nih-gov/www.ncbi.nlm.nih.gov/books/NBK374260.14/index.html

611 lines
No EOL
830 KiB
HTML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK374260" /><meta name="ncbi_domain" content="pdqcis" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK374260.14/" /><meta name="ncbi_pagename" content="Childhood Cancer Genomics (PDQ®) - PDQ Cancer Information Summaries - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="chapter" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Childhood Cancer Genomics (PDQ®) - PDQ Cancer Information Summaries - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="PDQ Cancer Information Summaries [Internet]" /><meta name="citation_title" content="Childhood Cancer Genomics (PDQ®)" /><meta name="citation_publisher" content="National Cancer Institute (US)" /><meta name="citation_date" content="2016/07/22" /><meta name="citation_author" content="PDQ Pediatric Treatment Editorial Board" /><meta name="citation_pmid" content="27466641" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK374260/" /><meta name="citation_keywords" content="cancer genetics" /><meta name="citation_keywords" content="cancer genomics" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Childhood Cancer Genomics (PDQ®)" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="National Cancer Institute (US)" /><meta name="DC.Contributor" content="PDQ Pediatric Treatment Editorial Board" /><meta name="DC.Date" content="2016/07/22" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK374260/" /><meta name="description" content="This Childhood Cancer Genomics summary provides a brief synopsis of current knowledge about the genomic landscape of specific childhood cancers. Get detailed information about various genetic alterations and precision medicine concepts in childhood cancers in this summary for clinicians." /><meta name="og:title" content="Childhood Cancer Genomics (PDQ®)" /><meta name="og:type" content="book" /><meta name="og:description" content="This Childhood Cancer Genomics summary provides a brief synopsis of current knowledge about the genomic landscape of specific childhood cancers. Get detailed information about various genetic alterations and precision medicine concepts in childhood cancers in this summary for clinicians." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK374260/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-pdqcis-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="bk-non-canon-loc" content="/books/n/pdqcis/CDR0000774921/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK374260/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8E80637C991891000000000093007C.m_14" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div id="universal_header">
<section class="usa-banner">
<div class="usa-accordion">
<header class="usa-banner-header">
<div class="usa-grid usa-banner-inner">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
<p>An official website of the United States government</p>
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
<span class="usa-banner-button-text">Here's how you know</span>
</button>
</div>
</header>
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
<div class="usa-banner-guidance-gov usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
<div class="usa-media_block-body">
<p>
<strong>The .gov means it's official.</strong>
<br />
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you're on a federal
government site.
</p>
</div>
</div>
<div class="usa-banner-guidance-ssl usa-width-one-half">
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
<div class="usa-media_block-body">
<p>
<strong>The site is secure.</strong>
<br />
The <strong>https://</strong> ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
</p>
</div>
</div>
</div>
</div>
</section>
<div class="usa-overlay"></div>
<header class="ncbi-header" role="banner" data-section="Header">
<div class="usa-grid">
<div class="usa-width-one-whole">
<div class="ncbi-header__logo">
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
</a>
</div>
<div class="ncbi-header__account">
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
<span class="fa fa-user" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
<g style="fill: #fff">
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
</g>
</svg>
</span>
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
<span class="sr-only">Show account info</span>
</button>
</div>
<div class="ncbi-popup-anchor">
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
<div class="ncbi-popup-head">
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
<span class="fa fa-times">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
</svg>
</span>
<span class="usa-sr-only">Close</span></button>
<h4>Account</h4>
</div>
<div class="account-user-info">
Logged in as:<br />
<b><span class="username" id="uname_long">username</span></b>
</div>
<div class="account-links">
<ul class="usa-unstyled-list">
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</header>
<div role="navigation" aria-label="access keys">
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
</div>
<section data-section="Alerts">
<div class="ncbi-alerts-placeholder"></div>
</section>
</div>
<div class="header">
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="nlmcatalog">NLM Catalog</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed" class="last">PubMed</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
<a href="/books/browse/">Browse Titles</a>
</li><li>
<a href="/books/advanced/">Advanced</a>
</li><li class="help">
<a href="/books/NBK3833/">Help</a>
</li><li class="disclaimer">
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
</li></ul></div>
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<!-- Custom content 1 -->
<div class="col1">
</div>
<div class="container">
<div id="maincontent" class="content eight_col col">
<!-- Custom content in the left column above book nav -->
<div class="col2">
</div>
<!-- Book content -->
<!-- Custom content between navigation and content -->
<div class="col3">
</div>
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-. </p></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/pdqcis/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-pdqcis-lrg.png" alt="Cover of PDQ Cancer Information Summaries" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>PDQ Cancer Information Summaries [Internet].</h2><a data-jig="ncbitoggler" href="#__NBK374260_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK374260_dtls__"><div>Bethesda (MD): <a href="http://www.cancer.gov/" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">National Cancer Institute (US)</a>; 2002-.</div></div><div class="half_rhythm"></div><div class="bk_noprnt"><form method="get" action="/books/n/pdqcis/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK374260_"><span class="title" itemprop="name">Childhood Cancer Genomics (PDQ&#x000ae;)</span></h1><div class="subtitle whole_rhythm">Health Professional Version</div><p class="contrib-group"><span itemprop="author">PDQ Pediatric Treatment Editorial Board</span>.</p><p class="small">Published online: October 5, 2018.</p><p class="small">Created: <span itemprop="datePublished">July 22, 2016</span>.</p></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="_abs_rndgid_" itemprop="description"><p id="CDR0000774921__1902">This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the genomics of childhood cancer. The summary describes the molecular subtypes for specific pediatric cancers and their associated clinical characteristics, the recurring genomic alterations that characterize each subtype at diagnosis or relapse, and the therapeutic and prognostic significance of the genomic alterations. The genomic alterations associated with brain tumors, kidney tumors, leukemias, lymphomas, sarcomas, and other cancers are discussed. This summary is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.</p><p id="CDR0000774921__1903">This summary is reviewed regularly and updated as necessary by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).</p></div><div id="CDR0000774921__1"><h2 id="_CDR0000774921__1_">General Information About Childhood Cancer Genomics</h2><p id="CDR0000774921__2">Research teams from around the world have made remarkable progress in the past decade in elucidating the genomic landscape of most types of childhood cancer. A decade ago it was possible to hope that targetable oncogenes, such as activated tyrosine kinases, might be identified in a high percentage of childhood cancers. However, it is now clear that the genomic landscape of childhood cancer is highly varied, and in many cases is quite distinctive from that of the common adult cancers.</p><p id="CDR0000774921__21">There are examples of genomic lesions that have provided immediate therapeutic direction, including the following:</p><ul id="CDR0000774921__1957"><li class="half_rhythm"><div><i>NPM-ALK</i> fusion genes associated with anaplastic large cell lymphoma cases.</div></li><li class="half_rhythm"><div><i>ALK</i> point mutations associated with a subset of neuroblastoma cases.</div></li><li class="half_rhythm"><div><i>BRAF</i> and other kinase genomic alterations associated with subsets of pediatric glioma cases.</div></li><li class="half_rhythm"><div>Hedgehog pathway mutations associated with a subset of medulloblastoma cases.</div></li><li class="half_rhythm"><div><i>ABL</i> family genes activated by translocation in a subset of acute lymphoblastic leukemia (ALL) cases.</div></li></ul><p id="CDR0000774921__22">For some cancers, the genomic findings have been highly illuminating in the identification of genomically defined subsets of patients within histologies that have distinctive biological features and distinctive clinical characteristics (particularly in terms of prognosis). In some instances, identification of these subtypes has resulted in early clinical translation as exemplified by the WNT subgroup of medulloblastoma. Because of its excellent outcome, the WNT subgroup will be studied separately in future medulloblastoma clinical trials so that reductions in therapy can be evaluated with the goal of maintaining favorable outcome while reducing long-term morbidity. However, the prognostic significance of the recurring genomic lesions for some other cancers remains to be defined.</p><p id="CDR0000774921__23">A key finding from genomic studies is the extent to which the molecular characteristics of childhood cancers correlate with their tissue (cell) of origin. As with most adult cancers, mutations in childhood cancers do not arise at random, but rather are linked in specific constellations to disease categories. A few examples include the following:</p><ul id="CDR0000774921__24"><li class="half_rhythm"><div>The presence of H3.3 and H3.1 <i>K27</i> mutations almost exclusively among pediatric midline high-grade gliomas.</div></li><li class="half_rhythm"><div>The loss of <i>SMARCB1</i> in rhabdoid tumors.</div></li><li class="half_rhythm"><div>The presence of <i>RELA</i> translocations in supratentorial ependymomas.</div></li><li class="half_rhythm"><div>The presence of specific fusion proteins in different pediatric sarcomas. </div></li></ul><p id="CDR0000774921__25">Another theme across multiple childhood cancers is the contribution of mutations of genes involved in normal development of the tissue of origin of the cancer and the contribution of genes involved in epigenomic regulation.</p><p id="CDR0000774921__26">Structural variations play an important role for many childhood cancers. Translocations resulting in oncogenic fusion genes or overexpression of oncogenes play a central role, particularly for the leukemias and sarcomas. However, for other childhood cancers that are primarily characterized by structural variations, functional fusion genes are not produced. Mechanisms by which these recurring structural variations have oncogenic effects have been identified for osteosarcoma (translocations confined to the first intron of <i>TP53</i>) and medulloblastoma (structural variants juxtapose <i>GFI1</i> or <i>GFI1B</i> coding sequences proximal to active enhancer elements leading to transcriptional activation [<i>enhancer hijacking</i>]).[<a class="bk_pop" href="#CDR0000774921_rl_1_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1_2">2</a>] However, the oncogenic mechanisms of action for recurring structural variations of other childhood cancers (e.g., the segmental chromosomal alterations in neuroblastoma) need to be elucidated.</p><p id="CDR0000774921__1954">Understanding of the contribution of germline mutations to childhood cancer etiology is being advanced by the application of whole-genome and exome sequencing to cohorts of children with cancer. Estimates for rates of pathogenic germline mutations approaching 10% have emerged from studies applying these sequencing methods to childhood cancer cohorts.[<a class="bk_pop" href="#CDR0000774921_rl_1_3">3</a>-<a class="bk_pop" href="#CDR0000774921_rl_1_5">5</a>] In some cases, the pathogenic germline mutations are clearly contributory to the patient&#x02019;s cancer (e.g., <i>TP53</i> mutations arising in the context of Li-Fraumeni syndrome), whereas in other cases the contribution of the germline mutation to the patient&#x02019;s cancer is less clear (e.g., mutations in adult cancer predisposition genes such as <i>BRCA1</i> and <i>BRCA2</i> that have an undefined role in childhood cancer predisposition).[<a class="bk_pop" href="#CDR0000774921_rl_1_4">4</a>,<a class="bk_pop" href="#CDR0000774921_rl_1_5">5</a>] The frequency of germline mutations varies by tumor type (e.g., lower for neuroblastoma and higher for osteosarcoma),[<a class="bk_pop" href="#CDR0000774921_rl_1_5">5</a>] and many of the identified germline mutations fit into known predisposition syndromes (e.g., <i>DICER1</i> for pleuropulmonary blastoma, <i>SMARCB1</i> and <i>SMARCA4</i> for rhabdoid tumor and small cell ovarian cancer, <i>TP53</i> for adrenocortical carcinoma and Li-Fraumeni syndrome cancers, <i>RB1</i> for retinoblastoma, etc.). The germline contribution to the development of specific cancers is discussed in the disease-specific sections that follow. </p><p id="CDR0000774921__27">Each section of this document is meant to provide readers with a brief summary of current knowledge about the genomic landscape of specific childhood cancers, an understanding that is critical in considering how to apply precision medicine concepts to childhood cancers.</p><div id="CDR0000774921_rl_1"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_1_1">Northcott PA, Lee C, Zichner T, et al.: Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511 (7510): 428-34, 2014. [<a href="/pmc/articles/PMC4201514/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4201514</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25043047" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25043047</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1_2">Chen X, Bahrami A, Pappo A, et al.: Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7 (1): 104-12, 2014. [<a href="/pmc/articles/PMC4096827/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4096827</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24703847" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24703847</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1_3">Mody RJ, Wu YM, Lonigro RJ, et al.: Integrative Clinical Sequencing in the Management of Refractory or Relapsed Cancer in Youth. JAMA 314 (9): 913-25, 2015. [<a href="/pmc/articles/PMC4758114/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4758114</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26325560" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26325560</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1_4">Parsons DW, Roy A, Yang Y, et al.: Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors. JAMA Oncol : , 2016. [<a href="/pmc/articles/PMC5471125/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5471125</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26822237" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26822237</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1_5">Zhang J, Walsh MF, Wu G, et al.: Germline Mutations in Predisposition Genes in Pediatric Cancer. N Engl J Med 373 (24): 2336-46, 2015. [<a href="/pmc/articles/PMC4734119/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4734119</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26580448" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26580448</span></a>]</div></li></ol></div></div><div id="CDR0000774921__3"><h2 id="_CDR0000774921__3_">Leukemias</h2><div id="CDR0000774921__1710"><h3>Acute Lymphoblastic Leukemia (ALL)</h3><p id="CDR0000774921__1711">The genomics of childhood ALL has been extensively investigated and multiple distinctive subtypes based on cytogenetic and molecular characterizations have been defined, each with its own pattern of clinical and prognostic characteristics.[<a class="bk_pop" href="#CDR0000774921_rl_3_1">1</a>] <a class="figpopup" href="/books/NBK374260.14/figure/CDR0000774921__1905/?report=objectonly" target="object" rid-figpopup="figCDR00007749211905" rid-ob="figobCDR00007749211905">Figure 1</a>
illustrates the distribution of ALL cases by cytogenetic/molecular subtype.[<a class="bk_pop" href="#CDR0000774921_rl_3_1">1</a>] <div id="CDR0000774921__1905" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000775146.jpg" alt="Pie chart showing subclassification of childhood ALL." /></div><div class="caption"><p>Figure 1. Subclassification of childhood ALL. Blue wedges refer to B-progenitor ALL, yellow to recently identified subtypes of B-ALL, and red wedges to T-lineage ALL. Reprinted from <a href="https://www.sciencedirect.com/journal/seminars-in-hematology" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Seminars in Hematology</a>, Volume 50, Charles G. Mullighan, Genomic Characterization of Childhood Acute Lymphoblastic Leukemia, Pages 314&#x02013;324, Copyright (2013), with permission from Elsevier.</p></div></div></p><p id="CDR0000774921__1941">The genomic landscape of B-precursor ALL is typified by a range of genomic alterations that disrupt normal B-cell development and in some cases by mutations in genes that provide a proliferation signal (e.g., activating mutations in <i>RAS</i> family genes or mutations/translocations leading to kinase pathway signaling). Genomic alterations leading to blockage of B-cell development include translocations (e.g., <i>TCF3-PBX1</i> and <i>ETV6-RUNX1</i>), point mutations (e.g., <i>IKZF1</i> and <i>PAX5</i>), and intragenic/intergenic deletions (e.g., <i>IKZF1</i>, <i>PAX5</i>, <i>EBF</i>, and <i>ERG</i>).[<a class="bk_pop" href="#CDR0000774921_rl_3_2">2</a>]</p><p id="CDR0000774921__1942">The genomic alterations in B-precursor ALL tend not to occur at random, but rather to cluster within subtypes that can be delineated by biological characteristics such as their gene expression profiles. Cases with recurring chromosomal translocations (e.g., <i>TCF3-PBX1</i> and <i>ETV6-RUNX1</i>, and <i>MLL</i> (<i>KMT2A</i>)-rearranged ALL) have distinctive biological features and illustrate this point, as do the examples below of specific genomic alterations within distinctive biological subtypes:</p><ul id="CDR0000774921__1943"><li class="half_rhythm"><div><i>IKZF1</i> deletions and mutations are most commonly observed within cases of Philadelphia chromosome&#x02013;positive (Ph+) ALL and Ph-like ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_3">3</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_4">4</a>]</div></li><li class="half_rhythm"><div>Intragenic <i>ERG</i> deletions occur within a distinctive subtype characterized by this alteration and lacking other recurring cytogenetic alterations associated with pediatric B-precursor ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_5">5</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_7">7</a>]</div></li><li class="half_rhythm"><div><i>TP53</i> mutations occur at high frequency in patients with low hypodiploid ALL with 32 to 39 chromosomes, and the <i>TP53</i> mutations in these patients are often germline.[<a class="bk_pop" href="#CDR0000774921_rl_3_8">8</a>] <i>TP53</i> mutations are uncommon in other patients with B-precursor ALL.</div></li></ul><p id="CDR0000774921__1944">Activating point mutations in kinase genes are uncommon in high-risk B-precursor ALL, and <i>JAK</i> genes are the primary kinases that are found to be mutated. These mutations are generally observed in patients with Ph-like ALL that have <i>CRLF2</i> abnormalities, although <i>JAK2</i> mutations are also observed in approximately 15% of children with Down syndrome ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_4">4</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_9">9</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_10">10</a>] Several kinase genes and cytokine receptor genes are activated by translocation as described below in the discussion of Ph-positive ALL and Ph-like ALL. <i>FLT3</i> mutations occur in a minority of cases (approximately 10%) of hyperdiploid ALL and <i>MLL</i> (<i>KMT2A</i>)-rearranged ALL, and are rare in other subtypes.[<a class="bk_pop" href="#CDR0000774921_rl_3_11">11</a>]</p><p id="CDR0000774921__1945">Understanding of the genomics of B-precursor ALL at relapse is less advanced than understanding of ALL genomics at diagnosis. Childhood ALL is often polyclonal at diagnosis and under the selective influence of therapy, some clones may be extinguished and new clones with distinctive genomic profiles may arise.[<a class="bk_pop" href="#CDR0000774921_rl_3_12">12</a>] Of particular importance are new mutations that arise at relapse that may be selected by specific components of therapy. As an example, mutations in <i>NT5C2</i> are not found at diagnosis whereas specific mutations in <i>NT5C2</i> were observed in 7 of 44 (16%) and 9 of 20 (45%) cases of B-precursor ALL with early relapse that were evaluated for this mutation.[<a class="bk_pop" href="#CDR0000774921_rl_3_12">12</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_13">13</a>] <i>NT5C2</i> mutations are uncommon in patients with late relapse, and they appear to induce resistance to 6-mercaptopurine and thioguanine.[<a class="bk_pop" href="#CDR0000774921_rl_3_13">13</a>] Another gene that is found mutated only at relapse is <i>PRSP1</i>, a gene involved purine biosynthesis.[<a class="bk_pop" href="#CDR0000774921_rl_3_14">14</a>] Mutations were observed in 13.0% of a Chinese cohort and 2.7% of a German cohort, and were observed in patients with on-treatment relapses. The <i>PRSP1</i> mutations observed in relapsed cases induce resistance to thiopurines in leukemia cell lines. <i>CREBBP</i> mutations are also enriched at relapse and appear to be associated with increased resistance to glucocorticoids.[<a class="bk_pop" href="#CDR0000774921_rl_3_12">12</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_15">15</a>] With increased understanding of the genomics of relapse, it may be possible to tailor upfront therapy to avoid relapse or detect resistance-inducing mutations early and intervene before a frank relapse.</p><p id="CDR0000774921__1946">Specific genomic and chromosomal alterations are provided below, with a focus on their prognostic significance.</p><div id="CDR0000774921__sm_CDR0000779360_1792"><h4>B-cell ALL cytogenetics/genomics</h4><p id="CDR0000774921__sm_CDR0000779360_512">A number of recurrent chromosomal abnormalities have been shown to have prognostic significance, especially in precursor B-cell ALL. Some chromosomal alterations are associated with more favorable outcomes, such as high hyperdiploidy (51&#x02013;65 chromosomes) and the <i>ETV6-RUNX1</i> fusion. Others historically have been associated with a poorer prognosis, including the Philadelphia chromosome (t(9;22)(q34;q11.2)), rearrangements of the <i>MLL</i> (<i>KMT2A</i>) gene, hypodiploidy, and intrachromosomal amplification of the <i>AML1</i> gene (iAMP21).[<a class="bk_pop" href="#CDR0000774921_rl_3_16">16</a>]</p><p id="CDR0000774921__sm_CDR0000779360_1809">In recognition of the clinical significance of many of these genomic alterations, the 2016 revision of the World Health Organization classification of tumors of the hematopoietic and lymphoid tissues lists the following entities for precursor B-cell ALL:[<a class="bk_pop" href="#CDR0000774921_rl_3_17">17</a>]</p><ul id="CDR0000774921__sm_CDR0000779360_1810"><li class="half_rhythm"><div>B-lymphoblastic leukemia/lymphoma, not otherwise specified (NOS).</div></li><li class="half_rhythm"><div>B-lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities.</div></li><li class="half_rhythm"><div>B-lymphoblastic leukemia/lymphoma with t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i>.</div></li><li class="half_rhythm"><div>B-lymphoblastic leukemia/lymphoma with t(v;11q23.3); <i>KMT2A</i> rearranged.</div></li><li class="half_rhythm"><div>B-lymphoblastic leukemia/lymphoma with t(12;21)(p13.2;q22.1); <i>ETV6-RUNX1</i>.</div></li><li class="half_rhythm"><div>B-lymphoblastic leukemia/lymphoma with hyperdiploidy.</div></li><li class="half_rhythm"><div>B-lymphoblastic leukemia/lymphoma with hypodiploidy.</div></li><li class="half_rhythm"><div>B-lymphoblastic leukemia/lymphoma with t(5;14)(q31.1;q32.3); <i>IL3-IGH</i>.</div></li><li class="half_rhythm"><div>B-lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3); <i>TCF3-PBX1</i>.</div></li><li class="half_rhythm"><div>Provisional entity: B-lymphoblastic leukemia/lymphoma, <i>BCR-ABL1&#x02013;like</i>.</div></li><li class="half_rhythm"><div>Provisional entity: B-lymphoblastic leukemia/lymphoma with iAMP21.</div></li></ul><p id="CDR0000774921__sm_CDR0000779360_1811">These and other chromosomal and genomic abnormalities for childhood ALL are described below.</p><ol id="CDR0000774921__sm_CDR0000779360_639"><li class="half_rhythm"><div><b>Chromosome number</b><ul id="CDR0000774921__sm_CDR0000779360_703"><li class="half_rhythm"><div class="half_rhythm"><i>High hyperdiploidy (51&#x02013;65 chromosomes)</i></div><div class="half_rhythm">High hyperdiploidy, defined as 51 to 65 chromosomes per cell or a DNA index greater than 1.16, occurs in 20% to 25%
of cases of precursor B-cell ALL, but very rarely in cases of T-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_18">18</a>]
Hyperdiploidy can be evaluated by measuring the DNA content of cells (DNA
index) or by karyotyping. In cases with a normal karyotype or in which standard cytogenetic analysis was unsuccessful, interphase fluorescence <i>in situ</i> hybridization (FISH) may detect hidden hyperdiploidy. High hyperdiploidy generally occurs in cases with
clinically favorable prognostic factors (patients aged 1 to &#x0003c;10 years with a low white blood cell [WBC] count) and is itself
an independent favorable prognostic factor.[<a class="bk_pop" href="#CDR0000774921_rl_3_18">18</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_20">20</a>] Within the hyperdiploid range of 51 to 65 chromosomes, patients with higher modal numbers (58&#x02013;66) appeared to have a better prognosis in one study.[<a class="bk_pop" href="#CDR0000774921_rl_3_20">20</a>] Hyperdiploid leukemia cells are particularly susceptible to undergoing apoptosis and accumulate higher levels of methotrexate and its active polyglutamate metabolites,[<a class="bk_pop" href="#CDR0000774921_rl_3_21">21</a>] which may explain the favorable outcome commonly observed in these cases.</div><div class="half_rhythm">While the overall outcome of patients with high hyperdiploidy is considered to be favorable, factors such as age, WBC count, specific trisomies, and early response to treatment have been shown to modify its prognostic significance.[<a class="bk_pop" href="#CDR0000774921_rl_3_22">22</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_23">23</a>] </div><div class="half_rhythm">Patients with trisomies of chromosomes 4, 10, and 17 (triple trisomies) have been shown to have a particularly favorable outcome as demonstrated by both Pediatric Oncology Group (POG) and Children's Cancer Group analyses of National Cancer Institute (NCI) standard-risk ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_24">24</a>] POG data suggest that NCI standard-risk patients with trisomies of 4 and 10, without regard to chromosome 17 status, have an excellent prognosis.[<a class="bk_pop" href="#CDR0000774921_rl_3_25">25</a>]</div><div class="half_rhythm">Chromosomal translocations may be seen with high hyperdiploidy, and in those cases, patients are more appropriately risk-classified based on the prognostic significance of the translocation. For instance, in one study, 8% of patients with the Philadelphia chromosome (t(9;22)(q34;q11.2)) also had high hyperdiploidy,[<a class="bk_pop" href="#CDR0000774921_rl_3_26">26</a>] and the outcome of these patients (treated without tyrosine kinase inhibitors) was inferior to that observed in non-Philadelphia chromosome&#x02013;positive (Ph+) high hyperdiploid patients.</div><div class="half_rhythm">Certain patients with hyperdiploid ALL may have a hypodiploid clone that has doubled (masked hypodiploidy).[<a class="bk_pop" href="#CDR0000774921_rl_3_27">27</a>] These cases may be interpretable based on the pattern of gains and losses of specific chromosomes. These patients have an unfavorable outcome, similar to those with hypodiploidy.[<a class="bk_pop" href="#CDR0000774921_rl_3_27">27</a>]</div><div class="half_rhythm">Near triploidy (68&#x02013;80 chromosomes) and near tetraploidy (&#x0003e;80 chromosomes) are much less common and appear to be biologically distinct from high hyperdiploidy.[<a class="bk_pop" href="#CDR0000774921_rl_3_28">28</a>] Unlike high hyperdiploidy, a high proportion of near tetraploid cases harbor a cryptic <i>ETV6-RUNX1</i> fusion.[<a class="bk_pop" href="#CDR0000774921_rl_3_28">28</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_30">30</a>] Near triploidy and tetraploidy were previously thought to be associated with an unfavorable prognosis, but later studies suggest that this may not be the case.[<a class="bk_pop" href="#CDR0000774921_rl_3_28">28</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_30">30</a>]</div><div class="half_rhythm">The genomic landscape of hyperdiploid ALL is represented by mutations in genes of the receptor tyrosine kinase (RTK)/RAS pathway in approximately one-half of cases. Genes encoding histone modifiers are also present in a recurring manner in a minority of cases. Analysis of mutation profiles demonstrates that chromosomal gains are early events in the pathogenesis of hyperdiploid ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_31">31</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><i>Hypodiploidy (&#x0003c;44 chromosomes) </i>
</div><div class="half_rhythm">Precursor B-cell ALL cases with fewer than the normal number of chromosomes have been subdivided in various ways, with one report stratifying based on modal chromosome number into the following four groups:[<a class="bk_pop" href="#CDR0000774921_rl_3_27">27</a>] <ul id="CDR0000774921__sm_CDR0000779360_1594"><li class="half_rhythm"><div>Near-haploid: 24 to 29 chromosomes (n = 46). </div></li><li class="half_rhythm"><div>Low-hypodiploid: 33 to 39 chromosomes (n = 26). </div></li><li class="half_rhythm"><div>High-hypodiploid: 40 to 43 chromosomes (n = 13). </div></li><li class="half_rhythm"><div>Near-diploid: 44 chromosomes (n = 54).</div></li></ul></div><div class="half_rhythm">Most patients with hypodiploidy are in the near-haploid and low-hypodiploid groups, and both of these groups have an elevated risk of treatment failure compared with nonhypodiploid cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_27">27</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_32">32</a>] Patients with fewer than 44 chromosomes have a worse outcome than do patients with 44 or 45 chromosomes in their leukemic cells.[<a class="bk_pop" href="#CDR0000774921_rl_3_27">27</a>] One study of 20 patients with near-haploid or low-hypodiploid ALL indicated that minimal residual disease (MRD) may have prognostic significance in the hypodiploid population.[<a class="bk_pop" href="#CDR0000774921_rl_3_33">33</a>] </div><div class="half_rhythm">The recurring genomic alterations of near-haploid and low-hypodiploid ALL appear to be distinctive from each other and from other types of ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_8">8</a>] In near-haploid ALL, alterations targeting RTK signaling, RAS signaling, and <i>IKZF3</i> are common.[<a class="bk_pop" href="#CDR0000774921_rl_3_34">34</a>] In low-hypodiploid ALL, genetic alterations involving <i>TP53</i>, <i>RB1</i>, and <i>IKZF2</i> are common. Importantly, the <i>TP53</i> alterations observed in low-hypodiploid ALL are also present in nontumor cells in approximately 40% of cases, suggesting that these mutations are germline and that low-hypodiploid ALL represents, in some cases, a manifestation of Li-Fraumeni syndrome.[<a class="bk_pop" href="#CDR0000774921_rl_3_8">8</a>]</div><div class="half_rhythm">Approximately two-thirds of patients with ALL and germline pathogenic <i>TP53</i> variants have hypodiploid ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_35">35</a>]</div></li></ul></div></li><li class="half_rhythm"><div><b>Chromosomal translocations and gains/deletions of chromosomal segments</b><ul id="CDR0000774921__sm_CDR0000779360_672"><li class="half_rhythm"><div class="half_rhythm"><i>t(12;21)(p13.2;q22.1); ETV6-RUNX1 (formerly known as TEL-AML1)</i>
</div><div class="half_rhythm">Fusion of the <i>ETV6</i> gene on
chromosome 12 to the <i>RUNX1</i> gene on chromosome 21 is present in 20%
to 25% of cases of precursor B-cell ALL but is rarely observed in T-cell
ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_29">29</a>] The t(12;21)(p12;q22) produces a cryptic translocation that is detected by methods such as FISH, rather than conventional cytogenetics, and it occurs most commonly in children aged 2 to 9 years.[<a class="bk_pop" href="#CDR0000774921_rl_3_36">36</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_37">37</a>] Hispanic children with ALL have a lower incidence of t(12;21)(p13;q22) than do white children.[<a class="bk_pop" href="#CDR0000774921_rl_3_38">38</a>]</div><div class="half_rhythm">Reports generally indicate favorable event-free survival (EFS) and overall survival (OS) in children with the <i>ETV6-RUNX1</i> fusion; however, the prognostic impact of this genetic feature is modified by the following factors:[<a class="bk_pop" href="#CDR0000774921_rl_3_39">39</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_43">43</a>]<dl id="CDR0000774921__sm_CDR0000779360_709" class="temp-labeled-list"><dt>-</dt><dd><p class="no_top_margin">Early response to treatment.</p></dd><dt>-</dt><dd><p class="no_top_margin">NCI risk category (age and WBC count at diagnosis).</p></dd><dt>-</dt><dd><p class="no_top_margin">Treatment regimen.</p></dd></dl>
</div><div class="half_rhythm">In one study of the treatment of newly diagnosed children with ALL, multivariate analysis of prognostic factors found age and leukocyte count, but not <i>ETV6-RUNX1</i>, to be independent prognostic factors.[<a class="bk_pop" href="#CDR0000774921_rl_3_39">39</a>] It does not appear that the presence of secondary cytogenetic abnormalities, such as deletion of <i>ETV6</i> (12p) or <i>CDKN2A/B</i> (9p), impacts the outcome of patients with the <i>ETV6-RUNX1</i> fusion.[<a class="bk_pop" href="#CDR0000774921_rl_3_43">43</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_44">44</a>] There is a higher frequency of late relapses in patients with <i>ETV6-RUNX1</i> fusion compared with other precursor B-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_39">39</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_45">45</a>] Patients with the <i>ETV6-RUNX1</i> fusion who relapse seem to have a better outcome than other relapse patients,[<a class="bk_pop" href="#CDR0000774921_rl_3_46">46</a>] with an especially favorable prognosis for patients who relapse more than 36 months from diagnosis.[<a class="bk_pop" href="#CDR0000774921_rl_3_47">47</a>] Some relapses in patients with t(12;21)(p13;q22) may represent a new independent second hit in a persistent preleukemic clone (with the first hit being the <i>ETV6-RUNX1</i> translocation).[<a class="bk_pop" href="#CDR0000774921_rl_3_48">48</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_49">49</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><i>t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i> (Ph+)</i></div><div class="half_rhythm"> The Philadelphia chromosome t(9;22)(q34;q11.2) is present in approximately 3% of children with
ALL and leads to production of a BCR-ABL1 fusion protein with tyrosine kinase activity (refer to Figure 2). <div id="CDR0000774921__sm_CDR0000779360_611" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%202&amp;p=BOOKS&amp;id=531639_CDR0000533336.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK374260.14/bin/CDR0000533336.jpg" alt="Philadelphia chromosome; three-panel drawing shows a piece of chromosome 9 and a piece of chromosome 22 breaking off and trading places, creating a changed chromosome 22 called the Philadelphia chromosome. In the left panel, the drawing shows a normal chromosome 9 with the ABL gene and a normal chromosome 22 with the BCR gene. In the center panel, the drawing shows chromosome 9 breaking apart in the ABL gene and chromosome 22 breaking apart below the BCR gene. In the right panel, the drawing shows chromosome 9 with the piece from chromosome 22 attached and chromosome 22 with the piece from chromosome 9 containing part of the ABL gene attached. The changed chromosome 22 with the BCR-ABLgene is called the Philadelphia chromosome." class="tileshop" title="Click on image to zoom" /></a></div><div class="caption"><p>Figure 2. The Philadelphia chromosome is a translocation between the <i>ABL-1</i> oncogene (on the long arm of chromosome 9) and the <i>breakpoint cluster region</i> (<i>BCR</i>) (on the long arm of chromosome 22), resulting in the fusion gene <i>BCR-ABL1</i>. <i>BCR-ABL1</i> encodes an oncogenic protein with tyrosine kinase activity.</p></div></div></div><div class="half_rhythm">This subtype of ALL is more common in older children with precursor B-cell ALL and high WBC count, with the incidence of the t(9;22)(q34;q11.2) increasing to about 25% in young adults with ALL.</div><div class="half_rhythm">Historically, the Philadelphia chromosome t(9;22)(q34;q11.2) was associated with an extremely poor prognosis (especially in those who presented with a high WBC count or had a slow early response to initial therapy), and its presence had been considered an indication for allogeneic hematopoietic stem cell transplantation (HSCT) in patients in first remission.[<a class="bk_pop" href="#CDR0000774921_rl_3_26">26</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_50">50</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_52">52</a>] Inhibitors of the BCR-ABL1 tyrosine kinase, such as imatinib mesylate, are effective in patients with Ph+ ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_53">53</a>] A study by the Children's Oncology Group (COG), which used intensive chemotherapy and concurrent imatinib mesylate given daily, demonstrated a 5-year EFS rate of 70% &#x000b1; 12%, which was superior to the EFS rate of historical controls in the pre-tyrosine kinase inhibitor (imatinib mesylate) era.[<a class="bk_pop" href="#CDR0000774921_rl_3_54">54</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_55">55</a>] </div></li><li class="half_rhythm"><div class="half_rhythm"><i>t(v;11q23.3); <i>MLL</i> (KMT2A)-rearranged</i></div><div class="half_rhythm">Rearrangements involving the <i>MLL</i> (<i>KMT2A</i>) gene occur in approximately 5% of
childhood ALL cases overall, but in up to 80% of infants with ALL. These rearrangements are generally associated with an increased risk of treatment failure.[<a class="bk_pop" href="#CDR0000774921_rl_3_56">56</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_59">59</a>] The t(4;11)(q21;q23) is the most common rearrangement involving
the <i>MLL</i> gene in children with ALL and occurs in approximately 1% to 2% of childhood ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_57">57</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_60">60</a>]
</div><div class="half_rhythm">Patients with the t(4;11)(q21;q23) are usually infants with high WBC counts; they are more likely than other children with ALL to have central nervous system (CNS) disease and to
have a poor response to initial therapy.[<a class="bk_pop" href="#CDR0000774921_rl_3_61">61</a>] While both infants and adults
with the t(4;11)(q21;q23) are at high risk of treatment failure, children with the
t(4;11)(q21;q23) appear to have a better outcome than either infants or adults.[<a class="bk_pop" href="#CDR0000774921_rl_3_56">56</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_57">57</a>] Irrespective of the type of <i>MLL</i> (<i>KMT2A</i>) gene rearrangement, infants with leukemia cells that have <i>MLL</i> gene rearrangements have a worse treatment outcome than older patients whose leukemia cells have an <i>MLL</i> gene rearrangement.[<a class="bk_pop" href="#CDR0000774921_rl_3_56">56</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_57">57</a>] Whole-genome sequencing has determined that cases of infant ALL with <i>MLL</i> gene rearrangements have few additional genomic alterations, none of which have clear clinical significance.[<a class="bk_pop" href="#CDR0000774921_rl_3_11">11</a>] Deletion of the <i>MLL</i> gene has not been associated with an adverse prognosis.[<a class="bk_pop" href="#CDR0000774921_rl_3_62">62</a>] </div><div class="half_rhythm">Of interest, the t(11;19)(q23;p13.3) involving <i>MLL</i> (<i>KMT2A</i>) and <i>MLLT1/ENL</i> occurs in approximately 1% of ALL cases and occurs in both early B-lineage
and T-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_63">63</a>] Outcome for infants with the t(11;19) is poor, but outcome
appears relatively favorable in older children with T-cell ALL and the t(11;19).[<a class="bk_pop" href="#CDR0000774921_rl_3_63">63</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><i>t(1;19)(q23;p13.3); <i>TCF3-PBX1</i> and t(17;19)(q22;p13); <i>TCF3-HLF</i></i></div><div class="half_rhythm">The t(1;19) occurs in approximately 5% of childhood ALL cases and involves
fusion of the <i>TCF3</i> gene on chromosome 19 to the <i>PBX1</i> gene on chromosome
1.[<a class="bk_pop" href="#CDR0000774921_rl_3_64">64</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_65">65</a>] The t(1;19) may occur as either a balanced translocation or as an
unbalanced translocation and is the primary recurring genomic alteration of the pre-B ALL immunophenotype (cytoplasmic Ig positive).[<a class="bk_pop" href="#CDR0000774921_rl_3_66">66</a>] Black children are relatively more likely than white children to have pre-B ALL with the t(1;19).[<a class="bk_pop" href="#CDR0000774921_rl_3_67">67</a>] </div><div class="half_rhythm">The t(1;19) had been associated with inferior outcome in the context of antimetabolite-based therapy,[<a class="bk_pop" href="#CDR0000774921_rl_3_68">68</a>] but the adverse prognostic significance was largely negated by more aggressive multiagent therapies.[<a class="bk_pop" href="#CDR0000774921_rl_3_65">65</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_69">69</a>] However, in a trial conducted by St. Jude Children's Research Hospital (SJCRH) on which all patients were treated without cranial radiation, patients with the t(1;19) had an overall outcome comparable to children lacking this translocation, with a higher risk of CNS relapse and a lower rate of bone marrow relapse, suggesting that more intensive CNS therapy may be needed for these patients.[<a class="bk_pop" href="#CDR0000774921_rl_3_70">70</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_71">71</a>]</div><div class="half_rhythm">The t(17;19) resulting in the <i>TCF3-HLF</i> fusion occurs in less than 1% of pediatric ALL cases. ALL with the <i>TCF3-HLF</i> fusion is associated at diagnosis with disseminated intravascular coagulation and with hypercalcemia. Outcome is very poor for children with the t(17;19), with a literature review noting mortality for 20 of 21 cases reported.[<a class="bk_pop" href="#CDR0000774921_rl_3_72">72</a>] In addition to the <i>TCF3-HLF</i> fusion, the genomic landscape of this ALL subtype was characterized by deletions in genes involved in B-cell development (<i>PAX5</i>, <i>BTG1</i>, and <i>VPREB1</i>) and by mutations in RAS pathway genes (<i>NRAS</i>, <i>KRAS</i>, and <i>PTPN11</i>).[<a class="bk_pop" href="#CDR0000774921_rl_3_66">66</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><i><i>DUX4</i>-rearranged ALL with frequent <i>ERG</i> deletions</i></div><div class="half_rhythm">Approximately 5% of standard-risk and 10% of high-risk pediatric precursor B-cell ALL patients have a rearrangement involving <i>DUX4</i> that leads to its overexpression.[<a class="bk_pop" href="#CDR0000774921_rl_3_73">73</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_74">74</a>] The frequency in older adolescents (aged &#x0003e;15 years) is approximately 10%. The most common rearrangement produces <i>IGH-DUX4</i> fusions, with <i>ERG-DUX4</i> fusions also observed. Approximately 50% of <i>DUX4</i>-rearranged cases have focal intragenic deletions involving <i>ERG</i> that are not observed in other ALL subtypes,[<a class="bk_pop" href="#CDR0000774921_rl_3_73">73</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_74">74</a>] and <i>DUX4</i>-rearranged cases show a distinctive gene expression pattern that was initially identified as being associated with these focal deletions in <i>ERG</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_5">5</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_7">7</a>] <i>IKZF1</i> alterations are observed in 35% to 40% of <i>DUX4</i>-rearranged ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_73">73</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_74">74</a>] <i>ERG</i> deletion connotes an excellent prognosis, with OS exceeding 90%; even when the <i>IZKF1</i> deletion is present, prognosis remains highly favorable.[<a class="bk_pop" href="#CDR0000774921_rl_3_5">5</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_7">7</a>] Patients with <i>DUX4</i> rearrangements who lack <i>ERG</i> deletion also appear to have favorable prognosis.[<a class="bk_pop" href="#CDR0000774921_rl_3_74">74</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><i><i>MEF2D</i>-rearranged ALL</i></div><div class="half_rhythm">Gene fusions involving <i>MEF2D</i>, a transcription factor that is expressed during B-cell development, are observed in approximately 4% of childhood ALL cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_75">75</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_76">76</a>] Although multiple fusion partners may occur, most cases involve <i>BCL9</i>, which is located on chromosome 1q21, as is <i>MEF2D</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_75">75</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_77">77</a>] The interstitial deletion producing the <i>MEF2D-BCL9</i> fusion is too small to be detected by conventional cytogenetic methods. Cases with <i>MEF2D</i> gene fusions show a distinctive gene expression profile, except for rare cases with <i>MEF2D-CSFR1</i> that have a Philadelphia chromosome (Ph)&#x02013;like gene expression profile.[<a class="bk_pop" href="#CDR0000774921_rl_3_75">75</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_78">78</a>] The median age at diagnosis for cases of <i>MEF2D</i>-rearranged ALL in studies that included both adult and pediatric patients was 12 to 14 years.[<a class="bk_pop" href="#CDR0000774921_rl_3_75">75</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_76">76</a>] For 22 children with <i>MEF2D</i>-rearranged ALL enrolled in a high-risk ALL clinical trial, the 5-year EFS was 72% (standard error, &#x000b1;10%), which was inferior to that for other patients.[<a class="bk_pop" href="#CDR0000774921_rl_3_75">75</a>] </div></li><li class="half_rhythm"><div class="half_rhythm"><i><i>ZNF384</i>-rearranged ALL</i></div><div class="half_rhythm"><i>ZNF384</i> is a transcription factor that is rearranged in approximately 4% to 5% of pediatric B-cell ALL cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_75">75</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_79">79</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_80">80</a>] Multiple fusion partners for <i>ZNF384</i> have been reported, including <i>ARID1B</i>, <i>CREBBP</i>, <i>EP300</i>, <i>SMARCA2</i>, <i>TAF15</i>, and <i>TCF3</i>. Regardless of the fusion partner, <i>ZNF384</i>-rearranged ALL cases show a distinctive gene expression profile.[<a class="bk_pop" href="#CDR0000774921_rl_3_75">75</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_79">79</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_80">80</a>] <i>ZNF384</i> rearrangement does not appear to confer independent prognostic significance.[<a class="bk_pop" href="#CDR0000774921_rl_3_75">75</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_79">79</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_80">80</a>] The immunophenotype of B-cell ALL with <i>ZNF384</i> rearrangement is characterized by weak or negative CD10 expression, with expression of CD13 and/or CD33 commonly observed.[<a class="bk_pop" href="#CDR0000774921_rl_3_79">79</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_80">80</a>] Cases of mixed phenotype B/myeloid acute leukemia that have <i>ZNF384</i> gene fusions have been reported, but it is unclear whether the clinical behavior of these cases is the same as that of <i>ZNF384</i>-rearranged B-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_81">81</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_82">82</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><i>t(5;14)(q31.1;q32.3); IL3-IGH</i></div><div class="half_rhythm">This entity is included in the 2016 revision of the WHO classification of tumors of the hematopoietic and lymphoid tissues.[<a class="bk_pop" href="#CDR0000774921_rl_3_17">17</a>] The finding of t(5;14)(q31.1;q32.3) in patients with ALL and hypereosinophilia in the 1980s was followed by the identification of the <i>IL3-IGH</i> fusion as the underlying genetic basis for the condition.[<a class="bk_pop" href="#CDR0000774921_rl_3_83">83</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_84">84</a>] The joining of the <i>IGH</i> locus to the promoter region of the <i>interleukin-3</i> gene (<i>IL3</i>) leads to dysregulation of <i>IL3</i> expression.[<a class="bk_pop" href="#CDR0000774921_rl_3_85">85</a>] Cytogenetic abnormalities in children with ALL and eosinophilia are variable, with only a subset resulting from the <i>IL3-IGH</i> fusion.[<a class="bk_pop" href="#CDR0000774921_rl_3_86">86</a>] </div><div class="half_rhythm">The number of cases of <i>IL3-IGH</i> ALL described in the published literature is too small to assess the prognostic significance of the <i>IL3-IGH</i> fusion.</div></li><li class="half_rhythm"><div class="half_rhythm"><i>Intrachromosomal amplification of chromosome 21 (iAMP21)</i>
</div><div class="half_rhythm">iAMP21 with multiple extra copies of the <i>RUNX1 (AML1)</i> gene at 21q22 occurs in approximately 2% of precursor B-cell ALL cases and is associated with older age (median, approximately 10 years), presenting WBC of less than 50 &#x000d7; 10<sup>9</sup>/L, a slight female preponderance, and high end-induction MRD.[<a class="bk_pop" href="#CDR0000774921_rl_3_87">87</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_89">89</a>] </div><div class="half_rhythm">The United Kingdom (UK)&#x02013;ALL clinical trials group initially reported that the presence of iAMP21 conferred a poor prognosis in patients treated in the MRC ALL 97/99 trial (5-year EFS, 29%).[<a class="bk_pop" href="#CDR0000774921_rl_3_16">16</a>] In their subsequent trial (<a href="https://www.cancer.gov/clinicaltrials/NCT00222612" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">UKALL2003 [NCT00222612]</a>), patients with iAMP21 were assigned to a more intensive chemotherapy regimen and had a markedly better outcome (5-year EFS, 78%).[<a class="bk_pop" href="#CDR0000774921_rl_3_88">88</a>] Similarly, the COG has reported that iAMP21 was associated with a significantly inferior outcome in NCI standard-risk patients (4-year EFS, 73% for iAMP21 vs. 92% in others), but not in NCI high-risk patients (4-year EFS, 73% vs. 80%).[<a class="bk_pop" href="#CDR0000774921_rl_3_87">87</a>] On multivariate analysis, iAMP21 was an independent predictor of inferior outcome only in NCI standard-risk patients.[<a class="bk_pop" href="#CDR0000774921_rl_3_87">87</a>] The results of the UKALL2003 and COG studies suggest that treatment of iAMP21 patients with high-risk chemotherapy regimens abrogates its adverse prognostic significance and obviates the need for SCT in first remission.[<a class="bk_pop" href="#CDR0000774921_rl_3_89">89</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><i>Amplification of <i>PAX5</i></i></div><div class="half_rhythm"><i>PAX5</i> amplification was identified in approximately 1% of B-cell ALL cases, and it was usually detected in cases lacking known leukemia-driver genomic alterations.[<a class="bk_pop" href="#CDR0000774921_rl_3_90">90</a>] Cases with <i>PAX5</i> amplification show male predominance (66%), with most (55%) having NCI high-risk status. For a cohort of patients with <i>PAX5</i> amplification diagnosed between 1993 and 2015, the 5-year EFS rate was 49% (95% confidence interval [CI], 36%&#x02013;61%), and the OS rate was 67% (95% CI, 54%&#x02013;77%), suggesting a relatively poor prognosis for this B-cell ALL subtype.</div></li><li class="half_rhythm"><div class="half_rhythm"><i><i>BCR-ABL1</i>&#x02013;like (Ph-like)</i>
</div><div class="half_rhythm"><i>BCR-ABL1</i>&#x02013;negative patients with a gene expression profile similar to <i>BCR-ABL1</i>&#x02013;positive patients have been referred to as <i>BCR-ABL1&#x02013;like</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_91">91</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_93">93</a>] This occurs in 10% to 20% of pediatric ALL patients, increasing in frequency with age, and has been associated with
<i>IKZF1</i> deletion or mutation.[<a class="bk_pop" href="#CDR0000774921_rl_3_9">9</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_91">91</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_92">92</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_94">94</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_95">95</a>] </div><div class="half_rhythm">Retrospective analyses have indicated that patients with <i>BCR-ABL1</i>&#x02013;like ALL have a poor prognosis.[<a class="bk_pop" href="#CDR0000774921_rl_3_4">4</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_91">91</a>] In one series, the 5-year EFS for NCI high-risk children and adolescents with <i>BCR-ABL1</i>&#x02013;like ALL was 58% and 41%, respectively.[<a class="bk_pop" href="#CDR0000774921_rl_3_4">4</a>] While it is more frequent in older and higher-risk patients, the <i>BCR-ABL1</i>&#x02013;like subtype has also been identified in NCI standard-risk patients. In a COG study, 13.6% of 1,023 NCI standard-risk B-cell ALL patients were found to have <i>BCR-ABL1</i>&#x02013;like ALL; these patients had an inferior EFS compared with non-<i>BCR-ABL1</i>&#x02013;like standard-risk patients (82% vs. 91%), although no difference in overall survival (93% vs. 96%) was noted.[<a class="bk_pop" href="#CDR0000774921_rl_3_96">96</a>] In one study of 40 <i>BCR-ABL1</i>&#x02013;like patients, the adverse prognostic significance of this subtype appeared to be abrogated when patients were treated with risk-directed therapy on the basis of MRD levels.[<a class="bk_pop" href="#CDR0000774921_rl_3_97">97</a>] </div><div class="half_rhythm">The hallmark of <i>BCR-ABL1</i>&#x02013;like ALL is activated kinase signaling, with 50% containing <i>CRLF2</i> genomic alterations [<a class="bk_pop" href="#CDR0000774921_rl_3_93">93</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_98">98</a>] and half of those cases containing concomitant <i>JAK</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_99">99</a>] Additional information about <i>BCR-ABL1</i>&#x02013;like ALL cases with <i>CRLF2</i> genomic alterations is provided below. </div><div class="half_rhythm">Many of the remaining cases of <i>BCR-ABL1</i>&#x02013;like ALL have been noted to have a series of translocations with a common theme of involvement of kinases, including <i>ABL1</i>, <i>ABL2</i>, <i>CSF1R</i>, <i>JAK2</i>, and <i>PDGFRB</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_4">4</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_94">94</a>] Fusion proteins from these gene combinations have been noted in some cases to be transformative and have responded to tyrosine kinase inhibitors both <i>in vitro</i> and <i>in vivo</i>,[<a class="bk_pop" href="#CDR0000774921_rl_3_94">94</a>] suggesting potential therapeutic strategies for these patients. The prevalence of targetable kinase fusions in <i>BCR-ABL1</i>&#x02013;like ALL is lower in NCI standard-risk patients (3.5%) than in NCI high-risk patients (approximately 30%).[<a class="bk_pop" href="#CDR0000774921_rl_3_96">96</a>] Point mutations in kinase genes, aside from those in <i>JAK1</i> and <i>JAK2</i>, are uncommon in Ph-like ALL cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_9">9</a>]</div><div class="half_rhythm">Genomic alterations in <i>CRLF2</i>, a cytokine receptor gene located on the pseudoautosomal regions of the sex chromosomes, have been identified in 5% to 10% of cases of precursor B-cell ALL; they represent approximately 50% of cases of <i>BCR-ABL1</i>&#x02013;like ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_100">100</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_102">102</a>] The chromosomal abnormalities that commonly lead to <i>CRLF2</i> overexpression include translocations of the IgH locus (chromosome 14) to <i>CRLF2</i> and interstitial deletions in pseudoautosomal regions of the sex chromosomes, resulting in a <i>P2RY8-CRLF2</i> fusion.[<a class="bk_pop" href="#CDR0000774921_rl_3_9">9</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_98">98</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_100">100</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_101">101</a>] <i>CRLF2</i> abnormalities are strongly associated with the presence of <i>IKZF1</i> deletions and <i>JAK</i> mutations;[<a class="bk_pop" href="#CDR0000774921_rl_3_9">9</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_98">98</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_99">99</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_101">101</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_103">103</a>] they are also more common in children with Down syndrome.[<a class="bk_pop" href="#CDR0000774921_rl_3_101">101</a>] Point mutations in tyrosine kinase genes other than <i>JAK1</i> and <i>JAK2</i> are uncommon in <i>CRLF2</i>-overexpressing cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_9">9</a>]</div><div class="half_rhythm">Although the results of several retrospective studies suggest that <i>CRLF2</i> abnormalities may have adverse prognostic significance on univariate analyses, most do not find this abnormality to be an independent predictor of outcome.[<a class="bk_pop" href="#CDR0000774921_rl_3_98">98</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_100">100</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_101">101</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_104">104</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_105">105</a>] For example, in a large European study, increased expression of <i>CRLF2</i> was not associated with unfavorable outcome in multivariate analysis, while <i>IKZF1</i> deletion and <i>BCR-ABL1</i>&#x02013;like expression signatures were associated with unfavorable outcome.[<a class="bk_pop" href="#CDR0000774921_rl_3_95">95</a>] Controversy exists about whether the prognostic significance of <i>CRLF2</i> abnormalities should be analyzed based on <i>CRLF2</i> overexpression or on the presence of <i>CRLF2</i> genomic alterations.[<a class="bk_pop" href="#CDR0000774921_rl_3_104">104</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_105">105</a>]</div><div class="half_rhythm">Approximately 9% of <i>BCR-ABL1</i>&#x02013;like ALL cases result from rearrangements that lead to overexpression of a truncated erythropoietin receptor (EPOR).[<a class="bk_pop" href="#CDR0000774921_rl_3_106">106</a>] The C-terminal region of the receptor that is lost is the region that is mutated in primary familial congenital polycythemia and that controls stability of the EPOR. The portion of the EPOR remaining is sufficient for JAK-STAT activation and for driving leukemia development.</div></li><li class="half_rhythm"><div class="half_rhythm"><i><i>IKZF1</i> deletions</i></div><div class="half_rhythm"><i>IKZF1</i> deletions, including deletions of the entire gene and deletions of specific exons, are present in approximately 15% of precursor B-cell ALL cases. Less commonly, <i>IKZF1</i> can be inactivated by deleterious point mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_92">92</a>] Cases with <i>IKZF1</i> deletions tend to occur in older children, have a higher WBC count at diagnosis, and are therefore, more common in NCI high-risk patients than in NCI standard-risk patients.[<a class="bk_pop" href="#CDR0000774921_rl_3_2">2</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_92">92</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_103">103</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_107">107</a>] A high proportion of <i>BCR-ABL1</i> cases have a deletion of <i>IKZF1</i>,[<a class="bk_pop" href="#CDR0000774921_rl_3_3">3</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_103">103</a>] and ALL arising in children with Down syndrome appears to have elevated rates of <i>IKZF1</i> deletions.[<a class="bk_pop" href="#CDR0000774921_rl_3_108">108</a>] <i>IKZF1</i> deletions are also common in cases with <i>CRLF2</i> genomic alterations and in Ph-like (<i>BCR-ABL1</i>&#x02013;like) ALL (see above).[<a class="bk_pop" href="#CDR0000774921_rl_3_5">5</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_91">91</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_103">103</a>]</div><div class="half_rhythm">Multiple reports have documented the adverse prognostic significance of an <i>IKZF1</i> deletion, and most studies have reported that this deletion is an independent predictor of poor outcome on multivariate analyses.[<a class="bk_pop" href="#CDR0000774921_rl_3_5">5</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_91">91</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_92">92</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_95">95</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_103">103</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_109">109</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_113">113</a>]; [<a class="bk_pop" href="#CDR0000774921_rl_3_114">114</a>][<a href="/books/n/pdqcis/glossary_loe/def-item/glossary_loe_CDR0000335135/" class="def">Level of evidence: 2Di</a>] However, the prognostic significance of <i>IKZF1</i> may not apply equally across ALL biological subtypes, as illustrated by the apparent lack of prognostic significance in patients with <i>ERG</i> deletion.[<a class="bk_pop" href="#CDR0000774921_rl_3_7">7</a>] The Associazione Italiana di Ematologia e Oncologia Pediatrica (AIEOP)&#x02013;Berlin-Frankfurt-M&#x000fc;nster (BFM) group reported that <i>IKZF1</i> deletions were significant adverse prognostic factors only in B-cell ALL patients with high end-induction MRD and in whom co-occurrence of deletions of <i>CDKN2A</i>, <i>CDKN2B</i>, <i>PAX5</i>, or <i>PAR1</i> (in the absence of <i>ERG</i> deletion) were identified.[<a class="bk_pop" href="#CDR0000774921_rl_3_115">115</a>]</div><div class="half_rhythm">There are few published results of changing therapy on the basis of <i>IKZF1</i> gene status. The Malaysia-Singapore group published results of two consecutive trials. In the first trial (MS2003), <i>IKZF1</i> status was not considered in risk stratification, while in the subsequent trial (MS2010), <i>IKZF1</i>-deleted patients were excluded from the standard-risk group. Thus, more <i>IKZF1</i>-deleted patients in the MS2010 trial received intensified therapy. Patients with <i>IKZF1</i>-deleted ALL had improved outcomes in MS2010 compared with patients in MS2003, but interpretation of this observation is limited by other changes in risk stratification and therapeutic differences between the two trials.[<a class="bk_pop" href="#CDR0000774921_rl_3_116">116</a>][<a href="/books/n/pdqcis/glossary_loe/def-item/glossary_loe_CDR0000335132/" class="def">Level of evidence: 2A</a>]</div></li></ul></div></li></ol></div><div id="CDR0000774921__sm_CDR0000779360_1838"><h4>T-cell ALL cytogenetics/genomics</h4><p id="CDR0000774921__sm_CDR0000779360_1839"> T-cell ALL is characterized by genomic alterations leading to activation of transcriptional programs related to T-cell development and by a high frequency of cases (approximately 60%) with mutations in <i>NOTCH1</i> and/or <i>FBXW7</i> that result in activation of the NOTCH1 pathway.[<a class="bk_pop" href="#CDR0000774921_rl_3_117">117</a>] In contrast to B-cell ALL, the prognostic significance of T-cell ALL genomic alterations is less well-defined. Cytogenetic abnormalities common in B-lineage ALL (e.g., hyperdiploidy, 51&#x02013;65 chromosomes) are
rare in T-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_118">118</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_119">119</a>]</p><p id="CDR0000774921__sm_CDR0000779360_1840">Multiple chromosomal translocations have been identified in T-cell ALL that lead to deregulated expression of the target genes. These chromosome rearrangements fuse genes encoding transcription factors (e.g., <i>TAL1/TAL2</i>, <i>LMO1</i> and <i>LMO2</i>, <i>LYL1</i>, <i>TLX1</i>, <i>TLX3</i>, <i>NKX2-I</i>, <i>HOXA</i>, and <i>MYB</i>) to one of the T-cell receptor loci (or to other genes) and result in deregulated expression of these transcription factors in leukemia cells.[<a class="bk_pop" href="#CDR0000774921_rl_3_117">117</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_118">118</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_120">120</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_124">124</a>] These translocations are often not apparent by examining a standard karyotype, but can be identified using more sensitive screening techniques, including fluorescence <i>in situ</i> hybridization (FISH) or polymerase chain reaction (PCR).[<a class="bk_pop" href="#CDR0000774921_rl_3_118">118</a>] Mutations in a noncoding region near the <i>TAL1</i> gene that produce a super-enhancer upstream of <i>TAL1</i> represent nontranslocation genomic alterations that can also activate <i>TAL1</i> transcription to induce T-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_125">125</a>]</p><p id="CDR0000774921__sm_CDR0000779360_1841">Translocations resulting in chimeric fusion proteins are also observed in T-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_126">126</a>]</p><ul id="CDR0000774921__sm_CDR0000779360_1842"><li class="half_rhythm"><div>A <i>NUP214-ABL1</i> fusion has been noted in 4% to 6% of T-cell ALL cases and is observed in both adults and children, with a male predominance.[<a class="bk_pop" href="#CDR0000774921_rl_3_127">127</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_129">129</a>] The fusion is cytogenetically cryptic and is seen in FISH on amplified episomes or, more rarely, as a small homogeneous staining region.[<a class="bk_pop" href="#CDR0000774921_rl_3_129">129</a>] T-cell ALL may also uncommonly show ABL1 fusion proteins with other gene partners (e.g., <i>ETV6</i>, <i>BCR</i>, and <i>EML1</i>).[<a class="bk_pop" href="#CDR0000774921_rl_3_129">129</a>] <i>ABL</i> tyrosine kinase inhibitors, such as imatinib or dasatinib, may demonstrate therapeutic benefits in this T-cell ALL subtype,[<a class="bk_pop" href="#CDR0000774921_rl_3_127">127</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_128">128</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_130">130</a>] although clinical experience with this strategy is very limited.[<a class="bk_pop" href="#CDR0000774921_rl_3_131">131</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_133">133</a>]</div></li><li class="half_rhythm"><div>Gene fusions involving <i>SPI1</i> (encoding the transcription factor PU.1) were reported in 4% of Japanese children with T-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_134">134</a>] Fusion partners included <i>STMN1</i> and <i>TCF7</i>. T-cell ALL cases with SPI1 fusions had a particularly poor prognosis; six of seven affected individuals died within 3 years of diagnosis of early relapse.</div></li><li class="half_rhythm"><div>Other recurring gene fusions in T-cell ALL patients include those involving <i>MLLT10</i>, <i>KMT2A</i>, and <i>NUP98</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_117">117</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779360_1843">Notch pathway signaling is commonly activated by <i>NOTCH1</i> and <i>FBXW7</i> gene mutations in T-cell ALL, and these are the most commonly mutated genes in pediatric T-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_117">117</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_135">135</a>] <i>NOTCH1</i>-activating gene mutations occur in approximately 50% to 60% of T-cell ALL cases, and <i>FBXW7</i>-inactivating gene mutations occur in approximately 15% of cases, with the result that approximately 60% of cases have Notch pathway activation by mutations in at least one of these genes.[<a class="bk_pop" href="#CDR0000774921_rl_3_136">136</a>]</p><p id="CDR0000774921__sm_CDR0000779360_1844">The prognostic significance of <i>NOTCH1</i>/<i>FBXW7</i> mutations may be modulated by genomic alterations in RAS and PTEN. The French Acute Lymphoblastic Leukaemia Study Group (FRALLE) and the Group for Research on Adult Acute Lymphoblastic Leukemia groups reported that patients having mutated <i>NOTCH1</i>/<i>FBXW7</i> and wild-type <i>PTEN</i>/<i>RAS</i> constituted a favorable-risk group while patients with <i>PTEN</i> or <i>RAS</i> mutations, regardless of NOTCH1/FBXW7 status, have a significantly higher risk of treatment failure.[<a class="bk_pop" href="#CDR0000774921_rl_3_126">126</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_137">137</a>] In the FRALLE study, 5-year cumulative incidence of relapse and disease-free survival (DFS) were 50% and 46% for patients with mutated <i>NOTCH1</i>/<i>FBXW7</i> and mutated <i>PTEN</i>/<i>RAS</i> versus 13% and 87% for patients with mutated <i>NOTCH1</i>/<i>FBXW7</i> and wild-type <i>PTEN</i>/<i>RAS</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_126">126</a>] The overall 5-year DFS in the FRALLE study was 73%, and additional research is needed to determine whether the same prognostic significance for <i>NOTCH1</i>/<i>FBXW7</i> and <i>PTEN</i>/<i>RAS</i> mutations will apply to current treatment regimens, which produce overall 5-year DFS rates that approach 90%.</p><div id="CDR0000774921__sm_CDR0000779360_1850"><h5>Early T-cell precursor ALL</h5><p id="CDR0000774921__sm_CDR0000779360_1851">Detailed molecular characterization of early T-cell precursor ALL showed this entity to be highly heterogeneous at the molecular level, with no single gene affected by mutation or copy number alteration in more than one-third of cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_138">138</a>] Compared with other T-cell ALL cases, the early T-cell precursor group had a lower rate of <i>NOTCH1</i> mutations and significantly higher frequencies of alterations in genes regulating cytokine receptors and RAS signaling, hematopoietic development, and histone modification. The transcriptional profile of early T-cell precursor ALL shows similarities to that of normal hematopoietic stem cells and myeloid leukemia stem cells.[<a class="bk_pop" href="#CDR0000774921_rl_3_138">138</a>]</p><p id="CDR0000774921__sm_CDR0000779360_1852">Studies have found that the absence of biallelic deletion of the TCRgamma locus (ABGD), as detected by comparative genomic hybridization and/or quantitative DNA-PCR, was associated with early treatment failure in patients with T-cell ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_139">139</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_140">140</a>] ABGD is characteristic of early thymic precursor cells, and many of the T-cell ALL patients with ABGD have an immunophenotype consistent with the diagnosis of early T-cell precursor phenotype.</p></div></div><div id="CDR0000774921__sm_CDR0000779360_1845"><h4>Gene polymorphisms in drug metabolic pathways</h4><p id="CDR0000774921__sm_CDR0000779360_1846">A number of polymorphisms of genes involved in the metabolism of chemotherapeutic agents have been reported to have prognostic significance in childhood ALL.[<a class="bk_pop" href="#CDR0000774921_rl_3_141">141</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_143">143</a>] For example, patients with mutant phenotypes of thiopurine methyltransferase (<i>TPMT</i>, a gene involved in the metabolism of thiopurines, such as mercaptopurine [6-MP]), appear to have more favorable outcomes,[<a class="bk_pop" href="#CDR0000774921_rl_3_144">144</a>] although such patients may also be at higher risk of developing significant treatment-related toxicities, including myelosuppression and infection.[<a class="bk_pop" href="#CDR0000774921_rl_3_145">145</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_146">146</a>] Patients with homozygosity for <i>TPMT</i> variants associated with low enzymatic activity tolerate only very low doses of mercaptopurine (approximately 10% of the standard dose) and are treated with reduced doses of mercaptopurine to avoid excessive toxicity. Patients who are heterozygous for this mutant enzyme gene generally tolerate mercaptopurine without serious toxicity, but they do require more frequent dose reductions for hematologic toxicity than do patients who are homozygous for the normal allele.[<a class="bk_pop" href="#CDR0000774921_rl_3_147">147</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_148">148</a>]</p><p id="CDR0000774921__sm_CDR0000779360_1847">Germline variants in nucleoside diphosphate&#x02013;linked moiety X-type motif 15 (<i>NUDT15</i>) that reduce or abolish activity of this enzyme also lead to diminished tolerance to thiopurines.[<a class="bk_pop" href="#CDR0000774921_rl_3_147">147</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_149">149</a>] The variants are most common in East Asians and Hispanics, and they are rare in Europeans and Africans. Patients homozygous for the risk variants tolerate only very low doses of mercaptopurine, while patients heterozygous for the risk alleles tolerate lower doses than do patients homozygous for the wild-type allele (approximately 25% dose reduction on average), but there is broad overlap in tolerated doses between the two groups.[<a class="bk_pop" href="#CDR0000774921_rl_3_147">147</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_150">150</a>]</p><p id="CDR0000774921__sm_CDR0000779360_1848">Gene polymorphisms may also affect the expression of proteins that play central roles in the cellular effects of anticancer drugs. As an example, patients who are homozygous for a polymorphism in the promoter region of CEP72 (a centrosomal protein involved in microtubule formation) are at increased risk of vincristine neurotoxicity.[<a class="bk_pop" href="#CDR0000774921_rl_3_151">151</a>]</p><p id="CDR0000774921__sm_CDR0000779360_1849">Genome-wide polymorphism analysis has identified specific single nucleotide polymorphisms associated with high end-induction MRD and risk of relapse. Polymorphisms
of IL-15, as well as genes associated with the metabolism of etoposide and methotrexate, were significantly associated with treatment response in two large cohorts of ALL patients treated on SJCRH and COG protocols.[<a class="bk_pop" href="#CDR0000774921_rl_3_152">152</a>] Polymorphic variants involving the reduced folate carrier and methotrexate metabolism have been linked to toxicity and outcome.[<a class="bk_pop" href="#CDR0000774921_rl_3_153">153</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_154">154</a>] While these associations suggest that individual variations in drug metabolism can affect outcome, few studies have
attempted to adjust for these variations; it is unknown whether individualized dose modification on the basis of these findings will improve outcome.</p><p id="CDR0000774921__1728">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062923/">Childhood Acute Lymphoblastic Leukemia Treatment</a> for information about the treatment of childhood ALL.)</p></div></div><div id="CDR0000774921__1715"><h3>Acute Myeloid Leukemia (AML)</h3><p id="CDR0000774921__sm_CDR0000779362_1908"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779362_834"></div>Pediatric AML is typically a disease of recurring chromosomal alterations, with conventional
cytogenetics detecting structural and numerical cytogenetic abnormalities in 70% to 80% of children with AML,
while the recently recognized cryptic translocations (e.g., <i>NUP98/NSD1</i>, <i>CBFA2T3/GLIS2</i>, and <i>NUP98/KDM5A</i>)
and mutations (e.g., <i>CEBPA</i> and <i>NPM1</i>) account for many of the remaining cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_155">155</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_156">156</a>]</p><p id="CDR0000774921__sm_CDR0000779362_1909">A unifying concept for the role of specific mutations in AML is that mutations that promote proliferation (Type I) and mutations that block normal myeloid development (Type II) are required for full conversion of hematopoietic stem/precursor cells to malignancy.[<a class="bk_pop" href="#CDR0000774921_rl_3_157">157</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_158">158</a>] Support for this conceptual construct comes from the observation that there is generally mutual exclusivity within each type of mutation, such that only a single Type I and a single Type II mutation are present within each case. Further support comes from genetically engineered models of AML for which cooperative events rather than single mutations are required for leukemia development. Type I mutations are commonly in genes involved in growth factor signal transduction and include mutations in <i>FLT3</i>, <i>KIT</i>, <i>NRAS</i>, <i>KRAS</i>, and <i>PTNP11</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_159">159</a>] Alterations in <i>RAS</i> genes, <i>KIT</i>, and <i>FLT3</i> are the most common gene mutations occurring in children with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_160">160</a>] Examples of Type II genomic alterations include the common translocations and mutations associated with favorable prognosis (t(8;21), inv(16), t(16;16), t(15;17), <i>CEBPA</i>, and <i>NPM1</i>), as well as <i>MLL</i> (<i>KMT2A</i>) rearrangements (translocations and partial tandem duplication) and <i>NUP98</i>-fusion genes.</p><p id="CDR0000774921__sm_CDR0000779362_1910">Comprehensive molecular profiling of AML in pediatric and adult cases has characterized AML as a disease
showing both commonalities and distinct differences between the age groups.[<a class="bk_pop" href="#CDR0000774921_rl_3_156">156</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_160">160</a>] One difference is that pediatric patients with AML have lower rates of mutations than do adult patients with AML; in most cases, children have less than one somatic change in protein-coding regions per megabase.[<a class="bk_pop" href="#CDR0000774921_rl_3_160">160</a>] Figure 3
(A) illustrates the frequencies of recurring gene mutations in adult and pediatric AML, showing that
some mutations are differentially present between pediatric and adults cases (e.g., <i>IDH1</i>, <i>TP53</i>, <i>RUNX1</i>, and <i>DNMT3A</i>
mutations being much more common in adults than in children).[<a class="bk_pop" href="#CDR0000774921_rl_3_156">156</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_160">160</a>] Figure 3 (B) shows that
common genomic alterations in adult AML (<i>FLT3-ITD</i>, <i>NPM1</i>, and <i>CEBPA</i> mutations) are uncommon in children younger than
5 years but increase in frequency during the pediatric age range.[<a class="bk_pop" href="#CDR0000774921_rl_3_156">156</a>] </p><div id="CDR0000774921__sm_CDR0000779362_1911" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000775147.jpg" alt="Charts showing (A) prevalence of AML-associated mutations in pediatric versus adult AML and (B) age-based prevalence of common AML-associated mutations." /></div><div class="caption"><p>Figure 3. (A) Prevalence of AML-associated mutations in pediatric versus adult AML, demonstrating lower incidence of mutations in pediatric AML. Bordered panel shows 2 newly discovered mutations in adults that are absent in pediatric AML. (B) Age-based prevalence of common AML-associated mutations. Reprinted from <a href="https://www.sciencedirect.com/journal/pediatric-clinics-of-north-america" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Pediatric Clinics of North America</a>, Volume 62, Katherine Tarlock, Soheil Meshinchi, Pediatric Acute Myeloid Leukemia: Biology and Therapeutic Implications of Genomic Variants, Pages 75&#x02013;93, Copyright (2015), with permission from Elsevier.</p></div></div><p id="CDR0000774921__sm_CDR0000779362_1912">Figure 4 (A) shows the marked variation in <i>MLL</i> (<i>KMT2A</i>)-rearranged AML by age, with much higher
frequencies for infants compared with older children and adults.[<a class="bk_pop" href="#CDR0000774921_rl_3_156">156</a>] Normal karyotype AML and core-binding
factor AML show an opposing pattern, with very low rates in infancy and with increasing rates in the first two
decades of life. Figure 4 (B) shows specific cryptic translocations that occur primarily in
children (<i>NUP98/NSD1</i>, <i>CBFA2T3/GLIS2</i>, and <i>NUP98/KDM5A</i>) and vary by age.[<a class="bk_pop" href="#CDR0000774921_rl_3_156">156</a>]<div id="CDR0000774921__sm_CDR0000779362_1907" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000775165.jpg" alt="Charts showing age-based prevalence of specific karyotypic (A) or cryptic (B) translocations in AML." /></div><div class="caption"><p>Figure 4. Age-based prevalence of specific karyotypic (A) or cryptic (B) translocations in AML. Reprinted from <a href="https://www.sciencedirect.com/journal/pediatric-clinics-of-north-america" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Pediatric Clinics of North America</a>, Volume 62, Katherine Tarlock, Soheil Meshinchi, Pediatric Acute Myeloid Leukemia: Biology and Therapeutic Implications of Genomic Variants, Pages 75&#x02013;93, Copyright (2015), with permission from Elsevier.</p></div></div></p><p id="CDR0000774921__sm_CDR0000779362_1913">The genomic landscape of pediatric AML cases can change from diagnosis to relapse, with mutations detectable at diagnosis dropping out at relapse and conversely with new mutations appearing at relapse. In a study of 20 cases for which sequencing data were available at diagnosis and relapse, a key finding was that the variant allele frequency at diagnosis strongly correlated with persistence of mutations at relapse.[<a class="bk_pop" href="#CDR0000774921_rl_3_161">161</a>] Approximately 90% of the diagnostic variants with variant allele frequency greater than 0.4 persisted to relapse, compared with only 28% with variant allele frequency less than 0.2 (<i>P</i> &#x0003c; .001). This observation is consistent with previous results showing that presence of the <i>FLT3-ITD</i> mutation predicted for poor prognosis only when there was a high <i>FLT3-ITD</i> allelic ratio.</p><p id="CDR0000774921__sm_CDR0000779362_28">Genetic analyses of leukemia (using both conventional cytogenetic methods and molecular methods) are performed on children with acute myeloid leukemia (AML) because both chromosomal and molecular abnormalities are
important diagnostic and prognostic markers.[<a class="bk_pop" href="#CDR0000774921_rl_3_155">155</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_167">167</a>] Clonal chromosomal
abnormalities have been identified in the blasts of about 75% of children with
AML and are useful in defining subtypes with particular characteristics (e.g.,
t(8;21), t(15;17), inv(16), 11q23 abnormalities, t(1;22)).
