99 lines
74 KiB
Text
99 lines
74 KiB
Text
<!DOCTYPE html>
|
|
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" class="no-js no-jr">
|
|
<head>
|
|
<!-- For pinger, set start time and add meta elements. -->
|
|
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
|
|
|
<!-- Logger begin -->
|
|
<meta name="ncbi_db" content="books">
|
|
<meta name="ncbi_pdid" content="book-part">
|
|
<meta name="ncbi_acc" content="NBK453086">
|
|
<meta name="ncbi_domain" content="glyco3">
|
|
<meta name="ncbi_report" content="reader">
|
|
<meta name="ncbi_type" content="fulltext">
|
|
<meta name="ncbi_objectid" content="">
|
|
<meta name="ncbi_pcid" content="/NBK453086/?report=reader">
|
|
<meta name="ncbi_pagename" content="Monosaccharide Diversity - Essentials of Glycobiology - NCBI Bookshelf">
|
|
<meta name="ncbi_bookparttype" content="chapter">
|
|
<meta name="ncbi_app" content="bookshelf">
|
|
<!-- Logger end -->
|
|
|
|
<!--component id="Page" label="meta"/-->
|
|
<script type="text/javascript" src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.boots.min.js"> </script><title>Monosaccharide Diversity - Essentials of Glycobiology - NCBI Bookshelf</title>
|
|
<meta charset="utf-8">
|
|
<meta name="apple-mobile-web-app-capable" content="no">
|
|
<meta name="viewport" content="initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no">
|
|
<meta name="jr-col-layout" content="auto">
|
|
<meta name="jr-prev-unit" content="/books/n/glyco3/ch1/?report=reader">
|
|
<meta name="jr-next-unit" content="/books/n/glyco3/ch3/?report=reader">
|
|
<meta name="bk-toc-url" content="/books/n/glyco3/?report=toc">
|
|
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE,NOIMAGEINDEX">
|
|
<meta name="citation_inbook_title" content="Essentials of Glycobiology [Internet]. 3rd edition">
|
|
<meta name="citation_title" content="Monosaccharide Diversity">
|
|
<meta name="citation_publisher" content="Cold Spring Harbor Laboratory Press">
|
|
<meta name="citation_date" content="2017">
|
|
<meta name="citation_author" content="Peter H. Seeberger">
|
|
<meta name="citation_pmid" content="28876863">
|
|
<meta name="citation_doi" content="10.1101/glycobiology.3e.002">
|
|
<meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK453086/">
|
|
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/">
|
|
<meta name="DC.Title" content="Monosaccharide Diversity">
|
|
<meta name="DC.Type" content="Text">
|
|
<meta name="DC.Publisher" content="Cold Spring Harbor Laboratory Press">
|
|
<meta name="DC.Contributor" content="Peter H. Seeberger">
|
|
<meta name="DC.Date" content="2017">
|
|
<meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK453086/">
|
|
<meta name="DC.Language" content="en">
|
|
<meta name="description" content="This chapter covers the basic building blocks of glycans and fundamental considerations regarding glycan structure by introducing chemical concepts. Modes of linking glycans and structural depiction of the same are discussed to provide the groundwork for understanding longer glycans (Chapter 3).">
|
|
<meta name="og:title" content="Monosaccharide Diversity">
|
|
<meta name="og:type" content="book">
|
|
<meta name="og:description" content="This chapter covers the basic building blocks of glycans and fundamental considerations regarding glycan structure by introducing chemical concepts. Modes of linking glycans and structural depiction of the same are discussed to provide the groundwork for understanding longer glycans (Chapter 3).">
|
|
<meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK453086/">
|
|
<meta name="og:site_name" content="NCBI Bookshelf">
|
|
<meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-glyco3-lrg.png">
|
|
<meta name="twitter:card" content="summary">
|
|
<meta name="twitter:site" content="@ncbibooks">
|
|
<meta name="bk-non-canon-loc" content="/books/n/glyco3/ch2/?report=reader">
|
|
<link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK579981/">
|
|
<link href="https://fonts.googleapis.com/css?family=Archivo+Narrow:400,700,400italic,700italic&subset=latin" rel="stylesheet" type="text/css">
|
|
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/libs.min.css">
|
|
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/jr.min.css">
|
|
<meta name="format-detection" content="telephone=no">
|
|
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css">
|
|
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css//books_print.min.css" type="text/css" media="print">
|
|
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_reader.min.css" type="text/css">
|
|
<style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style>
|
|
|
|
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico">
|
|
<meta name="ncbi_phid" content="CE8DA4327D6895010000000000AD0090.m_5">
|
|
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3849091.css"></head>
|
|
<body>
|
|
<!-- Book content! -->
|
|
|
|
|
|
<div id="jr" data-jr-path="/corehtml/pmc/jatsreader/ptpmc_3.22/"><div class="jr-unsupported"><table class="modal"><tr><td><span class="attn inline-block"></span><br />Your browser does not support the NLM PubReader view.<br />Go to <a href="/pmc/about/pr-browsers/">this page</a> to see a list of supported browsers<br />or return to the <br /><a href="/books/NBK453086/?report=classic">regular view</a>.</td></tr></table></div><div id="jr-ui" class="hidden"><nav id="jr-head"><div class="flexh tb"><div id="jr-tb1"><a id="jr-links-sw" class="hidden" title="Links"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" x="0px" y="0px" viewBox="0 0 70.6 85.3" style="enable-background:new 0 0 70.6 85.3;vertical-align:middle" xml:space="preserve" width="24" height="24">
|
|
<style type="text/css">.st0{fill:#939598;}</style>
|
|
<g>
|
|
<path class="st0" d="M36,0C12.8,2.2-22.4,14.6,19.6,32.5C40.7,41.4-30.6,14,35.9,9.8"></path>
|
|
<path class="st0" d="M34.5,85.3c23.2-2.2,58.4-14.6,16.4-32.5c-21.1-8.9,50.2,18.5-16.3,22.7"></path>
|
|
<path class="st0" d="M34.7,37.1c66.5-4.2-4.8-31.6,16.3-22.7c42.1,17.9,6.9,30.3-16.4,32.5h1.7c-66.2,4.4,4.8,31.6-16.3,22.7 c-42.1-17.9-6.9-30.3,16.4-32.5"></path>
|
|
</g>
|
|
</svg> Books</a></div><div class="jr-rhead f1 flexh"><div class="head"><a href="/books/n/glyco3/ch1/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="body"><div class="t">Chapter 2, Monosaccharide Diversity</div><div class="j">Essentials of Glycobiology [Internet]. 3rd edition</div></div><div class="tail"><a href="/books/n/glyco3/ch3/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></div><div id="jr-tb2"><a id="jr-bkhelp-sw" class="btn wsprkl hidden" title="Help with NLM PubReader">?</a><a id="jr-help-sw" class="btn wsprkl hidden" title="Settings and typography in NLM PubReader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" preserveAspectRatio="none"><path d="M462,283.742v-55.485l-29.981-10.662c-11.431-4.065-20.628-12.794-25.274-24.001 c-0.002-0.004-0.004-0.009-0.006-0.013c-4.659-11.235-4.333-23.918,0.889-34.903l13.653-28.724l-39.234-39.234l-28.72,13.652 c-10.979,5.219-23.68,5.546-34.908,0.889c-0.005-0.002-0.01-0.003-0.014-0.005c-11.215-4.65-19.933-13.834-24-25.273L283.741,50 h-55.484l-10.662,29.981c-4.065,11.431-12.794,20.627-24.001,25.274c-0.005,0.002-0.009,0.004-0.014,0.005 c-11.235,4.66-23.919,4.333-34.905-0.889l-28.723-13.653l-39.234,39.234l13.653,28.721c5.219,10.979,5.545,23.681,0.889,34.91 c-0.002,0.004-0.004,0.009-0.006,0.013c-4.649,11.214-13.834,19.931-25.271,23.998L50,228.257v55.485l29.98,10.661 c11.431,4.065,20.627,12.794,25.274,24c0.002,0.005,0.003,0.01,0.005,0.014c4.66,11.236,4.334,23.921-0.888,34.906l-13.654,28.723 l39.234,39.234l28.721-13.652c10.979-5.219,23.681-5.546,34.909-0.889c0.005,0.002,0.01,0.004,0.014,0.006 c11.214,4.649,19.93,13.833,23.998,25.271L228.257,462h55.484l10.595-29.79c4.103-11.538,12.908-20.824,24.216-25.525 c0.005-0.002,0.009-0.004,0.014-0.006c11.127-4.628,23.694-4.311,34.578,0.863l28.902,13.738l39.234-39.234l-13.66-28.737 c-5.214-10.969-5.539-23.659-0.886-34.877c0.002-0.005,0.004-0.009,0.006-0.014c4.654-11.225,13.848-19.949,25.297-24.021 L462,283.742z M256,331.546c-41.724,0-75.548-33.823-75.548-75.546s33.824-75.547,75.548-75.547 c41.723,0,75.546,33.824,75.546,75.547S297.723,331.546,256,331.546z"></path></svg></a><a id="jr-fip-sw" class="btn wsprkl hidden" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-rtoc-sw" class="btn