nih-gov/www.ncbi.nlm.nih.gov/books/NBK519025/index.html?report=printable

184 lines
No EOL
109 KiB
XML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK519025" /><meta name="ncbi_domain" content="statpearls" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK519025/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Anticoagulation Safety - StatPearls - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="StatPearls [Internet]" /><meta name="citation_title" content="Anticoagulation Safety" /><meta name="citation_publisher" content="StatPearls Publishing" /><meta name="citation_date" content="2024/10/06" /><meta name="citation_author" content="Akshay Amaraneni" /><meta name="citation_author" content="Venu Chippa" /><meta name="citation_author" content="Jennifer Goldin" /><meta name="citation_author" content="Andrew C. Rettew" /><meta name="citation_pmid" content="30085567" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK519025/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Anticoagulation Safety" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="StatPearls Publishing" /><meta name="DC.Contributor" content="Akshay Amaraneni" /><meta name="DC.Contributor" content="Venu Chippa" /><meta name="DC.Contributor" content="Jennifer Goldin" /><meta name="DC.Contributor" content="Andrew C. Rettew" /><meta name="DC.Date" content="2024/10/06" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK519025/" /><meta name="description" content="Oral anticoagulants are central in the prevention and management of thromboembolic disease. Previously, vitamin K antagonists (VKA) like warfarin were the only available oral anticoagulants. The newer nonvitamin K antagonists, also known as direct oral anticoagulants (DOACs), help bypass many of the limitations of warfarin. DOACs demonstrate efficacy comparable to warfarin while offering greater convenience in administration due to fixed doses and eliminating the need for routine coagulation monitoring." /><meta name="og:title" content="Anticoagulation Safety" /><meta name="og:type" content="book" /><meta name="og:description" content="Oral anticoagulants are central in the prevention and management of thromboembolic disease. Previously, vitamin K antagonists (VKA) like warfarin were the only available oral anticoagulants. The newer nonvitamin K antagonists, also known as direct oral anticoagulants (DOACs), help bypass many of the limitations of warfarin. DOACs demonstrate efficacy comparable to warfarin while offering greater convenience in administration due to fixed doses and eliminating the need for routine coagulation monitoring." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK519025/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-statpearls-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/statpearls/article-42174/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK519025/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script>
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8D927A7D878EF100000000007C006E.m_5" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid no_max_width">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div class="header">
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<div class="container content">
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. </p></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK519025_"><span class="title" itemprop="name">Anticoagulation Safety</span></h1><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Akshay Amaraneni</span><sup>1</sup>; <span itemprop="author">Venu Chippa</span><sup>2</sup>; <span itemprop="author">Jennifer Goldin</span><sup>3</sup>; <span itemprop="author">Andrew C. Rettew</span><sup>4</sup>.</p><h4>Affiliations</h4><div class="affiliation"><sup>1</sup> University of Arizona</div><div class="affiliation"><sup>2</sup> Indiana university</div><div class="affiliation"><sup>3</sup> Wright State University School of Medicine</div><div class="affiliation"><sup>4</sup> Reading Hosptial, Tower Health; Drexel University College of Medicine</div><p class="small">Last Update: <span itemprop="dateModified">October 6, 2024</span>.</p></div><div class="body-content whole_rhythm" itemprop="text"><div id="article-42174.s1"><h2 id="_article-42174_s1_">Continuing Education Activity</h2><p>Millions of patients rely on oral anticoagulants to decrease&#x000a0;the risk of ischemic stroke and other thromboembolic events, underscoring the importance of understanding their safety profiles. However, these medications rank among the leading causes of emergency department visits and hospital admissions among older adults, prompting classification as high-alert medications by the Institute of Safe Medication Practices and a focus on harm reduction in The Joint Commission's National Patient Safety Goals. Still, the benefits outweigh the overall risks for most patients. The initial weeks of oral anticoagulant use pose the highest risk of adverse effects, particularly during transitions from hospital to home care, necessitating careful management as patients recuperate.</p><p>Direct oral anticoagulants, including dabigatran and apixaban, present promising alternatives to warfarin due to their lower bleeding risk, fixed dosages, and lack of routine laboratory monitoring. Warfarin carries a higher bleeding risk&#x000a0;but remains superior&#x000a0;for&#x000a0;specific conditions, such as prosthetic heart valves and antiphospholipid antibody syndrome. Despite their efficacy in preventing and treating thromboembolism, all anticoagulants elevate the risk of bleeding. Clinicians must carefully assess each agent's risks and benefits, tailoring medication choices accordingly.</p><p>Adverse effects often stem from concurrent use of antiplatelet medications, dosing errors, or inadequate monitoring, underscoring the importance of healthcare professionals' knowledge about potential complications like intracranial and gastrointestinal bleeding, hematoma formation, and available reversal agents.&#x000a0;Accurate assessment of bleeding risks and prescribing appropriate doses is essential for maximizing clinical benefit.</p><p>This activity for healthcare professionals is designed to enhance learners' competence in evaluating and managing anticoagulation complications. Participants gain a broader grasp of&#x000a0;oral anticoagulant safety, risk mitigation, adverse effects, and evidence-based diagnostic methods and interventions addressing the unintended consequences of these medications. Greater proficiency equips clinicians to collaborate effectively within an interprofessional team caring for patients receiving anticoagulation.</p><p>
<b>Objectives:</b>
<ul><li class="half_rhythm"><div>Identify the appropriate candidates for oral anticoagulant therapy based on established indications and contraindications.</div></li><li class="half_rhythm"><div>Differentiate between the safety profiles of different oral anticoagulants, including warfarin and direct oral anticoagulants, considering factors such as bleeding risk and efficacy.</div></li><li class="half_rhythm"><div>Apply evidence-based guidelines and protocols for managing bleeding complications related to oral anticoagulant therapy.</div></li><li class="half_rhythm"><div>Collaborate with other healthcare team members, including pharmacists and specialists, to optimize oral anticoagulant therapy and patient outcomes.</div></li></ul>
<a href="https://www.statpearls.com/account/trialuserreg/?articleid=42174&#x00026;utm_source=pubmed&#x00026;utm_campaign=reviews&#x00026;utm_content=42174" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Access free multiple choice questions on this topic.</a>
</p></div><div id="article-42174.s2"><h2 id="_article-42174_s2_">Introduction</h2><p>Oral anticoagulants are central in the prevention and management of thromboembolic disease. Previously, vitamin K antagonists (VKA) like warfarin were the only available oral anticoagulants. The newer nonvitamin K antagonists, also known as direct oral anticoagulants (DOACs), help bypass many of the limitations of warfarin. DOACs demonstrate efficacy comparable to warfarin while offering greater convenience in administration due to fixed doses and eliminating the need for routine coagulation monitoring.</p><p>Additionally, DOACs, as a group, exhibit markedly lower rates of intracranial bleeding&#x000a0;than warfarin&#x02014;a critical advantage considering that intracranial hemorrhage (ICH) is the most concerning complication of anticoagulation therapy.&#x000a0;This&#x000a0;trend underscores the importance of understanding the safety profile of these newer agents, particularly in balancing thrombosis risk against clinically significant bleeding.</p><p>DOACs offer several advantages over traditional warfarin therapy. One key benefit is that DOACs, unlike warfarin, do not require routine monitoring, making them more convenient for patients. Additionally, these agents have minimal interactions with food, simplifying treatment regimens. DOACs reach therapeutic levels within a few hours of ingestion, providing a rapid onset of action. Overall, DOACs offer a compelling option for anticoagulation therapy due to their ease of use and favorable safety profile.</p><p>While the risk of bleeding with warfarin is higher than with DOACs, warfarin has superior efficacy in the treatment of prosthetic heart valves and antiphospholipid syndrome. Clinicians must consider the advantages and disadvantages of each agent and individualize the medication choice to the patient and clinical setting.&#x000a0;</p><p>All oral anticoagulants carry an increased risk of bleeding and are among the medications most commonly linked to emergency room visits and hospital admissions&#x000a0;related to&#x000a0;adverse drug reactions. Given their potential for causing harm when used incorrectly, the Institute of Safe Medication Practices classifies anticoagulants as high-alert medications. The Joint Commission continues to include harm reduction related to the use of anticoagulant medications listed in their National Patient Safety Goals.<a class="bk_pop" href="#article-42174.r1">[1]</a><a class="bk_pop" href="#article-42174.r2">[2]</a><a class="bk_pop" href="#article-42174.r3">[3]</a><a class="bk_pop" href="#article-42174.r4">[4]</a></p><p>Adverse effects from oral anticoagulants often occur due to concurrent antiplatelet use, duplicated treatments, dosing errors, premature discontinuation, or monitoring difficulties. A benefit of using warfarin is the ability to monitor the degree of anticoagulation at the bedside with a point-of-care test. Clinicians must rely on&#x000a0;clinical judgment based on patient history, age, renal function, concomitant medications, and knowledge of the expected elimination half-life of the specific DOACs&#x000a0;to determine a management strategy.</p><p>This&#x000a0;activity discusses the comparative risks associated with DOACs and warfarin, highlighting the nuanced factors influencing bleeding risk, including patient age, comorbidities like impaired kidney or liver function, and concomitant use of antiplatelet medications. To mitigate&#x000a0;anticoagulation-associated&#x000a0;risks, healthcare professionals must develop strategies for decreasing anticoagulant-related bleeding, including a periodic review of indications, dosing optimization, and consideration of concomitant medications.</p></div><div id="article-42174.s3"><h2 id="_article-42174_s3_">Etiology</h2><p>
<b>Vitamin K Antagonists</b>
</p><p>Warfarin, acenocoumarol, phenprocoumon, and fluindione are VKAs with a narrow therapeutic window&#x000a0;influenced by&#x000a0;genetic variation, drug interactions, and diet. Monitoring patients on warfarin can be quite challenging, as variations in dietary vitamin K intake, multiple medications, tobacco and alcohol use, and kidney, liver, thyroid, and heart disease can all affect international normalized ratio (INR) stabilization.</p><p>Genetic&#x000a0;diversity also affects a patient's sensitivity to warfarin. The 2 genes that primarily determine a patient's warfarin sensitivity are vitamin K epoxide reductase, subunit 1 (<i>VKORC1</i>), which is the drug target, and hepatic cytochrome P450 2C9 isoform (<i>CYP2C9</i>), which metabolizes the drug to an inactive form.&#x000a0;<i>VKORC1</i>&#x000a0;polymorphisms affect the required doses of warfarin.<a class="bk_pop" href="#article-42174.r5">[5]</a>&#x000a0;Likewise,&#x000a0;<i>CYP2C9 </i>gene differences&#x000a0;affect the metabolism of warfarin and acenocoumarol.<a class="bk_pop" href="#article-42174.r6">[6]</a>&#x000a0;Indications for VKAs include the following:&#x000a0;</p><ul><li class="half_rhythm"><div>Atrial fibrillation</div></li><li class="half_rhythm"><div>Acute coronary syndrome&#x000a0;</div></li><li class="half_rhythm"><div>Heart failure&#x000a0;</div></li><li class="half_rhythm"><div>Prosthetic heart valve&#x000a0;</div></li><li class="half_rhythm"><div>Stroke&#x000a0;</div></li><li class="half_rhythm"><div>Venous thromboembolism (VTE)&#x000a0;</div></li><li class="half_rhythm"><div>Pulmonary embolism&#x000a0;</div></li><li class="half_rhythm"><div>Antiphospholipid syndrome&#x000a0;</div></li></ul><p>
