminergic toxicity contribute significantly to CTE pathogenesis. Chronic inflammation disrupts the ubiquitin-proteasome pathway, while microglial priming leads to immune-excitotoxic responses and persistent neurodegeneration.<a class="bk_pop" href="#article-28386.r9">[9]</a> </p><p>Immuno-excitotoxicity is critical in the pathogenesis of CTE. Repeatedly primed microglia, after a repetitive head injury, fail to transition from a neuro-destructive mode to a reparative mode. This failure exacerbates the inflammatory insult to the brain by providing a favorable milieu amidst glutamate toxicity.<a class="bk_pop" href="#article-28386.r10">[10]</a> Excitotoxicity also generates reactive oxygen and nitrogen species.<a class="bk_pop" href="#article-28386.r9">[9]</a> Repeated head injury causes axonal degeneration and microtubular disintegration, leading to tau oligomerization. This oligomerization progresses to the formation of NFTs, affecting neuronal crosstalk and networking. This disruption eventually results in tau propagation, which triggers inflammatory cascades and ultimately impairs blood-brain barrier permeability.<a class="bk_pop" href="#article-28386.r11">[11]</a></p></div><div id="article-28386.s6"><h2 id="_article-28386_s6_">Histopathology</h2><p>Gross examination reveals features of regional atrophy, most commonly in the frontal lobe, along with ventriculomegaly, wasting of the corpus callosum, and characteristic fenestration of the septum pellucidum. The regions of atrophy parallel high concentrations of glutamate receptors, thereby connoting excitotoxicity's role in the entity's pathogenesis.<a class="bk_pop" href="#article-28386.r1">[1]</a></p><p>Microscopically, the predominant findings include the deposition of NFTs and neuropil threads. In CTE, NFTs are deposited perivascularly at the sulcal depths and are exclusively neuronal.<a class="bk_pop" href="#article-28386.r3">[3]</a><a class="bk_pop" href="#article-28386.r12">[12]</a> 4R isomers are predominant in stages I and II, while 3R isomers are more prevalent in stages III and IV.<a class="bk_pop" href="#article-28386.r3">[3]</a> Perivascular tau deposition within the sulcal depths is a critical criterion for diagnosing CTE, according to the first consensus from the NINDS and NIBIB.<a class="bk_pop" href="#article-28386.r1">[1]</a> The presence of neuronal p-tau is significantly associated with age, years of repeated head injury exposure, and the severity of CTE.<a class="bk_pop" href="#article-28386.r3">[3]</a></p><p>The following 4 histomorphologic phenotypes have been associated with CTE:</p><ul><li class="half_rhythm"><div>Type 1: NFTs and neuropil threads are present only in the cerebral cortex and brainstem.</div></li><li class="half_rhythm"><div>Type 2: Type 1 features along with amyloid-β deposition.</div></li><li class="half_rhythm"><div>Type 3: NFTs and neuropil threads are found exclusively in the brainstem.</div></li><li class="half_rhythm"><div>Type 4: NFTs and neuropil threads in the cortex, subcortex, brainstem, and basal ganglia, with the cerebellum being spared.<a class="bk_pop" href="#article-28386.r13">[13]</a></div></li></ul><p>The Understanding Neurologic Injury in Traumatic Encephalopathy (UNITE) study, funded by the NINDS, also described patchy and perivascular deposits of NFTs in astrocytes and at the depths of the sulci.<a class="bk_pop" href="#article-28386.r14">[14]</a> As established by the NINDS panel consensus, the pattern of p-tau in CTE is distinct from other neurodegenerative conditions.<a class="bk_pop" href="#article-28386.r14">[14]</a> Hallmarks include the superficial distribution of NFTs in layers II and III, patchy distribution of NFTs, and a perivascular pattern within the depths of the cortical sulci.<a class="bk_pop" href="#article-28386.r3">[3]</a> Brainstem p-tau pathology is considered a supportive feature of CTE.<a class="bk_pop" href="#article-28386.r3">[3]</a> P-tau spares the calcarine cortex even in the advanced stage.<a class="bk_pop" href="#article-28386.r9">[9]</a></p></div><div id="article-28386.s7"><h2 id="_article-28386_s7_">History and Physical</h2><p>The medical history typically includes some form of repetitive head trauma, often involving individuals who participate in contact sports or serve in the military. A thorough neurologic examination is crucial, with a particular emphasis on mental status assessment.<a class="bk_pop" href="#article-28386.r1">[1]</a> Younger individuals are more likely to present with mood and behavior symptoms, while older individuals commonly exhibit cognitive impairment and executive dysfunction.<a class="bk_pop" href="#article-28386.r3">[3]</a> Cognitive symptoms increase the odds of CTE by 3.6-fold.<a class="bk_pop" href="#article-28386.r14">[14]</a> During longitudinal follow-up, patients with a history of recurrent concussions tend to have a higher burden of cognitive, sleep, and neuropsychiatric symptoms but not migraine symptoms.<a class="bk_pop" href="#article-28386.r2">[2]</a> </p><p>As described by Browne, the disease process begins with affective disturbances, followed by a stage of social instability and behavioral changes, with subtle features of early Parkinsonism. This eventually progresses to a third stage characterized by cognitive dysfunction, dementia, and full-blown Parkinsonism.<a class="bk_pop" href="#article-28386.r15">[15]</a> These changes have been attributed to the disease's impact on the Papez circuit.