wsprkl hidden" title="Table of Contents"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,20h10v8H20V20zM36,20h44v8H36V20zM20,37.33h10v8H20V37.33zM36,37.33h44v8H36V37.33zM20,54.66h10v8H20V54.66zM36,54.66h44v8H36V54.66zM20,72h10v8 H20V72zM36,72h44v8H36V72z"></path></svg></a></div></div></nav><nav id="jr-dash" class="noselect"><nav id="jr-dash" class="noselect"><div id="jr-pi" class="hidden"><a id="jr-pi-prev" class="hidden" title="Previous page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a><div class="pginfo">Page <i class="jr-pg-pn">0</i> of <i class="jr-pg-lp">0</i></div><a id="jr-pi-next" class="hidden" title="Next page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div><div id="jr-is-tb"><a id="jr-is-sw" class="btn wsprkl hidden" title="Switch between Figures/Tables strip and Progress bar"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><rect x="10" y="40" width="20" height="20"></rect><rect x="40" y="40" width="20" height="20"></rect><rect x="70" y="40" width="20" height="20"></rect></svg></a></div><nav id="jr-istrip" class="istrip hidden"><a id="jr-is-prev" href="#" class="hidden" title="Previous"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M80,40 60,65 80,90 70,90 50,65 70,40z M50,40 30,65 50,90 40,90 20,65 40,40z"></path><text x="35" y="25" textLength="60" style="font-size:25px">Prev</text></svg></a><a id="jr-is-next" href="#" class="hidden" title="Next"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,40 40,65 20,90 30,90 50,65 30,40z M50,40 70,65 50,90 60,90 80,65 60,40z"></path><text x="15" y="25" textLength="60" style="font-size:25px">Next</text></svg></a></nav><nav id="jr-progress"></nav></nav></nav><aside id="jr-links-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">NCBI Bookshelf</div></div><div class="cnt lol f1"><a href="/books/">Home</a><a href="/books/browse/">Browse All Titles</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/sharer/sharer.php?u=https://www.ncbi.nlm.nih.gov/books/NBK453086/"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24" preserveAspectRatio="none"><g><path d="M 17.996,32L 12,32 L 12,16 l-4,0 l0-5.514 l 4-0.002l-0.006-3.248C 11.993,2.737, 13.213,0, 18.512,0l 4.412,0 l0,5.515 l-2.757,0 c-2.063,0-2.163,0.77-2.163,2.209l-0.008,2.76l 4.959,0 l-0.585,5.514L 18,16L 17.996,32z"></path></g></svg> Share on Facebook</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://twitter.com/intent/tweet?url=https://www.ncbi.nlm.nih.gov/books/NBK453086/&text=Monosaccharide%20Diversity"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24"><g><path d="M 32,6.076c-1.177,0.522-2.443,0.875-3.771,1.034c 1.355-0.813, 2.396-2.099, 2.887-3.632 c-1.269,0.752-2.674,1.299-4.169,1.593c-1.198-1.276-2.904-2.073-4.792-2.073c-3.626,0-6.565,2.939-6.565,6.565 c0,0.515, 0.058,1.016, 0.17,1.496c-5.456-0.274-10.294-2.888-13.532-6.86c-0.565,0.97-0.889,2.097-0.889,3.301 c0,2.278, 1.159,4.287, 2.921,5.465c-1.076-0.034-2.088-0.329-2.974-0.821c-0.001,0.027-0.001,0.055-0.001,0.083 c0,3.181, 2.263,5.834, 5.266,6.438c-0.551,0.15-1.131,0.23-1.73,0.23c-0.423,0-0.834-0.041-1.235-0.118 c 0.836,2.608, 3.26,4.506, 6.133,4.559c-2.247,1.761-5.078,2.81-8.154,2.81c-0.53,0-1.052-0.031-1.566-0.092 c 2.905,1.863, 6.356,2.95, 10.064,2.95c 12.076,0, 18.679-10.004, 18.679-18.68c0-0.285-0.006-0.568-0.019-0.849 C 30.007,8.548, 31.12,7.392, 32,6.076z"></path></g></svg> Share on Twitter</a></div></aside><aside id="jr-rtoc-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Table of Content</div></div><div class="cnt lol f1"><a href="/books/n/glyco3/?report=reader">Title Information</a><a href="/books/n/glyco3/toc/?report=reader">Table of Contents Page</a></div></aside><aside id="jr-help-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Settings</div></div><div class="cnt f1"><div id="jr-typo-p" class="typo"><div><a class="sf btn wsprkl">A-</a><a class="lf btn wsprkl">A+</a></div><div><a class="bcol-auto btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 100" preserveAspectRatio="none"><text x="10" y="70" style="font-size:60px;font-family: Trebuchet MS, ArialMT, Arial, sans-serif" textLength="180">AUTO</text></svg></a><a class="bcol-1 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M15,25 85,25zM15,40 85,40zM15,55 85,55zM15,70 85,70z"></path></svg></a><a class="bcol-2 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M5,25 45,25z M55,25 95,25zM5,40 45,40z M55,40 95,40zM5,55 45,55z M55,55 95,55zM5,70 45,70z M55,70 95,70z"></path></svg></a></div></div><div class="lol"><a class="" href="/books/NBK453086/?report=classic">Switch to classic view</a><a href="/books/NBK453086/?report=printable">Print View</a></div></div></aside><aside id="jr-bkhelp-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Help</div></div><div class="cnt f1 lol"><a id="jr-helpobj-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/help.xml" href="">Help</a><a href="mailto:info@ncbi.nlm.nih.gov?subject=PubReader%20feedback%20%2F%20NBK453086%20%2F%20sid%3ACE8B5AF87C7FFCB1_0191SID%20%2F%20phid%3ACE8DA4327D6895010000000000AD0090.4">Send us feedback</a><a id="jr-about-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/about.xml" href="">About PubReader</a></div></aside><aside id="jr-objectbox" class="thidden hidden"><div class="jr-objectbox-close wsprkl">✘</div><div class="jr-objectbox-inner cnt"><div class="jr-objectbox-drawer"></div></div></aside><nav id="jr-pm-left" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Previous Page</text></svg></nav><nav id="jr-pm-right" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Next Page</text></svg></nav><nav id="jr-fip" class="hidden"><nav id="jr-fip-term-p"><input type="search" placeholder="search this page" id="jr-fip-term" autocorrect="off" autocomplete="off" /><a id="jr-fip-mg" class="wsprkl btn" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-fip-done" class="wsprkl btn" title="Dismiss find">✘</a></nav><nav id="jr-fip-info-p"><a id="jr-fip-prev" class="wsprkl btn" title="Jump to previuos match">◀</a><button id="jr-fip-matches">no matches yet</button><a id="jr-fip-next" class="wsprkl btn" title="Jump to next match">▶</a></nav></nav></div><div id="jr-epub-interstitial" class="hidden"></div><div id="jr-content"><article data-type="main"><p class="vip-notice"><strong><a href="/books/n/glyco4/?report=reader">A new version of this title is available</a></strong></p><p class="vip-notice"><strong><a href="/books/NBK579981/?report=reader">See the updated version of this chapter</a></strong></p><div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><div class="fm-sec"><h1 id="_NBK453086_"><span class="label">Chapter 2</span><span class="title" itemprop="name">Monosaccharide Diversity</span></h1><p class="contribs">Seeberger PH.</p><p class="fm-aai"><a href="#_NBK453086_pubdet_">Publication Details</a></p></div></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="_abs_rndgid_" itemprop="description"><p>This chapter covers the basic building blocks of glycans and fundamental considerations regarding glycan structure by introducing chemical concepts. Modes of linking glycans and structural depiction of the same are discussed to provide the groundwork for understanding longer glycans (<a href="/books/n/glyco3/ch3/?report=reader">Chapter 3</a>).</p></div><div id="Ch2_s1"><h2 id="_Ch2_s1_">INTRODUCTION TO GLYCAN TERMINOLOGY</h2><p>In this book, as well as in the earlier editions, the term glycan is used. Still, a host of names are commonly used to refer to sugar polymers in other textbooks and the literature. In the 19th century, sugar-based substances were referred to as carbohydrates, or “hydrates of carbon,” that are based on the general formula C<sub><i>x</i></sub>(H<sub>2</sub>O)<sub><i>n</i></sub> that also possess a carbonyl group, either an aldehyde or a ketone. Monosaccharides are the simplest of these polyhydroxylated carbonyl compounds (saccharide is derived from the Greek word for sugar or sweetness).</p><p>Monosaccharides are joined together to give rise to oligosaccharides or polysaccharides. Typically, the term “oligosaccharide” refers to any glycan that contains less than 20 monosaccharide residues connected by glycosidic linkages. The term “polysaccharide” is typically used to denote any linear or branched polymer consisting of monosaccharide residues, such as cellulose (<a href="/books/n/glyco3/ch14/?report=reader">Chapters 14</a> and <a href="/books/n/glyco3/ch24/?report=reader">24</a>). Thus, the relationship of monosaccharides to oligosaccharides or polysaccharides is analogous to that of amino acids and proteins, or nucleotides and nucleic acids (polynucleotides).