<b>Direct Oral Anticoagulants</b>
</p><p>The direct factor Xa inhibitors&#x000a0;include apixaban, edoxaban, and rivaroxaban. Dabigatran is the only oral direct thrombin inhibitor. The indications for DOACs are VTE prophylaxis and treatment, atrial fibrillation, and acute coronary syndromes.</p><p>
<b>Adverse Effects of Oral Anticoagulants</b>
</p><p>Both VKAs and DOACs can&#x000a0;produce&#x000a0;allergic reactions, increase the risk of bleeding, and lead to thromboembolic events if dosed subtherapeutically or discontinued too soon. Larger studies do not support the existence of acute liver injury associated with DOACs despite case reports.<a class="bk_pop" href="#article-42174.r7">[7]</a><a class="bk_pop" href="#article-42174.r8">[8]</a>&#x000a0;Warfarin may also cause additional adverse effects like skin necrosis, teratogenicity during pregnancy, cholesterol embolization, vascular calcification, nephropathy, and interference with hypercoagulability testing.</p><p>Patients on oral anticoagulants can experience subcutaneous, intramuscular, retroperitoneal, intracranial, gastrointestinal, and intraarticular bleeding. Patients receiving&#x000a0;neuraxial anesthesia are at risk of developing a spinal epidural hematoma. Subclinical bleeding that would not typically cause a problem can present as clinically severe bleeding in a patient on anticoagulation. The risk of ICH increases with a history of stroke, hypertension, and cerebral amyloid angiopathy. Additional factors that increase the risk of bleeding include the following:</p><ul><li class="half_rhythm"><div>Active peptic ulcer disease</div></li><li class="half_rhythm"><div>Thrombocytopenia with a platelet count lower than 50,000/&#x000b5;L</div></li><li class="half_rhythm"><div>Patients admitted to the intensive care unit</div></li><li class="half_rhythm"><div>Active cancer</div></li><li class="half_rhythm"><div>Rheumatologic disease</div></li><li class="half_rhythm"><div>Chronic kidney disease</div></li><li class="half_rhythm"><div>Liver disease</div></li><li class="half_rhythm"><div>An episode of bleeding in the last 3 months</div></li><li class="half_rhythm"><div>Presence of a central venous catheter</div></li><li class="half_rhythm"><div>Male sex</div></li><li class="half_rhythm"><div>Increasing age</div></li><li class="half_rhythm"><div>Concurrent antiplatelet medications</div></li><li class="half_rhythm"><div>Obesity</div></li><li class="half_rhythm"><div>Diabetes&#x000a0;<a class="bk_pop" href="#article-42174.r9">[9]</a></div></li></ul></div><div id="article-42174.s4"><h2 id="_article-42174_s4_">Epidemiology</h2><p>Given their efficacy and better safety profile, DOACs have&#x000a0;become the preferred choice over VKAs in treating nonvalvular atrial fibrillation and VTE, 2 of the most common reasons for long-term anticoagulation. The risk of bleeding-related complications is highest within the first 3 months.<a class="bk_pop" href="#article-42174.r10">[10]</a><a class="bk_pop" href="#article-42174.r11">[11]</a><a class="bk_pop" href="#article-42174.r12">[12]</a>&#x000a0;The risk of bleeding associated with DOACs is generally less than&#x000a0;that of&#x000a0;warfarin.&#x000a0;The overall risk of ICH is approximately 50% less with DOACs than with VKAs.<a class="bk_pop" href="#article-42174.r13">[13]</a></p><p>In a study of adults 66 and older receiving warfarin for nonvalvular&#x000a0;atrial fibrillation, the overall bleeding rate is approximately 4% per person-year. The annual risk&#x000a0;of ICH in patients with&#x000a0;atrial fibrillation treated with a DOAC is approximately 0.3%. Overall, the rate of spontaneous ICH related to anticoagulant therapy occurs in 0.5% to 1.0% of patients each year and carries a 30-day disability or mortality risk of 50%. The rate of bleeding associated with an oral anticoagulant in patients with VTE is higher at 7.22 per 100 patient-years.</p><p>Risk factors for spontaneous ICH are&#x000a0;Asian, Latin American, or Black ethnicity,&#x000a0;increasing age, hypertension, concurrent antiplatelet medication use, thrombocytopenia, cerebral amyloid angiopathy, having a prior stroke or transient ischemic attack, and a history of bleeding. Studies comparing the incidence of&#x000a0;gastrointestinal&#x000a0;bleeding between DOACs and VKAs provide mixed results. The risk of major&#x000a0;gastrointestinal bleeding may be higher with dabigatran 150&#x000a0;mg, rivaroxaban, and edoxaban 60&#x000a0;mg.&#x000a0;Gastrointestinal bleeding may be lower with edoxaban 30&#x000a0;mg and comparable to warfarin with dabigatran 110&#x000a0;mg and apixaban.<a class="bk_pop" href="#article-42174.r14">[14]</a><a class="bk_pop" href="#article-42174.r15">[15]</a><a class="bk_pop" href="#article-42174.r16">[16]</a></p><p>Studies reveal that rivaroxaban has a slightly higher rate of gastrointestinal bleeding. However, the results are not statistically significant.<a class="bk_pop" href="#article-42174.r17">[17]</a><a class="bk_pop" href="#article-42174.r18">[18]</a>&#x000a0;Apixaban has the best safety profile for&#x000a0;gastrointestinal hemorrhage compared to VKAs and other DOACs in patients with nonvalvular atrial fibrillation.&#x000a0;</p><p>The incidence rate of all major bleeding events combined gradually increases with age, rising from 1.5 per 100 patient-years in individuals younger than 60 to 4.2 per 100 patient-years in&#x000a0;patients older than 80. Fatal hemorrhage, often due to ICH, occurs at a rate of 0.3 per 100 patient-years across all age groups, except&#x000a0;in individuals&#x000a0;younger than 60 who have a lower rate&#x000a0;at 0.1 per 100 patient-years. No gender-based or anticoagulation indication-based difference in hemorrhage rates exists. Overall, hemorrhage risk rises by 2% per year of age.&#x000a0;The risk of thromboembolic events, mainly myocardial infarction, is double in patients older than 80 compared to&#x000a0;people younger than 60, increasing by 2% per year of age.<a class="bk_pop" href="#article-42174.r19">[19]</a></p><p>DOACs are safer and more effective than warfarin for treating nonvalvular&#x000a0;atrial fibrillation in frail older patients. Experts recommend apixaban and edoxaban for safety and efficacy in this demographic.<a class="bk_pop" href="#article-42174.r20">[20]</a>&#x000a0;However, a recent study suggests that frail older patients with&#x000a0;atrial fibrillation may not benefit from switching to DOACs from VKAs, as bleeding complications may increase without reducing thromboembolic complications.<a class="bk_pop" href="#article-42174.r21">[21]</a></p></div><div id="article-42174.s5"><h2 id="_article-42174_s5_">Pathophysiology</h2><p>Bleeding complications from anticoagulant therapy stem from disruptions in the normal hemostatic process, which can&#x000a0;arise from factors like mechanical trauma, tumor infiltration, thrombosis, and hypertension, compromising vascular integrity. The breakdown of endothelial barrier function due to sepsis, ischemia, or other effects of medication may further contribute to hemostatic dysfunction. Microscopic bleeding can also progress to clinically significant hemorrhage in patients receiving anticoagulants.</p><p>
<b>Vitamin K Antagonists</b>
</p><p>VKAs block the vitamin K epoxide reductase complex in the liver, causing a dysfunction of the vitamin K-dependent factors II (prothrombin), VII, IX, and X. VKAs also inhibit vitamin K-dependent &#x003b3;-carboxylation of protein S and protein C, which inhibit activated factors VIII and V. This mechanism gives warfarin a transient procoagulant effect during the first 1 to 2 days of use.</p><p>Clinicians monitor VKA therapy using prothrombin time (PT) and INR, with&#x000a0;the latter providing a standardized measure due to variability in PT across laboratories. Effective anticoagulation with VKAs is delayed until previously synthesized coagulation factors are depleted, which typically occurs within 1 week. The PT rises within 1 to 3 days as factor VII, with a half-life of 4 to 6 hours, depletes, while factor II, with a 3-day half-life, remains active. A supratherapeutic INR increases bleeding risk, whereas a subtherapeutic INR heightens thromboembolic risk.</p><p>Medications interact with VKAs in various ways to increase the risk of complications. The following list outlines common interactions between VKAs and other medications.</p><p>
<b>Increase bleeding risk&#x000a0;</b>
</p><ul><li class="half_rhythm"><div>Medication interactions:&#x000a0;Antimicrobials like metronidazole, macrolides, and fluoroquinolones can alter the intestinal microflora and decrease vitamin K absorption and synthesis. Fluconazole, amiodarone, and sulfamethoxazole inhibit hepatic CYP2C9 and warfarin metabolism. Warfarin circulates bound to albumin, and only the non-protein-bound fraction is active. Some medications can displace warfarin from albumin. Note that acetaminophen is a safer alternative than nonsteroidal anti-inflammatory drugs (NSAIDs) for patients on VKAs. Acetaminophen&#x000a0;can interrupt vitamin K recycling. Patients using acetaminophen in doses of 2 or more grams a day for 3 or more consecutive days should have their INR checked 3 to 5 days after the first dose of acetaminophen.<a class="bk_pop" href="#article-42174.r22">[22]</a><a class="bk_pop" href="#article-42174.r23">[23]</a>&#x000a0;</div></li><li class="half_rhythm"><div>Damage to the gastrointestinal mucosa:&#x000a0;Aspirin and NSAIDs are the usual culprits.</div></li><li class="half_rhythm"><div>Interference with platelet function:&#x000a0;Aspirin, NSAIDs, clopidogrel, ticagrelor, and dipyridamole are common agents.</div></li><li class="half_rhythm"><div>Other mechanisms:&#x000a0;Smoking marijuana or ingesting cannabidiol oil and other&#x000a0;tetrahydrocannabinol-containing products can inhibit CYP29.<a class="bk_pop" href="#article-42174.r24">[24]</a>&#x000a0;Excess alcohol consumption can interfere with warfarin metabolism.&#x000a0;Patients with severe liver disease may also have concurrent coagulopathy, thrombocytopenia, or gastrointestinal varices, all of which increase a patient's bleeding risk. Cigarette smoking increases warfarin dosage requirements through&#x000a0;induction of hepatic cytochrome P-450 activity. Nicotine replacement products do not have the same effects.</div></li></ul><p>
<b>Increase thromboembolic risk</b>
</p><ul><li class="half_rhythm"><div>Induction of hepatic&#x000a0;hepatic cytochrome P450 2C9 isoform and warfarin metabolism:&#x000a0;Commonly used agents include rifampin, carbamazepine, phenytoin, and primidone.</div></li><li class="half_rhythm"><div>Variations in vitamin K intake:&#x000a0;With increased intake or vitamin supplements containing vitamin K, vitamin K can bypass vitamin K epoxide reductase, causing a subtherapeutic INR. Patients should maintain a consistent level of vitamin K in their diet to avoid frequent INR fluctuations and dose adjustments.&#x000a0;</div></li></ul><p>Comorbid conditions such as thyroid disease, liver disease, and heart failure can impact INR stabilization. Warfarin is primarily metabolized in the liver, while thyroid disease influences clotting factor clearance. Hyperthyroidism accelerates clearance, enhancing warfarin&#x02019;s effect, while hypothyroidism slows clearance, diminishing its effect.</p><p>Genetic variations in CYP2C9 and vitamin K epoxide reductase (<i>VKORC1</i>) enzymes significantly influence warfarin sensitivity. Missense mutations in <i>VKORC1</i>&#x000a0;are thought to contribute to resistance to warfarin and other VKAs, with<i> VKORC1</i> variants accounting for nearly 25% of warfarin dosing variability. High-dose and low-dose haplotypes were identified.<a class="bk_pop" href="#article-42174.r25">[25]</a>&#x000a0;The CYP2C9*3 variant allele reduces CYP2C9 activity by 80%, necessitating lower warfarin doses. Although testing for <i>VKORC1</i> polymorphisms is available, studies show pharmacogenetic-based dosing does not outperform clinically guided dosing.<a class="bk_pop" href="#article-42174.r26">[26]</a></p><p>