<a class="bk_pop" href="#article-28386.r16">[16]</a> </p><p>The research diagnostic criteria describe 4 subtypes of CTE, including:</p><ul><li class="half_rhythm"><div>Behavioral or mood variant</div></li><li class="half_rhythm"><div>Cognitive variant</div></li><li class="half_rhythm"><div>Mixed variant</div></li><li class="half_rhythm"><div>Dementia form <a class="bk_pop" href="#article-28386.r1">[1]</a></div></li></ul></div><div id="article-28386.s8"><h2 id="_article-28386_s8_">Evaluation</h2><p>Montenegro et al proposed the following clinical diagnostic criteria for CTE:</p><ul><li class="half_rhythm"><div>A history of multiple head impacts</div></li><li class="half_rhythm"><div>Exclusion of other clinical mimics</div></li><li class="half_rhythm"><div>Symptomatology present for at least 12 months</div></li><li class="half_rhythm"><div>A minimum of 1 core and 2 supportive elements present<a class="bk_pop" href="#article-28386.r17">[17]</a></div></li></ul><p>The core elements comprise cognitive symptoms (eg, episodic memory, executive function, and attention), behavioral (eg, verbal or physical aggression), and mood symptoms (eg, feeling depressed or hopeless).<a class="bk_pop" href="#article-28386.r14">[14]</a> As CTE can only be definitively diagnosed through postmortem neuropathologic findings, the NINDS consensus developed guidelines to aid in the clinical identification of TES.<a class="bk_pop" href="#article-28386.r4">[4]</a></p><p>The 4 primary diagnostic criteria proposed by the NINDS consensus for TES include:</p><ul><li class="half_rhythm"><div>Substantial exposure to repeated head injury</div></li><li class="half_rhythm"><div>Core clinical features such as cognitive impairment (eg, episodic memory and executive functioning) and neurobehavioral dysregulation (eg, explosiveness, impulsivity, rage, violent outbursts, and emotional lability) with a progressive course</div></li><li class="half_rhythm"><div>Clinical features not fully accounted for by other disorders <a class="bk_pop" href="#article-28386.r3">[3]</a></div></li></ul><p>However, these criteria have a high risk of false positives, with nearly 54% of cognitively normal individuals receiving a consensus diagnosis. Additionally, there is a lack of spatial correlation between TES and head injury exposure.<a class="bk_pop" href="#article-28386.r18">[18]</a> The degree of depression is the only significant predictor of a positive TES diagnosis.<a class="bk_pop" href="#article-28386.r18">[18]</a> </p><p>Although CTE is confirmed through postmortem autopsy, the diagnosis is facilitated by immunohistochemistry for p-tau.<a class="bk_pop" href="#article-28386.r6">[6]</a><a class="bk_pop" href="#article-28386.r11">[11]</a> Recent advances in imaging armamentarium and fluid biomarkers can also provide valuable input to support the diagnosis.<a class="bk_pop" href="#article-28386.r11">[11]</a><a class="bk_pop" href="#article-28386.r19">[19]</a><a class="bk_pop" href="#article-28386.r20">[20]</a> Growing evidence supports the role of the regional tau standardized uptake value ratio in flortaucipir positron-emission tomography (PET) and florbetapir PET for facilitating diagnosis,<a class="bk_pop" href="#article-28386.r14">[14]</a> although the specificity remains poorly documented.<a class="bk_pop" href="#article-28386.r21">[21]</a> Specific prototypical patterns or regional volume differences have not been identified in PET imaging.<a class="bk_pop" href="#article-28386.r22">[22]</a></p><p>A significant correlation has been observed only in the superior frontal region and among individuals aged 60 or older.<a class="bk_pop" href="#article-28386.r23">[23]</a> Furthermore, off-target binding in the hippocampus and thalamus complicates the interpretation of imaging results.<a class="bk_pop" href="#article-28386.r21">[21]</a> Other important radiological features include concurrent cavum septum pellucidum and reduced fractional anisotropy in the corpus callosum and medial temporal white matter.<a class="bk_pop" href="#article-28386.r14">[14]</a><a class="bk_pop" href="#article-28386.r22">[22]</a> Magnetic resonance imaging (MRI) and PET imaging are essential for ruling out other clinical mimics.<a class="bk_pop" href="#article-28386.r22">[22]</a></p><p>Potential fluid biomarkers for CTE include glial fibrillary acidic protein (GFAP), neurofibrillary light chain (NfL), total tau, neuron-specific enolase (NSE), ubiquitin C-terminal hydrolase-1 (UCHL-1), S100B, myelin basic protein (MBP), microtubule-associated protein-2 (MAP-2), brain-derived neurotrophic factor (BDNF), microRNA, and microvesicles and exosomes.<a class="bk_pop" href="#article-28386.r14">[14]</a><a class="bk_pop" href="#article-28386.r24">[24]</a><a class="bk_pop" href="#article-28386.r25">[25]</a> However, plasma biomarkers do not correspond well with cerebrospinal fluid measures in cases of late repetitive head injury, thereby minimizing their efficacy.<a class="bk_pop" href="#article-28386.r26">[26]</a> Therefore, consensus on the role of fluid biomarkers in managing CTE has yet to be established. However, a recent pivotal finding of a characteristic hydrophobic cavity within the β-helix of tau filaments from CTE has opened new avenues for identifying early diagnostic targets (see <b>Image.</b> Chronic Traumatic Encephalopathy).<a class="bk_pop" href="#article-28386.r27">[27]</a></p></div><div id="article-28386.s9"><h2 id="_article-28386_s9_">Treatment / Management</h2><p>Currently, a definitive treatment for CTE does not exist; therefore, multispectral supportive measures are the mainstay of management.<a class="bk_pop" href="#article-28386.r1">[1]</a> Amantadine and guanfacine may offer benefits for cognitive and working memory deficits. Cognitive improvement can be supported through cognitive rehabilitation therapy, a Mediterranean diet, and aerobic exercise.<a class="bk_pop" href="#article-28386.r14">[14]</a> Occupational rehabilitation should also be encouraged. Depression requires careful management due to the potential risk of suicidality.