</p><p>The term “glycoconjugate” is often used to describe a macromolecule that contains monosaccharides covalently linked to proteins or lipids. The prefix “glycol” and the suffixes “saccharide” and “glycan” indicate the presence of carbohydrate constituents (e.g., glycoproteins, glycolipids, and proteoglycans). Just as is observed with proteins in nature, additional structural diversity can be imparted to glycans by modifying their hydroxyl groups with phosphate, sulfate, or acetyl esters and/or their amino groups with acetyl or sulfate groups.</p><p>A carbohydrate may be termed “complex” if it contains more than one type of monosaccharide building unit. The glucose-based polymer cellulose is an example of a “simple” carbohydrate, whereas a galactomannan polysaccharide, composed of both galactose and mannose, is an example of a complex carbohydrate. However, even so-called simple glycans, such as cellulose and starch, often have very complex molecular structures in three dimensions. The term complex carbohydrates includes glycoconjugates, whereas the term carbohydrates per se would not. Additional nomenclature issues are covered in this chapter and <a href="/books/n/glyco3/ch3/?report=reader">Chapter 3</a>. A more detailed and comprehensive listing of carbohydrate nomenclature rules has been published (see <a class="bibr" href="#CH2C3" rid="CH2C3">McNaught 1997</a> and <a class="bibr" href="#CH2C7" rid="CH2C7">Varki et al. 2015</a> in Further Reading at the end of this chapter), and <a href="/books/n/glyco3/symbolnomenclature/?report=reader">Online Appendix 1B</a>.</p></div><div id="Ch2_s2"><h2 id="_Ch2_s2_">MONOSACCHARIDES: BASIC STRUCTURES AND STEREOISOMERISM</h2><p>The classification of monosaccharide structures began in the late 19th century with the pioneering work of Emil Fischer. All simple monosaccharides have the general empirical formula C<sub><i>x</i></sub>(H<sub>2</sub>O)<sub><i>n</i></sub>, where <i>n</i> is an integer ranging from 3 to 9. As mentioned briefly in <a href="/books/n/glyco3/ch1/?report=reader">Chapter 1</a>, all monosaccharides consist of a chain of chiral hydroxymethylene units, which terminates at one end with a hydroxymethyl group and at the other with either an aldehyde group (aldoses) or an α-hydroxy ketone group (ketoses). Glyceraldehyde is the simplest aldose and dihydroxyacetone is the simplest ketose (<a class="figpopup" href="/books/NBK453086/figure/ch2.f1/?report=objectonly" target="object" rid-figpopup="figch2f1" rid-ob="figobch2f1">Figure 2.1</a>). The structures of glyceraldehyde and dihydroxyacetone are distinct in that glyceraldehyde contains an asymmetric (chiral) carbon atom (<a class="figpopup" href="/books/NBK453086/figure/ch2.f1/?report=objectonly" target="object" rid-figpopup="figch2f1" rid-ob="figobch2f1">Figure 2.1</a>), whereas dihydroxyacetone does not. With the exception of dihydroxyacetone, all monosaccharides have at least one asymmetric carbon atom, the total number being equal to the number of internal (CHOH) groups (<i>n</i>−2 for aldoses and <i>n</i>−3 for ketoses with <i>n</i> carbon atoms). The number of stereoisomers corresponds to 2<sup><i>k</i></sup>, where <i>k</i> equals the number of asymmetric carbon atoms. For example, an aldohexose with the general formula C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> and four asymmetric carbon atoms (i.e., four (CHOH) groups) can be described in 16 possible isomeric forms (<a class="figpopup" href="/books/NBK453086/figure/ch2.f1/?report=objectonly" target="object" rid-figpopup="figch2f1" rid-ob="figobch2f1">Figure 2.1</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f1" co-legend-rid="figlgndch2f1"><a href="/books/NBK453086/figure/ch2.f1/?report=objectonly" target="object" title="FIGURE 2.1." class="img_link icnblk_img figpopup" rid-figpopup="figch2f1" rid-ob="figobch2f1"><img class="small-thumb" src="/books/NBK453086/bin/ch2f01.gif" src-large="/books/NBK453086/bin/ch2f01.jpg" alt="FIGURE 2.1.. Structures of glyceraldehyde and dihydroxyacetone." /></a><div class="icnblk_cntnt" id="figlgndch2f1"><h4 id="ch2.f1"><a href="/books/NBK453086/figure/ch2.f1/?report=objectonly" target="object" rid-ob="figobch2f1">FIGURE 2.1.</a></h4><p class="float-caption no_bottom_margin">Structures of glyceraldehyde and dihydroxyacetone. (<i>A</i>) Fischer projection. (<i>B</i>) D- and L-glyceraldehyde. The chiral central carbon in glyceraldehyde gives rise to two possible configurations of the molecule, termed D and L. </p></div></div><p>The numbering of carbon atoms follows the rules of organic chemistry nomenclature. The aldehyde carbon is referred to as C-1 and the carbonyl group in ketoses is referred to as C-2. The overall configuration (D or L) of each sugar is determined by the absolute configuration of the stereogenic center furthest from the carbonyl group (i.e., with the highest numbered asymmetric carbon atom; this is C-5 in hexoses and C-4 in pentoses). The configuration of a monosaccharide is most easily determined by representing the structure in a Fischer projection. If the OH (or other non-H group) is on the right in the Fischer projection, the overall configuration is D. If the OH (or other non-H group) is on the left, the overall configuration is L (<a class="figpopup" href="/books/NBK453086/figure/ch2.f2/?report=objectonly" target="object" rid-figpopup="figch2f2" rid-ob="figobch2f2">Figure 2.2</a>). This figure also shows D- and L-glucose in the cyclic form (chair conformation) found in solution. Most vertebrate monosaccharides have the D configuration with the exception of fucose and iduronic acid (IdoA) L sugars. The Fischer projections shown in <a class="figpopup" href="/books/NBK453086/figure/ch2.f3/?report=objectonly" target="object" rid-figpopup="figch2f3" rid-ob="figobch2f3">Figure 2.3</a> illustrate the acyclic structures of all D-aldoses through the aldohexose group.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f2" co-legend-rid="figlgndch2f2"><a href="/books/NBK453086/figure/ch2.f2/?report=objectonly" target="object" title="FIGURE 2.2." class="img_link icnblk_img figpopup" rid-figpopup="figch2f2" rid-ob="figobch2f2"><img class="small-thumb" src="/books/NBK453086/bin/ch2f02.gif" src-large="/books/NBK453086/bin/ch2f02.jpg" alt="FIGURE 2.2.. D- and L-glucopyranose in Fischer projection and chair conformation." /></a><div class="icnblk_cntnt" id="figlgndch2f2"><h4 id="ch2.f2"><a href="/books/NBK453086/figure/ch2.f2/?report=objectonly" target="object" rid-ob="figobch2f2">FIGURE 2.2.</a></h4><p class="float-caption no_bottom_margin">D- and L-glucopyranose in Fischer projection and chair conformation. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f3" co-legend-rid="figlgndch2f3"><a href="/books/NBK453086/figure/ch2.f3/?report=objectonly" target="object" title="FIGURE 2.3." class="img_link icnblk_img figpopup" rid-figpopup="figch2f3" rid-ob="figobch2f3"><img class="small-thumb" src="/books/NBK453086/bin/ch2f03.gif" src-large="/books/NBK453086/bin/ch2f03.jpg" alt="FIGURE 2.3.. Fischer projections for the acyclic forms of the D series of aldoses, ranging from triose to hexose." /></a><div class="icnblk_cntnt" id="figlgndch2f3"><h4 id="ch2.f3"><a href="/books/NBK453086/figure/ch2.f3/?report=objectonly" target="object" rid-ob="figobch2f3">FIGURE 2.3.