<b>Additional complications associated with vitamin K antagonists</b>
</p><p>The rapid reduction of protein C levels and the transient hypercoagulable state during the initiation of VKA therapy can cause skin necrosis, typically in areas with subcutaneous fat such as the extremities, breasts, trunk,&#x000a0;and penis. Skin necrosis is a rare complication.&#x000a0;Approximately one-third of affected patients have an underlying protein C deficiency.<a class="bk_pop" href="#article-42174.r27">[27]</a></p><p>Long-term warfarin use can also lead to calcification of the aortic valve, coronary arteries, and femoral arteries due to the inhibition of vitamin K-dependent matrix Gla protein, which usually inhibits calcification in its active state. Researchers have not established a link between warfarin use and clinical events like myocardial infarction or stroke despite these findings. However, cholesterol crystal embolization is a potential complication of anticoagulant therapy in general, believed to be caused by plaque hemorrhage.</p><p>Excessive anticoagulation can induce nephropathy by triggering glomerular hemorrhage, thereby obstructing renal tubules by red blood cell (RBC) cast formation and&#x000a0;damaging tubular epithelial cells. Intraluminal RBC casts are the hallmark histologic feature of ARN.&#x000a0;</p><p>
<b>Direct Oral Anticoagulants</b>
</p><p>The DOACs prevent thrombin from cleaving fibrinogen to yield fibrin and factor Xa from cleaving prothrombin to form thrombin. Thrombin is the final enzyme of the clotting cascade.&#x000a0;Besides cleaving fibrinogen into fibrin, thrombin activates other procoagulant factors, including factors V, VIII, XI, and XIII, and activates platelets.&#x000a0;</p><p>
<b>Supratherapeutic response</b>
</p><ul><li class="half_rhythm"><div>Chronic kidney disease:&#x000a0;The kidney excretes dabigatran. Experts recommend dose reductions for patients with a creatinine clearance (CrCl) of&#x000a0;15 to 30 mL/min.<a class="bk_pop" href="#article-42174.r28">[28]</a>&#x000a0;The dosing guidelines concerning renal impairment vary somewhat for each DOAC. In the United States, product labeling recommends avoidance of dabigatran in individuals with CrCl below 15 mL/min or in those who are hemodialysis-dependent. The Canadian, United Kingdom, and European Medicines Agency labeling recommends avoiding use in patients with a CrCl below 30 mL/min. Apixaban has the most negligible dependence on clearance by the kidney. Canadian product information does not recommend apixaban in individuals with CrCl less than 15 mL/min, while the United States recommends dose adjustments based on CrCl, body weight, and age. The kidney excretes edoxaban, which is a substrate for P-glycoprotein. Product labeling has a boxed warning regarding reduced efficacy in nonvalvular atrial fibrillation in patients with a high CrCl greater than 95 mL/min and advises a dose reduction for people with CrCl of 15 to 50 mL/min.</div></li><li class="half_rhythm"><div>Body weight:&#x000a0;The International Society on Thrombosis and Haemostasis states that any DOAC is appropriate for individuals with a body mass index (BMI) of up to 40 kg/m2&#x000a0;or a weight of up to 120 kg.&#x000a0;</div></li><li class="half_rhythm"><div>P-glycoprotein inhibitors:&#x000a0;Medications like ketoconazole and verapamil in patients with kidney failure can potentiate the effects of dabigatran.</div></li><li class="half_rhythm"><div>Patients receiving&#x000a0;dual inhibitors of cytochrome P450 3A4&#x000a0;and P-glycoprotein:&#x000a0;Patients receiving strong dual inhibitors of&#x000a0;cytochrome P450 3A4<b>&#x000a0;</b>(CYP-3A4) and P-glycoprotein, like apixaban, in combination with fluconazole should receive a dose reduction.<a class="bk_pop" href="#article-42174.r29">[29]</a>&#x000a0;</div></li></ul><p>
<b>Subtherapeutic response</b>
</p><p>P-glycoprotein inducers can reduce the effects of dabigatran. Rifampin is a P-glycoprotein inducer.</p><p>
<b>Factors that increase bleeding with the use of both vitamin K antagonists and direct oral anticoagulants</b>
</p><ul><li class="half_rhythm"><div>Malignancy:&#x000a0;Patients with cancer, especially if undergoing cancer treatment, may have an increased risk of bleeding due to thrombocytopenia, increasing inflammatory cytokines, and disruption of vascular integrity at the primary tumor site or metastases. Blood vessels in tumors are also more structurally immature.</div></li><li class="half_rhythm"><div>Cerebral amyloid angiopathy: Amyloid &#x003b2;-peptide deposition in the walls of small- to medium-sized blood vessels weakens their structure&#x000a0;and makes them prone to bleeding.</div></li><li class="half_rhythm"><div>Drug abuse:&#x000a0;Cocaine and other sympathomimetic drugs heighten the risk of intracranial bleeding and ischemia by causing tachycardia and elevated blood pressure through sympathetic activation. These agents also induce vasoconstriction, vasospasm, and intravascular thrombosis due to increased platelet aggregation.</div></li><li class="half_rhythm"><div>Hypertension: The most modifiable risk factor, hypertension, leads to vasculopathy in small penetrating arteries, promoting the formation of microscopic pseudoaneurysms and resulting in microhemorrhages.</div></li></ul></div><div id="article-42174.s6"><h2 id="_article-42174_s6_">History and Physical</h2><p>Medical experts categorize major bleeding events as instances that result in death, involve critical organs such as the brain or large joints, cause hemodynamic instability, lead to a hemoglobin drop of 2 g/dL or more, or require the transfusion of at least 2 units of RBCs. Clinically significant bleeding, while requiring intervention, is less severe and does not meet the criteria for major bleeding.</p><p>Symptoms of significant bleeding vary by site, and early symptoms&#x000a0;include epistaxis, gum bleeding, heavy menstrual bleeding, or excessive bruising. Airway-related hematomas may cause sore throat, painful or difficult swallowing, nosebleeds, shortness of breath, or hemoptysis. Extremity involvement may manifest as pain, swelling, weakness, or limited motion. Intraabdominal bleeding can lead to pain and distension, while intracranial bleeds may cause severe headaches, vomiting, dizziness, or seizures. Ocular bleeding may result in vision changes. Gastrointestinal bleeding may present as melena, hematochezia, or hematemesis.</p><p>Physical examination findings in various body locations include the following:</p><ul><li class="half_rhythm"><div>Upper airway findings: Spontaneous hematoma&#x000a0;may arise.&#x000a0;Dysphonia, neck swelling, and dyspnea are common findings.</div></li><li class="half_rhythm"><div>Intracranial manifestations:&#x000a0;Spontaneous ICH usually occurs during normal activities. Neurological symptoms progress over minutes to hours. Some develop headaches, vomiting, and decreased levels of consciousness. The exact location of the hemorrhage determines the specific neurological symptoms. Some patients may develop seizures and catecholamine-induced prolonged QT interval and ST-T wave changes on the electrocardiogram (ECG). Mild serum myocardial enzyme elevations may accompany the ECG changes.</div></li><li class="half_rhythm"><div>Cardiovascular&#x000a0;indicators: Cardiac tamponade may occur due to&#x000a0;hemopericardium and cause hypotension, jugular venous distention, tachycardia, pulsus paradoxus, and muffled heart sounds.</div></li><li class="half_rhythm"><div>Gastrointestinal signs:&#x000a0;Patients may have evidence of hypovolemia manifesting as tachycardia and hypotension, visible or occult blood in the stool, and pain on abdominal examination.</div></li><li class="half_rhythm"><div>Findings in the extremities:&#x000a0;A hemorrhage or hematoma located beneath the fascia can cause compartment syndrome, which presents with pain with passive muscle stretching in the affected compartment, a tense compartment with a firm "wood-like" feeling, pallor from vascular insufficiency, diminished sensation, muscle weakness, and paralysis.</div></li><li class="half_rhythm"><div>Retroperitoneal signs:&#x000a0;Patients may present with a palpable abdominal mass and ecchymosis of the flank, periumbilical area, scrotum, upper thigh, pubis, and groin.&#x000a0;</div></li><li class="half_rhythm"><div>Thoracic manifestations:&#x000a0;Tachypnea with shallow breaths is common. Patients will also have diminished ipsilateral breath sounds and dullness to percussion. Hypotension and tachycardia indicate significant blood loss.</div></li></ul><p>Skin necrosis associated with VKAs appears as petechiae progressing to ecchymoses and hemorrhagic bullae with eventual necrosis and slow-healing eschar formation. Patients with anticoagulant-related nephropathy (ARN) may present with&#x000a0;hypertension, hematuria, signs of volume overload, and reduced urine output. Livedo reticularis, gangrene, cyanosis, skin ulcers, purpura or petechiae, and firm, painful erythematous nodules are the most common clinical findings associated with cholesterol crystal emboli. Acute kidney injury (AKI) is an additional common finding. Emboli in the gastrointestinal system cause&#x000a0;abdominal pain, diarrhea, and occasionally bleeding. Emboli to the central nervous system may cause&#x000a0;amaurosis fugax, transient ischemic attack, stroke, confusional state, headache, and dizziness.</p></div><div id="article-42174.s7"><h2 id="_article-42174_s7_">Evaluation</h2><p>Healthcare professionals must swiftly determine the severity and location when assessing bleeding complications in patients&#x000a0;taking oral anticoagulants. A comprehensive history and medication review are crucial, documenting the anticoagulant regimen, last dose timing, and potential overdose risk. In addition, exploring the history of renal or hepatic disease, bleeding disorders, thrombocytopenia, and medications affecting hemostasis is necessary. Understanding the anticoagulation indication and thrombosis risk aids treatment decisions.</p><p>Monitoring serial vital signs is essential to track blood loss rates, with serial hemoglobin levels helpful in suspected significant blood loss, considering the potential delay in initial hemoglobin decline with massive blood loss. Symptom-based imaging studies include brain and abdominal computed tomography (CT) for&#x000a0;intracranial and retroperitoneal&#x000a0;bleeds, chest radiograph or ultrasound for hemothorax, and echocardiogram for cardiac tamponade. Patients with upper and lower&#x000a0;gastrointestinal&#x000a0;bleeding may need endoscopy or CT angiography. A CT angiogram-tagged RBC scan&#x000a0;may be useful in patients with intermittent lower gastrointestinal bleeding, where the bleeding stops before the source can be identified but then resumes. Compartment syndrome is a clinical diagnosis.&#x000a0;</p><p>Required laboratory and imaging tests include the following:</p><ul><li class="half_rhythm"><div>PT and INR</div></li><li class="half_rhythm"><div>Activated partial thromboplastin time (aPTT)</div></li><li class="half_rhythm"><div>Thrombin clotting time for suspected dabigatran use</div></li><li class="half_rhythm"><div>Antifactor Xa heparin level for direct factor Xa inhibitor presence</div></li><li class="half_rhythm"><div>Quantitative factor Xa inhibitor and dabigatran levels for specific DOACs</div></li><li class="half_rhythm"><div>Complete blood count for serum hemoglobin and platelet count</div></li><li class="half_rhythm"><div>Serum creatinine</div></li><li class="half_rhythm"><div>Serum aminotransferases to assess direct factor Xa inhibitor clearance or coagulation factor synthesis impairment</div></li><li class="half_rhythm"><div>Fibrinogen and D-dimer for suspected disseminated intravascular coagulation</div></li><li class="half_rhythm"><div>Organ-specific labs to indicate end-organ involvement in cholesterol crystal embolization</div></li></ul><p>Clinicians&#x000a0;may recognize&#x000a0;warfarin-induced skin necrosis clinically, but a skin biopsy can&#x000a0;identify the cause of necrosis&#x000a0;if the diagnosis is uncertain. Elevated creatinine or eosinophiluria in cases of kidney involvement&#x000a0;may signal end-organ damage and dysfunction in patients with cholesterol crystal embolization. Clinicians&#x000a0;may visualize plaques in the aorta with transesophageal echocardiography, but identifying the specific plaque that caused the embolization does not often occur. CT and magnetic resonance imaging are less invasive and can provide more complete evaluations of the extent of atherosclerosis in the aorta.