</p><p>Antioxidants such as ascorbic acid, <i>N</i>-acetylcysteine, alpha-tocopherol (ie, vitamin E), carotenoids, and omega-3 fatty acids have been used to counteract reactive oxygen species and reactive nitrogen species. Salsalate, which inhibits the acetylation process before the phosphorylation of the paired helical filament-6 motif and thereby suppresses microglial activation, is under research.<a class="bk_pop" href="#article-28386.r11">[11]</a> Ongoing research also focuses on tau acetylation, tau phosphorylation, and immunotherapy, such as using adeno-associated virus vectors to deliver anti-p-tau antibodies.</p><p>The best modality for minimizing the incidence of CTE is through strict adherence to preventive measures and safe practices.<a class="bk_pop" href="#article-28386.r14">[14]</a> Establishing mandatory provisions for a safe playing environment and strictly upholding "return-to-play" policies are paramount.<a class="bk_pop" href="#article-28386.r12">[12]</a></p></div><div id="article-28386.s10"><h2 id="_article-28386_s10_">Differential Diagnosis</h2><p>In addition to a single traumatic brain injury, conditions with clinical features that mimic CTE include:<a class="bk_pop" href="#article-28386.r28">[28]</a><a class="bk_pop" href="#article-28386.r29">[29]</a></p><ul><li class="half_rhythm"><div>Alzheimer disease.</div></li><li class="half_rhythm"><div>Frontotemporal lobar degeneration.</div></li><li class="half_rhythm"><div>Lewy body disease.</div></li><li class="half_rhythm"><div>Cerebral amyloid angiopathy.</div></li><li class="half_rhythm"><div>Parkinsonism.</div></li><li class="half_rhythm"><div>Age-related tau astrogliopathy, characterized by subpial "thorn-shaped astrocytes" with purely astrocytic perivascular p-tau pathology, is observed. Moreover, 47% of these lesions are restricted to the midbrain, whereas current criteria for CTE require at least 1 pathognomonic cortical lesion.</div></li><li class="half_rhythm"><div>Limbic-predominant age-related TDP-43 encephalopathy with neuropathologic changes associated with hippocampal sclerosis.</div></li><li class="half_rhythm"><div>Bulbar amyotrophic lateral sclerosis.</div></li><li class="half_rhythm"><div>Primary age-related tauopathy (PART).<a class="bk_pop" href="#article-28386.r3">[3]</a><a class="bk_pop" href="#article-28386.r30">[30]</a></div></li></ul><p>The characteristic finding that helps differentiate CTE from other tauopathies, such as Alzheimer and Lewy body dementia, is the perivascular deposition of tau-immunoreactive astrocytes within the sulcal depths of superficial cortical layers.<a class="bk_pop" href="#article-28386.r11">[11]</a> Additionally, the dimensions of NFTs in CTE are larger and are associated with co-localized aggregates of TDP-43.<a class="bk_pop" href="#article-28386.r11">[11]</a> Concurrent neurodegenerative diseases are observed in almost 40% of CTE cases.<a class="bk_pop" href="#article-28386.r3">[3]</a> However, CTE remains a unique tauopathy—both ultrastructurally and microscopically.<a class="bk_pop" href="#article-28386.r3">[3]</a> </p><p>The tau filament in CTE features a unique β-helix region with a hydrophobic cavity.<a class="bk_pop" href="#article-28386.r14">[14]</a><a class="bk_pop" href="#article-28386.r27">[27]</a> CTE exhibits higher levels of p-tau in the CA2 and CA3 regions of the hippocampus compared to CA1 and subiculum in Alzheimer disease. Similarly, CA3 and CA4 regions have significantly higher p-tau burden in CTE than PART.<a class="bk_pop" href="#article-28386.r3">[3]</a></p></div><div id="article-28386.s11"><h2 id="_article-28386_s11_">Pertinent Studies and Ongoing Trials</h2><p>
|
||
<b>NEurodegeneration: Traumatic Brain Injury as Origin of the Neuropathology (NEwTON)</b>
|
||
</p><p>NEwTON is a prospective study recruiting patients at risk for developing CTE.<a class="bk_pop" href="#article-28386.r31">[31]</a> Similarly, the "Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy (DIAGNOSE CTE)'' research project aims to provide newer insights into CTE's pathogenesis and natural history.<a class="bk_pop" href="#article-28386.r32">[32]</a></p></div><div id="article-28386.s12"><h2 id="_article-28386_s12_">Staging</h2><p>The following 4 stages of CTE are described according to the distribution of NFTs and associated clinical signs and symptoms:</p><ul><li class="half_rhythm"><div>Stage I: Perivascular deposits of NFTs in the sulcal depths characterized by headache and loss of concentration.</div></li><li class="half_rhythm"><div>Stage II: Stage I features plus NFTs within the nucleus basalis of Meynert and locus coeruleus, with mood swings and short-term memory loss.</div></li><li class="half_rhythm"><div>Stage III: Stage II features plus atrophy, wasting of the corpus callosum, septal abnormalities, ventriculomegaly, depigmentation of the substantia nigra, and widespread deposition of p-tau, characterized by cognitive impairment, executive dysfunction, and visuospatial abnormalities.</div></li><li class="half_rhythm"><div>Stage IV: Stage III features plus further atrophy, gliosis, and hippocampal sclerosis, characterized by profound memory loss and florid parkinsonian features.<a class="bk_pop" href="#article-28386.r1">[1]</a></div></li></ul><p>McKee described the following 4 pathological stages of CTE:</p><ul><li class="half_rhythm"><div>Stage I: Perivascular p-tau deposits in the sulci, primarily within the superior dorsolateral and inferior frontal cortices.</div></li><li class="half_rhythm"><div>Stage II: Mild ventricular enlargement and changes in the septum pellucidum.