</a></h4><p class="float-caption no_bottom_margin">Fischer projections for the acyclic forms of the D series of aldoses, ranging from triose to hexose. </p></div></div><p>Any two sugars that differ only in the configuration around a single chiral carbon atom are called epimers. For example, D-mannose is the C-2 epimer of D-glucose, whereas D-galactose is the C-4 epimer of D-glucose (<a class="figpopup" href="/books/NBK453086/figure/ch2.f4/?report=objectonly" target="object" rid-figpopup="figch2f4" rid-ob="figobch2f4">Figure 2.4</a>). Monosaccharide names are frequently abbreviated; most common are three-letter abbreviations for simple monosaccharides (e.g., Gal, Glc, Man, Xyl, Fuc). There are nine common monosaccharides found in vertebrate glycoconjugates (<a class="figpopup" href="/books/NBK453086/figure/ch2.f4/?report=objectonly" target="object" rid-figpopup="figch2f4" rid-ob="figobch2f4">Figure 2.4</a>). Once incorporated into a glycan, these nine monosaccharide building blocks can be further modified to generate additional sugar structures. For example, glucuronic acid (GlcA) can be epimerized at C-5 to generate IdoA. Many more monosaccharides exist in glycoconjugates from other species and as intermediates in metabolism. We use a symbolic notation for the monosaccharides that are most abundant in vertebrate glycoconjugates (see <a href="/books/n/glyco3/ch1/?report=reader">Chapter 1</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f4" co-legend-rid="figlgndch2f4"><a href="/books/NBK453086/figure/ch2.f4/?report=objectonly" target="object" title="FIGURE 2.4." class="img_link icnblk_img figpopup" rid-figpopup="figch2f4" rid-ob="figobch2f4"><img class="small-thumb" src="/books/NBK453086/bin/ch2f04.gif" src-large="/books/NBK453086/bin/ch2f04.jpg" alt="FIGURE 2.4.. Common monosaccharides found in vertebrates." /></a><div class="icnblk_cntnt" id="figlgndch2f4"><h4 id="ch2.f4"><a href="/books/NBK453086/figure/ch2.f4/?report=objectonly" target="object" rid-ob="figobch2f4">FIGURE 2.4.</a></h4><p class="float-caption no_bottom_margin">Common monosaccharides found in vertebrates. <i>N</i>-Acetylneuraminic acid is the most common form of sialic acid. </p></div></div></div><div id="Ch2_s3"><h2 id="_Ch2_s3_">MONOSACCHARIDES EXIST PRIMARILY IN CYCLIC FORM</h2><p>Monosaccharides exist in solution as an equilibrium mixture of acyclic and cyclic forms. The percentage of each form depends on the sugar structure. The cyclic form of a monosaccharide is characterized by a hemiacetal group formed by the reaction of one of the hydroxyl groups with the C-1 aldehyde or ketone. For reasons of chemical stability, five- and six-membered rings are most commonly formed from acyclic monosaccharides. Generally, aldohexoses form six-membered rings via a C-1—O—C-5 ring closure; ketohexoses form five-membered rings via a C-2—O—C-5 ring closure; aldohexoses form five-membered rings through a C-1—O—C-4 ring closure (<a class="figpopup" href="/books/NBK453086/figure/ch2.f5/?report=objectonly" target="object" rid-figpopup="figch2f5" rid-ob="figobch2f5">Figure 2.5</a>). A five-membered cyclic hemiacetal is labeled a furanose and a six-membered cyclic hemiacetal is called a “pyranose.”</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f5" co-legend-rid="figlgndch2f5"><a href="/books/NBK453086/figure/ch2.f5/?report=objectonly" target="object" title="FIGURE 2.5." class="img_link icnblk_img figpopup" rid-figpopup="figch2f5" rid-ob="figobch2f5"><img class="small-thumb" src="/books/NBK453086/bin/ch2f05.gif" src-large="/books/NBK453086/bin/ch2f05.jpg" alt="FIGURE 2.5.. Cyclization of acyclic D-glucose to form pyranose and furanose structures." /></a><div class="icnblk_cntnt" id="figlgndch2f5"><h4 id="ch2.f5"><a href="/books/NBK453086/figure/ch2.f5/?report=objectonly" target="object" rid-ob="figobch2f5">FIGURE 2.5.</a></h4><p class="float-caption no_bottom_margin">Cyclization of acyclic D-glucose to form pyranose and furanose structures. The cyclization reaction produces both the α and β anomers (i.e., C-1 epimers). </p></div></div><div id="Ch2_s3a"><h3>Formation of Hemiacetals</h3><p>Monosaccharides can also be represented as Haworth projections in which both five-and six-membered cyclic structures are depicted as planar ring systems, with the hydroxy groups oriented either above or below the plane of the ring (<a class="figpopup" href="/books/NBK453086/figure/ch2.f6/?report=objectonly" target="object" rid-figpopup="figch2f6" rid-ob="figobch2f6">Figure 2.6</a>). Although not truly representative of the three-dimensional structure of a monosaccharide, the Haworth representation has been used since the late 1920s as an easy-to-draw formula that permits a quick evaluation of stereochemistry around the monosaccharide ring. The Haworth representations are preferably drawn with the ring oxygen atom at the top (for furanose) or the top right-hand corner (for pyranose) of the structure; the numbering of the ring carbons increases in a clockwise direction.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f6" co-legend-rid="figlgndch2f6"><a href="/books/NBK453086/figure/ch2.f6/?report=objectonly" target="object" title="FIGURE 2.6." class="img_link icnblk_img figpopup" rid-figpopup="figch2f6" rid-ob="figobch2f6"><img class="small-thumb" src="/books/NBK453086/bin/ch2f06.gif" src-large="/books/NBK453086/bin/ch2f06.jpg" alt="FIGURE 2.6.. Conversion from Fischer to Haworth projection." /></a><div class="icnblk_cntnt" id="figlgndch2f6"><h4 id="ch2.f6"><a href="/books/NBK453086/figure/ch2.f6/?report=objectonly" target="object" rid-ob="figobch2f6">FIGURE 2.6.</a></h4><p class="float-caption no_bottom_margin">Conversion from Fischer to Haworth projection. Each hydroxyl group projected to the right in the Fischer projection points down in the Haworth formula. </p></div></div><p>For any D sugar, the conversion of a Fischer projection into a Haworth projection proceeds as follows: (1) any groups (atoms) that are directed to the right in the Fischer structure are given a downward orientation in the Haworth structure, (2) any groups (atoms) that are directed to the left in the Fischer structure are given an upward orientation in the Haworth structure, and (3) the terminal —CH<sub>2</sub>OH group is given an upward orientation in the Haworth structure. For an L sugar, (1) and (2) are the same, but the terminal —CH<sub>2</sub>OH group is projected downward.</p><p>The planar Haworth structures are distorted representations of the actual molecules. The preferred conformation of a pyranose ring is the “chair” conformation, similar to the structure of cyclohexane. The conversion from Haworth projection to chair conformation leaves the downward or upward orientation of ring substituents unaltered. Two chair conformations can be distinguished and designated as <sup>4</sup>C<sub>1</sub> and <sup>1</sup>C<sub>4</sub>, respectively (<a class="figpopup" href="/books/NBK453086/figure/ch2.f7/?report=objectonly" target="object" rid-figpopup="figch2f7" rid-ob="figobch2f7">Figure 2.7A</a>), and these conformers can interconvert by a process called the “ring flip.” The first numeral in the chair conformer designation (superscript) indicates the number of the ring carbon atom above the “seat of the chair (C)” and the second numeral (subscript) indicates the number of the ring carbon atom below the plane of the seat (spanned by C-2, C-3, C-5, and the ring O). Chair conformations are designated from structures with the ring oxygen atom in the top right-hand corner of the ring “seat,” resulting in the clockwise appearance of the ring numbering. To determine the stereochemistry in the chair form as it corresponds to the Fischer projection, one can locate C-6 and then trace along the carbon skeleton of the sugar, bisecting the C—O and C—H bonds formed from each atom. The OH (or OR) and H groups are found on the right (R) or left (L) sides, just as in the Fischer projection (<a class="figpopup" href="/books/NBK453086/figure/ch2.f8/?report=objectonly" target="object" rid-figpopup="figch2f8" rid-ob="figobch2f8">Figure 2.8</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f7" co-legend-rid="figlgndch2f7"><a href="/books/NBK453086/figure/ch2.f7/?report=objectonly" target="object" title="FIGURE 2.7." class="img_link icnblk_img figpopup" rid-figpopup="figch2f7" rid-ob="figobch2f7"><img class="small-thumb" src="/books/NBK453086/bin/ch2f07.gif" src-large="/books/NBK453086/bin/ch2f07.jpg" alt="FIGURE 2.7.. Chair conformations." /></a><div class="icnblk_cntnt" id="figlgndch2f7"><h4 id="ch2.f7"><a href="/books/NBK453086/figure/ch2.f7/?report=objectonly" target="object" rid-ob="figobch2f7">FIGURE 2.7.</a></h4><p class="float-caption no_bottom_margin">Chair conformations. (<i>A</i>) β-D-Glucose in Haworth projection and in its <sup>4</sup>C<sub>1</sub> and <sup>1</sup>C<sub>4</sub> chair conformations; (<i>B</i>) envelope and twist conformations for a five-membered ring structure. