531 lines
No EOL
166 KiB
HTML
531 lines
No EOL
166 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
|
|
|
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
|
<!-- AppResources meta begin -->
|
|
<meta name="paf-app-resources" content="" />
|
|
<script type="text/javascript">var ncbi_startTime = new Date();</script>
|
|
|
|
<!-- AppResources meta end -->
|
|
|
|
<!-- TemplateResources meta begin -->
|
|
<meta name="paf_template" content="" />
|
|
|
|
<!-- TemplateResources meta end -->
|
|
|
|
<!-- Logger begin -->
|
|
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK26810" /><meta name="ncbi_domain" content="mboc4" /><meta name="ncbi_report" content="record" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK26810/" /><meta name="ncbi_pagename" content="The Extracellular Matrix of Animals - Molecular Biology of the Cell - NCBI Bookshelf" /><meta name="ncbi_bookparttype" content="section" /><meta name="ncbi_app" content="bookshelf" />
|
|
<!-- Logger end -->
|
|
|
|
<title>The Extracellular Matrix of Animals - Molecular Biology of the Cell - NCBI Bookshelf</title>
|
|
|
|
<!-- AppResources external_resources begin -->
|
|
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
|
|
|
|
<!-- AppResources external_resources end -->
|
|
|
|
<!-- Page meta begin -->
|
|
<meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE,NOIMAGEINDEX" /><meta name="citation_inbook_title" content="Molecular Biology of the Cell. 4th edition" /><meta name="citation_title" content="The Extracellular Matrix of Animals" /><meta name="citation_publisher" content="Garland Science" /><meta name="citation_date" content="2002" /><meta name="citation_author" content="Bruce Alberts" /><meta name="citation_author" content="Alexander Johnson" /><meta name="citation_author" content="Julian Lewis" /><meta name="citation_author" content="Martin Raff" /><meta name="citation_author" content="Keith Roberts" /><meta name="citation_author" content="Peter Walter" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK26810/" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="The Extracellular Matrix of Animals" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="Garland Science" /><meta name="DC.Contributor" content="Bruce Alberts" /><meta name="DC.Contributor" content="Alexander Johnson" /><meta name="DC.Contributor" content="Julian Lewis" /><meta name="DC.Contributor" content="Martin Raff" /><meta name="DC.Contributor" content="Keith Roberts" /><meta name="DC.Contributor" content="Peter Walter" /><meta name="DC.Date" content="2002" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK26810/" /><meta name="description" content="Tissues are not made up solely of cells. A substantial part of their volume is extracellular space, which is largely filled by an intricate network of macromolecules constituting the extracellular matrix (Figure 19-33). This matrix is composed of a variety of proteins and polysaccharides that are secreted locally and assembled into an organized meshwork in close association with the surface of the cell that produced them.Figure 19-33Cells surrounded by spaces filled with extracellular matrixThe particular cells shown in this low-power electron micrograph are those in an embryonic chick limb bud. The cells have not yet acquired their specialized characteristics. (Courtesy of Cheryll Tickle.)" /><meta name="bk-non-canon-loc" content="/books/n/mboc4/A3532/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK26810/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" media="print" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript" src="/corehtml/pmc/js/large-obj-scrollbars.min.js"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><meta name="book-collection" content="NONE" />
|
|
|
|
<!-- Page meta end -->
|
|
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8E7BDF7D69E5C100000000005F0055.m_12" />
|
|
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/4008682/4207974/4206132/4062871/12930/3964959/3854974/36029/4128070/9685/3549676/3609192/3609193/3609213/3395586.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
|
|
<body class="book-part">
|
|
<div class="grid">
|
|
<div class="col twelve_col nomargin shadow">
|
|
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
|
|
<div class="sysmessages">
|
|
<noscript>
|
|
<p class="nojs">
|
|
<strong>Warning:</strong>
|
|
The NCBI web site requires JavaScript to function.