</p><p>Generally, a presumptive diagnosis of ARN is made in the setting of AKI and severe warfarin or DOAC coagulopathy if clinicians exclude other AKI causes. Kidney biopsy makes the definitive diagnosis but is generally not performed due to the level of anticoagulation. Patients with AKI should undergo a renal ultrasound to exclude obstruction as a potential cause. Subsequent laboratory evaluation depends on systemic symptoms like hypertension and edema and the amount of protein and blood on the patient's urinalysis.</p></div><div id="article-42174.s8"><h2 id="_article-42174_s8_">Treatment / Management</h2><p>When prescribing oral anticoagulants, healthcare professionals must carefully weigh the risks of adverse effects against the clinical benefits. Although current guidelines recommend anticoagulation for most patients with atrial fibrillation, 30% to 60% of patients do not receive&#x000a0;this therapy&#x000a0;due to concerns about intracranial and gastrointestinal bleeding. While oral anticoagulants pose a risk of severe adverse effects, the incidence of serious or fatal bleeding in older patients is low, and&#x000a0;individuals with appropriate indications should receive anticoagulation.</p><p>Tools like the Hypertension, Abnormal liver/renal function, Stroke, Bleeding, Labile INR, Elderly, Drugs or alcohol (HAS-BLED) score can help assess bleeding risk.&#x000a0;However, these tools&#x000a0;do not outperform clinical judgment and are most useful for identifying modifiable bleeding risk factors.<a class="bk_pop" href="#article-42174.r30">[30]</a><a class="bk_pop" href="#article-42174.r31">[31]</a>&#x000a0;The&#x000a0;CHA2DS2-VASc (Congestive heart failure, Hypertension, Age &#x02265;75 years, Diabetes mellitus, Stroke, Vascular disease, Age 65&#x02013;74 years, Sex category) score estimates thromboembolic risk in patients with atrial fibrillation to guide the use of anticoagulants.<a class="bk_pop" href="#article-42174.r32">[32]</a>&#x000a0;</p><p>When patients on oral anticoagulants present with bleeding, the first step is to stop all anticoagulant and antiplatelet therapy, documenting the incident in the patient's chart and hospital orders. Monitoring their hemodynamic stability, securing their airway, and obtaining intravenous access&#x000a0;are crucial. Clinicians should consider transfusions of RBCs and platelets as necessary and administer plasma for trauma-induced coagulopathy.</p><p>
<b>Vitamin K Antagonists</b>
</p><p>Management of serious life-threatening bleeding from VKAs differs from that associated with DOACs.&#x000a0;The recommendations are explained below.</p><p>
<b>Serious life-threatening bleeding</b>
</p><p>To manage patients with severe life-threatening bleeding, start by giving 10 mg of vitamin K intravenously, infused over 20 to 60 minutes, to prevent anaphylactic and anaphylactoid reactions. Vitamin K requires 12 to 24 hours to become effective. Clinicians can administer another dose if the INR remains high&#x000a0;after 12 hours. Awaiting laboratory and imaging results is unnecessary before administering vitamin K if severe bleeding is evident. If anticoagulation needs to resume, clinicians can administer heparin while the patient remains resistant to warfarin.</p><p>Patients with an INR greater than 2 should also receive 4-factor prothrombin complex concentrate (PCC) containing factors&#x000a0;II, VII, IX, X, protein C, and protein S, using a standardized dose or a dose based on the patient's INR and weight on presentation. The benefit of 4-factor PCC is that it does not require thawing or blood group typing. Additionally, 4-factor PCC lowers the risk of volume overload, transfusion-related acute lung injury, transfusion reactions, and transmission of infectious diseases.&#x000a0;Clinicians may obtain a second INR 30 minutes after administration. Patients may receive a second dose of 4-factor PCC if the INR is still above 1.5. Clinicians may base subsequent INR measurements on the severity of bleeding.</p><p>Antifibrinolytic agents like tranexamic acid&#x000a0;and &#x003b5;-aminocaproic acid may be useful, and desmopressin may be helpful in the presence of platelet dysfunction. The tranexamic acid dose is 1 to 1.5 grams orally every 8 to 12 hours or 10 to 20 mg/kg as an&#x000a0;intravenous bolus followed by 10 mg/kg intravenously every 6 to 8 hours for the duration of bleeding.</p><p>
<b>Alternate approaches</b>
</p><p>If 4-factor PCC is unavailable, in addition to vitamin K, the following regimens are viable alternatives:</p><ul><li class="half_rhythm"><div>Give 3-factor PCC, containing factors II, IX, and X, 1500 to 2000 units intravenously over 10 minutes. Clinicians can obtain&#x000a0;the INR 15 minutes following the infusion and repeat the dose if the INR remains above 1.5.</div></li><li class="half_rhythm"><div>Give factor VIIa 20 &#x000b5;cg/kg&#x000a0;intravenously or fresh frozen plasma (FFP) 2 units&#x000a0;intravenously by rapid infusion. Factor VIIa may be a better option if volume overload is a concern.</div></li></ul><p>Patients with massive hemorrhage undergoing massive blood transfusion should receive FFP rather than 4-factor PCC,&#x000a0;which does not significantly reduce 24-hour blood product usage and has a higher incidence of thromboembolic events.<a class="bk_pop" href="#article-42174.r33">[33]</a></p><p>
<b>Supratherapeutic international normalized ratio without bleeding</b>
</p><p>For patients with this manifestation, the recommended therapeutic strategies are as follows:</p><ul><li class="half_rhythm"><div>For patients with INR greater than 10 without bleeding:&#x000a0;Hold the patient's warfarin until their INR returns to the desired therapeutic range. Additionally, administer 2.5 to 5 mg of vitamin K and monitor the INR every 24 to 48 hours. The INR typically begins to correct within 1 to 2 days after taking vitamin K, but an additional dose may be necessary. Once the INR is back in the desired range, restart warfarin at a lower dose. In the absence of significant bleeding, avoid using 4-factor PCC and FFP due to their increased risk of thromboembolic events and transfusion reactions.</div></li><li class="half_rhythm"><div>For patients with INR&#x000a0;4.5 to 10 without bleeding:&#x000a0;Hold 1 to 2 doses of warfarin and recheck the INR in 1 to 3 days. Clinicians may contemplate administering 1.25 to 2.5 mg of oral vitamin K. Nevertheless, research shows no reduction in bleeding or mortality risk.<a class="bk_pop" href="#article-42174.r34">[34]</a>&#x000a0;Vitamin K could be particularly beneficial for bleeding-prone individuals, such as patients of advanced age or&#x000a0;with active cancer or exacerbated heart failure. Resume warfarin at a reduced maintenance dose.</div></li><li class="half_rhythm"><div>For patients with INR below&#x000a0;4.5 without bleeding:&#x000a0;Hold the next warfarin dose and reduce the maintenance dose, with INR taken 1 to 2 times weekly during the adjustment period.</div></li></ul><p>
<b>Direct Oral Anticoagulants</b>
</p><p>Coagulation testing is generally not useful for patients on DOACs who present with bleeding. Prolonged coagulation tests&#x000a0;may indicate residual effects of DOACs, but normal results do not confirm the absence of these effects. Patients with ongoing bleeding despite normal coagulation studies require treatment, except for&#x000a0;individuals on dabigatran who have a normal thrombin time.</p><p>For patients who&#x000a0;had their last prescribed dose within 2 hours, or 6 hours in cases of intentional overdose, oral activated charcoal may be administered to absorb any residual medication from the gastrointestinal tract. Specialized testing, if quickly available, can provide valuable information.&#x000a0;Antifactor Xa levels may indicate the presence of a direct factor Xa inhibitor. In contrast, quantitative factor Xa inhibitor levels and quantitative dabigatran levels can be measured using a dilute thrombin time. Clinicians should evaluate the degree of anticoagulation by considering the timing of the last dose, the specific agent used, and the patient's renal and hepatic function.</p><p>
<b>Direct reversal agents</b>
</p><p>Clinicians may opt for reversal agents or PCCs in the presence of life-threatening bleeding, weighing the potential risk of thrombosis from underlying conditions and the prothrombotic effects of reversal agents.<a class="bk_pop" href="#article-42174.r35">[35]</a>&#x000a0;Practitioners typically administer these agents when confident that the anticoagulant is still active. The anticoagulant effects of DOACs&#x000a0;fully resolve after&#x000a0;5 half-lives have elapsed since the last dose.</p><ul><li class="half_rhythm"><div>Dabigatran:&#x000a0;Idarucizumab 5 grams, an anti-dabigatran monoclonal antibody fragment, reverses the effects of dabigatran. Patients with&#x000a0;a normal&#x000a0;thrombin time should not receive idarucizumab. If&#x000a0;idarucizumab is unavailable, some authors recommend activated PCC (aPCC) or factor&#x000a0;8 inhibitor&#x000a0;bypassing&#x000a0;activity (FEIBA) at a fixed dose or a weight-based dose of 50 to 80 U/kg.<a class="bk_pop" href="#article-42174.r36">[36]</a>&#x000a0;Using aPCC carries a significant risk of thrombosis. Additional studies are necessary to establish their safety, and clinicians should avoid using aPCC except in&#x000a0;extreme circumstances. If aPCC is unavailable, clinicians may choose unactivated 4-factor PCC or 3-factor PCC at a fixed dose or weight-based dose of 25 to 50 U/kg. FFP may be necessary, in combination with 3-PCC, to supplement factor VII. Hemodialysis will result in the removal of nearly 50% of dabigatran from the circulation in patients with renal impairment. Hemodialysis is ineffective&#x000a0;against&#x000a0;direct factor Xa inhibitors, which circulate bound to protein. Experts recommend adding an antifibrinolytic agent like tranexamic acid or &#x003b5;-aminocaproic acid with direct thrombin and Xa inhibitors.</div></li><li class="half_rhythm"><div>Oral factor Xa inhibitors:&#x000a0;Two possible first-line options are<b>&#x000a0;</b>andexanet&#x000a0;and 4-factor PCC. Andexanet is an inactive form of factor Xa that&#x000a0;binds and sequesters the anticoagulant. Studies are currently lacking to support recommending andexanet over 4-factor PCC.<a class="bk_pop" href="#article-42174.r37">[37]</a><a class="bk_pop" href="#article-42174.r38">[38]</a>
<ul><li class="half_rhythm"><div>Patients receiving rivaroxaban greater than 10 mg, apixaban greater than 5 mg, or an unknown dose within the previous 8 hours should receive an 800 mg bolus of andexanet at 30 mg/min, followed by a 960 mg infusion at 8 mg/min for up to 120 minutes.</div></li><li class="half_rhythm"><div>If the patient takes rivaroxaban 10 mg or less or apixaban 5 mg or less, or if 8 hours or more have elapsed since the last dose of a factor Xa inhibitor, give a 400 mg bolus of andexanet at 30 mg/min, followed by 480 mg infusion at 4 mg/min for up to 120 minutes.</div></li></ul>
</div></li><li class="half_rhythm"><div>The dosing for 4-factor PCC is a fixed dose of 2000 U or 25 to 50 U/kg.</div></li><li class="half_rhythm"><div>Clinicians can use 3-factor PCC with FFP to supplement factor VII if both are unavailable.&#x000a0;</div></li></ul><p>Minor bleeding, like epistaxis or excessive bruising, should be managed conservatively with local measures like pressure or cauterization.&#x000a0;</p><p>
<b>Resuming Anticoagulation After a Bleeding Episode</b>&#x000a0;</p><p>The decision to restart anticoagulation should be individualized, taking into account overall risks and patient preferences. Clinicians must carefully evaluate the risks and benefits.&#x000a0;For instance, patients using anticoagulants for primary prevention during high-risk periods or for treatment after a provoked VTE may not need to resume anticoagulation. Conversely, patients with atrial fibrillation, prosthetic heart valves, or a history of arterial thrombotic events are likely to benefit from resuming therapy. Factors that increase the risk of rebleeding include&#x000a0;ICH with central nervous system microbleeds on imaging, persistent sources of bleeding such as gastrointestinal telangiectasia, and concurrent bleeding disorders. Most studies support the resumption of anticoagulants following a bleeding episode.<a class="bk_pop" href="#article-42174.r39">[39]</a><a class="bk_pop" href="#article-42174.r40">[40]</a></p><p>Patients who restart their anticoagulants face an increased risk of rebleeding, but they also experience a reduced risk of thrombosis and death.<a class="bk_pop" href="#article-42174.r41">[41]</a> For instance, patients with atrial fibrillation who resume an oral anticoagulant after achieving hemostasis have lower rates of all-cause mortality and thromboembolism compared to those who do not resume treatment.<a class="bk_pop" href="#article-42174.r42">[42]</a>&#x000a0;In this population, the incidence of recurrent ICH is 2.5 per 100 patient-years with warfarin and 1.3 per 100 patient-years with a DOAC.</p><p>