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f8" co-legend-rid="figlgndch2f8"><a href="/books/NBK453086/figure/ch2.f8/?report=objectonly" target="object" title="FIGURE 2.8." class="img_link icnblk_img figpopup" rid-figpopup="figch2f8" rid-ob="figobch2f8"><img class="small-thumb" src="/books/NBK453086/bin/ch2f08.gif" src-large="/books/NBK453086/bin/ch2f08.jpg" alt="FIGURE 2.8.. Conversion from Fischer to chair projection formula; (R) right; (L) left." /></a><div class="icnblk_cntnt" id="figlgndch2f8"><h4 id="ch2.f8"><a href="/books/NBK453086/figure/ch2.f8/?report=objectonly" target="object" rid-ob="figobch2f8">FIGURE 2.8.</a></h4><p class="float-caption no_bottom_margin">Conversion from Fischer to chair projection formula; (R) right; (L) left. <i>Red arrows</i> illustrate the path to follow along the sugar backbone when correlating the stereochemistry of the Fischer projection with the chair conformation. </p></div></div><p>The more structurally accurate chair representations are preferred to Haworth projections for depicting pyranoses. However, Haworth projections are convenient and are commonly used to depict furanoses. The furanose ring is rather flexible and not entirely flat in any of its energetically favored conformations; for example, it has a slight pucker when viewed from the side, as seen in the representations of the so-called envelope and twist (or skew) conformations (<a class="figpopup" href="/books/NBK453086/figure/ch2.f7/?report=objectonly" target="object" rid-figpopup="figch2f7" rid-ob="figobch2f7">Figure 2.7B</a>). Because furanoses can adopt many low-energy conformations, researchers have adopted the Haworth projection as a simple means to avoid this complexity.</p></div></div><div id="Ch2_s4"><h2 id="_Ch2_s4_">CHEMISTRY AT THE ANOMERIC CENTER</h2><div id="Ch2_s4a"><h3>Mutarotation</h3><p>When cyclized into rings, monosaccharides acquire an additional asymmetric center derived from the carbonyl carbon atom (<a class="figpopup" href="/books/NBK453086/figure/ch2.f5/?report=objectonly" target="object" rid-figpopup="figch2f5" rid-ob="figobch2f5">Figure 2.5</a>). The new asymmetric center is termed the “anomeric carbon” (i.e., C-1 in the ring form of glucose). Two stereoisomers are formed by the cyclization reaction because the anomeric hydroxy group can assume two possible orientations. When the configurations (R or S) are the same at the anomeric carbon and the stereogenic center furthest from the anomeric carbon, the monosaccharide is defined as the α anomer. When the configurations are different, the monosaccharide is defined as the β anomer (<a class="figpopup" href="/books/NBK453086/figure/ch2.f9/?report=objectonly" target="object" rid-figpopup="figch2f9" rid-ob="figobch2f9">Figure 2.9</a>). Unlike the other stereocenters on the monosaccharide ring, which are configurationally stable, the anomeric center can undergo an interconversion of stereoisomers via the process of mutarotation. Catalyzed by dilute acid or base, the reaction proceeds by the reverse of the cyclization reaction. The monosaccharide ring opens up and then recloses to form a ring with the other anomeric configuration (<a class="figpopup" href="/books/NBK453086/figure/ch2.f5/?report=objectonly" target="object" rid-figpopup="figch2f5" rid-ob="figobch2f5">Figure 2.5</a>). The term mutarotation derives from the rapid change in optical rotation (denoted [α] D) that is observed when an anomerically pure form of a monosaccharide is dissolved in water. For example, β-D-glucopyranose shows an initial rotation of +19°, whereas the α anomer shows an initial rotation of +112°. When either anomer is allowed to undergo the mutarotation reaction, an equilibrium mixture containing both anomers is obtained, producing a rotation of +52.5°.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f9" co-legend-rid="figlgndch2f9"><a href="/books/NBK453086/figure/ch2.f9/?report=objectonly" target="object" title="FIGURE 2.9." class="img_link icnblk_img figpopup" rid-figpopup="figch2f9" rid-ob="figobch2f9"><img class="small-thumb" src="/books/NBK453086/bin/ch2f09.gif" src-large="/books/NBK453086/bin/ch2f09.jpg" alt="FIGURE 2.9.. Determination of configuration at the anomeric center." /></a><div class="icnblk_cntnt" id="figlgndch2f9"><h4 id="ch2.f9"><a href="/books/NBK453086/figure/ch2.f9/?report=objectonly" target="object" rid-ob="figobch2f9">FIGURE 2.9.</a></h4><p class="float-caption no_bottom_margin">Determination of configuration at the anomeric center. </p></div></div></div><div id="Ch2_s4b"><h3>Oxidation and Reduction</h3><p>Generally, the acyclic (aldehyde or ketone) form of a monosaccharide is only present in minor amounts in an equilibrium mixture (<0.01%). Nevertheless, the open-chain aldehydes or ketones can participate in chemical reactions that drive the equilibrium and eventually consume the sugar.</p><p>Aldoses and ketoses were historically referred to as “reducing sugars” because they responded positively in a chemical test that effected oxidation of their aldehyde and hydroxyketone functionalities, respectively. The carboxylic acid formed by oxidation of the aldehyde in an aldose is referred to as a glyconic acid (e.g., gluconic acid is the oxidation product of glucose). It is also possible to oxidize the hydroxyl groups of monosaccharides, most notably the terminal OH group (i.e., C-6 of glucose). In this reaction, a glycuronic acid is produced, and if both terminal groups are oxidized, the product is a glycaric acid. The three acids derived from D-glucose are illustrated in <a class="figpopup" href="/books/NBK453086/figure/ch2.f10/?report=objectonly" target="object" rid-figpopup="figch2f10" rid-ob="figobch2f10">Figure 2.10</a>. These compounds have a tendency to undergo intramolecular cyclization reactions, preferably yielding six-membered lactones. Two examples of lactonization are shown in <a class="figpopup" href="/books/NBK453086/figure/ch2.f11/?report=objectonly" target="object" rid-figpopup="figch2f11" rid-ob="figobch2f11">Figure 2.11</a>. Oxidized forms of monosaccharides can be found in nature. For example, GlcA is an abundant component of many glycosaminglycans (see <a href="/books/n/glyco3/ch17/?report=reader">Chapter 17</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f10" co-legend-rid="figlgndch2f10"><a href="/books/NBK453086/figure/ch2.f10/?report=objectonly" target="object" title="FIGURE 2.10." class="img_link icnblk_img figpopup" rid-figpopup="figch2f10" rid-ob="figobch2f10"><img class="small-thumb" src="/books/NBK453086/bin/ch2f10.gif" src-large="/books/NBK453086/bin/ch2f10.jpg" alt="FIGURE 2.10.. Oxidized forms of D-glucose." /></a><div class="icnblk_cntnt" id="figlgndch2f10"><h4 id="ch2.f10"><a href="/books/NBK453086/figure/ch2.f10/?report=objectonly" target="object" rid-ob="figobch2f10">FIGURE 2.10.</a></h4><p class="float-caption no_bottom_margin">Oxidized forms of D-glucose. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f11" co-legend-rid="figlgndch2f11"><a href="/books/NBK453086/figure/ch2.f11/?report=objectonly" target="object" title="FIGURE 2.11." class="img_link icnblk_img figpopup" rid-figpopup="figch2f11" rid-ob="figobch2f11"><img class="small-thumb" src="/books/NBK453086/bin/ch2f11.gif" src-large="/books/NBK453086/bin/ch2f11.jpg" alt="FIGURE 2.11.. Conversion of a monosaccharide to a tritium-labeled alditol by reduction with NaB3H4." /></a><div class="icnblk_cntnt" id="figlgndch2f11"><h4 id="ch2.f11"><a href="/books/NBK453086/figure/ch2.f11/?report=objectonly" target="object" rid-ob="figobch2f11">FIGURE 2.11.</a></h4><p class="float-caption no_bottom_margin">Conversion of a monosaccharide to a tritium-labeled alditol by reduction with NaB<sup>3</sup>H<sub>4</sub>. </p></div></div><p>The carbonyl groups of aldoses and ketoses also can be reduced with sodium borohydride (NaBH<sub>4</sub>) to form polyhydroxy alcohols, referred to as alditols. This reaction is widely used to introduce a radiolabel at C-1 of the monosaccharide by reduction with NaB<sup>3</sup>H<sub>4</sub> (<a class="figpopup" href="/books/NBK453086/figure/ch2.f11/?report=objectonly" target="object" rid-figpopup="figch2f11" rid-ob="figobch2f11">Figure 2.11</a>).