Leukemias with the chromosomal abnormalities t(8;21) and inv(16) are called core-binding factor leukemias; core-binding factor (a transcription factor involved in hematopoietic stem cell differentiation) is disrupted by each of these abnormalities. </p><p id="CDR0000774921__sm_CDR0000779362_869">Molecular abnormalities can aid in risk stratification and treatment allocation. For example, mutations of <i>NPM</i> and <i>CEBPA</i> are associated with favorable outcome while certain mutations of <i>FLT3</i> portend a high risk of relapse, and identifying these mutations may allow for targeted therapy.[<a class="bk_pop" href="#CDR0000774921_rl_3_168">168</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_171">171</a>]</p><p id="CDR0000774921__sm_CDR0000779362_850">The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia emphasizes that recurrent chromosomal translocations in pediatric AML may be unique or have a different prevalence than in adult AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_17">17</a>] The pediatric AML chromosomal translocations that are found by conventional chromosome analysis and those that are cryptic (identified only with fluorescence <i>in situ</i> hybridization or molecular techniques) occur at higher rates than in adults. These recurrent translocations are summarized in Table 1.[<a class="bk_pop" href="#CDR0000774921_rl_3_17">17</a>] Table 1 also shows, in the bottom three rows, additional relatively common recurrent translocations observed in children with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_172">172</a>]</p><div id="CDR0000774921__sm_CDR0000779362_851" class="table"><h3><span class="title">Table 1. Common Pediatric Acute Myeloid Leukemia (AML) Chromosomal Translocations</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK374260.14/table/CDR0000774921__sm_CDR0000779362_851/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000774921__sm_CDR0000779362_851_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Gene Fusion Product</th><th colspan="1" rowspan="1" style="vertical-align:top;">Chromosomal Translocation</th><th colspan="1" rowspan="1" style="vertical-align:top;">Prevalence in Pediatric AML (%)</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>KMT2A</i> (<i>MLL</i>) translocated </td><td colspan="1" rowspan="1" style="vertical-align:top;">11q23.3 </td><td colspan="1" rowspan="1" style="vertical-align:top;">25.0</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>NUP98-NSD1</i><sup>a</sup></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(5;11)(q35.3;p15.5)</td><td colspan="1" rowspan="1" style="vertical-align:top;">7.0</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>CBFA2T3-GLIS2</i><sup>a </sup></td><td colspan="1" rowspan="1" style="vertical-align:top;">inv(16)(p13.3;q24.3)</td><td colspan="1" rowspan="1" style="vertical-align:top;">3.0</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>NUP98-KDM5A4</i><sup>a</sup>
</td><td colspan="1" rowspan="1" style="vertical-align:top;">t(11;12)(p15.5;p13.5)</td><td colspan="1" rowspan="1" style="vertical-align:top;">3.0</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>DEK-NUP214</i>
</td><td colspan="1" rowspan="1" style="vertical-align:top;">t(6;9)(p23;q34.1)</td><td colspan="1" rowspan="1" style="vertical-align:top;">1.7</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>RBM15(OTT)-MKL1(MAL) </i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(1;22)(p13.3;q13.1)</td><td colspan="1" rowspan="1" style="vertical-align:top;">0.8</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>MNX1-ETV6</i></td><td colspan="1" rowspan="1" style="vertical-align:top;"> t(7;12)(q36.3;p13.2)</td><td colspan="1" rowspan="1" style="vertical-align:top;">0.8</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>KAT6A-CREBBP</i>
</td><td colspan="1" rowspan="1" style="vertical-align:top;">t(8;16)(p11.2;p13.3)</td><td colspan="1" rowspan="1" style="vertical-align:top;">0.5</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>RUNX1-RUNX1T1</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(8;21)(q22;q22)</td><td colspan="1" rowspan="1" style="vertical-align:top;">13&#x02013;14</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>CBFB-MYH11</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">inv(16)(p13.1;q22) or t(16;16)(p13.1;q22)</td><td colspan="1" rowspan="1" style="vertical-align:top;">4&#x02013;9</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>PML-RARA</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(15;17)(q24;q21)</td><td colspan="1" rowspan="1" style="vertical-align:top;">6&#x02013;11</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin"><sup>a</sup>Cryptic chromosomal translocation.</p></div></dd></dl></div></div></div><p id="CDR0000774921__sm_CDR0000779362_543">Specific recurring cytogenetic and molecular abnormalities are briefly described below. The abnormalities are listed by those in clinical use that identify patients with favorable or unfavorable prognosis, followed by other abnormalities. The nomenclature of the 2016 revision to the WHO classification of myeloid neoplasms and acute leukemia is incorporated for disease entities where relevant.<div class="milestone-end"></div></p><div id="CDR0000774921__sm_CDR0000779362_861"><h4>Molecular abnormalities associated with a favorable prognosis</h4><p id="CDR0000774921__sm_CDR0000779362_862">Molecular abnormalities associated with a favorable prognosis include the following:</p><ul id="CDR0000774921__sm_CDR0000779362_138"><li class="half_rhythm"><div>Core-binding factor (CBF) AML includes cases with <i>RUNX1-RUNX1T1</i> and <i>CBFB-MYH11</i> fusion genes that disrupt the activity of core-binding factor, which contains <i>RUNX1</i> and <i>CBFB</i>. These are specific entities in the 2016 revision to the WHO classification of myeloid neoplasms and acute leukemia.<dl id="CDR0000774921__sm_CDR0000779362_852" class="temp-labeled-list"><dt>-</dt><dd><p class="no_top_margin"><b>AML with t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i>:</b> In leukemias with t(8;21), the <i>RUNX1</i> (<i>AML1</i>) gene on chromosome 21 is fused with the <i>RUNX1T1</i> (<i>ETO</i>) gene on chromosome 8. The t(8;21) translocation is associated with the FAB M2 subtype and with granulocytic sarcomas.[<a class="bk_pop" href="#CDR0000774921_rl_3_173">173</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_174">174</a>] Adults with t(8;21) have a more favorable prognosis than do adults with other types of AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_175">175</a>] Children with t(8;21) have a more favorable outcome than do children with AML characterized by normal or complex karyotypes,[<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_176">176</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_178">178</a>] with 5-year overall survival (OS) of 74% to 90%.[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_179">179</a>] The t(8;21) translocation occurs in approximately 12% of children with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_179">179</a>]</p></dd><dt>-</dt><dd><p class="no_top_margin"><b>AML with inv(16)(p13.1;q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i>:</b> In leukemias with inv(16), the <i>CBF beta</i> gene (<i>CBFB</i>) at chromosome band 16q22 is fused with the <i>MYH11</i> gene at chromosome band 16p13. The inv(16) translocation is associated with the FAB M4Eo subtype.[<a class="bk_pop" href="#CDR0000774921_rl_3_180">180</a>] Inv(16) confers a favorable prognosis for both adults and children with AML,[<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_176">176</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_178">178</a>] with a 5-year OS of about 85%.[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>] Inv(16) occurs in 7% to 9% of children with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_179">179</a>] As noted above, cases with <i>CBFB-MYH11</i> and cases with <i>RUNX1-RUNX1T1</i> have distinctive secondary mutations; <i>CBFB-MYH11</i> secondary mutations are primarily restricted to genes that activate receptor tyrosine kinase signaling (<i>NRAS</i>, <i>FLT3</i>, and <i>KIT</i>).[<a class="bk_pop" href="#CDR0000774921_rl_3_181">181</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_182">182</a>]</p></dd><dt>-</dt><dd><p class="no_top_margin"><b>AML with t(16;21)(q24;q22); <i>RUNX1-CBFA2T3</i>:</b> In leukemias with t(16;21)(q24;q22), the <i>RUNX1</i> gene is fused with the <i>CBFA2T3</i> gene, and the gene expression profile is closely related to that of AML cases with t(8;21) and <i>RUNX1-RUNX1T1</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_183">183</a>] These patients present at a median age of 7 years and are rare, representing approximately 0.1% to 0.3% of pediatric AML cases. Among 23 patients with <i>RUNX1-CBFA2T3</i>, five presented with secondary AML, including two patients who had a primary diagnosis of Ewing sarcoma. Outcome for the cohort of 23 patients was favorable, with a 4-year EFS of 77% and a cumulative incidence of relapse of 0%.[<a class="bk_pop" href="#CDR0000774921_rl_3_183">183</a>]</p></dd></dl></div><div>Both <i>RUNX1-RUNX1T1</i> and <i>CBFB-MYH11</i> subtypes commonly show mutations in genes that activate receptor tyrosine kinase signaling (e.g., <i>NRAS</i>, <i>FLT3</i>, and <i>KIT</i>); <i>NRAS</i> and <i>KIT</i> are the most commonly mutated genes for both subtypes. <i>KIT</i> mutations may indicate increased risk of treatment failure for patients with core-binding factor AML, although the prognostic significance of <i>KIT</i> mutations may be dependent on the mutant-allele ratio (high ratio unfavorable) and/or the specific type of mutation (exon 17 mutations unfavorable).[<a class="bk_pop" href="#CDR0000774921_rl_3_181">181</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_182">182</a>] A study of children with <i>RUNX1-RUNX1T1</i> AML observed <i>KIT</i> mutations in 24% of cases (79% being exon 17 mutations) and <i>RAS</i> mutations in 15%, but neither were significantly associated with outcome.[<a class="bk_pop" href="#CDR0000774921_rl_3_179">179</a>]</div><div>Although both <i>RUNX1-RUNX1T1</i> and <i>CBFB-MYH11</i> fusion genes disrupt the activity of core-binding factor, cases with these genomic alterations have distinctive secondary mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_181">181</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_182">182</a>]<ul id="CDR0000774921__sm_CDR0000779362_855"><li class="half_rhythm"><div><i>RUNX1-RUNX1T1</i> cases also have frequent mutations in genes regulating chromatin conformation (e.g., <i>ASXL1</i> and <i>ASXL2</i>) (40% of cases) and genes encoding members of the cohesin complex (20% of cases). Mutations in <i>ASXL1</i> and <i>ASXL2</i> and mutations in members of the cohesin complex are rare in <i>CBFB-MYH11</i> leukemias.[<a class="bk_pop" href="#CDR0000774921_rl_3_181">181</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_182">182</a>]</div></li><li class="half_rhythm"><div>A study of 204 adults with <i>RUNX1-RUNX1T1</i> AML found that <i>ASXL2</i> mutations (present in 17% of cases) and <i>ASXL1</i> or <i>ASXL2</i> mutations (present in 25% of cases) lacked prognostic significance.[<a class="bk_pop" href="#CDR0000774921_rl_3_184">184</a>] Similar results, albeit with smaller numbers, were reported for children with <i>RUNX1-RUNX1T1</i> AML and <i>ASXL1</i> and <i>ASXL2</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_185">185</a>]</div></li></ul></div></li><li class="half_rhythm"><div><b>Acute promyelocytic leukemia (APL) with <i>PML-RARA</i>:</b> APL represents about 7% of children with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_186">186</a>] AML with t(15;17) is invariably associated with APL, a distinct subtype of AML that is treated differently than other types of AML because of its marked sensitivity to arsenic trioxide and the differentiating effects of all-<i>trans</i> retinoic acid. The t(15;17) translocation or other more complex chromosomal rearrangements may lead to the production of a fusion protein involving the retinoid acid receptor alpha and PML.[<a class="bk_pop" href="#CDR0000774921_rl_3_187">187</a>] The WHO 2016 revision does not include the t(15;17) cytogenetic designation to stress the significance of the <i>PML-RARA</i> fusion, which may be cryptic or result from complex karyotypic changes.[<a class="bk_pop" href="#CDR0000774921_rl_3_17">17</a>] </div><div>Utilization of quantitative reverse transcriptase&#x02013;polymerase chain reaction (RT-PCR) for PML-RARA transcripts has become standard practice.[<a class="bk_pop" href="#CDR0000774921_rl_3_188">188</a>] Quantitative RT-PCR allows identification of the three common transcript variants and is used for monitoring response on treatment and early detection of molecular relapse.[<a class="bk_pop" href="#CDR0000774921_rl_3_189">189</a>] Other much less common translocations involving the retinoic acid receptor alpha can also result in APL (e.g., t(11;17)(q23;q21) involving the <i>PLZF</i> gene).[<a class="bk_pop" href="#CDR0000774921_rl_3_190">190</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_192">192</a>] Identification of cases with the t(11;17)(q23;q21) is important because of their decreased sensitivity to all-<i>trans</i> retinoic acid.[<a class="bk_pop" href="#CDR0000774921_rl_3_187">187</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_190">190</a>]</div></li><li class="half_rhythm"><div><b>AML with mutated <i>NPM1</i>: </b>NPM1 is a protein that has been linked to ribosomal protein assembly and transport as well as being a molecular chaperone involved in preventing protein aggregation in the nucleolus. Immunohistochemical methods can be used to accurately identify patients with <i>NPM1</i> mutations by the demonstration of cytoplasmic localization of <i>NPM</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_193">193</a>] Mutations in the NPM1 protein that diminish its nuclear localization are primarily associated with a subset of AML with a normal karyotype, absence of CD34 expression,[<a class="bk_pop" href="#CDR0000774921_rl_3_194">194</a>] and an improved prognosis in the absence of <i>FLT3</i>&#x02013;internal tandem duplication (<i>ITD</i>) mutations in adults and younger adults.[<a class="bk_pop" href="#CDR0000774921_rl_3_194">194</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_199">199</a>]</div><div>Studies of children with AML suggest a lower rate of occurrence of <i>NPM1</i> mutations in children compared with adults with normal cytogenetics. <i>NPM1</i> mutations occur in approximately 8% of pediatric patients with AML and are uncommon in children younger than 2 years.[<a class="bk_pop" href="#CDR0000774921_rl_3_158">158</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_168">168</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_169">169</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_200">200</a>] <i>NPM1</i> mutations are associated with a favorable prognosis in patients with AML characterized by a normal karyotype.[<a class="bk_pop" href="#CDR0000774921_rl_3_158">158</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_168">168</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_169">169</a>] For the pediatric population, conflicting reports have been published regarding the prognostic significance of an <i>NPM1</i> mutation when a <i>FLT3</i>-<i>ITD</i> mutation is also present. One study reported that an <i>NPM1</i> mutation did not completely abrogate the poor prognosis associated with having a <i>FLT3</i>-<i>ITD</i> mutation,[<a class="bk_pop" href="#CDR0000774921_rl_3_168">168</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_201">201</a>] but other studies showed no impact of a <i>FLT3</i>-<i>ITD</i> mutation on the favorable prognosis associated with an <i>NPM1</i> mutation.[<a class="bk_pop" href="#CDR0000774921_rl_3_158">158</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_160">160</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_169">169</a>]</div></li><li class="half_rhythm"><div><b>AML with biallelic mutations of <i>CEBPA</i>:</b> Mutations in the <i>CCAAT/Enhancer Binding Protein Alpha</i> (<i>CEBPA</i>) gene occur in a subset of children and adults with cytogenetically normal AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_202">202</a>] In adults younger than 60 years, approximately 15% of cytogenetically normal AML cases have mutations in <i>CEBPA</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_198">198</a>] Outcomes for adults with AML with <i>CEBPA</i> mutations appear to be relatively favorable and similar to that of patients with core-binding factor leukemias.[<a class="bk_pop" href="#CDR0000774921_rl_3_198">198</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_203">203</a>] Studies in adults with AML have demonstrated that <i>CEBPA</i> double-mutant, but not single-mutant, AML is independently associated with a favorable prognosis,[<a class="bk_pop" href="#CDR0000774921_rl_3_204">204</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_207">207</a>] leading to the WHO 2016 revision that requires biallelic mutations for the disease definition.[<a class="bk_pop" href="#CDR0000774921_rl_3_17">17</a>]</div><div><i>CEBPA</i> mutations occur in 5% to 8% of children with AML and have been preferentially found in the cytogenetically normal subtype of AML with FAB M1 or M2; 70% to 80% of pediatric patients have double-mutant alleles, which is predictive of a significantly improved survival, similar to the effect observed in adult studies.[<a class="bk_pop" href="#CDR0000774921_rl_3_170">170</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_208">208</a>] Although both double-mutant and single-mutant alleles of <i>CEBPA</i> were associated with a favorable prognosis in children with AML in one large study,[<a class="bk_pop" href="#CDR0000774921_rl_3_170">170</a>] a second study observed inferior outcome for
patients with single <i>CEBPA</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_208">208</a>] However, very low numbers of children with single-allele mutants were included in these two studies (only 13 total patients), which makes a conclusion regarding the prognostic significance of single-allele <i>CEBPA</i> mutations in children premature.[<a class="bk_pop" href="#CDR0000774921_rl_3_170">170</a>] In newly diagnosed patients with double-mutant <i>CEBPA</i> AML, germline screening should be considered in addition to usual family history queries, because 5% to 10% of these patients are reported to have a germline <i>CEBPA</i> mutation.[<a class="bk_pop" href="#CDR0000774921_rl_3_202">202</a>]</div></li><li class="half_rhythm"><div><b>Myeloid leukemia associated with Down syndrome (<i>GATA1</i> mutations):</b>
<i>GATA1</i> mutations are present in most, if not all, Down syndrome children with either transient abnormal myelopoiesis (TAM) or acute megakaryoblastic leukemia (AMKL).[<a class="bk_pop" href="#CDR0000774921_rl_3_209">209</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_212">212</a>] <i>GATA1</i> mutations were also observed in 9% of non&#x02013;Down syndrome children and 4% of adults with AMKL (with coexistence of amplification of the Down syndrome Critical Region on chromosome 21 in 9 of 10 cases).[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>] <i>GATA1</i> is a transcription factor that is required for normal development of erythroid cells, megakaryocytes, eosinophils, and mast cells.[<a class="bk_pop" href="#CDR0000774921_rl_3_214">214</a>]</div><div><i>GATA1</i> mutations confer increased sensitivity to cytarabine by down-regulating cytidine deaminase expression, possibly providing an explanation for the superior outcome of children with Down syndrome and M7 AML when treated with cytarabine-containing regimens.[<a class="bk_pop" href="#CDR0000774921_rl_3_215">215</a>]</div></li></ul></div><div id="CDR0000774921__sm_CDR0000779362_863"><h4>Molecular abnormalities associated with an unfavorable prognosis</h4><p id="CDR0000774921__sm_CDR0000779362_864">Molecular abnormalities associated with an unfavorable prognosis include the following:</p><ul id="CDR0000774921__sm_CDR0000779362_546"><li class="half_rhythm"><div class="half_rhythm"><b>Chromosomes 5 and 7:</b> Chromosomal abnormalities associated with poor prognosis in adults with AML include those involving chromosome 5 (monosomy 5 and del(5q)) and chromosome 7 (monosomy 7).[<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_175">175</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_216">216</a>] These cytogenetic subgroups represent approximately 2% and 4% of pediatric AML cases, respectively, and are also associated with poor prognosis in children.[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_175">175</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_216">216</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_220">220</a>] </div><div class="half_rhythm">In the past, patients with del(7q) were also considered to be at high risk of treatment failure, and data from adults with AML support a poor prognosis for both del(7q) and monosomy 7.[<a class="bk_pop" href="#CDR0000774921_rl_3_167">167</a>] However, outcome for children with del(7q), but not monosomy 7, appears comparable to that of other children with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_219">219</a>] The presence of del(7q) does not abrogate the prognostic significance of favorable cytogenetic characteristics (e.g., inv(16) and t(8;21)).[<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_219">219</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_221">221</a>]</div><div class="half_rhythm">Chromosome 5 and 7 abnormalities appear to lack prognostic significance in AML patients with Down syndrome who are aged 4 years and younger.[<a class="bk_pop" href="#CDR0000774921_rl_3_222">222</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>AML with inv(3)(q21.3;q26.2) or t(3;3)(q21.3;q26.2); <i>GATA2</i>, <i>MECOM</i>: </b><i>MECOM</i> at chromosome 3q26 codes for two proteins, EVI1 and MDS1-EVI1, both of which are transcription regulators. The inv(3) and t(3;3) abnormalities lead to overexpression of EVI1 and to reduced expression of GATA2.[<a class="bk_pop" href="#CDR0000774921_rl_3_223">223</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_224">224</a>] These abnormalities are associated with poor prognosis in adults with AML,[<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_175">175</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_225">225</a>] but are very uncommon in children (&#x0003c;1% of pediatric AML cases).[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_177">177</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_226">226</a>]</div><div class="half_rhythm">Abnormalities involving <i>MECOM</i> can be detected in some AML cases with other 3q abnormalities and are also associated with poor prognosis.</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>FLT3</i> mutations:</b> Presence of a <i>FLT3</i>-<i>ITD</i> mutation appears to be associated with poor prognosis in adults with AML,[<a class="bk_pop" href="#CDR0000774921_rl_3_227">227</a>] particularly when both alleles are mutated or there is a high ratio of the mutant allele to the normal allele.[<a class="bk_pop" href="#CDR0000774921_rl_3_228">228</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_229">229</a>] <i>FLT3</i>-<i>ITD</i> mutations also convey a poor prognosis in children with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_171">171</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_201">201</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_230">230</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_233">233</a>] The frequency of <i>FLT3</i>-<i>ITD</i> mutations in children is lower than that observed in adults, especially for children younger than 10 years, for whom 5% to 10% of cases have the mutation (compared with approximately 30% in adults).[<a class="bk_pop" href="#CDR0000774921_rl_3_232">232</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_234">234</a>] </div><div class="half_rhythm">The prognostic significance of <i>FLT3</i>-<i>ITD</i> is modified by the presence of other recurring genomic alterations. The prevalence of <i>FLT3</i>-<i>ITD</i> is increased in certain genomic subtypes of pediatric AML, including those with the <i>NUP98-NSD1</i> fusion gene, of which 80% to 90% have <i>FLT3</i>-<i>ITD</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_236">236</a>] Approximately 15% of patients with <i>FLT3</i>-<i>ITD</i> have <i>NUP98</i>-<i>NSD1</i>, and patients with both <i>FLT3</i>-<i>ITD</i> and <i>NUP98</i>-<i>NSD1</i> have a poorer prognosis than do patients who have <i>FLT3</i>-<i>ITD</i> without <i>NUP98</i>-<i>NSD1</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_236">236</a>] For patients who have <i>FLT3-ITD</i>, the presence of either <i>WT1</i> mutations or <i>NUP98-NSD1</i> fusions is associated with poorer outcome (EFS rates below 25%) than for patients who have <i>FLT3-ITD</i> without these alterations.[<a class="bk_pop" href="#CDR0000774921_rl_3_160">160</a>] Conversely, when <i>FLT3-ITD</i> is accompanied by <i>NPM1</i> mutations, the outcome is relatively favorable and is similar to that of pediatric AML cases without <i>FLT3-ITD</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_160">160</a>]</div><div class="half_rhythm">For APL, <i>FLT3</i>-<i>ITD</i> and point mutations occur in 30% to 40% of children and adults.[<a class="bk_pop" href="#CDR0000774921_rl_3_228">228</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_231">231</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_232">232</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_237">237</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_241">241</a>] Presence of the <i>FLT3</i>-<i>ITD</i> mutation is strongly associated with the microgranular variant (M3v) of APL and with hyperleukocytosis.[<a class="bk_pop" href="#CDR0000774921_rl_3_231">231</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_239">239</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_242">242</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_243">243</a>] It remains unclear whether <i>FLT3</i> mutations are associated with poorer prognosis in patients with APL who are treated with modern
therapy that includes all-<i>trans</i> retinoic acid and arsenic trioxide.[<a class="bk_pop" href="#CDR0000774921_rl_3_237">237</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_238">238</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_241">241</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_242">242</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_244">244</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_247">247</a>]</div><div class="half_rhythm">Activating point mutations of <i>FLT3</i> have also been identified in both adults and children with AML, although the clinical significance of these mutations is not clearly defined. Some of these point mutations appear to be specific to pediatric patients.[<a class="bk_pop" href="#CDR0000774921_rl_3_160">160</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>AML with t(16;21)(p11;q22); <i>FUS-ERG</i>: </b>In leukemias with t(16;21)(p11;q22), the <i>FUS</i> gene is joined with the <i>ERG</i> gene, producing a distinctive AML subtype with a gene expression profile that clusters separately from other cytogenetic subgroups.[<a class="bk_pop" href="#CDR0000774921_rl_3_183">183</a>] These patients present at a median age of 8 to 9 years and are rare, representing approximately 0.3% to 0.5% of pediatric AML cases. For a cohort of 31 patients with <i>FUS-ERG</i> AML, outcome was poor, with a 4-year EFS of 7% and a cumulative incidence of relapse of 74%.[<a class="bk_pop" href="#CDR0000774921_rl_3_183">183</a>]</div></li></ul></div><div id="CDR0000774921__sm_CDR0000779362_865"><h4>Other molecular abnormalities observed in pediatric AML</h4><p id="CDR0000774921__sm_CDR0000779362_866">Other molecular abnormalities observed in pediatric AML include the following:</p><ul id="CDR0000774921__sm_CDR0000779362_549"><li class="half_rhythm"><div class="half_rhythm"><b><i>KMT2A</i> (<i>MLL</i>) gene rearrangements:</b>
<i>KMT2A</i> gene rearrangement occurs in approximately 20% of children with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>] These cases, including most AMLs secondary to epipodophyllotoxin,[<a class="bk_pop" href="#CDR0000774921_rl_3_248">248</a>] are generally associated with monocytic differentiation (FAB M4 and M5). <i>KMT2A</i> rearrangements are also reported in approximately 10% of FAB M7 (AMKL) patients (see below).[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_249">249</a>] </div><div class="half_rhythm">The most common translocation,
representing approximately 50% of <i>KMT2A</i>-rearranged cases in the pediatric AML population, is t(9;11)(p22;q23), in which the <i>KMT2A</i> gene is fused with <i>MLLT3(AF9)</i> gene.[<a class="bk_pop" href="#CDR0000774921_rl_3_250">250</a>] The WHO 2016 revision defined <i>AML with t(9;11)(p21.3;q23.3); MLLT3-KMT2A</i> as a distinctive disease entity. However, more than 50 different fusion partners have been identified for the <i>KMT2A</i> gene in patients with AML.</div><div class="half_rhythm">The median age for 11q23/<i>KMT2A</i>-rearranged cases in children is approximately 2 years, and most translocation subgroups have a median age at presentation of younger than 5 years.[<a class="bk_pop" href="#CDR0000774921_rl_3_250">250</a>] However, significantly older median ages are seen at presentation of pediatric cases with t(6;11)(q27;q23) (12 years) and t(11;17)(q23;q21) (9 years).[<a class="bk_pop" href="#CDR0000774921_rl_3_250">250</a>]</div><div class="half_rhythm">Outcome for patients with de novo AML and <i>KMT2A</i> gene rearrangement is generally reported as being similar to that for other patients with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_250">250</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_251">251</a>] However, as the <i>KMT2A</i> gene can participate in translocations with many different fusion partners, the specific fusion partner appears to influence prognosis, as demonstrated by a large international retrospective study evaluating outcome for 756 children with 11q23- or <i>KMT2A</i>-rearranged AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_250">250</a>] For example, cases with t(1;11)(q21;q23), representing 3% of all 11q23/<i>KMT2A</i>-rearranged AML, showed a highly favorable outcome, with a 5-year event-free survival (EFS) of 92%. </div><div class="half_rhythm">While reports from single clinical trial groups have variably described more favorable prognosis for patients with AML who have t(9;11)(p21.3;q23.3)/<i>MLLT3-KMT2A</i>, the international retrospective study did not confirm the favorable prognosis for this subgroup.[<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_250">250</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_252">252</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_254">254</a>] An international collaboration evaluating pediatric AMKL patients observed that the presence of t(9;11), which was seen in approximately 5% of AMKL cases, was associated with an inferior outcome compared with other AMKL cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_249">249</a>]</div><div class="half_rhythm"><i>KMT2A</i>-rearranged AML subgroups that appear to be associated with poor outcome include the following:<ul id="CDR0000774921__sm_CDR0000779362_873"><li class="half_rhythm"><div>Cases with the t(10;11) translocation are a group at high risk of relapse in bone marrow and the CNS.[<a class="bk_pop" href="#CDR0000774921_rl_3_162">162</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_255">255</a>] Some cases with the t(10;11) translocation have fusion of the <i>KMT2A</i> gene with the <i>AF10</i>-<i>MLLT10</i> at 10p12, while others have fusion of <i>KMT2A</i> with <i>ABI1</i> at 10p11.2.[<a class="bk_pop" href="#CDR0000774921_rl_3_256">256</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_257">257</a>] An international retrospective study found that these cases, which present at a median age of approximately 1 year, have a 5-year EFS of 20% to 30%.[<a class="bk_pop" href="#CDR0000774921_rl_3_250">250</a>]</div></li><li class="half_rhythm"><div>Patients with t(6;11)(q27;q23) have a poor outcome, with a 5-year EFS of 11%.</div></li><li class="half_rhythm"><div>Patients with t(4;11)(q21;q23) also have a poor outcome, with a 5-year EFS of 29%.[<a class="bk_pop" href="#CDR0000774921_rl_3_250">250</a>]</div></li><li class="half_rhythm"><div>A follow-up study by the international collaborative group demonstrated that additional cytogenetic abnormalities further influenced outcome of children with <i>KMT2A</i> translocations, with complex karyotypes and trisomy 19 predicting poor outcome and trisomy 8 predicting a more favorable outcome.[<a class="bk_pop" href="#CDR0000774921_rl_3_258">258</a>]</div></li></ul></div></li><li class="half_rhythm"><div class="half_rhythm"><b>AML with t(6;9)(p23;q34.1); <i>DEK-NUP214</i>:</b> t(6;9) leads to the formation of a leukemia-associated fusion protein DEK-NUP214.[<a class="bk_pop" href="#CDR0000774921_rl_3_259">259</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_260">260</a>] This subgroup of AML has been associated with a poor prognosis in adults with AML,[<a class="bk_pop" href="#CDR0000774921_rl_3_259">259</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_261">261</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_262">262</a>] and occurs infrequently in children (less than 1% of AML
cases). The median age of children with <i>DEK-NUP214</i> AML is 10 to 11 years, and approximately 40% of pediatric patients have <i>FLT3</i>-<i>ITD</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_263">263</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_264">264</a>]</div><div class="half_rhythm">t(6;9) AML appears to be associated with a high risk of treatment failure in children, particularly for those not proceeding to allogeneic stem cell transplantation.[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_260">260</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_263">263</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_264">264</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Molecular subgroups of non&#x02013;Down syndrome acute megakaryoblastic leukemia (AMKL):</b> AMKL accounts for approximately 10% of pediatric AML and includes substantial heterogeneity at the molecular level. Molecular subtypes of AMKL are listed below.<dl id="CDR0000774921__sm_CDR0000779362_858" class="temp-labeled-list"><dt>-</dt><dd><p class="no_top_margin"><b><i>CBFA2T3-GLIS2</i>:</b>
<i>CBFA2T3-GLIS2</i> is a fusion resulting from a cryptic chromosome 16 inversion (inv(16)(p13.3q24.3)).[<a class="bk_pop" href="#CDR0000774921_rl_3_265">265</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_269">269</a>] It occurs almost exclusively in non&#x02013;Down syndrome AMKL, representing 16% to 27% of pediatric AMKL and presenting with a median age of 1 year.[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_267">267</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_270">270</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_271">271</a>] It appears to be associated with unfavorable outcome,[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_265">265</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_269">269</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_271">271</a>] with EFS at 2 years less than 20% in two reports that included 28 patients.[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_269">269</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_271">271</a>]</p></dd><dt>-</dt><dd><p class="no_top_margin"><b><i>KMT2A</i>-rearranged:</b> Cases with <i>KMT2A</i> translocations represent 10% to 17% of pediatric AMKL, with <i>MLLT3</i> (<i>AF9</i>) being the most common <i>KMT2A</i> fusion partner.[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_249">249</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_270">270</a>] <i>KMT2A</i>-rearranged cases appear to be associated with inferior outcome among children with AMKL, with OS rates at 4 to 5 years of approximately 30%.[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_249">249</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_270">270</a>] An international collaboration evaluating pediatric AMKL observed that the presence of t(9;11)/<i>MLLT3-KMT2A</i>, which was seen in approximately 5% of AMKL cases (n = 21), was associated with an inferior outcome (5-year OS, approximately 20%) compared with other AMKL cases and other <i>KMT2A</i>-rearrangements (n = 17), each with a 5-year OS of 50% to 55%.[<a class="bk_pop" href="#CDR0000774921_rl_3_249">249</a>] Inferior outcome was not observed for patients (n = 17) with other <i>KMT2A</i>-rearrangements.</p></dd><dt>-</dt><dd><p class="no_top_margin"><b><i>NUP98-KDM5A4</i>:</b>
<i>NUP98-KDM5A4</i> is observed in approximately 10% of pediatric AMKL cases [<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_270">270</a>] and is observed at much lower rates in non-AMKL cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_271">271</a>] <i>NUP98-KDM5A4</i> cases showed a trend towards inferior prognosis, although the small number of cases studied limits confidence in this assessment.[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_270">270</a>]</p></dd><dt>-</dt><dd><p class="no_top_margin"><b><i>RBM15-MKL1</i>:</b> The t(1;22)(p13;q13) translocation that produces <i>RBM15-MKL1</i> is uncommon (&#x0003c;1% of pediatric AML) and is restricted to acute megakaryocytic leukemia (AMKL).[<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_271">271</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_276">276</a>] Studies have found that t(1;22)(p13;q13) is observed in 10% to 18% of children with AMKL who have evaluable cytogenetics or molecular genetics.[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_249">249</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_270">270</a>] Most AMKL cases with t(1;22) occur in infants, with the median age at presentation (4&#x02013;7 months) being younger than that for other children with AMKL.[<a class="bk_pop" href="#CDR0000774921_rl_3_249">249</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_267">267</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_277">277</a>] Cases with detectable <i>RBM15-MKL1</i> fusion transcripts in the absence of t(1;22) have also been reported because these young patients usually have hypoplastic bone marrow.[<a class="bk_pop" href="#CDR0000774921_rl_3_274">274</a>] </p><p>An international collaborative retrospective study of 51 t(1;22) cases reported that patients with this abnormality had a 5-year EFS of 54.5% and an OS of 58.2%, similar to the rates for other children with AMKL.[<a class="bk_pop" href="#CDR0000774921_rl_3_249">249</a>] In another international retrospective analysis of 153 cases with non&#x02013;Down syndrome AMKL who had samples available for molecular analysis, the 4-year EFS for patients with t(1;22) was 59% and OS was 70%, significantly better than AMKL patients with other specific genetic abnormalities (<i>CBFA2T3/GUS2</i>, <i>NUP98/KDM5A4</i>, <i>KMT2A</i> rearrangements, monosomy 7).[<a class="bk_pop" href="#CDR0000774921_rl_3_270">270</a>]</p></dd><dt>-</dt><dd><p class="no_top_margin"><b>HOX-rearranged</b>: Cases with a gene fusion involving a HOX cluster gene represented 15% of pediatric AMKL in one report.[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>] This report observed that these patients appear to have a relatively favorable prognosis, although the small number of cases studied limits confidence in this assessment.</p></dd><dt>-</dt><dd><p class="no_top_margin"><b><i>GATA1</i> mutated:</b>
<i>GATA1</i>-truncating mutations in non&#x02013;Down syndrome AMKL arise in young children (median age, 1&#x02013;2 years) and are associated with amplification of the Down syndrome critical region on chromosome 21.[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>] These patients represented approximately 10% of non&#x02013;Down syndrome AMKL and appeared to have a favorable outcome if there were no prognostically unfavorable fusion genes also present, although the number of patients studied was small (n = 8).[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>]</p></dd></dl></div></li><li class="half_rhythm"><div class="half_rhythm"><b>t(8;16) (<i>MYST3-CREBBP</i>):</b> The t(8;16) translocation fuses the <i>MYST3</i> gene on chromosome 8p11 to <i>CREBBP</i> on chromosome 16p13. t(8;16) AML rarely occurs in children. In an international Berlin-Frankfurt-M&#x000fc;nster (BFM) AML study of 62 children, presence of this translocation was associated with younger age at diagnosis (median, 1.2 years), FAB M4/M5 phenotype, erythrophagocytosis, leukemia cutis, and disseminated intravascular coagulation.[<a class="bk_pop" href="#CDR0000774921_rl_3_278">278</a>] Outcome for children with t(8;16) AML appears similar to other types of AML.</div><div class="half_rhythm">A substantial proportion of infants diagnosed with t(8;16) AML in the first month of life show spontaneous remission, although AML recurrence may occur months to years later.[<a class="bk_pop" href="#CDR0000774921_rl_3_278">278</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_284">284</a>] These observations suggest that a <i>watch and wait</i> policy could be considered in cases of t(8;16) AML diagnosed in the neonatal period if close long-term monitoring can be ensured.[<a class="bk_pop" href="#CDR0000774921_rl_3_278">278</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>t(7;12)(q36;p13):</b> The t(7;12)(q36;p13) translocation involves <i>ETV6</i> on chromosome 12p13 and variable breakpoints on chromosome 7q36 in the region of <i>MNX1</i> (<i>HLXB9</i>).[<a class="bk_pop" href="#CDR0000774921_rl_3_285">285</a>] The translocation may be cryptic by conventional karyotyping and in some cases may be confirmed only by FISH.[<a class="bk_pop" href="#CDR0000774921_rl_3_286">286</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_288">288</a>] This alteration occurs virtually exclusively in children younger than 2 years, is mutually exclusive with the <i>KMT2A</i> (<i>MLL</i>) rearrangement, and is associated with a high risk of treatment failure.[<a class="bk_pop" href="#CDR0000774921_rl_3_158">158</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_165">165</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_166">166</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_286">286</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_287">287</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_289">289</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>NUP98</i> gene fusions:</b>
<i>NUP98</i> has been reported to form leukemogenic gene fusions with more than 20 different partners.[<a class="bk_pop" href="#CDR0000774921_rl_3_290">290</a>] In the pediatric AML setting, the two most common fusion genes are <i>NUP98-NSD1</i> and <i>NUP98-KDM5A4</i> (<i>JARID1A</i>), with the former observed in one report in approximately 15% of cytogenetically normal pediatric AML and the latter observed in approximately 10% of pediatric AMKL (see above).[<a class="bk_pop" href="#CDR0000774921_rl_3_213">213</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_267">267</a>] AML cases with either <i>NUP98</i> fusion gene show high expression of <i>HOXA</i> and <i>HOXB</i> genes, indicative of a stem cell phenotype.[<a class="bk_pop" href="#CDR0000774921_rl_3_260">260</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_267">267</a>]</div><div class="half_rhythm">The <i>NUP98-NSD1</i> fusion gene, which is often cytogenetically cryptic, results from the fusion of <i>NUP98</i> (chromosome 11p15) with <i>NSD1</i> (chromosome 5q35).[<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_236">236</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_260">260</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_291">291</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_294">294</a>] This alteration occurs in approximately 4% to 7% of pediatric AML cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_17">17</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_172">172</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_260">260</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_293">293</a>] The highest frequency in the pediatric population is in the 5- to 9-year age group (approximately 8%), with lower frequency in younger children (approximately 2% in children younger than 2 years). <i>NUP98</i>-<i>NSD1</i> cases present with high WBC count (median, 147 &#x000d7; 10<sup>9</sup>/L in one study).[<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_236">236</a>] Most <i>NUP98-NSD1</i> AML cases do not show cytogenetic aberrations.[<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_260">260</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_291">291</a>] A high percentage of <i>NUP98-NSD1</i> cases (74% to 90%) have <i>FLT3-ITD</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_172">172</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_236">236</a>]</div><div class="half_rhythm">A study that included 12 children with <i>NUP98</i>-<i>NSD1</i> AML reported that although all patients achieved CR, presence of <i>NUP98-NSD1</i> independently predicted poor prognosis, and children with <i>NUP98-NSD1</i> AML had a high risk of relapse, with a resulting 4-year EFS of approximately 10%.[<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>] In another study that included children (n = 38) and adults (n = 7) with <i>NUP98</i>-<i>NSD1</i> AML, presence of both <i>NUP98</i>-<i>NSD1</i> and <i>FLT3</i>-<i>ITD</i> independently predicted poor prognosis; patients with both lesions had a low CR rate (approximately 30%) and a low 3-year EFS rate (approximately 15%).[<a class="bk_pop" href="#CDR0000774921_rl_3_236">236</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>RAS</i> mutations:</b> Although mutations in <i>RAS</i> have been identified in 20% to 25% of patients with AML, the prognostic significance of these mutations has not been clearly shown.[<a class="bk_pop" href="#CDR0000774921_rl_3_158">158</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_295">295</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_297">297</a>] Mutations in <i>NRAS</i> are observed more commonly than mutations in <i>KRAS</i> in pediatric AML cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_158">158</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_159">159</a>] <i>RAS</i> mutations occur with similar frequency for all Type II alteration subtypes, with the exception of APL, for which <i>RAS</i> mutations are seldom observed.[<a class="bk_pop" href="#CDR0000774921_rl_3_158">158</a>] </div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>KIT</i> mutations:</b> Mutations in <i>KIT</i> occur in approximately 5% of AML, but in 10% to 40% of AML with core-binding factor abnormalities.[<a class="bk_pop" href="#CDR0000774921_rl_3_158">158</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_159">159</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_298">298</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_299">299</a>]</div><div class="half_rhythm">The presence of activating <i>KIT</i> mutations in adults with this AML subtype appears to be associated with a poorer prognosis compared with core-binding factor AML without <i>KIT</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_298">298</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_300">300</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_301">301</a>] The prognostic significance of <i>KIT</i> mutations occurring in pediatric core-binding factor AML remains unclear,[<a class="bk_pop" href="#CDR0000774921_rl_3_302">302</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_305">305</a>] although the
largest pediatric study reported to date observed no prognostic significance for <i>KIT</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_306">306</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>WT1</i> mutations:</b> WT1, a zinc-finger protein regulating gene transcription, is mutated in approximately 10% of cytogenetically normal cases of AML in adults.[<a class="bk_pop" href="#CDR0000774921_rl_3_307">307</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_310">310</a>] The <i>WT1</i> mutation has been shown in some,[<a class="bk_pop" href="#CDR0000774921_rl_3_307">307</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_308">308</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_310">310</a>] but not all studies [<a class="bk_pop" href="#CDR0000774921_rl_3_309">309</a>] to be an independent predictor of worse disease-free survival, EFS, and OS of adults.</div><div class="half_rhythm">In children with AML, <i>WT1</i> mutations are observed in approximately 10% of cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_311">311</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_312">312</a>] Cases with <i>WT1</i> mutations are enriched among children with normal cytogenetics and <i>FLT3</i>-<i>ITD</i>, but are less common among children younger than 3 years.[<a class="bk_pop" href="#CDR0000774921_rl_3_311">311</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_312">312</a>] AML cases with <i>NUP98-NSD1</i> are enriched for both <i>FLT3</i>-<i>ITD</i> and <i>WT1</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>] In univariate analyses, <i>WT1</i> mutations are predictive of poorer outcome in pediatric patients, but the independent prognostic significance of <i>WT1</i> mutation status is unclear because of its strong association with <i>FLT3</i>-<i>ITD</i> and its association with <i>NUP98-NSD1</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_235">235</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_311">311</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_312">312</a>] The largest study of <i>WT1</i> mutations in children with AML observed that children with <i>WT1</i> mutations in the absence of <i>FLT3</i>-<i>ITD</i> had outcomes similar to that of children without <i>WT1</i> mutations, while children with both <i>WT1</i> mutation and <i>FLT3</i>-<i>ITD</i> had survival rates less than 20%.[<a class="bk_pop" href="#CDR0000774921_rl_3_311">311</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>DNMT3A</i> mutations:</b> Mutations of the <i>DNA cytosine methyltransferase</i> (<i>DNMT3A</i>) gene have been identified in approximately 20% of adult AML patients and are uncommon in patients with favorable cytogenetics but occur in one-third of adult patients with intermediate-risk cytogenetics.[<a class="bk_pop" href="#CDR0000774921_rl_3_313">313</a>] Mutations in this gene are independently associated with poor outcome.[<a class="bk_pop" href="#CDR0000774921_rl_3_313">313</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_315">315</a>] <i>DNMT3A</i> mutations are virtually absent in children.[<a class="bk_pop" href="#CDR0000774921_rl_3_316">316</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>IDH1</i> and
<i>IDH2</i> mutations:</b> Mutations in <i>IDH1</i> and <i>IDH2</i>, which code for isocitrate dehydrogenase, occur in approximately 20% of adults with AML,[<a class="bk_pop" href="#CDR0000774921_rl_3_317">317</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_321">321</a>] and they are enriched in patients with <i>NPM1</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_318">318</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_319">319</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_322">322</a>] The specific mutations that occur in <i>IDH1</i> and <i>IDH2</i> create a novel enzymatic activity that promotes conversion of alpha-ketoglutarate to 2-hydroxyglutarate.[<a class="bk_pop" href="#CDR0000774921_rl_3_323">323</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_324">324</a>] This novel activity appears to induce a DNA hypermethylation phenotype similar to that observed in AML cases with loss of function mutations in <i>TET2</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_322">322</a>]</div><div class="half_rhythm">Mutations in <i>IDH1</i> and <i>IDH2</i> are rare in pediatric AML, occurring in 0% to 4% of cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_316">316</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_325">325</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_329">329</a>] There is no indication of a negative prognostic effect for <i>IDH1</i> and <i>IDH2</i> mutations in children with AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_325">325</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>CSF3R</i> mutations:</b>
<i>CSF3R</i> is the gene encoding the granulocyte colony-stimulating factor (G-CSF) receptor, and activating mutations in <i>CSF3R</i> are observed in 2% to 3% of pediatric AML cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_330">330</a>] These mutations lead to enhanced signaling through the G-CSF receptor, and they are primarily observed in AML with either <i>CEBPA</i> mutations or with core-binding factor abnormalities (<i>RUNX1-RUNX1T1</i> and <i>CBFB-MYH11</i>).[<a class="bk_pop" href="#CDR0000774921_rl_3_330">330</a>] The clinical characteristics of and prognosis for patients with <i>CSF3R</i> mutations do not seem to be significantly different from those of patients without <i>CSF3R</i> mutations.