<b>Management of Other Complications Associated with Oral Anticoagulants</b>
</p><p>Bleeding in various sites&#x000a0;is approached separately. The recommended measures are discussed below.</p><p>
<b>Gastrointestinal bleeding</b>
</p><p>Patients experiencing severe upper or lower gastrointestinal bleeding with a prolonged PTT or INR exceeding 1.5 should have their warfarin or DOACs held.&#x000a0;Individuals with an INR surpassing 2.5 should receive 4-factor PCC or FFP if PCC is unavailable. Clinicians tranfuse platelets to maintain a count above 30,000/&#x000b5;L, increasing to over 50,000/&#x000b5;L if endoscopy is imminent.</p><p>Reversal agents are imperative in cases of unresponsiveness to anticoagulant cessation and resuscitation. Endoscopy can proceed concurrently with reversal agent administration for patients with an INR between 1.5 and 2.5, while those with higher INR levels require coagulopathy therapy&#x000a0;before endoscopy. Experts do not recommend antifibrinolytic agents for treating acute&#x000a0;gastrointestinal bleeding. Endoscopy is the preferred diagnostic and therapeutic approach, with local therapy often sufficient, though surgical intervention may be necessary.</p><p>Continuation of aspirin is generally recommended for secondary cardiovascular prevention, along with dual antiplatelet therapy, for patients with an episode of acute coronary syndrome within the past 90 days, recipients of a bare-metal stent within the last 6 weeks, or individuals with a drug-eluting stent placed within the last 6 months.<a class="bk_pop" href="#article-42174.r43">[43]</a>&#x000a0;Studies indicate that patients with cardiovascular disease who develop bleeding peptic ulcers and discontinue aspirin face increased all-cause mortality.<a class="bk_pop" href="#article-42174.r44">[44]</a>&#x000a0;Patients who achieve hemostasis and require ongoing oral anticoagulant treatment, with a low risk of rebleeding, can&#x000a0;resume warfarin on the day of an endoscopic procedure and DOACs within 48 to 72 hours. In individuals at high risk of rebleeding, resumption of anticoagulants is delayed until the bleeding risk is minimized.</p><p>
<b>Warfarin-induced skin necrosis</b>
</p><p>Discontinuation of warfarin is crucial in cases of warfarin-induced skin necrosis. Intravenous vitamin K and unfractionated heparin administration are recommended. Patients with confirmed or familial protein C deficiency should additionally receive protein C concentrate or FFP. For&#x000a0;patients with protein C deficiency requiring warfarin, initial dosing should commence at 2 mg daily for 3 days, gradually increasing by 2 to 3 mg until therapeutic levels are achieved. However, DOAC use may circumvent this complication when suitable. Warfarin may be resumed in patients with necrosis with protein C concentrate support until they achieve therapeutic levels. Protein C concentrate should not be confused with&#x000a0;recombinant activated protein C.&#x000a0;Small necrotic areas may heal with local care, while larger areas may necessitate surgical intervention and skin grafts.</p><p>
<b>Cholesterol crystal embolism</b>
</p><p>Despite conflicting evidence on the causal relationship between cholesterol embolization syndrome and anticoagulation, the prescribing information for Coumadin (Bristol-Myers Squibb, Princeton, NJ), a brand-name version of warfarin, states that therapy may increase the risk of atheromatous plaque emboli and complications from systemic cholesterol microembolization. Thus, experts recommend discontinuing warfarin therapy when cholesterol embolization is present.<a class="bk_pop" href="#article-42174.r45">[45]</a>&#x000a0;See StatPearls' companion reference, "<a href="https://www.statpearls.com/point-of-care/19462" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Cholesterol Emboli</a>," for additional information regarding managing cholesterol emboli.</p><p>
<b>Anticoagulant-related nephropathy</b>
</p><p>Management of ARN begins with reversing coagulopathy, followed by rendering supportive care for AKI.&#x000a0;Most patients show normalization of serum creatinine within a few weeks of normalizing coagulopathy. Refer to "<b>Vitamin K Antagonists"&#x000a0;</b>and&#x000a0;<b>"Direct Oral Anticoagulants"&#x000a0;</b>for additional information on the appropriate steps in reversing coagulopathy from VKAs and DOACs. Additionally, see StatPearls' companion reference, "<a href="https://www.statpearls.com/point-of-care/17169" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Acute Kidney Injury</a>," for a complete discussion regarding managing AKI.</p><p>
<b>Intracranial hemorrhage</b>
</p><p>As with most other complications associated with oral anticoagulants, discontinuing the anticoagulant and all antiplatelet medications and reversing the anticoagulant effects&#x000a0;are imperative in patients with ICH. Appropriate blood pressure management is also central to patient management.</p><p>Individuals&#x000a0;with a systolic blood pressure between 150 and 220 mm Hg should undergo rapid lowering to reach a target blood pressure of 140 mm Hg.&#x000a0;Patients with a systolic blood pressure exceeding 220 mm Hg should have their blood pressure rapidly reduced to below this threshold, followed by gradual lowering to a target range of 140 to 160 mm Hg. Clinicians manage intracranial pressure using osmotic therapies, ventricular drainage of cerebrospinal fluid, or surgical evacuation, depending on the patient's condition and imaging results. See StatPerals' companion topic, "<a href="https://www.statpearls.com/point-of-care/23693" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Intracranial Hemorrhage</a>," for an in-depth discussion on&#x000a0;ICH management.&#x000a0;</p><p>
<b>Hematoma</b>
</p><p>Managing a hematoma in patients on anticoagulation can be challenging, particularly when the anticoagulant is essential for their care. A retroperitoneal hematoma may be managed with volume resuscitation and blood transfusion, along with possible embolization to control the bleeding source or drainage guided by interventional radiology. Clinicians evaluate each case individually to determine the need for anticoagulant reversal. Hemodynamically unstable patients&#x000a0;may require open surgical intervention.<a href="https://www.statpearls.com/keywords/edit/167695/?Return=https%3A%2F%2Fwww.statpearls.com%2Fhome%2Fcontributordashboard%2F#ref_37582384" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">[45]</a>&#x000a0;Patients with a spinal epidural hematoma&#x000a0;and minor stable neurological symptoms may be observed. Others require prompt surgical intervention and evacuation of the blood to avoid permanent loss of neurologic function.</p><p>
<b>Hemothorax</b>
</p><p>Reversal of the anticoagulant followed by tube thoracostomy drainage is the primary mode of treatment for hemothorax. See StatPearls' reference companion, "<a href="https://www.statpearls.com/point-of-care/22763" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Hemothorax</a>," for a detailed discussion on hemothorax management.</p><p>
<b>Cardiac tamponade</b>
</p><p>Cardiac tamponade requires an emergent&#x000a0;pericardiocentesis.&#x000a0;The&#x000a0;decision to continue anticoagulation should be made with cardiology, hematology, and, possibly, nephrology specialists&#x000a0;in patients with renal disease.&#x000a0;</p><p>
<b>Compartment syndrome</b>
</p><p>Fasciotomy is the treatment of choice for patients with compartment syndrome. See StatPearls' companion reference, "<a href="https://www.statpearls.com/point-of-care/19772" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Compartment Syndrome</a>," for a more in-depth discussion of the management of compartment syndrome.</p></div><div id="article-42174.s9"><h2 id="_article-42174_s9_">Differential Diagnosis</h2><p>The differential diagnoses for bleeding complications associated with oral anticoagulants include the following:</p><ul><li class="half_rhythm"><div>Peptic ulcer disease</div></li><li class="half_rhythm"><div>Subdural hematoma</div></li><li class="half_rhythm"><div>Subarachnoid hemorrhage</div></li><li class="half_rhythm"><div>Retroperitoneal hemorrhage</div></li><li class="half_rhythm"><div>Vitamin K deficiency</div></li><li class="half_rhythm"><div>Hemophilia A</div></li><li class="half_rhythm"><div>Hemophilia B</div></li><li class="half_rhythm"><div>Factor X deficiency</div></li><li class="half_rhythm"><div>Factor V deficiency</div></li><li class="half_rhythm"><div>Epistaxis</div></li><li class="half_rhythm"><div>Gastrointestinal bleeding</div></li><li class="half_rhythm"><div>Ectopic pregnancy</div></li><li class="half_rhythm"><div>Postpartum hemorrhage</div></li><li class="half_rhythm"><div>Hypovolemic shock</div></li><li class="half_rhythm"><div>Hemorrhagic stroke</div></li><li class="half_rhythm"><div>Vitreous hemorrhage</div></li><li class="half_rhythm"><div>Liver failure</div></li><li class="half_rhythm"><div>Afibrinogenemia</div></li><li class="half_rhythm"><div>Dysfibrinogenemia</div></li><li class="half_rhythm"><div>Malabsorptive states</div></li><li class="half_rhythm"><div>Domestic violence</div></li><li class="half_rhythm"><div>Child abuse</div></li></ul><p>Differential diagnoses for warfarin-induced skin necrosis include the following conditions:</p><ul><li class="half_rhythm"><div>Necrotizing fasciitis</div></li><li class="half_rhythm"><div>Venous gangrene</div></li><li class="half_rhythm"><div>Heparin-induced thrombocytopenia and thrombosis</div></li><li class="half_rhythm"><div>Disseminated intravascular coagulation</div></li><li class="half_rhythm"><div>Purpura fulminans</div></li><li class="half_rhythm"><div>Calciphylaxis</div></li><li class="half_rhythm"><div>Cholesterol microemboli</div></li><li class="half_rhythm"><div>Cryoglobulinemia</div></li></ul><p>Given its nonspecific symptoms, the differential diagnoses for cholesterol microembolization are extensive, and the following list includes some of the potential considerations:</p><ul><li class="half_rhythm"><div>Aortic dissection</div></li><li class="half_rhythm"><div>Left atrial myxoma</div></li><li class="half_rhythm"><div>Lymphoma</div></li><li class="half_rhythm"><div>Renal cell carcinoma&#x000a0;</div></li><li class="half_rhythm"><div>Cyanotic congenital heart disease</div></li><li class="half_rhythm"><div>Secondary syphilis</div></li><li class="half_rhythm"><div>Pheochromocytoma</div></li><li class="half_rhythm"><div>Raynaud phenomenon</div></li><li class="half_rhythm"><div>Vasculitis like polyarteritis nodosa, systemic lupus, dermatomyositis, leukocytoclastic angiitis, rheumatoid vasculitis, and thromboangiitis obliterans</div></li><li class="half_rhythm"><div>Tuberculosis</div></li><li class="half_rhythm"><div>Antiphospholipid syndrome</div></li><li class="half_rhythm"><div>Polycythemia vera&#x000a0;<a class="bk_pop" href="#article-42174.r46">[46]</a><a class="bk_pop" href="#article-42174.r47">[47]</a>&#x000a0;</div></li></ul></div><div id="article-42174.s10"><h2 id="_article-42174_s10_">Prognosis</h2><p>Patients with ICH associated with warfarin use have a 6-month mortality rate ranging from 23% to 58%. Stupor or coma and large-volume ICHs are associated with poor outcomes. INR or time to correct INR does not correlate with outcomes. ICH expansion is associated with the most significant risk of fatal outcomes.<a class="bk_pop" href="#article-42174.r48">[48]</a>&#x000a0;The 30-day mortality after a nonvariceal major&#x000a0;gastrointestinal bleed on DOACs is 9%.<a class="bk_pop" href="#article-42174.r49">[49]</a>&#x000a0;A previous history of peptic ulcer, upper gastrointestinal bleeding, and a higher Charlson comorbidity index score&#x02014;indicative of 10-year survival in patients with multiple comorbidities&#x02014;are all associated with increased all-cause mortality. Duodenal bleeding and an elevated Charlson comorbidity index score are significant risk factors for rebleeding.