</p></div><div id="Ch2_s4c"><h3>Schiff Base Formation</h3><p>The aldehyde and ketone groups of monosaccharides can also undergo Schiff base formation with amines or hydrazides, forming imines and hydrazones, respectively (<a class="figpopup" href="/books/NBK453086/figure/ch2.f12/?report=objectonly" target="object" rid-figpopup="figch2f12" rid-ob="figobch2f12">Figure 2.12</a>). This reaction is often used to conjugate the monosaccharide to proteins (via their lysine residues) or to biochemical probes such as biotin hydrazide. It should be noted that the imines formed with amino groups are not stable to water and are typically reduced with sodium cyanoborohydride (NaCNBH<sub>3</sub>) in a process termed reductive amination.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f12" co-legend-rid="figlgndch2f12"><a href="/books/NBK453086/figure/ch2.f12/?report=objectonly" target="object" title="FIGURE 2.12." class="img_link icnblk_img figpopup" rid-figpopup="figch2f12" rid-ob="figobch2f12"><img class="small-thumb" src="/books/NBK453086/bin/ch2f12.gif" src-large="/books/NBK453086/bin/ch2f12.jpg" alt="FIGURE 2.12.. Conjugation of a monosaccharide to an amino group by formation of an imine." /></a><div class="icnblk_cntnt" id="figlgndch2f12"><h4 id="ch2.f12"><a href="/books/NBK453086/figure/ch2.f12/?report=objectonly" target="object" rid-ob="figobch2f12">FIGURE 2.12.</a></h4><p class="float-caption no_bottom_margin">Conjugation of a monosaccharide to an amino group by formation of an imine. The <i>filled circle</i> represents any small molecule or macromolecule containing an amine. </p></div></div><p>As aldehydes, reducing sugars can also form Schiff bases with amino groups of the lysine residues in proteins. This nonenzymatic process that links glycans to proteins is termed “glycation” and is distinct from “glycosylation,” which involves the formation of a glycosidic bond between the sugar and protein. Glycation products can undergo further reactions that lead to the formation of protein cross-links, and these can have pathogenic consequences (i.e., they are immunogenic and change the properties of the protein). Glycation products of glucose accumulate at higher levels in diabetics than in healthy individuals because of elevated blood glucose levels. These modified proteins are thought to underlie some of the pathologies associated with diabetes.</p></div><div id="Ch2_s4d"><h3>Glycosidic Bond Formation</h3><p>Two monosaccharide units can be joined together by a glycosidic bond—this is the fundamental linkage among the monosaccharide building blocks found in all oligosaccharides. The glycosidic bond is formed between the anomeric carbon of one monosaccharide and a hydroxyl group of another. In chemical terms, a hemiacetal group reacts with an alcohol group to form an acetal. Glycosidic bonds can be formed with virtually any hydroxylated compound, including simple alcohols such as methanol (<a class="figpopup" href="/books/NBK453086/figure/ch2.f13/?report=objectonly" target="object" rid-figpopup="figch2f13" rid-ob="figobch2f13">Figure 2.13</a>) or hydroxy amino acids such as serine, threonine, and tyrosine. Indeed, glycosidic linkages are formed between sugars and these amino acids within proteins to form glycoproteins (see <a href="/books/n/glyco3/ch9/?report=reader">Chapters 9</a> and <a href="/books/n/glyco3/ch10/?report=reader">10</a>). Like the hemiacetal, the acetal or glycosidic can exist in two stereoisomeric forms: α and β. But unlike the hemiacetal, the acetal is configurationally stable under most conditions. Thus, once a glycosidic bond is formed, its configuration is maintained indefinitely. Furthermore, no oxidation or reduction can take place at an anomeric center that is involved in a glycosidic bond. Like acetals in general, glycosidic bonds can be hydrolyzed in dilute acid, generating the constituent monosaccharides from oligosaccharides.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f13" co-legend-rid="figlgndch2f13"><a href="/books/NBK453086/figure/ch2.f13/?report=objectonly" target="object" title="FIGURE 2.13." class="img_link icnblk_img figpopup" rid-figpopup="figch2f13" rid-ob="figobch2f13"><img class="small-thumb" src="/books/NBK453086/bin/ch2f13.gif" src-large="/books/NBK453086/bin/ch2f13.jpg" alt="FIGURE 2.13.. Glycoside formation." /></a><div class="icnblk_cntnt" id="figlgndch2f13"><h4 id="ch2.f13"><a href="/books/NBK453086/figure/ch2.f13/?report=objectonly" target="object" rid-ob="figobch2f13">FIGURE 2.13.</a></h4><p class="float-caption no_bottom_margin">Glycoside formation. Conversion of a hemiacetal into an acetal. </p></div></div><p>Glycosidic bond construction is the central challenge of glycan synthesis and immense efforts have been devoted to high-yielding and stereoselective glycosylation reactions. An overview of glycan synthesis strategies is provided in <a href="/books/n/glyco3/ch53/?report=reader">Chapters 53</a> and <a href="/books/n/glyco3/ch54/?report=reader">54</a>.</p></div></div><div id="Ch2_s5"><h2 id="_Ch2_s5_">CHEMISTRY OF MONOSACCHARIDE FUNCTIONAL GROUPS</h2><div id="Ch2_s5a"><h3>Methylation of Hydroxyl Groups</h3><p>The hydroxyl groups present in both monosaccharides and oligosaccharides can be chemically modified without affecting the glycosidic linkages. Methylation is used in the structural analysis of glycans (see <a href="/books/n/glyco3/ch50/?report=reader">Chapter 50</a>). Natural products containing partially methylated glycans are known and a number of methyltransferases have been identified.</p></div><div id="Ch2_s5b"><h3>Esterification of Hydroxyl Groups</h3><p>A variety of different enzymes can esterify the hydroxyl groups of glycans to transiently vary glycan structure. Esterification is sometimes required for interactions with other biomolecules. The most important types of sugar esters in nature are phosphate esters (including diphosphate esters), acyl esters (with acetic acid or fatty acids), and sulfate esters. Acyl esters can sometime migrate to other hydroxyl groups on the same monosaccharide.</p></div><div id="Ch2_s5c"><h3>Deoxygenation of Hydroxyl Groups</h3><p>The replacement of monosaccharide hydroxyl groups with hydrogen atoms forms deoxysugars. Nature has evolved reductases to perform this reaction in one step, whereas chemically multistep procedures are required. Deoxygenation of ribose within a ribonucleotide to form the 2-deoxyribonucleotide is a critical reaction in DNA biosynthesis. Fucose (Fuc), one of the common vertebrate monosaccharides, is deoxygenated at C-6 during its biosynthesis from mannose (<a href="/books/n/glyco3/ch5/?report=reader">Chapter 5</a>).</p></div><div id="Ch2_s5d"><h3>Amino Groups</h3><p>Many monosaccharides contain N-acetamido groups, such as GlcNAc, GalNAc, and NeuNAc. Free amino groups, formed by de-N-acetylation of the N-acetamido group, are rare and found in heparan sulfate (HS) (<a href="/books/n/glyco3/ch17/?report=reader">Chapter 17</a>), glycosylphosphatidylinositol (GPI) anchors (<a href="/books/n/glyco3/ch12/?report=reader">Chapter 12</a>), neuraminic acid (<a href="/books/n/glyco3/ch15/?report=reader">Chapter 15</a>) and in many bacterial glycan structures (<a href="/books/n/glyco3/ch20/?report=reader">Chapter 20</a>). Amino groups can be modified with sulfates, similar to hydroxyl groups, as found in HS.</p></div></div><div id="Ch2_s6"><h2 id="_Ch2_s6_">GLYCOSIDIC LINKAGES</h2><p>A variety of linkages can be formed between two monosaccharides. The glycosidic linkage can give rise to two possible stereoisomers at the anomeric carbon of one sugar (α or β). Second, the many hydroxyl groups of the other sugar permit several possible regioisomers. Two glucose residues for example, can be joined together in numerous ways, as illustrated by maltose (Glcα4Glc) and gentiobiose (Glcβ6Glc) (<a class="figpopup" href="/books/NBK453086/figure/ch2.f14/?report=objectonly" target="object" rid-figpopup="figch2f14" rid-ob="figobch2f14">Figure 2.14</a>). These isomers have very different three-dimensional structures and biological activities. Finally, a monosaccharide can engage in more than two glycosidic linkages, thus serving as a branchpoint. The common occurrence of branched sequences (as opposed to the linear sequences that are found in almost all peptides and oligonucleotides) is unique to glycans and contributes to their structural diversity.