</div><div class="half_rhythm">Activating mutations in <i>CSF3R</i> are also observed in patients with severe congenital neutropenia. These mutations are not the cause of severe congenital neutropenia, but rather arise as somatic mutations and can represent an early step in the pathway to AML.[<a class="bk_pop" href="#CDR0000774921_rl_3_331">331</a>] In one study of patients with severe congenital neutropenia, 34% of patients who had not developed a myeloid malignancy had <i>CSF3R</i> mutations detectable in peripheral blood neutrophils and mononuclear cells, while 78% of patients who had developed a myeloid malignancy showed <i>CSF3R</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_331">331</a>] A study of 31 patients with severe congenital neutropenia who developed AML or MDS observed <i>CSF3R</i> mutations in approximately 80%, and also observed a high frequency of <i>RUNX1</i> mutations (approximately 60%), suggesting cooperation between <i>CSF3R</i> and <i>RUNX1</i> mutations for leukemia development within the context of severe congenital neutropenia.[<a class="bk_pop" href="#CDR0000774921_rl_3_332">332</a>]</div></li></ul><p id="CDR0000774921__18">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062896/">Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment</a> for information about the treatment of childhood AML.)</p></div></div><div id="CDR0000774921__1928"><h3>Juvenile Myelomonocytic Leukemia (JMML)</h3><p id="CDR0000774921__sm_CDR0000778658_798"><div class="milestone-start" id="CDR0000774921__sm_CDR0000778658_797"></div>The genomic landscape of JMML is characterized by mutations in one of five genes of the Ras pathway: <i>NF1</i>, <i>NRAS</i>, <i>KRAS</i>, <i>PTPN11</i>, and <i>CBL</i>.[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_334">334</a>] In a series of 118 consecutively diagnosed JMML cases with Ras pathway&#x02013;activating mutations, <i>PTPN11</i> was the most commonly mutated gene, accounting for 51% of cases (19% germline and 32% somatic) (refer to Figure 5).[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>] Patients with mutated <i>NRAS</i> accounted for 19% of cases, and patients with mutated <i>KRAS</i> accounted for 15% of cases. <i>NF1</i> mutations accounted for 8% of cases and <i>CBL</i> mutations accounted for 11% of cases. Although mutations among these five genes are generally mutually exclusive, 10% to 17% of cases have mutations in two of these Ras pathway genes,[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_334">334</a>] a finding that is associated with poorer prognosis.[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>] </p><p id="CDR0000774921__sm_CDR0000778658_799">The mutation rate in JMML leukemia cells is very low, but additional mutations beyond those of the five Ras pathway genes described above are observed.[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_334">334</a>] Secondary genomic alterations are observed for genes of the transcriptional repressor complex PRC2 (e.g., <i>ASXL1</i> was mutated in 7%&#x02013;8% of cases). Some genes associated with myeloproliferative neoplasms in adults are also mutated at low rates in JMML (e.g., <i>SETBP1</i> was mutated in 7%&#x02013;9% of cases).[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_335">335</a>] <i>JAK3</i> mutations are also observed in a small percentage (4%&#x02013;12%) of JMML cases.[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>-<a class="bk_pop" href="#CDR0000774921_rl_3_335">335</a>] Cases with germline <i>PTPN11</i> and germline <i>CBL</i> mutations showed low rates of additional mutations (refer to Figure 5).[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>]</p><a id="CDR0000774921__sm_CDR0000778658_812"></a><div id="CDR0000774921__sm_CDR0000778658_813" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000778293.jpg" alt="Chart showing alteration profiles in individual JMML cases." /></div><div class="caption"><p>Figure 5. Alteration profiles in individual JMML cases. Germline and somatically acquired alterations with recurring hits in the RAS pathway and PRC2 network are shown for 118 patients with JMML who underwent detailed genetic analysis. Blast excess was defined as a blast count &#x02265;10% but &#x0003c;20% of nucleated cells in the bone marrow at diagnosis. Blast crisis was defined as a blast count &#x02265;20% of nucleated cells in the bone marrow. NS, Noonan syndrome. Reprinted by permission from Macmillan Publishers Ltd: <a href="http://www.nature.com/ng/index.html" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Nature Genetics</a> (Caye A, Strullu M, Guidez F, et al.: Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet 47 [11]: 1334-40, 2015), copyright (2015).<div class="milestone-end"></div></p></div></div><div id="CDR0000774921__1929"><h4>Clinical implications</h4><p id="CDR0000774921__1930">General characteristics of leukemia cells provide both prognostic information and guidance regarding therapeutic opportunities for JMML:</p><ul id="CDR0000774921__1931"><li class="half_rhythm"><div><b>Number of non-RAS pathway mutations.</b> A strong predictor of prognosis for children with JMML is the number of mutations beyond the disease-defining RAS-pathway mutations.[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_334">334</a>] Of 64 patients (65.3%) at diagnosis, zero or one somatic alteration (pathogenic mutation or monosomy 7) was identified, whereas two or more alterations were identified in 34 (34.7%) patients.[<a class="bk_pop" href="#CDR0000774921_rl_3_334">334</a>] In multivariate analysis, mutation number (two or more vs. zero or one) maintained significance as a predictor of inferior event-free survival and overall survival. A higher proportion of patients diagnosed with two or more alterations were older and male, and these patients also demonstrated a higher rate of monosomy 7 or somatic <i>NF1</i> mutation.[<a class="bk_pop" href="#CDR0000774921_rl_3_334">334</a>] Similar findings and observations reported that patients with RAS-pathway double mutations (15 of 96 patients) were at the highest risk of treatment failure.[<a class="bk_pop" href="#CDR0000774921_rl_3_333">333</a>] </div></li><li class="half_rhythm"><div><b>RAS-MAPK pathway inhibitors.</b> Because JMML is a disease defined by mutations in the RAS-MAPK pathway, one might speculate that inhibitors of this pathway (e.g., MEK inhibitors) may have clinical utility in the treatment of JMML. However, preclinical data to support this hypothesis are inconsistent,[<a class="bk_pop" href="#CDR0000774921_rl_3_336">336</a>,<a class="bk_pop" href="#CDR0000774921_rl_3_337">337</a>] and there are no clinical data available.</div></li></ul></div></div><div id="CDR0000774921_rl_3"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_3_1">Mullighan CG: Genomic characterization of childhood acute lymphoblastic leukemia. Semin Hematol 50 (4): 314-24, 2013. [<a href="/pmc/articles/PMC3848419/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3848419</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24246699" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24246699</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_2">Mullighan CG, Goorha S, Radtke I, et al.: Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446 (7137): 758-64, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17344859" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17344859</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_3">Mullighan CG, Miller CB, Radtke I, et al.: BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453 (7191): 110-4, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18408710" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18408710</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_4">Roberts KG, Li Y, Payne-Turner D, et al.: Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371 (11): 1005-15, 2014. [<a href="/pmc/articles/PMC4191900/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4191900</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25207766" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25207766</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_5">Harvey RC, Mullighan CG, Wang X, et al.: Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116 (23): 4874-84, 2010. [<a href="/pmc/articles/PMC3321747/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3321747</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20699438" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20699438</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_6">Clappier E, Auclerc MF, Rapion J, et al.: An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia 28 (1): 70-7, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24064621" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24064621</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_7">Zaliova M, Zimmermannova O, D&#x000f6;rge P, et al.: ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia. Leukemia 28 (1): 182-5, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24072102" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24072102</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_8">Holmfeldt L, Wei L, Diaz-Flores E, et al.: The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 45 (3): 242-52, 2013. [<a href="/pmc/articles/PMC3919793/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3919793</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23334668" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23334668</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_9">Loh ML, Zhang J, Harvey RC, et al.: Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood 121 (3): 485-8, 2013. [<a href="/pmc/articles/PMC3548168/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3548168</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23212523" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23212523</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_10">Bercovich D, Ganmore I, Scott LM, et al.: Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet 372 (9648): 1484-92, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18805579" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18805579</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_11">Andersson AK, Ma J, Wang J, et al.: The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet 47 (4): 330-7, 2015. [<a href="/pmc/articles/PMC4553269/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4553269</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25730765" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25730765</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_12">Ma X, Edmonson M, Yergeau D, et al.: Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun 6: 6604, 2015. [<a href="/pmc/articles/PMC4377644/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4377644</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25790293" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25790293</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_13">Meyer JA, Wang J, Hogan LE, et al.: Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet 45 (3): 290-4, 2013. [<a href="/pmc/articles/PMC3681285/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3681285</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23377183" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23377183</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_14">Li B, Li H, Bai Y, et al.: Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat Med 21 (6): 563-71, 2015. [<a href="/pmc/articles/PMC4670083/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4670083</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25962120" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25962120</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_15">Mullighan CG, Zhang J, Kasper LH, et al.: CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471 (7337): 235-9, 2011. [<a href="/pmc/articles/PMC3076610/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3076610</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21390130" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21390130</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_16">Moorman AV, Ensor HM, Richards SM, et al.: Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol 11 (5): 429-38, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20409752" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20409752</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_17">Arber DA, Orazi A, Hasserjian R, et al.: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127 (20): 2391-405, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/27069254" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27069254</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_18">Paulsson K, Johansson B: High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 48 (8): 637-60, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19415723" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19415723</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_19">Aric&#x000f2; M, Valsecchi MG, Rizzari C, et al.: Long-term results of the AIEOP-ALL-95 Trial for Childhood Acute Lymphoblastic Leukemia: insight on the prognostic value of DNA index in the framework of Berlin-Frankfurt-Muenster based chemotherapy. J Clin Oncol 26 (2): 283-9, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18182669" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18182669</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_20">Dastugue N, Suciu S, Plat G, et al.: Hyperdiploidy with 58-66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results. Blood 121 (13): 2415-23, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23321258" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23321258</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_21">Synold TW, Relling MV, Boyett JM, et al.: Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J Clin Invest 94 (5): 1996-2001, 1994. [<a href="/pmc/articles/PMC294625/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC294625</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7525652" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7525652</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_22">Moorman AV, Richards SM, Martineau M, et al.: Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 102 (8): 2756-62, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12829593" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12829593</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_23">Chilton L, Buck G, Harrison CJ, et al.: High hyperdiploidy among adolescents and adults with acute lymphoblastic leukaemia (ALL): cytogenetic features, clinical characteristics and outcome. Leukemia 28 (7): 1511-8, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24352198" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24352198</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_24">Sutcliffe MJ, Shuster JJ, Sather HN, et al.: High concordance from independent studies by the Children's Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children's Oncology Group (COG) initiative. Leukemia 19 (5): 734-40, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15789069" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15789069</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_25">Harris MB, Shuster JJ, Carroll A, et al.: Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 79 (12): 3316-24, 1992. [<a href="https://pubmed.ncbi.nlm.nih.gov/1596572" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1596572</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_26">Heerema NA, Harbott J, Galimberti S, et al.: Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome. Leukemia 18 (4): 693-702, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15044926" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15044926</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_27">Nachman JB, Heerema NA, Sather H, et al.: Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110 (4): 1112-5, 2007. [<a href="/pmc/articles/PMC1939895/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1939895</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17473063" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17473063</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_28">Raimondi SC, Zhou Y, Shurtleff SA, et al.: Near-triploidy and near-tetraploidy in childhood acute lymphoblastic leukemia: association with B-lineage blast cells carrying the ETV6-RUNX1 fusion, T-lineage immunophenotype, and favorable outcome. Cancer Genet Cytogenet 169 (1): 50-7, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16875937" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16875937</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_29">Attarbaschi A, Mann G, K&#x000f6;nig M, et al.: Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis. Leukemia 18 (10): 1611-6, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15356655" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15356655</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_30">Lemez P, Attarbaschi A, B&#x000e9;n&#x000e9; MC, et al.: Childhood near-tetraploid acute lymphoblastic leukemia: an EGIL study on 36 cases. Eur J Haematol 85 (4): 300-8, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20561032" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20561032</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_31">Paulsson K, Lilljebj&#x000f6;rn H, Biloglav A, et al.: The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet 47 (6): 672-6, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25961940" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25961940</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_32">Harrison CJ, Moorman AV, Broadfield ZJ, et al.: Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol 125 (5): 552-9, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15147369" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15147369</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_33">Mullighan CG, Jeha S, Pei D, et al.: Outcome of children with hypodiploid ALL treated with risk-directed therapy based on MRD levels. Blood 126 (26): 2896-9, 2015. [<a href="/pmc/articles/PMC4692147/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4692147</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26527677" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26527677</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_34">Irving J, Matheson E, Minto L, et al.: Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood 124 (23): 3420-30, 2014. [<a href="/pmc/articles/PMC4246039/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4246039</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25253770" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25253770</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_35">Qian M, Cao X, Devidas M, et al.: TP53 Germline Variations Influence the Predisposition and Prognosis of B-Cell Acute Lymphoblastic Leukemia in Children. J Clin Oncol 36 (6): 591-599, 2018. [<a href="/pmc/articles/PMC5815403/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5815403</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29300620" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29300620</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_36">Rubnitz JE, Wichlan D, Devidas M, et al.: Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. J Clin Oncol 26 (13): 2186-91, 2008. [<a href="/pmc/articles/PMC4485397/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4485397</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18445843" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18445843</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_37">Kanerva J, Saarinen-Pihkala UM, Niini T, et al.: Favorable outcome in 20-year follow-up of children with very-low-risk ALL and minimal standard therapy, with special reference to TEL-AML1 fusion. Pediatr Blood Cancer 42 (1): 30-5, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14752791" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14752791</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_38">Aldrich MC, Zhang L, Wiemels JL, et al.: Cytogenetics of Hispanic and White children with acute lymphoblastic leukemia in California. Cancer Epidemiol Biomarkers Prev 15 (3): 578-81, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16537719" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16537719</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_39">Loh ML, Goldwasser MA, Silverman LB, et al.: Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95-01. Blood 107 (11): 4508-13, 2006. [<a href="/pmc/articles/PMC1895800/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1895800</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16493009" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16493009</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_40">Borowitz MJ, Devidas M, Hunger SP, et al.: Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study. Blood 111 (12): 5477-85, 2008. [<a href="/pmc/articles/PMC2424148/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2424148</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18388178" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18388178</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_41">Madzo J, Zuna J, Muz&#x000ed;kov&#x000e1; K, et al.: Slower molecular response to treatment predicts poor outcome in patients with TEL/AML1 positive acute lymphoblastic leukemia: prospective real-time quantitative reverse transcriptase-polymerase chain reaction study. Cancer 97 (1): 105-13, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12491511" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12491511</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_42">Bhojwani D, Pei D, Sandlund JT, et al.: ETV6-RUNX1-positive childhood acute lymphoblastic leukemia: improved outcome with contemporary therapy. Leukemia 26 (2): 265-70, 2012. [<a href="/pmc/articles/PMC3345278/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3345278</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21869842" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21869842</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_43">Enshaei A, Schwab CJ, Konn ZJ, et al.: Long-term follow-up of ETV6-RUNX1 ALL reveals that NCI risk, rather than secondary genetic abnormalities, is the key risk factor. Leukemia 27 (11): 2256-9, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23636228" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23636228</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_44">Barbany G, Andersen MK, Autio K, et al.: Additional aberrations of the ETV6 and RUNX1 genes have no prognostic impact in 229 t(12;21)(p13;q22)-positive B-cell precursor acute lymphoblastic leukaemias treated according to the NOPHO-ALL-2000 protocol. Leuk Res 36 (7): 936-8, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22521551" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22521551</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_45">Forestier E, Heyman M, Andersen MK, et al.: Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. Br J Haematol 140 (6): 665-72, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18241254" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18241254</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_46">Seeger K, Stackelberg AV, Taube T, et al.: Relapse of TEL-AML1--positive acute lymphoblastic leukemia in childhood: a matched-pair analysis. J Clin Oncol 19 (13): 3188-93, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11432885" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11432885</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_47">Gandemer V, Chevret S, Petit A, et al.: Excellent prognosis of late relapses of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia: lessons from the FRALLE 93 protocol. Haematologica 97 (11): 1743-50, 2012. [<a href="/pmc/articles/PMC3487450/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3487450</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22580999" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22580999</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_48">Zuna J, Ford AM, Peham M, et al.: TEL deletion analysis supports a novel view of relapse in childhood acute lymphoblastic leukemia. Clin Cancer Res 10 (16): 5355-60, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15328172" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15328172</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_49">van Delft FW, Horsley S, Colman S, et al.: Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood 117 (23): 6247-54, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21482711" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21482711</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_50">Aric&#x000f2; M, Schrappe M, Hunger SP, et al.: Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol 28 (31): 4755-61, 2010. [<a href="/pmc/articles/PMC3020705/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3020705</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20876426" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20876426</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_51">Schrappe M, Aric&#x000f2; M, Harbott J, et al.: Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood 92 (8): 2730-41, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9763557" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9763557</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_52">Ribeiro RC, Broniscer A, Rivera GK, et al.: Philadelphia chromosome-positive acute lymphoblastic leukemia in children: durable responses to chemotherapy associated with low initial white blood cell counts. Leukemia 11 (9): 1493-6, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9305603" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9305603</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_53">Biondi A, Schrappe M, De Lorenzo P, et al.: Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol 13 (9): 936-45, 2012. [<a href="/pmc/articles/PMC3431502/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3431502</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22898679" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22898679</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_54">Schultz KR, Bowman WP, Aledo A, et al.: Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study. J Clin Oncol 27 (31): 5175-81, 2009. [<a href="/pmc/articles/PMC2773475/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2773475</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19805687" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19805687</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_55">Schultz KR, Carroll A, Heerema NA, et al.: Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children's Oncology Group study AALL0031. Leukemia 28 (7): 1467-71, 2014. [<a href="/pmc/articles/PMC4282929/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4282929</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24441288" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24441288</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_56">Pui CH, Chessells JM, Camitta B, et al.: Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 17 (4): 700-6, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12682627" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12682627</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_57">Johansson B, Moorman AV, Haas OA, et al.: Hematologic malignancies with t(4;11)(q21;q23)--a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. European 11q23 Workshop participants. Leukemia 12 (5): 779-87, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9593281" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9593281</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_58">Raimondi SC, Peiper SC, Kitchingman GR, et al.: Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood 73 (6): 1627-34, 1989. [<a href="https://pubmed.ncbi.nlm.nih.gov/2496771" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2496771</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_59">Harrison CJ, Moorman AV, Barber KE, et al.: Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol 129 (4): 520-30, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15877734" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15877734</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_60">Pui CH, Pei D, Campana D, et al.: A revised definition for cure of childhood acute lymphoblastic leukemia. Leukemia 28 (12): 2336-43, 2014. [<a href="/pmc/articles/PMC4214904/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4214904</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24781017" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24781017</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_61">Pieters R, Schrappe M, De Lorenzo P, et al.: A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370 (9583): 240-50, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17658395" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17658395</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_62">Pui CH, Gaynon PS, Boyett JM, et al.: Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359 (9321): 1909-15, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12057554" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12057554</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_63">Rubnitz JE, Camitta BM, Mahmoud H, et al.: Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol 17 (1): 191-6, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10458233" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10458233</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_64">Hunger SP: Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood 87 (4): 1211-24, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8608207" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8608207</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_65">Uckun FM, Sensel MG, Sather HN, et al.: Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Children's Cancer Group. J Clin Oncol 16 (2): 527-35, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9469337" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9469337</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_66">Fischer U, Forster M, Rinaldi A, et al.: Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 47 (9): 1020-9, 2015. [<a href="/pmc/articles/PMC4603357/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4603357</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26214592" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26214592</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_67">Pui CH, Sandlund JT, Pei D, et al.: Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA 290 (15): 2001-7, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14559953" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14559953</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_68">Crist WM, Carroll AJ, Shuster JJ, et al.: Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood 76 (1): 117-22, 1990. [<a href="https://pubmed.ncbi.nlm.nih.gov/2364165" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2364165</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_69">Andersen MK, Autio K, Barbany G, et al.: Paediatric B-cell precursor acute lymphoblastic leukaemia with t(1;19)(q23;p13): clinical and cytogenetic characteristics of 47 cases from the Nordic countries treated according to NOPHO protocols. Br J Haematol 155 (2): 235-43, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21902680" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21902680</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_70">Pui CH, Campana D, Pei D, et al.: Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 360 (26): 2730-41, 2009. [<a href="/pmc/articles/PMC2754320/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2754320</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19553647" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19553647</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_71">Jeha S, Pei D, Raimondi SC, et al.: Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia 23 (8): 1406-9, 2009. [<a href="/pmc/articles/PMC2731684/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2731684</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19282835" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19282835</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_72">Minson KA, Prasad P, Vear S, et al.: t(17;19) in Children with Acute Lymphocytic Leukemia: A Report of 3 Cases and a Review of the Literature. Case Rep Hematol 2013: 563291, 2013. [<a href="/pmc/articles/PMC3549381/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3549381</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23346431" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23346431</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_73">Lilljebj&#x000f6;rn H, Henningsson R, Hyrenius-Wittsten A, et al.: Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun 7: 11790, 2016. [<a href="/pmc/articles/PMC4897744/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4897744</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27265895" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27265895</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_74">Zhang J, McCastlain K, Yoshihara H, et al.: Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet 48 (12): 1481-1489, 2016. [<a href="/pmc/articles/PMC5144107/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5144107</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27776115" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27776115</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_75">Gu Z, Churchman M, Roberts K, et al.: Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun 7: 13331, 2016. [<a href="/pmc/articles/PMC5105166/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5105166</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27824051" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27824051</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_76">Liu YF, Wang BY, Zhang WN, et al.: Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia. EBioMedicine 8: 173-83, 2016. [<a href="/pmc/articles/PMC4919728/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4919728</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27428428" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27428428</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_77">Suzuki K, Okuno Y, Kawashima N, et al.: MEF2D-BCL9 Fusion Gene Is Associated With High-Risk Acute B-Cell Precursor Lymphoblastic Leukemia in Adolescents. J Clin Oncol 34 (28): 3451-9, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/27507882" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27507882</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_78">Lilljebj&#x000f6;rn H, &#x000c5;gerstam H, Orsmark-Pietras C, et al.: RNA-seq identifies clinically relevant fusion genes in leukemia including a novel MEF2D/CSF1R fusion responsive to imatinib. Leukemia 28 (4): 977-9, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24186003" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24186003</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_79">Hirabayashi S, Ohki K, Nakabayashi K, et al.: ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica 102 (1): 118-129, 2017. [<a href="/pmc/articles/PMC5210242/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5210242</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27634205" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27634205</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_80">Qian M, Zhang H, Kham SK, et al.: Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. Genome Res 27 (2): 185-195, 2017. [<a href="/pmc/articles/PMC5287225/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5287225</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27903646" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27903646</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_81">Shago M, Abla O, Hitzler J, et al.: Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion. Pediatr Blood Cancer 63 (11): 1915-21, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/27392123" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27392123</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_82">Yao L, Cen J, Pan J, et al.: TAF15-ZNF384 fusion gene in childhood mixed phenotype acute leukemia. Cancer Genet 211: 1-4, 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/28279306" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28279306</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_83">Hogan TF, Koss W, Murgo AJ, et al.: Acute lymphoblastic leukemia with chromosomal 5;14 translocation and hypereosinophilia: case report and literature review. J Clin Oncol 5 (3): 382-90, 1987. [<a href="https://pubmed.ncbi.nlm.nih.gov/3546615" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3546615</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_84">Grimaldi JC, Meeker TC: The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood 73 (8): 2081-5, 1989. [<a href="https://pubmed.ncbi.nlm.nih.gov/2499362" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2499362</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_85">Meeker TC, Hardy D, Willman C, et al.: Activation of the interleukin-3 gene by chromosome translocation in acute lymphocytic leukemia with eosinophilia. Blood 76 (2): 285-9, 1990. [<a href="https://pubmed.ncbi.nlm.nih.gov/2114933" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2114933</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_86">Sutton R, Lonergan M, Tapp H, et al.: Two cases of hypereosinophilia and high-risk acute lymphoblastic leukemia. Leukemia 22 (7): 1463-5, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18200036" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18200036</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_87">Heerema NA, Carroll AJ, Devidas M, et al.: Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children's oncology group studies: a report from the children's oncology group. J Clin Oncol 31 (27): 3397-402, 2013. [<a href="/pmc/articles/PMC3770866/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3770866</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23940221" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23940221</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_88">Moorman AV, Robinson H, Schwab C, et al.: Risk-directed treatment intensification significantly reduces the risk of relapse among children and adolescents with acute lymphoblastic leukemia and intrachromosomal amplification of chromosome 21: a comparison of the MRC ALL97/99 and UKALL2003 trials. J Clin Oncol 31 (27): 3389-96, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23940220" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23940220</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_89">Harrison CJ, Moorman AV, Schwab C, et al.: An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 28 (5): 1015-21, 2014. [<a href="/pmc/articles/PMC4283797/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4283797</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24166298" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24166298</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_90">Schwab C, Nebral K, Chilton L, et al.: Intragenic amplification of PAX5: a novel subgroup in B-cell precursor acute lymphoblastic leukemia? Blood Adv 1 (19): 1473-7, 2017. [<a href="/pmc/articles/PMC5728462/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5728462</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29296789" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29296789</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_91">Den Boer ML, van Slegtenhorst M, De Menezes RX, et al.: A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10 (2): 125-34, 2009. [<a href="/pmc/articles/PMC2707020/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2707020</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19138562" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19138562</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_92">Mullighan CG, Su X, Zhang J, et al.: Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360 (5): 470-80, 2009. [<a href="/pmc/articles/PMC2674612/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2674612</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19129520" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19129520</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_93">Reshmi SC, Harvey RC, Roberts KG, et al.: Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group. Blood 129 (25): 3352-3361, 2017. [<a href="/pmc/articles/PMC5482101/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5482101</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28408464" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28408464</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_94">Roberts KG, Morin RD, Zhang J, et al.: Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22 (2): 153-66, 2012. [<a href="/pmc/articles/PMC3422513/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3422513</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22897847" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22897847</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_95">van der Veer A, Waanders E, Pieters R, et al.: Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 122 (15): 2622-9, 2013. [<a href="/pmc/articles/PMC3795461/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3795461</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23974192" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23974192</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_96">Roberts KG, Reshmi SC, Harvey RC, et al.: Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group. Blood : , 2018. [<a href="/pmc/articles/PMC6107876/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6107876</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29997224" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29997224</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_97">Roberts KG, Pei D, Campana D, et al.: Outcomes of children with BCR-ABL1&#x02013;like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol 32 (27): 3012-20, 2014. [<a href="/pmc/articles/PMC4162497/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4162497</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25049327" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25049327</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_98">Harvey RC, Mullighan CG, Chen IM, et al.: Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115 (26): 5312-21, 2010. [<a href="/pmc/articles/PMC2902132/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2902132</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20139093" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20139093</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_99">Mullighan CG, Collins-Underwood JR, Phillips LA, et al.: Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 41 (11): 1243-6, 2009. [<a href="/pmc/articles/PMC2783810/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2783810</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19838194" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19838194</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_100">Cario G, Zimmermann M, Romey R, et al.: Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115 (26): 5393-7, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20378752" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20378752</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_101">Ensor HM, Schwab C, Russell LJ, et al.: Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood 117 (7): 2129-36, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21106984" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21106984</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_102">Schm&#x000e4;h J, Fedders B, Panzer-Gr&#x000fc;mayer R, et al.: Molecular characterization of acute lymphoblastic leukemia with high CRLF2 gene expression in childhood. Pediatr Blood Cancer 64 (10): , 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/28371317" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28371317</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_103">Schwab CJ, Chilton L, Morrison H, et al.: Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features. Haematologica 98 (7): 1081-8, 2013. [<a href="/pmc/articles/PMC3696612/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3696612</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23508010" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23508010</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_104">Chen IM, Harvey RC, Mullighan CG, et al.: Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 119 (15): 3512-22, 2012. [<a href="/pmc/articles/PMC3325039/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3325039</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22368272" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22368272</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_105">Palmi C, Vendramini E, Silvestri D, et al.: Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia. Leukemia 26 (10): 2245-53, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22484421" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22484421</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_106">Iacobucci I, Li Y, Roberts KG, et al.: Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia. Cancer Cell 29 (2): 186-200, 2016. [<a href="/pmc/articles/PMC4750652/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4750652</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26859458" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26859458</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_107">Clappier E, Grardel N, Bakkus M, et al.: IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: results of the EORTC Children's Leukemia Group study 58951. Leukemia 29 (11): 2154-61, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26050650" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26050650</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_108">Buitenkamp TD, Pieters R, Gallimore NE, et al.: Outcome in children with Down's syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations. Leukemia 26 (10): 2204-11, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22441210" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22441210</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_109">Krentz S, Hof J, Mendioroz A, et al.: Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia 27 (2): 295-304, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/22699455" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22699455</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_110">Feng J, Tang Y: Prognostic significance of IKZF1 alteration status in pediatric B-lineage acute lymphoblastic leukemia: a meta-analysis. Leuk Lymphoma 54 (4): 889-91, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/22916957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22916957</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_111">D&#x000f6;rge P, Meissner B, Zimmermann M, et al.: IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 98 (3): 428-32, 2013. [<a href="/pmc/articles/PMC3659952/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3659952</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22875627" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22875627</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_112">Olsson L, Castor A, Behrendtz M, et al.: Deletions of IKZF1 and SPRED1 are associated with poor prognosis in a population-based series of pediatric B-cell precursor acute lymphoblastic leukemia diagnosed between 1992 and 2011. Leukemia 28 (2): 302-10, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/23823658" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23823658</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_113">Boer JM, van der Veer A, Rizopoulos D, et al.: Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study. Leukemia 30 (1): 32-8, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/26202931" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26202931</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_114">van der Veer A, Zaliova M, Mottadelli F, et al.: IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood 123 (11): 1691-8, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24366361" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24366361</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_115">Stanulla M, Dagdan E, Zaliova M, et al.: IKZF1plus Defines a New Minimal Residual Disease-Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. J Clin Oncol 36 (12): 1240-1249, 2018. [<a href="https://pubmed.ncbi.nlm.nih.gov/29498923" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29498923</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_116">Yeoh AEJ, Lu Y, Chin WHN, et al.: Intensifying Treatment of Childhood B-Lymphoblastic Leukemia With IKZF1 Deletion Reduces Relapse and Improves Overall Survival: Results of Malaysia-Singapore ALL 2010 Study. J Clin Oncol : JCO2018783050, 2018. [<a href="https://pubmed.ncbi.nlm.nih.gov/30044693" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30044693</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_117">Liu Y, Easton J, Shao Y, et al.: The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 49 (8): 1211-1218, 2017. [<a href="/pmc/articles/PMC5535770/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5535770</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28671688" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28671688</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_118">Armstrong SA, Look AT: Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23 (26): 6306-15, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16155013" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16155013</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_119">Karrman K, Forestier E, Heyman M, et al.: Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome. Genes Chromosomes Cancer 48 (9): 795-805, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19530250" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19530250</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_120">Bergeron J, Clappier E, Radford I, et al.: Prognostic and oncogenic relevance of TLX1/HOX11 expression level in T-ALLs. Blood 110 (7): 2324-30, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17609427" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17609427</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_121">van Grotel M, Meijerink JP, Beverloo HB, et al.: The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica 91 (9): 1212-21, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16956820" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16956820</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_122">Cav&#x000e9; H, Suciu S, Preudhomme C, et al.: Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 103 (2): 442-50, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14504110" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14504110</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_123">Baak U, G&#x000f6;kbuget N, Orawa H, et al.: Thymic adult T-cell acute lymphoblastic leukemia stratified in standard- and high-risk group by aberrant HOX11L2 expression: experience of the German multicenter ALL study group. Leukemia 22 (6): 1154-60, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18368072" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18368072</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_124">Ferrando AA, Neuberg DS, Dodge RK, et al.: Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 363 (9408): 535-6, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14975618" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14975618</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_125">Mansour MR, Abraham BJ, Anders L, et al.: Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346 (6215): 1373-7, 2014. [<a href="/pmc/articles/PMC4720521/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4720521</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25394790" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25394790</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_126">Petit A, Trinquand A, Chevret S, et al.: Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia. Blood 131 (3): 289-300, 2018. [<a href="https://pubmed.ncbi.nlm.nih.gov/29051182" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29051182</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_127">Burmeister T, G&#x000f6;kbuget N, Reinhardt R, et al.: NUP214-ABL1 in adult T-ALL: the GMALL study group experience. Blood 108 (10): 3556-9, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16873673" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16873673</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_128">Graux C, Stevens-Kroef M, Lafage M, et al.: Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia 23 (1): 125-33, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/18923437" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18923437</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_129">Hagemeijer A, Graux C: ABL1 rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 49 (4): 299-308, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20073070" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20073070</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_130">Quint&#x000e1;s-Cardama A, Tong W, Manshouri T, et al.: Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia 22 (6): 1117-24, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18401417" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18401417</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_131">Clarke S, O'Reilly J, Romeo G, et al.: NUP214-ABL1 positive T-cell acute lymphoblastic leukemia patient shows an initial favorable response to imatinib therapy post relapse. Leuk Res 35 (7): e131-3, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21489623" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21489623</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_132">Deenik W, Beverloo HB, van der Poel-van de Luytgaarde SC, et al.: Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia 23 (3): 627-9, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/18987655" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18987655</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_133">Crombet O, Lastrapes K, Zieske A, et al.: Complete morphologic and molecular remission after introduction of dasatinib in the treatment of a pediatric patient with t-cell acute lymphoblastic leukemia and ABL1 amplification. Pediatr Blood Cancer 59 (2): 333-4, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22689211" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22689211</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_134">Seki M, Kimura S, Isobe T, et al.: Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia. Nat Genet 49 (8): 1274-1281, 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/28671687" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28671687</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_135">Weng AP, Ferrando AA, Lee W, et al.: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306 (5694): 269-71, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15472075" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15472075</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_136">Gallo Llorente L, Luther H, Schneppenheim R, et al.: Identification of novel NOTCH1 mutations: increasing our knowledge of the NOTCH signaling pathway. Pediatr Blood Cancer 61 (5): 788-96, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24249312" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24249312</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_137">Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, et al.: Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol 31 (34): 4333-42, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/24166518" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24166518</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_138">Zhang J, Ding L, Holmfeldt L, et al.: The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481 (7380): 157-63, 2012. [<a href="/pmc/articles/PMC3267575/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3267575</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22237106" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22237106</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_139">Gutierrez A, Dahlberg SE, Neuberg DS, et al.: Absence of biallelic TCRgamma deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol 28 (24): 3816-23, 2010. [<a href="/pmc/articles/PMC2940399/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2940399</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20644084" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20644084</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_140">Yang YL, Hsiao CC, Chen HY, et al.: Absence of biallelic TCR&#x003b3; deletion predicts induction failure and poorer outcomes in childhood T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer 58 (6): 846-51, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22180181" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22180181</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_141">Davies SM, Bhatia S, Ross JA, et al.: Glutathione S-transferase genotypes, genetic susceptibility, and outcome of therapy in childhood acute lymphoblastic leukemia. Blood 100 (1): 67-71, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12070010" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12070010</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_142">Krajinovic M, Costea I, Chiasson S: Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 359 (9311): 1033-4, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/11937185" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11937185</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_143">Krajinovic M, Lemieux-Blanchard E, Chiasson S, et al.: Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 4 (1): 66-72, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14647408" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14647408</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_144">Schmiegelow K, Forestier E, Kristinsson J, et al.: Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Leukemia 23 (3): 557-64, 2009. [<a href="/pmc/articles/PMC3898327/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3898327</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18987654" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18987654</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_145">Relling MV, Hancock ML, Boyett JM, et al.: Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 93 (9): 2817-23, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10216075" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10216075</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_146">Stanulla M, Schaeffeler E, Flohr T, et al.: Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 293 (12): 1485-9, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15784872" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15784872</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_147">Yang JJ, Landier W, Yang W, et al.: Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 33 (11): 1235-42, 2015. [<a href="/pmc/articles/PMC4375304/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4375304</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25624441" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25624441</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_148">Relling MV, Hancock ML, Rivera GK, et al.: Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91 (23): 2001-8, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10580024" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10580024</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_149">Moriyama T, Nishii R, Perez-Andreu V, et al.: NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 48 (4): 367-73, 2016. [<a href="/pmc/articles/PMC5029084/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5029084</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26878724" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26878724</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_150">Tanaka Y, Kato M, Hasegawa D, et al.: Susceptibility to 6-MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia. Br J Haematol 171 (1): 109-15, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26033531" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26033531</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_151">Diouf B, Crews KR, Lew G, et al.: Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313 (8): 815-23, 2015. [<a href="/pmc/articles/PMC4377066/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4377066</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25710658" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25710658</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_152">Yang JJ, Cheng C, Yang W, et al.: Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 301 (4): 393-403, 2009. [<a href="/pmc/articles/PMC2664534/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2664534</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19176441" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19176441</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_153">Gregers J, Christensen IJ, Dalhoff K, et al.: The association of reduced folate carrier 80G&#x0003e;A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood 115 (23): 4671-7, 2010. [<a href="/pmc/articles/PMC2890175/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2890175</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20335220" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20335220</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_154">Radtke S, Zolk O, Renner B, et al.: Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood 121 (26): 5145-53, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23652803" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23652803</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_155">Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al.: Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 120 (16): 3187-205, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22879540" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22879540</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_156">Tarlock K, Meshinchi S: Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am 62 (1): 75-93, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25435113" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25435113</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_157">Gilliland DG, Griffin JD: The roles of FLT3 in hematopoiesis and leukemia. Blood 100 (5): 1532-42, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12176867" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12176867</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_158">Balgobind BV, Hollink IH, Arentsen-Peters ST, et al.: Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica 96 (10): 1478-87, 2011. [<a href="/pmc/articles/PMC3186309/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3186309</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21791472" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21791472</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_159">K&#x000fc;hn MW, Radtke I, Bullinger L, et al.: High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations. Blood 119 (10): e67-75, 2012. [<a href="/pmc/articles/PMC3311263/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3311263</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22234698" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22234698</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_160">Bolouri H, Farrar JE, Triche T Jr, et al.: The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med 24 (1): 103-112, 2018. [<a href="/pmc/articles/PMC5907936/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5907936</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29227476" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29227476</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_161">Farrar JE, Schuback HL, Ries RE, et al.: Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse. Cancer Res 76 (8): 2197-205, 2016. [<a href="/pmc/articles/PMC4873364/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4873364</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26941285" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26941285</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_162">Grimwade D, Walker H, Oliver F, et al.: The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 92 (7): 2322-33, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9746770" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9746770</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_163">Gilliland DG: Targeted therapies in myeloid leukemias. Ann Hematol 83 (Suppl 1): S75-6, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15124682" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15124682</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_164">Avivi I, Rowe JM: Prognostic factors in acute myeloid leukemia. Curr Opin Hematol 12 (1): 62-7, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15604893" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15604893</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_165">Harrison CJ, Hills RK, Moorman AV, et al.: Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J Clin Oncol 28 (16): 2674-81, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20439644" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20439644</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_166">von Neuhoff C, Reinhardt D, Sander A, et al.: Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol 28 (16): 2682-9, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20439630" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20439630</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_167">Grimwade D, Hills RK, Moorman AV, et al.: Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116 (3): 354-65, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20385793" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20385793</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_168">Brown P, McIntyre E, Rau R, et al.: The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 110 (3): 979-85, 2007. [<a href="/pmc/articles/PMC1924773/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1924773</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17440048" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17440048</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_169">Hollink IH, Zwaan CM, Zimmermann M, et al.: Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 23 (2): 262-70, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19020547" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19020547</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_170">Ho PA, Alonzo TA, Gerbing RB, et al.: Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 113 (26): 6558-66, 2009. [<a href="/pmc/articles/PMC2943755/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2943755</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19304957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19304957</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_171">Meshinchi S, Alonzo TA, Stirewalt DL, et al.: Clinical implications of FLT3 mutations in pediatric AML. Blood 108 (12): 3654-61, 2006. [<a href="/pmc/articles/PMC1895470/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1895470</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16912228" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16912228</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_172">Struski S, Lagarde S, Bories P, et al.: NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis. Leukemia 31 (3): 565-572, 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/27694926" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27694926</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_173">Rubnitz JE, Raimondi SC, Halbert AR, et al.: Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution's experience. Leukemia 16 (10): 2072-7, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12357359" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12357359</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_174">Tallman MS, Hakimian D, Shaw JM, et al.: Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol 11 (4): 690-7, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8478662" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8478662</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_175">Mr&#x000f3;zek K, Heerema NA, Bloomfield CD: Cytogenetics in acute leukemia. Blood Rev 18 (2): 115-36, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15010150" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15010150</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_176">Creutzig U, Zimmermann M, Ritter J, et al.: Definition of a standard-risk group in children with AML. Br J Haematol 104 (3): 630-9, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10086807" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10086807</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_177">Raimondi SC, Chang MN, Ravindranath Y, et al.: Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood 94 (11): 3707-16, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10572083" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10572083</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_178">Lie SO, Abrahamsson J, Clausen N, et al.: Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down's syndrome: results of NOPHO-AML trials. Br J Haematol 122 (2): 217-25, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12846889" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12846889</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_179">Klein K, Kaspers G, Harrison CJ, et al.: Clinical Impact of Additional Cytogenetic Aberrations, cKIT and RAS Mutations, and Treatment Elements in Pediatric t(8;21)-AML: Results From an International Retrospective Study by the International Berlin-Frankfurt-M&#x000fc;nster Study Group. J Clin Oncol 33 (36): 4247-58, 2015. [<a href="/pmc/articles/PMC5321085/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5321085</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26573082" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26573082</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_180">Larson RA, Williams SF, Le Beau MM, et al.: Acute myelomonocytic leukemia with abnormal eosinophils and inv(16) or t(16;16) has a favorable prognosis. Blood 68 (6): 1242-9, 1986. [<a href="https://pubmed.ncbi.nlm.nih.gov/3465376" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3465376</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_181">Duployez N, Marceau-Renaut A, Boissel N, et al.: Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 127 (20): 2451-9, 2016. [<a href="/pmc/articles/PMC5457131/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5457131</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26980726" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26980726</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_182">Faber ZJ, Chen X, Gedman AL, et al.: The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 48 (12): 1551-1556, 2016. [<a href="/pmc/articles/PMC5508996/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5508996</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27798625" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27798625</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_183">Noort S, Zimmermann M, Reinhardt D, et al.: Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group. Blood 132 (15): 1584-1592, 2018. [<a href="/pmc/articles/PMC6265640/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6265640</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30150206" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30150206</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_184">Jahn N, Agrawal M, Bullinger L, et al.: Incidence and prognostic impact of ASXL2 mutations in adult acute myeloid leukemia patients with t(8;21)(q22;q22): a study of the German-Austrian AML Study Group. Leukemia 31 (4): 1012-1015, 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/28090090" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28090090</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_185">Yamato G, Shiba N, Yoshida K, et al.: ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/ RUNX1-RUNX1T1 and associated with a better prognosis. Genes Chromosomes Cancer 56 (5): 382-393, 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/28063196" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28063196</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_186">Smith MA, Ries LA, Gurney JG, et al.: Leukemia. In: Ries LA, Smith MA, Gurney JG, et al., eds.: Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. Bethesda, Md: National Cancer Institute, SEER Program, 1999. NIH Pub.No. 99-4649, pp 17-34. <a href="http://seer.cancer.gov/archive/publications/childhood/childhood-monograph.pdf" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Also available online</a>. Last accessed August 17, 2018.</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_187">Mistry AR, Pedersen EW, Solomon E, et al.: The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 17 (2): 71-97, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12642121" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12642121</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_188">Sanz MA, Grimwade D, Tallman MS, et al.: Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113 (9): 1875-91, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/18812465" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18812465</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_189">Grimwade D, Lo Coco F: Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 16 (10): 1959-73, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12357347" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12357347</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_190">Licht JD, Chomienne C, Goy A, et al.: Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85 (4): 1083-94, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7849296" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7849296</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_191">Yan W, Zhang G: Molecular Characteristics and Clinical Significance of 12 Fusion Genes in Acute Promyelocytic Leukemia: A Systematic Review. Acta Haematol 136 (1): 1-15, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/27089249" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27089249</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_192">Grimwade D, Biondi A, Mozziconacci MJ, et al.: Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Fran&#x000e7;ais de Cytog&#x000e9;n&#x000e9;tique H&#x000e9;matologique, Groupe de Fran&#x000e7;ais d'Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action "Molecular Cytogenetic Diagnosis in Haematological Malignancies". Blood 96 (4): 1297-308, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10942371" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10942371</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_193">Falini B, Martelli MP, Bolli N, et al.: Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood 108 (6): 1999-2005, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16720834" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16720834</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_194">Falini B, Mecucci C, Tiacci E, et al.: Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352 (3): 254-66, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15659725" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15659725</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_195">D&#x000f6;hner K, Schlenk RF, Habdank M, et al.: Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106 (12): 3740-6, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16051734" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16051734</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_196">Verhaak RG, Goudswaard CS, van Putten W, et al.: Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106 (12): 3747-54, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16109776" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16109776</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_197">Schnittger S, Schoch C, Kern W, et al.: Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106 (12): 3733-9, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16076867" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16076867</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_198">Schlenk RF, D&#x000f6;hner K, Krauter J, et al.: Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358 (18): 1909-18, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18450602" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18450602</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_199">Gale RE, Green C, Allen C, et al.: The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111 (5): 2776-84, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/17957027" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17957027</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_200">Cazzaniga G, Dell'Oro MG, Mecucci C, et al.: Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 106 (4): 1419-22, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15870172" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15870172</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_201">Staffas A, Kanduri M, Hovland R, et al.: Presence of FLT3-ITD and high BAALC expression are independent prognostic markers in childhood acute myeloid leukemia. Blood 118 (22): 5905-13, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21967978" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21967978</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_202">Tawana K, Wang J, Renneville A, et al.: Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 126 (10): 1214-23, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26162409" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26162409</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_203">Marcucci G, Maharry K, Radmacher MD, et al.: Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 26 (31): 5078-87, 2008. [<a href="/pmc/articles/PMC2652095/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2652095</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18809607" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18809607</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_204">Wouters BJ, L&#x000f6;wenberg B, Erpelinck-Verschueren CA, et al.: Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 113 (13): 3088-91, 2009. [<a href="/pmc/articles/PMC2662648/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2662648</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19171880" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19171880</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_205">Dufour A, Schneider F, Metzeler KH, et al.: Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol 28 (4): 570-7, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20038735" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20038735</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_206">Taskesen E, Bullinger L, Corbacioglu A, et al.: Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117 (8): 2469-75, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21177436" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21177436</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_207">Fasan A, Haferlach C, Alpermann T, et al.: The role of different genetic subtypes of CEBPA mutated AML. Leukemia 28 (4): 794-803, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24056881" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24056881</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_208">Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al.: Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia. Haematologica 96 (3): 384-92, 2011. [<a href="/pmc/articles/PMC3046269/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3046269</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21134981" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21134981</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_209">Groet J, McElwaine S, Spinelli M, et al.: Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet 361 (9369): 1617-20, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12747884" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12747884</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_210">Hitzler JK, Cheung J, Li Y, et al.: GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 101 (11): 4301-4, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12586620" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12586620</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_211">Rainis L, Bercovich D, Strehl S, et al.: Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood 102 (3): 981-6, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12649131" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12649131</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_212">Wechsler J, Greene M, McDevitt MA, et al.: Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 32 (1): 148-52, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12172547" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12172547</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_213">de Rooij JD, Branstetter C, Ma J, et al.: Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet 49 (3): 451-456, 2017. [<a href="/pmc/articles/PMC5687824/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5687824</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28112737" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28112737</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_214">Gurbuxani S, Vyas P, Crispino JD: Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood 103 (2): 399-406, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14512321" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14512321</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_215">Ge Y, Stout ML, Tatman DA, et al.: GATA1, cytidine deaminase, and the high cure rate of Down syndrome children with acute megakaryocytic leukemia. J Natl Cancer Inst 97 (3): 226-31, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15687366" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15687366</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_216">Johnston DL, Alonzo TA, Gerbing RB, et al.: Outcome of pediatric patients with acute myeloid leukemia (AML) and -5/5q- abnormalities from five pediatric AML treatment protocols: a report from the Children's Oncology Group. Pediatr Blood Cancer 60 (12): 2073-8, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/24039149" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24039149</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_217">Stevens RF, Hann IM, Wheatley K, et al.: Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council's 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol 101 (1): 130-40, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9576193" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9576193</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_218">Wells RJ, Arthur DC, Srivastava A, et al.: Prognostic variables in newly diagnosed children and adolescents with acute myeloid leukemia: Children's Cancer Group Study 213. Leukemia 16 (4): 601-7, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/11960339" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11960339</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_219">Hasle H, Alonzo TA, Auvrignon A, et al.: Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood 109 (11): 4641-7, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17299091" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17299091</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_220">Rasche M, von Neuhoff C, Dworzak M, et al.: Genotype-outcome correlations in pediatric AML: the impact of a monosomal karyotype in trial AML-BFM 2004. Leukemia 31 (12): 2807-2814, 2017. [<a href="/pmc/articles/PMC5729330/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5729330</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28443606" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28443606</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_221">Swansbury GJ, Lawler SD, Alimena G, et al.: Long-term survival in acute myelogenous leukemia: a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet 73 (1): 1-7, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/8174068" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8174068</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_222">Blink M, Zimmermann M, von Neuhoff C, et al.: Normal karyotype is a poor prognostic factor in myeloid leukemia of Down syndrome: a retrospective, international study. Haematologica 99 (2): 299-307, 2014. [<a href="/pmc/articles/PMC3912960/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3912960</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23935021" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23935021</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_223">Gr&#x000f6;schel S, Sanders MA, Hoogenboezem R, et al.: A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157 (2): 369-81, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24703711" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24703711</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_224">Yamazaki H, Suzuki M, Otsuki A, et al.: A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell 25 (4): 415-27, 2014. [<a href="/pmc/articles/PMC4012341/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4012341</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24703906" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24703906</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_225">Lugthart S, Gr&#x000f6;schel S, Beverloo HB, et al.: Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol 28 (24): 3890-8, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20660833" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20660833</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_226">Balgobind BV, Lugthart S, Hollink IH, et al.: EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia 24 (5): 942-9, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20357826" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20357826</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_227">Schnittger S, Schoch C, Dugas M, et al.: Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100 (1): 59-66, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12070009" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12070009</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_228">Thiede C, Steudel C, Mohr B, et al.: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99 (12): 4326-35, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12036858" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12036858</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_229">Whitman SP, Archer KJ, Feng L, et al.: Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 61 (19): 7233-9, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11585760" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11585760</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_230">Iwai T, Yokota S, Nakao M, et al.: Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia 13 (1): 38-43, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10049058" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10049058</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_231">Arrigoni P, Beretta C, Silvestri D, et al.: FLT3 internal tandem duplication in childhood acute myeloid leukaemia: association with hyperleucocytosis in acute promyelocytic leukaemia. Br J Haematol 120 (1): 89-92, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12492581" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12492581</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_232">Meshinchi S, Stirewalt DL, Alonzo TA, et al.: Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 102 (4): 1474-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12702504" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12702504</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_233">Zwaan CM, Meshinchi S, Radich JP, et al.: FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 102 (7): 2387-94, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12816873" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12816873</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_234">Chang P, Kang M, Xiao A, et al.: FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia. BMC Cancer 10: 513, 2010. [<a href="/pmc/articles/PMC2955609/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2955609</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20875128" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20875128</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_235">Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al.: NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 118 (13): 3645-56, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21813447" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21813447</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_236">Ostronoff F, Othus M, Gerbing RB, et al.: NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report. Blood 124 (15): 2400-7, 2014. [<a href="/pmc/articles/PMC4192751/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4192751</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25145343" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25145343</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_237">Shih LY, Kuo MC, Liang DC, et al.: Internal tandem duplication and Asp835 mutations of the FMS-like tyrosine kinase 3 (FLT3) gene in acute promyelocytic leukemia. Cancer 98 (6): 1206-16, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12973844" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12973844</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_238">Noguera NI, Breccia M, Divona M, et al.: Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia 16 (11): 2185-9, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12399960" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12399960</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_239">Gale RE, Hills R, Pizzey AR, et al.: Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood 106 (12): 3768-76, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16105978" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16105978</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_240">Abu-Duhier FM, Goodeve AC, Wilson GA, et al.: Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 113 (4): 983-8, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11442493" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11442493</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_241">Kutny MA, Moser BK, Laumann K, et al.: FLT3 mutation status is a predictor of early death in pediatric acute promyelocytic leukemia: a report from the Children's Oncology Group. Pediatr Blood Cancer 59 (4): 662-7, 2012. [<a href="/pmc/articles/PMC3368997/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3368997</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22378655" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22378655</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_242">Tallman MS, Kim HT, Montesinos P, et al.: Does microgranular variant morphology of acute promyelocytic leukemia independently predict a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood 116 (25): 5650-9, 2010. [<a href="/pmc/articles/PMC3031411/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3031411</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20858857" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20858857</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_243">Sung L, Aplenc R, Alonzo TA, et al.: Predictors and short-term outcomes of hyperleukocytosis in children with acute myeloid leukemia: a report from the Children's Oncology Group. Haematologica 97 (11): 1770-3, 2012. [<a href="/pmc/articles/PMC3487455/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3487455</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22801969" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22801969</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_244">Callens C, Chevret S, Cayuela JM, et al.: Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia 19 (7): 1153-60, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15889156" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15889156</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_245">Schnittger S, Bacher U, Haferlach C, et al.: Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA. Haematologica 96 (12): 1799-807, 2011. [<a href="/pmc/articles/PMC3232262/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3232262</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21859732" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21859732</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_246">Breccia M, Loglisci G, Loglisci MG, et al.: FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: long-term follow-up analysis. Haematologica 98 (12): e161-3, 2013. [<a href="/pmc/articles/PMC3856980/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3856980</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24323990" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24323990</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_247">Poir&#x000e9; X, Moser BK, Gallagher RE, et al.: Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): prognostic significance of FLT3 mutations and complex karyotype. Leuk Lymphoma 55 (7): 1523-32, 2014. [<a href="/pmc/articles/PMC4273565/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4273565</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24160850" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24160850</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_248">Pui CH, Relling MV, Rivera GK, et al.: Epipodophyllotoxin-related acute myeloid leukemia: a study of 35 cases. Leukemia 9 (12): 1990-6, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/8609707" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8609707</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_249">Inaba H, Zhou Y, Abla O, et al.: Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood 126 (13): 1575-84, 2015. [<a href="/pmc/articles/PMC4582334/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4582334</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26215111" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26215111</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_250">Balgobind BV, Raimondi SC, Harbott J, et al.: Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 114 (12): 2489-96, 2009. [<a href="/pmc/articles/PMC2927031/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2927031</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19528532" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19528532</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_251">Swansbury GJ, Slater R, Bain BJ, et al.: Hematological malignancies with t(9;11)(p21-22;q23)--a laboratory and clinical study of 125 cases. European 11q23 Workshop participants. Leukemia 12 (5): 792-800, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9593283" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9593283</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_252">Rubnitz JE, Raimondi SC, Tong X, et al.: Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 20 (9): 2302-9, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/11981001" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11981001</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_253">Mr&#x000f3;zek K, Heinonen K, Lawrence D, et al.: Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a Cancer and Leukemia Group B study. Blood 90 (11): 4532-8, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9373264" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9373264</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_254">Martinez-Climent JA, Espinosa R 3rd, Thirman MJ, et al.: Abnormalities of chromosome band 11q23 and the MLL gene in pediatric myelomonocytic and monoblastic leukemias. Identification of the t(9;11) as an indicator of long survival. J Pediatr Hematol Oncol 17 (4): 277-83, 1995. [<a href="https://pubmed.ncbi.nlm.nih.gov/7583381" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7583381</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_255">Casillas JN, Woods WG, Hunger SP, et al.: Prognostic implications of t(10;11) translocations in childhood acute myelogenous leukemia: a report from the Children's Cancer Group. J Pediatr Hematol Oncol 25 (8): 594-600, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12902910" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12902910</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_256">Morerio C, Rosanda C, Rapella A, et al.: Is t(10;11)(p11.2;q23) involving MLL and ABI-1 genes associated with congenital acute monocytic leukemia? Cancer Genet Cytogenet 139 (1): 57-9, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12547160" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12547160</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_257">Taki T, Shibuya N, Taniwaki M, et al.: ABI-1, a human homolog to mouse Abl-interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11)(p11.2;q23). Blood 92 (4): 1125-30, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9694699" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9694699</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_258">Coenen EA, Raimondi SC, Harbott J, et al.: Prognostic significance of additional cytogenetic aberrations in 733 de novo pediatric 11q23/MLL-rearranged AML patients: results of an international study. Blood 117 (26): 7102-11, 2011. [<a href="/pmc/articles/PMC3143552/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3143552</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21551233" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21551233</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_259">Ageberg M, Drott K, Olofsson T, et al.: Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer 47 (4): 276-87, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18181180" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18181180</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_260">Shiba N, Ichikawa H, Taki T, et al.: NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia. Genes Chromosomes Cancer 52 (7): 683-93, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23630019" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23630019</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_261">Slovak ML, Gundacker H, Bloomfield CD, et al.: A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare 'poor prognosis' myeloid malignancies. Leukemia 20 (7): 1295-7, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16628187" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16628187</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_262">Alsabeh R, Brynes RK, Slovak ML, et al.: Acute myeloid leukemia with t(6;9) (p23;q34): association with myelodysplasia, basophilia, and initial CD34 negative immunophenotype. Am J Clin Pathol 107 (4): 430-7, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9124211" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9124211</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_263">Sandahl JD, Coenen EA, Forestier E, et al.: t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica 99 (5): 865-72, 2014. [<a href="/pmc/articles/PMC4008104/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4008104</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24441146" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24441146</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_264">Tarlock K, Alonzo TA, Moraleda PP, et al.: Acute myeloid leukaemia (AML) with t(6;9)(p23;q34) is associated with poor outcome in childhood AML regardless of FLT3-ITD status: a report from the Children's Oncology Group. Br J Haematol 166 (2): 254-9, 2014. [<a href="/pmc/articles/PMC4079767/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4079767</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24661089" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24661089</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_265">Gruber TA, Larson Gedman A, Zhang J, et al.: An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 22 (5): 683-97, 2012. [<a href="/pmc/articles/PMC3547667/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3547667</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23153540" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23153540</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_266">Thiollier C, Lopez CK, Gerby B, et al.: Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models. J Exp Med 209 (11): 2017-31, 2012. [<a href="/pmc/articles/PMC3478932/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3478932</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23045605" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23045605</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_267">de Rooij JD, Hollink IH, Arentsen-Peters ST, et al.: NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia 27 (12): 2280-8, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23531517" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23531517</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_268">Masetti R, Pigazzi M, Togni M, et al.: CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood 121 (17): 3469-72, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23407549" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23407549</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_269">Masetti R, Rondelli R, Fagioli F, et al.: Infants with acute myeloid leukemia treated according to the Associazione Italiana di Ematologia e Oncologia Pediatrica 2002/01 protocol have an outcome comparable to that of older children. Haematologica 99 (8): e127-9, 2014. [<a href="/pmc/articles/PMC4116842/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4116842</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24837468" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24837468</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_270">de Rooij JD, Masetti R, van den Heuvel-Eibrink MM, et al.: Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study. Blood 127 (26): 3424-30, 2016. [<a href="/pmc/articles/PMC5161011/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5161011</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27114462" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27114462</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_271">Hara Y, Shiba N, Ohki K, et al.: Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-Down syndrome. Genes Chromosomes Cancer 56 (5): 394-404, 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/28063190" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28063190</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_272">Carroll A, Civin C, Schneider N, et al.: The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood 78 (3): 748-52, 1991. [<a href="https://pubmed.ncbi.nlm.nih.gov/1859887" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1859887</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_273">Lion T, Haas OA: Acute megakaryocytic leukemia with the t(1;22)(p13;q13). Leuk Lymphoma 11 (1-2): 15-20, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8220150" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8220150</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_274">Duchayne E, Fenneteau O, Pages MP, et al.: Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Fran&#x000e7;ais d'H&#x000e9;matologie Cellulaire (GFHC). Leuk Lymphoma 44 (1): 49-58, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12691142" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12691142</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_275">Ma Z, Morris SW, Valentine V, et al.: Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 28 (3): 220-1, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11431691" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11431691</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_276">Mercher T, Coniat MB, Monni R, et al.: Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci U S A 98 (10): 5776-9, 2001. [<a href="/pmc/articles/PMC33289/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC33289</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11344311" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11344311</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_277">Bernstein J, Dastugue N, Haas OA, et al.: Nineteen cases of the t(1;22)(p13;q13) acute megakaryblastic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group. Leukemia 14 (1): 216-8, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10637500" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10637500</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_278">Coenen EA, Zwaan CM, Reinhardt D, et al.: Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Munster AML-study group. Blood 122 (15): 2704-13, 2013. [<a href="/pmc/articles/PMC4314534/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4314534</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23974201" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23974201</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_279">Wong KF, Yuen HL, Siu LL, et al.: t(8;16)(p11;p13) predisposes to a transient but potentially recurring neonatal leukemia. Hum Pathol 39 (11): 1702-7, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18657848" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18657848</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_280">Wu X, Sulavik D, Roulston D, et al.: Spontaneous remission of congenital acute myeloid leukemia with t(8;16)(p11;13). Pediatr Blood Cancer 56 (2): 331-2, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21157904" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21157904</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_281">Terui K, Sato T, Sasaki S, et al.: Two novel variants of MOZ-CBP fusion transcripts in spontaneously remitted infant leukemia with t(1;16;8)(p13;p13;p11), a new variant of t(8;16)(p11;p13). Haematologica 93 (10): 1591-3, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18698081" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18698081</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_282">Sainati L, Bolcato S, Cocito MG, et al.: Transient acute monoblastic leukemia with reciprocal (8;16)(p11;p13) translocation. Pediatr Hematol Oncol 13 (2): 151-7, 1996 Mar-Apr. [<a href="https://pubmed.ncbi.nlm.nih.gov/8721029" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8721029</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_283">Weintraub M, Kaplinsky C, Amariglio N, et al.: Spontaneous regression of congenital leukaemia with an 8;16 translocation. Br J Haematol 111 (2): 641-3, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11122113" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11122113</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_284">Classen CF, Behnisch W, Reinhardt D, et al.: Spontaneous complete and sustained remission of a rearrangement CBP (16p13)-positive disseminated congenital myelosarcoma. Ann Hematol 84 (4): 274-5, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15605245" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15605245</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_285">Beverloo HB, Panagopoulos I, Isaksson M, et al.: Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res 61 (14): 5374-7, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11454678" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11454678</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_286">Slater RM, von Drunen E, Kroes WG, et al.: t(7;12)(q36;p13) and t(7;12)(q32;p13)--translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Leukemia 15 (6): 915-20, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11417477" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11417477</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_287">von Bergh AR, van Drunen E, van Wering ER, et al.: High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9. Genes Chromosomes Cancer 45 (8): 731-9, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16646086" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16646086</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_288">Tosi S, Harbott J, Teigler-Schlegel A, et al.: t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer 29 (4): 325-32, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11066076" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11066076</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_289">Park J, Kim M, Lim J, et al.: Three-way complex translocations in infant acute myeloid leukemia with t(7;12)(q36;p13): the incidence and correlation of a HLXB9 overexpression. Cancer Genet Cytogenet 191 (2): 102-5, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19446746" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19446746</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_290">Takeda A, Yaseen NR: Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin Cancer Biol 27: 3-10, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24657637" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24657637</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_291">Brown J, Jawad M, Twigg SR, et al.: A cryptic t(5;11)(q35;p15.5) in 2 children with acute myeloid leukemia with apparently normal karyotypes, identified by a multiplex fluorescence in situ hybridization telomere assay. Blood 99 (7): 2526-31, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/11895789" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11895789</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_292">Panarello C, Rosanda C, Morerio C: Cryptic translocation t(5;11)(q35;p15.5) with involvement of the NSD1 and NUP98 genes without 5q deletion in childhood acute myeloid leukemia. Genes Chromosomes Cancer 35 (3): 277-81, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12353270" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12353270</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_293">Cerveira N, Correia C, D&#x000f3;ria S, et al.: Frequency of NUP98-NSD1 fusion transcript in childhood acute myeloid leukaemia. Leukemia 17 (11): 2244-7, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12931227" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12931227</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_294">Jaju RJ, Fidler C, Haas OA, et al.: A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98 (4): 1264-7, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11493482" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11493482</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_295">Radich JP, Kopecky KJ, Willman CL, et al.: N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood 76 (4): 801-7, 1990. [<a href="https://pubmed.ncbi.nlm.nih.gov/2200539" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2200539</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_296">Farr C, Gill R, Katz F, et al.: Analysis of ras gene mutations in childhood myeloid leukaemia. Br J Haematol 77 (3): 323-7, 1991. [<a href="https://pubmed.ncbi.nlm.nih.gov/2012756" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2012756</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_297">Berman JN, Gerbing RB, Alonzo TA, et al.: Prevalence and clinical implications of NRAS mutations in childhood AML: a report from the Children's Oncology Group. Leukemia 25 (6): 1039-42, 2011. [<a href="/pmc/articles/PMC4504732/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4504732</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21358716" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21358716</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_298">Schnittger S, Kohl TM, Haferlach T, et al.: KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 107 (5): 1791-9, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16254134" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16254134</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_299">Tokumasu M, Murata C, Shimada A, et al.: Adverse prognostic impact of KIT mutations in childhood CBF-AML: the results of the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial. Leukemia 29 (12): 2438-41, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25975190" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25975190</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_300">Cairoli R, Beghini A, Grillo G, et al.: Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 107 (9): 3463-8, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16384925" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16384925</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_301">Paschka P, Marcucci G, Ruppert AS, et al.: Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 24 (24): 3904-11, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16921041" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16921041</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_302">Shimada A, Taki T, Tabuchi K, et al.: KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 107 (5): 1806-9, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16291592" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16291592</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_303">Shih LY, Liang DC, Huang CF, et al.: Cooperating mutations of receptor tyrosine kinases and Ras genes in childhood core-binding factor acute myeloid leukemia and a comparative analysis on paired diagnosis and relapse samples. Leukemia 22 (2): 303-7, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/17960171" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17960171</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_304">Goemans BF, Zwaan CM, Miller M, et al.: Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 19 (9): 1536-42, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16015387" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16015387</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_305">Boissel N, Leroy H, Brethon B, et al.: Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 20 (6): 965-70, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16598313" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16598313</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_306">Pollard JA, Alonzo TA, Gerbing RB, et al.: Prevalence and prognostic significance of KIT mutations in pediatric patients with core binding factor AML enrolled on serial pediatric cooperative trials for de novo AML. Blood 115 (12): 2372-9, 2010. [<a href="/pmc/articles/PMC2845895/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2845895</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20056794" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20056794</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_307">Paschka P, Marcucci G, Ruppert AS, et al.: Wilms' tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 26 (28): 4595-602, 2008. [<a href="/pmc/articles/PMC2653131/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2653131</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18559874" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18559874</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_308">Virappane P, Gale R, Hills R, et al.: Mutation of the Wilms' tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 26 (33): 5429-35, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18591546" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18591546</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_309">Gaidzik VI, Schlenk RF, Moschny S, et al.: Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood 113 (19): 4505-11, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19221039" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19221039</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_310">Renneville A, Boissel N, Zurawski V, et al.: Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia: a study from the Acute Leukemia French Association. Cancer 115 (16): 3719-27, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19536888" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19536888</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_311">Ho PA, Zeng R, Alonzo TA, et al.: Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 116 (5): 702-10, 2010. [<a href="/pmc/articles/PMC2918327/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2918327</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20413658" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20413658</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_312">Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, et al.: Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 113 (23): 5951-60, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19171881" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19171881</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_313">Ley TJ, Ding L, Walter MJ, et al.: DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363 (25): 2424-33, 2010. [<a href="/pmc/articles/PMC3201818/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3201818</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21067377" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21067377</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_314">Yan XJ, Xu J, Gu ZH, et al.: Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43 (4): 309-15, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21399634" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21399634</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_315">Thol F, Damm F, L&#x000fc;deking A, et al.: Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 29 (21): 2889-96, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21670448" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21670448</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_316">Ho PA, Kutny MA, Alonzo TA, et al.: Leukemic mutations in the methylation-associated genes DNMT3A and IDH2 are rare events in pediatric AML: a report from the Children's Oncology Group. Pediatr Blood Cancer 57 (2): 204-9, 2011. [<a href="/pmc/articles/PMC3115394/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3115394</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21504050" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21504050</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_317">Green CL, Evans CM, Hills RK, et al.: The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 116 (15): 2779-82, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20651067" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20651067</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_318">Paschka P, Schlenk RF, Gaidzik VI, et al.: IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28 (22): 3636-43, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20567020" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20567020</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_319">Abbas S, Lugthart S, Kavelaars FG, et al.: Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 116 (12): 2122-6, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20538800" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20538800</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_320">Marcucci G, Maharry K, Wu YZ, et al.: IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28 (14): 2348-55, 2010. [<a href="/pmc/articles/PMC2881719/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2881719</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20368543" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20368543</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_321">Wagner K, Damm F, G&#x000f6;hring G, et al.: Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol 28 (14): 2356-64, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20368538" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20368538</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_322">Figueroa ME, Abdel-Wahab O, Lu C, et al.: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18 (6): 553-67, 2010. [<a href="/pmc/articles/PMC4105845/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4105845</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21130701" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21130701</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_323">Ward PS, Patel J, Wise DR, et al.: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17 (3): 225-34, 2010. [<a href="/pmc/articles/PMC2849316/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2849316</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20171147" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20171147</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_324">Dang L, White DW, Gross S, et al.: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462 (7274): 739-44, 2009. [<a href="/pmc/articles/PMC2818760/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2818760</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19935646" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19935646</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_325">Damm F, Thol F, Hollink I, et al.: Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML-BFM and DCOG study groups. Leukemia 25 (11): 1704-10, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21647152" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21647152</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_326">Oki K, Takita J, Hiwatari M, et al.: IDH1 and IDH2 mutations are rare in pediatric myeloid malignancies. Leukemia 25 (2): 382-4, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21233841" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21233841</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_327">Pigazzi M, Ferrari G, Masetti R, et al.: Low prevalence of IDH1 gene mutation in childhood AML in Italy. Leukemia 25 (1): 173-4, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/20944672" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20944672</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_328">Ho PA, Alonzo TA, Kopecky KJ, et al.: Molecular alterations of the IDH1 gene in AML: a Children's Oncology Group and Southwest Oncology Group study. Leukemia 24 (5): 909-13, 2010. [<a href="/pmc/articles/PMC2945692/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2945692</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20376086" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20376086</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_329">Andersson AK, Miller DW, Lynch JA, et al.: IDH1 and IDH2 mutations in pediatric acute leukemia. Leukemia 25 (10): 1570-7, 2011. [<a href="/pmc/articles/PMC3883450/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3883450</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21647154" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21647154</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_330">Maxson JE, Ries RE, Wang YC, et al.: CSF3R mutations have a high degree of overlap with CEBPA mutations in pediatric AML. Blood 127 (24): 3094-8, 2016. [<a href="/pmc/articles/PMC4911865/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4911865</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27143256" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27143256</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_331">Germeshausen M, Kratz CP, Ballmaier M, et al.: RAS and CSF3R mutations in severe congenital neutropenia. Blood 114 (16): 3504-5, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19833857" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19833857</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_332">Skokowa J, Steinemann D, Katsman-Kuipers JE, et al.: Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 123 (14): 2229-37, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24523240" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24523240</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_333">Caye A, Strullu M, Guidez F, et al.: Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet 47 (11): 1334-40, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26457648" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26457648</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_334">Stieglitz E, Taylor-Weiner AN, Chang TY, et al.: The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet 47 (11): 1326-33, 2015. [<a href="/pmc/articles/PMC4626387/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4626387</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26457647" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26457647</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_335">Sakaguchi H, Okuno Y, Muramatsu H, et al.: Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet 45 (8): 937-41, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23832011" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23832011</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_336">Hern&#x000e1;ndez-Porras I, Fabbiano S, Schuhmacher AJ, et al.: K-RasV14I recapitulates Noonan syndrome in mice. Proc Natl Acad Sci U S A 111 (46): 16395-400, 2014. [<a href="/pmc/articles/PMC4246321/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4246321</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25359213" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25359213</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_3_337">Chang T, Krisman K, Theobald EH, et al.: Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest 123 (1): 335-9, 2013. [<a href="/pmc/articles/PMC3533281/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3533281</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23221337" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23221337</span></a>]</div></li></ol></div></div><div id="CDR0000774921__1787"><h2 id="_CDR0000774921__1787_">Non-Hodgkin Lymphoma</h2><div id="CDR0000774921__1824"><h3>Mature B-cell Lymphoma</h3><p id="CDR0000774921__1955">The mature B-cell lymphomas include Burkitt and Burkitt-like lymphoma, diffuse large B-cell lymphoma, and primary mediastinal B-cell lymphoma.