</div></li><li class="half_rhythm"><div>Stage III: Progressive ventricular enlargement, mild frontal and temporal atrophy, and NFT deposits within the olfactory bulb, entorhinal cortex, hippocampus, amygdala, and mammillary bodies.</div></li><li class="half_rhythm"><div>Stage IV: Diffuse cortical atrophy and complete depigmentation of the locus coeruleus and substantia nigra.<a class="bk_pop" href="#article-28386.r6">[6]</a></div></li></ul></div><div id="article-28386.s13"><h2 id="_article-28386_s13_">Prognosis</h2><p>The incidence of mortality among former players has been observed to be 3 times higher than their healthy counterparts. Furthermore, studies have demonstrated a link between CTE and the development of early-onset Parkinsonian dementia.<a class="bk_pop" href="#article-28386.r33">[33]</a></p></div><div id="article-28386.s14"><h2 id="_article-28386_s14_">Complications</h2><p>CTE is progressive in approximately 68% of patients. In a small subgroup with predominantly behavioral or mood symptoms, the condition may remain stable for years before progressing to other stages after a latency of 11 to 14 years.<a class="bk_pop" href="#article-28386.r1">[1]</a> The neurodegenerative process sequentially progresses through stages of social instability and behavioral changes before advancing to dementia.<a class="bk_pop" href="#article-28386.r1">[1]</a> Additionally, there is an increased risk of suicide among these subsets of patients.</p></div><div id="article-28386.s15"><h2 id="_article-28386_s15_">Deterrence and Patient Education</h2><p>Preventive measures for high-risk cohorts are the cornerstone of CTE management. Promoting a safe playing environment, strict adherence to concussion reporting, early diagnosis, and mandatory implementation of the "return-to-play" protocol are crucial in minimizing the incidence of CTE.<a class="bk_pop" href="#article-28386.r5">[5]</a> </p></div><div id="article-28386.s16"><h2 id="_article-28386_s16_">Pearls and Other Issues</h2><p>Despite recent attention and resources devoted to CTE, significant progress in understanding the disease remains limited. Many perspectives continue to rely on assumptions rather than facts, as Corsellis argued 4 decades ago.<a class="bk_pop" href="#article-28386.r15">[15]</a> However, tau imaging and relevant cerebrospinal fluid biomarkers have shown promise as potential surrogate markers for the supportive diagnosis of CTE.<a class="bk_pop" href="#article-28386.r1">[1]</a></p></div><div id="article-28386.s17"><h2 id="_article-28386_s17_">Enhancing Healthcare Team Outcomes </h2><p>An interprofessional team approach is essential for enhancing patient-centered care and outcomes for individuals with CTE. Physicians, advanced practitioners, nurses, pharmacists, and other healthcare professionals must collaborate to develop a comprehensive strategy emphasizing teamwork and communication. Given the inherent heterogeneity of CTE, healthcare team members should leverage their expertise to create individualized care plans that address each patient's unique needs. This approach includes implementing effective concussion reporting systems and adhering to "return-to-play" protocols to ensure safety for high-risk populations.</p><p>Additionally, ongoing education and training in cognitive rehabilitation techniques can empower healthcare clinicians to deliver effective cognitive interventions. As research advances in targeting tau protein oligomerization and propagation, the healthcare team must stay informed about emerging therapies and biomarkers, facilitating timely interventions. Regular interprofessional meetings can foster open communication, allowing healthcare team members to discuss patient progress, share insights from longitudinal studies, and coordinate care effectively. By prioritizing patient safety and team performance, healthcare professionals can significantly improve the management of CTE, ultimately enhancing the quality of care and outcomes for affected individuals.</p></div><div id="article-28386.s18"><h2 id="_article-28386_s18_">Review Questions</h2><ul><li class="half_rhythm"><div>
|
||
<a href="https://www.statpearls.com/account/trialuserreg/?articleid=28386&utm_source=pubmed&utm_campaign=reviews&utm_content=28386" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Access free multiple choice questions on this topic.</a>
|
||
</div></li><li class="half_rhythm"><div>
|
||
<a href="https://mdsearchlight.com/neurology/repetitive-head-injury-syndrome/?utm_source=pubmedlink&utm_campaign=MDS&utm_content=28386" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Click here for a simplified version.</a>
|
||
</div></li><li class="half_rhythm"><div>
|
||
<a href="https://www.statpearls.com/articlelibrary/commentarticle/28386/?utm_source=pubmed&utm_campaign=comments&utm_content=28386" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Comment on this article.</a>
|
||
</div></li></ul></div><div class="floats-group" id="article-28386.s19"></div><div id="article-28386.s20"><h2 id="_article-28386_s20_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="article-28386.r1">Turk KW, Budson AE. Chronic Traumatic Encephalopathy. <span><span class="ref-journal">Continuum (Minneap Minn). </span>2019 Feb;<span class="ref-vol">25</span>(1):187-207.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/30707193" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30707193</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="article-28386.r2">Miyata M, Takahata K. [Challenges of Diagnostic Imaging of Chronic Traumatic Encephalopathy]. <span><span class="ref-journal">Brain Nerve. </span>2023 Jun;<span class="ref-vol">75</span>(6):769-778.