<a class="bk_pop" href="#article-42174.r50">[50]</a>&#x000a0;</p></div><div id="article-42174.s11"><h2 id="_article-42174_s11_">Complications</h2><p>As mentioned, oral anticoagulant use carries several potential complications, including hemorrhage, skin necrosis, cholesterol embolism, and hematoma formation. Additional adverse effects include allergic reactions and thromboembolic events, which can occur due to transient hypercoagulability during warfarin initiation, premature discontinuation, use of reversal agents, and improper dosing. Active malignant disease is also a risk factor for thromboembolic complications.</p><p>Studies&#x000a0;reveal that DOACs are often underdosed in about 15% of patients, particularly older&#x000a0;women and&#x000a0;individuals with reduced creatinine clearance, diabetes, anemia, or liver disease. This inappropriate dosing is associated with a trend toward adverse events, including stroke, transient ischemic attack, and embolism, with some&#x000a0;investigations reporting statistically significant associations while others only indicate&#x000a0;a trend.<a class="bk_pop" href="#article-42174.r51">[51]</a><a class="bk_pop" href="#article-42174.r52">[52]</a>&#x000a0;Additional complications from thromboembolic events may include myocardial infarction, blindness, mesenteric ischemia, AKI, limb ischemia, pulmonary infarction, and death.</p></div><div id="article-42174.s12"><h2 id="_article-42174_s12_">Consultations</h2><p>Clinicians should speak with laboratory personnel regarding institution-specific testing to assess DOAC effects when treating acute hemorrhage. The endoscopist, interventional radiologist, or surgical subspecialist should be involved early to identify and definitively manage the source of bleeding. In addition, involving an expert in anticoagulation management may be helpful, especially when using PCC to reverse anticoagulation and determining which patients should restart anticoagulants and when. Input from a medical toxicologist or poison control center is essential for patients with intentional overdosage of&#x000a0;dabigatran or a direct factor Xa inhibitor.</p></div><div id="article-42174.s13"><h2 id="_article-42174_s13_">Deterrence and Patient Education</h2><p>Every year, millions of patients rely on oral anticoagulants to manage and prevent thromboembolic disease. Ensuring the safe use of these agents involves understanding each one's&#x000a0;unique characteristics, risks, and benefits. Patient engagement is vital, with individuals needing to understand the rationale of the therapy, recognize signs of potential complications, and make lifestyle and dietary adjustments. Clinicians play a crucial role in educating patients about the risks, including the possibility of ICH,&#x000a0;gastrointestinal&#x000a0;bleeding, and thromboembolism, in the event they discontinue treatment prematurely.</p><p>Patients should be aware that while these medications are effective, they do not eliminate all risks, and they should understand the signs and symptoms of thromboembolic disease and when to seek medical care. Knowing when to seek medical help for potential coagulopathy is crucial, as&#x000a0;are adhering to prescribed doses, attending regular follow-up appointments, and avoiding high-risk activities. Carrying identification or wearing medical alert jewelry with medication details can further enhance safety.</p></div><div id="article-42174.s14"><h2 id="_article-42174_s14_">Enhancing Healthcare Team Outcomes </h2><p>Recognized by the Institute of Safe Medication Practices as high-alert medications, both traditional warfarin and DOACs&#x000a0;demand careful attention to ensure safe usage. These agents are effective in treating emboli and reducing the risk of venous and arterial thromboemboli in various clinical contexts.</p><p>While DOACs present promising alternatives to warfarin due to their association with lower overall bleeding rates and the absence of routine laboratory monitoring, clinicians must comprehend their safety profiles, balancing thrombosis prevention with the minimization of bleeding risks. Despite their efficacy, all anticoagulants carry a risk of bleeding, particularly if dosed inappropriately or discontinued prematurely. A solid understanding of appropriate uses, dosages, monitoring requirements, available testing, and reversal agents equips healthcare professionals to manage complications, such as adverse reactions, hematoma formation, and warfarin-induced skin necrosis. Utilizing bleeding risk assessment tools can further aid in quantifying individual risk factors and guiding treatment decisions.</p><p>Central to risk mitigation is the periodic review of indications, optimization of dosing, and consideration of concomitant medications. Patients must actively participate in decision-making and treatment adherence, understanding the rationale for therapy, recognizing potential coagulopathy signs, and making necessary lifestyle modifications while being aware of medication interactions and dietary considerations.</p><p>Enhancing patient-centered care, outcomes, safety, and team performance in anticoagulation management requires a multifaceted approach involving physicians, advanced practitioners, nurses, pharmacists, and other healthcare professionals. Physicians and advanced practitioners should demonstrate strong clinical skills in risk assessment, medication selection, and dosage determination while effectively communicating with patients to involve them in treatment decisions. Nurses play a crucial role in monitoring patients, educating them about adherence and lifestyle changes, and promptly recognizing and managing complications. Pharmacists contribute by conducting medication reviews, assessing drug interactions, and ensuring appropriate care transitions.</p><p>Effective interprofessional communication, supported by clear documentation, is essential for coordinating care and minimizing errors. Care coordination involves developing standardized protocols, guidelines, and pathways for anticoagulation management across various settings, ensuring seamless transitions and optimizing patient outcomes. By leveraging their skills, communication, and coordination, healthcare teams can collectively enhance anticoagulation safety and improve patient care and outcomes.</p></div><div id="article-42174.s15"><h2 id="_article-42174_s15_">Review Questions</h2><ul><li class="half_rhythm"><div>
<a href="https://www.statpearls.com/account/trialuserreg/?articleid=42174&#x00026;utm_source=pubmed&#x00026;utm_campaign=reviews&#x00026;utm_content=42174" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Access free multiple choice questions on this topic.</a>
</div></li><li class="half_rhythm"><div>
<a href="https://mdsearchlight.com/medications/anticoagulation-safety/?utm_source=pubmedlink&#x00026;utm_campaign=MDS&#x00026;utm_content=42174" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Click here for a simplified version.</a>
</div></li><li class="half_rhythm"><div>
<a href="https://www.statpearls.com/articlelibrary/commentarticle/42174/?utm_source=pubmed&#x00026;utm_campaign=comments&#x00026;utm_content=42174" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Comment on this article.</a>
</div></li></ul></div><div id="article-42174.s16"><h2 id="_article-42174_s16_">References</h2><dl class="temp-labeled-list"><dt>1.</dt><dd><div class="bk_ref" id="article-42174.r1">Chamoun N, Ramia E, Lteif C, Salameh P, Zantout H, Ghanem G, Chatila R. Assessment of bleeding in chronic liver disease and coagulopathy using the IMPROVE bleeding criteria. <span><span class="ref-journal">Curr Med Res Opin. </span>2019 Mar;<span class="ref-vol">35</span>(3):427-433.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/30221541" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30221541</span></a>]</div></dd><dt>2.</dt><dd><div class="bk_ref" id="article-42174.r2">Chen ST, Hellkamp AS, Becker RC, Berkowitz SD, Breithardt G, Fox KAA, Hacke W, Halperin JL, Hankey GJ, Mahaffey KW, Nessel CC, Piccini JP, Singer DE, Patel MR, Melloni C. Efficacy and safety of rivaroxaban vs. warfarin in patients with non-valvular atrial fibrillation and a history of cancer: observations from ROCKET AF. <span><span class="ref-journal">Eur Heart J Qual Care Clin Outcomes. </span>2019 Apr 01;<span class="ref-vol">5</span>(2):145-152.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/30219887" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30219887</span></a>]</div></dd><dt>3.</dt><dd><div class="bk_ref" id="article-42174.r3">Fr&#x000e8;re C, Farge D. [Treatment of cancer associated thrombosis: Which role for direct oral anticoagulants in 2018?]. <span><span class="ref-journal">J Med Vasc. </span>2018 Sep;<span class="ref-vol">43</span>(5):293-301.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/30217343" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30217343</span></a>]</div></dd><dt>4.</dt><dd><div class="bk_ref" id="article-42174.r4">Dager WE, Trujillo TC, Gilbert BW. Approaches to Precision-based Anticoagulation management in the critically Ill. <span><span class="ref-journal">Pharmacotherapy. </span>2023 Nov;<span class="ref-vol">43</span>(11):1221-1236.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/37604646" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 37604646</span></a>]</div></dd><dt>5.</dt><dd><div class="bk_ref" id="article-42174.r5">Sun B, Ma S, Xiao F, Luo J, Liu M, Liu W, Luo Z. Integrated analysis of clinical and genetic factors on the interindividual variation of warfarin anticoagulation efficacy in clinical practice. <span><span class="ref-journal">BMC Cardiovasc Disord. </span>2023 May 31;<span class="ref-vol">23</span>(1):279.</span> [<a href="/pmc/articles/PMC10230781/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC10230781</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37254053" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 37254053</span></a>]</div></dd><dt>6.</dt><dd><div class="bk_ref" id="article-42174.r6">Saad M, Zhang R, Cucchiarini A, Mehawej C, Mergny JL, Mroueh M, Faour WH. G-quadruplex forming sequences in the genes coding for cytochrome P450 enzymes and their potential roles in drug metabolism. <span><span class="ref-journal">Biochimie. </span>2023 Nov;<span class="ref-vol">214</span>(Pt A):45-56.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/37660977" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 37660977</span></a>]</div></dd><dt>7.</dt><dd><div class="bk_ref" id="article-42174.r7">Juneja D, Nasa P, Jain R. Liver injury from direct oral anticoagulants. <span><span class="ref-journal">World J Hepatol. </span>2023 Jun 27;<span class="ref-vol">15</span>(6):841-849.</span> [<a href="/pmc/articles/PMC10308284/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC10308284</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37397936" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 37397936</span></a>]</div></dd><dt>8.</dt><dd><div class="bk_ref" id="article-42174.r8">Gu ZC, Wang J, Zhang C, Zhao B, Li ZL. Non-Vitamin K Antagonist Oral Anticoagulants (NOACs) do not Increase the Risk of Hepatic Impairment in Patients with Non-Valvular Atrial Fibrillation: Insights from Multi-Source Medical Data. <span><span class="ref-journal">Rev Cardiovasc Med. </span>2022 Mar 12;<span class="ref-vol">23</span>(3):98.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/35345265" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35345265</span></a>]</div></dd><dt>9.</dt><dd><div class="bk_ref" id="article-42174.r9">Ma F, Wu S, Li S, Zeng Z, Zhang J. Risk factors for anticoagulant-associated gastrointestinal hemorrhage: a systematic review and meta-analysis. <span><span class="ref-journal">Korean J Intern Med. </span>2024 Jan;<span class="ref-vol">39</span>(1):77-85.</span> [<a href="/pmc/articles/PMC10790055/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC10790055</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/38062723" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38062723</span></a>]</div></dd><dt>10.</dt><dd><div class="bk_ref" id="article-42174.r10">Garcia DA, Lopes RD, Hylek EM. New-onset atrial fibrillation and warfarin initiation: high risk periods and implications for new antithrombotic drugs. <span><span class="ref-journal">Thromb Haemost. </span>2010 Dec;<span class="ref-vol">104</span>(6):1099-105.