</p><div id="CDR0000774921__1788"><h4>Burkitt and Burkitt-like lymphoma</h4><p id="CDR0000774921__sm_CDR0000779363_456"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779363_1746"></div>The malignant cells show a mature B-cell phenotype and are negative for the enzyme terminal deoxynucleotidyl transferase. These malignant cells usually express surface immunoglobulin, most bearing a clonal surface immunoglobulin M with either kappa or lambda light chains. A variety of additional B-cell markers (e.g., CD19, CD20, CD22) are usually present, and most childhood Burkitt and Burkitt-like lymphomas/leukemias express CALLA (CD10).[<a class="bk_pop" href="#CDR0000774921_rl_1787_1">1</a>] </p><p id="CDR0000774921__sm_CDR0000779363_1007">Burkitt lymphoma/leukemia expresses a characteristic chromosomal translocation, usually t(8;14) and more rarely t(8;22) or t(2;8). Each of these translocations juxtaposes the <i>MYC</i> oncogene and immunoglobulin locus regulatory elements, resulting in the inappropriate expression of <i>MYC</i>, a gene involved in cellular proliferation.[<a class="bk_pop" href="#CDR0000774921_rl_1787_2">2</a>-<a class="bk_pop" href="#CDR0000774921_rl_1787_4">4</a>] The presence of one of the variant translocations t(2;8) or t(8;22) does not appear to affect response or outcome.[<a class="bk_pop" href="#CDR0000774921_rl_1787_5">5</a>]</p><p id="CDR0000774921__sm_CDR0000779363_1749">While <i>MYC</i> translocations are present in all Burkitt lymphoma, cooperating genomic alterations appear to be required for lymphoma development. Recurring mutations that have been identified in Burkitt lymphoma in pediatric and adult cases are listed below. The clinical significance of these mutations for pediatric Burkitt lymphoma remains to be elucidated.</p><ul id="CDR0000774921__sm_CDR0000779363_1750"><li class="half_rhythm"><div>Activating mutations in the transcription factor <i>TCF3</i> and inactivating mutations in its negative regulator <i>ID3</i> are observed in approximately 70% of Burkitt lymphoma cases.[<a class="bk_pop" href="#CDR0000774921_rl_1787_6">6</a>-<a class="bk_pop" href="#CDR0000774921_rl_1787_9">9</a>]</div></li><li class="half_rhythm"><div>Mutations in <i>TP53</i> are observed in one-third to one-half of cases.[<a class="bk_pop" href="#CDR0000774921_rl_1787_6">6</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_8">8</a>]</div></li><li class="half_rhythm"><div>Mutations in cyclin D3 (<i>CCND3</i>) are commonly observed in sporadic Burkitt lymphoma (approximately 40% of cases) but are rare in endemic Burkitt lymphoma.[<a class="bk_pop" href="#CDR0000774921_rl_1787_6">6</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_8">8</a>]</div></li><li class="half_rhythm"><div>Mutations in <i>MYC</i> itself are observed in approximately one-half of Burkitt lymphoma cases and appear to increase MYC stability.[<a class="bk_pop" href="#CDR0000774921_rl_1787_6">6</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_10">10</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779363_288">The distinction between Burkitt and Burkitt-like lymphoma/leukemia is controversial. Burkitt lymphoma/leukemia consists of uniform, small, noncleaved cells, whereas the diagnosis of Burkitt-like lymphoma/leukemia is highly disputed among pathologists because of features that are consistent with diffuse large B-cell lymphoma.[<a class="bk_pop" href="#CDR0000774921_rl_1787_11">11</a>] </p><p id="CDR0000774921__sm_CDR0000779363_1008">Cytogenetic evidence of <i>MYC</i> rearrangement is the gold standard for diagnosis of Burkitt lymphoma/leukemia. For cases in which cytogenetic analysis is not available, the World Health Organization (WHO) has recommended that the Burkitt-like diagnosis be reserved for lymphoma resembling Burkitt lymphoma/leukemia or with more pleomorphism, large cells, and a proliferation fraction (i.e., MIB-1 or Ki-67 immunostaining) of 99% or greater.[<a class="bk_pop" href="#CDR0000774921_rl_1787_1">1</a>] BCL2 staining by immunohistochemistry is variable. The absence of a translocation involving the <i>BCL2</i> gene does not preclude the diagnosis of Burkitt lymphoma/leukemia and has no clinical implications.[<a class="bk_pop" href="#CDR0000774921_rl_1787_12">12</a>]</p><p id="CDR0000774921__sm_CDR0000779363_1009">Studies have demonstrated that the vast majority of Burkitt-like or <i>atypical Burkitt</i> lymphoma/leukemia has a gene expression signature similar to Burkitt lymphoma/leukemia.[<a class="bk_pop" href="#CDR0000774921_rl_1787_13">13</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_14">14</a>] Additionally, as many as 30% of pediatric diffuse large B-cell lymphoma cases will have a gene signature similar to Burkitt lymphoma/leukemia.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1787_13">13</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_15">15</a>]</p><p id="CDR0000774921__1948">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062808/">Childhood Non-Hodgkin Lymphoma Treatment</a> for information about the treatment of childhood non-Hodgkin lymphoma.)</p></div><div id="CDR0000774921__1830"><h4>Diffuse large B-cell lymphoma</h4><p id="CDR0000774921__sm_CDR0000779364_915"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779364_1747"></div>The World Health Organization (WHO) classification system does not recommend subclassification of diffuse large B-cell lymphoma on the basis of morphologic variants (e.g., immunoblastic, centroblastic).[<a class="bk_pop" href="#CDR0000774921_rl_1787_16">16</a>]</p><p id="CDR0000774921__sm_CDR0000779364_350">Diffuse large B-cell lymphoma in children and adolescents differs biologically from diffuse large B-cell lymphoma in adults in the following ways:</p><ul id="CDR0000774921__sm_CDR0000779364_1714"><li class="half_rhythm"><div>The vast majority of pediatric diffuse large B-cell lymphoma cases have a germinal center B-cell phenotype, as assessed by immunohistochemical analysis of selected proteins found in normal germinal center B cells, such as the <i>BCL6</i> gene product and CD10.[<a class="bk_pop" href="#CDR0000774921_rl_1787_5">5</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_17">17</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_18">18</a>] The age at which the favorable germinal center subtype changes to the less favorable nongerminal center subtype was shown to be a continuous variable.[<a class="bk_pop" href="#CDR0000774921_rl_1787_19">19</a>] </div></li><li class="half_rhythm"><div>Pediatric diffuse large B-cell lymphoma rarely demonstrates the t(14;18) translocation involving the immunoglobulin heavy-chain gene and the <i>BCL2</i> gene that is seen in adults.[<a class="bk_pop" href="#CDR0000774921_rl_1787_17">17</a>]</div></li><li class="half_rhythm"><div>As many as 30% of patients younger than 14 years with diffuse large B-cell lymphoma will have a gene signature similar to Burkitt lymphoma/leukemia.[<a class="bk_pop" href="#CDR0000774921_rl_1787_13">13</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_15">15</a>]</div></li><li class="half_rhythm"><div>In contrast to adult diffuse large B-cell lymphoma, pediatric cases show a high frequency of abnormalities at the <i>MYC</i> locus (chromosome 8q24), with approximately one-third of pediatric cases showing <i>MYC</i> rearrangement and with approximately one-half of the nonrearranged cases showing <i>MYC</i> gain or amplification.[<a class="bk_pop" href="#CDR0000774921_rl_1787_15">15</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_20">20</a>]</div></li><li class="half_rhythm"><div>A subset of pediatric diffuse large B-cell lymphoma cases was found to have a translocation that juxtaposes the <i>IRF4</i> oncogene next to one of the immunoglobulin loci. Diffuse large B-cell lymphoma cases with an <i>IRF4</i> translocation were significantly more frequent in children than in adults (15% vs. 2%), were germinal center&#x02013;derived B-cell lymphomas, and were associated with favorable prognosis compared with diffuse large B-cell lymphoma cases lacking this abnormality.[<a class="bk_pop" href="#CDR0000774921_rl_1787_21">21</a>] Large B-cell lymphoma with <i>IRF4</i> rearrangement was added as a distinct entity in the 2016 revision of the WHO classification of lymphoid neoplasms.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1787_22">22</a>]</div></li></ul><p id="CDR0000774921__1949">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062808/">Childhood Non-Hodgkin Lymphoma Treatment</a> for information about the treatment of childhood non-Hodgkin lymphoma.)</p></div><div id="CDR0000774921__1834"><h4>Primary mediastinal B-cell lymphoma</h4><p id="CDR0000774921__sm_CDR0000779482_976"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779482_1"></div>Primary mediastinal B-cell lymphoma was previously considered a subtype of diffuse large B-cell lymphoma, but is now a separate entity in the most recent World Health Organization (WHO) classification.[<a class="bk_pop" href="#CDR0000774921_rl_1787_23">23</a>] These tumors arise in the mediastinum from thymic B-cells and show a diffuse large cell proliferation with sclerosis that compartmentalizes neoplastic cells. </p><p id="CDR0000774921__sm_CDR0000779482_1685">Primary mediastinal B-cell lymphoma can be very difficult to distinguish morphologically from the following types of lymphoma:</p><ul id="CDR0000774921__sm_CDR0000779482_1686"><li class="half_rhythm"><div>Diffuse large B-cell lymphoma: Cell surface markers are similar to the ones seen in diffuse large B-cell lymphoma, such as CD19, CD20, CD22, CD79a, and PAX-5. Primary mediastinal B-cell lymphoma often lacks cell surface immunoglobulin expression but may display cytoplasmic immunoglobulins. CD30 expression is commonly present.[<a class="bk_pop" href="#CDR0000774921_rl_1787_23">23</a>]</div></li><li class="half_rhythm"><div>Hodgkin lymphoma: Primary mediastinal B-cell lymphoma may be difficult to clinically and morphologically distinguish from Hodgkin lymphoma, especially with small mediastinal biopsies because of extensive sclerosis and necrosis.</div></li></ul><p id="CDR0000774921__sm_CDR0000779482_917">Primary mediastinal B-cell lymphoma has a distinctive gene expression profile compared with diffuse large B-cell lymphoma; however, its gene expression profile has features similar to those seen in Hodgkin lymphoma.[<a class="bk_pop" href="#CDR0000774921_rl_1787_24">24</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_25">25</a>] Primary mediastinal B-cell lymphoma is also associated with a distinctive constellation of chromosomal aberrations compared with other NHL subtypes. Because primary mediastinal B-cell lymphoma is primarily a cancer of adolescents and young adults, the genomic findings are presented without regard to age.</p><ul id="CDR0000774921__sm_CDR0000779482_1688"><li class="half_rhythm"><div>Structural rearrangements and copy number gains at chromosome 9p24 are common in primary mediastinal B-cell lymphoma. This region encodes the immune checkpoint genes PD-L1 (<i>PDL1</i>) and PD-L2 (<i>PDCD1LG2</i>), and the genomic alterations lead to increased expression of these checkpoint proteins.[<a class="bk_pop" href="#CDR0000774921_rl_1787_26">26</a>-<a class="bk_pop" href="#CDR0000774921_rl_1787_28">28</a>]</div></li><li class="half_rhythm"><div>Genomic alterations in <i>CIITA</i>, which is the master transcriptional regulator of MHC class II expression, are common in primary mediastinal B-cell lymphoma and lead to loss of MHC class II expression. Loss of MHC class II expression provides another mechanism of immune escape for primary mediastinal B-cell lymphoma.[<a class="bk_pop" href="#CDR0000774921_rl_1787_29">29</a>]</div></li><li class="half_rhythm"><div>Genomic alterations involving <i>JAK-STAT</i> pathway genes are observed in most cases of primary mediastinal B-cell lymphoma.[<a class="bk_pop" href="#CDR0000774921_rl_1787_30">30</a>]<ul id="CDR0000774921__sm_CDR0000779482_1689"><li class="half_rhythm"><div>The chromosome 9p region that shows gains and amplification in primary mediastinal B-cell lymphoma encodes Janus kinase 2 (<i>JAK2</i>), which activates the signal transducer and activator of transcription (STAT) pathway.[<a class="bk_pop" href="#CDR0000774921_rl_1787_31">31</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_32">32</a>]</div></li><li class="half_rhythm"><div><i>SOCS1</i>, a negative regulator of JAK-STAT signaling, is inactivated in approximately 50% of primary mediastinal B-cell lymphoma by either mutation or gene deletion.[<a class="bk_pop" href="#CDR0000774921_rl_1787_33">33</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_34">34</a>]</div></li><li class="half_rhythm"><div>The interleukin-4 receptor gene (<i>IL4R</i>) shows activating mutations in approximately 20% of primary mediastinal B-cell lymphoma cases, and IL4R activation leads to increased JAK-STAT pathway activity.[<a class="bk_pop" href="#CDR0000774921_rl_1787_30">30</a>]</div></li></ul></div></li><li class="half_rhythm"><div>Copy number gains and amplifications at 2p16.1, a region that encodes <i>BCL11A</i> and <i>REL</i>, also occur in primary mediastinal B-cell lymphoma.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1787_31">31</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_32">32</a>]</div></li></ul><p id="CDR0000774921__1950">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062808/">Childhood Non-Hodgkin Lymphoma Treatment</a> for information about the treatment of childhood non-Hodgkin lymphoma.)</p></div></div><div id="CDR0000774921__1839"><h3>Lymphoblastic Lymphoma</h3><p id="CDR0000774921__sm_CDR0000779369_293"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779369_1746"></div> Lymphoblastic lymphomas are usually positive for terminal deoxynucleotidyl transferase, with more than 75% having a T-cell immunophenotype and the remainder having a precursor B-cell phenotype.[<a class="bk_pop" href="#CDR0000774921_rl_1787_2">2</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_35">35</a>] </p><p id="CDR0000774921__sm_CDR0000779369_980">As opposed to pediatric acute lymphoblastic leukemia, chromosomal abnormalities and the molecular biology of pediatric lymphoblastic lymphoma are not well characterized. The Berlin-Frankfurt-M&#x000fc;nster group reported that loss of heterozygosity at chromosome 6q was observed in 12% of patients and <i>NOTCH1</i> mutations were seen in 60% of patients, but <i>NOTCH1</i> mutations are rarely seen in patients with loss of heterozygosity in 6q16.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1787_36">36</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_37">37</a>]</p><p id="CDR0000774921__1951">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062808/">Childhood Non-Hodgkin Lymphoma Treatment</a> for information about the treatment of childhood non-Hodgkin lymphoma.)</p></div><div id="CDR0000774921__1842"><h3>Anaplastic Large Cell Lymphoma</h3><p id="CDR0000774921__sm_CDR0000779370_297"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779370_1746"></div> While the predominant immunophenotype of anaplastic large cell lymphoma is mature T-cell, null-cell disease (i.e., no T-cell, B-cell, or natural killer-cell surface antigen expression) does occur. The World Health Organization (WHO) classifies anaplastic large cell lymphoma as a subtype of peripheral T-cell lymphoma.[<a class="bk_pop" href="#CDR0000774921_rl_1787_22">22</a>] </p><p id="CDR0000774921__sm_CDR0000779370_1032">All anaplastic large cell lymphoma cases are CD30-positive. More than 90% of pediatric anaplastic large cell lymphoma cases have a chromosomal rearrangement involving the <i>ALK</i> gene. About 85% of these chromosomal rearrangements will be t(2;5)(p23;q35), leading to the expression of the fusion protein NPM-ALK; the other 15% of cases are composed of variant <i>ALK</i> translocations.[<a class="bk_pop" href="#CDR0000774921_rl_1787_38">38</a>] Anti-ALK immunohistochemical staining pattern is quite specific for the type of <i>ALK</i> translocation. Cytoplasm and nuclear ALK staining is associated with NPM-ALK fusion protein, whereas cytoplasmic staining only of ALK is associated with the variant <i>ALK</i> translocations, as shown in Table 2.[<a class="bk_pop" href="#CDR0000774921_rl_1787_39">39</a>]</p><div id="CDR0000774921__sm_CDR0000779370_1749" class="table"><h3><span class="title">Table 2. Variant <i>ALK</i> Translocation and Associated Partner Chromosome Location and Frequency<sup>a</sup></span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK374260.14/table/CDR0000774921__sm_CDR0000779370_1749/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000774921__sm_CDR0000779370_1749_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Gene Fusion</th><th colspan="1" rowspan="1" style="vertical-align:top;">Partner Chromosome Location </th><th colspan="1" rowspan="1" style="vertical-align:top;">Frequency of Gene Fusion</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>NPM-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">5q36.1</td><td colspan="1" rowspan="1" style="vertical-align:top;">~80%</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>TPM3-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">1p23 </td><td colspan="1" rowspan="1" style="vertical-align:top;">~15%</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>ALO17-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">17q25.3 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>ATIC-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">2q35 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>CLTC-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">17q23 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>MSN-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">Xp11.1 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>MYH9-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">22q13.1 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>TFG-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">3q12.2 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>TPM4-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">19p13 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>TRAF1-ALK</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">9q33.2 </td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin"><sup>a</sup>Adapted from Tsuyama et al.[<a class="bk_pop" href="#CDR0000774921_rl_1787_39">39</a>]</p></div></dd></dl></div></div></div><p id="CDR0000774921__sm_CDR0000779370_736">In adults, <i>ALK</i>-positive anaplastic large cell lymphoma is viewed differently from other peripheral T-cell lymphomas because prognosis tends to be superior.[<a class="bk_pop" href="#CDR0000774921_rl_1787_40">40</a>] Also, adult <i>ALK</i>-negative anaplastic large cell lymphoma patients have an inferior outcome compared with patients who have <i>ALK</i>-positive disease.[<a class="bk_pop" href="#CDR0000774921_rl_1787_41">41</a>] In children, however, this difference in outcome between <i>ALK</i>-positive and <i>ALK</i>-negative disease has not been demonstrated. In addition, no correlation has been found between outcome and the specific <i>ALK</i>-translocation type.[<a class="bk_pop" href="#CDR0000774921_rl_1787_42">42</a>-<a class="bk_pop" href="#CDR0000774921_rl_1787_44">44</a>]</p><p id="CDR0000774921__sm_CDR0000779370_737">In a European series of 375 children and adolescents with systemic <i>ALK</i>-positive anaplastic large cell lymphoma, the presence of a small cell or lymphohistiocytic component was observed in 32% of patients and was significantly associated with a high risk of failure in the multivariate analysis, controlling for clinical characteristics (hazard ratio, 2.0; <i>P</i> = .002).[<a class="bk_pop" href="#CDR0000774921_rl_1787_43">43</a>] The prognostic implication of the small cell variant of anaplastic large cell lymphoma was also shown in the <a href="https://www.cancer.gov/clinicaltrials/NCT00059839" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">COG-ANHL0131</a> (<a href="https://clinicaltrials.gov/show/NCT00059839" title="Study NCT00059839" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=clinical-trial">NCT00059839</a>) study, despite a different chemotherapy backbone.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1787_44">44</a>]</p><p id="CDR0000774921__1952">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062808/">Childhood Non-Hodgkin Lymphoma Treatment</a> for information about the treatment of childhood non-Hodgkin lymphoma.)</p></div><div id="CDR0000774921__2090"><h3>Pediatric-type Follicular Lymphoma</h3><p id="CDR0000774921__sm_CDR0000794337_1762"><div class="milestone-start" id="CDR0000774921__sm_CDR0000794337_1760"></div>Pediatric-type follicular lymphoma appears to be molecularly distinct from follicular lymphoma that is more commonly observed in adults. The pediatric type lacks <i>BCL2</i> rearrangements; <i>BCL6</i> and <i>MYC</i> rearrangements are also not present. The <i>TNFSFR14</i> mutations are common in pediatric-type follicular lymphoma, and they appear to occur with similar frequency in adult follicular lymphoma.[<a class="bk_pop" href="#CDR0000774921_rl_1787_45">45</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_46">46</a>] However, <i>MAP2K1</i> mutations, which are uncommon in adults, are observed in as many as 43% of pediatric-type follicular lymphomas. Other genes (e.g., <i>MAPK1</i> and <i>RRAS</i>) have been found to be mutated in cases without <i>MAP2K1</i> mutations, suggesting that the MAP kinase pathway is important in the pathogenesis of pediatric-type follicular lymphoma.[<a class="bk_pop" href="#CDR0000774921_rl_1787_47">47</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_48">48</a>] Translocations of the immunoglobulin locus and <i>IRF4</i> and abnormalities in chromosome 1p have also been observed in pediatric-type follicular lymphoma.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1787_21">21</a>,<a class="bk_pop" href="#CDR0000774921_rl_1787_45">45</a>]</p><p id="CDR0000774921__2091">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062808/">Childhood Non-Hodgkin Lymphoma Treatment</a> for information about the treatment of childhood non-Hodgkin lymphoma.)</p></div><div id="CDR0000774921_rl_1787"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_1787_1">Leoncini L, Raphael M, Stein H: Burkitt lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., eds.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: International Agency for Research on Cancer, 2008, pp 262-4.</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_2">Sandlund JT, Downing JR, Crist WM: Non-Hodgkin's lymphoma in childhood. N Engl J Med 334 (19): 1238-48, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8606720" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8606720</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_3">Perkins SL, Lones MA, Davenport V, et al.: B-Cell non-Hodgkin's lymphoma in children and adolescents: surface antigen expression and clinical implications for future targeted bioimmune therapy: a children's cancer group report. Clin Adv Hematol Oncol 1 (5): 314-7, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/16224429" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16224429</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_4">Miles RR, Cairo MS, Satwani P, et al.: Immunophenotypic identification of possible therapeutic targets in paediatric non-Hodgkin lymphomas: a children's oncology group report. Br J Haematol 138 (4): 506-12, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17659054" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17659054</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_5">Gualco G, Weiss LM, Harrington WJ Jr, et al.: Nodal diffuse large B-cell lymphomas in children and adolescents: immunohistochemical expression patterns and c-MYC translocation in relation to clinical outcome. Am J Surg Pathol 33 (12): 1815-22, 2009. [<a href="/pmc/articles/PMC2788112/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2788112</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19816150" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19816150</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_6">Schmitz R, Young RM, Ceribelli M, et al.: Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490 (7418): 116-20, 2012. [<a href="/pmc/articles/PMC3609867/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3609867</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22885699" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22885699</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_7">Richter J, Schlesner M, Hoffmann S, et al.: Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet 44 (12): 1316-20, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/23143595" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23143595</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_8">Havelange V, Pepermans X, Ameye G, et al.: Genetic differences between paediatric and adult Burkitt lymphomas. Br J Haematol 173 (1): 137-44, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/26887776" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26887776</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_9">Rohde M, Bonn BR, Zimmermann M, et al.: Relevance of ID3-TCF3-CCND3 pathway mutations in pediatric aggressive B-cell lymphoma treated according to the non-Hodgkin Lymphoma Berlin-Frankfurt-M&#x000fc;nster protocols. Haematologica 102 (6): 1091-1098, 2017. [<a href="/pmc/articles/PMC5451341/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5451341</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28209658" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28209658</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_10">Chakraborty AA, Scuoppo C, Dey S, et al.: A common functional consequence of tumor-derived mutations within c-MYC. Oncogene 34 (18): 2406-9, 2015. [<a href="/pmc/articles/PMC4286529/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4286529</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24998853" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24998853</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_11">Kluin PM, Harris NL, Stein H: B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., eds.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: International Agency for Research on Cancer, 2008, pp 265-6.</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_12">Masqu&#x000e9;-Soler N, Szczepanowski M, Kohler CW, et al.: Clinical and pathological features of Burkitt lymphoma showing expression of BCL2--an analysis including gene expression in formalin-fixed paraffin-embedded tissue. Br J Haematol 171 (4): 501-8, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26218299" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26218299</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_13">Klapper W, Szczepanowski M, Burkhardt B, et al.: Molecular profiling of pediatric mature B-cell lymphoma treated in population-based prospective clinical trials. Blood 112 (4): 1374-81, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18509088" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18509088</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_14">Dave SS, Fu K, Wright GW, et al.: Molecular diagnosis of Burkitt's lymphoma. N Engl J Med 354 (23): 2431-42, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16760443" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16760443</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_15">Deffenbacher KE, Iqbal J, Sanger W, et al.: Molecular distinctions between pediatric and adult mature B-cell non-Hodgkin lymphomas identified through genomic profiling. Blood 119 (16): 3757-66, 2012. [<a href="/pmc/articles/PMC3335381/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3335381</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22374697" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22374697</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_16">Stein H, Warnke RA, Chan WC: Diffuse large B-cell lymphoma (DLBCL), NOS. In: Swerdlow SH, Campo E, Harris NL, et al., eds.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: International Agency for Research on Cancer, 2008, pp 233-7.</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_17">Oschlies I, Klapper W, Zimmermann M, et al.: Diffuse large B-cell lymphoma in pediatric patients belongs predominantly to the germinal-center type B-cell lymphomas: a clinicopathologic analysis of cases included in the German BFM (Berlin-Frankfurt-Munster) Multicenter Trial. Blood 107 (10): 4047-52, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16424389" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16424389</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_18">Miles RR, Raphael M, McCarthy K, et al.: Pediatric diffuse large B-cell lymphoma demonstrates a high proliferation index, frequent c-Myc protein expression, and a high incidence of germinal center subtype: Report of the French-American-British (FAB) international study group. Pediatr Blood Cancer 51 (3): 369-74, 2008. [<a href="/pmc/articles/PMC2712231/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2712231</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18493992" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18493992</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_19">Klapper W, Kreuz M, Kohler CW, et al.: Patient age at diagnosis is associated with the molecular characteristics of diffuse large B-cell lymphoma. Blood 119 (8): 1882-7, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22238326" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22238326</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_20">Poirel HA, Cairo MS, Heerema NA, et al.: Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin's lymphoma: results of the FAB/LMB 96 international study. Leukemia 23 (2): 323-31, 2009. [<a href="/pmc/articles/PMC2988438/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2988438</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19020548" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19020548</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_21">Salaverria I, Philipp C, Oschlies I, et al.: Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood 118 (1): 139-47, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21487109" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21487109</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_22">Swerdlow SH, Campo E, Pileri SA, et al.: The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127 (20): 2375-90, 2016. [<a href="/pmc/articles/PMC4874220/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4874220</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26980727" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26980727</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_23">Jaffe ES, Harris NL, Stein H, et al.: Introduction and overview of the classification of the lymphoid neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al., eds.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: International Agency for Research on Cancer, 2008, pp 157-66.</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_24">Rosenwald A, Wright G, Leroy K, et al.: Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198 (6): 851-62, 2003. [<a href="/pmc/articles/PMC2194208/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2194208</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12975453" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12975453</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_25">Savage KJ, Monti S, Kutok JL, et al.: The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102 (12): 3871-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12933571" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12933571</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_26">Green MR, Monti S, Rodig SJ, et al.: Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116 (17): 3268-77, 2010. [<a href="/pmc/articles/PMC2995356/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2995356</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20628145" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20628145</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_27">Twa DD, Chan FC, Ben-Neriah S, et al.: Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 123 (13): 2062-5, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24497532" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24497532</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_28">Chong LC, Twa DD, Mottok A, et al.: Comprehensive characterization of programmed death ligand structural rearrangements in B-cell non-Hodgkin lymphomas. Blood 128 (9): 1206-13, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/27268263" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27268263</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_29">Mottok A, Woolcock B, Chan FC, et al.: Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class II Expression. Cell Rep 13 (7): 1418-1431, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26549456" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26549456</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_30">Vigan&#x000f2; E, Gunawardana J, Mottok A, et al.: Somatic IL4R mutations in primary mediastinal large B-cell lymphoma lead to constitutive JAK-STAT signaling activation. Blood 131 (18): 2036-2046, 2018. [<a href="https://pubmed.ncbi.nlm.nih.gov/29467182" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29467182</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_31">Bea S, Zettl A, Wright G, et al.: Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood 106 (9): 3183-90, 2005. [<a href="/pmc/articles/PMC1895326/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1895326</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16046532" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16046532</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_32">Oschlies I, Burkhardt B, Salaverria I, et al.: Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica 96 (2): 262-8, 2011. [<a href="/pmc/articles/PMC3031694/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3031694</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20971819" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20971819</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_33">Melzner I, Bucur AJ, Br&#x000fc;derlein S, et al.: Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105 (6): 2535-42, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15572583" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15572583</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_34">Mestre C, Rubio-Moscardo F, Rosenwald A, et al.: Homozygous deletion of SOCS1 in primary mediastinal B-cell lymphoma detected by CGH to BAC microarrays. Leukemia 19 (6): 1082-4, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15815722" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15815722</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_35">Neth O, Seidemann K, Jansen P, et al.: Precursor B-cell lymphoblastic lymphoma in childhood and adolescence: clinical features, treatment, and results in trials NHL-BFM 86 and 90. Med Pediatr Oncol 35 (1): 20-7, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10881003" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10881003</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_36">Bonn BR, Rohde M, Zimmermann M, et al.: Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood 121 (16): 3153-60, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23396305" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23396305</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_37">Burkhardt B, Moericke A, Klapper W, et al.: Pediatric precursor T lymphoblastic leukemia and lymphoblastic lymphoma: Differences in the common regions with loss of heterozygosity at chromosome 6q and their prognostic impact. Leuk Lymphoma 49 (3): 451-61, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18297521" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18297521</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_38">Duyster J, Bai RY, Morris SW: Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 20 (40): 5623-37, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11607814" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11607814</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_39">Tsuyama N, Sakamoto K, Sakata S, et al.: Anaplastic large cell lymphoma: pathology, genetics, and clinical aspects. J Clin Exp Hematop 57 (3): 120-142, 2017. [<a href="/pmc/articles/PMC6144189/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6144189</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29279550" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29279550</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_40">Savage KJ, Harris NL, Vose JM, et al.: ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 111 (12): 5496-504, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18385450" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18385450</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_41">Vose J, Armitage J, Weisenburger D, et al.: International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26 (25): 4124-30, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18626005" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18626005</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_42">Stein H, Foss HD, D&#x000fc;rkop H, et al.: CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 96 (12): 3681-95, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11090048" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11090048</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_43">Lamant L, McCarthy K, d'Amore E, et al.: Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol 29 (35): 4669-76, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/22084369" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22084369</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_44">Alexander S, Kraveka JM, Weitzman S, et al.: Advanced stage anaplastic large cell lymphoma in children and adolescents: results of ANHL0131, a randomized phase III trial of APO versus a modified regimen with vinblastine: a report from the children's oncology group. Pediatr Blood Cancer 61 (12): 2236-42, 2014. [<a href="/pmc/articles/PMC4682366/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4682366</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25156886" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25156886</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_45">Launay E, Pangault C, Bertrand P, et al.: High rate of TNFRSF14 gene alterations related to 1p36 region in de novo follicular lymphoma and impact on prognosis. Leukemia 26 (3): 559-62, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/21941365" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21941365</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_46">Schmidt J, Gong S, Marafioti T, et al.: Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood 128 (8): 1101-11, 2016. [<a href="/pmc/articles/PMC5000845/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5000845</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27257180" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27257180</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_47">Louissaint A Jr, Schafernak KT, Geyer JT, et al.: Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations. Blood 128 (8): 1093-100, 2016. [<a href="/pmc/articles/PMC5000844/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5000844</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27325104" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27325104</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1787_48">Schmidt J, Ramis-Zaldivar JE, Nadeu F, et al.: Mutations of MAP2K1 are frequent in pediatric-type follicular lymphoma and result in ERK pathway activation. Blood 130 (3): 323-327, 2017. [<a href="/pmc/articles/PMC5520474/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5520474</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28533310" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28533310</span></a>]</div></li></ol></div></div><div id="CDR0000774921__5"><h2 id="_CDR0000774921__5_">Central Nervous System Tumors</h2><p id="CDR0000774921__1956">Central nervous system (CNS) tumors include pilocytic astrocytomas and other astrocytic tumors, diffuse astrocytic tumors, brain stem gliomas, CNS atypical teratoid/rhabdoid tumors, medulloblastomas, nonmedulloblastoma embryonal tumors, and ependymomas.</p><p id="CDR0000774921__2006">The terminology of the 2016 World Health Organization (WHO) Classification of Tumors of the Central Nervous System is used below. The 2016 WHO CNS classification incorporates genomic features in addition to histology, and it includes multiple changes from the previous 2007 WHO classification.[<a class="bk_pop" href="#CDR0000774921_rl_5_1">1</a>] Of particular relevance for childhood brain cancers is the new entity <i>diffuse midline glioma, H3 K27M-mutant</i>, which includes diffuse intrinsic pontine glioma (DIPG) with the <i>H3 K27M</i> mutation and other high-grade gliomas of the midline with the <i>H3 K27M</i> mutation. Other examples of molecularly defined entities discussed below are <i>RELA</i>-fusion&#x02013;positive ependymoma, WNT-activated and SHH-activated medulloblastoma, and embryonal tumor with multilayered rosettes, <i>C19MC</i>-altered.</p><div id="CDR0000774921__1729"><h3>Pilocytic Astrocytomas and Other Astrocytic Tumors</h3><p id="CDR0000774921__sm_CDR0000779371_210"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779371_457"></div>Genomic alterations involving activation of <i>BRAF</i> and the ERK/MAPK pathway are very common in sporadic cases of pilocytic astrocytoma, a type of low-grade glioma. </p><p id="CDR0000774921__sm_CDR0000779371_406"><i>BRAF</i> activation in pilocytic astrocytoma occurs most commonly through a <i>BRAF</i>-<i>KIAA1549</i> gene fusion, producing a fusion protein that lacks the BRAF regulatory domain.[<a class="bk_pop" href="#CDR0000774921_rl_5_2">2</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_6">6</a>] This fusion is seen in most infratentorial and midline pilocytic astrocytomas, but is present at lower frequency in supratentorial (hemispheric) tumors.[<a class="bk_pop" href="#CDR0000774921_rl_5_2">2</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_3">3</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_7">7</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_12">12</a>] Other genomic alterations in pilocytic astrocytomas that can activate the ERK/MAPK pathway (e.g., alternative <i>BRAF</i> gene fusions, <i>RAF1</i> rearrangements, <i>RAS</i> mutations, and <i>BRAF</i> V600E point mutations) are less commonly observed.[<a class="bk_pop" href="#CDR0000774921_rl_5_3">3</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_5">5</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_6">6</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_13">13</a>]</p><p id="CDR0000774921__sm_CDR0000779371_407">Presence of the <i>BRAF-KIAA1549</i> fusion predicted a better clinical outcome (progression-free survival [PFS] and overall survival [OS]) in one report that described children with incompletely resected low-grade gliomas.[<a class="bk_pop" href="#CDR0000774921_rl_5_11">11</a>] However, other factors such as <i>CDKN2A</i> deletion, whole chromosome 7 gain, and tumor location may modify the impact of the <i>BRAF</i> mutation on outcome.[<a class="bk_pop" href="#CDR0000774921_rl_5_14">14</a>]; [<a class="bk_pop" href="#CDR0000774921_rl_5_15">15</a>][<a href="/books/n/pdqcis/glossary_loe/def-item/glossary_loe_CDR0000335158/" class="def">Level of evidence: 3iiiDiii</a>] Progression to high-grade glioma is rare for pediatric low-grade glioma with the <i>BRAF-KIAA1549</i> fusion.[<a class="bk_pop" href="#CDR0000774921_rl_5_16">16</a>]</p><p id="CDR0000774921__sm_CDR0000779371_408"><i>BRAF</i> activation through the <i>BRAF-KIAA1549</i> fusion has also been described in other pediatric low-grade gliomas (e.g., pilomyxoid astrocytoma).[<a class="bk_pop" href="#CDR0000774921_rl_5_10">10</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_11">11</a>]</p><p id="CDR0000774921__sm_CDR0000779371_409"><i>BRAF</i> V600E point mutations are occasionally observed in pilocytic astrocytoma; the mutations are also observed in nonpilocytic pediatric low-grade gliomas, including ganglioglioma, desmoplastic infantile ganglioglioma, and approximately two-thirds of pleomorphic xanthoastrocytomas.[<a class="bk_pop" href="#CDR0000774921_rl_5_17">17</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_19">19</a>] Studies have observed the following:</p><ul id="CDR0000774921__sm_CDR0000779371_465"><li class="half_rhythm"><div>In a retrospective series of over 400 children with low-grade gliomas, 17% of tumors were <i>BRAF</i> V600E mutant. Ten-year PFS was 27% for <i>BRAF</i> V600E&#x02013;mutant cases, compared with 60% for cases whose tumors did not harbor that mutation. Additional factors associated with this poor prognosis included subtotal resection and <i>CDKN2A</i> deletion.[<a class="bk_pop" href="#CDR0000774921_rl_5_20">20</a>] Even in patients who underwent a gross-total resection, recurrence was noted in one-third of these cases, suggesting that <i>BRAF</i> V600E tumors have a more invasive phenotype than do other low-grade glioma variants.</div></li><li class="half_rhythm"><div>In a similar analysis, children with diencephalic low-grade astrocytomas with a <i>BRAF</i> V600E mutation had a 5-year PFS of 22%, compared with a PFS of 52% in children who were <i>BRAF</i> wildtype.[<a class="bk_pop" href="#CDR0000774921_rl_5_21">21</a>][<a href="/books/n/pdqcis/glossary_loe/def-item/glossary_loe_CDR0000335158/" class="def">Level of evidence: 3iiiDiii</a>]</div></li><li class="half_rhythm"><div> The frequency of the <i>BRAF </i>V600E mutation was significantly higher in pediatric low-grade glioma that transformed to high-grade glioma (8 of 18 cases) than was the frequency of the mutation in cases that did not transform to high-grade glioma (10 of 167 cases).[<a class="bk_pop" href="#CDR0000774921_rl_5_16">16</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779371_461">Angiocentric gliomas have been noted to largely harbor <i>MYB</i>-<i>QKI</i> fusions, a putative driver mutation for this relatively rare class of gliomas.[<a class="bk_pop" href="#CDR0000774921_rl_5_22">22</a>]</p><p id="CDR0000774921__sm_CDR0000779371_378">As with neurofibromatosis type 1 (NF1) deficiency in activating the ERK/MAPK pathway, activating <i>BRAF</i> genomic alterations are uncommon in pilocytic astrocytoma associated with NF1.[<a class="bk_pop" href="#CDR0000774921_rl_5_9">9</a>] </p><p id="CDR0000774921__sm_CDR0000779371_373">Activating mutations in <i>FGFR1</i>, <i>PTPN11</i>, and in <i>NTRK2</i> fusion genes have also been identified in noncerebellar pilocytic astrocytomas.[<a class="bk_pop" href="#CDR0000774921_rl_5_23">23</a>] In pediatric grade II diffuse astrocytomas, the most common alterations reported (up to 53% of tumors) are rearrangements in the MYB family of transcription factors.[<a class="bk_pop" href="#CDR0000774921_rl_5_24">24</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_25">25</a>]</p><p id="CDR0000774921__sm_CDR0000779371_398">Most children with tuberous sclerosis have a mutation in one of two tuberous sclerosis genes (<i>TSC1</i>/hamartin or <i>TSC2</i>/tuberin). Either of these mutations results in activation of the mammalian target of rapamycin (mTOR) complex 1. These children are at risk of developing subependymal giant cell astrocytomas, cortical tubers, and subependymal nodules. Because subependymal giant cell astrocytomas are driven by mTOR activation, mTOR inhibitors are active agents that can induce tumor regression in children with these tumors.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_5_26">26</a>]</p><p id="CDR0000774921__1738">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000614165/">Childhood Astrocytomas Treatment</a> for information about the treatment of low-grade childhood astrocytomas.)</p></div><div id="CDR0000774921__1739"><h3>Diffuse Astrocytic Tumors</h3><p id="CDR0000774921__2012">This category includes, among other diagnoses, diffuse astrocytomas (grade II) and pediatric high-grade gliomas (anaplastic astrocytoma [grade III], glioblastoma [grade IV], and diffuse midline glioma, <i>H3 K27M</i>-mutant (grade IV]).</p><div id="CDR0000774921__2007"><h4>Diffuse astrocytomas</h4><p id="CDR0000774921__2008">For pediatric diffuse astrocytomas (grade II), rearrangements in the MYB family of transcription factors (<i>MYB</i> and <i>MYBL1</i>) are the most commonly reported genomic alteration.[<a class="bk_pop" href="#CDR0000774921_rl_5_24">24</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_25">25</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_27">27</a>] Other alterations observed include <i>FGFR1</i> alterations (primarily duplications involving the tyrosine kinase domain),[<a class="bk_pop" href="#CDR0000774921_rl_5_25">25</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_27">27</a>] <i>BRAF</i> alterations, <i>NF1</i> mutations, and <i>RAS</i> family mutations.[<a class="bk_pop" href="#CDR0000774921_rl_5_24">24</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_25">25</a>] <i>IDH1</i> mutations, which are the most common genomic alteration in adult diffuse astrocytomas, are uncommon in children with diffuse astrocytomas and, when present, are observed almost exclusively in older adolescents.[<a class="bk_pop" href="#CDR0000774921_rl_5_24">24</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_28">28</a>]</p></div><div id="CDR0000774921__2009"><h4>Anaplastic astrocytomas and glioblastomas</h4><p id="CDR0000774921__sm_CDR0000779372_271"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779372_460"></div>Pediatric high-grade gliomas, especially glioblastoma multiforme, are biologically distinct from those arising in adults.[<a class="bk_pop" href="#CDR0000774921_rl_5_28">28</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_31">31</a>] </p><p id="CDR0000774921__sm_CDR0000779372_272">Pediatric high-grade gliomas can be separated into distinct subgroups on the basis of epigenetic patterns (DNA methylation), and these subgroups show distinguishing chromosome copy number gains/losses and gene mutations.[<a class="bk_pop" href="#CDR0000774921_rl_5_32">32</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>] Particularly distinctive subtypes of pediatric high-grade gliomas are those with recurring mutations at specific amino acids in histone genes, and together these account for approximately one-half of pediatric high-grade gliomas. The following pediatric high-grade glioma subgroups were identified on the basis of their DNA methylation patterns, and they show distinctive molecular and clinical characteristics:[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>]</p><ol id="CDR0000774921__sm_CDR0000779372_470"><li class="half_rhythm"><div><b>H3.3 (<i>H3F3A</i>) and H3.1 (<i>HIST1H3B</i> and, rarely, <i>HIST1H3C</i>) mutation at K27:</b> The Histone K27&#x02013;mutated cases occur predominantly in midchildhood (median age, approximately 10 years), are almost exclusively midline (thalamus, brain stem, and spinal cord), and carry a very poor prognosis. The 2016 WHO classification groups these cancers into a single entity&#x02014;diffuse midline glioma, H3 K27M&#x02013;mutant&#x02014;although there are clinical and biological distinctions between cases with H3.3 and H3.1 mutations, as described below.[<a class="bk_pop" href="#CDR0000774921_rl_5_1">1</a>] These cases can be diagnosed using immunohistochemistry to identify the presence of K27M.<ul id="CDR0000774921__sm_CDR0000779372_471"><li class="half_rhythm"><div>H3.3K27M cases occur throughout the midline and pons, account for approximately 60% of cases in these locations, and commonly present between the ages of 5 and 10 years.[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>] The prognosis for H3.3K27M patients is especially poor, with a median survival of less than 1 year; the 2-year survival is less than 5%.[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>]</div></li><li class="half_rhythm"><div>H3.1K27M cases are approximately fivefold less common than H3.3K27M cases. They occur primarily in the pons and present at a younger age than other H3.3K27M cases (median age, 5 years vs. 6&#x02013;10 years). These cases have a slightly more favorable prognosis than do H3.3K27M cases (median survival, 15 months vs. 11 months). Mutations in <i>ACVR1</i>, which is also the mutation observed in the genetic condition fibrodysplasia ossificans progressiva, are present in a high proportion of H3.1K27M cases.[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_36">36</a>]</div></li><li class="half_rhythm"><div>Rarely, <i>K27M</i> mutations are also identified in H3.2 (<i>HIST2H3C</i>) cases.[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>]</div></li></ul></div></li><li class="half_rhythm"><div><b>H3.3 (<i>H3F3A</i>) mutation at G34:</b> The H3.3G34 subtype presents in older children and young adults (median age, 14&#x02013;18 years) and arises exclusively in the cerebral cortex.[<a class="bk_pop" href="#CDR0000774921_rl_5_32">32</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>] H3.3G34 cases commonly have mutations in <i>TP53</i> and <i>ATRX</i> and show widespread hypomethylation across the whole genome. Patients with <i>H3F3A</i> mutations are at high risk of treatment failure, but the prognosis is not as poor as that of patients with Histone 3.1 or 3.3 <i>K27M</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>] O-6-methylguanine-DNA methyltransferase (MGMT) methylation is observed in approximately two-thirds of cases, and aside from the <i>IDH1</i>-mutated subtype (see below), the H3.3G34 subtype is the only pediatric high-grade glioma subtype that demonstrates MGMT methylation rates exceeding 20%.[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>]</div></li><li class="half_rhythm"><div><b><i>IDH1</i> mutation:</b>
<i>IDH1</i>-mutated cases represent a small percentage of pediatric high-grade gliomas (approximately 5%), and pediatric high-grade glioma patients whose tumors have <i>IDH1</i> mutations are almost exclusively older adolescents (median age in a pediatric population, 16 years) with hemispheric tumors.[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>] <i>IDH1</i>-mutated cases often show <i>TP53</i> mutations, MGMT promoter methylation, and a glioma-CpG island methylator phenotype (G-CIMP).[<a class="bk_pop" href="#CDR0000774921_rl_5_32">32</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>] Pediatric patients with <i>IDH1</i> mutations show a more favorable prognosis than do other pediatric glioblastoma multiforme patients; 5-year overall survival (OS) rates exceed 60% for pediatric patients with <i>IDH1</i> mutations, compared with 5-year OS rates of less than 20% for patients with wild-type <i>IDH1</i>.[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>]</div></li><li class="half_rhythm"><div><b>Pleomorphic xanthoastrocytoma (PXA)&#x02013;like:</b> Approximately 10% of pediatric high-grade gliomas have DNA methylation patterns that are PXA-like.[<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>] PXA-like cases commonly have <i>BRAF</i> V600E mutations and a relatively favorable outcome (approximately 50% survival at 5 years).[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>]</div></li><li class="half_rhythm"><div><b>Low-grade glioma&#x02013;like:</b> A small subset of pediatric brain tumors with the histologic appearance of high-grade gliomas show DNA methylation patterns like those of low-grade gliomas.[<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>] These cases are primarily observed in young patients (median age, 4 years); 10 of 16 infants with a glioblastoma multiforme diagnosis were in the low-grade glioma&#x02013;like group.[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>] The prognosis for these patients is much more favorable than for other pediatric high-grade glioma subtypes. Refer below for additional discussion of glioblastoma multiforme in infants.</div></li></ol><p id="CDR0000774921__sm_CDR0000779372_472">Pediatric glioblastoma multiforme high-grade glioma patients whose tumors lack both histone mutations and <i>IDH1</i> mutations represent approximately 40% of pediatric glioblastoma multiforme cases.[<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_37">37</a>] This is a heterogeneous group, with higher rates of gene amplifications than other pediatric high-grade glioma subtypes. The most commonly amplified genes are <i>PDGFRA</i>, <i>EGFR</i>, <i>CCND/CDK</i>, and <i>MYC/MYCN</i>;[<a class="bk_pop" href="#CDR0000774921_rl_5_32">32</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>] MGMT promoter methylation rates are low in this group.[<a class="bk_pop" href="#CDR0000774921_rl_5_37">37</a>] One report divided this group into three subtypes. The subtype characterized by high rates of <i>MYCN</i> amplification showed the poorest prognosis, while the subtype characterized by <i>TERT</i> promoter mutations and <i>EGFR</i> amplification showed the most favorable prognosis. The third group was characterized by <i>PDGFRA</i> amplification.[<a class="bk_pop" href="#CDR0000774921_rl_5_37">37</a>]</p><p id="CDR0000774921__sm_CDR0000779372_466">Infants and young children with a glioblastoma multiforme diagnosis appear to have tumors with distinctive molecular characteristics when compared with tumors of older children and adults. The application of DNA methylation analysis to pediatric glioblastoma multiforme tumors identified a group of patients (representing approximately 7% of pediatric patients with a histologic diagnosis of glioblastoma multiforme) whose tumors had molecular characteristics consistent with low-grade gliomas. The median age for this group of patients was 1 year, with eight of ten infants showing a low-grade glioma&#x02013;like profile.[<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>] The low-grade glioma&#x02013;like subtype had a favorable prognosis (3-year overall survival, approximately 90%).[<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_34">34</a>] <i>BRAF</i> V600E mutations were observed in 4 of 13 low-grade glioma&#x02013;like tumors and in 3 of 15 tumors from patients aged 3 years and younger.[<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>] A second report investigated gene copy number gains and losses and mutation status of selected genes for glioblastoma multiforme tumors from children younger than 36 months.[<a class="bk_pop" href="#CDR0000774921_rl_5_38">38</a>] Molecular alterations observed at appreciable rates in older children (e.g., K27M, <i>CDKN2A</i> loss, <i>PDGFRA</i> amplification, and <i>TERT</i> promoter mutations) were rare in the tumors of these young children, and novel abnormalities (e.g., loss of <i>SNORD</i> on chromosome 14q32) were observed in some cases.</p><p id="CDR0000774921__sm_CDR0000779372_431">Childhood secondary high-grade glioma (high-grade glioma that is preceded by a low-grade glioma) is uncommon (2.9% in a study of 886 patients). No pediatric low-grade gliomas with the <i>BRAF-KIAA1549</i> fusion transformed to a high-grade glioma, whereas low-grade gliomas with the <i>BRAF</i> V600E mutations were associated with increased risk of transformation. Seven of 18 patients (approximately 40%) with secondary high-grade glioma had <i>BRAF</i> V600E mutations, with <i>CDKN2A</i> alterations present in 8 of 14 cases (57%).<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_5_16">16</a>]</p><p id="CDR0000774921__19">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000614165/">Childhood Astrocytomas Treatment</a> for information about the treatment of high-grade childhood astrocytomas.)</p></div></div><div id="CDR0000774921__1749"><h3>Diffuse Midline Glioma, <i>H3 K27M</i>-Mutant (Including Diffuse Intrinsic Pontine Gliomas [DIPGs])</h3><p id="CDR0000774921__2010">The diffuse midline glioma, <i>H3 K27M</i>-mutant, category includes tumors previously classified as DIPG; most of the data is derived from experience with DIPG. This category also includes gliomas with the <i>H3 K27M</i> mutation arising in midline structures such as the thalamus.</p><p id="CDR0000774921__sm_CDR0000779374_245"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779374_1"></div>The genomic characteristics of DIPGs appear to differ from those of most other pediatric high-grade gliomas and from those of adult high-grade gliomas. The molecular and clinical characteristics of DIPGs align with those of other midline high-grade gliomas with a specific <i>H3 K27M</i> mutation in histone H3.1 (<i>H3F3A</i>) or H3.3 (<i>HIST1H3B</i> and <i>HIST1H3C</i>), which led the World Health Organization to group these tumors together into a single entity.[<a class="bk_pop" href="#CDR0000774921_rl_5_1">1</a>] In one report of 64 children with thalamic tumors, 50% of high-grade gliomas (11 of 22) had an <i>H3 K27M</i> mutation, and approximately 10% of tumors with low-grade morphological characteristics (5 of 42) had an <i>H3 K27M</i> mutation.[<a class="bk_pop" href="#CDR0000774921_rl_5_39">39</a>] Five-year overall survival (OS) was only 6% (1 of 16). In another study that included 202 children with glioblastoma, 68 of the tumors were midline (primarily thalamic) and had an <i>H3 K27M</i> mutation.[<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>] Five-year OS for this group was only 5%, which was significantly inferior to the survival rates of the remaining patients in the study.</p><p id="CDR0000774921__sm_CDR0000779374_248">A number of chromosomal and genomic abnormalities have been reported for DIPG, including the following:</p><ul id="CDR0000774921__sm_CDR0000779374_246"><li class="half_rhythm"><div><b>Histone H3 genes:</b> Approximately 80% of DIPG tumors have a mutation in a specific amino acid in the histone H3.1 (<i>H3F3A</i>) or H3.3 (<i>HIST1H3B</i> and <i>HIST1H3C</i>) genes.[<a class="bk_pop" href="#CDR0000774921_rl_5_35">35</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_36">36</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_40">40</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_42">42</a>] This <i>H3 K27M</i> mutation is observed in pediatric high-grade gliomas at other midline locations but is uncommon in cortical pediatric high-grade gliomas and in adult high-grade gliomas.[<a class="bk_pop" href="#CDR0000774921_rl_5_35">35</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_36">36</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_40">40</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_43">43</a>] An autopsy study that examined multiple tumor sites (primary, contiguous, and metastatic) in seven DIPG patients found that the <i>H3 K27M</i> mutation was invariably present, supporting its role as a driver mutation for DIPG.[<a class="bk_pop" href="#CDR0000774921_rl_5_44">44</a>]</div></li><li class="half_rhythm"><div><b>Activin A receptor, type I (<i>ACVR1</i>) gene:</b> Approximately 20% of DIPG cases have activating mutations in the <i>ACVR1</i> gene, with most occurring concurrently with H3.3 mutations.[<a class="bk_pop" href="#CDR0000774921_rl_5_35">35</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_36">36</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_41">41</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_42">42</a>] Germline mutations in <i>ACVR1</i> cause the autosomal dominant syndrome fibrodysplasia ossificans progressiva (FOP), although there is no cancer predisposition in FOP.[<a class="bk_pop" href="#CDR0000774921_rl_5_45">45</a>]</div></li><li class="half_rhythm"><div><b>Receptor tyrosine kinase amplification:</b>
<i>PDGFRA</i> amplification occurs in approximately 30% of cases, with lower rates of amplification observed for some other receptor tyrosine kinases (e.g., <i>MET</i> and <i>IGF1R</i>).[<a class="bk_pop" href="#CDR0000774921_rl_5_46">46</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_47">47</a>] An autopsy study that examined multiple tumor sites (primary, contiguous, and metastatic) in seven DIPG patients found that <i>PDGFRA</i> amplification was variably present across these sites, suggesting that this change is a secondary genomic alteration in DIPG.[<a class="bk_pop" href="#CDR0000774921_rl_5_44">44</a>]</div></li><li class="half_rhythm"><div><b><i>TP53</i> deletion:</b> DIPG tumors commonly show deletion of the <i>TP53</i> gene on chromosome 17p.[<a class="bk_pop" href="#CDR0000774921_rl_5_47">47</a>] Additionally, <i>TP53</i> is commonly mutated in DIPG tumors, particularly those with histone H3 gene mutations.[<a class="bk_pop" href="#CDR0000774921_rl_5_35">35</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_36">36</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_41">41</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_42">42</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_48">48</a>] Aneuploidy is commonly observed in cases with <i>TP53</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_5_35">35</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779374_247"> The gene expression profile of DIPG differs from that of non&#x02013;brain stem pediatric high-grade gliomas, further supporting a distinctive biology for this subset of pediatric gliomas.[<a class="bk_pop" href="#CDR0000774921_rl_5_47">47</a>] Pediatric <i>H3 K27M</i>-mutant tumors rarely show MGMT promoter methylation,[<a class="bk_pop" href="#CDR0000774921_rl_5_33">33</a>] which explains the lack of efficacy of temozolomide when it was tested in patients with DIPG.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_5_49">49</a>]</p><p id="CDR0000774921__1753">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062761/">Childhood Brain Stem Glioma Treatment</a> for information about the treatment of childhood brain stem gliomas.)</p></div><div id="CDR0000774921__1754"><h3>Central Nervous System (CNS) Atypical Teratoid/Rhabdoid Tumors (AT/RT)</h3><div id="CDR0000774921__sm_CDR0000779375_148"><h4><i>SMARCB1</i> gene</h4><p id="CDR0000774921__sm_CDR0000779375_21"> AT/RT was the first primary pediatric brain tumor in which a candidate tumor suppressor gene, <i>SMARCB1</i> (previously known as <i>INI1</i> and <i>hSNF5</i>), was identified.[<a class="bk_pop" href="#CDR0000774921_rl_5_50">50</a>] <i>SMARCB1</i> is genomically altered in most rhabdoid tumors, including CNS, renal, and extrarenal rhabdoid malignancies.[<a class="bk_pop" href="#CDR0000774921_rl_5_50">50</a>] Loss of SMARCB1/SMARCA4 staining is a defining marker for AT/RT. Additional genomic alterations (mutations and gains/losses) in other genes are very uncommon in patients with <i>SMARCB1</i>-associated AT/RT. Less commonly, <i>SMARCA4</i>-negative (with retained <i>SMARCB1</i>) tumors have been described.[<a class="bk_pop" href="#CDR0000774921_rl_5_51">51</a>] No other genes are recurrently mutated in AT/RT.[<a class="bk_pop" href="#CDR0000774921_rl_5_52">52</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_54">54</a>] </p><p id="CDR0000774921__sm_CDR0000779375_118"><i>SMARCB1</i> is a component of a switch (SWI) and sucrose non-fermenting (SNF) adenosine triphosphate&#x02013;dependent chromatin-remodeling complex.[<a class="bk_pop" href="#CDR0000774921_rl_5_55">55</a>] Rare familial cases of rhabdoid tumors expressing SMARCB1 and lacking <i>SMARCB1</i> mutations have also been associated with germline mutations of <i>SMARCA4/BRG1</i>, another member of the SWI/SNF chromatin-remodeling complex.[<a class="bk_pop" href="#CDR0000774921_rl_5_56">56</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_57">57</a>]</p><p id="CDR0000774921__sm_CDR0000779375_161">The 2016 WHO classification defines AT/RT by the presence of either <i>SMARCB1</i> or <i>SMARCA4</i> alterations. Tumors with histological features of AT/RT that lack these genomic alterations are termed <i>CNS embryonal tumor with rhabdoid features</i>.[<a class="bk_pop" href="#CDR0000774921_rl_5_1">1</a>]</p><p id="CDR0000774921__sm_CDR0000779375_156">Despite the absence of recurring genomic alterations beyond <i>SMARCB1</i> (and, more rarely, other SWI/SNF complex members), biologically distinctive subsets of AT/RT have been identified.[<a class="bk_pop" href="#CDR0000774921_rl_5_58">58</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_59">59</a>] The following three distinctive subsets of AT/RT were identified through the use of DNA methylation arrays for 150 AT/RT tumors and gene expression arrays for 67 AT/RT tumors:[<a class="bk_pop" href="#CDR0000774921_rl_5_59">59</a>]</p><ul id="CDR0000774921__sm_CDR0000779375_157"><li class="half_rhythm"><div><b>AT/RT TYR:</b> This subset represented approximately one-third of cases and was characterized by elevated expression of melanosomal markers such as <i>TYR</i> (the gene encoding tyrosinase). Cases in this subset were primarily infratentorial, with most presenting in children aged 0 to 1 year and showing chromosome 22q loss.[<a class="bk_pop" href="#CDR0000774921_rl_5_59">59</a>] For patients with AT/RT TYR, the mean overall survival (OS) was 37 months in a clinically heterogeneous group (95% confidence interval [CI], 18&#x02013;56 months).[<a class="bk_pop" href="#CDR0000774921_rl_5_60">60</a>] Cribriform neuroepithelial tumor is a brain cancer that also presents in young children and has genomic and epigenomic characteristics that are very similar to AT/RT TYR.[<a class="bk_pop" href="#CDR0000774921_rl_5_60">60</a>] (Refer to the <a href="/books/n/pdqcis/CDR0000587224/#CDR0000587224__171">Cribriform Neuroepithelial Tumor</a> section of the PDQ summary on <a href="/books/n/pdqcis/CDR0000587224/">Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment</a> for more information.)</div></li><li class="half_rhythm"><div><b>AT/RT SHH:</b> This subset represented approximately 40% of cases and was characterized by elevated expression of genes in the sonic hedgehog (SHH) pathway (e.g., <i>GLI2</i> and <i>MYCN</i>). Cases in this subset occurred with similar frequency in the supratentorium and infratentorium. While most presented before age 2 years, approximately one-third of cases presented between ages 2 and 5 years.[<a class="bk_pop" href="#CDR0000774921_rl_5_59">59</a>] For patients with AT/RT SHH, the mean OS was 16 months (95% CI, 8&#x02013;25 months).[<a class="bk_pop" href="#CDR0000774921_rl_5_60">60</a>]</div></li><li class="half_rhythm"><div><b>AT/RT MYC:</b> This subset represented approximately one-fourth of cases and was characterized by elevated expression of MYC. AT/RT MYC cases tended to occur in the supratentorial compartment. While most AT/RT MYC cases occurred by age 5 years, AT/RT MYC represented the most common subset diagnosed at age 6 years and older. Focal deletions of <i>SMARCB1</i> were the most common mechanism of SMARCB1 loss for this subset.[<a class="bk_pop" href="#CDR0000774921_rl_5_59">59</a>] For patients with AT/RT MYC, the mean OS was 13 months (95% CI, 5&#x02013;22 months).[<a class="bk_pop" href="#CDR0000774921_rl_5_60">60</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779375_80">In addition to somatic mutations, germline mutations in <i>SMARCB1</i> have been reported in a substantial subset of AT/RT patients.[<a class="bk_pop" href="#CDR0000774921_rl_5_50">50</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_61">61</a>] A study of 65 children with rhabdoid tumors found that 23 (35%) had germline mutations and/or deletions of <i>SMARCB1</i>.[<a class="bk_pop" href="#CDR0000774921_rl_5_62">62</a>] Children with germline alterations in <i>SMARCB1</i> presented at an earlier age than did sporadic cases (median age, approximately 5 months vs. 18 months) and were more likely to present with synchronous, multifocal tumors.[<a class="bk_pop" href="#CDR0000774921_rl_5_62">62</a>] One parent was found to be a carrier of the <i>SMARCB1</i> germline abnormality in 7 of 22 evaluated cases showing germline alterations, with four of the carrier parents being unaffected by <i>SMARCB1</i>-associated cancers.[<a class="bk_pop" href="#CDR0000774921_rl_5_62">62</a>] This indicates that AT/RT shows an autosomal dominant inheritance pattern with incomplete penetrance.</p><p id="CDR0000774921__sm_CDR0000779375_141"> Gonadal mosaicism has also been observed, as evidenced by families in which multiple siblings are affected by AT/RT and have identical <i>SMARCB1</i> alterations, but both parents lack a <i>SMARCB1</i> mutation/deletion.[<a class="bk_pop" href="#CDR0000774921_rl_5_62">62</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_63">63</a>] Screening for germline <i>SMARCB1</i> mutations in children diagnosed with AT/RT may provide useful information for counseling families on the genetic implications of their child&#x02019;s AT/RT diagnosis.[<a class="bk_pop" href="#CDR0000774921_rl_5_62">62</a>]</p><p id="CDR0000774921__1763">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000587224/">Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumors Treatment</a> for information about the treatment of childhood CNS atypical teratoid/rhabdoid tumors.)</p></div></div><div id="CDR0000774921__1764"><h3>Medulloblastomas</h3><p id="CDR0000774921__sm_CDR0000779394_460"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779394_1"></div>Multiple medulloblastoma subtypes have been identified by integrative molecular analysis.[<a class="bk_pop" href="#CDR0000774921_rl_5_64">64</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_79">79</a>] Since 2012, the general consensus is that medulloblastoma can be molecularly separated into at least four core subtypes, including WNT-activated, sonic hedgehog (SHH)&#x02013;activated, group 3, and group 4 medulloblastoma. However, different regions of the same tumor are likely to have other disparate genetic mutations, adding to the complexity of devising effective molecularly targeted therapy.[<a class="bk_pop" href="#CDR0000774921_rl_5_80">80</a>] These subtypes remain stable across primary and metastatic components.[<a class="bk_pop" href="#CDR0000774921_rl_5_81">81</a>] Further subclassification within these subgroups is possible, which will provide even more prognostic information.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_83">83</a>] The 2016 World Health Organization (WHO) classification has endorsed this consensus by adding the following categories for genetically defined medulloblastoma:[<a class="bk_pop" href="#CDR0000774921_rl_5_1">1</a>]</p><ul id="CDR0000774921__sm_CDR0000779394_728"><li class="half_rhythm"><div>Medulloblastoma, WNT-activated.</div></li><li class="half_rhythm"><div>Medulloblastoma, SHH-activated and <i>TP53</i>-mutant.</div></li><li class="half_rhythm"><div>Medulloblastoma, SHH-activated and <i>TP53</i>-wildtype.</div></li><li class="half_rhythm"><div>Medulloblastoma, non-WNT/non-SHH.</div></li></ul><p id="CDR0000774921__sm_CDR0000779394_463">The WHO molecularly defined subtypes of medulloblastoma are briefly described below:[<a class="bk_pop" href="#CDR0000774921_rl_5_77">77</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_78">78</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_84">84</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_85">85</a>]</p><ul id="CDR0000774921__sm_CDR0000779394_461"><li class="half_rhythm"><div class="half_rhythm"><b>Medulloblastoma, WNT-activated:</b> WNT tumors are medulloblastomas with aberrations in the WNT signaling pathway and represent approximately 10% of all medulloblastomas.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>] WNT medulloblastoma shows a WNT signaling gene expression signature and beta-catenin nuclear staining by immunohistochemistry. They are usually histologically classified as <i>classic medulloblastoma</i> tumors and rarely have a large cell/anaplastic appearance. They are infrequently metastasized at diagnosis. </div><div class="half_rhythm"><i>CTNNB1</i> mutations are observed in 85% to 90% of WNT medulloblastoma cases, with <i>APC</i> mutations detected in many of the cases that lack <i>CTNNB1</i> mutations. Patients with WNT medulloblastoma whose tumors have <i>APC</i> mutations often have Turcot syndrome (i.e., germline <i>APC</i> mutations).[<a class="bk_pop" href="#CDR0000774921_rl_5_83">83</a>] In addition to <i>CTNNB1</i> mutations, WNT medulloblastoma tumors show 6q loss (monosomy 6) in 80% to 90% of cases. While monosomy 6 is observed in most medulloblastoma patients younger than 18 years at diagnosis, it appears to be much less common (approximately 25% of cases) in patients older than 18 years.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>]</div><div class="half_rhythm">The WNT subset is primarily observed in older children, adolescents, and adults and does not show a male predominance. The subset is believed to have brain stem origin, from the embryonal rhombic lip region. WNT medulloblastomas are associated with a very good outcome in children, especially in individuals whose tumors have beta-catenin nuclear staining and proven 6q loss and/or <i>CTNNB1</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_5_79">79</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_86">86</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Medulloblastoma, SHH-activated and <i>TP53</i>-mutant and medulloblastoma, SHH-activated and <i>TP53</i>-wildtype: </b> SHH tumors are medulloblastomas with aberrations in the SHH pathway and represent approximately 30% of medulloblastoma cases.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>] SHH medulloblastomas are characterized by chromosome 9q deletions; desmoplastic/nodular histology; and mutations in SHH pathway genes, including <i>PTCH1</i>, <i>PTCH2</i>, <i>SMO</i>, <i>SUFU</i>, and <i>GLI2</i>. </div><div class="half_rhythm">SHH medulloblastomas show a bimodal age distribution and are observed primarily in children younger than 3 years and in older adolescence/adulthood. The tumors are believed to emanate from the external granular layer of the cerebellum. The heterogeneity in age at presentation maps to distinctive subsets identified by further molecular characterization, as follows:<ul id="CDR0000774921__sm_CDR0000779394_732"><li class="half_rhythm"><div class="half_rhythm">The subset of medulloblastoma most common in children aged 3 to 16 years is enriched for <i>MYCN</i> and <i>GLI2</i> amplifications, with <i>TP53</i> mutations commonly co-occurring with one of these amplifications.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>] <i>PTCH1</i> mutations occur in this subtype and are mutually exclusive with <i>TP53</i> mutations, while <i>SMO</i> and <i>SUFU</i> mutations are rare.[<a class="bk_pop" href="#CDR0000774921_rl_5_87">87</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">Two SHH subtypes that occur primarily in children younger than 3 years have been described.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>] One of these subtypes is more frequently metastatic, with more frequent focal amplifications. The second of these subtypes is enriched for the medulloblastoma with extensive nodularity (MBEN) histology. SHH pathway mutations in children younger than 3 years with medulloblastoma include <i>PTCH1</i> and <i>SUFU</i> mutations. <i>SUFU</i> mutations are rarely observed in older children and adults, and they are commonly germline events.[<a class="bk_pop" href="#CDR0000774921_rl_5_87">87</a>]</div><div class="half_rhythm">A second report that used DNA methylation arrays also identified two subtypes of SHH medulloblastoma in young children.[<a class="bk_pop" href="#CDR0000774921_rl_5_88">88</a>] One of the subtypes contained all of the cases with <i>SMO</i> mutations, and it was associated with a favorable prognosis. The other subtype had most of the <i>SUFU</i> mutations, and it was associated with a much lower progression-free survival (PFS) rate. <i>PTCH1</i> mutations were present in both subtypes.</div></li><li class="half_rhythm"><div class="half_rhythm">A fourth SHH subtype includes most of the adult cases of SHH medulloblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>] This subtype is enriched for <i>TERT</i> promoter mutations, which are observed in approximately 90% of cases. <i>PTCH1</i> and <i>SMO</i> mutations are observed in adults with SHH medulloblastoma, with the latter being virtually restricted to the adult subtype.</div></li></ul></div><div class="half_rhythm">The outcome of patients with nonmetastatic SHH medulloblastoma is relatively favorable for children younger than 3 years and for adults.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>] Young children with the MBEN histology have a particularly favorable prognosis.[<a class="bk_pop" href="#CDR0000774921_rl_5_89">89</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_93">93</a>] Patients with SHH medulloblastoma at greatest risk of treatment failure are children older than 3 years whose tumors have <i>TP53</i> mutations, often with co-occurring <i>GLI2</i> or <i>MYCN</i> amplification and large cell/anaplastic histology.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_87">87</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_94">94</a>]</div><div class="half_rhythm">Patients with unfavorable molecular findings have an unfavorable prognosis, with fewer than 50% of patients surviving after conventional treatment.[<a class="bk_pop" href="#CDR0000774921_rl_5_84">84</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_87">87</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_94">94</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_96">96</a>]</div><div class="half_rhythm">The 2016 WHO classification identifies SHH medulloblastoma with a <i>TP53</i> mutation as a distinctive entity (medulloblastoma, SHH-activated and <i>TP53</i>-mutant).[<a class="bk_pop" href="#CDR0000774921_rl_5_1">1</a>] Approximately 25% of SHH-activated medulloblastoma cases have <i>TP53</i> mutations, with a high percentage of these cases also showing a <i>TP53</i> germline mutation (9 of 20 in one study). These patients are commonly between the ages of 5 years and 18 years and have a worse outcome (overall survival at 5 years, &#x0003c;50%).[<a class="bk_pop" href="#CDR0000774921_rl_5_96">96</a>] The tumors often show large cell anaplastic histology.[<a class="bk_pop" href="#CDR0000774921_rl_5_96">96</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Medulloblastoma, non-WNT/non-SHH:</b> The WHO classification combines group 3 and group 4 medulloblastoma cases into a single entity, partly on the basis of the absence of immediate clinical impact for this distinction. Group 3 medulloblastoma represents approximately 20% of medulloblastoma cases, while group 4 medulloblastoma represents approximately 40% of medulloblastoma cases.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>] Group 3 and group 4 medulloblastoma can be further subdivided on the basis of characteristics such as gene expression and DNA methylation profiles, but the optimal approach to their subdivision is not established.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_83">83</a>]</div><div class="half_rhythm">Various genomic alterations are observed in group 3 and group 4 medulloblastoma; however, no single alteration occurs in more than 10% to 20% of cases.<ul id="CDR0000774921__sm_CDR0000779394_735"><li class="half_rhythm"><div><i>MYC</i> amplification was the most common distinctive alteration reported for group 3 medulloblastoma, occurring in approximately 15% of cases.[<a class="bk_pop" href="#CDR0000774921_rl_5_78">78</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_83">83</a>]</div></li><li class="half_rhythm"><div>The most common distinctive genomic alteration described for group 4 medulloblastoma (observed in approximately 15% of cases) was activation of <i>PRDM6</i> by <i>enhancer hijacking</i>, resulting from the tandem duplication of the adjacent <i>SNCAIP</i> gene.[<a class="bk_pop" href="#CDR0000774921_rl_5_83">83</a>]</div></li><li class="half_rhythm"><div>Other genomic alterations were observed in both group 3 and group 4 cases, including <i>MYCN</i> amplification and structural variants leading to <i>GIF1</i> or <i>GFI1B</i> overexpression through <i>enhancer hijacking</i>.</div></li><li class="half_rhythm"><div>Isochromosome 17q is the most common cytogenetic abnormality and is observed in a high percentage of group 4 cases as well as in group 3 cases, but it is rarely observed in WNT and SHH medulloblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_5_78">78</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_83">83</a>]</div></li></ul></div><div class="half_rhythm">Group 3 patients with <i>MYC</i> amplification or <i>MYC</i> overexpression have a poor prognosis, with fewer than 50% of these patients surviving 5 years after diagnosis.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>] This poor prognosis is especially true in children younger than 4 years at diagnosis.[<a class="bk_pop" href="#CDR0000774921_rl_5_84">84</a>] However, patients with group 3 medulloblastoma without <i>MYC</i> amplification who are older than 3 years have a prognosis similar to that of most patients with non-WNT medulloblastoma, with a 5-year PFS rate higher than 70%.[<a class="bk_pop" href="#CDR0000774921_rl_5_95">95</a>]</div><div class="half_rhythm">Group 4 medulloblastomas occur throughout infancy and childhood and into adulthood. They also predominate in males. The prognosis for group 4 medulloblastoma patients is similar to that for patients with other non-WNT medulloblastoma and may be affected by additional factors such as the presence of metastatic disease and chromosome 17p loss.[<a class="bk_pop" href="#CDR0000774921_rl_5_77">77</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_78">78</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779394_462">The classification of medulloblastoma into the four major subtypes will likely be altered in the future.[<a class="bk_pop" href="#CDR0000774921_rl_5_82">82</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_83">83</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_97">97</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_98">98</a>] Further subdivision within subgroups based on molecular characteristics is likely as each of the subgroups is further molecularly dissected, although there is no consensus regarding an alternative classification.[<a class="bk_pop" href="#CDR0000774921_rl_5_77">77</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_87">87</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_99">99</a>]</p><p id="CDR0000774921__sm_CDR0000779394_581">Whether the classification for adults with medulloblastoma has a predictive ability similar to that for children is unknown.[<a class="bk_pop" href="#CDR0000774921_rl_5_78">78</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_84">84</a>] In one study of adult medulloblastoma, <i>MYC</i> oncogene amplifications were rarely observed, and tumors with 6q deletion and WNT activation (as identified by nuclear beta-catenin staining) did not share the excellent prognosis seen in pediatric medulloblastomas, although another study did confirm an excellent prognosis for WNT-activated tumors in adults.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_5_78">78</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_84">84</a>]</p><p id="CDR0000774921__1934">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000548358/">Childhood Central Nervous System Embryonal Tumors Treatment</a> for information about the treatment of childhood medulloblastoma.)</p></div><div id="CDR0000774921__1771"><h3>Nonmedulloblastoma Embryonal Tumors</h3><p id="CDR0000774921__2011">This section describes the genomic characteristics of embryonal tumors other than medulloblastoma and atypical teratoid/rhabdoid tumor. The 2016 WHO classification removed the term <i>primitive neuroectodermal tumors (PNET)</i> from the diagnostic lexicon.[<a class="bk_pop" href="#CDR0000774921_rl_5_1">1</a>] This change resulted from the recognition that many tumors previously classified as CNS PNETs have the common finding of amplification of the C19MC region on chromosome 19. These entities included ependymoblastoma, embryonal tumors with abundant neuropil and true rosettes (ETANTR), and some cases of medulloepithelioma. The 2016 WHO classification now categorizes tumors with C19MC amplification as <i>embryonal tumor with multilayered rosettes (ETMR)</i>, <i>C19MC</i><i>-altered</i>. Tumors previously classified as CNS PNETs are now termed <i>CNS embryonal tumor, NOS</i>, with the recognition that tumors in this category will likely be classified by their defining genomic lesions in future editions of the WHO classification.</p><p id="CDR0000774921__sm_CDR0000779395_558"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779395_6"></div>A study applying unsupervised clustering of DNA methylation patterns for 323 nonmedulloblastoma embryonal tumors found that approximately one-half of these tumors diagnosed as nonmedulloblastoma embryonal tumors showed molecular profiles characteristic of other known pediatric brain tumors (e.g., high-grade glioma, atypical teratoid/rhabdoid tumor).[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] This observation highlights the utility of molecular characterization to assign this class of tumors to their appropriate biology-based diagnosis.</p><p id="CDR0000774921__sm_CDR0000779395_559">Among the same collection of 323 tumors diagnosed as nonmedulloblastoma embryonal tumors, molecular characterization identified genomically and biologically distinctive subtypes, including the following:</p><ul id="CDR0000774921__sm_CDR0000779395_560"><li class="half_rhythm"><div class="half_rhythm"><b>Embryonal tumors with multilayered rosettes (ETMR):</b> Representing 11% of the 323 cases, this subtype combines embryonal rosette-forming neuroepithelial brain tumors that were previously categorized as either embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, or medulloepithelioma.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_101">101</a>] ETMRs arise in young children (median age at diagnosis, 2&#x02013;3 years) and show a highly aggressive clinical course, with a median PFS of less than 1 year and few long-term survivors.[<a class="bk_pop" href="#CDR0000774921_rl_5_101">101</a>]</div><div class="half_rhythm">ETMRs are defined at the molecular level by high-level amplification of the microRNA cluster C19MC and by a gene fusion between <i>TTYH1</i> and <i>C19MC</i>.[<a class="bk_pop" href="#CDR0000774921_rl_5_101">101</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_103">103</a>] This gene fusion puts expression of C19MC under control of the <i>TTYH1</i> promoter, leading to high-level aberrant expression of the microRNAs within the cluster. The World Health Organization (WHO) allows histologically similar tumors without <i>C19MC</i> alteration to be classified as ETMR.</div></li><li class="half_rhythm"><div class="half_rhythm"><b>CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2):</b> Representing 14% of the 323 cases, this subtype is characterized by genomic alterations that lead to increased expression of the transcription factor FOXR2.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] CNS NB-FOXR2 is primarily observed in children younger than 10 years, and the histology of these tumors is typically that of CNS neuroblastoma or CNS ganglioneuroblastoma .[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] There is no single genomic alteration among CNS NB-FOXR2 tumors leading to FOXR2 overexpression, with gene fusions involving multiple <i>FOXR2</i> partners identified.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] This subtype has not been added to the WHO diagnostic lexicon.</div></li><li class="half_rhythm"><div class="half_rhythm"><b>CNS Ewing sarcoma family tumor with <i>CIC</i> alteration (CNS EFT-CIC):</b> Representing 4% of the 323 cases, this subtype is characterized by genomic alterations affecting <i>CIC</i> (located on chromosome 19q13.2), with fusion to <i>NUTM1</i> being identified in several cases tested.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] <i>CIC</i> gene fusions are also identified in extra-CNS Ewing-like sarcomas, and the gene expression signature of CNS EFT-CIC tumors is similar to that of these sarcomas.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] CNS EFT-CIC tumors generally occur in children younger than 10 years and are characterized by a small cell phenotype but with variable histology.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] This subtype has not been added to the WHO diagnostic lexicon.</div></li><li class="half_rhythm"><div class="half_rhythm"><b>CNS high-grade neuroepithelial tumor with <i>MN1</i> alteration (CNS HGNET-MN1):</b> Representing 3% of the 323 cases, this subtype is characterized by gene fusions involving <i>MN1</i> (located on chromosome 22q12.3), with fusion partners including <i>BEND2</i> and <i>CXXC5</i>.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] This subtype shows a striking female predominance and tends to occur in the second decade of life.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] This subtype contained most cases carrying a diagnosis of astroblastoma as per the 2007 WHO classification scheme.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] This subtype has not been added to the WHO diagnostic lexicon.</div></li><li class="half_rhythm"><div class="half_rhythm"><b>CNS high-grade neuroepithelial tumor with <i>BCOR</i> alteration (CNS <i>HGNET-BCOR</i>):</b> Representing 3% of the 323 cases, this subtype is characterized by internal tandem duplications of <i>BCOR</i>,[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] a genomic alteration that is also found in clear cell sarcoma of the kidney.[<a class="bk_pop" href="#CDR0000774921_rl_5_104">104</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_105">105</a>] While the median age at diagnosis is younger than 10 years, cases arising in the second decade of life and beyond do occur.[<a class="bk_pop" href="#CDR0000774921_rl_5_100">100</a>] This subtype has not been added to the WHO diagnostic lexicon.</div></li></ul><p id="CDR0000774921__sm_CDR0000779395_567"><b>Medulloepithelioma</b></p><p id="CDR0000774921__sm_CDR0000779395_568">Medulloepithelioma is identified as a histologically discrete tumor within the WHO classification system.[<a class="bk_pop" href="#CDR0000774921_rl_5_106">106</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_107">107</a>] Medulloepithelioma tumors are rare and tend to arise most commonly in infants and young children. Medulloepitheliomas, which histologically recapitulate the embryonal neural tube, tend to arise supratentorially, primarily intraventricularly, but may arise infratentorially, in the cauda, and even extraneurally, along nerve roots.[<a class="bk_pop" href="#CDR0000774921_rl_5_106">106</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_107">107</a>] Medulloepithelioma with the classic molecular change is considered an ETMR.</p><p id="CDR0000774921__sm_CDR0000779395_562"><b>Pineoblastoma</b></p><p id="CDR0000774921__sm_CDR0000779395_563">Pineoblastoma, which was previously conventionally grouped with embryonal tumors, is now categorized by the WHO as a pineal parenchymal tumor. Given that therapies for pineoblastoma are quite similar to those utilized for embryonal tumors, the previous convention of including pineoblastoma with the CNS embryonal tumors is followed here. Pineoblastoma is associated with germline mutations in both the <i>retinoblastoma</i> (<i>RB1</i>) gene and in <i>DICER1</i>, as described below:</p><ul id="CDR0000774921__sm_CDR0000779395_564"><li class="half_rhythm"><div>Pineoblastoma is associated with germline mutations in <i>RB1</i>, with the term <i>trilateral retinoblastoma</i> used to refer to ocular retinoblastoma in combination with a histologically similar brain tumor generally arising in the pineal gland or other midline structures. Historically, intracranial tumors have been reported in 5% to 15% of children with heritable retinoblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_5_108">108</a>] Rates of pineoblastoma among children with heritable retinoblastoma who undergo current treatment programs may be lower than these historical estimates.[<a class="bk_pop" href="#CDR0000774921_rl_5_109">109</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_111">111</a>]</div></li><li class="half_rhythm"><div>Germline <i>DICER1</i> mutations have also been reported in patients with pineoblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_5_112">112</a>] Among 18 patients with pineoblastoma, three patients with <i>DICER1</i> germline mutations were identified, and an additional three patients known to be carriers of germline <i>DICER1</i> mutations developed pineoblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_5_112">112</a>] The <i>DICER1</i> mutations in patients with pineoblastoma are loss-of-function mutations that appear to be distinct from the mutations observed in DICER1 syndrome&#x02013;related tumors such as pleuropulmonary blastoma.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_5_112">112</a>]</div></li></ul><p id="CDR0000774921__1775">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000548358/">Childhood Central Nervous System Embryonal Tumors Treatment</a> for information about the treatment of childhood PNETs.)</p></div><div id="CDR0000774921__1776"><h3>Ependymomas</h3><p id="CDR0000774921__sm_CDR0000779396_1912"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779396_1"></div>Molecular characterization studies have identified several biological subtypes of ependymoma based on their distinctive DNA methylation and gene expression profiles and on their distinctive spectrum of genomic alterations (refer to Figure 6).[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>-<a class="bk_pop" href="#CDR0000774921_rl_5_115">115</a>] </p><ul id="CDR0000774921__sm_CDR0000779396_1925"><li class="half_rhythm"><div>Infratentorial tumors.<ul id="CDR0000774921__sm_CDR0000779396_1927"><li class="half_rhythm"><div>Posterior fossa A, CpG island methylator phenotype (CIMP)-positive ependymoma, termed EPN-PFA.</div></li><li class="half_rhythm"><div>Posterior fossa B, CIMP-negative ependymoma, termed EPN-PFB.</div></li></ul></div></li><li class="half_rhythm"><div>Supratentorial tumors.<ul id="CDR0000774921__sm_CDR0000779396_1926"><li class="half_rhythm"><div><i>C11orf95</i>-<i>RELA</i>&#x02013;positive ependymoma.</div></li><li class="half_rhythm"><div><i>C11orf95</i>-<i>RELA</i>&#x02013;negative and <i>YAP1</i> fusion&#x02013;positive ependymoma.</div></li></ul></div></li><li class="half_rhythm"><div>Spinal tumors.</div></li></ul><a id="CDR0000774921__sm_CDR0000779396_1924"></a><div id="CDR0000774921__sm_CDR0000779396_1923" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000782276.jpg" alt="Graph showing key molecular and clinical characteristics of ependymal tumor subgroups." /></div><div class="caption"><p>Figure 6. Graphical summary of key molecular and clinical characteristics of ependymal tumor subgroups. Schematic representation of key genetic and epigenetic findings in the nine molecular subgroups of ependymal tumors as identified by methylation profiling. CIN, Chromosomal instability. Reprinted from <a href="http://www.sciencedirect.com/science/journal/15356108" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Cancer Cell</a>, Volume 27, Kristian W. Pajtler, Hendrik Witt, Martin Sill, David T.W. Jones, Volker Hovestadt, Fabian Kratochwil,
Khalida Wani, Ruth Tatevossian, Chandanamali Punchihewa, Pascal Johann, Juri Reimand, Hans-Jorg Warnatz,
Marina Ryzhova, Steve Mack, Vijay Ramaswamy, David Capper, Leonille Schweizer, Laura Sieber,
Andrea Wittmann, Zhiqin Huang, Peter van Sluis, Richard Volckmann, Jan Koster, Rogier Versteeg,
Daniel Fults, Helen Toledano, Smadar Avigad, Lindsey M. Hoffman, Andrew M. Donson, Nicholas Foreman,
Ekkehard Hewer, Karel Zitterbart, Mark Gilbert, Terri S. Armstrong, Nalin Gupta, Jeffrey C. Allen,
Matthias A. Karajannis, David Zagzag, Martin Hasselblatt, Andreas E. Kulozik, Olaf Witt, V. Peter Collins,
Katja von Hoff, Stefan Rutkowski, Torsten Pietsch, Gary Bader, Marie-Laure Yaspo, Andreas von Deimling,
Peter Lichter, Michael D. Taylor, Richard Gilbertson, David W. Ellison, Kenneth Aldape, Andrey Korshunov,
Marcel Kool, and Stefan M. Pfister, Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups, Pages 728&#x02013;743, Copyright (2015), with permission from Elsevier.</p></div></div><p id="CDR0000774921__sm_CDR0000779396_1928">Approximately two-thirds of childhood ependymomas arise in the posterior fossa, and two major genomically defined subtypes of posterior fossa tumors are recognized. Similarly, most pediatric supratentorial tumors can be categorized into one of two genomic subtypes. These subtypes and their associated clinical characteristics are described below.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>] Among these subtypes, the 2016 World Health Organization (WHO) classification has accepted ependymoma, <i>RELA</i> fusion&#x02013;positive, as a distinct diagnostic entity.[<a class="bk_pop" href="#CDR0000774921_rl_5_1">1</a>]</p><p id="CDR0000774921__sm_CDR0000779396_1913">The most common posterior fossa ependymoma subtype is EPN-PFA and is characterized by the following:</p><ul id="CDR0000774921__sm_CDR0000779396_1914"><li class="half_rhythm"><div class="half_rhythm">Presentation in young children (median age, 3 years).[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">Low rates of mutations that affect protein structure (approximately five per genome), with no recurring mutations.[<a class="bk_pop" href="#CDR0000774921_rl_5_114">114</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">A balanced chromosomal profile (refer to Figure 7) with few chromosomal gains or losses.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_114">114</a>]</div><div class="half_rhythm"><div id="CDR0000774921__sm_CDR0000779396_1909" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000775168.jpg" alt="Chart showing the identification of subgroup-specific copy number alterations in the posterior fossa ependymoma genome." /></div><div class="caption"><p>Figure 7. Identification of Subgroup-Specific Copy Number Alterations in the Posterior Fossa Ependymoma Genome.