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/37287361" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 37287361</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="article-28386.r3">McKee AC, Stein TD, Huber BR, Crary JF, Bieniek K, Dickson D, Alvarez VE, Cherry JD, Farrell K, Butler M, Uretsky M, Abdolmohammadi B, Alosco ML, Tripodis Y, Mez J, Daneshvar DH. Chronic traumatic encephalopathy (CTE): criteria for neuropathological diagnosis and relationship to repetitive head impacts. <span><span class="ref-journal">Acta Neuropathol. </span>2023 Apr;<span class="ref-vol">145</span>(4):371-394.</span> [<a href="/pmc/articles/PMC10020327/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC10020327</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36759368" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 36759368</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="article-28386.r4">Katz DI, Bernick C, Dodick DW, Mez J, Mariani ML, Adler CH, Alosco ML, Balcer LJ, Banks SJ, Barr WB, Brody DL, Cantu RC, Dams-O'Connor K, Geda YE, Jordan BD, McAllister TW, Peskind ER, Petersen RC, Wethe JV, Zafonte RD, Foley ÉM, Babcock DJ, Koroshetz WJ, Tripodis Y, McKee AC, Shenton ME, Cummings JL, Reiman EM, Stern RA. National Institute of Neurological Disorders and Stroke Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome. <span><span class="ref-journal">Neurology. </span>2021 May 04;<span class="ref-vol">96</span>(18):848-863.</span> [<a href="/pmc/articles/PMC8166432/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC8166432</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33722990" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 33722990</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="article-28386.r5">Eaton RG, Lonser RR. History of biological, mechanistic, and clinical understanding of concussion. <span><span class="ref-journal">Neurosurg Focus. </span>2024 Jul;<span class="ref-vol">57</span>(1):E2.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/38950436" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 38950436</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="article-28386.r6">Arciniega H, Baucom ZH, Tuz-Zahra F, Tripodis Y, John O, Carrington H, Kim N, Knyazhanskaya EE, Jung LB, Breedlove K, Wiegand TLT, Daneshvar DH, Rushmore RJ, Billah T, Pasternak O, Coleman MJ, Adler CH, Bernick C, Balcer LJ, Alosco ML, Koerte IK, Lin AP, Cummings JL, Reiman EM, Stern RA, Shenton ME, Bouix S. Brain morphometry in former American football players: findings from the DIAGNOSE CTE research project. <span><span class="ref-journal">Brain. </span>2024 Oct 03;<span class="ref-vol">147</span>(10):3596-3610.</span> [<a href="/pmc/articles/PMC11449133/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC11449133</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/38533783" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 38533783</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="article-28386.r7">Mez J, Daneshvar DH, Kiernan PT, Abdolmohammadi B, Alvarez VE, Huber BR, Alosco ML, Solomon TM, Nowinski CJ, McHale L, Cormier KA, Kubilus CA, Martin BM, Murphy L, Baugh CM, Montenigro PH, Chaisson CE, Tripodis Y, Kowall NW, Weuve J, McClean MD, Cantu RC, Goldstein LE, Katz DI, Stern RA, Stein TD, McKee AC. Clinicopathological Evaluation of Chronic Traumatic Encephalopathy in Players of American Football. <span><span class="ref-journal">JAMA. </span>2017 Jul 25;<span class="ref-vol">318</span>(4):360-370.</span> [<a href="/pmc/articles/PMC5807097/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5807097</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28742910" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28742910</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="article-28386.r8">Castellani RJ, Perry G. Tau Biology, Tauopathy, Traumatic Brain Injury, and Diagnostic Challenges. <span><span class="ref-journal">J Alzheimers Dis. </span>2019;<span class="ref-vol">67</span>(2):447-467.</span> [<a href="/pmc/articles/PMC6398540/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6398540</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30584140" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30584140</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="article-28386.r9">Ruchika F, Shah S, Neupane D, Vijay R, Mehkri Y, Lucke-Wold B. Understanding the Molecular Progression of Chronic Traumatic Encephalopathy in Traumatic Brain Injury, Aging and Neurodegenerative Disease. <span><span class="ref-journal">Int J Mol Sci. </span>2023 Jan 17;<span class="ref-vol">24</span>(3)</span> [<a href="/pmc/articles/PMC9915198/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC9915198</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36768171" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 36768171</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="article-28386.r10">Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. <span><span class="ref-journal">Surg Neurol Int. </span>2011;<span class="ref-vol">2</span>:107.</span> [<a href="/pmc/articles/PMC3157093/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3157093</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21886880" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21886880</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="article-28386.r11">Tharmaratnam T, Iskandar MA, Tabobondung TC, Tobbia I, Gopee-Ramanan P, Tabobondung TA. Chronic Traumatic Encephalopathy in Professional American Football Players: Where Are We Now? <span><span class="ref-journal">Front Neurol. </span>2018;<span class="ref-vol">9</span>:445.