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/20886196" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20886196</span></a>]</div></dd><dt>11.</dt><dd><div class="bk_ref" id="article-42174.r11">Rivera-Caravaca JM, Rold&#x000e1;n V, Mart&#x000ed;nez-Montesinos L, Vicente V, Lip GYH, Mar&#x000ed;n F. The Atrial Fibrillation Better Care (ABC) Pathway and Clinical Outcomes in Patients with Atrial Fibrillation: the Prospective Murcia AF Project Phase II Cohort. <span><span class="ref-journal">J Gen Intern Med. </span>2023 Feb;<span class="ref-vol">38</span>(2):315-323.</span> [<a href="/pmc/articles/PMC9905403/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9905403</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35411538" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35411538</span></a>]</div></dd><dt>12.</dt><dd><div class="bk_ref" id="article-42174.r12">Gomes T, Mamdani MM, Holbrook AM, Paterson JM, Hellings C, Juurlink DN. Rates of hemorrhage during warfarin therapy for atrial fibrillation. <span><span class="ref-journal">CMAJ. </span>2013 Feb 05;<span class="ref-vol">185</span>(2):E121-7.</span> [<a href="/pmc/articles/PMC3563912/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3563912</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23184840" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23184840</span></a>]</div></dd><dt>13.</dt><dd><div class="bk_ref" id="article-42174.r13">Ballestri S, Romagnoli E, Arioli D, Coluccio V, Marrazzo A, Athanasiou A, Di Girolamo M, Cappi C, Marietta M, Capitelli M. Risk and Management of Bleeding Complications with Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Venous Thromboembolism: a Narrative Review. <span><span class="ref-journal">Adv Ther. </span>2023 Jan;<span class="ref-vol">40</span>(1):41-66.</span> [<a href="/pmc/articles/PMC9569921/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9569921</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36244055" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 36244055</span></a>]</div></dd><dt>14.</dt><dd><div class="bk_ref" id="article-42174.r14">Chai-Adisaksopha C, Crowther M, Isayama T, Lim W. The impact of bleeding complications in patients receiving target-specific oral anticoagulants: a systematic review and meta-analysis. <span><span class="ref-journal">Blood. </span>2014 Oct 09;<span class="ref-vol">124</span>(15):2450-8.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/25150296" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25150296</span></a>]</div></dd><dt>15.</dt><dd><div class="bk_ref" id="article-42174.r15">Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, Camm AJ, Weitz JI, Lewis BS, Parkhomenko A, Yamashita T, Antman EM. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. <span><span class="ref-journal">Lancet. </span>2014 Mar 15;<span class="ref-vol">383</span>(9921):955-62.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/24315724" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24315724</span></a>]</div></dd><dt>16.</dt><dd><div class="bk_ref" id="article-42174.r16">Cha JM, Kim M, Jo HH, Seo WW, Rhee SY, Kim JH, Kim GH, Park J. Real-World Risk of Gastrointestinal Bleeding for Direct Oral Anticoagulants and Warfarin Users: A Distributed Network Analysis Using a Common Data Model. <span><span class="ref-journal">Gut Liver. </span>2024 Sep 15;<span class="ref-vol">18</span>(5):814-823.</span> [<a href="/pmc/articles/PMC11391140/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC11391140</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/38384200" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38384200</span></a>]</div></dd><dt>17.</dt><dd><div class="bk_ref" id="article-42174.r17">Ingason AB, Hreinsson JP, &#x000c1;g&#x000fa;stsson AS, Lund SH, Rumba E, P&#x000e1;lsson DA, Reynisson IE, Gu&#x000f0;mundsd&#x000f3;ttir BR, &#x000d6;nundarson PT, Bj&#x000f6;rnsson ES. Rivaroxaban Is Associated With Higher Rates of Gastrointestinal Bleeding Than Other Direct Oral Anticoagulants : A Nationwide Propensity Score-Weighted Study. <span><span class="ref-journal">Ann Intern Med. </span>2021 Nov;<span class="ref-vol">174</span>(11):1493-1502.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/34633836" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34633836</span></a>]</div></dd><dt>18.</dt><dd><div class="bk_ref" id="article-42174.r18">Jiang H, Jiang Y, Ma H, Zeng H, Lv J. Effects of rivaroxaban and warfarin on the risk of gastrointestinal bleeding and intracranial hemorrhage in patients with atrial fibrillation: Systematic review and meta-analysis. <span><span class="ref-journal">Clin Cardiol. </span>2021 Sep;<span class="ref-vol">44</span>(9):1208-1215.</span> [<a href="/pmc/articles/PMC8427974/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8427974</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34302375" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34302375</span></a>]</div></dd><dt>19.</dt><dd><div class="bk_ref" id="article-42174.r19">Gue Y, Bloomfield D, Freedholm D, Lip GYH. Comparing the Real-World and Clinical Trial Bleeding Rates Associated with Oral Anticoagulation Treatment for Atrial Fibrillation. <span><span class="ref-journal">J Clin Med. </span>2024 Apr 15;<span class="ref-vol">13</span>(8)</span> [<a href="/pmc/articles/PMC11051451/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC11051451</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/38673550" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38673550</span></a>]</div></dd><dt>20.</dt><dd><div class="bk_ref" id="article-42174.r20">Kato ET, Goto S, Giugliano RP. Overview of oral antithrombotic treatment in elderly patients with atrial fibrillation. <span><span class="ref-journal">Ageing Res Rev. </span>2019 Jan;<span class="ref-vol">49</span>:115-124.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/30359765" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30359765</span></a>]</div></dd><dt>21.</dt><dd><div class="bk_ref" id="article-42174.r21">Joosten LPT, van Doorn S, van de Ven PM, K&#x000f6;hlen BTG, Nierman MC, Koek HL, Hemels MEW, Huisman MV, Kruip M, Faber LM, Wiersma NM, Buding WF, Fijnheer R, Adriaansen HJ, Roes KC, Hoes AW, Rutten FH, Geersing GJ. Safety of Switching From a Vitamin K Antagonist to a Non-Vitamin K Antagonist Oral Anticoagulant in Frail Older Patients With Atrial Fibrillation: Results of the FRAIL-AF Randomized Controlled Trial. <span><span class="ref-journal">Circulation. </span>2024 Jan 23;<span class="ref-vol">149</span>(4):279-289.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/37634130" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 37634130</span></a>]</div></dd><dt>22.</dt><dd><div class="bk_ref" id="article-42174.r22">Lopes RD, Horowitz JD, Garcia DA, Crowther MA, Hylek EM. Warfarin and acetaminophen interaction: a summary of the evidence and biologic plausibility. <span><span class="ref-journal">Blood. </span>2011 Dec 08;<span class="ref-vol">118</span>(24):6269-73.</span> [<a href="/pmc/articles/PMC5524527/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5524527</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21911832" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21911832</span></a>]</div></dd><dt>23.</dt><dd><div class="bk_ref" id="article-42174.r23">Hughes GJ, Patel PN, Saxena N. Effect of acetaminophen on international normalized ratio in patients receiving warfarin therapy. <span><span class="ref-journal">Pharmacotherapy. </span>2011 Jun;<span class="ref-vol">31</span>(6):591-7.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21923443" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21923443</span></a>]</div></dd><dt>24.</dt><dd><div class="bk_ref" id="article-42174.r24">Smythe MA, Wu W, Garwood CL. Anticoagulant drug-drug interactions with cannabinoids: A&#x000a0;systematic review. <span><span class="ref-journal">Pharmacotherapy. </span>2023 Dec;<span class="ref-vol">43</span>(12):1327-1338.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/37740600" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 37740600</span></a>]</div></dd><dt>25.</dt><dd><div class="bk_ref" id="article-42174.r25">Camilleri E, Ghobreyal M, Bos MHA, Reitsma PH, Van Der Meer FJM, Swen JJ, Cannegieter SC, van Rein N. Genetic polymorphisms and major bleeding risk during vitamin K antagonists treatment: The BLEEDS case-cohort. <span><span class="ref-journal">Pharmacotherapy. </span>2024 Jun;<span class="ref-vol">44</span>(6):416-424.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/38686648" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38686648</span></a>]</div></dd><dt>26.</dt><dd><div class="bk_ref" id="article-42174.r26">Ingelman-Sundberg M, Pirmohamed M. Precision medicine in cardiovascular therapeutics: Evaluating the role of pharmacogenetic analysis prior to drug treatment. <span><span class="ref-journal">J Intern Med. </span>2024 May;<span class="ref-vol">295</span>(5):583-598.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/38343077" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38343077</span></a>]</div></dd><dt>27.</dt><dd><div class="bk_ref" id="article-42174.r27">Nazarian RM, Van Cott EM, Zembowicz A, Duncan LM. Warfarin-induced skin necrosis. <span><span class="ref-journal">J Am Acad Dermatol. </span>2009 Aug;<span class="ref-vol">61</span>(2):325-32.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19615543" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19615543</span></a>]</div></dd><dt>28.</dt><dd><div class="bk_ref" id="article-42174.r28">Gulseth MP, Wittkowsky AK, Fanikos J, Spinler SA, Dager WE, Nutescu EA. Dabigatran etexilate in clinical practice: confronting challenges to improve safety and effectiveness. <span><span class="ref-journal">Pharmacotherapy. </span>2011 Dec;<span class="ref-vol">31</span>(12):1232-49.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22122184" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22122184</span></a>]</div></dd><dt>29.</dt><dd><div class="bk_ref" id="article-42174.r29">Li D, Yan C, Guo M, Zhao Y, Zhang Y, Cui X. Evidence of potential pro-haemorrhagic drug interactions between CYP3A4 inhibitors and direct oral anticoagulants: Analysis of the FAERS database. <span><span class="ref-journal">Br J Clin Pharmacol. </span>2023 Aug;<span class="ref-vol">89</span>(8):2423-2429.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/36908021" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 36908021</span></a>]</div></dd><dt>30.</dt><dd><div class="bk_ref" id="article-42174.r30">Gaboreau Y, Frapp&#x000e9; P, Vermorel C, Foote A, Bosson JL, Pernod G., CACAO study investigators. Oral anticoagulant safety in family practice: prognostic accuracy of Bleeding Risk Scores (from the CACAO study). <span><span class="ref-journal">Fam Pract. </span>2024 Feb 28;<span class="ref-vol">41</span>(1):9-17.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/38281089" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38281089</span></a>]</div></dd><dt>31.</dt><dd><div class="bk_ref" id="article-42174.r31">Donz&#x000e9; J, Rodondi N, Waeber G, Monney P, Cornuz J, Aujesky D. Scores to predict major bleeding risk during oral anticoagulation therapy: a prospective validation study. <span><span class="ref-journal">Am J Med. </span>2012 Nov;<span class="ref-vol">125</span>(11):1095-102.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22939362" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22939362</span></a>]</div></dd><dt>32.</dt><dd><div class="bk_ref" id="article-42174.r32">Turan B. Value of CHADS-VASc Score in Diverse Cardiovascular Conditions. <span><span class="ref-journal">Turk Kardiyol Dern Ars. </span>2023 Mar;<span class="ref-vol">51</span>(2):83-84.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/36916810" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 36916810</span></a>]</div></dd><dt>33.</dt><dd><div class="bk_ref" id="article-42174.r33">Bouzat P, Charbit J, Abback PS, Huet-Garrigue D, Delhaye N, Leone M, Marcotte G, David JS, Levrat A, Asehnoune K, Pottecher J, Duranteau J, Courvalin E, Adolle A, Sourd D, Bosson JL, Riou B, Gauss T, Payen JF., PROCOAG Study Group. Efficacy and Safety of Early Administration of 4-Factor Prothrombin Complex Concentrate in Patients With Trauma at Risk of Massive Transfusion: The PROCOAG Randomized Clinical Trial. <span><span class="ref-journal">JAMA. </span>2023 Apr 25;<span class="ref-vol">329</span>(16):1367-1375.