(A) Copy number profiling of 75 PF ependymomas using 10K array-CGH identifies disparate genetic landscapes between Group A and Group B tumors. Toronto and Heidelberg copy number datasets have been combined and summarized in a heatmap. The heatmap also displays the association of tumors to cytogenetic risk groups 1, 2, and 3 (Korshunov et al., 2010). Statistically significant chromosomal aberrations (black boxes) are also displayed between both subgroups, calculated by Fisher's exact test.
Witt H, Mack SC, Ryzhova M, et al.: Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20 (2): 143-57, 2011, <a href="http://www.sciencedirect.com/science/article/pii/S1535610811002625" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">doi:10.1016/j.ccr.2011.07.007</a>. <a href="https://www.elsevier.com/about/company-information/policies/open-access-licenses/elsevier-user-license" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Copyright &#x000a9; 2011 Elsevier Inc</a>. All rights reserved.</p></div></div></div></li><li class="half_rhythm"><div class="half_rhythm">Gain of chromosome 1q, a known poor prognostic factor for ependymomas,[<a class="bk_pop" href="#CDR0000774921_rl_5_116">116</a>] in approximately 25% of cases.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_115">115</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">Presence of the CIMP (i.e., CIMP positive).[<a class="bk_pop" href="#CDR0000774921_rl_5_115">115</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">High rates of disease recurrence (33% progression-free survival [PFS] at 5 years) and low survival rates compared with other subtypes (68% at 5 years).[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779396_1915">The EPN-PFB subtype is less common than the EPN-PFA subtype in children and is characterized by the following:</p><ul id="CDR0000774921__sm_CDR0000779396_1916"><li class="half_rhythm"><div>Presentation primarily in adolescents and young adults (median age, 30 years).[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li><li class="half_rhythm"><div>Low rates of mutations that affect protein structure (approximately five per genome), with no recurring mutations.[<a class="bk_pop" href="#CDR0000774921_rl_5_115">115</a>]</div></li><li class="half_rhythm"><div>Numerous cytogenetic abnormalities (refer to Figure 7), primarily involving the gain/loss of whole chromosomes.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_115">115</a>]</div></li><li class="half_rhythm"><div>Absence of the CIMP (i.e., CIMP negative).[<a class="bk_pop" href="#CDR0000774921_rl_5_115">115</a>]</div></li><li class="half_rhythm"><div>Favorable outcome in comparison to EPN-PFA, with 5-year PFS of 73% and overall survival (OS) of 100%.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779396_1917">The largest subset of pediatric supratentorial (ST) ependymomas are characterized by gene fusions involving <i>RELA</i>,[<a class="bk_pop" href="#CDR0000774921_rl_5_117">117</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_118">118</a>] a transcriptional factor important in NF-&#x003ba;B pathway activity. This subtype is termed ST-EPN-RELA and is characterized by the following:</p><ul id="CDR0000774921__sm_CDR0000779396_1918"><li class="half_rhythm"><div>Represents approximately 70% of supratentorial ependymomas in children,[<a class="bk_pop" href="#CDR0000774921_rl_5_117">117</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_118">118</a>] and presents at a median age of 8 years.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li><li class="half_rhythm"><div>Presence of <i>C11orf95-RELA</i> fusions resulting from chromothripsis involving chromosome 11q13.1.[<a class="bk_pop" href="#CDR0000774921_rl_5_117">117</a>]</div></li><li class="half_rhythm"><div>Evidence of NF-&#x003ba;B pathway activation at the protein and RNA level.[<a class="bk_pop" href="#CDR0000774921_rl_5_117">117</a>]</div></li><li class="half_rhythm"><div>Low rates of mutations that affect protein structure and absence of recurring mutations outside of <i>C11orf95-RELA</i> fusions.[<a class="bk_pop" href="#CDR0000774921_rl_5_117">117</a>]</div></li><li class="half_rhythm"><div>Presence of homozygous deletions of <i>CDKN2A</i>, a known poor prognostic factor for ependymomas,[<a class="bk_pop" href="#CDR0000774921_rl_5_116">116</a>] in approximately 15% of cases.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li><li class="half_rhythm"><div>Gain of chromosome 1q, a known poor prognostic factor for ependymomas, in approximately one-quarter of cases.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li><li class="half_rhythm"><div>Unfavorable outcome in comparison to other ependymoma subtypes, with 5-year PFS of 29% and OS of 75%.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li><li class="half_rhythm"><div>Supratentorial clear cell ependymomas with branching capillaries commonly show the <i>C11orf95-RELA</i> fusion,[<a class="bk_pop" href="#CDR0000774921_rl_5_119">119</a>] and one series of 20 patients with a median age of 10.4 years showed a relatively favorable prognosis (5-year PFS of 68% and OS of 72%).[<a class="bk_pop" href="#CDR0000774921_rl_5_119">119</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779396_1919">A second, less common subset of supratentorial ependymomas, termed ST-EPN-YAP1, has fusions involving <i>YAP1</i> and are characterized by the following:</p><ul id="CDR0000774921__sm_CDR0000779396_1920"><li class="half_rhythm"><div>Median age at diagnosis of 1.4 years.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li><li class="half_rhythm"><div>Presence of a gene fusion involving <i>YAP1</i>, with <i>MAMLD1</i> being the most common fusion partner.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>,<a class="bk_pop" href="#CDR0000774921_rl_5_117">117</a>]</div></li><li class="half_rhythm"><div>A relatively stable genome with few chromosomal changes other than the <i>YAP1</i> fusion.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li><li class="half_rhythm"><div>Relatively favorable prognosis (although based on small numbers), with a 5-year PFS of 66% and OS of 100%.[<a class="bk_pop" href="#CDR0000774921_rl_5_113">113</a>]</div></li></ul><div id="CDR0000774921__sm_CDR0000779396_1921"><h4>Clinical implications of genomic alterations</h4><p id="CDR0000774921__sm_CDR0000779396_1922">The absence of recurring mutations in the EPN-PFA and EPN-PFB subtypes at diagnosis precludes using their genomic profiles to guide therapy. The <i>RELA</i> and <i>YAP1</i> fusion genes present in supratentorial ependymomas are not directly targetable with agents in the clinic, but can provide leads for future research.<div class="milestone-end"></div></p><p id="CDR0000774921__1786">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062843/">Childhood Ependymoma Treatment</a> for information about the treatment of childhood ependymoma.)</p></div></div><div id="CDR0000774921_rl_5"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_5_1">Louis DN, Perry A, Reifenberger G, et al.: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131 (6): 803-20, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/27157931" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27157931</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_2">Bar EE, Lin A, Tihan T, et al.: Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67 (9): 878-87, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18716556" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18716556</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_3">Forshew T, Tatevossian RG, Lawson AR, et al.: Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218 (2): 172-81, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19373855" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19373855</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_4">Jones DT, Kocialkowski S, Liu L, et al.: Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68 (21): 8673-7, 2008. [<a href="/pmc/articles/PMC2577184/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2577184</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18974108" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18974108</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_5">Jones DT, Kocialkowski S, Liu L, et al.: Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28 (20): 2119-23, 2009. [<a href="/pmc/articles/PMC2685777/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2685777</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19363522" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19363522</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_6">Pfister S, Janzarik WG, Remke M, et al.: BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118 (5): 1739-49, 2008. [<a href="/pmc/articles/PMC2289793/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2289793</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18398503" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18398503</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_7">Korshunov A, Meyer J, Capper D, et al.: Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118 (3): 401-5, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19543740" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19543740</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_8">Horbinski C, Hamilton RL, Nikiforov Y, et al.: Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119 (5): 641-9, 2010. [<a href="/pmc/articles/PMC5859320/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5859320</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20044755" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20044755</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_9">Yu J, Deshmukh H, Gutmann RJ, et al.: Alterations of BRAF and HIPK2 loci predominate in sporadic pilocytic astrocytoma. Neurology 73 (19): 1526-31, 2009. [<a href="/pmc/articles/PMC2777068/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2777068</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19794125" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19794125</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_10">Lin A, Rodriguez FJ, Karajannis MA, et al.: BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol 71 (1): 66-72, 2012. [<a href="/pmc/articles/PMC4629834/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4629834</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22157620" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22157620</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_11">Hawkins C, Walker E, Mohamed N, et al.: BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17 (14): 4790-8, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21610142" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21610142</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_12">Becker AP, Scapulatempo-Neto C, Carloni AC, et al.: KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in Pilocytic Astrocytomas. J Neuropathol Exp Neurol 74 (7): 743-54, 2015. [<a href="/pmc/articles/PMC4470527/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4470527</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26083571" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26083571</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_13">Janzarik WG, Kratz CP, Loges NT, et al.: Further evidence for a somatic KRAS mutation in a pilocytic astrocytoma. Neuropediatrics 38 (2): 61-3, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17712732" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17712732</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_14">Horbinski C, Nikiforova MN, Hagenkord JM, et al.: Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 14 (6): 777-89, 2012. [<a href="/pmc/articles/PMC3367847/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3367847</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22492957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22492957</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_15">Roth JJ, Fierst TM, Waanders AJ, et al.: Whole Chromosome 7 Gain Predicts Higher Risk of Recurrence in Pediatric Pilocytic Astrocytomas Independently From KIAA1549-BRAF Fusion Status. J Neuropathol Exp Neurol 75 (4): 306-15, 2016. [<a href="/pmc/articles/PMC5009478/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5009478</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26945035" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26945035</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_16">Mistry M, Zhukova N, Merico D, et al.: BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33 (9): 1015-22, 2015. [<a href="/pmc/articles/PMC4356711/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4356711</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25667294" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25667294</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_17">Dougherty MJ, Santi M, Brose MS, et al.: Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 12 (7): 621-30, 2010. [<a href="/pmc/articles/PMC2940652/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2940652</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20156809" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20156809</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_18">Dias-Santagata D, Lam Q, Vernovsky K, et al.: BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One 6 (3): e17948, 2011. [<a href="/pmc/articles/PMC3066220/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3066220</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21479234" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21479234</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_19">Schindler G, Capper D, Meyer J, et al.: Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121 (3): 397-405, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21274720" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21274720</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_20">Lassaletta A, Zapotocky M, Mistry M, et al.: Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. J Clin Oncol 35 (25): 2934-2941, 2017. [<a href="/pmc/articles/PMC5791837/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5791837</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28727518" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28727518</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_21">Ho CY, Mobley BC, Gordish-Dressman H, et al.: A clinicopathologic study of diencephalic pediatric low-grade gliomas with BRAF V600 mutation. Acta Neuropathol 130 (4): 575-85, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26264609" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26264609</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_22">Bandopadhayay P, Ramkissoon LA, Jain P, et al.: MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48 (3): 273-82, 2016. [<a href="/pmc/articles/PMC4767685/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4767685</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26829751" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26829751</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_23">Jones DT, Hutter B, J&#x000e4;ger N, et al.: Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45 (8): 927-32, 2013. [<a href="/pmc/articles/PMC3951336/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3951336</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23817572" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23817572</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_24">Zhang J, Wu G, Miller CP, et al.: Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45 (6): 602-12, 2013. [<a href="/pmc/articles/PMC3727232/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3727232</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23583981" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23583981</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_25">Ramkissoon LA, Horowitz PM, Craig JM, et al.: Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci U S A 110 (20): 8188-93, 2013. [<a href="/pmc/articles/PMC3657784/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3657784</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23633565" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23633565</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_26">Franz DN, Belousova E, Sparagana S, et al.: Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381 (9861): 125-32, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23158522" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23158522</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_27">Qaddoumi I, Orisme W, Wen J, et al.: Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 131 (6): 833-45, 2016. [<a href="/pmc/articles/PMC4866893/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4866893</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26810070" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26810070</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_28">Pollack IF, Hamilton RL, Sobol RW, et al.: IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children's Oncology Group. Childs Nerv Syst 27 (1): 87-94, 2011. [<a href="/pmc/articles/PMC3014378/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3014378</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20725730" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20725730</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_29">Paugh BS, Qu C, Jones C, et al.: Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28 (18): 3061-8, 2010. [<a href="/pmc/articles/PMC2903336/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2903336</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20479398" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20479398</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_30">Bax DA, Mackay A, Little SE, et al.: A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16 (13): 3368-77, 2010. [<a href="/pmc/articles/PMC2896553/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2896553</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20570930" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20570930</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_31">Ward SJ, Karakoula K, Phipps KP, et al.: Cytogenetic analysis of paediatric astrocytoma using comparative genomic hybridisation and fluorescence in-situ hybridisation. J Neurooncol 98 (3): 305-18, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20052518" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20052518</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_32">Sturm D, Witt H, Hovestadt V, et al.: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22 (4): 425-37, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/23079654" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23079654</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_33">Korshunov A, Ryzhova M, Hovestadt V, et al.: Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129 (5): 669-78, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25752754" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25752754</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_34">Mackay A, Burford A, Carvalho D, et al.: Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 32 (4): 520-537.e5, 2017. [<a href="/pmc/articles/PMC5637314/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5637314</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28966033" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28966033</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_35">Buczkowicz P, Hoeman C, Rakopoulos P, et al.: Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46 (5): 451-6, 2014. [<a href="/pmc/articles/PMC3997489/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3997489</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24705254" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24705254</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_36">Taylor KR, Mackay A, Truffaux N, et al.: Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46 (5): 457-61, 2014. [<a href="/pmc/articles/PMC4018681/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4018681</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24705252" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24705252</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_37">Korshunov A, Schrimpf D, Ryzhova M, et al.: H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 134 (3): 507-516, 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/28401334" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28401334</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_38">Gielen GH, Gessi M, Buttarelli FR, et al.: Genetic Analysis of Diffuse High-Grade Astrocytomas in Infancy Defines a Novel Molecular Entity. Brain Pathol 25 (4): 409-17, 2015. [<a href="/pmc/articles/PMC8029085/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8029085</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25231549" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25231549</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_39">Ryall S, Krishnatry R, Arnoldo A, et al.: Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun 4 (1): 93, 2016. [<a href="/pmc/articles/PMC5006436/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5006436</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27577993" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27577993</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_40">Wu G, Broniscer A, McEachron TA, et al.: Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44 (3): 251-3, 2012. [<a href="/pmc/articles/PMC3288377/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3288377</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22286216" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22286216</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_41">Wu G, Diaz AK, Paugh BS, et al.: The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46 (5): 444-50, 2014. [<a href="/pmc/articles/PMC4056452/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4056452</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24705251" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24705251</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_42">Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, et al.: Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46 (5): 462-6, 2014. [<a href="/pmc/articles/PMC4282994/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4282994</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24705250" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24705250</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_43">Schwartzentruber J, Korshunov A, Liu XY, et al.: Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482 (7384): 226-31, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22286061" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22286061</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_44">Hoffman LM, DeWire M, Ryall S, et al.: Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun 4: 1, 2016. [<a href="/pmc/articles/PMC4700584/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4700584</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26727948" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26727948</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_45">Shore EM, Xu M, Feldman GJ, et al.: A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38 (5): 525-7, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16642017" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16642017</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_46">Zarghooni M, Bartels U, Lee E, et al.: Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 28 (8): 1337-44, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20142589" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20142589</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_47">Paugh BS, Broniscer A, Qu C, et al.: Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29 (30): 3999-4006, 2011. [<a href="/pmc/articles/PMC3209696/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3209696</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21931021" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21931021</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_48">Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al.: K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124 (3): 439-47, 2012. [<a href="/pmc/articles/PMC3422615/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3422615</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22661320" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22661320</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_49">Cohen KJ, Heideman RL, Zhou T, et al.: Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children's Oncology Group. Neuro Oncol 13 (4): 410-6, 2011. [<a href="/pmc/articles/PMC3064697/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3064697</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21345842" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21345842</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_50">Biegel JA, Tan L, Zhang F, et al.: Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin Cancer Res 8 (11): 3461-7, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12429635" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12429635</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_51">Hasselblatt M, Nagel I, Oyen F, et al.: SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol 128 (3): 453-6, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25060813" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25060813</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_52">Lee RS, Stewart C, Carter SL, et al.: A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest 122 (8): 2983-8, 2012. [<a href="/pmc/articles/PMC3408754/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3408754</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22797305" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22797305</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_53">Kieran MW, Roberts CW, Chi SN, et al.: Absence of oncogenic canonical pathway mutations in aggressive pediatric rhabdoid tumors. Pediatr Blood Cancer 59 (7): 1155-7, 2012. [<a href="/pmc/articles/PMC3538080/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3538080</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22997201" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22997201</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_54">Hasselblatt M, Isken S, Linge A, et al.: High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromosomes Cancer 52 (2): 185-90, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23074045" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23074045</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_55">Biegel JA, Kalpana G, Knudsen ES, et al.: The role of INI1 and the SWI/SNF complex in the development of rhabdoid tumors: meeting summary from the workshop on childhood atypical teratoid/rhabdoid tumors. Cancer Res 62 (1): 323-8, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/11782395" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11782395</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_56">Schneppenheim R, Fr&#x000fc;hwald MC, Gesk S, et al.: Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet 86 (2): 279-84, 2010. [<a href="/pmc/articles/PMC2820190/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2820190</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20137775" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20137775</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_57">Hasselblatt M, Gesk S, Oyen F, et al.: Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am J Surg Pathol 35 (6): 933-5, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21566516" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21566516</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_58">Torchia J, Picard D, Lafay-Cousin L, et al.: Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncol 16 (5): 569-82, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25882982" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25882982</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_59">Johann PD, Erkek S, Zapatka M, et al.: Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell 29 (3): 379-93, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/26923874" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26923874</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_60">Johann PD, Hovestadt V, Thomas C, et al.: Cribriform neuroepithelial tumor: molecular characterization of a SMARCB1-deficient non-rhabdoid tumor with favorable long-term outcome. Brain Pathol 27 (4): 411-418, 2017. [<a href="/pmc/articles/PMC8028967/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8028967</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27380723" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27380723</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_61">Biegel JA, Fogelgren B, Wainwright LM, et al.: Germline INI1 mutation in a patient with a central nervous system atypical teratoid tumor and renal rhabdoid tumor. Genes Chromosomes Cancer 28 (1): 31-7, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10738300" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10738300</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_62">Eaton KW, Tooke LS, Wainwright LM, et al.: Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 56 (1): 7-15, 2011. [<a href="/pmc/articles/PMC3086793/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3086793</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21108436" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21108436</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_63">Bruggers CS, Bleyl SB, Pysher T, et al.: Clinicopathologic comparison of familial versus sporadic atypical teratoid/rhabdoid tumors (AT/RT) of the central nervous system. Pediatr Blood Cancer 56 (7): 1026-31, 2011. [<a href="/pmc/articles/PMC3210729/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3210729</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20848638" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20848638</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_64">Onvani S, Etame AB, Smith CA, et al.: Genetics of medulloblastoma: clues for novel therapies. Expert Rev Neurother 10 (5): 811-23, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20420498" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20420498</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_65">Dubuc AM, Northcott PA, Mack S, et al.: The genetics of pediatric brain tumors. Curr Neurol Neurosci Rep 10 (3): 215-23, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20425037" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20425037</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_66">Thompson MC, Fuller C, Hogg TL, et al.: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24 (12): 1924-31, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16567768" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16567768</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_67">Kool M, Koster J, Bunt J, et al.: Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3 (8): e3088, 2008. [<a href="/pmc/articles/PMC2518524/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2518524</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18769486" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18769486</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_68">Tabori U, Baskin B, Shago M, et al.: Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J Clin Oncol 28 (8): 1345-50, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20142599" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20142599</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_69">Pfister S, Remke M, Benner A, et al.: Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27 (10): 1627-36, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19255330" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19255330</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_70">Ellison DW, Onilude OE, Lindsey JC, et al.: beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. J Clin Oncol 23 (31): 7951-7, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16258095" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16258095</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_71">Polkinghorn WR, Tarbell NJ: Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat Clin Pract Oncol 4 (5): 295-304, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17464337" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17464337</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_72">Giangaspero F, Wellek S, Masuoka J, et al.: Stratification of medulloblastoma on the basis of histopathological grading. Acta Neuropathol 112 (1): 5-12, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16685513" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16685513</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_73">Northcott PA, Korshunov A, Witt H, et al.: Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29 (11): 1408-14, 2011. [<a href="/pmc/articles/PMC4874239/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4874239</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20823417" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20823417</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_74">Pomeroy SL, Tamayo P, Gaasenbeek M, et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415 (6870): 436-42, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/11807556" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11807556</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_75">Jones DT, J&#x000e4;ger N, Kool M, et al.: Dissecting the genomic complexity underlying medulloblastoma. Nature 488 (7409): 100-5, 2012. [<a href="/pmc/articles/PMC3662966/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3662966</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22832583" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22832583</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_76">Peyrl A, Chocholous M, Kieran MW, et al.: Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr Blood Cancer 59 (3): 511-7, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22147459" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22147459</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_77">Taylor MD, Northcott PA, Korshunov A, et al.: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123 (4): 465-72, 2012. [<a href="/pmc/articles/PMC3306779/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3306779</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22134537" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22134537</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_78">Kool M, Korshunov A, Remke M, et al.: Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123 (4): 473-84, 2012. [<a href="/pmc/articles/PMC3306778/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3306778</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22358457" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22358457</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_79">Pietsch T, Schmidt R, Remke M, et al.: Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathol 128 (1): 137-49, 2014. [<a href="/pmc/articles/PMC4059991/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4059991</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24791927" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24791927</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_80">Morrissy AS, Cavalli FMG, Remke M, et al.: Spatial heterogeneity in medulloblastoma. Nat Genet 49 (5): 780-788, 2017. [<a href="/pmc/articles/PMC5553617/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5553617</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28394352" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28394352</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_81">Wang X, Dubuc AM, Ramaswamy V, et al.: Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathol 129 (3): 449-57, 2015. [<a href="/pmc/articles/PMC4333718/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4333718</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25689980" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25689980</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_82">Cavalli FMG, Remke M, Rampasek L, et al.: Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 31 (6): 737-754.e6, 2017. [<a href="/pmc/articles/PMC6163053/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6163053</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28609654" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28609654</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_83">Northcott PA, Buchhalter I, Morrissy AS, et al.: The whole-genome landscape of medulloblastoma subtypes. Nature 547 (7663): 311-317, 2017. [<a href="/pmc/articles/PMC5905700/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5905700</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28726821" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28726821</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_84">Cho YJ, Tsherniak A, Tamayo P, et al.: Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29 (11): 1424-30, 2011. [<a href="/pmc/articles/PMC3082983/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3082983</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21098324" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21098324</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_85">Gajjar A, Bowers DC, Karajannis MA, et al.: Pediatric Brain Tumors: Innovative Genomic Information Is Transforming the Diagnostic and Clinical Landscape. J Clin Oncol 33 (27): 2986-98, 2015. [<a href="/pmc/articles/PMC4567701/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4567701</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26304884" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26304884</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_86">Ellison DW, Dalton J, Kocak M, et al.: Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121 (3): 381-96, 2011. [<a href="/pmc/articles/PMC3519926/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3519926</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21267586" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21267586</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_87">Kool M, Jones DT, J&#x000e4;ger N, et al.: Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25 (3): 393-405, 2014. [<a href="/pmc/articles/PMC4493053/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4493053</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24651015" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24651015</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_88">Robinson GW, Rudneva VA, Buchhalter I, et al.: Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol 19 (6): 768-784, 2018. [<a href="/pmc/articles/PMC6078206/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6078206</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29778738" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29778738</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_89">Leary SE, Zhou T, Holmes E, et al.: Histology predicts a favorable outcome in young children with desmoplastic medulloblastoma: a report from the children's oncology group. Cancer 117 (14): 3262-7, 2011. [<a href="/pmc/articles/PMC3119763/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3119763</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21246528" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21246528</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_90">Giangaspero F, Perilongo G, Fondelli MP, et al.: Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg 91 (6): 971-7, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10584843" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10584843</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_91">Rutkowski S, von Hoff K, Emser A, et al.: Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J Clin Oncol 28 (33): 4961-8, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20940197" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20940197</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_92">Garr&#x000e8; ML, Cama A, Bagnasco F, et al.: Medulloblastoma variants: age-dependent occurrence and relation to Gorlin syndrome--a new clinical perspective. Clin Cancer Res 15 (7): 2463-71, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19276247" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19276247</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_93">von Bueren AO, von Hoff K, Pietsch T, et al.: Treatment of young children with localized medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro Oncol 13 (6): 669-79, 2011. [<a href="/pmc/articles/PMC3107096/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3107096</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21636711" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21636711</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_94">Shih DJ, Northcott PA, Remke M, et al.: Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol 32 (9): 886-96, 2014. [<a href="/pmc/articles/PMC3948094/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3948094</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24493713" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24493713</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_95">Schwalbe EC, Williamson D, Lindsey JC, et al.: DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol 125 (3): 359-71, 2013. [<a href="/pmc/articles/PMC4313078/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4313078</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23291781" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23291781</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_96">Zhukova N, Ramaswamy V, Remke M, et al.: Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 31 (23): 2927-35, 2013. [<a href="/pmc/articles/PMC4878050/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4878050</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23835706" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23835706</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_97">Gottardo NG, Hansford JR, McGlade JP, et al.: Medulloblastoma Down Under 2013: a report from the third annual meeting of the International Medulloblastoma Working Group. Acta Neuropathol 127 (2): 189-201, 2014. [<a href="/pmc/articles/PMC3895219/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3895219</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24264598" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24264598</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_98">Louis DN, Perry A, Burger P, et al.: International Society Of Neuropathology--Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24 (5): 429-35, 2014. [<a href="/pmc/articles/PMC8029490/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8029490</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24990071" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24990071</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_99">Northcott PA, Jones DT, Kool M, et al.: Medulloblastomics: the end of the beginning. Nat Rev Cancer 12 (12): 818-34, 2012. [<a href="/pmc/articles/PMC3889646/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3889646</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23175120" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23175120</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_100">Sturm D, Orr BA, Toprak UH, et al.: New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 164 (5): 1060-72, 2016. [<a href="/pmc/articles/PMC5139621/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5139621</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26919435" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26919435</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_101">Korshunov A, Sturm D, Ryzhova M, et al.: Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol 128 (2): 279-89, 2014. [<a href="/pmc/articles/PMC4102829/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4102829</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24337497" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24337497</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_102">Kleinman CL, Gerges N, Papillon-Cavanagh S, et al.: Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet 46 (1): 39-44, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24316981" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24316981</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_103">Li M, Lee KF, Lu Y, et al.: Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16 (6): 533-46, 2009. [<a href="/pmc/articles/PMC3431561/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3431561</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19962671" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19962671</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_104">Ueno-Yokohata H, Okita H, Nakasato K, et al.: Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat Genet 47 (8): 861-3, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26098867" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26098867</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_105">Roy A, Kumar V, Zorman B, et al.: Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat Commun 6: 8891, 2015. [<a href="/pmc/articles/PMC4660214/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4660214</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26573325" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26573325</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_106">Louis DN, Ohgaki H, Wiestler OD, et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114 (2): 97-109, 2007. [<a href="/pmc/articles/PMC1929165/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1929165</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17618441" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17618441</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_107">Sharma MC, Mahapatra AK, Gaikwad S, et al.: Pigmented medulloepithelioma: report of a case and review of the literature. Childs Nerv Syst 14 (1-2): 74-8, 1998 Jan-Feb. [<a href="https://pubmed.ncbi.nlm.nih.gov/9548346" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9548346</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_108">de Jong MC, Kors WA, de Graaf P, et al.: Trilateral retinoblastoma: a systematic review and meta-analysis. Lancet Oncol 15 (10): 1157-67, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25126964" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25126964</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_109">Ramasubramanian A, Kytasty C, Meadows AT, et al.: Incidence of pineal gland cyst and pineoblastoma in children with retinoblastoma during the chemoreduction era. Am J Ophthalmol 156 (4): 825-9, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23876864" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23876864</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_110">Abramson DH, Dunkel IJ, Marr BP, et al.: Incidence of pineal gland cyst and pineoblastoma in children with retinoblastoma during the chemoreduction era. Am J Ophthalmol 156 (6): 1319-20, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/24238207" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24238207</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_111">Turaka K, Shields CL, Meadows AT, et al.: Second malignant neoplasms following chemoreduction with carboplatin, etoposide, and vincristine in 245 patients with intraocular retinoblastoma. Pediatr Blood Cancer 59 (1): 121-5, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/21826785" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21826785</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_112">de Kock L, Sabbaghian N, Druker H, et al.: Germ-line and somatic DICER1 mutations in pineoblastoma. Acta Neuropathol 128 (4): 583-95, 2014. [<a href="/pmc/articles/PMC4381868/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4381868</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25022261" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25022261</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_113">Pajtler KW, Witt H, Sill M, et al.: Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell 27 (5): 728-43, 2015. [<a href="/pmc/articles/PMC4712639/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4712639</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25965575" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25965575</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_114">Witt H, Mack SC, Ryzhova M, et al.: Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20 (2): 143-57, 2011. [<a href="/pmc/articles/PMC4154494/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4154494</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21840481" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21840481</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_115">Mack SC, Witt H, Piro RM, et al.: Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506 (7489): 445-50, 2014. [<a href="/pmc/articles/PMC4174313/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4174313</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24553142" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24553142</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_116">Korshunov A, Witt H, Hielscher T, et al.: Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol 28 (19): 3182-90, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20516456" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20516456</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_117">Parker M, Mohankumar KM, Punchihewa C, et al.: C11orf95-RELA fusions drive oncogenic NF-&#x003ba;B signalling in ependymoma. Nature 506 (7489): 451-5, 2014. [<a href="/pmc/articles/PMC4050669/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4050669</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24553141" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24553141</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_118">Pietsch T, Wohlers I, Goschzik T, et al.: Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-&#x003ba;B signaling pathway. Acta Neuropathol 127 (4): 609-11, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24562983" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24562983</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_5_119">Figarella-Branger D, Lechapt-Zalcman E, Tabouret E, et al.: Supratentorial clear cell ependymomas with branching capillaries demonstrate characteristic clinicopathological features and pathological activation of nuclear factor-kappaB signaling. Neuro Oncol 18 (7): 919-27, 2016. [<a href="/pmc/articles/PMC4896549/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4896549</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26984744" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26984744</span></a>]</div></li></ol></div></div><div id="CDR0000774921__7"><h2 id="_CDR0000774921__7_">Hepatoblastoma and Hepatocellular Carcinoma</h2><p id="CDR0000774921__sm_CDR0000779397_730"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779397_6"></div>Genomic abnormalities related to <b>hepatoblastoma</b> include the following:</p><ul id="CDR0000774921__sm_CDR0000779397_731"><li class="half_rhythm"><div class="half_rhythm">Hepatoblastoma mutation frequency, as determined by three groups using whole-exome sequencing, was very low (approximately three variants per tumor) in children younger than 5 years.[<a class="bk_pop" href="#CDR0000774921_rl_7_1">1</a>-<a class="bk_pop" href="#CDR0000774921_rl_7_3">3</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">Hepatoblastoma is primarily a disease of WNT pathway activation. The primary mechanism for WNT pathway activation is <i>CTNNB1</i> activating mutations/deletions involving exon 3. <i>CTNNB1</i> mutations have been reported in 70% of cases.[<a class="bk_pop" href="#CDR0000774921_rl_7_1">1</a>] Rare causes of WNT pathway activation include mutations in <i>AXIN1</i>, <i>AXIN2</i>, and <i>APC</i> (<i>APC</i> seen only in cases associated with familial adenomatosis polyposis coli).[<a class="bk_pop" href="#CDR0000774921_rl_7_4">4</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">The frequency of <i>NFE2L2</i> mutations in hepatoblastoma specimens was reported to be 4 of 62 tumors (7%) in one study [<a class="bk_pop" href="#CDR0000774921_rl_7_2">2</a>] and 5 of 51 specimens (10%) in another study.[<a class="bk_pop" href="#CDR0000774921_rl_7_1">1</a>] </div><div class="half_rhythm">Similar mutations have been found in many types of cancer, including hepatocellular carcinoma. These mutations render NFE2L2 insensitive to KEAP1-mediated degradation, leading to activation of the NFE2L2-KEAP1 pathway, which activates resistance to oxidative stress and is believed to confer resistance to chemotherapy.</div></li><li class="half_rhythm"><div class="half_rhythm">Somatic mutations were identified in other genes related to regulation of oxidative stress, including inactivating mutations in the thioredoxin-domain containing genes, <i>TXNDC15</i> and <i>TXNDC16</i>.[<a class="bk_pop" href="#CDR0000774921_rl_7_2">2</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">Figure 8 shows the distribution of <i>CTNNB1</i>, <i>NFE2L2</i>, and <i>TERT</i> mutations in hepatoblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_7_1">1</a>]<div id="CDR0000774921__sm_CDR0000779397_746" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%208&amp;p=BOOKS&amp;id=531639_CDR0000771337.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img src="/books/NBK374260.14/bin/CDR0000771337.jpg" alt="Chart showing the distribution of CTNNB1, APC, NFE2L2, and TERT mutations for hepatoblastoma." class="tileshop" title="Click on image to zoom" /></a></div><div class="caption"><p>Figure 8. Mutational status and functional relevance of <i>NFE2L2</i> in hepatoblastoma. Clinicopathological characteristics and the mutational status of the <i>CTNNB1</i>, <i>APC</i>, and <i>NFE2L2</i> genes, as well as the TERT promoter region are color-coded and depicted in rows for each tumor of our cohort of 43 hepatoblastoma (HB) patients and four transitional liver cell tumour (TLCT) patients and 4 HB cell lines. Reprinted from <a href="http://www.sciencedirect.com/science/journal/01688278" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Journal of Hepatology</a>, Volume 61 (Issue 6), Melanie Eichenm&#x000fc;ller, Franziska Trippel, Michaela Kreuder, Alexander Beck, Thomas Schwarzmayr, Beate H&#x000e4;berle, Stefano Cairo, Ivo Leuschner, Dietrich von Schweinitz, Tim M. Strom, Roland Kappler, The genomic landscape of hepatoblastoma and their progenies with HCC-like features, Pages 1312&#x02013;1320, Copyright 2014, with permission from Elsevier.</p></div></div></div></li></ul><p id="CDR0000774921__sm_CDR0000779397_732">Genomic abnormalities related to <b>hepatocellular carcinoma</b> include the following:</p><ul id="CDR0000774921__sm_CDR0000779397_733"><li class="half_rhythm"><div class="half_rhythm">A first case of pediatric hepatocellular carcinoma was analyzed by whole-exome sequencing, which showed a higher mutation rate (53 variants) and the coexistence of <i>CTNNB1</i> and <i>NFE2L2</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_7_5">5</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">Fibrolamellar hepatocellular carcinoma is a rare subtype of hepatocellular carcinoma observed in older children. It is characterized by an approximately 400 kB deletion on chromosome 19 that results in production of a chimeric RNA coding for a protein containing the amino-terminal domain of <i>DNAJB1</i>, a homolog of the molecular chaperone DNAJ, fused in frame with <i>PRKACA</i>, the catalytic domain of protein kinase A.[<a class="bk_pop" href="#CDR0000774921_rl_7_6">6</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">A rare, more aggressive subtype of childhood liver cancer (hepatocellular neoplasm, not otherwise specified, also termed <i>transitional liver cell tumor</i>) occurs in older children, and it has clinical and histopathological findings of both hepatoblastoma and hepatocellular carcinoma. </div><div class="half_rhythm"><i>TERT</i> mutations were observed in two of four cases tested.[<a class="bk_pop" href="#CDR0000774921_rl_7_1">1</a>] <i>TERT</i> mutations are also commonly observed in adults with hepatocellular carcinoma.[<a class="bk_pop" href="#CDR0000774921_rl_7_7">7</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000779397_748">To date, these genetic mutations have not been used to select therapeutic agents for investigation in clinical trials.<div class="milestone-end"></div></p><p id="CDR0000774921__20">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062836/">Childhood Liver Cancer Treatment</a> for information about the treatment of liver cancer.)</p><div id="CDR0000774921_rl_7"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_7_1">Eichenm&#x000fc;ller M, Trippel F, Kreuder M, et al.: The genomic landscape of hepatoblastoma and their progenies with HCC-like features. J Hepatol 61 (6): 1312-20, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25135868" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25135868</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_7_2">Trevino LR, Wheeler DA, Finegold MJ, et al.: Exome sequencing of hepatoblastoma reveals recurrent mutations in NFE2L2. [Abstract] Cancer Res 73 (8 Suppl): A-4592, 2013. <a href="http://cancerres.aacrjournals.org/content/73/8_Supplement/4592.short" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Also available online</a>. Last accessed November 09, 2018.</div></li><li><div class="bk_ref" id="CDR0000774921_rl_7_3">Jia D, Dong R, Jing Y, et al.: Exome sequencing of hepatoblastoma reveals novel mutations and cancer genes in the Wnt pathway and ubiquitin ligase complex. Hepatology 60 (5): 1686-96, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24912477" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24912477</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_7_4">Hiyama E, Kurihara S, Onitake Y: Integrated exome analysis in childhood hepatoblastoma: Biological approach for next clinical trial designs. [Abstract] Cancer Res 74 (19 Suppl): A-5188, 2014.</div></li><li><div class="bk_ref" id="CDR0000774921_rl_7_5">Vilarinho S, Erson-Omay EZ, Harmanci AS, et al.: Paediatric hepatocellular carcinoma due to somatic CTNNB1 and NFE2L2 mutations in the setting of inherited bi-allelic ABCB11 mutations. J Hepatol 61 (5): 1178-83, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25016225" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25016225</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_7_6">Honeyman JN, Simon EP, Robine N, et al.: Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 343 (6174): 1010-4, 2014. [<a href="/pmc/articles/PMC4286414/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4286414</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24578576" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24578576</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_7_7">Nault JC, Mallet M, Pilati C, et al.: High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun 4: 2218, 2013. [<a href="/pmc/articles/PMC3731665/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3731665</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23887712" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23887712</span></a>]</div></li></ol></div></div><div id="CDR0000774921__1792"><h2 id="_CDR0000774921__1792_">Sarcomas</h2><div id="CDR0000774921__1793"><h3>Osteosarcoma</h3><p id="CDR0000774921__sm_CDR0000777834_3"><div class="milestone-start" id="CDR0000774921__sm_CDR0000777834_1"></div>The genomic landscape of osteosarcoma is distinctive from that of other childhood cancers. It is characterized by an exceptionally high number of structural variants with relatively small numbers of single nucleotide variants compared with many adult cancers.[<a class="bk_pop" href="#CDR0000774921_rl_1792_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_2">2</a>]</p><p id="CDR0000774921__sm_CDR0000777834_1911">Key observations regarding the genomic landscape of osteosarcoma are summarized below:</p><ul id="CDR0000774921__sm_CDR0000777834_1912"><li class="half_rhythm"><div class="half_rhythm">The number of structural variants observed for osteosarcoma is very high, at more than 200 structural variants per genome;[<a class="bk_pop" href="#CDR0000774921_rl_1792_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_2">2</a>] thus, osteosarcoma has the most chaotic genome among childhood cancers. The Circos plots shown in Figure 9 illustrate the exceptionally high numbers of intra- and inter-chromosomal translocations that typify osteosarcoma genomes.</div><div class="half_rhythm"><div id="CDR0000774921__sm_CDR0000777834_1917" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000777891.jpg" alt="Diagrams of osteosarcoma cases from the NCI TARGET project." /></div><div class="caption"><p>Figure 9. Circos plots of osteosarcoma cases from the National Cancer Institute's Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project. The red lines in the interior circle connect chromosome regions involved in either intra- or inter-chromosomal translocations. Osteosarcoma is distinctive from other childhood cancers because it has a large number of intra- and inter-chromosomal translocations. Credit: National Cancer Institute.</p></div></div></div></li><li class="half_rhythm"><div class="half_rhythm">The number of mutations per osteosarcoma genome that affect protein sequence (approximately 25 per genome) is higher than that of some other childhood cancers (e.g., Ewing sarcoma and rhabdoid tumors) but is far below that for adult cancers such as melanoma and non-small cell lung cancer.[<a class="bk_pop" href="#CDR0000774921_rl_1792_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_2">2</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">Genomic alterations in <i>TP53</i> are present in most osteosarcoma cases, with a distinctive form of <i>TP53</i> inactivation occurring by structural variations in the first intron of <i>TP53</i> that lead to disruption of the <i>TP53</i> gene.[<a class="bk_pop" href="#CDR0000774921_rl_1792_1">1</a>] Other mechanisms of <i>TP53</i> inactivation are also observed, including missense and nonsense mutations and deletions of the <i>TP53</i> gene.[<a class="bk_pop" href="#CDR0000774921_rl_1792_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_2">2</a>] The combination of these various mechanisms for loss of <i>TP53</i> function leads to biallelic inactivation in most cases of osteosarcoma.</div></li><li class="half_rhythm"><div class="half_rhythm"><i>MDM2</i> amplification is observed in a minority of osteosarcoma cases (approximately 5%) and provides another mechanism for loss of <i>TP53</i> function.[<a class="bk_pop" href="#CDR0000774921_rl_1792_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_2">2</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><i>RB1</i> is commonly inactivated in osteosarcoma, sometimes by mutation but more commonly by deletion.[<a class="bk_pop" href="#CDR0000774921_rl_1792_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_2">2</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">Other genes with recurrent alterations in osteosarcoma include <i>ATRX</i> and <i>DLG2</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1792_1">1</a>] Additionally, pathway analysis showed that the PI3K/mammalian target of rapamycin (mTOR) pathway was altered by mutation/loss/amplification in approximately one-fourth of patients, with <i>PTEN</i> mutation/loss being the most common alteration.[<a class="bk_pop" href="#CDR0000774921_rl_1792_2">2</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">The range of mutations reported for osteosarcoma tumors at diagnosis do not provide obvious therapeutic targets, as they primarily reflect loss of tumor suppressor genes (e.g., <i>TP53</i>, <i>RB1</i>, <i>PTEN</i>) rather than activation of targetable oncogenes.</div></li></ul><p id="CDR0000774921__sm_CDR0000777834_1913">Several germline mutations are associated with susceptibility to osteosarcoma; Table 3 summarizes the syndromes and associated genes for these conditions.</p><p id="CDR0000774921__sm_CDR0000777834_1919">Mutations in <i>TP53</i> are the most common germline alterations associated with osteosarcoma. Mutations in this gene are found in approximately 70% of patients with Li-Fraumeni syndrome (LFS), which is associated with increased risk of osteosarcoma, breast cancer, various brain cancers, soft tissue sarcomas, and other cancers. While rhabdomyosarcoma is the most common sarcoma arising in patients aged 5 years and younger with <i>TP53</i>-associated LFS, osteosarcoma is the most common sarcoma in children and adolescents aged 6 to 19 years.[<a class="bk_pop" href="#CDR0000774921_rl_1792_3">3</a>] One study observed a high frequency of young osteosarcoma cases (age &#x0003c;30 years) carrying a known LFS-associated or likely LFS-associated <i>TP53</i> mutation (3.8%) or rare exonic <i>TP53</i> variant (5.7%), with an overall <i>TP53</i> mutation frequency of 9.5%.[<a class="bk_pop" href="#CDR0000774921_rl_1792_4">4</a>] Another study observed germline <i>TP53</i> mutations in 7 of 59 osteosarcoma cases (12%) subjected to whole-exome sequencing.[<a class="bk_pop" href="#CDR0000774921_rl_1792_2">2</a>] Other groups have reported lower rates (3%&#x02013;7%) of <i>TP53</i> germline mutations in patients with osteosarcoma.[<a class="bk_pop" href="#CDR0000774921_rl_1792_5">5</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_6">6</a>]</p><div id="CDR0000774921__sm_CDR0000777834_382" class="table"><h3><span class="title">Table 3. Genetic Diseases That Predispose to Osteosarcoma<sup>a</sup></span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK374260.14/table/CDR0000774921__sm_CDR0000777834_382/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000774921__sm_CDR0000777834_382_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Syndrome </th><th colspan="1" rowspan="1" style="vertical-align:top;">Description</th><th colspan="1" rowspan="1" style="vertical-align:top;">Location </th><th colspan="1" rowspan="1" style="vertical-align:top;">Gene </th><th colspan="1" rowspan="1" style="vertical-align:top;">Function</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Bloom syndrome
[<a class="bk_pop" href="#CDR0000774921_rl_1792_8">8</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare inherited disorder characterized by short stature and sun-sensitive skin changes. Often presents with a long, narrow face, small lower jaw, large nose, and prominent ears.</td><td colspan="1" rowspan="1" style="vertical-align:top;">15q26.1 </td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>BLM</i> (<i>RecQL3</i>)</td><td colspan="1" rowspan="1" style="vertical-align:top;">DNA helicase</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Diamond-Blackfan anemia [<a class="bk_pop" href="#CDR0000774921_rl_1792_9">9</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Inherited pure red cell aplasia. Patients at risk for MDS and AML. Associated with skeletal abnormalities such as abnormal facial features (flat nasal bridge, widely spaced eyes).</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td><td colspan="1" rowspan="1" style="vertical-align:top;"> Ribosomal proteins</td><td colspan="1" rowspan="1" style="vertical-align:top;">Ribosome production [<a class="bk_pop" href="#CDR0000774921_rl_1792_9">9</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_10">10</a>]</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Li-Fraumeni syndrome [<a class="bk_pop" href="#CDR0000774921_rl_1792_11">11</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Inherited mutation in <i>TP53</i> gene. Affected family members at increased risk of bone tumors, breast cancer, leukemia, brain tumors, and sarcomas.</td><td colspan="1" rowspan="1" style="vertical-align:top;">17p13.1 </td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>P53</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">DNA damage response</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;">Paget disease
[<a class="bk_pop" href="#CDR0000774921_rl_1792_12">12</a>]</td><td colspan="1" rowspan="3" style="vertical-align:top;">Excessive breakdown of bone with abnormal bone formation and remodeling, resulting in pain from weak, malformed bone.</td><td colspan="1" rowspan="1" style="vertical-align:top;">18q21-qa22
</td><td colspan="1" rowspan="3" style="vertical-align:top;"><i>LOH18CR1</i></td><td colspan="1" rowspan="3" style="vertical-align:top;">IL-1/TNF signaling; RANKL signaling pathway
</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">5q31</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">5q35-qter
</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Retinoblastoma
[<a class="bk_pop" href="#CDR0000774921_rl_1792_13">13</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Malignant tumor of the retina. Approximately 66% of patients are diagnosed by age 2 years and 95% of patients by age 3 years. Patients with heritable germ cell mutations at greater risk of subsequent neoplasms.</td><td colspan="1" rowspan="1" style="vertical-align:top;">13q14.2 </td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>RB1</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">Cell-cycle checkpoint</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Rothmund-Thomson syndrome (also called poikiloderma congenitale) [<a class="bk_pop" href="#CDR0000774921_rl_1792_14">14</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_15">15</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Autosomal recessive condition. Associated with skin findings (atrophy, telangiectasias, pigmentation), sparse hair, cataracts, small stature, and skeletal abnormalities. Increased incidence of osteosarcoma at a younger age.</td><td colspan="1" rowspan="1" style="vertical-align:top;">8q24.3 </td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>RTS</i> (<i>RecQL4</i>)</td><td colspan="1" rowspan="1" style="vertical-align:top;">DNA helicase</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Werner syndrome
[<a class="bk_pop" href="#CDR0000774921_rl_1792_16">16</a>]</td><td colspan="1" rowspan="1" style="vertical-align:top;">Patients often have short stature and in their early twenties, develop signs of aging, including graying of hair and hardening of skin. Other aging problems such as cataracts, skin ulcers, and atherosclerosis develop later.</td><td colspan="1" rowspan="1" style="vertical-align:top;">8p12-p11.2 </td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>WRN</i> (<i>RecQL2</i>)</td><td colspan="1" rowspan="1" style="vertical-align:top;"> DNA helicase; exonuclease activity
</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">AML = acute myeloid leukemia; IL-1 = interleukin-1; MDS = myelodysplastic syndrome; RANKL = receptor activator of nuclear factor kappa beta ligand; TNF = tumor necrosis factor.</p></div></dd><dt></dt><dd><div><p class="no_margin"><sup>a</sup>Adapted from Kansara et al.[<a class="bk_pop" href="#CDR0000774921_rl_1792_7">7</a>]</p></div></dd></dl></div></div></div><p id="CDR0000774921__sm_CDR0000777834_1914">Refer to the following PDQ summaries for more information about these genetic syndromes:</p><ul id="CDR0000774921__sm_CDR0000777834_1915"><li class="half_rhythm"><div><a href="/books/n/pdqcis/CDR0000062855/">Genetics of Breast and Gynecologic Cancers</a> (<a href="/books/n/pdqcis/CDR0000062855/#CDR0000062855__144">Li-Fraumeni syndrome</a>).</div></li><li class="half_rhythm"><div><a href="/books/n/pdqcis/CDR0000552637/">Genetics of Skin Cancer</a> (<a href="/books/n/pdqcis/CDR0000552637/#CDR0000552637__155">Bloom syndrome</a>, <a href="/books/n/pdqcis/CDR0000552637/#CDR0000552637__151">Rothmund-Thomson syndrome</a>, and <a href="/books/n/pdqcis/CDR0000552637/#CDR0000552637__160">Werner syndrome</a>).<div class="milestone-end"></div></div></li></ul><p id="CDR0000774921__1795">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062698/">Osteosarcoma and Malignant Fibrous Histiocytoma Treatment</a> for information about the treatment of osteosarcoma.)</p></div><div id="CDR0000774921__1797"><h3>Ewing Sarcoma</h3><p id="CDR0000774921__sm_CDR0000777838_15"><div class="milestone-start" id="CDR0000774921__sm_CDR0000777838_13"></div>The detection of a translocation involving the <i>EWSR1</i> gene on chromosome 22 band q12 and any one of a number of partner chromosomes is the key feature in the diagnosis of Ewing sarcoma (refer to Table 4).[<a class="bk_pop" href="#CDR0000774921_rl_1792_17">17</a>] The <i>EWSR1</i> gene is a member of the TET family [TLS/EWS/TAF15] of RNA-binding proteins.[<a class="bk_pop" href="#CDR0000774921_rl_1792_18">18</a>] The <i>FLI1</i> gene is a member of the ETS family of DNA-binding genes. Characteristically, the amino terminus of the <i>EWSR1</i>
gene is juxtaposed with the carboxy terminus of the <i>STS</i> family gene. In most cases (90%), the carboxy terminus is provided by <i>FLI1</i>, a member of
the family of transcription factor genes located on chromosome 11 band q24.