</span> [<a href="/pmc/articles/PMC6018081/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6018081</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29971037" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 29971037</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="article-28386.r12">Saulle M, Greenwald BD. Chronic traumatic encephalopathy: a review. <span><span class="ref-journal">Rehabil Res Pract. </span>2012;<span class="ref-vol">2012</span>:816069.</span> [<a href="/pmc/articles/PMC3337491/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC3337491</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22567320" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 22567320</span></a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="article-28386.r13">Omalu B, Bailes J, Hamilton RL, Kamboh MI, Hammers J, Case M, Fitzsimmons R. Emerging histomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. <span><span class="ref-journal">Neurosurgery. </span>2011 Jul;<span class="ref-vol">69</span>(1):173-83; discussion 183.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21358359" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 21358359</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="article-28386.r14">Fesharaki-Zadeh A. Navigating the Complexities of Traumatic Encephalopathy Syndrome (TES): Current State and Future Challenges. <span><span class="ref-journal">Biomedicines. </span>2023 Nov 27;<span class="ref-vol">11</span>(12)</span> [<a href="/pmc/articles/PMC10740836/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC10740836</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/38137378" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 38137378</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="article-28386.r15">Corsellis JA, Bruton CJ, Freeman-Browne D. The aftermath of boxing. <span><span class="ref-journal">Psychol Med. </span>1973 Aug;<span class="ref-vol">3</span>(3):270-303.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/4729191" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 4729191</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="article-28386.r16">Eggers AE. Redrawing Papez' circuit: a theory about how acute stress becomes chronic and causes disease. <span><span class="ref-journal">Med Hypotheses. </span>2007;<span class="ref-vol">69</span>(4):852-7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17376605" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17376605</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="article-28386.r17">Montenigro PH, Baugh CM, Daneshvar DH, Mez J, Budson AE, Au R, Katz DI, Cantu RC, Stern RA. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. <span><span class="ref-journal">Alzheimers Res Ther. </span>2014;<span class="ref-vol">6</span>(5):68.</span> [<a href="/pmc/articles/PMC4288217/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4288217</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25580160" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 25580160</span></a>]</div></dd><dt>18.</dt><dd><div class="bk_ref" id="article-28386.r18">Schaffert J, Didehbani N, LoBue C, Hart J, Rossetti H, Lacritz L, Cullum CM. Frequency and Predictors of Traumatic Encephalopathy Syndrome in a Prospective Cohort of Retired Professional Athletes. <span><span class="ref-journal">Front Neurol. </span>2021;<span class="ref-vol">12</span>:617526.</span> [<a href="/pmc/articles/PMC7940833/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7940833</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33708171" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 33708171</span></a>]</div></dd><dt>19.</dt><dd><div class="bk_ref" id="article-28386.r19">Cherry JD, Stein TD, Tripodis Y, Alvarez VE, Huber BR, Au R, Kiernan PT, Daneshvar DH, Mez J, Solomon TM, Alosco ML, McKee AC. CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer's disease. <span><span class="ref-journal">PLoS One. </span>2017;<span class="ref-vol">12</span>(9):e0185541.</span> [<a href="/pmc/articles/PMC5614644/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC5614644</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28950005" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 28950005</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="article-28386.r20">Alosco ML, Tripodis Y, Fritts NG, Heslegrave A, Baugh CM, Conneely S, Mariani M, Martin BM, Frank S, Mez J, Stein TD, Cantu RC, McKee AC, Shaw LM, Trojanowski JQ, Blennow K, Zetterberg H, Stern RA. Cerebrospinal fluid tau, Aβ, and sTREM2 in Former National Football League Players: Modeling the relationship between repetitive head impacts, microglial activation, and neurodegeneration. <span><span class="ref-journal">Alzheimers Dement. </span>2018 Sep;<span class="ref-vol">14</span>(9):1159-1170.</span> [<a href="/pmc/articles/PMC6131058/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6131058</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30049650" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30049650</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="article-28386.r21">Alosco ML, Su Y, Stein TD, Protas H, Cherry JD, Adler CH, Balcer LJ, Bernick C, Pulukuri SV, Abdolmohammadi B, Coleman MJ, Palmisano JN, Tripodis Y, Mez J, Rabinovici GD, Marek KL, Beach TG, Johnson KA, Huber BR, Koerte I, Lin AP, Bouix S, Cummings JL, Shenton ME, Reiman EM, McKee AC, Stern RA., DIAGNOSE C. T. E. Research Project. Associations between near end-of-life flortaucipir PET and postmortem CTE-related tau neuropathology in six former American football players. <span><span class="ref-journal">Eur J Nucl Med Mol Imaging. </span>2023 Jan;<span class="ref-vol">50</span>(2):435-452.