</span> [<a href="/pmc/articles/PMC10031505/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC10031505</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36942533" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 36942533</span></a>]</div></dd><dt>34.</dt><dd><div class="bk_ref" id="article-42174.r34">Crowther MA, Ageno W, Garcia D, Wang L, Witt DM, Clark NP, Blostein MD, Kahn SR, Vesely SK, Schulman S, Kovacs MJ, Rodger MA, Wells P, Anderson D, Ginsberg J, Selby R, Siragusa S, Silingardi M, Dowd MB, Kearon C. Oral vitamin K versus placebo to correct excessive anticoagulation in patients receiving warfarin: a randomized trial. <span><span class="ref-journal">Ann Intern Med. </span>2009 Mar 03;<span class="ref-vol">150</span>(5):293-300.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19258557" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19258557</span></a>]</div></dd><dt>35.</dt><dd><div class="bk_ref" id="article-42174.r35">Pozzi A, Luc&#x000e0; F, Gelsomino S, Abrignani MG, Giubilato S, Di Fusco SA, Rao CM, Cornara S, Caretta G, Ceravolo R, Parrini I, Geraci G, Riccio C, Grimaldi M, Colivicchi F, Oliva F, Gulizia MM. Coagulation Tests and Reversal Agents in Patients Treated with Oral Anticoagulants: The Challenging Scenarios of Life-Threatening Bleeding and Unplanned Invasive Procedures. <span><span class="ref-journal">J Clin Med. </span>2024 Apr 23;<span class="ref-vol">13</span>(9)</span> [<a href="/pmc/articles/PMC11084691/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC11084691</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/38730979" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38730979</span></a>]</div></dd><dt>36.</dt><dd><div class="bk_ref" id="article-42174.r36">Sera VA, Stevens AE, Song HK, Rodriguez VM, Tibayan FA, Treggiari MM. Factor VIII inhibitor bypass activity (FEIBA) for the reduction of transfusion in cardiac surgery: a randomized, double-blind, placebo-controlled, pilot trial. <span><span class="ref-journal">Pilot Feasibility Stud. </span>2021 Jul 02;<span class="ref-vol">7</span>(1):137.</span> [<a href="/pmc/articles/PMC8252226/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8252226</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34215339" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34215339</span></a>]</div></dd><dt>37.</dt><dd><div class="bk_ref" id="article-42174.r37">White CM, Caroti KS, Bessada Y, Hernandez AV, Baker WL, Dobesh PP, van Haalen H, Rhodes K, Coleman CI. Andexanet alfa versus PCC products for factor Xa inhibitor bleeding: A systematic review with meta-analysis. <span><span class="ref-journal">Pharmacotherapy. </span>2024 May;<span class="ref-vol">44</span>(5):394-408.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/38721837" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38721837</span></a>]</div></dd><dt>38.</dt><dd><div class="bk_ref" id="article-42174.r38">Estroff JM, Devlin J, Hoteit L, Hassoune A, Neal MD, Brown JB, Lu L, Kotch S, Hazelton JP, Christian AB, Yeates EO, Nahmias J, Jacobson LE, Williams J, Schuster KM, O'Connor R, Semon GR, Straughn AD, Cullinane D, Egodage T, Kincaid M, Rollins A, Amdur R, Sarani B. Four-factor prothrombin complex concentrate is not inferior to andexanet alfa for the reversal or oral factor Xa inhibitors: An Eastern Association for the Surgery of Trauma multicenter study. <span><span class="ref-journal">J Trauma Acute Care Surg. </span>2024 Oct 01;<span class="ref-vol">97</span>(4):541-545.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/38685190" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38685190</span></a>]</div></dd><dt>39.</dt><dd><div class="bk_ref" id="article-42174.r39">Grainger BT, McFadyen JD, Tran H. Between a rock and a hard place: resumption of oral anticoagulant therapy after intracranial hemorrhage. <span><span class="ref-journal">J Thromb Haemost. </span>2024 Mar;<span class="ref-vol">22</span>(3):594-603.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/37913910" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 37913910</span></a>]</div></dd><dt>40.</dt><dd><div class="bk_ref" id="article-42174.r40">Luo R, Zhai Z, Wu Q, Chen K, Yi H. Resumption of anticoagulation therapy after spontaneous intracerebral hemorrhage with patients mechanical heart valves. <span><span class="ref-journal">Ann Transl Med. </span>2022 Jan;<span class="ref-vol">10</span>(2):44.</span> [<a href="/pmc/articles/PMC8848443/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8848443</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35282102" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35282102</span></a>]</div></dd><dt>41.</dt><dd><div class="bk_ref" id="article-42174.r41">Little DHW, Sutradhar R, Cerasuolo JO, Perez R, Douketis J, Holbrook A, Paterson JM, Gomes T, Siegal DM. Rates of rebleeding, thrombosis and mortality associated with resumption of anticoagulant therapy after anticoagulant-related bleeding. <span><span class="ref-journal">CMAJ. </span>2021 Mar 01;<span class="ref-vol">193</span>(9):E304-E309.</span> [<a href="/pmc/articles/PMC8034308/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8034308</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33649169" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33649169</span></a>]</div></dd><dt>42.</dt><dd><div class="bk_ref" id="article-42174.r42">Staerk L, Lip GY, Olesen JB, Fosb&#x000f8;l EL, Pallisgaard JL, Bonde AN, Gundlund A, Lindhardt TB, Hansen ML, Torp-Pedersen C, Gislason GH. Stroke and recurrent haemorrhage associated with antithrombotic treatment after gastrointestinal bleeding in patients with atrial fibrillation: nationwide cohort study. <span><span class="ref-journal">BMJ. </span>2015 Nov 16;<span class="ref-vol">351</span>:h5876.</span> [<a href="/pmc/articles/PMC4646074/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4646074</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26572685" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26572685</span></a>]</div></dd><dt>43.</dt><dd><div class="bk_ref" id="article-42174.r43">Triantafyllou K, Gkolfakis P, Gralnek IM, Oakland K, Manes G, Radaelli F, Awadie H, Camus Duboc M, Christodoulou D, Fedorov E, Guy RJ, Hollenbach M, Ibrahim M, Neeman Z, Regge D, Rodriguez de Santiago E, Tham TC, Thelin-Schmidt P, van Hooft JE. Diagnosis and management of acute lower gastrointestinal bleeding: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. <span><span class="ref-journal">Endoscopy. </span>2021 Aug;<span class="ref-vol">53</span>(8):850-868.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/34062566" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34062566</span></a>]</div></dd><dt>44.</dt><dd><div class="bk_ref" id="article-42174.r44">Sung JJ, Lau JY, Ching JY, Wu JC, Lee YT, Chiu PW, Leung VK, Wong VW, Chan FK. Continuation of low-dose aspirin therapy in peptic ulcer bleeding: a randomized trial. <span><span class="ref-journal">Ann Intern Med. </span>2010 Jan 05;<span class="ref-vol">152</span>(1):1-9.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19949136" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19949136</span></a>]</div></dd><dt>45.</dt><dd><div class="bk_ref" id="article-42174.r45">Shi C, Mammadova-Bach E, Li C, Liu D, Anders HJ. Pathophysiology and targeted treatment of cholesterol crystal embolism and the related thrombotic angiopathy. <span><span class="ref-journal">FASEB J. </span>2023 Oct;<span class="ref-vol">37</span>(10):e23179.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/37676696" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 37676696</span></a>]</div></dd><dt>46.</dt><dd><div class="bk_ref" id="article-42174.r46">Abdelmalek MF, Spittell PC. 79-year-old woman with blue toes. <span><span class="ref-journal">Mayo Clin Proc. </span>1995 Mar;<span class="ref-vol">70</span>(3):292-5.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/7861818" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7861818</span></a>]</div></dd><dt>47.</dt><dd><div class="bk_ref" id="article-42174.r47">Maningding E, Kermani TA. Mimics of vasculitis. <span><span class="ref-journal">Rheumatology (Oxford). </span>2021 Jan 05;<span class="ref-vol">60</span>(1):34-47.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/33167039" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33167039</span></a>]</div></dd><dt>48.</dt><dd><div class="bk_ref" id="article-42174.r48">Zubkov AY, Mandrekar JN, Claassen DO, Manno EM, Wijdicks EF, Rabinstein AA. Predictors of outcome in warfarin-related intracerebral hemorrhage. <span><span class="ref-journal">Arch Neurol. </span>2008 Oct;<span class="ref-vol">65</span>(10):1320-5.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18852345" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18852345</span></a>]</div></dd><dt>49.</dt><dd><div class="bk_ref" id="article-42174.r49">Chornenki NLJ, Tritschler T, Stucki F, Odabashian R, Leentjens J, Khan F, Ly V, Siegal DM. All-cause mortality after major gastrointestinal bleeding among patients receiving direct oral anticoagulants: a protocol for a systematic review and meta-analysis. <span><span class="ref-journal">Syst Rev. </span>2022 Dec 13;<span class="ref-vol">11</span>(1):269.</span> [<a href="/pmc/articles/PMC9749304/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9749304</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36514164" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 36514164</span></a>]</div></dd><dt>50.</dt><dd><div class="bk_ref" id="article-42174.r50">Kim WS, Kim SH, Joo MK, Park JJ, Lee BJ, Chun HJ. Re-bleeding and all-cause mortality risk in non-variceal upper gastrointestinal bleeding: focusing on patients receiving oral anticoagulant therapy. <span><span class="ref-journal">Ann Med. </span>2023;<span class="ref-vol">55</span>(2):2253822.</span> [<a href="/pmc/articles/PMC10484029/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC10484029</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37672507" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 37672507</span></a>]</div></dd><dt>51.</dt><dd><div class="bk_ref" id="article-42174.r51">Vanderstuyft E, Hias J, Hellemans L, Van Aelst L, Tournoy J, Van der Linden LR. Appropriateness of antithrombotics in geriatric inpatients with atrial fibrillation: a retrospective, cross-sectional study. <span><span class="ref-journal">Eur J Hosp Pharm. </span>2024 Apr 05;</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/38580430" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 38580430</span></a>]</div></dd><dt>52.</dt><dd><div class="bk_ref" id="article-42174.r52">Yao X, Shah ND, Sangaralingham LR, Gersh BJ, Noseworthy PA. Non-Vitamin K Antagonist Oral Anticoagulant Dosing in Patients With Atrial Fibrillation and Renal Dysfunction. <span><span class="ref-journal">J Am Coll Cardiol. </span>2017 Jun 13;<span class="ref-vol">69</span>(23):2779-2790.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/28595692" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28595692</span></a>]</div></dd></dl></div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_top_margin">
<b>Disclosure: </b>Akshay Amaraneni declares no relevant financial relationships with ineligible companies.</p></div></dd><dt></dt><dd><div><p class="no_top_margin">
<b>Disclosure: </b>Venu Chippa declares no relevant financial relationships with ineligible companies.</p></div></dd><dt></dt><dd><div><p class="no_top_margin">
<b>Disclosure: </b>Jennifer Goldin declares no relevant financial relationships with ineligible companies.</p></div></dd><dt></dt><dd><div><p class="no_top_margin">
<b>Disclosure: </b>Andrew Rettew declares no relevant financial relationships with ineligible companies.</p></div></dd></dl></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> © 2025, StatPearls Publishing LLC.<p class="small">
This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
(<a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">
http://creativecommons.org/licenses/by-nc-nd/4.0/
</a>), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.
</p></div><div class="small"><span class="label">Bookshelf ID: NBK519025</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/30085567" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">30085567</a></span></div></div></div>
</div>
</div>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK519025&amp;ncbi_domain=statpearls&amp;ncbi_report=printable&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK519025/?report=printable&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
</html>