Other family members that may combine with the <i>EWSR1</i> gene are <i>ERG</i>, <i>ETV1</i>, <i>ETV4</i> (also termed <i>E1AF</i>), and <i>FEV</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1792_19">19</a>] Rarely, <i>TLS</i>, another TET family member, can substitute for <i>EWSR1</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1792_20">20</a>] Finally, there are a few rare cases in which <i>EWSR1</i> has translocated with partners that are not members of the <i>ETS</i> family of oncogenes. The significance of these alternate partners is not known.</p><p id="CDR0000774921__sm_CDR0000777838_387">Besides these
consistent aberrations involving the <i>EWSR1</i> gene at 22q12, additional numerical
and structural aberrations have been observed in Ewing sarcoma, including gains of
chromosomes 2, 5, 8, 9, 12, and 15; the nonreciprocal translocation
t(1;16)(q12;q11.2); and deletions on the short arm of chromosome 6. Trisomy 20 may be associated with a more aggressive subset of Ewing sarcoma.[<a class="bk_pop" href="#CDR0000774921_rl_1792_21">21</a>]</p><p id="CDR0000774921__sm_CDR0000777838_388">Three papers have described the genomic landscape of Ewing sarcoma and all show that these tumors have a relatively silent genome, with a paucity of mutations in pathways that might be amenable to treatment with novel targeted therapies.[<a class="bk_pop" href="#CDR0000774921_rl_1792_22">22</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_24">24</a>] These papers also identified mutations in <i>STAG2</i>, a member of the cohesin complex, in about 15% to 20% of the cases, and the presence of these mutations was associated with advanced-stage disease. <i>CDKN2A</i> deletions were noted in 12% to 22% of cases. Finally, <i>TP53</i> mutations were identified in about 6% to 7% of cases and the coexistence of <i>STAG2</i> and <i>TP53</i> mutations is associated with a poor clinical outcome.[<a class="bk_pop" href="#CDR0000774921_rl_1792_22">22</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_24">24</a>]</p><p id="CDR0000774921__sm_CDR0000777838_389">Figure 10 below from a discovery cohort (n = 99) highlights the frequency of chromosome 8 gain, the co-occurrence of chromosome 1q gain and chromosome 16q loss, the mutual exclusivity of <i>CDKN2A</i> deletion and <i>STAG2</i> mutation, and the relative paucity of recurrent single nucleotide variants for Ewing sarcoma.[<a class="bk_pop" href="#CDR0000774921_rl_1792_22">22</a>]</p><a id="CDR0000774921__sm_CDR0000777838_393"></a><div id="CDR0000774921__sm_CDR0000777838_394" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000777901.jpg" alt="Chart showing a comprehensive profile of the genetic abnormalities in Ewing sarcoma and associated clinical information." /></div><div class="caption"><p>Figure 10. A comprehensive profile of the genetic abnormalities in Ewing sarcoma and associated clinical information. Key clinical characteristics are indicated, including primary site, type of tissue, and metastatic status at diagnosis, follow-up, and last news. Below is the consistency of detection of gene fusions by RT-PCR and whole-genome sequencing (WGS). The numbers of structural variants (SV) and single-nucleotide variants (SNV) as well as indels are reported in grayscale. The presence of the main copy-number changes, chr 1q gain, chr 16 loss, chr 8 gain, chr 12 gain, and interstitial <i>CDKN2A</i> deletion is indicated. Listed last are the most significant mutations and their types. For gene mutations, &#x0201c;others&#x0201d; refers to: duplication of exon 22 leading to frameshift (<i>STAG2</i>), deletion of exon 2 to 11 (<i>BCOR</i>), and deletion of exons 1 to 6 (<i>ZMYM3</i>). Reprinted from Cancer Discovery, Copyright 2014, 4 (11), 1342&#x02013;53, Tirode F, Surdez D, Ma X, et al., Genomic Landscape of Ewing Sarcoma Defines an Aggressive Subtype with Co-Association of <i>STAG2</i> and <i>TP53</i> mutations, with permission from AACR.</p></div></div><p id="CDR0000774921__sm_CDR0000777838_390">Ewing sarcoma translocations can all be found with standard cytogenetic analysis. A more rapid analysis looking for a break apart of the <i>EWS</i> gene is now frequently done to confirm the diagnosis of Ewing sarcoma molecularly.[<a class="bk_pop" href="#CDR0000774921_rl_1792_25">25</a>] This test result must be considered with caution, however. Ewing sarcomas that utilize the <i>TLS</i> translocations will have negative tests because the <i>EWSR1</i> gene is not translocated in those cases. In addition, other small round tumors also contain translocations of different <i>ETS</i> family members with <i>EWSR1</i>, such as desmoplastic small round cell tumor, clear cell sarcoma, extraskeletal myxoid chondrosarcoma, and myxoid liposarcoma, all of which may be positive with a <i>EWS</i> fluorescence <i>in situ</i> hybridization (FISH) break-apart probe. A detailed analysis of 85 patients with small round blue cell tumors that were negative for <i>EWSR1</i> rearrangement by FISH with an <i>EWSR1</i> break-apart probe identified eight patients with <i>FUS</i> rearrangements.[<a class="bk_pop" href="#CDR0000774921_rl_1792_26">26</a>] Four patients who had <i>EWSR1-ERG</i> fusions were not detected by FISH with an <i>EWSR1</i> break-apart probe. The authors do not recommend relying solely on <i>EWSR1</i> break-apart probes for analyzing small round blue cell tumors with strong immunohistochemical positivity for CD99.</p><p id="CDR0000774921__sm_CDR0000777838_391">Small round blue cell tumors of bone and soft tissue that are histologically similar to Ewing sarcoma but do not have rearrangements of the <i>EWSR1</i> gene have been analyzed and translocations have been identified. These include <i>BCOR-CCNB3</i>, <i>CIC-DUX4</i>, and <i>CIC-FOX4</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1792_27">27</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_30">30</a>] The molecular profile of these tumors is different from the profile of <i>EWS-FLI1</i> translocated Ewing sarcoma, and limited evidence suggests that they have a different clinical behavior. In almost all cases, the patients were treated with therapy designed for Ewing sarcoma on the basis of the histologic and immunohistologic similarity to Ewing sarcoma. There are too few cases associated with each translocation to determine whether the prognosis for these small round blue cell tumors is distinct from the prognosis of Ewing sarcoma of similar stage and site.[<a class="bk_pop" href="#CDR0000774921_rl_1792_27">27</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_30">30</a>]</p><p id="CDR0000774921__sm_CDR0000777838_392">A genome-wide association study identified a region on chromosome 10q21.3 associated with an increased risk of Ewing sarcoma.[<a class="bk_pop" href="#CDR0000774921_rl_1792_31">31</a>] Deep sequencing through this region identified a polymorphism in the <i>EGR2</i> gene, which appears to cooperate with the gene product of the <i>EWSR1-FLI1</i> fusion that is seen in most patients with Ewing sarcoma.[<a class="bk_pop" href="#CDR0000774921_rl_1792_32">32</a>] The polymorphism associated with the increased risk is found at a much higher frequency in whites than in blacks or Asians, possibly contributing to the epidemiology of the relative infrequency of Ewing sarcoma in the latter populations.</p><div id="CDR0000774921__sm_CDR0000777838_386" class="table"><h3><span class="title">Table 4. <i>EWS</i> and <i>TLS</i> Fusions and Translocations in Ewing Sarcoma</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK374260.14/table/CDR0000774921__sm_CDR0000777838_386/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000774921__sm_CDR0000777838_386_lrgtbl__"><table class="no_margin"><thead><tr><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">TET Family Partner </th><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Fusion With ETS-like Oncogene Partner </th><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Translocation</th><th colspan="1" rowspan="1" style="text-align:center;vertical-align:top;">Comment</th></tr></thead><tbody><tr><td colspan="1" rowspan="10" style="vertical-align:top;"><i>EWS</i></td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-FLI1</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(11;22)(q24;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Most common; ~85% to 90% of cases</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-ERG</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(21;22)(q22;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Second most common; ~10% of cases</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-ETV1</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(7;22)(p22;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-ETV4</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(17;22)(q12;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-FEV</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(2;22)(q35;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-NFATc2<sup>a</sup></i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(20;22)(q13;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-POU5F1<sup>a</sup></i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(6;22)(p21;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-SMARCA5<sup>a</sup></i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(4;22)(q31;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-ZSG<sup>a</sup></i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(6;22)(p21;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;"></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>EWSR1-SP3<sup>a</sup></i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(2;22)(q31;q12)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="2" style="vertical-align:top;"><i>TLS</i> (also called <i>FUS</i>)</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>TLS-ERG</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(16;21)(p11;q22)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;"><i>TLS-FEV</i></td><td colspan="1" rowspan="1" style="vertical-align:top;">t(2;16)(q35;p11)</td><td colspan="1" rowspan="1" style="vertical-align:top;">Rare<div class="milestone-end"></div></td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin"><sup>a</sup>These partners are not members of the <i>ETS</i> family of oncogenes.</p></div></dd></dl></div></div></div><p id="CDR0000774921__1805">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062841/">Ewing Sarcoma Treatment</a> for information about the treatment of Ewing sarcoma.)</p></div><div id="CDR0000774921__1806"><h3>Rhabdomyosarcoma</h3><p id="CDR0000774921__sm_CDR0000777839_622"><div class="milestone-start" id="CDR0000774921__sm_CDR0000777839_13"></div>The embryonal and alveolar histologies have distinctive molecular
characteristics that have been used for diagnostic confirmation, and may
be useful for assigning risk group, determining therapy, and monitoring residual disease during treatment.[<a class="bk_pop" href="#CDR0000774921_rl_1792_33">33</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_37">37</a>]</p><ol id="CDR0000774921__sm_CDR0000777839_629"><li class="half_rhythm"><div class="half_rhythm"><b>Embryonal histology:</b> Embryonal tumors often show loss of heterozygosity at 11p15 and gains on chromosome 8.[<a class="bk_pop" href="#CDR0000774921_rl_1792_38">38</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_40">40</a>] Embryonal tumors have a higher background mutation rate and higher single-nucleotide variant rate than do alveolar tumors, and the number of somatic mutations increases with older age at diagnosis.[<a class="bk_pop" href="#CDR0000774921_rl_1792_41">41</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_42">42</a>] Genes with recurring mutations include those in the RAS pathway (e.g., <i>NRAS</i>, <i>KRAS</i>, <i>HRAS</i>, and <i>NF1</i>), which together are observed in approximately one-third of cases. Other genes with recurring mutations include <i>FGFR4</i>, <i>PIK3CA</i>, <i>CTNNB1</i>, <i>FBXW7</i>, and <i>BCOR</i>, all of which are present in fewer than 10% of cases.[<a class="bk_pop" href="#CDR0000774921_rl_1792_41">41</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_42">42</a>]</div><div class="half_rhythm"><b>Embryonal histology with anaplasia:</b> Anaplasia has been reported in a minority of children with rhabdomyosarcoma, primarily arising in children with the embryonal subtype who are younger than 10 years.[<a class="bk_pop" href="#CDR0000774921_rl_1792_43">43</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_44">44</a>] Rhabdomyosarcoma with nonalveolar, anaplastic morphology may be a presenting feature for children with Li-Fraumeni syndrome and germline <i>TP53</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_1792_45">45</a>] Among eight consecutively presenting children with rhabdomyosarcoma and <i>TP53</i> germline mutations, all showed anaplastic morphology. Among an additional seven children with anaplastic rhabdomyosarcoma and unknown <i>TP53</i> germline mutation status, three of the seven children had functionally relevant <i>TP53</i> germline mutations. The median age at diagnosis of the 11 children with <i>TP53</i> germline mutation status was 40 months (range, 19&#x02013;67 months).</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Alveolar histology:</b> About 70% to 80% of alveolar tumors are characterized by translocations between
the <i>FOXO1</i> gene on chromosome 13 and either the <i>PAX3</i> gene on chromosome 2 (t(2;13)(q35;q14)) or the
<i>PAX7</i> gene on chromosome 1 (t(1;13)(p36;q14)).[<a class="bk_pop" href="#CDR0000774921_rl_1792_33">33</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_38">38</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_46">46</a>] Other rare fusions include <i>PAX3-NCOA1</i> and <i>PAX3-INO80D</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1792_41">41</a>]
Translocations involving the <i>PAX3</i> gene occur in approximately 59% of alveolar
rhabdomyosarcoma cases, while the <i>PAX7</i> gene appears to be involved in about 19% of cases.[<a class="bk_pop" href="#CDR0000774921_rl_1792_33">33</a>] Patients with solid-variant alveolar histology have a lower incidence of <i>PAX-FOXO1</i> gene fusions than do patients showing classical alveolar histology.[<a class="bk_pop" href="#CDR0000774921_rl_1792_47">47</a>] For the diagnosis of alveolar rhabdomyosarcoma, <i>FOXO1</i> gene rearrangement may be detected with good sensitivity and specificity using either fluorescence <i>in situ</i> hybridization or reverse transcription&#x02013;polymerase chain reaction.[<a class="bk_pop" href="#CDR0000774921_rl_1792_48">48</a>]</div><div class="half_rhythm">The alveolar histology that is associated with the <i>PAX7</i> gene in patients with or without metastatic disease appears to occur at a younger age and may be associated with longer event-free survival rates than those associated with <i>PAX3</i> gene rearrangements.[<a class="bk_pop" href="#CDR0000774921_rl_1792_49">49</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_54">54</a>] Patients with alveolar histology and the <i>PAX3</i> gene are older and have a higher incidence of invasive tumor (T2). Around 22% of cases showing alveolar histology have no detectable <i>PAX</i> gene translocation.[<a class="bk_pop" href="#CDR0000774921_rl_1792_37">37</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_47">47</a>] In addition to <i>FOXO1</i> rearrangements, alveolar tumors are characterized by a lower mutational burden than are fusion-negative tumors, with fewer genes having recurring mutations.[<a class="bk_pop" href="#CDR0000774921_rl_1792_41">41</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_42">42</a>] <i>BCOR</i> and <i>PIK3CA</i> mutations and amplification of <i>MYCN</i>, <i>MIR17HG</i>, and <i>CDK4</i> have also been described. </div></li><li class="half_rhythm"><div class="half_rhythm"><b>Spindle cell/sclerosing histology:</b> Spindle cell/sclerosing rhabdomyosarcoma has been proposed as a separate entity in the World Health Organization Classification of Tumours of Soft Tissue and Bone.[<a class="bk_pop" href="#CDR0000774921_rl_1792_55">55</a>]
For congenital/infantile spindle cell rhabdomyosarcoma, a study reported that 10 of 11 patients showed recurrent fusion genes. Most of these cases had truncal primary tumors, and no paratesticular tumors were found. Novel <i>VGLL2</i> rearrangements were observed in seven patients (63%), including <i>VGLL2-CITED2</i> fusion in four patients and <i>VGLL2-NCOA2</i> in two patients.[<a class="bk_pop" href="#CDR0000774921_rl_1792_56">56</a>] Three patients (27%) harbored different <i>NCOA2</i> gene fusions, including <i>TEAD1-NCOA2</i> in two patients and <i>SRF-NCOA2</i> in one patient. All fusion-positive congenital/infantile spindle cell rhabdomyosarcoma patients with available long-term follow-up were alive and well, and no patients developed distant metastases.[<a class="bk_pop" href="#CDR0000774921_rl_1792_56">56</a>] Further study is needed to better define the prevalence and prognostic significance of these gene rearrangements in young children with spindle cell rhabdomyosarcoma.</div><div class="half_rhythm">In older children and adults with spindle cell/sclerosing rhabdomyosarcoma, a specific <i>MYOD1</i> mutation (p.L122R) has been observed in a large proportion of patients.[<a class="bk_pop" href="#CDR0000774921_rl_1792_56">56</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_59">59</a>] Activating <i>PIK3CA</i> mutations were common in <i>MYOD1</i>-mutated cases (4 of 10); when they were present, they were associated with sclerosing histology.[<a class="bk_pop" href="#CDR0000774921_rl_1792_56">56</a>] The presence of the <i>MYOD1</i> mutation is associated with an increased risk of treatment failure.[<a class="bk_pop" href="#CDR0000774921_rl_1792_56">56</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_58">58</a>] In one study that included nine children aged 1 year or older with spindle cell/sclerosing histology and <i>MYOD1</i> mutations, seven had a fatal outcome despite aggressive multimodality treatment.[<a class="bk_pop" href="#CDR0000774921_rl_1792_56">56</a>]</div></li></ol><p id="CDR0000774921__sm_CDR0000777839_624">These findings highlight the important differences between embryonal and alveolar tumors. Data demonstrate that <i>PAX-FOX01</i> fusion-positive alveolar tumors are biologically and clinically different from fusion-negative alveolar tumors and embryonal tumors.[<a class="bk_pop" href="#CDR0000774921_rl_1792_37">37</a>,<a class="bk_pop" href="#CDR0000774921_rl_1792_60">60</a>-<a class="bk_pop" href="#CDR0000774921_rl_1792_63">63</a>] In a study of Intergroup
Rhabdomyosarcoma Study Group cases, which captured an entire cohort from a single prospective clinical trial, the outcome for patients with translocation-negative alveolar rhabdomyosarcoma was better than that observed for translocation-positive cases. The outcome was similar to that seen in patients with embryonal rhabdomyosarcoma and demonstrated that fusion status is a critical factor for risk stratification in pediatric rhabdomyosarcoma.<div class="milestone-end"></div></p><p id="CDR0000774921__1810">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062792/">Childhood Rhabdomyosarcoma Treatment</a> for information about the treatment of childhood rhabdomyosarcoma.)</p></div><div id="CDR0000774921_rl_1792"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_1792_1">Chen X, Bahrami A, Pappo A, et al.: Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7 (1): 104-12, 2014. [<a href="/pmc/articles/PMC4096827/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4096827</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24703847" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24703847</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_2">Perry JA, Kiezun A, Tonzi P, et al.: Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci U S A 111 (51): E5564-73, 2014. [<a href="/pmc/articles/PMC4280630/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4280630</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25512523" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25512523</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_3">Ognjanovic S, Olivier M, Bergemann TL, et al.: Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer 118 (5): 1387-96, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/21837677" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21837677</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_4">Mirabello L, Yeager M, Mai PL, et al.: Germline TP53 variants and susceptibility to osteosarcoma. J Natl Cancer Inst 107 (7): , 2015. [<a href="/pmc/articles/PMC4651039/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4651039</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25896519" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25896519</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_5">Toguchida J, Yamaguchi T, Dayton SH, et al.: Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. N Engl J Med 326 (20): 1301-8, 1992. [<a href="https://pubmed.ncbi.nlm.nih.gov/1565143" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1565143</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_6">McIntyre JF, Smith-Sorensen B, Friend SH, et al.: Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol 12 (5): 925-30, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/8164043" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8164043</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_7">Kansara M, Thomas DM: Molecular pathogenesis of osteosarcoma. DNA Cell Biol 26 (1): 1-18, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17263592" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17263592</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_8">German J: Bloom's syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet 93 (1): 100-6, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9062585" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9062585</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_9">Lipton JM, Federman N, Khabbaze Y, et al.: Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. J Pediatr Hematol Oncol 23 (1): 39-44, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11196268" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11196268</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_10">Idol RA, Robledo S, Du HY, et al.: Cells depleted for RPS19, a protein associated with Diamond Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 39 (1): 35-43, 2007 Jul-Aug. [<a href="https://pubmed.ncbi.nlm.nih.gov/17376718" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17376718</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_11">Li FP, Fraumeni JF Jr, Mulvihill JJ, et al.: A cancer family syndrome in twenty-four kindreds. Cancer Res 48 (18): 5358-62, 1988. [<a href="https://pubmed.ncbi.nlm.nih.gov/3409256" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3409256</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_12">Grimer RJ, Cannon SR, Taminiau AM, et al.: Osteosarcoma over the age of forty. Eur J Cancer 39 (2): 157-63, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12509946" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12509946</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_13">Wong FL, Boice JD Jr, Abramson DH, et al.: Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA 278 (15): 1262-7, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9333268" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9333268</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_14">Wang LL, Gannavarapu A, Kozinetz CA, et al.: Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst 95 (9): 669-74, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12734318" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12734318</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_15">Hicks MJ, Roth JR, Kozinetz CA, et al.: Clinicopathologic features of osteosarcoma in patients with Rothmund-Thomson syndrome. J Clin Oncol 25 (4): 370-5, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17264332" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17264332</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_16">Goto M, Miller RW, Ishikawa Y, et al.: Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5 (4): 239-46, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8722214" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8722214</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_17">Delattre O, Zucman J, Melot T, et al.: The Ewing family of tumors--a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331 (5): 294-9, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/8022439" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8022439</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_18">Urano F, Umezawa A, Yabe H, et al.: Molecular analysis of Ewing's sarcoma: another fusion gene, EWS-E1AF, available for diagnosis. Jpn J Cancer Res 89 (7): 703-11, 1998. [<a href="/pmc/articles/PMC5921883/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5921883</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9738976" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9738976</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_19">Hattinger CM, Rumpler S, Strehl S, et al.: Prognostic impact of deletions at 1p36 and numerical aberrations in Ewing tumors. Genes Chromosomes Cancer 24 (3): 243-54, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10451705" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10451705</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_20">Sankar S, Lessnick SL: Promiscuous partnerships in Ewing's sarcoma. Cancer Genet 204 (7): 351-65, 2011. [<a href="/pmc/articles/PMC3164520/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3164520</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21872822" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21872822</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_21">Roberts P, Burchill SA, Brownhill S, et al.: Ploidy and karyotype complexity are powerful prognostic indicators in the Ewing's sarcoma family of tumors: a study by the United Kingdom Cancer Cytogenetics and the Children's Cancer and Leukaemia Group. Genes Chromosomes Cancer 47 (3): 207-20, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18064647" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18064647</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_22">Tirode F, Surdez D, Ma X, et al.: Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov 4 (11): 1342-53, 2014. [<a href="/pmc/articles/PMC4264969/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4264969</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25223734" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25223734</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_23">Crompton BD, Stewart C, Taylor-Weiner A, et al.: The genomic landscape of pediatric Ewing sarcoma. Cancer Discov 4 (11): 1326-41, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25186949" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25186949</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_24">Brohl AS, Solomon DA, Chang W, et al.: The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 10 (7): e1004475, 2014. [<a href="/pmc/articles/PMC4091782/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4091782</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25010205" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25010205</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_25">Monforte-Mu&#x000f1;oz H, Lopez-Terrada D, Affendie H, et al.: Documentation of EWS gene rearrangements by fluorescence in-situ hybridization (FISH) in frozen sections of Ewing's sarcoma-peripheral primitive neuroectodermal tumor. Am J Surg Pathol 23 (3): 309-15, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10078922" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10078922</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_26">Chen S, Deniz K, Sung YS, et al.: Ewing sarcoma with ERG gene rearrangements: A molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosomes Cancer 55 (4): 340-9, 2016. [<a href="/pmc/articles/PMC5006947/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5006947</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26690869" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26690869</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_27">Pierron G, Tirode F, Lucchesi C, et al.: A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 44 (4): 461-6, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22387997" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22387997</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_28">Specht K, Sung YS, Zhang L, et al.: Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosomes Cancer 53 (7): 622-33, 2014. [<a href="/pmc/articles/PMC4108073/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4108073</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24723486" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24723486</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_29">Sugita S, Arai Y, Tonooka A, et al.: A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 38 (11): 1571-6, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25007147" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25007147</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_30">Cohen-Gogo S, Cellier C, Coindre JM, et al.: Ewing-like sarcomas with BCOR-CCNB3 fusion transcript: a clinical, radiological and pathological retrospective study from the Soci&#x000e9;t&#x000e9; Fran&#x000e7;aise des Cancers de L'Enfant. Pediatr Blood Cancer 61 (12): 2191-8, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25176412" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25176412</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_31">Postel-Vinay S, V&#x000e9;ron AS, Tirode F, et al.: Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet 44 (3): 323-7, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22327514" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22327514</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_32">Gr&#x000fc;newald TG, Bernard V, Gilardi-Hebenstreit P, et al.: Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite. Nat Genet 47 (9): 1073-8, 2015. [<a href="/pmc/articles/PMC4591073/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4591073</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26214589" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26214589</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_33">Barr FG, Smith LM, Lynch JC, et al.: Examination of gene fusion status in archival samples of alveolar rhabdomyosarcoma entered on the Intergroup Rhabdomyosarcoma Study-III trial: a report from the Children's Oncology Group. J Mol Diagn 8 (2): 202-8, 2006. [<a href="/pmc/articles/PMC1867584/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1867584</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16645206" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16645206</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_34">Kelly KM, Womer RB, Barr FG: Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer 78 (6): 1320-7, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8826957" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8826957</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_35">Edwards RH, Chatten J, Xiong QB, et al.: Detection of gene fusions in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction assay of archival samples. Diagn Mol Pathol 6 (2): 91-7, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9098647" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9098647</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_36">Sartori F, Alaggio R, Zanazzo G, et al.: Results of a prospective minimal disseminated disease study in human rhabdomyosarcoma using three different molecular markers. Cancer 106 (8): 1766-75, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16544315" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16544315</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_37">Davicioni E, Anderson MJ, Finckenstein FG, et al.: Molecular classification of rhabdomyosarcoma--genotypic and phenotypic determinants of diagnosis: a report from the Children's Oncology Group. Am J Pathol 174 (2): 550-64, 2009. [<a href="/pmc/articles/PMC2630563/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2630563</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19147825" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19147825</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_38">Merlino G, Helman LJ: Rhabdomyosarcoma--working out the pathways. Oncogene 18 (38): 5340-8, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10498887" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10498887</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_39">Koufos A, Hansen MF, Copeland NG, et al.: Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. Nature 316 (6026): 330-4, 1985 Jul 25-31. [<a href="https://pubmed.ncbi.nlm.nih.gov/2991766" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2991766</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_40">Scrable H, Witte D, Shimada H, et al.: Molecular differential pathology of rhabdomyosarcoma. Genes Chromosomes Cancer 1 (1): 23-35, 1989. [<a href="https://pubmed.ncbi.nlm.nih.gov/2487144" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2487144</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_41">Shern JF, Chen L, Chmielecki J, et al.: Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 4 (2): 216-31, 2014. [<a href="/pmc/articles/PMC4462130/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4462130</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24436047" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24436047</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_42">Chen X, Stewart E, Shelat AA, et al.: Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell 24 (6): 710-24, 2013. [<a href="/pmc/articles/PMC3904731/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3904731</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24332040" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24332040</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_43">Kodet R, Newton WA Jr, Hamoudi AB, et al.: Childhood rhabdomyosarcoma with anaplastic (pleomorphic) features. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol 17 (5): 443-53, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8470759" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8470759</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_44">Qualman S, Lynch J, Bridge J, et al.: Prevalence and clinical impact of anaplasia in childhood rhabdomyosarcoma : a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. Cancer 113 (11): 3242-7, 2008. [<a href="/pmc/articles/PMC2727712/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2727712</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18985676" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18985676</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_45">Hettmer S, Archer NM, Somers GR, et al.: Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Cancer 120 (7): 1068-75, 2014. [<a href="/pmc/articles/PMC4173134/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4173134</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24382691" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24382691</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_46">Dumont SN, Lazar AJ, Bridge JA, et al.: PAX3/7-FOXO1 fusion status in older rhabdomyosarcoma patient population by fluorescent in situ hybridization. J Cancer Res Clin Oncol 138 (2): 213-20, 2012. [<a href="/pmc/articles/PMC3932368/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3932368</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22089931" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22089931</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_47">Parham DM, Qualman SJ, Teot L, et al.: Correlation between histology and PAX/FKHR fusion status in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. Am J Surg Pathol 31 (6): 895-901, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17527077" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17527077</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_48">Thway K, Wang J, Wren D, et al.: The comparative utility of fluorescence in situ hybridization and reverse transcription-polymerase chain reaction in the diagnosis of alveolar rhabdomyosarcoma. Virchows Arch 467 (2): 217-24, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25912319" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25912319</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_49">Sorensen PH, Lynch JC, Qualman SJ, et al.: PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol 20 (11): 2672-9, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12039929" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12039929</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_50">Krskov&#x000e1; L, Mrhalov&#x000e1; M, Sumerauer D, et al.: Rhabdomyosarcoma: molecular diagnostics of patients classified by morphology and immunohistochemistry with emphasis on bone marrow and purged peripheral blood progenitor cells involvement. Virchows Arch 448 (4): 449-58, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16365729" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16365729</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_51">Kelly KM, Womer RB, Sorensen PH, et al.: Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol 15 (5): 1831-6, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9164192" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9164192</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_52">Barr FG, Qualman SJ, Macris MH, et al.: Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 62 (16): 4704-10, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/12183429" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12183429</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_53">Missiaglia E, Williamson D, Chisholm J, et al.: PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol 30 (14): 1670-7, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22454413" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22454413</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_54">Duan F, Smith LM, Gustafson DM, et al.: Genomic and clinical analysis of fusion gene amplification in rhabdomyosarcoma: a report from the Children's Oncology Group. Genes Chromosomes Cancer 51 (7): 662-74, 2012. [<a href="/pmc/articles/PMC3348443/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3348443</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22447499" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22447499</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_55">Nascimento AF, Barr FG: Spindle cell/sclerosing rhabdomyosarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, et al., eds.: WHO Classification of Tumours of Soft Tissue and Bone. 4th ed. Lyon, France: IARC Press, 2013, pp 134-5.</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_56">Alaggio R, Zhang L, Sung YS, et al.: A Molecular Study of Pediatric Spindle and Sclerosing Rhabdomyosarcoma: Identification of Novel and Recurrent VGLL2-related Fusions in Infantile Cases. Am J Surg Pathol 40 (2): 224-35, 2016. [<a href="/pmc/articles/PMC4712098/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4712098</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26501226" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26501226</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_57">Kohsaka S, Shukla N, Ameur N, et al.: A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet 46 (6): 595-600, 2014. [<a href="/pmc/articles/PMC4231202/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4231202</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24793135" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24793135</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_58">Agaram NP, Chen CL, Zhang L, et al.: Recurrent MYOD1 mutations in pediatric and adult sclerosing and spindle cell rhabdomyosarcomas: evidence for a common pathogenesis. Genes Chromosomes Cancer 53 (9): 779-87, 2014. [<a href="/pmc/articles/PMC4108340/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4108340</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24824843" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24824843</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_59">Szuhai K, de Jong D, Leung WY, et al.: Transactivating mutation of the MYOD1 gene is a frequent event in adult spindle cell rhabdomyosarcoma. J Pathol 232 (3): 300-7, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24272621" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24272621</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_60">Davicioni E, Anderson JR, Buckley JD, et al.: Gene expression profiling for survival prediction in pediatric rhabdomyosarcomas: a report from the children's oncology group. J Clin Oncol 28 (7): 1240-6, 2010. [<a href="/pmc/articles/PMC3040045/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3040045</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20124188" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20124188</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_61">Williamson D, Missiaglia E, de Reyni&#x000e8;s A, et al.: Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 28 (13): 2151-8, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20351326" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20351326</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_62">Davicioni E, Finckenstein FG, Shahbazian V, et al.: Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66 (14): 6936-46, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16849537" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16849537</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1792_63">Skapek SX, Anderson J, Barr FG, et al.: PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a children's oncology group report. Pediatr Blood Cancer 60 (9): 1411-7, 2013. [<a href="/pmc/articles/PMC4646073/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4646073</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23526739" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23526739</span></a>]</div></li></ol></div></div><div id="CDR0000774921__1811"><h2 id="_CDR0000774921__1811_">Langerhans Cell Histiocytosis</h2><p id="CDR0000774921__sm_CDR0000778295_15"><div class="milestone-start" id="CDR0000774921__sm_CDR0000778295_13"></div>Studies published in 1994 showed clonality in Langerhans cell histiocytosis (LCH) using polymorphisms of methylation-specific restriction enzyme sites on the X-chromosome regions coding for the human androgen receptor, DXS255, PGK, and HPRT.[<a class="bk_pop" href="#CDR0000774921_rl_1811_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_2">2</a>] The results of biopsies of lesions with single-system or multisystem disease showed a proliferation of LCH cells from a single clone. The discovery of recurring genomic alterations (primarily <i>BRAF</i> V600E) in LCH (see below) confirmed the clonality of LCH in children. </p><p id="CDR0000774921__sm_CDR0000778295_506">Pulmonary LCH in adults was initially reported to be nonclonal in approximately 75% of cases,[<a class="bk_pop" href="#CDR0000774921_rl_1811_3">3</a>] while an analysis of <i>BRAF</i> mutations showed that 25% to 50% of adult lung LCH patients had evidence of <i>BRAF</i> V600E mutations.[<a class="bk_pop" href="#CDR0000774921_rl_1811_3">3</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_4">4</a>] Another study of 26 pulmonary LCH cases found that 50% had <i>BRAF</i> V600E mutations and 40% had <i>NRAS</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_1811_5">5</a>] Approximately the same number of mutations are polyclonal, rather than monoclonal. It has not yet been investigated whether clonality and <i>BRAF</i> pathway mutations are concordant in the same patients, which might suggest a reactive rather than a neoplastic condition in <i>smoker's lung</i> LCH and a clonal neoplasm in other types of LCH.</p><a id="CDR0000774921__sm_CDR0000778295_491"></a><div id="CDR0000774921__sm_CDR0000778295_490" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000761346.jpg" alt="BRAF-RAS pathway" /></div><div class="caption"><p>Figure 11. Courtesy of Rikhia Chakraborty, Ph.D. Permission to reuse the figure in any form must be obtained directly from Dr. Chakraborty.</p></div></div><p id="CDR0000774921__sm_CDR0000778295_492">The genomic basis of LCH was advanced by a 2010 report of an activating mutation of the <i>BRAF</i> oncogene (V600E) that was detected in 35 of 61 cases (57%).[<a class="bk_pop" href="#CDR0000774921_rl_1811_6">6</a>] Multiple subsequent reports have confirmed the presence of <i>BRAF</i> V600E mutations in 50% or more of LCH cases in children.[<a class="bk_pop" href="#CDR0000774921_rl_1811_7">7</a>-<a class="bk_pop" href="#CDR0000774921_rl_1811_9">9</a>] Another <i>BRAF</i> mutation (<i>BRAF</i> 600DLAT) resulted in the insertion of four amino acids and also appeared to activate signaling.[<a class="bk_pop" href="#CDR0000774921_rl_1811_8">8</a>] <i>ARAF</i> mutations are infrequent in LCH but, when present, can also lead to RAS-MAPK pathway activation.[<a class="bk_pop" href="#CDR0000774921_rl_1811_10">10</a>]</p><p id="CDR0000774921__sm_CDR0000778295_493">The RAS-MAPK signaling pathway (refer to Figure 11) transmits signals from a cell surface receptor (e.g., a growth factor) through the RAS pathway (via one of the RAF proteins [A, B, or C]) to phosphorylate MEK and then the extracellular signal-regulated kinase (ERK), which leads to nuclear signals affecting cell cycle and transcription regulation. The V600E mutation of <i>BRAF</i> leads to continuous phosphorylation, and thus activation, of MEK and ERK without the need for an external signal. Activation of ERK occurs by phosphorylation, and phosphorylated ERK can be detected in virtually all LCH lesions.[<a class="bk_pop" href="#CDR0000774921_rl_1811_6">6</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_11">11</a>]</p><p id="CDR0000774921__sm_CDR0000778295_494">Because RAS-MAPK pathway activation can be detected in all LCH cases, but not all cases have <i>BRAF</i> mutations, the presence of genomic alterations in other components of the pathway was suspected. The following genomic alterations were identified:</p><ul id="CDR0000774921__sm_CDR0000778295_508"><li class="half_rhythm"><div>Whole-exome sequencing of <i>BRAF</i>-mutated versus <i>BRAF</i>&#x02013;wild-type LCH biopsy tissue samples revealed that 7 of 21 <i>BRAF</i>&#x02013;wild-type specimens had <i>MAP2K1</i> mutations, while no <i>BRAF</i>-mutated specimens had <i>MAP2K1</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_1811_11">11</a>] The mutations in <i>MAP2K1</i> (which codes for MEK) were activating, as indicated by their induction of ERK phosphorylation.[<a class="bk_pop" href="#CDR0000774921_rl_1811_11">11</a>]</div></li><li class="half_rhythm"><div>Another study showed <i>MAP2K1</i> mutations exclusively in 11 of 22 <i>BRAF</i>&#x02013;wild-type cases.[<a class="bk_pop" href="#CDR0000774921_rl_1811_12">12</a>]</div></li><li class="half_rhythm"><div>Finally, in-frame <i>BRAF</i> deletions and in-frame <i>FAM73A-BRAF</i> fusions have occurred in the group of <i>BRAF</i> V600E and <i>MAP2K1</i> mutation&#x02013;negative cases.[<a class="bk_pop" href="#CDR0000774921_rl_1811_13">13</a>] </div></li></ul><p id="CDR0000774921__sm_CDR0000778295_509">Studies support the universal activation of ERK in LCH, with activation in most cases being explained by <i>BRAF</i> and <i>MAP2K1</i> alterations.[<a class="bk_pop" href="#CDR0000774921_rl_1811_6">6</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_11">11</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_13">13</a>] Altogether, these mutations in the MAP kinase pathway account for nearly 90% of the causes of the universal activation of ERK in LCH.[<a class="bk_pop" href="#CDR0000774921_rl_1811_6">6</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_11">11</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_13">13</a>]</p><p id="CDR0000774921__sm_CDR0000778295_496">The presence of the <i>BRAF</i> V600E mutation in blood and bone marrow was studied in a series of 100 patients, 65% of whom tested positive for the <i>BRAF</i> V600E mutation by a sensitive quantitative polymerase chain reaction technique.[<a class="bk_pop" href="#CDR0000774921_rl_1811_7">7</a>] Circulating cells with the <i>BRAF</i> V600E mutation could be detected in all high-risk patients and in a subset of low-risk multisystem patients. The presence of circulating cells with the mutation conferred a twofold increased risk of relapse. In a similar study that included 48 patients with <i>BRAF</i> V600E&#x02013;mutated LCH, the <i>BRAF</i> V600E allele was detected in circulating cell-free DNA in 100% of patients with risk-organ&#x02013;positive multisystem LCH, 42% of patients with risk-organ&#x02013;negative LCH, and 14% of patients with single-system LCH.[<a class="bk_pop" href="#CDR0000774921_rl_1811_14">14</a>]</p><p id="CDR0000774921__sm_CDR0000778295_510">The myeloid dendritic cell origin of LCH was confirmed by finding CD34-positive stem cells with the mutation in the bone marrow of high-risk patients. In those with low-risk disease, the mutation was found in more mature myeloid dendritic cells, suggesting that the stage of cell development at which the somatic mutation occurs is critical in defining the extent of disease in LCH. LCH is now considered a myeloid neoplasm.</p><div id="CDR0000774921__sm_CDR0000778295_498"><h3>Clinical implications</h3><p id="CDR0000774921__sm_CDR0000778295_499">Clinical implications of the described genomic findings include the following:</p><ul id="CDR0000774921__sm_CDR0000778295_500"><li class="half_rhythm"><div class="half_rhythm">LCH joins a group of other pediatric entities with activating <i>BRAF</i> mutations, including select nonmalignant conditions (e.g., benign nevi) [<a class="bk_pop" href="#CDR0000774921_rl_1811_15">15</a>] and low-grade malignancies (e.g., pilocytic astrocytoma).[<a class="bk_pop" href="#CDR0000774921_rl_1811_16">16</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_17">17</a>] All of these conditions have a generally indolent course, with spontaneous resolution occurring in some cases. This distinctive clinical course may be a manifestation of oncogene-induced senescence.[<a class="bk_pop" href="#CDR0000774921_rl_1811_15">15</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_18">18</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><i>BRAF</i> V600E mutations can be targeted by BRAF inhibitors (e.g., vemurafenib and dabrafenib) or by the combination of BRAF inhibitors plus MEK inhibitors (e.g., dabrafenib/trametinib and vemurafenib/cobimetinib). These agents and combinations are approved for adults with melanoma. Treatment of adults with combinations of a BRAF inhibitor and a MEK inhibitor showed significantly improved progression-free survival outcome compared with treatment using a BRAF inhibitor alone.[<a class="bk_pop" href="#CDR0000774921_rl_1811_19">19</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_20">20</a>] The most serious side effect of BRAF inhibitor therapies is the induction of cutaneous squamous cell carcinomas,[<a class="bk_pop" href="#CDR0000774921_rl_1811_19">19</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_20">20</a>] with the incidence of these second cancers increasing with age;[<a class="bk_pop" href="#CDR0000774921_rl_1811_21">21</a>] this effect can be reduced by concurrent treatment with both BRAF and MEK inhibitors.[<a class="bk_pop" href="#CDR0000774921_rl_1811_19">19</a>,<a class="bk_pop" href="#CDR0000774921_rl_1811_20">20</a>]</div><div class="half_rhythm">Case reports have described activity of BRAF inhibitors against LCH in adult patients [<a class="bk_pop" href="#CDR0000774921_rl_1811_22">22</a>-<a class="bk_pop" href="#CDR0000774921_rl_1811_26">26</a>] and pediatric patients,[<a class="bk_pop" href="#CDR0000774921_rl_1811_27">27</a>] but there are insufficient data to assess the role of these agents in the treatment of children with LCH.</div></li><li class="half_rhythm"><div class="half_rhythm">With additional research, the observation of <i>BRAF</i> V600E (or potentially mutated <i>MAP2K1</i>) in circulating cells or cell-free DNA may become a useful diagnostic tool to define high-risk versus low-risk disease.[<a class="bk_pop" href="#CDR0000774921_rl_1811_7">7</a>] Additionally, for patients who have a somatic mutation, persistence of circulating cells with the mutation may be useful as a marker of residual disease.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1811_7">7</a>]</div></li></ul><p id="CDR0000774921__1818">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000600550/">Langerhans Cell Histiocytosis Treatment</a> for information about the treatment of childhood LCH.)</p></div><div id="CDR0000774921_rl_1811"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_1811_1">Willman CL, Busque L, Griffith BB, et al.: Langerhans'-cell histiocytosis (histiocytosis X)--a clonal proliferative disease. N Engl J Med 331 (3): 154-60, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/8008029" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8008029</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_2">Yu RC, Chu C, Buluwela L, et al.: Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet 343 (8900): 767-8, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/7510816" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7510816</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_3">Dacic S, Trusky C, Bakker A, et al.: Genotypic analysis of pulmonary Langerhans cell histiocytosis. Hum Pathol 34 (12): 1345-9, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14691922" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14691922</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_4">Roden AC, Hu X, Kip S, et al.: BRAF V600E expression in Langerhans cell histiocytosis: clinical and immunohistochemical study on 25 pulmonary and 54 extrapulmonary cases. Am J Surg Pathol 38 (4): 548-51, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24625419" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24625419</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_5">Mourah S, How-Kit A, Meignin V, et al.: Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J 47 (6): 1785-96, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/27076591" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27076591</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_6">Badalian-Very G, Vergilio JA, Degar BA, et al.: Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116 (11): 1919-23, 2010. [<a href="/pmc/articles/PMC3173987/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3173987</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20519626" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20519626</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_7">Berres ML, Lim KP, Peters T, et al.: BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med 211 (4): 669-83, 2014. [<a href="/pmc/articles/PMC3978272/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3978272</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24638167" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24638167</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_8">Satoh T, Smith A, Sarde A, et al.: B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease. PLoS One 7 (4): e33891, 2012. [<a href="/pmc/articles/PMC3323620/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3323620</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22506009" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22506009</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_9">Sahm F, Capper D, Preusser M, et al.: BRAFV600E mutant protein is expressed in cells of variable maturation in Langerhans cell histiocytosis. Blood 120 (12): e28-34, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22859608" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22859608</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_10">Nelson DS, Quispel W, Badalian-Very G, et al.: Somatic activating ARAF mutations in Langerhans cell histiocytosis. Blood 123 (20): 3152-5, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24652991" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24652991</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_11">Chakraborty R, Hampton OA, Shen X, et al.: Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124 (19): 3007-15, 2014. [<a href="/pmc/articles/PMC4224195/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4224195</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25202140" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25202140</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_12">Brown NA, Furtado LV, Betz BL, et al.: High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood 124 (10): 1655-8, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24982505" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24982505</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_13">Chakraborty R, Burke TM, Hampton OA, et al.: Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood 128 (21): 2533-2537, 2016. [<a href="/pmc/articles/PMC5123197/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5123197</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27729324" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27729324</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_14">H&#x000e9;ritier S, H&#x000e9;lias-Rodzewicz Z, Lapillonne H, et al.: Circulating cell-free BRAF(V600E) as a biomarker in children with Langerhans cell histiocytosis. Br J Haematol 178 (3): 457-467, 2017. [<a href="https://pubmed.ncbi.nlm.nih.gov/28444728" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28444728</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_15">Michaloglou C, Vredeveld LC, Soengas MS, et al.: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436 (7051): 720-4, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16079850" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16079850</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_16">Jones DT, Kocialkowski S, Liu L, et al.: Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68 (21): 8673-7, 2008. [<a href="/pmc/articles/PMC2577184/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2577184</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18974108" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18974108</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_17">Pfister S, Janzarik WG, Remke M, et al.: BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118 (5): 1739-49, 2008. [<a href="/pmc/articles/PMC2289793/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2289793</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18398503" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18398503</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_18">Jacob K, Quang-Khuong DA, Jones DT, et al.: Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin Cancer Res 17 (14): 4650-60, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21610151" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21610151</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_19">Larkin J, Ascierto PA, Dr&#x000e9;no B, et al.: Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371 (20): 1867-76, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25265494" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25265494</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_20">Long GV, Stroyakovskiy D, Gogas H, et al.: Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386 (9992): 444-51, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26037941" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26037941</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_21">Anforth R, Menzies A, Byth K, et al.: Factors influencing the development of cutaneous squamous cell carcinoma in patients on BRAF inhibitor therapy. J Am Acad Dermatol 72 (5): 809-15.e1, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25748298" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25748298</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_22">Haroche J, Cohen-Aubart F, Emile JF, et al.: Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAF(V600E)-mutated Erdheim-Chester disease. J Clin Oncol 33 (5): 411-8, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25422482" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25422482</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_23">Charles J, Beani JC, Fiandrino G, et al.: Major response to vemurafenib in patient with severe cutaneous Langerhans cell histiocytosis harboring BRAF V600E mutation. J Am Acad Dermatol 71 (3): e97-9, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25128147" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25128147</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_24">Gandolfi L, Adamo S, Pileri A, et al.: Multisystemic and Multiresistant Langerhans Cell Histiocytosis: A Case Treated With BRAF Inhibitor. J Natl Compr Canc Netw 13 (6): 715-8, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26085387" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26085387</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_25">Euskirchen P, Haroche J, Emile JF, et al.: Complete remission of critical neurohistiocytosis by vemurafenib. Neurol Neuroimmunol Neuroinflamm 2 (2): e78, 2015. [<a href="/pmc/articles/PMC4345630/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4345630</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25745636" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25745636</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_26">Hyman DM, Puzanov I, Subbiah V, et al.: Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med 373 (8): 726-36, 2015. [<a href="/pmc/articles/PMC4971773/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4971773</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26287849" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26287849</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1811_27">H&#x000e9;ritier S, Jehanne M, Leverger G, et al.: Vemurafenib Use in an Infant for High-Risk Langerhans Cell Histiocytosis. JAMA Oncol 1 (6): 836-8, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26180941" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26180941</span></a>]</div></li></ol></div></div><div id="CDR0000774921__1819"><h2 id="_CDR0000774921__1819_">Neuroblastoma</h2><p id="CDR0000774921__sm_CDR0000777852_3"><div class="milestone-start" id="CDR0000774921__sm_CDR0000777852_1"></div>Neuroblastoma can be subdivided into a biologically defined subset that has a very favorable prognosis (i.e., low-risk neuroblastoma) and another group that has a guarded prognosis (i.e., high-risk neuroblastoma). While neuroblastoma in infants with tumors that have favorable biology is highly curable, only 50% of children with high-risk neuroblastoma are alive at 5 years from diagnosis, at best. </p><p id="CDR0000774921__sm_CDR0000777852_889">Low-risk neuroblastoma is usually found in children younger than 18 months with limited extent of disease; the tumor has changes, usually increases, in the number of whole chromosomes in the neuroblastoma cell. Low-risk tumors are hyperdiploid when examined by flow cytometry.[<a class="bk_pop" href="#CDR0000774921_rl_1819_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1819_2">2</a>] In contrast, high-risk neuroblastoma generally occurs in children older than 18 months, is often metastatic to bone, and usually has segmental chromosome abnormalities. They are near diploid or near tetraploid by flow cytometric measurement.[<a class="bk_pop" href="#CDR0000774921_rl_1819_1">1</a>-<a class="bk_pop" href="#CDR0000774921_rl_1819_7">7</a>] High-risk tumors also show exonic mutations (refer to the Exonic mutations in neuroblastoma section of this summary for more information), but most high-risk tumors lack mutations in genes that are recurrently mutated. Compared with adult cancers, neuroblastomas show a low number of mutations per genome that affect protein sequence (10&#x02013;20 per genome).[<a class="bk_pop" href="#CDR0000774921_rl_1819_8">8</a>]</p><p id="CDR0000774921__sm_CDR0000777852_1122">Key genomic characteristics of high-risk neuroblastoma that are discussed below include the following:</p><ul id="CDR0000774921__sm_CDR0000777852_1123"><li class="half_rhythm"><div>Segmental chromosomal aberrations, including <i>MYCN</i> gene amplification.</div></li><li class="half_rhythm"><div>Low rates of exonic mutations, with activating mutations in <i>ALK</i> being the most common recurring alteration.</div></li><li class="half_rhythm"><div>Genomic alterations that promote telomere lengthening.</div></li></ul><div id="CDR0000774921__sm_CDR0000777852_1124"><h3>Segmental chromosomal aberrations (including <i>MYCN</i> gene amplification)</h3><p id="CDR0000774921__sm_CDR0000777852_1125">Segmental chromosomal aberrations, found most frequently in 1p, 1q, 3p, 11q, 14q, and 17p (and <i>MYCN</i> amplification [defined as more than 10 copies per diploid genome]), are best detected by comparative genomic hybridization and are seen in almost all high-risk and/or stage 4 neuroblastomas.[<a class="bk_pop" href="#CDR0000774921_rl_1819_3">3</a>-<a class="bk_pop" href="#CDR0000774921_rl_1819_7">7</a>] Among all patients with neuroblastoma, a higher number of chromosome breakpoints correlated with the following, whether or not <i>MYCN</i> amplification was considered:[<a class="bk_pop" href="#CDR0000774921_rl_1819_3">3</a>-<a class="bk_pop" href="#CDR0000774921_rl_1819_7">7</a>][<a href="/books/n/pdqcis/glossary_loe/def-item/glossary_loe_CDR0000716085/" class="def">Level of evidence: 3iiD</a>]</p><ul id="CDR0000774921__sm_CDR0000777852_1152"><li class="half_rhythm"><div>Advanced age at diagnosis.</div></li><li class="half_rhythm"><div>Advanced stage of disease.</div></li><li class="half_rhythm"><div>Higher risk of relapse.</div></li><li class="half_rhythm"><div>Poorer outcome. </div></li></ul><p id="CDR0000774921__sm_CDR0000777852_1164">An international collaboration studied 556 patients with high-risk neuroblastoma and identified two types of segmental copy number aberrations that are associated with extremely poor outcome. Distal 6q losses were found in 6% of patients and were associated with a 10-year survival of only 3.4%; amplifications of regions not encompassing the <i>MYCN</i> locus, in addition to <i>MYCN</i> amplification, were detected in 18% of the patients and were associated with a 10-year survival of 5.8%.[<a class="bk_pop" href="#CDR0000774921_rl_1819_9">9</a>]</p><p id="CDR0000774921__sm_CDR0000777852_1153">In a study of unresectable primary neuroblastomas without metastases in children older than 12 months, segmental chromosomal aberrations were found in most, and older children were more likely to have them and to have more of them per tumor cell. In children aged 12 to 18 months, the presence of segmental chromosomal aberrations had a significant effect on event-free survival (EFS) but not on overall survival (OS). However, in children older than 18 months, there was a significant difference in OS in children with segmental chromosomal aberrations versus children without segmental chromosomal aberrations (67% vs. 100%), regardless of the histologic prognosis.[<a class="bk_pop" href="#CDR0000774921_rl_1819_7">7</a>]</p><p id="CDR0000774921__sm_CDR0000777852_1126">Segmental chromosomal aberrations are also predictive of recurrence in infants with localized unresectable or metastatic neuroblastoma without <i>MYCN</i> gene amplification.[<a class="bk_pop" href="#CDR0000774921_rl_1819_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1819_2">2</a>]</p><p id="CDR0000774921__sm_CDR0000777852_1127"><i>MYCN</i> amplification is one of the most common segmental chromosomal aberrations, detected in 16% to 25% of tumors.[<a class="bk_pop" href="#CDR0000774921_rl_1819_10">10</a>] For high-risk neuroblastoma, 40% to 50% of cases show <i>MYCN</i> amplification.[<a class="bk_pop" href="#CDR0000774921_rl_1819_11">11</a>] In all stages of disease, amplification of the <i>MYCN</i> gene strongly predicts a poorer prognosis in both time to tumor progression and OS in almost all multivariate regression analyses of prognostic factors.[<a class="bk_pop" href="#CDR0000774921_rl_1819_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1819_2">2</a>] Within the localized <i>MYCN</i>-amplified cohort, ploidy status may further predict outcome.[<a class="bk_pop" href="#CDR0000774921_rl_1819_12">12</a>] However, patients with hyperdiploid tumors with any segmental chromosomal aberrations do relatively poorly.[<a class="bk_pop" href="#CDR0000774921_rl_1819_3">3</a>]</p><p id="CDR0000774921__sm_CDR0000777852_1161">In a Children&#x02019;s Oncology Group study of <i>MYCN</i> copy number in 4,672 patients with neuroblastoma, 79% had <i>MYCN</i>&#x02013;wild-type tumors, 3% had tumors with <i>MYCN</i> gain (defined as a twofold to fourfold increase in signal by fluorescence <i>in situ</i> hybridization), and 18% had <i>MYCN</i>-amplified tumors. When individual clinical/biological features were examined, the percentage of patients with an unfavorable feature was lowest in the <i>MYCN</i>&#x02013;wild-type category, intermediate in the <i>MYCN</i>-gain category, and highest in the <i>MYCN</i>-amplified category (<i>P</i> &#x0003c; .0001), except for the 11q aberration, for which the highest rates were in the <i>MYCN</i>-gain category. Patients with non&#x02013;stage 4 disease and patients with non&#x02013;high-risk disease and <i>MYCN</i> gain had a significantly increased risk of death than did <i>MYCN</i>&#x02013;wild-type patients.[<a class="bk_pop" href="#CDR0000774921_rl_1819_13">13</a>]</p><p id="CDR0000774921__sm_CDR0000777852_1154">Most unfavorable clinical and pathobiological features are associated, to some degree, with <i>MYCN</i> amplification; in a multivariable logistic regression analysis of 7,102 International Neuroblastoma Risk Group patients, pooled segmental chromosomal aberrations and gain of 17q were the only poor prognostic features not associated with <i>MYCN</i> amplification. However, segmental chromosomal aberrations at 11q are almost mutually exclusive of diffuse <i>MYCN</i> amplification.</p></div><div id="CDR0000774921__sm_CDR0000777852_1129"><h3>Exonic mutations in neuroblastoma</h3><p id="CDR0000774921__sm_CDR0000777852_1130">Multiple reports have documented that a minority of high-risk neuroblastomas have a small number of low-incidence, recurrently mutated genes. The most commonly mutated gene is <i>ALK</i>, which is mutated in approximately 10% of patients (see below). Other genes with even lower frequencies of mutation include <i>ATRX</i>, <i>PTPN11</i>, <i>ARID1A</i>, and <i>ARID1B</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1819_14">14</a>-<a class="bk_pop" href="#CDR0000774921_rl_1819_20">20</a>] As shown in Figure 12, most neuroblastoma cases lack mutations in genes that are altered in a recurrent manner. </p><a id="CDR0000774921__sm_CDR0000777852_1145"></a><div id="CDR0000774921__sm_CDR0000777852_888" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000777943.jpg" alt="Chart showing the landscape of genetic variation in neuroblastoma." /></div><div class="caption"><p>Figure 12. Data tracks (rows) facilitate the comparison of clinical and genomic data across cases with neuroblastoma (columns). The data sources and sequencing technology used were whole-exome sequencing (WES) from whole-genome amplification (WGA) (light purple), WES from native DNA (dark purple), Illumina WGS (green), and Complete Genomics WGS (yellow). Striped blocks indicate cases analyzed using two approaches. The clinical variables included were sex (male, blue; female, pink) and age (brown spectrum). Copy number alterations indicates ploidy measured by flow cytometry (with hyperdiploid meaning DNA index &#x0003e;1) and clinically relevant copy number alterations derived from sequence data. Significantly mutated genes are those with statistically significant mutation counts given the background mutation rate, gene size, and expression in neuroblastoma. Germline indicates genes with significant numbers of germline ClinVar variants or loss-of-function cancer gene variants in our cohort. DNA repair indicates genes that may be associated with an increased mutation frequency in two apparently hypermutated tumors. Predicted effects of somatic mutations are color coded according to the legend. Reprinted by permission from Macmillan Publishers Ltd: <a href="http://www.nature.com/ng/index.html" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Nature Genetics</a> (Pugh TJ, Morozova O, Attiyeh EF, et al.: The genetic landscape of high-risk neuroblastoma. Nat Genet 45 (3): 279-84, 2013), copyright (2013).</p></div></div><p id="CDR0000774921__sm_CDR0000777852_1134"><i>ALK</i>, the exonic mutation found most commonly in neuroblastoma, is a cell surface receptor tyrosine kinase, expressed at significant levels only in developing embryonic and neonatal brains. Germline mutations in <i>ALK</i> have been identified as the major cause of hereditary neuroblastoma. Somatically acquired <i>ALK</i>-activating mutations are also found as oncogenic drivers in neuroblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_1819_19">19</a>] </p><p id="CDR0000774921__sm_CDR0000777852_1135">The presence of an <i>ALK</i> mutation correlates with significantly poorer survival in high-risk and intermediate-risk neuroblastoma patients. <i>ALK</i> mutation was examined in 1,596 diagnostic neuroblastoma samples.[<a class="bk_pop" href="#CDR0000774921_rl_1819_19">19</a>] <i>ALK</i> tyrosine kinase domain mutations occurred in 8% of samples&#x02014;at three hot spots and 13 minor sites&#x02014;and correlated significantly with poorer survival in patients with high-risk and intermediate-risk neuroblastoma. <i>ALK</i> mutations were found in 10.9% of <i>MYCN</i>-amplified tumors versus 7.2% of those without <i>MYCN</i> amplification. <i>ALK</i> mutations occurred at the highest frequency (11%) in patients older than 10 years.[<a class="bk_pop" href="#CDR0000774921_rl_1819_19">19</a>] The frequency of <i>ALK</i> aberrations was 14% in the high-risk neuroblastoma group, 6% in the intermediate-risk neuroblastoma group, and 8% in the low-risk neuroblastoma group. </p><p id="CDR0000774921__sm_CDR0000777852_1136">Small-molecule ALK kinase inhibitors such as crizotinib are being developed and tested in patients with recurrent and refractory neuroblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_1819_19">19</a>] (Refer to the <a href="/books/n/pdqcis/CDR0000062786/#CDR0000062786__811">Treatment Options Under Clinical Evaluation for Recurrent or Refractory Neuroblastoma</a> section in the PDQ summary on <a href="/books/n/pdqcis/CDR0000062786/">Neuroblastoma Treatment </a>for more information about crizotinib clinical trials.)</p><div id="CDR0000774921__sm_CDR0000777852_1149"><h4>Genomic evolution of exonic mutations</h4><p id="CDR0000774921__sm_CDR0000777852_1146">There are limited data regarding the genomic evolution of exonic mutations from diagnosis to relapse for neuroblastoma. Whole-genome sequencing was applied to 23 paired diagnostic and relapsed neuroblastomas to define somatic genetic alterations associated with relapse,[<a class="bk_pop" href="#CDR0000774921_rl_1819_21">21</a>] while a second study evaluated 16 paired diagnostic and relapsed specimens.[<a class="bk_pop" href="#CDR0000774921_rl_1819_22">22</a>] Both studies identified an increased number of mutations in the relapsed samples compared with the samples at diagnosis; this has been confirmed in a study of tumor samples sent for next-generation sequencing.[<a class="bk_pop" href="#CDR0000774921_rl_1819_23">23</a>]</p><ul id="CDR0000774921__sm_CDR0000777852_1147"><li class="half_rhythm"><div class="half_rhythm">The first study found increased incidence of mutations in genes associated with RAS-MAPK signaling at relapse than at diagnosis, with 15 of 23 relapse samples containing somatic mutations in genes involved in this pathway and each mutation consistent with pathway activation.[<a class="bk_pop" href="#CDR0000774921_rl_1819_21">21</a>] </div><div class="half_rhythm">In addition, three relapse samples showed structural alterations involving MAPK pathway genes consistent with pathway activation, so aberrations in this pathway were detected in 18 of 23 relapse samples (78%). Aberrations were found in <i>ALK</i> (n = 10), <i>NF1</i> (n = 2), and one each in <i>NRAS</i>, <i>KRAS</i>, <i>HRAS</i>, <i>BRAF</i>, <i>PTPN11</i>, and <i>FGFR1</i>. Even with deep sequencing, 7 of the 18 alterations were not detectable in the primary tumor, highlighting the evolution of mutation presumably leading to relapse and the importance of genomic evaluations of tissues obtained at relapse.</div></li><li class="half_rhythm"><div class="half_rhythm">In the second study, <i>ALK</i> mutations were not observed in either diagnostic or relapse specimens, but relapse-specific recurrent single-nucleotide variants were observed in 11 genes, including the putative <i>CHD5</i> neuroblastoma tumor suppressor gene located at chromosome 1p36.[<a class="bk_pop" href="#CDR0000774921_rl_1819_22">22</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000777852_1157">In a study of 276 neuroblastoma samples of all stages and from patients of all ages, very deep (33,000X) sequencing of two amplified <i>ALK</i> mutational hot spots revealed 4.8% clonal mutations and an additional 5% subclonal mutations, suggesting that subclonal mutations are common.[<a class="bk_pop" href="#CDR0000774921_rl_1819_24">24</a>] Deep sequencing can reveal the presence of mutations in tiny subsets of tumor cells that may be able to survive during treatment and grow to constitute a relapse.</p></div></div><div id="CDR0000774921__sm_CDR0000777852_1137"><h3>Genomic alterations promoting telomere lengthening</h3><p id="CDR0000774921__sm_CDR0000777852_1138">Lengthening of telomeres, the tips of chromosomes, promotes cell survival. Telomeres otherwise shorten with each cell replication, resulting eventually in the lack of a cell&#x02019;s ability to replicate. Low-risk neuroblastomas have little telomere lengthening activity. Aberrant genetic mechanisms for telomere lengthening have been identified for high-risk neuroblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_1819_14">14</a>,<a class="bk_pop" href="#CDR0000774921_rl_1819_15">15</a>,<a class="bk_pop" href="#CDR0000774921_rl_1819_25">25</a>] Thus far, the following three mechanisms, which appear to be mutually exclusive, have been described:</p><ul id="CDR0000774921__sm_CDR0000777852_1139"><li class="half_rhythm"><div>Chromosomal rearrangements involving a chromosomal region at 5p15.33 proximal to the <i>TERT</i> gene, which encodes the catalytic unit of telomerase, occur in approximately 25% of high-risk neuroblastoma cases and are mutually exclusive with <i>MYCN</i> amplifications and <i>ATRX</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_1819_14">14</a>,<a class="bk_pop" href="#CDR0000774921_rl_1819_15">15</a>] The rearrangements induce transcriptional upregulation of <i>TERT</i> by juxtaposing the <i>TERT</i> coding sequence with strong enhancer elements.</div></li><li class="half_rhythm"><div>Another mechanism promoting <i>TERT</i> overexpression is <i>MYCN</i> amplification,[<a class="bk_pop" href="#CDR0000774921_rl_1819_26">26</a>] which is associated with approximately 40% to 50% of high-risk neuroblastomas.</div></li><li class="half_rhythm"><div>The <i>ATRX</i> mutation or deletion is found in 10% to 20% of high-risk neuroblastomas, almost exclusively in older children,[<a class="bk_pop" href="#CDR0000774921_rl_1819_16">16</a>] and is associated with telomere lengthening by a different mechanism, termed <i>alternative lengthening of telomeres</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1819_16">16</a>,<a class="bk_pop" href="#CDR0000774921_rl_1819_25">25</a>]</div></li></ul></div><div id="CDR0000774921__sm_CDR0000777852_1148"><h3>Additional biological factors associated with prognosis</h3><div id="CDR0000774921__sm_CDR0000777852_1140"><h4>MYC and MYCN expression</h4><p id="CDR0000774921__sm_CDR0000777852_1141">Immunostaining for MYC and MYCN proteins on 357 undifferentiated/poorly differentiated neuroblastomas has demonstrated that elevated MYC/MYCN protein expression is prognostically significant.[<a class="bk_pop" href="#CDR0000774921_rl_1819_27">27</a>] Sixty-eight tumors highly expressed MYCN protein, and 81 were <i>MYCN</i> amplified. Thirty-nine tumors expressed MYC highly and were mutually exclusive of high MYCN expression. Segmental chromosomal aberrations were not examined in this study, except for <i>MYCN</i> amplification.[<a class="bk_pop" href="#CDR0000774921_rl_1819_27">27</a>]</p><ul id="CDR0000774921__sm_CDR0000777852_1156"><li class="half_rhythm"><div> Patients with favorable-histology (FH) tumors without high MYC/MYCN expression had favorable survival (3-year EFS, 89.7% &#x000b1; 5.5%; 3-year OS, 97% &#x000b1; 3.2%).</div></li><li class="half_rhythm"><div>Patients with undifferentiated or poorly differentiated histology tumors without MYC/MYCN expression had a 3-year EFS rate of 63.1% &#x000b1; 13.6% and a 3-year OS rate of 83.5% &#x000b1; 9.4%.</div></li><li class="half_rhythm"><div>Three-year EFS rates in patients with <i>MYCN</i> amplification, high MYCN expression, and high MYC expression were 48.1% &#x000b1; 11.5%, 46.2% &#x000b1; 12%, and 43.4% &#x000b1; 23.1%, respectively, and OS rates were 65.8% &#x000b1; 11.1%, 63.2% &#x000b1; 12.1%, and 63.5% &#x000b1; 19.2%, respectively.</div></li><li class="half_rhythm"><div>Further, when high expression of MYC and MYCN proteins were analyzed with other prognostic factors, including <i>MYC/MYCN</i> gene amplification, high MYC and MYCN protein expression was independent of other prognostic markers.</div></li></ul><p id="CDR0000774921__sm_CDR0000777852_1142">Most neuroblastomas with <i>MYCN</i> amplification in the International Neuroblastoma Pathology Classification system have unfavorable histology, but about 7% have FH. Of those with <i>MYCN</i> amplification and FH, most do not express MYCN, despite the gene being amplified, and have a more favorable prognosis than those that express MYCN.[<a class="bk_pop" href="#CDR0000774921_rl_1819_28">28</a>] Segmental chromosomal aberration at 11q is almost mutually exclusive of diffuse <i>MYCN</i> amplification. Rarely, <i>MYCN</i> amplification may be detected by fluorescence <i>in situ</i> hybridization in only a subclone of the tumor cells. In these cases, the clinical outcome reflects the prognostic background (i.e., age, stage, ploidy, and segmental chromosomal aberrations) of the tumor in which the heterogeneous amplification is found.[<a class="bk_pop" href="#CDR0000774921_rl_1819_29">29</a>,<a class="bk_pop" href="#CDR0000774921_rl_1819_30">30</a>]</p></div><div id="CDR0000774921__sm_CDR0000777852_1143"><h4>Neurotrophin receptor kinases</h4><p id="CDR0000774921__sm_CDR0000777852_1144">Expression of neurotrophin receptor kinases and their ligands vary between high-risk and low-risk tumors. TrkA is found on low-risk tumors, and absence of its ligand NGF is postulated to lead to spontaneous tumor regression. In contrast, TrkB is found in high-risk tumors that also express its ligand, BDNF, which promotes neuroblastoma cell growth and survival.[<a class="bk_pop" href="#CDR0000774921_rl_1819_31">31</a>]</p></div><div id="CDR0000774921__sm_CDR0000777852_1150"><h4>Immune system inhibition</h4><p id="CDR0000774921__sm_CDR0000777852_1151">Anti-GD2 antibodies, along with modulation of the immune system to enhance antineuroblastoma activity, are often used to help treat neuroblastoma. The anti-GD2 antibody (3F8), used for treating neuroblastoma exclusively at one institution, utilizes natural killer cells to kill the neuroblastoma cells. However, the natural killer cells can be inhibited by the interaction of HLA antigens and killer immunoglobulin receptor subtypes. Thus, the patient's immune system genes can help determine response to immunotherapy for neuroblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_1819_32">32</a>,<a class="bk_pop" href="#CDR0000774921_rl_1819_33">33</a>] A report on the effects of immune system genes on response to dinutuximab, a commercially available anti-GD2 antibody, awaits publication.<div class="milestone-end"></div></p><p id="CDR0000774921__1823">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062786/">Neuroblastoma Treatment</a> for information about the treatment of neuroblastoma.)</p></div></div><div id="CDR0000774921_rl_1819"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_1819_1">Cohn SL, Pearson AD, London WB, et al.: The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27 (2): 289-97, 2009. [<a href="/pmc/articles/PMC2650388/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2650388</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19047291" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19047291</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_2">Schleiermacher G, Mosseri V, London WB, et al.: Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br J Cancer 107 (8): 1418-22, 2012. [<a href="/pmc/articles/PMC3494425/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3494425</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22976801" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22976801</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_3">Janoueix-Lerosey I, Schleiermacher G, Michels E, et al.: Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 27 (7): 1026-33, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19171713" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19171713</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_4">Schleiermacher G, Michon J, Ribeiro A, et al.: Segmental chromosomal alterations lead to a higher risk of relapse in infants with MYCN-non-amplified localised unresectable/disseminated neuroblastoma (a SIOPEN collaborative study). Br J Cancer 105 (12): 1940-8, 2011. [<a href="/pmc/articles/PMC3251887/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3251887</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22146831" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22146831</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_5">Car&#x000e9;n H, Kryh H, Nethander M, et al.: High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci U S A 107 (9): 4323-8, 2010. [<a href="/pmc/articles/PMC2840092/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2840092</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20145112" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20145112</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_6">Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, et al.: Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol 28 (19): 3122-30, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20516441" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20516441</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_7">Defferrari R, Mazzocco K, Ambros IM, et al.: Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification. Br J Cancer 112 (2): 290-5, 2015. [<a href="/pmc/articles/PMC4453444/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4453444</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25356804" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25356804</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_8">Pugh TJ, Morozova O, Attiyeh EF, et al.: The genetic landscape of high-risk neuroblastoma. Nat Genet 45 (3): 279-84, 2013. [<a href="/pmc/articles/PMC3682833/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3682833</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23334666" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23334666</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_9">Depuydt P, Boeva V, Hocking TD, et al.: Genomic Amplifications and Distal 6q Loss: Novel Markers for Poor Survival in High-risk Neuroblastoma Patients. J Natl Cancer Inst : , 2018. [<a href="/pmc/articles/PMC6186524/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6186524</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29514301" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29514301</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_10">Ambros PF, Ambros IM, Brodeur GM, et al.: International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer 100 (9): 1471-82, 2009. [<a href="/pmc/articles/PMC2694415/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2694415</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19401703" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19401703</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_11">Kreissman SG, Seeger RC, Matthay KK, et al.: Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol 14 (10): 999-1008, 2013. [<a href="/pmc/articles/PMC3963485/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3963485</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23890779" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23890779</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_12">Bagatell R, Beck-Popovic M, London WB, et al.: Significance of MYCN amplification in international neuroblastoma staging system stage 1 and 2 neuroblastoma: a report from the International Neuroblastoma Risk Group database. J Clin Oncol 27 (3): 365-70, 2009. [<a href="/pmc/articles/PMC2651034/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2651034</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19047282" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19047282</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_13">Campbell K, Gastier-Foster JM, Mann M, et al.: Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: A report from the Children's Oncology Group. Cancer 123 (21): 4224-4235, 2017. [<a href="/pmc/articles/PMC5650521/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5650521</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28696504" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28696504</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_14">Peifer M, Hertwig F, Roels F, et al.: Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526 (7575): 700-4, 2015. [<a href="/pmc/articles/PMC4881306/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4881306</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26466568" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26466568</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_15">Valentijn LJ, Koster J, Zwijnenburg DA, et al.: TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 47 (12): 1411-4, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26523776" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26523776</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_16">Cheung NK, Zhang J, Lu C, et al.: Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA 307 (10): 1062-71, 2012. [<a href="/pmc/articles/PMC3527076/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3527076</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22416102" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22416102</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_17">Molenaar JJ, Koster J, Zwijnenburg DA, et al.: Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483 (7391): 589-93, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22367537" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22367537</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_18">Sausen M, Leary RJ, Jones S, et al.: Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet 45 (1): 12-7, 2013. [<a href="/pmc/articles/PMC3557959/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3557959</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23202128" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23202128</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_19">Bresler SC, Weiser DA, Huwe PJ, et al.: ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell 26 (5): 682-94, 2014. [<a href="/pmc/articles/PMC4269829/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4269829</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25517749" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25517749</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_20">Janoueix-Lerosey I, Lequin D, Brugi&#x000e8;res L, et al.: Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455 (7215): 967-70, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18923523" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18923523</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_21">Eleveld TF, Oldridge DA, Bernard V, et al.: Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet 47 (8): 864-71, 2015. [<a href="/pmc/articles/PMC4775079/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4775079</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26121087" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26121087</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_22">Schramm A, K&#x000f6;ster J, Assenov Y, et al.: Mutational dynamics between primary and relapse neuroblastomas. Nat Genet 47 (8): 872-7, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26121086" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26121086</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_23">Padovan-Merhar OM, Raman P, Ostrovnaya I, et al.: Enrichment of Targetable Mutations in the Relapsed Neuroblastoma Genome. PLoS Genet 12 (12): e1006501, 2016. [<a href="/pmc/articles/PMC5172533/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5172533</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27997549" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27997549</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_24">Bellini A, Bernard V, Leroy Q, et al.: Deep Sequencing Reveals Occurrence of Subclonal ALK Mutations in Neuroblastoma at Diagnosis. Clin Cancer Res 21 (21): 4913-21, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26059187" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26059187</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_25">Kurihara S, Hiyama E, Onitake Y, et al.: Clinical features of ATRX or DAXX mutated neuroblastoma. J Pediatr Surg 49 (12): 1835-8, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25487495" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25487495</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_26">Mac SM, D'Cunha CA, Farnham PJ: Direct recruitment of N-myc to target gene promoters. Mol Carcinog 29 (2): 76-86, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11074604" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11074604</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_27">Wang LL, Teshiba R, Ikegaki N, et al.: Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children's Oncology Group study. Br J Cancer 113 (1): 57-63, 2015. [<a href="/pmc/articles/PMC4647535/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4647535</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26035700" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26035700</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_28">Suganuma R, Wang LL, Sano H, et al.: Peripheral neuroblastic tumors with genotype-phenotype discordance: a report from the Children's Oncology Group and the International Neuroblastoma Pathology Committee. Pediatr Blood Cancer 60 (3): 363-70, 2013. [<a href="/pmc/articles/PMC3397468/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3397468</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22744966" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22744966</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_29">Bogen D, Brunner C, Walder D, et al.: The genetic tumor background is an important determinant for heterogeneous MYCN-amplified neuroblastoma. Int J Cancer 139 (1): 153-63, 2016. [<a href="/pmc/articles/PMC4949549/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4949549</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26910568" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26910568</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_30">Berbegall AP, Villam&#x000f3;n E, Piqueras M, et al.: Comparative genetic study of intratumoral heterogenous MYCN amplified neuroblastoma versus aggressive genetic profile neuroblastic tumors. Oncogene 35 (11): 1423-32, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/26119945" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26119945</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_31">Maris JM, Matthay KK: Molecular biology of neuroblastoma. J Clin Oncol 17 (7): 2264-79, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10561284" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10561284</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_32">Forlenza CJ, Boudreau JE, Zheng J, et al.: KIR3DL1 Allelic Polymorphism and HLA-B Epitopes Modulate Response to Anti-GD2 Monoclonal Antibody in Patients With Neuroblastoma. J Clin Oncol 34 (21): 2443-51, 2016. [<a href="/pmc/articles/PMC4962735/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4962735</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27069083" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27069083</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1819_33">Venstrom JM, Zheng J, Noor N, et al.: KIR and HLA genotypes are associated with disease progression and survival following autologous hematopoietic stem cell transplantation for high-risk neuroblastoma. Clin Cancer Res 15 (23): 7330-4, 2009. [<a href="/pmc/articles/PMC2788079/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2788079</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19934297" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19934297</span></a>]</div></li></ol></div></div><div id="CDR0000774921__1848"><h2 id="_CDR0000774921__1848_">Retinoblastoma</h2><p id="CDR0000774921__sm_CDR0000779398_489"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779398_6"></div>Retinoblastoma is a tumor that occurs in heritable (25%&#x02013;30%) and nonheritable (70%&#x02013;75%) forms. Heritable disease is defined by the presence of a germline mutation of the <i>RB1</i> gene. This germline mutation may have been inherited from an affected progenitor (25% of cases) or may have occurred in a germ cell before conception or <i>in utero</i> during early embryogenesis in patients with sporadic disease (75% of cases). The presence of positive family history or bilateral or multifocal disease is suggestive of heritable disease. </p><p id="CDR0000774921__sm_CDR0000779398_643">Heritable retinoblastoma may manifest as unilateral or bilateral
disease. The penetrance of the <i>RB1</i> mutation (laterality, age at diagnosis, and number of tumors) is probably dependent on concurrent genetic modifiers such as <i>MDM2</i> and <i>MDM4</i> polymorphisms.[<a class="bk_pop" href="#CDR0000774921_rl_1848_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1848_2">2</a>] All children with bilateral disease
and approximately 15% of patients with unilateral disease are presumed to have the heritable form, even though only 25% have an affected parent.</p><p id="CDR0000774921__sm_CDR0000779398_644">In heritable retinoblastoma, tumors tend to be diagnosed at a younger age than in the nonheritable form of the disease.