</span> [<a href="/pmc/articles/PMC9816291/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC9816291</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36152064" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 36152064</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="article-28386.r22">Asken BM, Rabinovici GD. Identifying degenerative effects of repetitive head trauma with neuroimaging: a clinically-oriented review. <span><span class="ref-journal">Acta Neuropathol Commun. </span>2021 May 22;<span class="ref-vol">9</span>(1):96.</span> [<a href="/pmc/articles/PMC8141132/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC8141132</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34022959" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 34022959</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="article-28386.r23">Su Y, Protas H, Luo J, Chen K, Alosco ML, Adler CH, Balcer LJ, Bernick C, Au R, Banks SJ, Barr WB, Coleman MJ, Dodick DW, Katz DI, Marek KL, McClean MD, McKee AC, Mez J, Daneshvar DH, Palmisano JN, Peskind ER, Turner RW, Wethe JV, Rabinovici G, Johnson K, Tripodis Y, Cummings JL, Shenton ME, Stern RA, Reiman EM., DIAGNOSE CTE Research Project Investigators. Flortaucipir tau PET findings from former professional and college American football players in the DIAGNOSE CTE research project. <span><span class="ref-journal">Alzheimers Dement. </span>2024 Mar;<span class="ref-vol">20</span>(3):1827-1838.</span> [<a href="/pmc/articles/PMC10984430/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC10984430</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/38134231" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 38134231</span></a>]</div></dd><dt>24.</dt><dd><div class="bk_ref" id="article-28386.r24">Shahim P, Gill JM, Blennow K, Zetterberg H. Fluid Biomarkers for Chronic Traumatic Encephalopathy. <span><span class="ref-journal">Semin Neurol. </span>2020 Aug;<span class="ref-vol">40</span>(4):411-419.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/32740901" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 32740901</span></a>]</div></dd><dt>25.</dt><dd><div class="bk_ref" id="article-28386.r25">Ge X, Guo M, Li M, Zhang S, Qiang J, Zhu L, Cheng L, Li W, Wang Y, Yu J, Yin Z, Chen F, Tong W, Lei P. Potential blood biomarkers for chronic traumatic encephalopathy: The multi-omics landscape of an observational cohort. <span><span class="ref-journal">Front Aging Neurosci. </span>2022;<span class="ref-vol">14</span>:1052765.</span> [<a href="/pmc/articles/PMC9676976/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC9676976</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36420308" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 36420308</span></a>]</div></dd><dt>26.</dt><dd><div class="bk_ref" id="article-28386.r26">Shahim P, Zetterberg H, Simrén J, Ashton NJ, Norato G, Schöll M, Tegner Y, Diaz-Arrastia R, Blennow K. Association of Plasma Biomarker Levels With Their CSF Concentration and the Number and Severity of Concussions in Professional Athletes. <span><span class="ref-journal">Neurology. </span>2022 Jul 26;<span class="ref-vol">99</span>(4):e347-e354.</span> [<a href="/pmc/articles/PMC9421770/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC9421770</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35654597" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 35654597</span></a>]</div></dd><dt>27.</dt><dd><div class="bk_ref" id="article-28386.r27">Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R, Crowther RA, Newell KL, Ghetti B, Goedert M, Scheres SHW. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. <span><span class="ref-journal">Nature. </span>2019 Apr;<span class="ref-vol">568</span>(7752):420-423.</span> [<a href="/pmc/articles/PMC6472968/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6472968</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30894745" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30894745</span></a>]</div></dd><dt>28.</dt><dd><div class="bk_ref" id="article-28386.r28">Sáinz Pelayo MDP, Pelayo Vergara R, Albu S, Figueira C. [Experience with 4 clinical cases. Traumatic encephalopathy may be associated with a single traumatic brain injury?]. <span><span class="ref-journal">Rehabilitacion (Madr). </span>2022 Oct-Dec;<span class="ref-vol">56</span>(4):383-387.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/34538654" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 34538654</span></a>]</div></dd><dt>29.</dt><dd><div class="bk_ref" id="article-28386.r29">Peacock WF, Kuehl D, Bazarian J, Singer AJ, Cannon C, Rafique Z, d'Etienne JP, Welch R, Clark C, Diaz-Arrastia R. Defining Acute Traumatic Encephalopathy: Methods of the "HEAD Injury Serum Markers and Multi-Modalities for Assessing Response to Trauma" (HeadSMART II) Study. <span><span class="ref-journal">Front Neurol. </span>2021;<span class="ref-vol">12</span>:733712.</span> [<a href="/pmc/articles/PMC8693379/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC8693379</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34956041" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 34956041</span></a>]</div></dd><dt>30.</dt><dd><div class="bk_ref" id="article-28386.r30">Asken BM, Tanner JA, VandeVrede L, Casaletto KB, Staffaroni AM, Mundada N, Fonseca C, Iaccarino L, La Joie R, Tsuei T, Mladinov M, Grant H, Shankar R, Wang KKW, Xu H, Cobigo Y, Rosen H, Gardner RC, Perry DC, Miller BL, Spina S, Seeley WW, Kramer JH, Grinberg LT, Rabinovici GD. Multi-Modal Biomarkers of Repetitive Head Impacts and Traumatic Encephalopathy Syndrome: A Clinicopathological Case Series. <span><span class="ref-journal">J Neurotrauma. </span>2022 Sep;<span class="ref-vol">39</span>(17-18):1195-1213.</span> [<a href="/pmc/articles/PMC9422800/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC9422800</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35481808" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 35481808</span></a>]</div></dd><dt>31.