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f14" co-legend-rid="figlgndch2f14"><a href="/books/NBK453086/figure/ch2.f14/?report=objectonly" target="object" title="FIGURE 2.14." class="img_link icnblk_img figpopup" rid-figpopup="figch2f14" rid-ob="figobch2f14"><img class="small-thumb" src="/books/NBK453086/bin/ch2f14.gif" src-large="/books/NBK453086/bin/ch2f14.jpg" alt="FIGURE 2.14.. Two isomeric disaccharides." /></a><div class="icnblk_cntnt" id="figlgndch2f14"><h4 id="ch2.f14"><a href="/books/NBK453086/figure/ch2.f14/?report=objectonly" target="object" rid-ob="figobch2f14">FIGURE 2.14.</a></h4><p class="float-caption no_bottom_margin">Two isomeric disaccharides. </p></div></div><p>The relationship of the glycosidic bond to oligosaccharides is analogous to the relationship of the peptide bond to polypeptides and the phosphodiester bond to polynucleotides. However, amino acids and nucleotides are linked in only one fashion during the formation of polypeptides and nucleic acids, respectively; there is no stereochemical or regiochemical diversity in these biopolymers. The number of monomeric residues contained in an oligosaccharide is designated in the nomenclature—disaccharide, trisaccharide, and so on. Just as polypeptides have amino and carboxyl termini and polynucleotides have 5′ and 3′ termini, oligosaccharides have a polarity that is defined by their reducing and nonreducing termini (<a class="figpopup" href="/books/NBK453086/figure/ch2.f15/?report=objectonly" target="object" rid-figpopup="figch2f15" rid-ob="figobch2f15">Figure 2.15</a>). The reducing end of the oligosaccharide bears a free anomeric center that is not engaged in a glycosidic bond and thus retains the chemical reactivity of the aldehyde. However, it continues to be referred to as reducing end even when it is engaged in a linkage (e.g., to the hydroxyl of serine or threonine in glycoproteins). Structures are commonly written from the nonreducing end on the left toward the reducing end on the right. For some structures, there is no reducing end. For example, the common disaccharides sucrose and trehalose have glycosidic linkages between the anomeric centers of two monosaccharide constituents (<a class="figpopup" href="/books/NBK453086/figure/ch2.f16/?report=objectonly" target="object" rid-figpopup="figch2f16" rid-ob="figobch2f16">Figure 2.16</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f15" co-legend-rid="figlgndch2f15"><a href="/books/NBK453086/figure/ch2.f15/?report=objectonly" target="object" title="FIGURE 2.15." class="img_link icnblk_img figpopup" rid-figpopup="figch2f15" rid-ob="figobch2f15"><img class="small-thumb" src="/books/NBK453086/bin/ch2f15.gif" src-large="/books/NBK453086/bin/ch2f15.jpg" alt="FIGURE 2.15.. Reducing and nonreducing ends of a disaccharide." /></a><div class="icnblk_cntnt" id="figlgndch2f15"><h4 id="ch2.f15"><a href="/books/NBK453086/figure/ch2.f15/?report=objectonly" target="object" rid-ob="figobch2f15">FIGURE 2.15.</a></h4><p class="float-caption no_bottom_margin">Reducing and nonreducing ends of a disaccharide. </p></div></div><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f16" co-legend-rid="figlgndch2f16"><a href="/books/NBK453086/figure/ch2.f16/?report=objectonly" target="object" title="FIGURE 2.16." class="img_link icnblk_img figpopup" rid-figpopup="figch2f16" rid-ob="figobch2f16"><img class="small-thumb" src="/books/NBK453086/bin/ch2f16.gif" src-large="/books/NBK453086/bin/ch2f16.jpg" alt="FIGURE 2.16.. Nonreducing disaccharides." /></a><div class="icnblk_cntnt" id="figlgndch2f16"><h4 id="ch2.f16"><a href="/books/NBK453086/figure/ch2.f16/?report=objectonly" target="object" rid-ob="figobch2f16">FIGURE 2.16.</a></h4><p class="float-caption no_bottom_margin">Nonreducing disaccharides. </p></div></div><p>The glycosidic linkage is the most flexible part of a disaccharide structure. Whereas the chair conformation of the constituent monosaccharides is relatively rigid, the torsion angles around the glycosidic bond (φ, ψ, and ω; <a class="figpopup" href="/books/NBK453086/figure/ch2.f17/?report=objectonly" target="object" rid-figpopup="figch2f17" rid-ob="figobch2f17">Figure 2.17</a>) can vary. Thus, a disaccharide of well-defined primary structure can adopt multiple conformations in solution that differ in the relative orientation of the two monosaccharides. The combination of structural rigidity and flexibility is typical of complex carbohydrates and essential to their biological functions.</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figch2f17" co-legend-rid="figlgndch2f17"><a href="/books/NBK453086/figure/ch2.f17/?report=objectonly" target="object" title="FIGURE 2.17." class="img_link icnblk_img figpopup" rid-figpopup="figch2f17" rid-ob="figobch2f17"><img class="small-thumb" src="/books/NBK453086/bin/ch2f17.gif" src-large="/books/NBK453086/bin/ch2f17.jpg" alt="FIGURE 2.17.. Torsion angles that define the conformation of the glycosidic linkages φ, ψ, and ω." /></a><div class="icnblk_cntnt" id="figlgndch2f17"><h4 id="ch2.f17"><a href="/books/NBK453086/figure/ch2.f17/?report=objectonly" target="object" rid-ob="figobch2f17">FIGURE 2.17.</a></h4><p class="float-caption no_bottom_margin">Torsion angles that define the conformation of the glycosidic linkages φ, ψ, and ω. (<i>A</i>) Newman projection along the C1—O1 bond illustrating φ for the 1-6 glycosidic bond. (<i>B</i>) Newman projection along the C6′—O1 <a href="/books/NBK453086/figure/ch2.f17/?report=objectonly" target="object" rid-ob="figobch2f17">(more...)</a></p></div></div><p>Glycans are linked to other biomolecules, such as lipids or amino acids within polypeptides, through glycosidic linkages to form glycoconjugates (see <a href="/books/n/glyco3/ch9/?report=reader">Chapters 9</a>, <a href="/books/n/glyco3/ch10/?report=reader">10</a>, <a href="/books/n/glyco3/ch11/?report=reader">11</a>, and <a href="/books/n/glyco3/ch12/?report=reader">12</a>). Glycans are often referred to as the glycone of a glycoconjugate and the noncarbohydrate component is named the aglycone. The glycan may be a mono- or an oligosaccharide.</p><p>In conclusion, monosaccharide building blocks can be linked to various regio- and stereochemistries, and the resulting oligosaccharides can be assembled on protein or lipid scaffolds (see <a href="/books/n/glyco3/ch3/?report=reader">Chapter 3</a>).</p></div><div id="ack2"><h2 id="_ack2_">ACKNOWLEDGMENTS</h2><p>The authors acknowledge contributions to previous versions of this chapter by Carolyn R. Bertozzi and David Rabuka and appreciate helpful comments and suggestions from Rahul Bhattacharya, Natalie Silmon De Monerri, Steve M. Fernandes, and Alexandra Walker.</p></div><div id="rl2"><h2 id="_rl2_">FURTHER READING</h2><ul class="simple-list"><li class="half_rhythm"><p><div class="bk_ref" id="CH2C1">El Khadem HS. 1988. Carbohydrate chemistry: Monosaccharides and their oligomers. Academic, San Diego.</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="CH2C2">Allen HJ, Kisailus EC. 1992. Glycoconjugates: Composition, structure, and function. Marcel Dekker, New York.</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="CH2C3">McNaught AD. 1997. Nomenclature of carbohydrates. Carbohydr Res
|
|
297: 1–92. [<a href="https://pubmed.ncbi.nlm.nih.gov/9042704" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 9042704</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="CH2C4">Bill MR, Revers L, Wilson IBH. 1998. Protein glycosylation. Kluwer Academic, Boston.</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="CH2C5">Boons G-J. 1998. Carbohydrate chemistry. Blackie Academic and Professional, London.</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="CH2C6">Stick RV. 2001. Carbohydrates: The sweet molecules of life. Academic, New York.</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="CH2C7">Varki NM, Varki A. 2007. Diversity in cell surface sialic acid presentations: Implications for biology and disease. Lab Invest
|
|
87: 851–857. [<a href="/pmc/articles/PMC7100186/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC7100186</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17632542" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 17632542</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="CH2C8">Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T, et al.