Unilateral retinoblastoma in children younger than 1 year raises concern for heritable disease,
whereas older children with a unilateral tumor are more likely to have the nonheritable form of the disease.[<a class="bk_pop" href="#CDR0000774921_rl_1848_3">3</a>]</p><p id="CDR0000774921__sm_CDR0000779398_645">The genomic landscape of retinoblastoma is driven by alterations in <i>RB1</i> that lead to biallelic inactivation.[<a class="bk_pop" href="#CDR0000774921_rl_1848_4">4</a>,<a class="bk_pop" href="#CDR0000774921_rl_1848_5">5</a>] A rare cause of <i>RB1</i> inactivation is chromothripsis, which may be difficult to detect by conventional methods.[<a class="bk_pop" href="#CDR0000774921_rl_1848_6">6</a>] Other recurring genomic changes that occur in a small minority of tumors include <i>BCOR</i> mutation/deletion, <i>MYCN</i> amplification, and <i>OTX2</i> amplification.[<a class="bk_pop" href="#CDR0000774921_rl_1848_4">4</a>-<a class="bk_pop" href="#CDR0000774921_rl_1848_6">6</a>] A study of 1,068 unilateral nonfamilial retinoblastoma tumors reported that a small percentage of cases (approximately 3%) lacked evidence of <i>RB1</i> loss. Approximately one-half of these cases with no evidence of <i>RB1</i> loss (representing approximately 1.5% of all unilateral nonfamilial retinoblastoma) showed <i>MYCN</i> amplification.[<a class="bk_pop" href="#CDR0000774921_rl_1848_5">5</a>] The functional status of the retinoblastoma protein (pRb) is inferred to be inactive in retinoblastoma with <i>MYCN</i> amplification. This suggests that inactivation of <i>RB1</i> by mutation or inactive pRb is a requirement for the development of retinoblastoma, independent of <i>MYCN</i> amplification.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1848_7">7</a>]</p><p id="CDR0000774921__1852">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062846/">Retinoblastoma Treatment</a> for information about the treatment of retinoblastoma.)</p><div id="CDR0000774921_rl_1848"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_1848_1">Cast&#x000e9;ra L, Sabbagh A, Dehainault C, et al.: MDM2 as a modifier gene in retinoblastoma. J Natl Cancer Inst 102 (23): 1805-8, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/21051655" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21051655</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1848_2">de Oliveira Reis AH, de Carvalho IN, de Sousa Damasceno PB, et al.: Influence of MDM2 and MDM4 on development and survival in hereditary retinoblastoma. Pediatr Blood Cancer 59 (1): 39-43, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22180099" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22180099</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1848_3">Zajaczek S, Jakubowska A, Kurzawski G, et al.: Age at diagnosis to discriminate those patients for whom constitutional DNA sequencing is appropriate in sporadic unilateral retinoblastoma. Eur J Cancer 34 (12): 1919-21, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/10023315" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10023315</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1848_4">Zhang J, Benavente CA, McEvoy J, et al.: A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481 (7381): 329-34, 2012. [<a href="/pmc/articles/PMC3289956/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3289956</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22237022" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22237022</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1848_5">Rushlow DE, Mol BM, Kennett JY, et al.: Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 14 (4): 327-34, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23498719" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23498719</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1848_6">McEvoy J, Nagahawatte P, Finkelstein D, et al.: RB1 gene inactivation by chromothripsis in human retinoblastoma. Oncotarget 5 (2): 438-50, 2014. [<a href="/pmc/articles/PMC3964219/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3964219</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24509483" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24509483</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1848_7">Ewens KG, Bhatti TR, Moran KA, et al.: Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma. Cancer Med 6 (3): 619-630, 2017. [<a href="/pmc/articles/PMC5345671/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5345671</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28211617" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28211617</span></a>]</div></li></ol></div></div><div id="CDR0000774921__1853"><h2 id="_CDR0000774921__1853_">Kidney Tumors</h2><div id="CDR0000774921__1953"><h3>Wilms Tumor</h3><p id="CDR0000774921__sm_CDR0000777841_75"><div class="milestone-start" id="CDR0000774921__sm_CDR0000777841_13"></div>Wilms tumors, similar to other pediatric embryonal neoplasms, typically arise after a limited number of genetic aberrations. One study showed the following:[<a class="bk_pop" href="#CDR0000774921_rl_1853_1">1</a>]</p><ul id="CDR0000774921__sm_CDR0000777841_76"><li class="half_rhythm"><div>Wilms tumors commonly arise through more than one genetic event.</div></li><li class="half_rhythm"><div>Wilms tumors show differences in gene expression and methylation patterns with different genetic aberrations.</div></li><li class="half_rhythm"><div>Wilms tumors have a large number of candidate driver genes, most of which are mutated in less than 5% of Wilms tumors.</div></li><li class="half_rhythm"><div>Wilms tumors have recurrent mutations in genes with common functions, with most involved in either early renal development or epigenetic regulation (e.g., chromatin modifications, transcription elongation, and miRNA).</div></li></ul><p id="CDR0000774921__sm_CDR0000777841_15">Approximately one-third of Wilms tumor cases involve mutations in <i>WT1</i>, <i>CTNNB1</i>, or <i>WTX</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1853_2">2</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_3">3</a>] Another subset of Wilms tumor cases results from mutations in miRNA processing genes (miRNAPG), including <i>DROSHA</i>, <i>DGCR8</i>, <i>DICER1</i>, and <i>XPO5</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1853_4">4</a>-<a class="bk_pop" href="#CDR0000774921_rl_1853_7">7</a>] Other genes critical for early renal development that are recurrently mutated in Wilms tumor include <i>SIX1</i> and <i>SIX2</i> (transcription factors that play key roles in early renal development),[<a class="bk_pop" href="#CDR0000774921_rl_1853_4">4</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_5">5</a>] <i>EP300</i>, <i>CREBBP</i>, and <i>MYCN</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1853_1">1</a>] Of the mutations in Wilms tumors, 30% to 50% appear to converge on the process of transcriptional elongation in renal development and include the genes <i>MLLT1</i>, <i>BCOR</i>, <i>MAP3K4</i>, <i>BRD7</i>, and <i>HDAC4</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1853_1">1</a>] Anaplastic Wilms tumor is characterized by the presence of <i>TP53</i> mutations.</p><p id="CDR0000774921__sm_CDR0000777841_21">Elevated rates of Wilms tumor are observed in a number of genetic disorders, including WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome, Beckwith-Wiedemann syndrome, hemihypertrophy, Denys-Drash syndrome, and Perlman syndrome.[<a class="bk_pop" href="#CDR0000774921_rl_1853_8">8</a>] Other genetic causes that have been observed in familial Wilms tumor cases include germline mutations in <i>REST</i> and <i>CTR9</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1853_9">9</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_10">10</a>]</p><p id="CDR0000774921__sm_CDR0000777841_22">The genomic and genetic characteristics of Wilms tumor are summarized below.</p><div id="CDR0000774921__sm_CDR0000777841_16"><h4><i>Wilms tumor 1</i> gene (<i>WT1</i>)</h4><p id="CDR0000774921__sm_CDR0000777841_18">The
<i>WT1</i> gene is located on the short arm of chromosome 11 (11p13). WT1 is a transcription factor that is required for normal genitourinary development and is important for differentiation of the renal blastema.[<a class="bk_pop" href="#CDR0000774921_rl_1853_11">11</a>] <i>WT1</i> mutations are observed in 10% to 20% of cases of sporadic Wilms tumor.[<a class="bk_pop" href="#CDR0000774921_rl_1853_2">2</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_11">11</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_12">12</a>] </p><p id="CDR0000774921__sm_CDR0000777841_65">Wilms tumor with a <i>WT1</i> mutation is characterized by the following:</p><ul id="CDR0000774921__sm_CDR0000777841_19"><li class="half_rhythm"><div>Evidence of WNT pathway activation by activating mutations in the <i>beta-catenin</i> gene (<i>CTNNB1</i>) is common.[<a class="bk_pop" href="#CDR0000774921_rl_1853_12">12</a>-<a class="bk_pop" href="#CDR0000774921_rl_1853_14">14</a>]</div></li><li class="half_rhythm"><div>Loss of heterozygosity (LOH) at 11p15 is commonly observed, as paternal uniparental disomy for chromosome 11 represents a common mechanism for losing the remaining normal <i>WT1</i> allele.[<a class="bk_pop" href="#CDR0000774921_rl_1853_12">12</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_15">15</a>]</div></li><li class="half_rhythm"><div>Nephrogenic rests are benign foci of embryonal kidney cells that abnormally persist into postnatal life. Intralobar nephrogenic rests occur in approximately 20% of Wilms tumor cases. They are observed at high rates in cases with genetic syndromes that have <i>WT1</i> mutations such as WAGR and Denys-Drash syndromes.[<a class="bk_pop" href="#CDR0000774921_rl_1853_16">16</a>] Intralobar nephrogenic rests are also observed in cases with sporadic <i>WT1</i> and <i>MLLT1</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_1853_17">17</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_18">18</a>] </div></li><li class="half_rhythm"><div><i>WT1</i> germline mutations are uncommon (2%&#x02013;4%) in nonsyndromic Wilms tumor.[<a class="bk_pop" href="#CDR0000774921_rl_1853_19">19</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_20">20</a>]</div></li><li class="half_rhythm"><div><i>WT1</i> mutations and 11p15 loss of heterozygosity were associated with relapse in patients with very low-risk Wilms tumor in one study of 56 patients who did not receive chemotherapy.[<a class="bk_pop" href="#CDR0000774921_rl_1853_21">21</a>] These findings need validation but may provide biomarkers for stratifying patients in the future.</div></li></ul><p id="CDR0000774921__sm_CDR0000777841_20">Germline <i>WT1</i> mutations are more common in children with Wilms tumor <b>and</b> one of the following:</p><ul id="CDR0000774921__sm_CDR0000777841_23"><li class="half_rhythm"><div>WAGR syndrome, Denys-Drash syndrome,[<a class="bk_pop" href="#CDR0000774921_rl_1853_22">22</a>] or Frasier syndrome.[<a class="bk_pop" href="#CDR0000774921_rl_1853_23">23</a>]</div></li><li class="half_rhythm"><div>Genitourinary anomalies, including hypospadias and cryptorchidism.</div></li><li class="half_rhythm"><div>Bilateral Wilms tumor.</div></li><li class="half_rhythm"><div>Unilateral Wilms tumor with nephrogenic rests in the contralateral kidney.</div></li><li class="half_rhythm"><div>Stromal and rhabdomyomatous differentiation.</div></li></ul><p id="CDR0000774921__sm_CDR0000777841_24">Syndromic conditions with germline <i>WT1</i> mutations include WAGR syndrome, Denys-Drash syndrome,[<a class="bk_pop" href="#CDR0000774921_rl_1853_22">22</a>] and Frasier syndrome.[<a class="bk_pop" href="#CDR0000774921_rl_1853_23">23</a>]</p><ul id="CDR0000774921__sm_CDR0000777841_25"><li class="half_rhythm"><div class="half_rhythm"><b>WAGR syndrome.</b> Children with WAGR syndrome are at high risk (approximately 50%) of developing Wilms tumor.[<a class="bk_pop" href="#CDR0000774921_rl_1853_24">24</a>] WAGR syndrome results from deletions at chromosome 11p13 that involve a set of contiguous genes that includes the <i>WT1</i> and <i>PAX6</i> genes. </div><div class="half_rhythm">Inactivating mutations or deletions in the <i>PAX6</i> gene lead to aniridia, while deletion of <i>WT1</i> confers the increased risk of Wilms tumor. Sporadic aniridia in which <i>WT1</i> is not deleted is not associated with increased risk of Wilms tumor. Accordingly, children with familial aniridia, generally occurring for many generations, and without renal abnormalities, have a normal <i>WT1</i> gene and are not at an increased risk of Wilms tumor.[<a class="bk_pop" href="#CDR0000774921_rl_1853_25">25</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_26">26</a>] </div><div class="half_rhythm">Wilms tumor in children with WAGR syndrome is characterized by an excess of bilateral disease, intralobar nephrogenic rests&#x02013;associated favorable-histology (FH) tumors of mixed cell type, and early age at diagnosis.[<a class="bk_pop" href="#CDR0000774921_rl_1853_27">27</a>] The mental retardation in WAGR syndrome may be secondary to deletion of other genes, including <i>SLC1A2</i> or <i>BDNF</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1853_28">28</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000777841_27">Germline <i>WT1</i> point mutations produce genetic syndromes that are characterized by nephropathy, 46XY disorder of sex development, and varying risks of Wilms tumor.[<a class="bk_pop" href="#CDR0000774921_rl_1853_29">29</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_30">30</a>]</p><ul id="CDR0000774921__sm_CDR0000777841_28"><li class="half_rhythm"><div class="half_rhythm"><b>Denys-Drash and Frasier syndromes.</b> Denys-Drash syndrome is characterized by nephrotic syndrome caused by diffuse mesangial sclerosis, XY pseudohermaphroditism, and increased risk of Wilms tumor (&#x0003e;90%). Frasier syndrome is characterized by progressive nephropathy caused by focal segmental glomerulosclerosis, gonadoblastoma, and XY pseudohermaphroditism.</div><div class="half_rhythm"><i>WT1</i> mutations in Denys-Drash syndrome are most often missense mutations in exons 8 and 9, which code for the DNA binding region of <i>WT1</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1853_22">22</a>] By contrast, <i>WT1</i> mutations in Frasier syndrome typically occur in intron 9 at the <i>KTS site</i>, and they affect an alternative splicing, thereby preventing production of the usually more abundant WT1 +KTS isoform.[<a class="bk_pop" href="#CDR0000774921_rl_1853_31">31</a>]</div></li></ul><p id="CDR0000774921__sm_CDR0000777841_81">Studies evaluating genotype/phenotype correlations of <i>WT1</i> mutations have shown that the risk of Wilms tumor is highest for truncating mutations (14 of 17 cases, 82%) and lower for missense mutations (27 of 67 cases, 42%). The risk is lowest for KTS splice site mutations (1 of 27 cases, 4%).[<a class="bk_pop" href="#CDR0000774921_rl_1853_29">29</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_30">30</a>] Bilateral Wilms tumor was more common in cases with <i>WT1</i>-truncating mutations (9 of 14 cases) than in cases with <i>WT1</i> missense mutations (3 of 27 cases).[<a class="bk_pop" href="#CDR0000774921_rl_1853_29">29</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_30">30</a>] These genomic studies confirm previous estimates of elevated risk of Wilms tumor for children with Denys-Drash syndrome and low risk of Wilms tumor for children with Frasier syndrome.</p><p id="CDR0000774921__sm_CDR0000777841_67">Late effects associated with WAGR syndrome and Wilms tumor include the following:</p><ul id="CDR0000774921__sm_CDR0000777841_68"><li class="half_rhythm"><div>Children with WAGR syndrome or other germline <i>WT1</i> mutations are monitored throughout their lives because they are at increased risk of
developing hypertension, nephropathy, and renal failure.[<a class="bk_pop" href="#CDR0000774921_rl_1853_32">32</a>]</div></li><li class="half_rhythm"><div>Patients with
Wilms tumor and aniridia without genitourinary abnormalities are at lower
risk but are monitored for nephropathy or renal failure.[<a class="bk_pop" href="#CDR0000774921_rl_1853_33">33</a>]</div></li><li class="half_rhythm"><div>Children with Wilms tumor and any genitourinary anomalies are also at increased risk of late renal failure and are monitored. Features associated with germline <i>WT1</i> mutations that increase the risk of developing renal failure include the following:[<a class="bk_pop" href="#CDR0000774921_rl_1853_32">32</a>]<ul id="CDR0000774921__sm_CDR0000777841_69"><li class="half_rhythm"><div> Stromal predominant histology.</div></li><li class="half_rhythm"><div>Bilateral disease.</div></li><li class="half_rhythm"><div>Intralobar nephrogenic rests.</div></li><li class="half_rhythm"><div>Wilms tumor diagnosed before age 2 years.</div></li></ul></div></li></ul><p id="CDR0000774921__sm_CDR0000777841_70">(Refer to the <a href="/books/n/pdqcis/CDR0000062789/#CDR0000062789__760">Late effects after Wilms tumor therapy</a> section of the PDQ summary on <a href="/books/n/pdqcis/CDR0000062789/">Wilms Tumor and Other Childhood Kidney Tumors Treatment</a> for more information about the late effects associated with Wilms tumor.)</p></div><div id="CDR0000774921__sm_CDR0000777841_33"><h4><i>Beta-catenin</i> gene (<i>CTNNB1</i>)</h4><p id="CDR0000774921__sm_CDR0000777841_34"><i>CTNNB1</i> is the most commonly mutated gene in Wilms tumor, reported to occur in 15% of patients with Wilms tumor.[<a class="bk_pop" href="#CDR0000774921_rl_1853_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_3">3</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_12">12</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_14">14</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_34">34</a>] These <i>CTNNB1</i> mutations result in activation of the WNT pathway, which plays a prominent role in the developing kidney.[<a class="bk_pop" href="#CDR0000774921_rl_1853_35">35</a>] <i>CTNNB1</i> mutations commonly occur with <i>WT1</i> mutations, and most cases of Wilms tumor with <i>WT1</i> mutations have a concurrent <i>CTNNB1</i> mutation.[<a class="bk_pop" href="#CDR0000774921_rl_1853_12">12</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_14">14</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_34">34</a>] Activation of beta-catenin in the presence of intact WT1 protein appears to be inadequate to promote tumor development because <i>CTNNB1</i> mutations are rarely found in the absence of a <i>WT1</i> or <i>WTX</i> mutation, except when associated with a <i>MLLT1</i> mutation.[<a class="bk_pop" href="#CDR0000774921_rl_1853_3">3</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_36">36</a>] <i>CTNNB1</i> mutations appear to be late events in Wilms tumor development because they are found in tumors but not in nephrogenic rests.[<a class="bk_pop" href="#CDR0000774921_rl_1853_17">17</a>]</p></div><div id="CDR0000774921__sm_CDR0000777841_35"><h4>Wilms tumor gene on the X chromosome (<i>WTX</i>)</h4><p id="CDR0000774921__sm_CDR0000777841_36"><i>WTX</i>, which is also called <i>FAM123B</i>, is located on the X chromosome at Xq11.1. It is altered in 15% to 20% of Wilms tumor cases.[<a class="bk_pop" href="#CDR0000774921_rl_1853_2">2</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_3">3</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_12">12</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_37">37</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_38">38</a>] Germline mutations in <i>WTX</i> cause an X-linked sclerosing bone dysplasia, osteopathia striata congenita with cranial sclerosis (<a href="http://omim.org/entry/300373" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MIM300373</a>).[<a class="bk_pop" href="#CDR0000774921_rl_1853_39">39</a>] Despite having germline <i>WTX</i> mutations, individuals with osteopathia striata congenita are not predisposed to tumor development.[<a class="bk_pop" href="#CDR0000774921_rl_1853_39">39</a>] The WTX protein appears to be involved in both the degradation of beta-catenin and in the intracellular distribution of APC protein.[<a class="bk_pop" href="#CDR0000774921_rl_1853_36">36</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_40">40</a>] <i>WTX</i> is most commonly altered by deletions involving part or all of the <i>WTX</i> gene, with deleterious point mutations occurring less commonly.[<a class="bk_pop" href="#CDR0000774921_rl_1853_2">2</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_12">12</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_37">37</a>] Most Wilms tumor cases with <i>WTX</i> alterations have epigenetic 11p15 abnormalities.[<a class="bk_pop" href="#CDR0000774921_rl_1853_12">12</a>]
</p><p id="CDR0000774921__sm_CDR0000777841_71"><i>WTX</i> alterations are equally distributed between males and females, and <i>WTX</i> inactivation has no apparent effect on clinical presentation or prognosis.[<a class="bk_pop" href="#CDR0000774921_rl_1853_2">2</a>]</p></div><div id="CDR0000774921__sm_CDR0000777841_37"><h4>Imprinting Cluster Regions (ICRs) on chromosome 11p15 (<i>WT2</i>) and Beckwith-Wiedemann syndrome</h4><p id="CDR0000774921__sm_CDR0000777841_38">A second Wilms tumor locus, <i>WT2</i>, maps to an imprinted region of chromosome 11p15.5; when it is a germline mutation, it causes Beckwith-Wiedemann syndrome. About 3% of children with Wilms tumor have germline epigenetic or genetic changes at the 11p15.5 growth regulatory locus without any clinical manifestations of overgrowth. Like children with Beckwith-Wiedemann syndrome, these children have an increased incidence of bilateral Wilms tumor or familial Wilms tumor.[<a class="bk_pop" href="#CDR0000774921_rl_1853_28">28</a>]</p><p id="CDR0000774921__sm_CDR0000777841_39">Approximately 80% of patients with Beckwith-Wiedemann syndrome have a molecular defect of the 11p15 domain.[<a class="bk_pop" href="#CDR0000774921_rl_1853_41">41</a>] Various molecular mechanisms underlying Beckwith-Wiedemann syndrome have been identified. Some of these abnormalities are genetic (germline mutations of the maternal allele of <i>CDKN1C</i>, paternal uniparental isodisomy of 11p15, or duplication of part of the 11p15 domain) but are more frequently epigenetic (loss of methylation of the maternal <i>ICR2/KvDMR1</i> or gain of methylation of the maternal <i>ICR1</i>).[<a class="bk_pop" href="#CDR0000774921_rl_1853_28">28</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_42">42</a>]</p><p id="CDR0000774921__sm_CDR0000777841_40">Several candidate genes at the <i>WT2</i> locus comprise the two independent imprinted domains <i>IGF2/H19</i> and <i>KIP2/LIT1</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1853_42">42</a>] Loss of heterozygosity, which exclusively affects the maternal chromosome, has the effect of upregulating paternally active genes and silencing maternally active ones. A loss or switch of the imprint for genes (change in methylation status) in this region has also been frequently observed and results in the same functional aberrations.[<a class="bk_pop" href="#CDR0000774921_rl_1853_28">28</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_41">41</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_42">42</a>]</p><p id="CDR0000774921__sm_CDR0000777841_41">A relationship between epigenotype and phenotype has been shown in Beckwith-Wiedemann syndrome, with a different rate of cancer in Beckwith-Wiedemann syndrome according to the type of alteration of the 11p15 region.[<a class="bk_pop" href="#CDR0000774921_rl_1853_43">43</a>] The overall tumor risk in patients with Beckwith-Wiedemann syndrome has been estimated to be between 5% and 10%, with a risk between 1% (loss of imprinting at ICR2) and 30% (gain of methylation at ICR1 and paternal 11p15 isodisomy). For patients with Beckwith-Wiedemann syndrome, the risk of developing Wilms tumor is 4.1%. Development of Wilms tumor has been reported in patients with only ICR1 gain of methylation, whereas other tumors such as neuroblastoma or hepatoblastoma were reported in patients with paternal 11p15 isodisomy.[<a class="bk_pop" href="#CDR0000774921_rl_1853_44">44</a>-<a class="bk_pop" href="#CDR0000774921_rl_1853_46">46</a>] For patients with Beckwith-Wiedemann syndrome, the relative risk of developing hepatoblastoma is 2,280 times that of the general population.[<a class="bk_pop" href="#CDR0000774921_rl_1853_47">47</a>]</p><p id="CDR0000774921__sm_CDR0000777841_42">Loss of imprinting or gene methylation is rarely found at other loci, supporting the specificity of loss of imprinting at 11p15.5.[<a class="bk_pop" href="#CDR0000774921_rl_1853_48">48</a>] Interestingly, Wilms tumor in Asian children is not associated with either nephrogenic rests or <i>IGF2</i> loss of imprinting.[<a class="bk_pop" href="#CDR0000774921_rl_1853_49">49</a>]</p><p id="CDR0000774921__sm_CDR0000777841_43">Approximately one-fifth of patients with Beckwith-Wiedemann
syndrome who develop Wilms tumor present with bilateral disease, and metachronous bilateral disease is also observed.[<a class="bk_pop" href="#CDR0000774921_rl_1853_25">25</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_47">47</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_50">50</a>] The prevalence of Beckwith-Wiedemann syndrome is about 1% among children with Wilms tumor reported to the National Wilms Tumor Study (NWTS).[<a class="bk_pop" href="#CDR0000774921_rl_1853_47">47</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_51">51</a>]</p></div><div id="CDR0000774921__sm_CDR0000777841_44"><h4>Other genes and chromosomal alterations</h4><p id="CDR0000774921__sm_CDR0000777841_45">Additional genes and chromosomal alterations that have been implicated in the pathogenesis and biology of Wilms tumor include the following:</p><ul id="CDR0000774921__sm_CDR0000777841_46"><li class="half_rhythm"><div class="half_rhythm"><b>1q.</b> Gain of chromosome 1q is associated with an inferior outcome and is the single most powerful predictor of outcome. In the presence of 1q gain, neither 1p nor 16q loss is significant.[<a class="bk_pop" href="#CDR0000774921_rl_1853_52">52</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_53">53</a>] Gain of chromosome 1q is one of the most common cytogenetic abnormalities in Wilms tumor and is observed in approximately 30% of tumors. </div><div class="half_rhythm">In an analysis of FH Wilms tumor from 1,114 patients from <a href="https://www.cancer.gov/clinicaltrials/NCT00002611" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NWTS-5 (COG-Q9401/NCT00002611)</a>, 28% of the tumors displayed 1q gain.[<a class="bk_pop" href="#CDR0000774921_rl_1853_52">52</a>] <ul id="CDR0000774921__sm_CDR0000777841_64"><li class="half_rhythm"><div>The 8-year event-free survival (EFS) rate was 77% for patients with 1q gain and 90% for those lacking 1q gain (<i>P</i> &#x0003c; .001). Within each disease stage, 1q gain was associated with inferior EFS. </div></li><li class="half_rhythm"><div>The 8-year overall survival (OS) rate was 88% for those with 1q gain and 96% for those lacking 1q gain (<i>P</i> &#x0003c; .001). OS was significantly inferior in cases with stage I disease (<i>P</i> &#x0003c; .0015) and stage IV disease (<i>P</i> = .011).</div></li></ul></div></li><li class="half_rhythm"><div class="half_rhythm"><b>16q and 1p.</b> Additional tumor-suppressor or tumor-progression genes may lie on chromosomes 16q and 1p, as evidenced by loss of heterozygosity for these regions in 17% and 11% of Wilms tumor cases, respectively.[<a class="bk_pop" href="#CDR0000774921_rl_1853_54">54</a>]<dl id="CDR0000774921__sm_CDR0000777841_51" class="temp-labeled-list"><dt>-</dt><dd><p class="no_top_margin"> In large NWTS studies, patients with tumor-specific loss of these loci had significantly worse relapse-free survival and OS rates. Combined loss of 1p and 16q are used to select FH Wilms tumor patients for more aggressive therapy in the current Children's Oncology Group (COG) study. However, a U.K. study of more than 400 patients found no significant association between 1p deletion and poor prognosis, but a poor prognosis was associated with 16q loss of heterozygosity.[<a class="bk_pop" href="#CDR0000774921_rl_1853_55">55</a>] </p></dd><dt>-</dt><dd><p class="no_top_margin">An Italian study of 125 patients, using treatment quite similar to that in the COG study, found significantly worse prognosis in those with 1p deletions but not 16q deletions.[<a class="bk_pop" href="#CDR0000774921_rl_1853_56">56</a>] </p></dd></dl></div><div class="half_rhythm">These conflicting results may arise from the greater prognostic significance of 1q gain described above. Loss of heterozygosity of 16q and 1p loses significance as independent prognostic markers in the presence of 1q gain. However, in the absence of 1q gain, loss of heterozygosity of 16q and 1p retains their adverse prognostic impact.[<a class="bk_pop" href="#CDR0000774921_rl_1853_52">52</a>] The loss of heterozygosity of 16q and 1p appears to arise from complex chromosomal events that result in 1q loss of heterozygosity or 1q gain. The change in 1q appears to be the critical tumorigenic genetic event.[<a class="bk_pop" href="#CDR0000774921_rl_1853_57">57</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>miRNAPG.</b> Mutations in selected miRNAPG are observed in approximately 20% of Wilms tumor cases and appear to perpetuate the progenitor state.[<a class="bk_pop" href="#CDR0000774921_rl_1853_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_4">4</a>-<a class="bk_pop" href="#CDR0000774921_rl_1853_7">7</a>] The products of these genes direct the maturation of miRNAs from the initial pri-miRNA transcripts to functional cytoplasmic miRNAs (refer to Figure 13).[<a class="bk_pop" href="#CDR0000774921_rl_1853_58">58</a>] The most commonly mutated miRNAPG is <i>DROSHA</i>, with a recurrent mutation (E1147K) affecting a metal-binding residue of the RNase IIIb domain, representing about 80% of <i>DROSHA</i>-mutated tumors. Other miRNAPG that are mutated in Wilms tumor include <i>DGCR8</i>, <i>DICER1</i>, <i>TARBP2</i>, <i>DIS3L2</i>, and <i>XPO5</i>. These mutations are generally mutually exclusive, and they appear to be deleterious and result in impaired expression of tumor-suppressing miRNAs. A striking sex bias was noted in mutations for <i>DGCR8</i> (located on chromosome 22q11), with 38 of 43 cases (88%) arising in girls.[<a class="bk_pop" href="#CDR0000774921_rl_1853_4">4</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_5">5</a>]</div><div class="half_rhythm">Germline mutations in miRNAPG are observed for <i>DICER1</i> and <i>DIS3L2</i>, with mutations in the former causing DICER1 syndrome and mutations in the latter causing Perlman syndrome. <ul id="CDR0000774921__sm_CDR0000777841_72"><li class="half_rhythm"><div class="half_rhythm">DICER1 syndrome is typically caused by inherited truncating mutations in <i>DICER1</i>, with tumor formation following acquisition of a missense mutation in a domain of the remaining allele of <i>DICER1</i> (the RNase IIIb domain) responsible for processing miRNAs derived from the 5p arms of pre-miRNAs.[<a class="bk_pop" href="#CDR0000774921_rl_1853_59">59</a>] Tumors associated with DICER1 syndrome include pleuropulmonary blastoma, cystic nephroma, ovarian sex cord&#x02013;stromal tumors, multinodular goiter, and embryonal rhabdomyosarcoma.[<a class="bk_pop" href="#CDR0000774921_rl_1853_59">59</a>] Wilms tumor is an uncommon presentation of the DICER1 syndrome. In one study, three families with DICER1 syndrome included children with Wilms tumor, with two of the Wilms tumor cases showing the typical second <i>DICER1</i> mutation in the RNase IIIb domain.[<a class="bk_pop" href="#CDR0000774921_rl_1853_60">60</a>] Another study identified <i>DICER1</i> mutations in 2 of 48 familial Wilms tumor families.[<a class="bk_pop" href="#CDR0000774921_rl_1853_61">61</a>] Large sequencing studies of Wilms tumor cohorts have also observed occasional cases with <i>DICER1</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_1853_5">5</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_6">6</a>]</div></li><li class="half_rhythm"><div class="half_rhythm">Perlman syndrome is a rare overgrowth disorder caused by mutations in <i>DIS3L2</i>, which encodes a ribonuclease that is responsible for degrading pre-let-7 miRNA.[<a class="bk_pop" href="#CDR0000774921_rl_1853_62">62</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_63">63</a>] The prognosis of Perlman syndrome is poor, with a high neonatal mortality rate. In a survey of published cases of Perlman syndrome (N = 28), in infants who survived beyond the neonatal period, approximately two-thirds developed Wilms tumor, and all patients showed developmental delay. Fetal macrosomia, ascites, and polyhydramnios are frequent manifestations.[<a class="bk_pop" href="#CDR0000774921_rl_1853_64">64</a>]</div><div class="half_rhythm"><div id="CDR0000774921__sm_CDR0000777841_55" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000777941.jpg" alt="Diagram showing the miRNA processing pathway, which is commonly mutated in Wilms' tumor." /></div><div class="caption"><p>Figure 13. The miRNA processing pathway is commonly mutated in Wilms tumor. Expression of mature miRNA is initiated by RNA polymerase&#x02013;mediated transcription of DNA-encoded sequences into pri-miRNA, which form a long double-stranded hairpin. This structure is then cleaved by a complex of Drosha and DGCR8 into a smaller pre-miRNA hairpin, which is exported from the nucleus and then cleaved by Dicer (an RNase) and TRBP (with specificity for dsRNA) to remove the hairpin loop and leave two single-stranded miRNAs. The functional strand binds to Argonaute (Ago2) proteins into the RNA-induced silencing complex (RISC), where it guides the complex to its target mRNA, while the nonfunctional strand is degraded. Targeting of mRNAs by this method results in mRNA silencing by mRNA cleavage, translational repression, or deadenylation. Let-7 miRNAs are a family of miRNAs highly expressed in ESCs with tumor suppressor properties. In cases in which LIN28 is overexpressed, LIN28 binds to pre-Let-7 miRNA, preventing DICER from binding and resulting in LIN28-activated polyuridylation by TUT4 or TUT7, causing reciprocal DIS3L2-mediated degradation of Let-7 pre-miRNAs. Genes involved in miRNA processing that have been associated with Wilms&#x02019; tumor are highlighted in blue (inactivating) and green (activating) and include DROSHA, DGCR8, XPO5 (encoding exportin-5), DICER1, TARBP2, DIS3L2, and LIN28. Copyright &#x000a9; 2015 <a href="http://genesdev.cshlp.org/content/29/5/467.full" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Hohenstein et al.; Published by Cold Spring Harbor Laboratory Press. Genes Dev. 2015 Mar 1; 29(5): 467&#x02013;482. doi: 10.1101/gad.256396.114</a>. This article is distributed exclusively by Cold Spring Harbor Laboratory Press under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at <a href="http://creativecommons.org/licenses/by-nc/4.0/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://creativecommons.org/licenses/by-nc/4.0/</a>.
</p></div></div></div></li></ul></div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>SIX1</i> and <i>SIX2</i>.</b>
<i>SIX1</i> and <i>SIX2</i> are highly homologous transcription factors that play key roles in early renal development and are expressed in the metanephric mesenchyme, where they maintain the mesenchymal progenitor population. The frequency of <i>SIX1</i> mutations is 3% to 4% in Wilms tumor, and the frequency of <i>SIX2</i> mutations in Wilms tumor is 1% to 3%.[<a class="bk_pop" href="#CDR0000774921_rl_1853_4">4</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_5">5</a>] Virtually all <i>SIX1</i> and <i>SIX2</i> mutations are in exon 1 and result in a glutamine-to-arginine mutation at position 177. Mutations in <i>WT1</i>, <i>WTX</i>, and <i>CTNNB1</i> are infrequent in cases with <i>SIX1/SIX2</i> or miRNAPG mutations. Conversely, <i>SIX1/SIX2</i> mutations and miRNAPG mutations tend to occur together.</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>MLLT1</i>.</b> Approximately 4% of Wilms tumor cases have mutations in the highly conserved YEATS domain of <i>MLLT1</i> (<i>ENL</i>), a gene known to be involved in transcriptional elongation by RNA polymerase II during early development.[<a class="bk_pop" href="#CDR0000774921_rl_1853_18">18</a>] The mutant MLLT1 protein shows altered binding to acetylated histone tails. Patients with <i>MLLT1</i>-mutant tumors present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests, supporting a model whereby activating <i>MLLT1</i> mutations early in renal development result in the development of Wilms tumor.</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>TP53</i> (tumor suppressor gene).</b> Most anaplastic Wilms tumor cases show mutations in the <i>TP53</i> tumor suppressor gene.[<a class="bk_pop" href="#CDR0000774921_rl_1853_65">65</a>-<a class="bk_pop" href="#CDR0000774921_rl_1853_67">67</a>] <i>TP53</i> may be useful as an unfavorable prognostic marker.[<a class="bk_pop" href="#CDR0000774921_rl_1853_65">65</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_66">66</a>] </div><div class="half_rhythm">In a study of 118 prospectively identified patients with diffuse anaplastic Wilms tumor registered on the NWTS-5 trial, 57 patients (48%) demonstrated <i>TP53</i> mutations, 13 patients (11%) demonstrated <i>TP53</i> segmental copy number loss without mutation, and 48 patients (41%) lacked both (wild-type <i>TP53</i> [wt<i>TP53</i>]). All <i>TP53</i> mutations were detected by sequencing alone. Patients with stage III or stage IV disease with wt<i>TP53</i> had a significantly lower relapse rate and mortality rate than did patients with <i>TP53</i> abnormalities (<i>P</i> = .00006 and <i>P</i> = .00007, respectively). There was no effect of TP53 status on patients with stage I or stage II tumors. In-depth analysis of a subset of 39 patients with diffuse anaplastic Wilms tumor showed that 7 patients (18%) were wt<i>TP53</i>. These tumors demonstrated gene expression evidence of p53 pathway activation. Retrospective pathology review of wt<i>TP53</i> revealed no or very low volume of anaplasia in six of seven tumors. These data support the key role of TP53 loss in the development of anaplasia in Wilms tumor and support its significant clinical influence in patients who have residual anaplastic disease after surgery.[<a class="bk_pop" href="#CDR0000774921_rl_1853_68">68</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>FBXW7</i>.</b>
<i>FBXW7</i>, a ubiquitin ligase component, is a gene that has been identified as recurrently mutated at low rates in Wilms tumor. Mutations of this gene have been associated with epithelial-type tumor histology.[<a class="bk_pop" href="#CDR0000774921_rl_1853_69">69</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>9q22.3 microdeletion syndrome.</b> Patients with 9q22.3 microdeletion syndrome have an increased risk of Wilms tumor.[<a class="bk_pop" href="#CDR0000774921_rl_1853_70">70</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_71">71</a>] The chromosomal region with germline deletion includes <i>PTCH1</i>, the gene that is mutated in Gorlin syndrome (nevoid basal cell carcinoma syndrome associated with osteosarcoma). 9q22.3 microdeletion syndrome is characterized by the clinical findings of Gorlin syndrome, as well as developmental delay and/or intellectual disability, metopic craniosynostosis, obstructive hydrocephalus, prenatal and postnatal macrosomia, and seizures.[<a class="bk_pop" href="#CDR0000774921_rl_1853_70">70</a>] Five patients who presented with Wilms tumor in the context of a constitutional 9q22.3 microdeletion have been reported.[<a class="bk_pop" href="#CDR0000774921_rl_1853_71">71</a>-<a class="bk_pop" href="#CDR0000774921_rl_1853_73">73</a>] </div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>MYCN</i>.</b>
<i>MYCN</i> copy number gain was observed in approximately 13% of Wilms tumor cases, and it was more common in anaplastic cases (7 of 23 cases, 30%) than in nonanaplastic cases (11.2%).[<a class="bk_pop" href="#CDR0000774921_rl_1853_74">74</a>] Activating mutations at codon 44 (p.P44L) were identified in approximately 4% of Wilms tumor cases.[<a class="bk_pop" href="#CDR0000774921_rl_1853_74">74</a>] Germline copy number gain at <i>MYCN</i> has been reported in a bilateral Wilms tumor case, and germline <i>MYCN</i> duplication was also reported for a child with prenatal bilateral nephroblastomatosis and a family history of nephroblastoma.[<a class="bk_pop" href="#CDR0000774921_rl_1853_75">75</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>CTR9</i>.</b> Inactivating <i>CTR9</i> germline mutations were identified in 3 of 35 familial Wilms tumor pedigrees.[<a class="bk_pop" href="#CDR0000774921_rl_1853_10">10</a>] <i>CTR9</i>, which is located at chromosome 11p15.3, is a key component of the polymerase-associated factor 1 complex (PAF1c), which has multiple roles in RNA polymerase II regulation and is implicated in embryonic organogenesis and maintenance of embryonic stem cell pluripotency.</div></li><li class="half_rhythm"><div class="half_rhythm"><b><i>REST</i>.</b> Inactivating germline mutations in <i>REST</i> (encoding RE1-silencing transcription factor) were identified in four familial Wilms tumor pedigrees.[<a class="bk_pop" href="#CDR0000774921_rl_1853_9">9</a>] REST is a transcriptional repressor that functions in cellular differentiation and embryonic development. Most <i>REST</i> mutations clustered within the portion of REST encoding the DNA-binding domain, and functional analyses showed that these mutations compromise REST transcriptional repression. When screened for <i>REST</i> mutations, 9 of 519 individuals with Wilms tumor who had no history of relatives with the disease tested positive for the mutation; some had parents who also tested positive.[<a class="bk_pop" href="#CDR0000774921_rl_1853_9">9</a>] These observations indicate that <i>REST</i> is a Wilms tumor predisposition gene associated with approximately 2% of Wilms tumor.</div></li></ul><p id="CDR0000774921__sm_CDR0000777841_53">Figure 14 summarizes the genomic landscape of a selected cohort of Wilms tumor patients selected because they experienced relapse despite showing FH.[<a class="bk_pop" href="#CDR0000774921_rl_1853_18">18</a>] The 75 FH Wilms tumor cases were clustered by unsupervised analysis of gene expression data, resulting in six clusters. Five of six <i>MLLT1</i>-mutant tumors with available gene expression data were in cluster 3, and two were accompanied by <i>CTNNB1</i> mutations. This cluster also contained four tumors with a mutation or small segment deletion of <i>WT1</i>, all of which also had either a mutation of <i>CTNNB1</i> or small segment deletion or mutation of <i>WTX</i>. It also contained a substantial number of tumors with retention of imprinting of 11p15 (including all <i>MLLT1</i>-mutant tumors). The miRNAPG-mutated cases clustered together and were mutually exclusive with both <i>MLLT1</i> and with <i>WT1</i>/<i>WTX</i>/<i>CTNNB1</i>-mutated cases.</p><a id="CDR0000774921__sm_CDR0000777841_56"></a><div id="CDR0000774921__sm_CDR0000777841_57" class="figure bk_fig"><div class="graphic"><img src="/books/NBK374260.14/bin/CDR0000777942.jpg" alt="Chart showing unsupervised analysis of gene expression data for clinically distinctive favorable histology Wilms tumor." /></div><div class="caption"><p>Figure 14. Unsupervised analysis of gene expression data. Non-negative Matrix Factorization (NMF) analysis of 75 FH Wilms tumor resulted in six clusters. Five of six <i>MLLT1</i> mutant tumors with available gene expression data occurred in NMF cluster 3, and two were accompanied by <i>CTNNB1</i> mutations. This cluster also contained a substantial number of tumors with retention of imprinting of 11p15 (including all <i>MLLT1</i>-mutant tumors), in contrast to other clusters, where most cases showed 11p15 loss of heterozygosity or retention of imprinting. Almost all miRNAPG-mutated cases were in NMF cluster 2, and most <i>WT1</i>, <i>WTX</i>, and <i>CTNNB1</i> mutations were in NMF clusters 3 and 4. Copyright &#x000a9; 2015 <a href="http://www.nature.com/ncomms/2015/151204/ncomms10013/full/ncomms10013.html" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Perlman, E. J. et al. MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology wilms tumours. Nat. Commun. 6:10013 doi: 10.1038/ncomms10013 (2015).</a> This article is distributed by Nature Publishing Group, a division of Macmillan Publishers Limited under a Creative Commons Attribution 4.0 International License, as described at <a href="http://creativecommons.org/licenses/by/4.0/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://creativecommons.org/licenses/by/4.0/</a>. <div class="milestone-end"></div></p></div></div></div></div><div id="CDR0000774921__1887"><h3>Renal Cell Carcinoma</h3><p id="CDR0000774921__sm_CDR0000777844_15"><div class="milestone-start" id="CDR0000774921__sm_CDR0000777844_13"></div>Translocation-positive carcinomas of the kidney are recognized as a distinct form of renal cell carcinoma (RCC) and may be the most common form of RCC in children, accounting for 40% to 50% of pediatric RCC.[<a class="bk_pop" href="#CDR0000774921_rl_1853_76">76</a>] In a Children's Oncology Group (COG) prospective clinical trial of 120 childhood and adolescent patients with RCC, nearly one-half of patients had translocation-positive RCC.[<a class="bk_pop" href="#CDR0000774921_rl_1853_77">77</a>] These carcinomas are characterized by translocations involving the<i> transcription factor E3</i> gene <i>(TFE3)</i> located on Xp11.2. The <i>TFE3</i> gene may partner with one of the following genes: </p><ul id="CDR0000774921__sm_CDR0000777844_16"><li class="half_rhythm"><div><i>ASPSCR</i> in t(X;17)(p11.2;q25).</div></li><li class="half_rhythm"><div><i>PRCC</i> in t(X;1)(p11.2;q21).</div></li><li class="half_rhythm"><div><i>SFPQ</i> in t(X;1)(p11.2;p34).</div></li><li class="half_rhythm"><div><i>NONO</i> in inv(X;p11.2;q12).</div></li><li class="half_rhythm"><div><i>Clathrin heavy chain (CLTC)</i> in t(X;17)(p11;q23).</div></li></ul><p id="CDR0000774921__sm_CDR0000777844_17">Another less-common translocation subtype, t(6;11)(p21;q12), involving an <i>Alpha</i>&#x02013;<i>transcription factor EB</i> (<i>TFEB</i>) gene fusion, induces overexpression of TFEB. The translocations involving <i>TFE3</i> and <i>TFEB</i> induce overexpression of these proteins, which can be identified by immunohistochemistry.[<a class="bk_pop" href="#CDR0000774921_rl_1853_78">78</a>]</p><p id="CDR0000774921__sm_CDR0000777844_18">Previous exposure to chemotherapy is the only known risk factor for the development of Xp11 translocation RCCs. In one study, the postchemotherapy interval ranged from 4 to 13 years. All reported patients received either a DNA topoisomerase II inhibitor and/or an alkylating agent.[<a class="bk_pop" href="#CDR0000774921_rl_1853_79">79</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_80">80</a>]</p><p id="CDR0000774921__sm_CDR0000777844_19">Controversy exists as to the biological behavior of translocation RCC in children and young adults. Whereas some series have suggested a good prognosis when RCC is treated with surgery alone despite presenting at a more advanced stage (III/IV) than <i>TFE</i>-RCC, a meta-analysis reported that these patients have poorer outcomes.[<a class="bk_pop" href="#CDR0000774921_rl_1853_81">81</a>-<a class="bk_pop" href="#CDR0000774921_rl_1853_83">83</a>] The outcomes for these patients are being studied in the ongoing COG <a href="https://www.cancer.gov/clinicaltrials/NCT00898365" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">AREN03B2 (NCT00898365)</a> biology and classification study. Vascular endothelial growth factor receptor&#x02013;targeted therapies and mammalian target of rapamycin (mTOR) inhibitors seem to be active in Xp11 translocation metastatic RCC.[<a class="bk_pop" href="#CDR0000774921_rl_1853_84">84</a>] Recurrences have been reported 20 to 30 years after initial resection of the translocation-associated RCC.[<a class="bk_pop" href="#CDR0000774921_rl_1853_85">85</a>] </p><p id="CDR0000774921__sm_CDR0000777844_22">Diagnosis of Xp11 translocation RCC needs to be confirmed by a molecular genetic approach, rather than using <i>TFE3</i> immunohistochemistry alone, because reported cases have lacked the translocation. There is a rare subset of RCC cases that is positive for <i>TFE3</i> and lack a <i>TFE3</i> translocation, showing an <i>ALK</i> translocation instead. This subset of cases represents a newly recognized subgroup within RCC that is estimated to involve 15% to 20% of unclassified pediatric RCC. In the eight reported cases in children aged 6 to 16 years, the following was observed:[<a class="bk_pop" href="#CDR0000774921_rl_1853_86">86</a>-<a class="bk_pop" href="#CDR0000774921_rl_1853_89">89</a>]</p><ul id="CDR0000774921__sm_CDR0000777844_23"><li class="half_rhythm"><div><i>ALK</i> was fused to <i>VCL</i> (<i>vinculin</i>) in a t(2;10)(p23;q22) translocation (n = 3). The <i>VCL</i> translocation cases all occurred in children with sickle cell trait, whereas none of the <i>TMP3</i> translocation cases did.</div></li><li class="half_rhythm"><div><i>ALK</i> was fused to <i>TPM3</i> (<i>tropomyosin 3</i>) (n = 3).</div></li><li class="half_rhythm"><div><i>ALK</i> was fused to <i>HOOK-1</i> on 1p32 (n = 1).</div></li><li class="half_rhythm"><div>t(1;2) translocation fusing <i>ALK</i> and <i>TMP3</i> (n = 1).<div class="milestone-end"></div></div></li></ul><p id="CDR0000774921__1893">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062789/">Wilms Tumor and Other Childhood Kidney Tumors</a> Treatment for information about the treatment of renal cell carcinoma.)</p></div><div id="CDR0000774921__1894"><h3>Rhabdoid Tumors of the Kidney</h3><p id="CDR0000774921__sm_CDR0000777847_15"><div class="milestone-start" id="CDR0000774921__sm_CDR0000777847_13"></div>Rhabdoid tumors in all anatomical locations have a common genetic abnormality&#x02014;loss of function of the <i>SMARCB1/INI1/SNF5/BAF47</i> gene located at chromosome 22q11.2. The following text refers to rhabdoid tumors without regard to their primary site. <i>SMARCB1</i> encodes a component of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex that has an important role in controlling gene transcription.[<a class="bk_pop" href="#CDR0000774921_rl_1853_90">90</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_91">91</a>] Loss of function occurs by deletions that lead to loss of part or all of the <i>SMARCB1</i> gene and by mutations that are commonly frameshift or nonsense mutations that lead to premature truncation of the SMARCB1 protein.[<a class="bk_pop" href="#CDR0000774921_rl_1853_91">91</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_92">92</a>] A small percentage of rhabdoid tumors are caused by alterations in <i>SMARCA4</i>, which is the primary ATPase in the SWI/SNF complex.[<a class="bk_pop" href="#CDR0000774921_rl_1853_93">93</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_94">94</a>] Exome sequencing of 35 cases of rhabdoid tumor identified a very low mutation rate, with no genes having recurring mutations other than <i>SMARCB1</i>, which appeared to contribute to tumorigenesis.[<a class="bk_pop" href="#CDR0000774921_rl_1853_95">95</a>] </p><p id="CDR0000774921__sm_CDR0000777847_16">Germline mutations of <i>SMARCB1</i> have been documented in patients with one or more primary tumors of the brain and/or kidney, consistent with a genetic predisposition to the development of rhabdoid tumors.[<a class="bk_pop" href="#CDR0000774921_rl_1853_96">96</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_97">97</a>] Approximately one-third of patients with rhabdoid tumors have germline <i>SMARCB1</i> alterations.[<a class="bk_pop" href="#CDR0000774921_rl_1853_91">91</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_98">98</a>] In most cases, the mutations are de novo and not inherited. The median age at diagnosis of children with rhabdoid tumors and a germline mutation or deletion is younger (6 months) than that of children with apparently sporadic disease (18 months).[<a class="bk_pop" href="#CDR0000774921_rl_1853_99">99</a>] Germline mosaicism has been suggested for several families with multiple affected siblings. It appears that patients with germline mutations may have the worst prognosis.[<a class="bk_pop" href="#CDR0000774921_rl_1853_100">100</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_101">101</a>] Germline mutations in <i>SMARCA4</i> have also been reported in patients with rhabdoid tumors.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1853_93">93</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_102">102</a>]</p><p id="CDR0000774921__1897">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062789/">Wilms Tumor and Other Childhood Kidney Tumors Treatment</a> for information about the treatment of rhabdoid tumor of the kidney.)</p></div><div id="CDR0000774921__1898"><h3>Clear Cell Sarcoma of the Kidney</h3><p id="CDR0000774921__1904">Clear cell sarcoma of the kidney is an uncommon renal tumor that comprises approximately 5% of all primary renal malignancies in children, and is observed most often before age 3 years. The molecular background of clear cell sarcoma of the kidney is poorly understood due to its rarity and lack of experimental models.</p><p id="CDR0000774921__sm_CDR0000777848_15"><div class="milestone-start" id="CDR0000774921__sm_CDR0000777848_13"></div>Several biological features of clear cell sarcoma of the kidney have been described, including the following:</p><ul id="CDR0000774921__sm_CDR0000777848_16"><li class="half_rhythm"><div>Internal tandem duplications in exon 15 of the <i>BCOR</i> gene (BCL6 corepressor) were reported in 100% (20 of 20 cases) of clear cell sarcoma of the kidney cases but in none of the other pediatric renal tumors evaluated.[<a class="bk_pop" href="#CDR0000774921_rl_1853_103">103</a>] Other reports have confirmed the finding of <i>BCOR</i> internal tandem duplications in clear cell sarcoma of the kidney.[<a class="bk_pop" href="#CDR0000774921_rl_1853_104">104</a>-<a class="bk_pop" href="#CDR0000774921_rl_1853_106">106</a>] Hence, <i>BCOR</i> internal tandem duplications appear to play a key role in the tumorigenesis of clear cell sarcoma of the kidney, and their identification should aid in the differential diagnosis of renal tumors.[<a class="bk_pop" href="#CDR0000774921_rl_1853_103">103</a>]</div></li><li class="half_rhythm"><div>The <i>YWHAE-NUTM2</i> fusion (involving either <i>NUTM2B</i> or <i>NUTM2E</i>) resulting from t(10;17) was reported in 12% of cases of clear cell sarcoma of the kidney.[<a class="bk_pop" href="#CDR0000774921_rl_1853_107">107</a>] The presence of the <i>YWHAE-NUTM2</i> fusion appears to be mutually exclusive with the presence of <i>BCOR</i> internal tandem duplications; this observation is based on a study of 22 cases of clear cell sarcoma of the kidney that included two cases with the <i>YWHAE-NUTM2</i> fusion and 20 cases with <i>BCOR</i> internal tandem duplications.[<a class="bk_pop" href="#CDR0000774921_rl_1853_104">104</a>] The gene expression profiles for cases with the <i>YWHAE-NUTM2</i> fusion were distinctive from those with <i>BCOR</i> internal tandem duplications.</div></li><li class="half_rhythm"><div>Evaluation of 13 clear cell sarcoma of the kidney tumors for changes in chromosome copy number, mutations, and rearrangements found a single case with the <i>YWHAE-NUTM2</i> fusion and 12 cases with <i>BCOR</i> internal tandem duplications.[<a class="bk_pop" href="#CDR0000774921_rl_1853_106">106</a>,<a class="bk_pop" href="#CDR0000774921_rl_1853_108">108</a>] No other recurrent segmental chromosomal copy number changes or somatic variants (single nucleotide or small insertion/deletion) were identified, providing further support for the role of <i>BCOR</i> internal tandem duplication as the primary oncogenic driver for clear cell sarcoma of the kidney.<div class="milestone-end"></div>[<a class="bk_pop" href="#CDR0000774921_rl_1853_108">108</a>]</div></li></ul><p id="CDR0000774921__1901">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062789/">Wilms Tumor and Other Childhood Kidney Tumors Treatment</a> for information about the treatment of clear cell tumor of the kidney.)</p></div><div id="CDR0000774921_rl_1853"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_1853_1">Gadd S, Huff V, Walz AL, et al.: A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet 49 (10): 1487-1494, 2017. [<a href="/pmc/articles/PMC5712232/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5712232</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28825729" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28825729</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_2">Wegert J, Wittmann S, Leuschner I, et al.: WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosomes Cancer 48 (12): 1102-11, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19760609" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19760609</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_3">Ruteshouser EC, Robinson SM, Huff V: Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47 (6): 461-70, 2008. [<a href="/pmc/articles/PMC4332772/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4332772</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18311776" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18311776</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_4">Walz AL, Ooms A, Gadd S, et al.: Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27 (2): 286-97, 2015. [<a href="/pmc/articles/PMC4800737/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4800737</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25670082" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25670082</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_5">Wegert J, Ishaque N, Vardapour R, et al.: Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27 (2): 298-311, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25670083" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25670083</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_6">Rakheja D, Chen KS, Liu Y, et al.: Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun 2: 4802, 2014. [<a href="/pmc/articles/PMC4159681/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4159681</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25190313" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25190313</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_7">Torrezan GT, Ferreira EN, Nakahata AM, et al.: Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun 5: 4039, 2014. [<a href="/pmc/articles/PMC4062040/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4062040</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24909261" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24909261</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_8">Dome JS, Huff V: Wilms Tumor Predisposition. In: Pagon RA, Adam MP, Bird TD, et al., eds.: GeneReviews. Seattle, WA: University of Washington, 1993-2018, pp. <a href="https://www.ncbi.nlm.nih.gov/books/NBK1294/" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online</a>. Last accessed August 22, 2018. [<a href="/pmc/articles/PMC1294/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1294</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20301471" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20301471</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_9">Mahamdallie SS, Hanks S, Karlin KL, et al.: Mutations in the transcriptional repressor REST predispose to Wilms tumor. Nat Genet 47 (12): 1471-4, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26551668" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26551668</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_10">Hanks S, Perdeaux ER, Seal S, et al.: Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour. Nat Commun 5: 4398, 2014. [<a href="/pmc/articles/PMC4143912/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4143912</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25099282" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25099282</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_11">Huff V: Wilms tumor genetics. Am J Med Genet 79 (4): 260-7, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9781905" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9781905</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_12">Scott RH, Murray A, Baskcomb L, et al.: Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 3 (3): 327-35, 2012. [<a href="/pmc/articles/PMC3359888/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3359888</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22470196" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22470196</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_13">Corbin M, de Reyni&#x000e8;s A, Rickman DS, et al.: WNT/beta-catenin pathway activation in Wilms tumors: a unifying mechanism with multiple entries? Genes Chromosomes Cancer 48 (9): 816-27, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19530245" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19530245</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_14">Maiti S, Alam R, Amos CI, et al.: Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res 60 (22): 6288-92, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/11103785" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11103785</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_15">Gadd S, Huff V, Huang CC, et al.: Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children's Oncology Group Study. Neoplasia 14 (8): 742-56, 2012. [<a href="/pmc/articles/PMC3431181/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3431181</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22952427" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22952427</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_16">Breslow NE, Beckwith JB, Perlman EJ, et al.: Age distributions, birth weights, nephrogenic rests, and heterogeneity in the pathogenesis of Wilms tumor. Pediatr Blood Cancer 47 (3): 260-7, 2006. [<a href="/pmc/articles/PMC1543666/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1543666</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16700047" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16700047</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_17">Fukuzawa R, Heathcott RW, More HE, et al.: Sequential WT1 and CTNNB1 mutations and alterations of beta-catenin localisation in intralobar nephrogenic rests and associated Wilms tumours: two case studies. J Clin Pathol 60 (9): 1013-6, 2007. [<a href="/pmc/articles/PMC1972432/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1972432</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17172473" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17172473</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_18">Perlman EJ, Gadd S, Arold ST, et al.: MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours. Nat Commun 6: 10013, 2015. [<a href="/pmc/articles/PMC4686660/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4686660</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26635203" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26635203</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_19">Diller L, Ghahremani M, Morgan J, et al.: Constitutional WT1 mutations in Wilms' tumor patients. J Clin Oncol 16 (11): 3634-40, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9817285" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9817285</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_20">Little SE, Hanks SP, King-Underwood L, et al.: Frequency and heritability of WT1 mutations in nonsyndromic Wilms' tumor patients: a UK Children's Cancer Study Group Study. J Clin Oncol 22 (20): 4140-6, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15483024" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15483024</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_21">Perlman EJ, Grundy PE, Anderson JR, et al.: WT1 mutation and 11P15 loss of heterozygosity predict relapse in very low-risk wilms tumors treated with surgery alone: a children's oncology group study. J Clin Oncol 29 (6): 698-703, 2011. [<a href="/pmc/articles/PMC3056654/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3056654</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21189373" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21189373</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_22">Pelletier J, Bruening W, Kashtan CE, et al.: Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67 (2): 437-47, 1991. [<a href="https://pubmed.ncbi.nlm.nih.gov/1655284" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 1655284</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_23">Barbosa AS, Hadjiathanasiou CG, Theodoridis C, et al.: The same mutation affecting the splicing of WT1 gene is present on Frasier syndrome patients with or without Wilms' tumor. Hum Mutat 13 (2): 146-53, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10094551" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10094551</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_24">Scott RH, Stiller CA, Walker L, et al.: Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet 43 (9): 705-15, 2006. [<a href="/pmc/articles/PMC2564568/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2564568</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16690728" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16690728</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_25">Green DM, Breslow NE, Beckwith JB, et al.: Screening of children with hemihypertrophy, aniridia, and Beckwith-Wiedemann syndrome in patients with Wilms tumor: a report from the National Wilms Tumor Study. Med Pediatr Oncol 21 (3): 188-92, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/8095320" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8095320</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_26">Scott RH, Walker L, Olsen &#x000d8;E, et al.: Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice. Arch Dis Child 91 (12): 995-9, 2006. [<a href="/pmc/articles/PMC2083016/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2083016</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16857697" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16857697</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_27">Breslow NE, Norris R, Norkool PA, et al.: Characteristics and outcomes of children with the Wilms tumor-Aniridia syndrome: a report from the National Wilms Tumor Study Group. J Clin Oncol 21 (24): 4579-85, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/14673045" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14673045</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_28">Scott RH, Douglas J, Baskcomb L, et al.: Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet 40 (11): 1329-34, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18836444" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18836444</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_29">Lipska BS, Ranchin B, Iatropoulos P, et al.: Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int 85 (5): 1169-78, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24402088" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24402088</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_30">Lehnhardt A, Karnatz C, Ahlenstiel-Grunow T, et al.: Clinical and molecular characterization of patients with heterozygous mutations in wilms tumor suppressor gene 1. Clin J Am Soc Nephrol 10 (5): 825-31, 2015. [<a href="/pmc/articles/PMC4422247/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4422247</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25818337" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25818337</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_31">Barbaux S, Niaudet P, Gubler MC, et al.: Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17 (4): 467-70, 1997. [<a href="https://pubmed.ncbi.nlm.nih.gov/9398852" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9398852</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_32">Lange J, Peterson SM, Takashima JR, et al.: Risk factors for end stage renal disease in non-WT1-syndromic Wilms tumor. J Urol 186 (2): 378-86, 2011. [<a href="/pmc/articles/PMC3133859/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3133859</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21683387" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21683387</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_33">Breslow NE, Takashima JR, Ritchey ML, et al.: Renal failure in the Denys-Drash and Wilms' tumor-aniridia syndromes. Cancer Res 60 (15): 4030-2, 2000. [<a href="https://pubmed.ncbi.nlm.nih.gov/10945603" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10945603</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_34">Koesters R, Ridder R, Kopp-Schneider A, et al.: Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms' tumors. Cancer Res 59 (16): 3880-2, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/10463574" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10463574</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_35">Koesters R, Niggli F, von Knebel Doeberitz M, et al.: Nuclear accumulation of beta-catenin protein in Wilms' tumours. J Pathol 199 (1): 68-76, 2003. [<a href="https://pubmed.ncbi.nlm.nih.gov/12474228" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12474228</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_36">Major MB, Camp ND, Berndt JD, et al.: Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 316 (5827): 1043-6, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17510365" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17510365</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_37">Rivera MN, Kim WJ, Wells J, et al.: An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315 (5812): 642-5, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17204608" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17204608</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_38">Fukuzawa R, Anaka MR, Weeks RJ, et al.: Canonical WNT signalling determines lineage specificity in Wilms tumour. Oncogene 28 (8): 1063-75, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19137020" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19137020</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_39">Jenkins ZA, van Kogelenberg M, Morgan T, et al.: Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet 41 (1): 95-100, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19079258" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19079258</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_40">Grohmann A, Tanneberger K, Alzner A, et al.: AMER1 regulates the distribution of the tumor suppressor APC between microtubules and the plasma membrane. J Cell Sci 120 (Pt 21): 3738-47, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17925383" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17925383</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_41">Satoh Y, Nakadate H, Nakagawachi T, et al.: Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms' tumours. Br J Cancer 95 (4): 541-7, 2006. [<a href="/pmc/articles/PMC2360663/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2360663</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16909133" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16909133</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_42">Algar EM, St Heaps L, Darmanian A, et al.: Paternally inherited submicroscopic duplication at 11p15.5 implicates insulin-like growth factor II in overgrowth and Wilms' tumorigenesis. Cancer Res 67 (5): 2360-5, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17325026" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17325026</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_43">Lennerz JK, Timmerman RJ, Grange DK, et al.: Addition of H19 'loss of methylation testing' for Beckwith-Wiedemann syndrome (BWS) increases the diagnostic yield. J Mol Diagn 12 (5): 576-88, 2010. [<a href="/pmc/articles/PMC2928421/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2928421</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20616360" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20616360</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_44">Bliek J, Gicquel C, Maas S, et al.: Epigenotyping as a tool for the prediction of tumor risk and tumor type in patients with Beckwith-Wiedemann syndrome (BWS). J Pediatr 145 (6): 796-9, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15580204" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15580204</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_45">Rump P, Zeegers MP, van Essen AJ: Tumor risk in Beckwith-Wiedemann syndrome: A review and meta-analysis. Am J Med Genet A 136 (1): 95-104, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15887271" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15887271</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_46">Brioude F, Lacoste A, Netchine I, et al.: Beckwith-Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm Res Paediatr 80 (6): 457-65, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/24335096" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24335096</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_47">DeBaun MR, Tucker MA: Risk of cancer during the first four years of life in children from The Beckwith-Wiedemann Syndrome Registry. J Pediatr 132 (3 Pt 1): 398-400, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9544889" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9544889</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_48">Bjornsson HT, Brown LJ, Fallin MD, et al.: Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst 99 (16): 1270-3, 2007. [<a href="/pmc/articles/PMC5533193/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5533193</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17686827" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17686827</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_49">Fukuzawa R, Breslow NE, Morison IM, et al.: Epigenetic differences between Wilms' tumours in white and east-Asian children. Lancet 363 (9407): 446-51, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/14962525" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14962525</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_50">DeBaun MR, Siegel MJ, Choyke PL: Nephromegaly in infancy and early childhood: a risk factor for Wilms tumor in Beckwith-Wiedemann syndrome. J Pediatr 132 (3 Pt 1): 401-4, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9544890" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9544890</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_51">Breslow N, Olshan A, Beckwith JB, et al.: Epidemiology of Wilms tumor. Med Pediatr Oncol 21 (3): 172-81, 1993. [<a href="https://pubmed.ncbi.nlm.nih.gov/7680412" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7680412</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_52">Gratias EJ, Dome JS, Jennings LJ, et al.: Association of Chromosome 1q Gain With Inferior Survival in Favorable-Histology Wilms Tumor: A Report From the Children's Oncology Group. J Clin Oncol 34 (26): 3189-94, 2016. [<a href="/pmc/articles/PMC5012705/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5012705</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27400937" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27400937</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_53">Chagtai T, Zill C, Dainese L, et al.: Gain of 1q As a Prognostic Biomarker in Wilms Tumors (WTs) Treated With Preoperative Chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 Trial: A SIOP Renal Tumours Biology Consortium Study. J Clin Oncol 34 (26): 3195-203, 2016. [<a href="/pmc/articles/PMC5505170/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5505170</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27432915" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27432915</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_54">Grundy PE, Breslow NE, Li S, et al.: Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 23 (29): 7312-21, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/16129848" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16129848</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_55">Messahel B, Williams R, Ridolfi A, et al.: Allele loss at 16q defines poorer prognosis Wilms tumour irrespective of treatment approach in the UKW1-3 clinical trials: a Children's Cancer and Leukaemia Group (CCLG) Study. Eur J Cancer 45 (5): 819-26, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19231157" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19231157</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_56">Spreafico F, Gamba B, Mariani L, et al.: Loss of heterozygosity analysis at different chromosome regions in Wilms tumor confirms 1p allelic loss as a marker of worse prognosis: a study from the Italian Association of Pediatric Hematology and Oncology. J Urol 189 (1): 260-6, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23174227" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23174227</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_57">Gratias EJ, Jennings LJ, Anderson JR, et al.: Gain of 1q is associated with inferior event-free and overall survival in patients with favorable histology Wilms tumor: a report from the Children's Oncology Group. Cancer 119 (21): 3887-94, 2013. [<a href="/pmc/articles/PMC4362793/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4362793</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23983061" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23983061</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_58">Hohenstein P, Pritchard-Jones K, Charlton J: The yin and yang of kidney development and Wilms' tumors. Genes Dev 29 (5): 467-82, 2015. [<a href="/pmc/articles/PMC4358399/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4358399</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25737276" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25737276</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_59">Foulkes WD, Priest JR, Duchaine TF: DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 14 (10): 662-72, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25176334" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25176334</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_60">Wu MK, Sabbaghian N, Xu B, et al.: Biallelic DICER1 mutations occur in Wilms tumours. J Pathol 230 (2): 154-64, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/23620094" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23620094</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_61">Palculict TB, Ruteshouser EC, Fan Y, et al.: Identification of germline DICER1 mutations and loss of heterozygosity in familial Wilms tumour. J Med Genet 53 (6): 385-8, 2016. [<a href="/pmc/articles/PMC4866907/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4866907</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26566882" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26566882</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_62">Astuti D, Morris MR, Cooper WN, et al.: Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat Genet 44 (3): 277-84, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22306653" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22306653</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_63">Chang HM, Triboulet R, Thornton JE, et al.: A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497 (7448): 244-8, 2013. [<a href="/pmc/articles/PMC3651781/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3651781</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23594738" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23594738</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_64">Alessandri JL, Cuillier F, Ramful D, et al.: Perlman syndrome: report, prenatal findings and review. Am J Med Genet A 146A (19): 2532-7, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18780370" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18780370</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_65">Bardeesy N, Falkoff D, Petruzzi MJ, et al.: Anaplastic Wilms' tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet 7 (1): 91-7, 1994. [<a href="https://pubmed.ncbi.nlm.nih.gov/8075648" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8075648</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_66">el Bahtimi R, Hazen-Martin DJ, Re GG, et al.: Immunophenotype, mRNA expression, and gene structure of p53 in Wilms' tumors. Mod Pathol 9 (3): 238-44, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8685221" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8685221</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_67">Wallkamm V, D&#x000f6;rlich R, Rahm K, et al.: Live imaging of Xwnt5A-ROR2 complexes. PLoS One 9 (10): e109428, 2014. [<a href="/pmc/articles/PMC4196911/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4196911</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25313906" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25313906</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_68">Ooms AH, Gadd S, Gerhard DS, et al.: Significance of TP53 Mutation in Wilms Tumors with Diffuse Anaplasia: A Report from the Children's Oncology Group. Clin Cancer Res 22 (22): 5582-5591, 2016. [<a href="/pmc/articles/PMC5290091/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5290091</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27702824" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27702824</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_69">Williams RD, Al-Saadi R, Chagtai T, et al.: Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms' tumor. Clin Cancer Res 16 (7): 2036-45, 2010. [<a href="/pmc/articles/PMC5122447/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5122447</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20332316" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20332316</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_70">Muller E, Hudgins L: 9q22.3 Microdeletion. In: Pagon RA, Adam MP, Bird TD, et al., eds.: GeneReviews. Seattle, WA: University of Washington, 1993-2018, pp. <a href="https://www.ncbi.nlm.nih.gov/books/NBK61984/" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Available online</a>. Last accessed August 22, 2018.