</dt><dd><div class="bk_ref" id="article-28386.r31">van Amerongen S, Caton DK, Ossenkoppele R, Barkhof F, Pouwels PJW, Teunissen CE, Rozemuller AJM, Hoozemans JJM, Pijnenburg YAL, Scheltens P, Vijverberg EGB. Rationale and design of the "NEurodegeneration: Traumatic brain injury as Origin of the Neuropathology (NEwTON)" study: a prospective cohort study of individuals at risk for chronic traumatic encephalopathy. <span><span class="ref-journal">Alzheimers Res Ther. </span>2022 Sep 01;<span class="ref-vol">14</span>(1):119.</span> [<a href="/pmc/articles/PMC9438060/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC9438060</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36050790" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 36050790</span></a>]</div></dd><dt>32.</dt><dd><div class="bk_ref" id="article-28386.r32">Alosco ML, Mariani ML, Adler CH, Balcer LJ, Bernick C, Au R, Banks SJ, Barr WB, Bouix S, Cantu RC, Coleman MJ, Dodick DW, Farrer LA, Geda YE, Katz DI, Koerte IK, Kowall NW, Lin AP, Marcus DS, Marek KL, McClean MD, McKee AC, Mez J, Palmisano JN, Peskind ER, Tripodis Y, Turner RW, Wethe JV, Cummings JL, Reiman EM, Shenton ME, Stern RA., DIAGNOSE CTE Research Project Investigators. Developing methods to detect and diagnose chronic traumatic encephalopathy during life: rationale, design, and methodology for the DIAGNOSE CTE Research Project. <span><span class="ref-journal">Alzheimers Res Ther. </span>2021 Aug 12;<span class="ref-vol">13</span>(1):136.</span> [<a href="/pmc/articles/PMC8357968/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC8357968</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34384490" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 34384490</span></a>]</div></dd><dt>33.</dt><dd><div class="bk_ref" id="article-28386.r33">Adams JW, Alvarez VE, Mez J, Huber BR, Tripodis Y, Xia W, Meng G, Kubilus CA, Cormier K, Kiernan PT, Daneshvar DH, Chua AS, Svirsky S, Nicks R, Abdolmohammadi B, Evers L, Solomon TM, Cherry JD, Aytan N, Mahar I, Devine S, Auerbach S, Alosco ML, Nowinski CJ, Kowall NW, Goldstein LE, Dwyer B, Katz DI, Cantu RC, Stern RA, Au R, McKee AC, Stein TD. Lewy Body Pathology and Chronic Traumatic Encephalopathy Associated With Contact Sports. <span><span class="ref-journal">J Neuropathol Exp Neurol. </span>2018 Sep 01;<span class="ref-vol">77</span>(9):757-768.</span> [<a href="/pmc/articles/PMC6097837/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC6097837</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30053297" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 30053297</span></a>]</div></dd></dl></div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_top_margin">
|
||
<b>Disclosure: </b>Sunil Munakomi declares no relevant financial relationships with ineligible companies.</p></div></dd><dt></dt><dd><div><p class="no_top_margin">
|
||
<b>Disclosure: </b>Yana Puckett declares no relevant financial relationships with ineligible companies.</p></div></dd></dl></div><div class="bk_prnt_sctn"><h2>Figures</h2><div class="whole_rhythm bk_prnt_obj bk_first_prnt_obj"><div id="article-28386.image.f1" class="figure bk_fig"><div class="graphic"><img src="/books/NBK541013/bin/CTE2.jpg" alt="Chronic Traumatic Encephalopathy" /></div><div class="caption"><p>Chronic Traumatic Encephalopathy. The brain dissection images show a normal brain on the left and a brain with stage IV chronic traumatic encephalopathy (CTE) on the right. Boston University Chronic Traumatic Encephalopathy Center and Brain Bank., <a href="https://commons.wikimedia.org/wiki/File:Chronic_Traumatic_Encephalopathy.png" ref="pagearea=body&targetsite=external&targetcat=link&targettype=uri">Public Domain</a>, via Wikimedia Commons</p></div></div></div></div></div></div>
|
||
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> © 2025, StatPearls Publishing LLC.<p class="small">
|
||
This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
|
||
(<a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&targetsite=external&targetcat=link&targettype=uri">
|
||
http://creativecommons.org/licenses/by-nc-nd/4.0/
|
||
</a>), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.
|
||
</p></div><div class="small"><span class="label">Bookshelf ID: NBK541013</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/31082057" title="PubMed record of this page" ref="pagearea=meta&targetsite=entrez&targetcat=link&targettype=pubmed">31082057</a></span></div></div></div>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="bottom">
|
||
|
||
<div id="NCBIFooter_dynamic">
|
||
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
|
||
<component id="Breadcrumbs" label="helpdesk"/>-->
|
||
|
||
</div>
|
||
|
||
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
|
||
</div>
|
||
</div>
|
||
<!--/.page-->
|
||
</div>
|
||
<!--/.wrap-->
|
||
</div><!-- /.twelve_col -->
|
||
</div>
|
||
<!-- /.grid -->
|
||
|
||
<span class="PAFAppResources"></span>
|
||
|
||
<!-- BESelector tab -->
|
||
|
||
|
||
|
||
<noscript><img alt="statistics" src="/stat?jsdisabled=true&ncbi_db=books&ncbi_pdid=book-part&ncbi_acc=NBK541013&ncbi_domain=statpearls&ncbi_report=printable&ncbi_type=fulltext&ncbi_objectid=&ncbi_pcid=/NBK541013/?report=printable&ncbi_app=bookshelf" /></noscript>
|
||
|
||
|
||
<!-- usually for JS scripts at page bottom -->
|
||
<!--<component id="PageFixtures" label="styles"></component>-->
|
||
|
||
|
||
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal104 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
||
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
||
|
||
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
|
||
</html> |