|
|
2015. Symbol nomenclature for graphical representations of glycans. Glycobiology
|
|
25: 1323–1324. [<a href="/pmc/articles/PMC4643639/" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pmc">PMC free article<span class="bk_prnt">: PMC4643639</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26543186" ref="pagearea=cite-ref&targetsite=entrez&targetcat=link&targettype=pubmed">PubMed<span class="bk_prnt">: 26543186</span></a>]</div></p></li></ul></div><div id="bk_toc_contnr"></div></div></div><div class="fm-sec"><h2 id="_NBK453086_pubdet_">Publication Details</h2><h3>Author Information and Affiliations</h3><p class="contrib-group"><h4>Authors</h4><span itemprop="author">Peter H. Seeberger</span>.</p><h3>Publication History</h3><p class="small">Published online: 2017.</p><h3>Copyright</h3><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> 2015-2017 by The Consortium of Glycobiology Editors, La Jolla, California. All rights reserved.<p class="small">PDF files are not available for download.</p></div></div><h3>Publisher</h3><p><a href="http://www.cshlpress.com/default.tpl?action=full&cart=12210755385880789&--eqskudatarq=666" ref="pagearea=page-banner&targetsite=external&targetcat=link&targettype=publisher">Cold Spring Harbor Laboratory Press</a>, Cold Spring Harbor (NY)</p><h3>NLM Citation</h3><p>Seeberger PH. Monosaccharide Diversity. 2017. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 2.<span class="bk_cite_avail"></span> doi: 10.1101/glycobiology.3e.002</p></div><div class="small-screen-prev"><a href="/books/n/glyco3/ch1/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="small-screen-next"><a href="/books/n/glyco3/ch3/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></article><article data-type="fig" id="figobch2f1"><div id="ch2.f1" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f01.jpg" alt="FIGURE 2.1.. Structures of glyceraldehyde and dihydroxyacetone." /></div><h3><span class="label">FIGURE 2.1.</span></h3><div class="caption"><p>Structures of glyceraldehyde and dihydroxyacetone. (<i>A</i>) Fischer projection. (<i>B</i>) D- and L-glyceraldehyde. The chiral central carbon in glyceraldehyde gives rise to two possible configurations of the molecule, termed D and L.</p></div><p><a href="/books/NBK453086/bin/ch2f01.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article><article data-type="fig" id="figobch2f2"><div id="ch2.f2" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f02.jpg" alt="FIGURE 2.2.. D- and L-glucopyranose in Fischer projection and chair conformation." /></div><h3><span class="label">FIGURE 2.2.</span></h3><div class="caption"><p>D- and L-glucopyranose in Fischer projection and chair conformation.</p></div><p><a href="/books/NBK453086/bin/ch2f02.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article><article data-type="fig" id="figobch2f3"><div id="ch2.f3" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f03.jpg" alt="FIGURE 2.3.. Fischer projections for the acyclic forms of the D series of aldoses, ranging from triose to hexose." /></div><h3><span class="label">FIGURE 2.3.</span></h3><div class="caption"><p>Fischer projections for the acyclic forms of the D series of aldoses, ranging from triose to hexose.</p></div><p><a href="/books/NBK453086/bin/ch2f03.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.9M)</span></p></div></article><article data-type="fig" id="figobch2f4"><div id="ch2.f4" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f04.jpg" alt="FIGURE 2.4.. Common monosaccharides found in vertebrates." /></div><h3><span class="label">FIGURE 2.4.</span></h3><div class="caption"><p>Common monosaccharides found in vertebrates. <i>N</i>-Acetylneuraminic acid is the most common form of sialic acid.</p></div><p><a href="/books/NBK453086/bin/ch2f04.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.8M)</span></p></div></article><article data-type="fig" id="figobch2f5"><div id="ch2.f5" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f05.jpg" alt="FIGURE 2.5.. Cyclization of acyclic D-glucose to form pyranose and furanose structures." /></div><h3><span class="label">FIGURE 2.5.</span></h3><div class="caption"><p>Cyclization of acyclic D-glucose to form pyranose and furanose structures. The cyclization reaction produces both the α and β anomers (i.e., C-1 epimers).</p></div><p><a href="/books/NBK453086/bin/ch2f05.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article><article data-type="fig" id="figobch2f6"><div id="ch2.f6" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f06.jpg" alt="FIGURE 2.6.. Conversion from Fischer to Haworth projection." /></div><h3><span class="label">FIGURE 2.6.</span></h3><div class="caption"><p>Conversion from Fischer to Haworth projection. Each hydroxyl group projected to the right in the Fischer projection points down in the Haworth formula.</p></div><p><a href="/books/NBK453086/bin/ch2f06.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article><article data-type="fig" id="figobch2f7"><div id="ch2.f7" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f07.jpg" alt="FIGURE 2.7.. Chair conformations." /></div><h3><span class="label">FIGURE 2.7.</span></h3><div class="caption"><p>Chair conformations. (<i>A</i>) β-D-Glucose in Haworth projection and in its <sup>4</sup>C<sub>1</sub> and <sup>1</sup>C<sub>4</sub> chair conformations; (<i>B</i>) envelope and twist conformations for a five-membered ring structure.</p></div><p><a href="/books/NBK453086/bin/ch2f07.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article><article data-type="fig" id="figobch2f8"><div id="ch2.f8" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f08.jpg" alt="FIGURE 2.8.. Conversion from Fischer to chair projection formula; (R) right; (L) left." /></div><h3><span class="label">FIGURE 2.8.</span></h3><div class="caption"><p>Conversion from Fischer to chair projection formula; (R) right; (L) left. <i>Red arrows</i> illustrate the path to follow along the sugar backbone when correlating the stereochemistry of the Fischer projection with the chair conformation.</p></div><p><a href="/books/NBK453086/bin/ch2f08.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article><article data-type="fig" id="figobch2f9"><div id="ch2.f9" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f09.jpg" alt="FIGURE 2.9.. Determination of configuration at the anomeric center." /></div><h3><span class="label">FIGURE 2.9.</span></h3><div class="caption"><p>Determination of configuration at the anomeric center.</p></div><p><a href="/books/NBK453086/bin/ch2f09.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article><article data-type="fig" id="figobch2f10"><div id="ch2.f10" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f10.jpg" alt="FIGURE 2.10.. Oxidized forms of D-glucose." /></div><h3><span class="label">FIGURE 2.10.</span></h3><div class="caption"><p>Oxidized forms of D-glucose.</p></div><p><a href="/books/NBK453086/bin/ch2f10.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article><article data-type="fig" id="figobch2f11"><div id="ch2.f11" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f11.jpg" alt="FIGURE 2.11.. Conversion of a monosaccharide to a tritium-labeled alditol by reduction with NaB3H4." /></div><h3><span class="label">FIGURE 2.11.</span></h3><div class="caption"><p>Conversion of a monosaccharide to a tritium-labeled alditol by reduction with NaB<sup>3</sup>H<sub>4</sub>.</p></div><p><a href="/books/NBK453086/bin/ch2f11.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.6M)</span></p></div></article><article data-type="fig" id="figobch2f12"><div id="ch2.f12" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f12.jpg" alt="FIGURE 2.12.. Conjugation of a monosaccharide to an amino group by formation of an imine." /></div><h3><span class="label">FIGURE 2.12.</span></h3><div class="caption"><p>Conjugation of a monosaccharide to an amino group by formation of an imine. The <i>filled circle</i> represents any small molecule or macromolecule containing an amine.</p></div><p><a href="/books/NBK453086/bin/ch2f12.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.6M)</span></p></div></article><article data-type="fig" id="figobch2f13"><div id="ch2.f13" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f13.jpg" alt="FIGURE 2.13.. Glycoside formation." /></div><h3><span class="label">FIGURE 2.13.</span></h3><div class="caption"><p>Glycoside formation. Conversion of a hemiacetal into an acetal.</p></div><p><a href="/books/NBK453086/bin/ch2f13.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.6M)</span></p></div></article><article data-type="fig" id="figobch2f14"><div id="ch2.f14" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f14.jpg" alt="FIGURE 2.14.. Two isomeric disaccharides." /></div><h3><span class="label">FIGURE 2.14.</span></h3><div class="caption"><p>Two isomeric disaccharides.</p></div><p><a href="/books/NBK453086/bin/ch2f14.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.6M)</span></p></div></article><article data-type="fig" id="figobch2f15"><div id="ch2.f15" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f15.jpg" alt="FIGURE 2.15.. Reducing and nonreducing ends of a disaccharide." /></div><h3><span class="label">FIGURE 2.15.</span></h3><div class="caption"><p>Reducing and nonreducing ends of a disaccharide.</p></div><p><a href="/books/NBK453086/bin/ch2f15.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.6M)</span></p></div></article><article data-type="fig" id="figobch2f16"><div id="ch2.f16" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f16.jpg" alt="FIGURE 2.16.. Nonreducing disaccharides." /></div><h3><span class="label">FIGURE 2.16.</span></h3><div class="caption"><p>Nonreducing disaccharides.</p></div><p><a href="/books/NBK453086/bin/ch2f16.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article><article data-type="fig" id="figobch2f17"><div id="ch2.f17" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK453086/bin/ch2f17.jpg" alt="FIGURE 2.17.. Torsion angles that define the conformation of the glycosidic linkages φ, ψ, and ω." /></div><h3><span class="label">FIGURE 2.17.</span></h3><div class="caption"><p>Torsion angles that define the conformation of the glycosidic linkages φ, ψ, and ω. (<i>A</i>) Newman projection along the C1—O1 bond illustrating φ for the 1-6 glycosidic bond. (<i>B</i>) Newman projection along the C6′—O1 bond illustrating ψ for a 1→ 6 linkage (<i>C</i>) Newman projection along the C5′—C6′ bond illustrating ω for the 1→ 6 linkage. The lobes on the glycosidic oxygen atom represent lone pairs of electrons. The torsion angles depicted are arbitrary and do not necessarily reflect the most stable conformation.</p></div><p><a href="/books/NBK453086/bin/ch2f17.pptx">Download Teaching Slide</a><span class="small"> (PPTX, 1.7M)</span></p></div></article></div><div id="jr-scripts"><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/libs.min.js"> </script><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.min.js"> </script></div></div>
|
|
|
|
|
|
|
|
|
|
<!-- Book content -->
|
|
|
|
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
|
|
|
|
|
|
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
|
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
|
|
|
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3968615.js" snapshot="books"></script></body>
|
|
</html>
|