</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_71">Isidor B, Bourdeaut F, Lafon D, et al.: Wilms' tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas. Eur J Hum Genet 21 (7): 784-7, 2013. [<a href="/pmc/articles/PMC3722950/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3722950</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23169491" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23169491</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_72">Garavelli L, Piemontese MR, Cavazza A, et al.: Multiple tumor types including leiomyoma and Wilms tumor in a patient with Gorlin syndrome due to 9q22.3 microdeletion encompassing the PTCH1 and FANC-C loci. Am J Med Genet A 161A (11): 2894-901, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/24124115" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24124115</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_73">Cajaiba MM, Bale AE, Alvarez-Franco M, et al.: Rhabdomyosarcoma, Wilms tumor, and deletion of the patched gene in Gorlin syndrome. Nat Clin Pract Oncol 3 (10): 575-80, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/17019435" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17019435</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_74">Williams RD, Chagtai T, Alcaide-German M, et al.: Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget 6 (9): 7232-43, 2015. [<a href="/pmc/articles/PMC4466681/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4466681</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25749049" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25749049</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_75">Fievet A, Belaud-Rotureau MA, Dugay F, et al.: Involvement of germline DDX1-MYCN duplication in inherited nephroblastoma. Eur J Med Genet 56 (12): 643-7, 2013. [<a href="https://pubmed.ncbi.nlm.nih.gov/24161495" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24161495</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_76">Geller JI, Dome JS: Local lymph node involvement does not predict poor outcome in pediatric renal cell carcinoma. Cancer 101 (7): 1575-83, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15378495" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15378495</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_77">Geller JI, Ehrlich PF, Cost NG, et al.: Characterization of adolescent and pediatric renal cell carcinoma: A report from the Children's Oncology Group study AREN03B2. Cancer 121 (14): 2457-64, 2015. [<a href="/pmc/articles/PMC4588054/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4588054</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25845370" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25845370</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_78">Argani P, Hicks J, De Marzo AM, et al.: Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers. Am J Surg Pathol 34 (9): 1295-303, 2010. [<a href="/pmc/articles/PMC3449149/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3449149</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20679884" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20679884</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_79">Argani P, La&#x000e9; M, Ballard ET, et al.: Translocation carcinomas of the kidney after chemotherapy in childhood. J Clin Oncol 24 (10): 1529-34, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16575003" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16575003</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_80">Ramphal R, Pappo A, Zielenska M, et al.: Pediatric renal cell carcinoma: clinical, pathologic, and molecular abnormalities associated with the members of the mit transcription factor family. Am J Clin Pathol 126 (3): 349-64, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16880148" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16880148</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_81">Geller JI, Argani P, Adeniran A, et al.: Translocation renal cell carcinoma: lack of negative impact due to lymph node spread. Cancer 112 (7): 1607-16, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18278810" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18278810</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_82">Camparo P, Vasiliu V, Molinie V, et al.: Renal translocation carcinomas: clinicopathologic, immunohistochemical, and gene expression profiling analysis of 31 cases with a review of the literature. Am J Surg Pathol 32 (5): 656-70, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18344867" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18344867</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_83">Qiu Rao, Bing Guan, Zhou XJ: Xp11.2 Translocation renal cell carcinomas have a poorer prognosis than non-Xp11.2 translocation carcinomas in children and young adults: a meta-analysis. Int J Surg Pathol 18 (6): 458-64, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20643670" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20643670</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_84">Malouf GG, Camparo P, Oudard S, et al.: Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): a report from the Juvenile RCC Network. Ann Oncol 21 (9): 1834-8, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20154303" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20154303</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_85">Rais-Bahrami S, Drabick JJ, De Marzo AM, et al.: Xp11 translocation renal cell carcinoma: delayed but massive and lethal metastases of a chemotherapy-associated secondary malignancy. Urology 70 (1): 178.e3-6, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17656236" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17656236</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_86">Thorner PS, Shago M, Marrano P, et al.: TFE3-positive renal cell carcinomas are not always Xp11 translocation carcinomas: Report of a case with a TPM3-ALK translocation. Pathol Res Pract 212 (10): 937-942, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/27450657" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27450657</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_87">Cajaiba MM, Jennings LJ, Rohan SM, et al.: ALK-rearranged renal cell carcinomas in children. Genes Chromosomes Cancer 55 (5): 442-51, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/26773439" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26773439</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_88">Smith NE, Deyrup AT, Mari&#x000f1;o-Enriquez A, et al.: VCL-ALK renal cell carcinoma in children with sickle-cell trait: the eighth sickle-cell nephropathy? Am J Surg Pathol 38 (6): 858-63, 2014. [<a href="/pmc/articles/PMC4352307/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4352307</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24698962" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24698962</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_89">Cajaiba MM, Jennings LJ, George D, et al.: Expanding the spectrum of ALK-rearranged renal cell carcinomas in children: Identification of a novel HOOK1-ALK fusion transcript. Genes Chromosomes Cancer 55 (10): 814-7, 2016. [<a href="/pmc/articles/PMC4980203/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4980203</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27225638" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27225638</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_90">Imbalzano AN, Jones SN: Snf5 tumor suppressor couples chromatin remodeling, checkpoint control, and chromosomal stability. Cancer Cell 7 (4): 294-5, 2005. [<a href="https://pubmed.ncbi.nlm.nih.gov/15837618" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15837618</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_91">Eaton KW, Tooke LS, Wainwright LM, et al.: Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 56 (1): 7-15, 2011. [<a href="/pmc/articles/PMC3086793/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3086793</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21108436" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21108436</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_92">Versteege I, S&#x000e9;venet N, Lange J, et al.: Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394 (6689): 203-6, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9671307" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9671307</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_93">Schneppenheim R, Fr&#x000fc;hwald MC, Gesk S, et al.: Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet 86 (2): 279-84, 2010. [<a href="/pmc/articles/PMC2820190/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2820190</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20137775" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20137775</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_94">Hasselblatt M, Gesk S, Oyen F, et al.: Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am J Surg Pathol 35 (6): 933-5, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21566516" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21566516</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_95">Lee RS, Stewart C, Carter SL, et al.: A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest 122 (8): 2983-8, 2012. [<a href="/pmc/articles/PMC3408754/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3408754</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22797305" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22797305</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_96">Biegel JA, Zhou JY, Rorke LB, et al.: Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59 (1): 74-9, 1999. [<a href="https://pubmed.ncbi.nlm.nih.gov/9892189" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9892189</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_97">Biegel JA: Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg Focus 20 (1): E11, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16459991" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16459991</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_98">Bourdeaut F, Lequin D, Brugi&#x000e8;res L, et al.: Frequent hSNF5/INI1 germline mutations in patients with rhabdoid tumor. Clin Cancer Res 17 (1): 31-8, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21208904" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21208904</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_99">Geller JI, Roth JJ, Biegel JA: Biology and Treatment of Rhabdoid Tumor. Crit Rev Oncog 20 (3-4): 199-216, 2015. [<a href="/pmc/articles/PMC6087667/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6087667</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26349416" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26349416</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_100">Janson K, Nedzi LA, David O, et al.: Predisposition to atypical teratoid/rhabdoid tumor due to an inherited INI1 mutation. Pediatr Blood Cancer 47 (3): 279-84, 2006. [<a href="https://pubmed.ncbi.nlm.nih.gov/16261613" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16261613</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_101">S&#x000e9;venet N, Sheridan E, Amram D, et al.: Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 65 (5): 1342-8, 1999. [<a href="/pmc/articles/PMC1288286/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1288286</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10521299" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10521299</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_102">Hasselblatt M, Nagel I, Oyen F, et al.: SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol 128 (3): 453-6, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/25060813" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25060813</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_103">Ueno-Yokohata H, Okita H, Nakasato K, et al.: Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat Genet 47 (8): 861-3, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/26098867" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26098867</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_104">Karlsson J, Valind A, Gisselsson D: BCOR internal tandem duplication and YWHAE-NUTM2B/E fusion are mutually exclusive events in clear cell sarcoma of the kidney. Genes Chromosomes Cancer 55 (2): 120-3, 2016. [<a href="https://pubmed.ncbi.nlm.nih.gov/26493387" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26493387</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_105">Astolfi A, Melchionda F, Perotti D, et al.: Whole transcriptome sequencing identifies BCOR internal tandem duplication as a common feature of clear cell sarcoma of the kidney. Oncotarget 6 (38): 40934-9, 2015. [<a href="/pmc/articles/PMC4747379/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4747379</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26516930" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26516930</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_106">Roy A, Kumar V, Zorman B, et al.: Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat Commun 6: 8891, 2015. [<a href="/pmc/articles/PMC4660214/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4660214</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26573325" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26573325</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_107">O'Meara E, Stack D, Lee CH, et al.: Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J Pathol 227 (1): 72-80, 2012. [<a href="https://pubmed.ncbi.nlm.nih.gov/22294382" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22294382</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1853_108">Gooskens SL, Gadd S, Guidry Auvil JM, et al.: TCF21 hypermethylation in genetically quiescent clear cell sarcoma of the kidney. Oncotarget 6 (18): 15828-41, 2015. [<a href="/pmc/articles/PMC4599240/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4599240</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26158413" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26158413</span></a>]</div></li></ol></div></div><div id="CDR0000774921__1912"><h2 id="_CDR0000774921__1912_">Melanoma</h2><p id="CDR0000774921__sm_CDR0000779399_7"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779399_6"></div>Melanoma-related conditions with malignant potential that arise in the pediatric population can be classified into the following three general groups:[<a class="bk_pop" href="#CDR0000774921_rl_1912_1">1</a>]</p><ul id="CDR0000774921__sm_CDR0000779399_844"><li class="half_rhythm"><div>Large/giant congenital melanocytic nevus.</div></li><li class="half_rhythm"><div>Spitzoid melanocytic tumors ranging from atypical Spitz tumors to spitzoid melanomas.</div></li><li class="half_rhythm"><div>Melanoma arising in older adolescents that shares characteristics with adult melanoma (i.e., conventional melanoma). </div></li></ul><p id="CDR0000774921__sm_CDR0000779399_845">The genomic characteristics of each tumor are summarized in Table 5.</p><p id="CDR0000774921__sm_CDR0000779399_846">The genomic landscape of conventional melanoma in children is represented by many of the genomic alterations that are found in adults with melanoma.[<a class="bk_pop" href="#CDR0000774921_rl_1912_1">1</a>] A report from the Pediatric Cancer Genome Project observed that 15 cases of conventional melanoma had a high burden of somatic single-nucleotide variations, <i>TERT</i> promoter mutations (12 of 13), and activating <i>BRAF</i> V600 mutations (13 of 15), as well as a mutational spectrum signature consistent with ultraviolet light damage. In addition, two-thirds of the cases had <i>MC1R</i> variants associated with an increased susceptibility to melanoma.</p><p id="CDR0000774921__sm_CDR0000779399_847">The genomic landscape of spitzoid melanomas is characterized by kinase gene fusions involving various genes, including <i>RET</i>, <i>ROS1</i>, <i>NTRK1</i>, <i>ALK</i>, <i>MET</i>, and <i>BRAF</i>.[<a class="bk_pop" href="#CDR0000774921_rl_1912_2">2</a>-<a class="bk_pop" href="#CDR0000774921_rl_1912_4">4</a>] These fusion genes have been reported in approximately 50% of cases and occur in a mutually exclusive manner.[<a class="bk_pop" href="#CDR0000774921_rl_1912_1">1</a>,<a class="bk_pop" href="#CDR0000774921_rl_1912_3">3</a>] <i>TERT</i> promoter mutations are uncommon in spitzoid melanocytic lesions and were observed in only 4 of 56 patients evaluated in one series. However, each of the four cases with <i>TERT</i> promoter mutations experienced hematogenous metastases and died of their disease. This finding supports the potential of <i>TERT</i> promoter mutations in predicting aggressive clinical behavior in children with spitzoid melanocytic neoplasms, but additional study is needed to define the role of wild-type <i>TERT</i> promoter status in predicting clinical behavior in patients with primary site spitzoid tumors.</p><p id="CDR0000774921__sm_CDR0000779399_848">Large congenital melanocytic nevi are reported to have activating <i>NRAS</i> Q61 mutations with no other recurring mutations noted.[<a class="bk_pop" href="#CDR0000774921_rl_1912_5">5</a>] Somatic mosaicism for <i>NRAS</i> Q61 mutations has also been reported in patients with multiple congenital melanocytic nevi and neuromelanosis.[<a class="bk_pop" href="#CDR0000774921_rl_1912_6">6</a>]</p><div id="CDR0000774921__sm_CDR0000779399_843" class="table"><h3><span class="title">Table 5. Characteristics of Melanocytic Lesions</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK374260.14/table/CDR0000774921__sm_CDR0000779399_843/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000774921__sm_CDR0000779399_843_lrgtbl__"><table class="no_top_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Tumor
</th><th colspan="1" rowspan="1" style="vertical-align:top;">Affected Gene
</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Melanoma</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>BRAF</i>, <i>NRAS</i>, <i>KIT, NF1</i></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Spitzoid melanoma</td><td colspan="1" rowspan="1" style="vertical-align:top;">Kinase fusions (<i>RET</i>, <i>ROS</i>, <i>MET</i>, <i>ALK</i>, <i>BRAF</i>, <i>NTRK1</i>); <i>BAP1</i> loss in the presence of <i>BRAF</i> mutation</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Spitz nevus</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>HRAS</i>; <i>BRAF</i> and <i>NRAS</i> (uncommon); kinase fusions (<i>ROS</i>, <i>ALK</i>, <i>NTRK1</i>, <i>BRAF</i>, <i>RET</i>)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Acquired nevus</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>BRAF</i></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Dysplastic nevus</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>BRAF</i>, <i>NRAS</i></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Blue nevus</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>GNAQ</i></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Ocular melanoma</td><td colspan="1" rowspan="1" style="vertical-align:top;"><i>GNAQ</i></td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Congenital nevi
</td><td colspan="1" rowspan="1" style="vertical-align:top;">
<i>NRAS
<div class="milestone-end"></div></i></td></tr></tbody></table></div></div><p id="CDR0000774921__1925">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062872/">Unusual Cancers of Childhood Treatment</a> for information about the treatment of childhood melanoma.)</p><div id="CDR0000774921_rl_1912"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_1912_1">Lu C, Zhang J, Nagahawatte P, et al.: The genomic landscape of childhood and adolescent melanoma. J Invest Dermatol 135 (3): 816-23, 2015. [<a href="/pmc/articles/PMC4340976/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4340976</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25268584" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25268584</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1912_2">Wiesner T, He J, Yelensky R, et al.: Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun 5: 3116, 2014. [<a href="/pmc/articles/PMC4084638/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4084638</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24445538" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24445538</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1912_3">Lee S, Barnhill RL, Dummer R, et al.: TERT Promoter Mutations Are Predictive of Aggressive Clinical Behavior in Patients with Spitzoid Melanocytic Neoplasms. Sci Rep 5: 11200, 2015. [<a href="/pmc/articles/PMC4462090/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4462090</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26061100" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26061100</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1912_4">Yeh I, Botton T, Talevich E, et al.: Activating MET kinase rearrangements in melanoma and Spitz tumours. Nat Commun 6: 7174, 2015. [<a href="/pmc/articles/PMC4446791/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4446791</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26013381" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26013381</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1912_5">Charbel C, Fontaine RH, Malouf GG, et al.: NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi. J Invest Dermatol 134 (4): 1067-74, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24129063" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24129063</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1912_6">Kinsler VA, Thomas AC, Ishida M, et al.: Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS. J Invest Dermatol 133 (9): 2229-36, 2013. [<a href="/pmc/articles/PMC3678977/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3678977</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23392294" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23392294</span></a>]</div></li></ol></div></div><div id="CDR0000774921__1916"><h2 id="_CDR0000774921__1916_">Thyroid Cancer</h2><p id="CDR0000774921__2076">(Refer to the <a href="/books/n/pdqcis/CDR0000790382/#CDR0000790382__1390">Molecular Features</a> section of the PDQ summary on <a href="/books/n/pdqcis/CDR0000790382/">Childhood Thyroid Cancer Treatment</a> for information about the genomics of childhood thyroid cancer.)</p><p id="CDR0000774921__1926">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000790382/">Childhood Thyroid Cancer Treatment</a> for information about the treatment of childhood thyroid cancer.)</p></div><div id="CDR0000774921__1919"><h2 id="_CDR0000774921__1919_">Multiple Endocrine Neoplasia Syndromes</h2><p id="CDR0000774921__sm_CDR0000779401_677"><div class="milestone-start" id="CDR0000774921__sm_CDR0000779401_6"></div>The most salient clinical and genetic alterations of the multiple endocrine neoplasia (MEN) syndromes are shown in Table 6.
</p><div id="CDR0000774921__sm_CDR0000779401_678" class="table"><h3><span class="title">Table 6. Multiple Endocrine Neoplasia (MEN) Syndromes with Associated Clinical and Genetic Alterations </span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK374260.14/table/CDR0000774921__sm_CDR0000779401_678/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000774921__sm_CDR0000779401_678_lrgtbl__"><table class="no_top_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">Syndrome</th><th colspan="2" rowspan="1" style="vertical-align:top;">Clinical Features/Tumors</th><th colspan="1" rowspan="1" style="vertical-align:top;">Genetic Alterations</th></tr></thead><tbody><tr><td colspan="1" rowspan="13" style="vertical-align:top;"><b>MEN type 1: Werner syndrome</b> [<a class="bk_pop" href="#CDR0000774921_rl_1919_1">1</a>]</td><td colspan="2" rowspan="1" style="vertical-align:top;"><b>Parathyroid</b></td><td colspan="1" rowspan="1" style="vertical-align:top;">11q13 (<i>MEN1 </i>gene)</td></tr><tr><td colspan="1" rowspan="4" style="vertical-align:top;"><b>Pancreatic islets: </b></td><td colspan="1" rowspan="1" style="vertical-align:top;">Gastrinoma</td><td colspan="1" rowspan="4" style="vertical-align:top;">11q13 (<i>MEN1 </i>gene)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Insulinoma</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Glucagonoma</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">VIPoma</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;"><b>Pituitary:</b></td><td colspan="1" rowspan="1" style="vertical-align:top;">Prolactinoma</td><td colspan="1" rowspan="3" style="vertical-align:top;">11q13 (<i>MEN1 </i>gene)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Somatotrophinoma</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Corticotropinoma</td></tr><tr><td colspan="1" rowspan="5" style="vertical-align:top;"><b>Other associated tumors (less common): </b></td><td colspan="1" rowspan="1" style="vertical-align:top;">Carcinoid: bronchial and thymic</td><td colspan="1" rowspan="5" style="vertical-align:top;">11q13 (<i>MEN1 </i>gene)</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Adrenocortical</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Lipoma</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Angiofibroma</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">Collagenoma</td></tr><tr><td colspan="1" rowspan="3" style="vertical-align:top;"><b>MEN type 2A: Sipple syndrome</b></td><td colspan="2" rowspan="1" style="vertical-align:top;"><b>Medullary thyroid carcinoma</b></td><td colspan="1" rowspan="3" style="vertical-align:top;">10q11.2 (<i>RET </i>gene)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;"><b>Pheochromocytoma</b></td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;"><b>Parathyroid gland</b></td></tr><tr><td colspan="1" rowspan="5" style="vertical-align:top;"><b>MEN type 2B</b></td><td colspan="2" rowspan="1" style="vertical-align:top;"><b>Medullary thyroid carcinoma</b></td><td colspan="1" rowspan="5" style="vertical-align:top;">10q11.2 (<i>RET </i>gene)</td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;"><b>Pheochromocytoma</b></td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;"><b>Mucosal neuromas</b></td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;"><b>Intestinal ganglioneuromatosis</b></td></tr><tr><td colspan="2" rowspan="1" style="vertical-align:top;"><b>Marfanoid habitus</b></td></tr></tbody></table></div></div><ul id="CDR0000774921__sm_CDR0000779401_679"><li class="half_rhythm"><div class="half_rhythm"><b>Multiple endocrine neoplasia type 1 (MEN1) syndrome (Werner syndrome): </b>MEN1 syndrome is an autosomal dominant disorder characterized by the presence of tumors in the parathyroid, pancreatic islet cells, and anterior pituitary. Diagnosis of this syndrome should be considered when two endocrine tumors listed in Table 6 are present. </div><div class="half_rhythm"> A study documented the initial symptoms of MEN1 syndrome occurring before age 21 years in 160 patients.[<a class="bk_pop" href="#CDR0000774921_rl_1919_2">2</a>] Of note, most patients had familial MEN1 syndrome and were followed up using an international screening protocol.<ol id="CDR0000774921__sm_CDR0000779401_1521"><li class="half_rhythm"><div><b> Primary hyperparathyroidism.</b> Primary hyperparathyroidism, the most common symptom, was found in 75% of patients, usually only in those with biological abnormalities. Primary hyperparathyroidism diagnosed outside of a screening program is extremely rare, most often presents with nephrolithiasis, and should lead the clinician to suspect MEN1.[<a class="bk_pop" href="#CDR0000774921_rl_1919_2">2</a>,<a class="bk_pop" href="#CDR0000774921_rl_1919_3">3</a>]</div></li><li class="half_rhythm"><div>
<b>Pituitary adenomas.</b> Pituitary adenomas were discovered in 34% of patients, occurred mainly in females older than 10 years, and were often symptomatic.[<a class="bk_pop" href="#CDR0000774921_rl_1919_2">2</a>]</div></li><li class="half_rhythm"><div>
<b>Pancreatic neuroendocrine tumors.</b> Pancreatic neuroendocrine tumors were found in 23% of patients. Specific diagnoses included insulinoma, nonsecreting pancreatic tumor, and Zollinger-Ellison syndrome. The first case of insulinoma occurred before age 5 years.[<a class="bk_pop" href="#CDR0000774921_rl_1919_2">2</a>]</div></li><li class="half_rhythm"><div><b>Malignant tumors.</b> Four patients had malignant tumors (two adrenal carcinomas, one gastrinoma, and one thymic carcinoma). The patient with thymic carcinoma died before age 21 years from rapidly progressive disease.</div></li></ol></div><div class="half_rhythm">Germline mutations of the <i>MEN1</i> gene located on chromosome 11q13 are found in 70% to 90% of patients; however, this gene has also been shown to be frequently inactivated in sporadic tumors.[<a class="bk_pop" href="#CDR0000774921_rl_1919_4">4</a>] Mutation testing is combined with clinical screening for patients and family members with proven at-risk MEN1 syndrome.[<a class="bk_pop" href="#CDR0000774921_rl_1919_5">5</a>] </div><div class="half_rhythm">It is recommended that screening for patients with MEN1 syndrome begin by the age of 5 years and continue for life. The number of tests or biochemical screening is age specific and may include yearly serum calcium, parathyroid hormone, gastrin, glucagon, secretin, proinsulin, chromogranin A, prolactin, and IGF-1. Radiologic screening should include a magnetic resonance imaging of the brain and computed tomography of the abdomen every 1 to 3 years.[<a class="bk_pop" href="#CDR0000774921_rl_1919_6">6</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Multiple endocrine neoplasia type 2A (MEN2A) and multiple endocrine neoplasia type 2B (MEN2B) syndromes:</b>
</div><div class="half_rhythm">A germline activating mutation in the <i>RET</i> oncogene (a receptor tyrosine kinase) on chromosome 10q11.2 is responsible for the uncontrolled growth of cells in medullary thyroid carcinoma associated with MEN2A and MEN2B syndromes.[<a class="bk_pop" href="#CDR0000774921_rl_1919_7">7</a>-<a class="bk_pop" href="#CDR0000774921_rl_1919_9">9</a>] Table 7 describes the clinical features of MEN2A and MEN2B syndromes.<dl id="CDR0000774921__sm_CDR0000779401_681" class="temp-labeled-list"><dt>-</dt><dd><p class="no_top_margin"><b>MEN2A:</b> MEN2A is characterized by the presence of two or more endocrine tumors (refer to Table 6) in an individual or in close relatives.[<a class="bk_pop" href="#CDR0000774921_rl_1919_10">10</a>] <i>RET</i> mutations in these patients are usually confined to exons 10 and 11. </p></dd><dt>-</dt><dd><p class="no_top_margin"><b>MEN2B:</b> MEN2B is characterized by medullary thyroid carcinomas, parathyroid hyperplasias, adenomas, pheochromocytomas, mucosal neuromas, and ganglioneuromas.[<a class="bk_pop" href="#CDR0000774921_rl_1919_10">10</a>-<a class="bk_pop" href="#CDR0000774921_rl_1919_12">12</a>] The medullary thyroid carcinomas that develop in these patients are extremely aggressive. More than 95% of mutations in these patients are confined to codon 918 in exon 16, causing receptor autophosphorylation and activation.[<a class="bk_pop" href="#CDR0000774921_rl_1919_13">13</a>] Patients also have medullated corneal nerve fibers, distinctive faces with enlarged lips, and an asthenic Marfanoid body habitus. </p><p>A pentagastrin stimulation test can be used to detect the presence of medullary thyroid carcinoma in these patients, although management of patients is driven primarily by the results of genetic analysis for <i>RET</i> mutations.[<a class="bk_pop" href="#CDR0000774921_rl_1919_13">13</a>,<a class="bk_pop" href="#CDR0000774921_rl_1919_14">14</a>]</p></dd></dl>
</div><div class="half_rhythm">Guidelines for genetic testing of suspected patients with MEN2 syndrome and the correlations between the type of mutation and the risk levels of aggressiveness of medullary thyroid cancer have been published.[<a class="bk_pop" href="#CDR0000774921_rl_1919_14">14</a>,<a class="bk_pop" href="#CDR0000774921_rl_1919_15">15</a>]</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Familial Medullary Thyroid Carcinoma:</b> Familial medullary thyroid carcinoma is diagnosed in families with medullary thyroid carcinoma in the absence of pheochromocytoma or parathyroid adenoma/hyperplasia. <i>RET</i> mutations in exons 10, 11, 13, and 14 account for most cases.</div><div class="half_rhythm"> The most-recent literature suggests that this entity should not be identified as a form of hereditary medullary thyroid carcinoma that is separate from MEN2A and MEN2B. Familial medullary thyroid carcinoma should be recognized as a variant of MEN2A, to include families with only medullary thyroid cancer who meet the original criteria for familial disease. The original criteria includes families of at least two generations with at least two, but less
than ten, patients with <i>RET</i> germline mutations; small families in which two or fewer members in a single generation have germline <i>RET</i> mutations; and single individuals with a <i>RET</i> germline mutation.[<a class="bk_pop" href="#CDR0000774921_rl_1919_14">14</a>,<a class="bk_pop" href="#CDR0000774921_rl_1919_16">16</a>]</div></li></ul><div id="CDR0000774921__sm_CDR0000779401_683" class="table"><h3><span class="title">Table 7. Clinical Features of Multiple Endocrine Neoplasia Type 2 (MEN2) Syndromes</span></h3><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK374260.14/table/CDR0000774921__sm_CDR0000779401_683/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__CDR0000774921__sm_CDR0000779401_683_lrgtbl__"><table class="no_top_margin"><thead><tr><th colspan="1" rowspan="1" style="vertical-align:top;">MEN2 Subtype</th><th colspan="1" rowspan="1" style="vertical-align:top;">Medullary Thyroid Carcinoma</th><th colspan="1" rowspan="1" style="vertical-align:top;">Pheochromocytoma</th><th colspan="1" rowspan="1" style="vertical-align:top;">Parathyroid Disease</th></tr></thead><tbody><tr><td colspan="1" rowspan="1" style="vertical-align:top;">MEN2A</td><td colspan="1" rowspan="1" style="vertical-align:top;">95%</td><td colspan="1" rowspan="1" style="vertical-align:top;">50%</td><td colspan="1" rowspan="1" style="vertical-align:top;">20% to 30%</td></tr><tr><td colspan="1" rowspan="1" style="vertical-align:top;">MEN2B</td><td colspan="1" rowspan="1" style="vertical-align:top;">100%</td><td colspan="1" rowspan="1" style="vertical-align:top;">50%</td><td colspan="1" rowspan="1" style="vertical-align:top;">Uncommon<div class="milestone-end"></div></td></tr></tbody></table></div></div><p id="CDR0000774921__1927">(Refer to the PDQ summary on <a href="/books/n/pdqcis/CDR0000062872/">Unusual Cancers of Childhood Treatment</a> for information about the treatment of childhood MEN syndromes.)</p><div id="CDR0000774921_rl_1919"><h3>References</h3><ol><li><div class="bk_ref" id="CDR0000774921_rl_1919_1">Thakker RV: Multiple endocrine neoplasia--syndromes of the twentieth century. J Clin Endocrinol Metab 83 (8): 2617-20, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9709920" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9709920</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_2">Goudet P, Dalac A, Le Bras M, et al.: MEN1 disease occurring before 21 years old: a 160-patient cohort study from the Groupe d'&#x000e9;tude des Tumeurs Endocrines. J Clin Endocrinol Metab 100 (4): 1568-77, 2015. [<a href="https://pubmed.ncbi.nlm.nih.gov/25594862" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25594862</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_3">Romero Arenas MA, Morris LF, Rich TA, et al.: Preoperative multiple endocrine neoplasia type 1 diagnosis improves the surgical outcomes of pediatric patients with primary hyperparathyroidism. J Pediatr Surg 49 (4): 546-50, 2014. [<a href="https://pubmed.ncbi.nlm.nih.gov/24726110" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24726110</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_4">Farnebo F, Teh BT, Kyt&#x000f6;l&#x000e4; S, et al.: Alterations of the MEN1 gene in sporadic parathyroid tumors. J Clin Endocrinol Metab 83 (8): 2627-30, 1998. [<a href="https://pubmed.ncbi.nlm.nih.gov/9709922" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9709922</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_5">Field M, Shanley S, Kirk J: Inherited cancer susceptibility syndromes in paediatric practice. J Paediatr Child Health 43 (4): 219-29, 2007. [<a href="https://pubmed.ncbi.nlm.nih.gov/17444822" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17444822</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_6">Thakker RV: Multiple endocrine neoplasia type 1 (MEN1). Best Pract Res Clin Endocrinol Metab 24 (3): 355-70, 2010. [<a href="https://pubmed.ncbi.nlm.nih.gov/20833329" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20833329</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_7">Sanso GE, Domene HM, Garcia R, et al.: Very early detection of RET proto-oncogene mutation is crucial for preventive thyroidectomy in multiple endocrine neoplasia type 2 children: presence of C-cell malignant disease in asymptomatic carriers. Cancer 94 (2): 323-30, 2002. [<a href="https://pubmed.ncbi.nlm.nih.gov/11900218" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11900218</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_8">Alsanea O, Clark OH: Familial thyroid cancer. Curr Opin Oncol 13 (1): 44-51, 2001. [<a href="https://pubmed.ncbi.nlm.nih.gov/11148685" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11148685</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_9">Fitze G: Management of patients with hereditary medullary thyroid carcinoma. Eur J Pediatr Surg 14 (6): 375-83, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15630638" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15630638</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_10">Pu&#x000f1;ales MK, da Rocha AP, Meotti C, et al.: Clinical and oncological features of children and young adults with multiple endocrine neoplasia type 2A. Thyroid 18 (12): 1261-8, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/18991485" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18991485</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_11">Skinner MA, DeBenedetti MK, Moley JF, et al.: Medullary thyroid carcinoma in children with multiple endocrine neoplasia types 2A and 2B. J Pediatr Surg 31 (1): 177-81; discussion 181-2, 1996. [<a href="https://pubmed.ncbi.nlm.nih.gov/8632274" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8632274</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_12">Brauckhoff M, Gimm O, Weiss CL, et al.: Multiple endocrine neoplasia 2B syndrome due to codon 918 mutation: clinical manifestation and course in early and late onset disease. World J Surg 28 (12): 1305-11, 2004. [<a href="https://pubmed.ncbi.nlm.nih.gov/15517484" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15517484</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_13">Sakorafas GH, Friess H, Peros G: The genetic basis of hereditary medullary thyroid cancer: clinical implications for the surgeon, with a particular emphasis on the role of prophylactic thyroidectomy. Endocr Relat Cancer 15 (4): 871-84, 2008. [<a href="https://pubmed.ncbi.nlm.nih.gov/19015274" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19015274</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_14">Waguespack SG, Rich TA, Perrier ND, et al.: Management of medullary thyroid carcinoma and MEN2 syndromes in childhood. Nat Rev Endocrinol 7 (10): 596-607, 2011. [<a href="https://pubmed.ncbi.nlm.nih.gov/21862994" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21862994</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_15">Kloos RT, Eng C, Evans DB, et al.: Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19 (6): 565-612, 2009. [<a href="https://pubmed.ncbi.nlm.nih.gov/19469690" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19469690</span></a>]</div></li><li><div class="bk_ref" id="CDR0000774921_rl_1919_16">Wells SA Jr, Asa SL, Dralle H, et al.: Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25 (6): 567-610, 2015. [<a href="/pmc/articles/PMC4490627/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4490627</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25810047" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25810047</span></a>]</div></li></ol></div></div><div id="CDR0000774921__9"><h2 id="_CDR0000774921__9_">Changes to this Summary (10/05/2018)</h2><p id="CDR0000774921__10">The PDQ cancer information summaries are reviewed regularly and updated as
new information becomes available. This section describes the latest
changes made to this summary as of the date above.</p><p id="CDR0000774921__2117"><b><a href="#CDR0000774921__3">Leukemias</a></b></p><p id="CDR0000774921__2118">Added text to the <a href="#CDR0000774921__1946">Acute Lymphoblastic Leukemia (ALL)</a> subsection to state that approximately two-thirds of patients with ALL and germline pathogenic <i>TP53</i> variants have hypodiploid ALL (cited Qian et al. as reference 35).</p><p id="CDR0000774921__2119">Added text to the <a href="#CDR0000774921__1946">Acute Lymphoblastic Leukemia (ALL)</a> subsection about the outcomes of patients with <i>BCR-ABL1</i>&#x02013;like ALL (cited Roberts et al. as reference 96).</p><p id="CDR0000774921__2120">Added text to the <a href="#CDR0000774921__1946">Acute Lymphoblastic Leukemia (ALL)</a> subsection to state that the prevalence of targetable kinase fusions in <i>BCR-ABL1</i>&#x02013;like ALL is lower in National Cancer Institute (NCI) standard-risk patients than in NCI high-risk patients.</p><p id="CDR0000774921__2121">Added text to the <a href="#CDR0000774921__1946">Acute Lymphoblastic Leukemia (ALL)</a> subsection to state that there are few published results of changing therapy on the basis of <i>IKZF1</i> gene status. Also added text about the results of two Malaysia-Singapore group trials, where in the first trial, <i>IKZF1</i> status was not considered in risk stratification, while in the subsequent trial, <i>IKZF1-deleted</i> patients were excluded from the standard-risk group (cited Yeoh et al. as reference 116 and level of evidence 2A).</p><p id="CDR0000774921__2122"><b><a href="#CDR0000774921__1853">Kidney Tumors</a></b></p><p id="CDR0000774921__2123">Revised text in the <a href="#CDR0000774921__1953">Wilms Tumor</a> subsection to state that children with WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) are at high risk (approximately 50%) of developing Wilms tumor (cited Scott et al. as a reference 24).</p><p id="CDR0000774921__2124">Added text to the <a href="#CDR0000774921__1953">Wilms Tumor</a> subsection to state that for patients with Beckwith-Wiedemann syndrome, the risk of developing Wilms tumor is 4.1%. Also added text to state that for patients with Beckwith-Wiedemann syndrome, the relative risk of developing hepatoblastoma is 2,280 times that of the general population.</p><p id="CDR0000774921__2125">Added text to the <a href="#CDR0000774921__1953">Wilms Tumor</a> subsection about the results of a study of 118 patients with diffuse anaplastic Wilms tumor registered on the National Wilms Tumor Study-5 trial that explored the significance of <i>TP53</i> mutations (cited Ooms et al. as reference 68).</p><p id="CDR0000774921__disclaimerHP_3">This summary is written and maintained by the <a href="https://www.cancer.gov/publications/pdq/editorial-boards/pediatric-treatment" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PDQ Pediatric Treatment Editorial Board</a>, which is
editorially independent of NCI. The summary reflects an independent review of
the literature and does not represent a policy statement of NCI or NIH. More
information about summary policies and the role of the PDQ Editorial Boards in
maintaining the PDQ summaries can be found on the <a href="#CDR0000774921__AboutThis_1">About This PDQ Summary</a> and <a href="https://www.cancer.gov/publications/pdq" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PDQ&#x000ae; - NCI's Comprehensive Cancer Database</a> pages.
</p></div><div id="CDR0000774921__AboutThis_1"><h2 id="_CDR0000774921__AboutThis_1_">About This PDQ Summary</h2><div id="CDR0000774921__AboutThis_2"><h3>Purpose of This Summary</h3><p id="CDR0000774921__AboutThis_3">This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the genomics of childhood cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.</p></div><div id="CDR0000774921__AboutThis_4"><h3>Reviewers and Updates</h3><p id="CDR0000774921__AboutThis_5">This summary is reviewed regularly and updated as necessary by the <a href="https://www.cancer.gov/publications/pdq/editorial-boards/pediatric-treatment" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PDQ Pediatric Treatment Editorial Board</a>, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).</p><p id="CDR0000774921__AboutThis_22"> Board members review recently published articles each month to determine whether an article should:</p><ul id="CDR0000774921__AboutThis_6"><li class="half_rhythm"><div>be discussed at a meeting,</div></li><li class="half_rhythm"><div>be cited with text, or</div></li><li class="half_rhythm"><div>replace or update an existing article that is already cited.</div></li></ul><p id="CDR0000774921__AboutThis_7">Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.</p><p>The lead reviewer for Childhood Cancer Genomics is:</p><ul><li class="half_rhythm"><div>Malcolm A. Smith, MD, PhD (National Cancer Institute)</div></li></ul><p id="CDR0000774921__AboutThis_9">Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's <a href="https://www.cancer.gov/contact/email-us" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Email Us</a>. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.</p></div><div id="CDR0000774921__AboutThis_10"><h3>Levels of Evidence</h3><p id="CDR0000774921__AboutThis_11">Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a <a href="/books/n/pdqcis/CDR0000062796/">formal evidence ranking system</a> in developing its level-of-evidence designations.</p></div><div id="CDR0000774921__AboutThis_12"><h3>Permission to Use This Summary</h3><p id="CDR0000774921__AboutThis_13">PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as &#x0201c;NCI&#x02019;s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].&#x0201d;</p><p id="CDR0000774921__AboutThis_14">The preferred citation for this PDQ summary is:</p><p id="CDR0000774921__AboutThis_15">PDQ&#x000ae; Pediatric Treatment Editorial Board. PDQ Childhood Cancer Genomics. Bethesda, MD: National Cancer Institute. Updated &#x0003c;MM/DD/YYYY&#x0003e;. Available at: <a href="https://www.cancer.gov/types/childhood-cancers/pediatric-genomics-hp-pdq" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">https://www.cancer.gov/types/childhood-cancers/pediatric-genomics-hp-pdq</a>. Accessed &#x0003c;MM/DD/YYYY&#x0003e;. [PMID: 27466641]</p><p id="CDR0000774921__AboutThis_16">Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in <a href="https://visualsonline.cancer.gov/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Visuals Online</a>, a collection of over 2,000 scientific images.
</p></div><div id="CDR0000774921__AboutThis_17"><h3>Disclaimer</h3><p id="CDR0000774921__AboutThis_18">Based on the strength of the available evidence, treatment options may be described as either &#x0201c;standard&#x0201d; or &#x0201c;under clinical evaluation.&#x0201d; These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the <a href="https://www.cancer.gov/about-cancer/managing-care" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Managing Cancer Care</a> page.</p></div><div id="CDR0000774921__AboutThis_20"><h3>Contact Us</h3><p id="CDR0000774921__AboutThis_21">More information about contacting us or receiving help with the Cancer.gov website can be found on our <a href="https://www.cancer.gov/contact" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Contact Us for Help</a> page. Questions can also be submitted to Cancer.gov through the website&#x02019;s <a href="https://www.cancer.gov/contact/email-us" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Email Us</a>.</p></div></div><div style="display:none"><div style="display:none" id="figCDR00007749211905"><img alt="Image CDR0000775146" src-large="/books/NBK374260.14/bin/CDR0000775146.jpg" /></div></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright Notice</a></div><div class="small"><span class="label">Bookshelf ID: NBK374260</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/27466641" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">27466641</a></span></div></div></div>
</div>
<!-- Custom content below content -->
<div class="col4">
</div>
<!-- Book content -->
<!-- Custom contetnt below bottom nav -->
<div class="col5">
</div>
</div>
<div id="rightcolumn" class="four_col col last">
<!-- Custom content above discovery portlets -->
<div class="col6">
<div id="ncbi_share_book"><a href="#" class="ncbi_share" data-ncbi_share_config="popup:false,shorten:true" ref="id=NBK374260&amp;db=books">Share</a></div>
</div>
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="/books/NBK374260.14/?report=reader">PubReader</a></li><li><a href="/books/NBK374260.14/?report=printable">Print View</a></li><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK374260" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK374260" style="display:none" title="Cite this Page"><div class="bk_tt">PDQ Pediatric Treatment Editorial Board. Childhood Cancer Genomics (PDQ®): Health Professional Version. 2018 Oct 5. In: PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-. <span class="bk_cite_avail"></span></div></div></li><li><a href="#" class="toggle-glossary-link" title="Enable/disable links to the glossary">Disable Glossary Links</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Version History</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter shutter_closed" title="Show/hide content" remembercollapsed="true" pgsec_name="version_history" id="Shutter"></a></div><div class="portlet_content" style="display: none;"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><span class="bk_col_itm"><a href="/books/NBK374260.53/">NBK374260.53</a></span> December 23, 2024</li><li><span class="bk_col_itm"><a href="/books/NBK374260.52/">NBK374260.52</a></span> December 20, 2024</li><li><span class="bk_col_itm"><a href="/books/NBK374260.51/">NBK374260.51</a></span> October 17, 2024</li><li><span class="bk_col_itm"><a href="/books/NBK374260.50/">NBK374260.50</a></span> June 25, 2024</li><li><span class="bk_col_itm"><a href="/books/NBK374260.49/">NBK374260.49</a></span> April 23, 2024</li><li><span class="bk_col_itm"><a href="/books/NBK374260.48/">NBK374260.48</a></span> March 7, 2024</li><li><span class="bk_col_itm"><a href="/books/NBK374260.47/">NBK374260.47</a></span> January 23, 2024</li><li><span class="bk_col_itm"><a href="/books/NBK374260.46/">NBK374260.46</a></span> December 22, 2023</li><li><span class="bk_col_itm"><a href="/books/NBK374260.45/">NBK374260.45</a></span> October 19, 2023</li><li><span class="bk_col_itm"><a href="/books/NBK374260.44/">NBK374260.44</a></span> August 31, 2023</li><li><span class="bk_col_itm"><a href="/books/NBK374260.43/">NBK374260.43</a></span> June 16, 2023</li><li><span class="bk_col_itm"><a href="/books/NBK374260.42/">NBK374260.42</a></span> April 14, 2023</li><li><span class="bk_col_itm"><a href="/books/NBK374260.41/">NBK374260.41</a></span> February 17, 2023</li><li><span class="bk_col_itm"><a href="/books/NBK374260.40/">NBK374260.40</a></span> December 29, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK374260.39/">NBK374260.39</a></span> October 28, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK374260.38/">NBK374260.38</a></span> August 16, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK374260.37/">NBK374260.37</a></span> June 29, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK374260.36/">NBK374260.36</a></span> April 7, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK374260.35/">NBK374260.35</a></span> February 10, 2022</li><li><span class="bk_col_itm"><a href="/books/NBK374260.34/">NBK374260.34</a></span> December 28, 2021</li><li><span class="bk_col_itm"><a href="/books/NBK374260.33/">NBK374260.33</a></span> September 30, 2021</li><li><span class="bk_col_itm"><a href="/books/NBK374260.32/">NBK374260.32</a></span> August 10, 2021</li><li><span class="bk_col_itm"><a href="/books/NBK374260.31/">NBK374260.31</a></span> June 16, 2021</li><li><span class="bk_col_itm"><a href="/books/NBK374260.30/">NBK374260.30</a></span> February 12, 2021</li><li><span class="bk_col_itm"><a href="/books/NBK374260.29/">NBK374260.29</a></span> December 9, 2020</li><li><span class="bk_col_itm"><a href="/books/NBK374260.28/">NBK374260.28</a></span> October 9, 2020</li><li><span class="bk_col_itm"><a href="/books/NBK374260.27/">NBK374260.27</a></span> August 27, 2020</li><li><span class="bk_col_itm"><a href="/books/NBK374260.26/">NBK374260.26</a></span> May 13, 2020</li><li><span class="bk_col_itm"><a href="/books/NBK374260.25/">NBK374260.25</a></span> April 2, 2020</li><li><span class="bk_col_itm"><a href="/books/NBK374260.24/">NBK374260.24</a></span> February 12, 2020</li><li><span class="bk_col_itm"><a href="/books/NBK374260.23/">NBK374260.23</a></span> October 25, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK374260.22/">NBK374260.22</a></span> September 9, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK374260.21/">NBK374260.21</a></span> August 22, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK374260.20/">NBK374260.20</a></span> June 20, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK374260.19/">NBK374260.19</a></span> May 1, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK374260.18/">NBK374260.18</a></span> April 25, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK374260.17/">NBK374260.17</a></span> February 20, 2019</li><li><span class="bk_col_itm"><a href="/books/NBK374260.16/">NBK374260.16</a></span> November 30, 2018</li><li><span class="bk_col_itm"><a href="/books/NBK374260.15/">NBK374260.15</a></span> November 15, 2018</li><li><span class="bk_col_itm">NBK374260.14</span> October 5, 2018 (Displayed Version)</li><li><span class="bk_col_itm"><a href="/books/NBK374260.13/">NBK374260.13</a></span> August 28, 2018</li><li><span class="bk_col_itm"><a href="/books/NBK374260.12/">NBK374260.12</a></span> May 2, 2018</li><li><span class="bk_col_itm"><a href="/books/NBK374260.11/">NBK374260.11</a></span> February 2, 2018</li><li><span class="bk_col_itm"><a href="/books/NBK374260.10/">NBK374260.10</a></span> December 20, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK374260.9/">NBK374260.9</a></span> October 18, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK374260.8/">NBK374260.8</a></span> August 18, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK374260.7/">NBK374260.7</a></span> April 25, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK374260.6/">NBK374260.6</a></span> February 3, 2017</li><li><span class="bk_col_itm"><a href="/books/NBK374260.5/">NBK374260.5</a></span> December 9, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK374260.4/">NBK374260.4</a></span> October 14, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK374260.3/">NBK374260.3</a></span> August 26, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK374260.2/">NBK374260.2</a></span> August 5, 2016</li><li><span class="bk_col_itm"><a href="/books/NBK374260.1/">NBK374260.1</a></span> July 21, 2016</li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#CDR0000774921__1" ref="log$=inpage&amp;link_id=inpage">General Information About Childhood Cancer Genomics</a></li><li><a href="#CDR0000774921__3" ref="log$=inpage&amp;link_id=inpage">Leukemias</a></li><li><a href="#CDR0000774921__1787" ref="log$=inpage&amp;link_id=inpage">Non-Hodgkin Lymphoma</a></li><li><a href="#CDR0000774921__5" ref="log$=inpage&amp;link_id=inpage">Central Nervous System Tumors</a></li><li><a href="#CDR0000774921__7" ref="log$=inpage&amp;link_id=inpage">Hepatoblastoma and Hepatocellular Carcinoma</a></li><li><a href="#CDR0000774921__1792" ref="log$=inpage&amp;link_id=inpage">Sarcomas</a></li><li><a href="#CDR0000774921__1811" ref="log$=inpage&amp;link_id=inpage">Langerhans Cell Histiocytosis</a></li><li><a href="#CDR0000774921__1819" ref="log$=inpage&amp;link_id=inpage">Neuroblastoma</a></li><li><a href="#CDR0000774921__1848" ref="log$=inpage&amp;link_id=inpage">Retinoblastoma</a></li><li><a href="#CDR0000774921__1853" ref="log$=inpage&amp;link_id=inpage">Kidney Tumors</a></li><li><a href="#CDR0000774921__1912" ref="log$=inpage&amp;link_id=inpage">Melanoma</a></li><li><a href="#CDR0000774921__1916" ref="log$=inpage&amp;link_id=inpage">Thyroid Cancer</a></li><li><a href="#CDR0000774921__1919" ref="log$=inpage&amp;link_id=inpage">Multiple Endocrine Neoplasia Syndromes</a></li><li><a href="#CDR0000774921__9" ref="log$=inpage&amp;link_id=inpage">Changes to this Summary (10/05/2018)</a></li><li><a href="#CDR0000774921__AboutThis_1" ref="log$=inpage&amp;link_id=inpage">About This PDQ Summary</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related information</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="discovery_db_links" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pmc&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pmc_refs&amp;IdsFromResult=4293546" ref="log$=recordlinks">PMC</a><div class="brieflinkpop offscreen_noflow">PubMed Central citations</div></li><li class="brieflinkpopper"><a class="brieflinkpopperctrl" href="/books/?Db=pubmed&amp;DbFrom=books&amp;Cmd=Link&amp;LinkName=books_pubmed_refs&amp;IdsFromResult=4293546" ref="log$=recordlinks">PubMed</a><div class="brieflinkpop offscreen_noflow">Links to PubMed</div></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Similar articles in PubMed</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PBooksDiscovery_RA" id="Shutter"></a></div><div class="portlet_content"><ul><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/31593384" ref="ordinalpos=1&amp;linkpos=1&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Cardiac Tumors Treatment (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Cardiac Tumors Treatment (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Pediatric Treatment Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/29337477" ref="ordinalpos=1&amp;linkpos=2&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Laryngeal Tumors Treatment (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Laryngeal Tumors Treatment (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Pediatric Treatment Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/26389243" ref="ordinalpos=1&amp;linkpos=3&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Rhabdomyosarcoma Treatment (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Rhabdomyosarcoma Treatment (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Pediatric Treatment Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/31909942" ref="ordinalpos=1&amp;linkpos=4&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Pheochromocytoma and Paraganglioma Treatment (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Pheochromocytoma and Paraganglioma Treatment (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Pediatric Treatment Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li><li class="brieflinkpopper two_line"><a class="brieflinkpopperctrl" href="/pubmed/26389330" ref="ordinalpos=1&amp;linkpos=5&amp;log$=relatedreviews&amp;logdbfrom=pubmed"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Craniopharyngioma Treatment (PDQ®): Health Professional Version.</a><span class="source">[PDQ Cancer Information Summari...]</span><div class="brieflinkpop offscreen_noflow"><span xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="invert">Review</span> Childhood Craniopharyngioma Treatment (PDQ®): Health Professional Version.<div class="brieflinkpopdesc"><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="author">PDQ Pediatric Treatment Editorial Board. </em><em xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="cit">PDQ Cancer Information Summaries. 2002</em></div></div></li></ul><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed_reviews&amp;uid=27466641" ref="ordinalpos=1&amp;log$=relatedreviews_seeall&amp;logdbfrom=pubmed">See reviews...</a><a class="seemore" href="/sites/entrez?db=pubmed&amp;cmd=link&amp;linkname=pubmed_pubmed&amp;uid=27466641" ref="ordinalpos=1&amp;log$=relatedarticles_seeall&amp;logdbfrom=pubmed">See all...</a></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&amp;linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67c99682f4a390645e24ef6c">Childhood Cancer Genomics (PDQ®) - PDQ Cancer Information Summaries</a><div class="ralinkpop offscreen_noflow">Childhood Cancer Genomics (PDQ®) - PDQ Cancer Information Summaries<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
<!-- Custom content below discovery portlets -->
<div class="col7">
</div>
</div>
</div>
<!-- Custom content after all -->
<div class="col8">
</div>
<div class="col9">
</div>
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
<script type="text/javascript">
(function($){
$('.skiplink').each(function(i, item){
var href = $($(item).attr('href'));
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
$(item).on('click', function(event){
event.preventDefault();
$.scrollTo(href, 0, {
onAfter: function(){
href.focus();
}
});
});
});
})(jQuery);
</script>
</div>
<div class="bottom">
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<div class="footer" id="footer">
<section class="icon-section">
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
<div class="grid-container container">
<div class="icon-section_container">
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11 {
fill: #737373;
}
</style>
</defs>
<title>Twitter</title>
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>Facebook</title>
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<title>LinkedIn</title>
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
</path>
</svg></a>
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
<defs>
<style>
.cls-11,
.cls-12 {
fill: #737373;
}
.cls-11 {
fill-rule: evenodd;
}
</style>
</defs>
<title>GitHub</title>
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
</path>
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
</path>
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
</path>
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
</path>
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
</path>
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
</path>
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
</svg></a>
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
<defs><style>.cls-1{fill:#737373;}</style></defs>
<title>NCBI Insights Blog</title>
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
</svg>
</a>
</div>
</div>
</section>
<section class="container-fluid bg-primary">
<div class="container pt-5">
<div class="row mt-3">
<div class="col-lg-3 col-12">
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
<ul class="list-inline social_media">
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st20 {
fill: #FFFFFF;
}
.st30 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Twitter</title>
<g>
<g>
<g>
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
</g>
</g>
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
</g>
</svg></a></li>
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<style type="text/css">
.st10 {
fill: #FFFFFF;
}
.st110 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
</style>
<title>Facebook</title>
<g>
<g>
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
</g>
</g>
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
</svg>
</a></li>
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
<title>Youtube</title>
<style type="text/css">
.st4 {
fill: none;
stroke: #FFFFFF;
stroke-width: 8;
stroke-miterlimit: 10;
}
.st5 {
fill: #FFFFFF;
}
</style>
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
<g transform="translate(0,-952.36218)">
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
</g>
</svg></a></li>
</ul>
</div>
<div class="col-lg-3 col-12">
<p class="address_footer text-white">National Library of Medicine<br />
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
Bethesda, MD 20894</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
</div>
<div class="col-lg-3 col-12 centered-lg">
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
</div>
</div>
<div class="row">
<div class="col-lg-12 centered-lg">
<nav class="bottom-links">
<ul class="mt-3">
<li>
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
</li>
<li>
<a class="text-white" href="https://www.nih.gov/">NIH</a>
</li>
<li>
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
</li>
<li>
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
</section>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
</div>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK374260&amp;ncbi_domain=pdqcis&amp;ncbi_report=record&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK374260.14/&amp;ncbi_pagename=Childhood Cancer Genomics (PDQ®) - PDQ Cancer Information Summaries - NCBI Bookshelf&amp;ncbi_bookparttype=chapter&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal107 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
</html>