|
|
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
|
|
</p>
|
|
</noscript>
|
|
</div>
|
|
<!--/.sysmessage-->
|
|
<div class="wrap">
|
|
<div class="page">
|
|
<div class="top">
|
|
<div id="universal_header">
|
|
<section class="usa-banner">
|
|
<div class="usa-accordion">
|
|
<header class="usa-banner-header">
|
|
<div class="usa-grid usa-banner-inner">
|
|
<img src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/favicons/favicon-57.png" alt="U.S. flag" />
|
|
<p>An official website of the United States government</p>
|
|
<button class="non-usa-accordion-button usa-banner-button" aria-expanded="false" aria-controls="gov-banner-top" type="button">
|
|
<span class="usa-banner-button-text">Here's how you know</span>
|
|
</button>
|
|
</div>
|
|
</header>
|
|
<div class="usa-banner-content usa-grid usa-accordion-content" id="gov-banner-top" aria-hidden="true">
|
|
<div class="usa-banner-guidance-gov usa-width-one-half">
|
|
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-dot-gov.svg" alt="Dot gov" />
|
|
<div class="usa-media_block-body">
|
|
<p>
|
|
<strong>The .gov means it's official.</strong>
|
|
<br />
|
|
Federal government websites often end in .gov or .mil. Before
|
|
sharing sensitive information, make sure you're on a federal
|
|
government site.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class="usa-banner-guidance-ssl usa-width-one-half">
|
|
<img class="usa-banner-icon usa-media_block-img" src="https://www.ncbi.nlm.nih.gov/coreutils/uswds/img/icon-https.svg" alt="Https" />
|
|
<div class="usa-media_block-body">
|
|
<p>
|
|
<strong>The site is secure.</strong>
|
|
<br />
|
|
The <strong>https://</strong> ensures that you are connecting to the
|
|
official website and that any information you provide is encrypted
|
|
and transmitted securely.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</section>
|
|
<div class="usa-overlay"></div>
|
|
<header class="ncbi-header" role="banner" data-section="Header">
|
|
|
|
<div class="usa-grid">
|
|
<div class="usa-width-one-whole">
|
|
|
|
<div class="ncbi-header__logo">
|
|
<a href="/" class="logo" aria-label="NCBI Logo" data-ga-action="click_image" data-ga-label="NIH NLM Logo">
|
|
<img src="https://www.ncbi.nlm.nih.gov/coreutils/nwds/img/logos/AgencyLogo.svg" alt="NIH NLM Logo" />
|
|
</a>
|
|
</div>
|
|
|
|
<div class="ncbi-header__account">
|
|
<a id="account_login" href="https://account.ncbi.nlm.nih.gov" class="usa-button header-button" style="display:none" data-ga-action="open_menu" data-ga-label="account_menu">Log in</a>
|
|
<button id="account_info" class="header-button" style="display:none" aria-controls="account_popup" type="button">
|
|
<span class="fa fa-user" aria-hidden="true">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="20px" height="20px">
|
|
<g style="fill: #fff">
|
|
<ellipse cx="12" cy="8" rx="5" ry="6"></ellipse>
|
|
<path d="M21.8,19.1c-0.9-1.8-2.6-3.3-4.8-4.2c-0.6-0.2-1.3-0.2-1.8,0.1c-1,0.6-2,0.9-3.2,0.9s-2.2-0.3-3.2-0.9 C8.3,14.8,7.6,14.7,7,15c-2.2,0.9-3.9,2.4-4.8,4.2C1.5,20.5,2.6,22,4.1,22h15.8C21.4,22,22.5,20.5,21.8,19.1z"></path>
|
|
</g>
|
|
</svg>
|
|
</span>
|
|
<span class="username desktop-only" aria-hidden="true" id="uname_short"></span>
|
|
<span class="sr-only">Show account info</span>
|
|
</button>
|
|
</div>
|
|
|
|
<div class="ncbi-popup-anchor">
|
|
<div class="ncbi-popup account-popup" id="account_popup" aria-hidden="true">
|
|
<div class="ncbi-popup-head">
|
|
<button class="ncbi-close-button" data-ga-action="close_menu" data-ga-label="account_menu" type="button">
|
|
<span class="fa fa-times">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" width="24px" height="24px">
|
|
<path d="M38 12.83l-2.83-2.83-11.17 11.17-11.17-11.17-2.83 2.83 11.17 11.17-11.17 11.17 2.83 2.83 11.17-11.17 11.17 11.17 2.83-2.83-11.17-11.17z"></path>
|
|
</svg>
|
|
</span>
|
|
<span class="usa-sr-only">Close</span></button>
|
|
<h4>Account</h4>
|
|
</div>
|
|
<div class="account-user-info">
|
|
Logged in as:<br />
|
|
<b><span class="username" id="uname_long">username</span></b>
|
|
</div>
|
|
<div class="account-links">
|
|
<ul class="usa-unstyled-list">
|
|
<li><a id="account_myncbi" href="/myncbi/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_myncbi">Dashboard</a></li>
|
|
<li><a id="account_pubs" href="/myncbi/collections/bibliography/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_pubs">Publications</a></li>
|
|
<li><a id="account_settings" href="/account/settings/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_settings">Account settings</a></li>
|
|
<li><a id="account_logout" href="/account/signout/" class="set-base-url" data-ga-action="click_menu_item" data-ga-label="account_logout">Log out</a></li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
</div>
|
|
</header>
|
|
<div role="navigation" aria-label="access keys">
|
|
<a id="nws_header_accesskey_0" href="https://www.ncbi.nlm.nih.gov/guide/browsers/#ncbi_accesskeys" class="usa-sr-only" accesskey="0" tabindex="-1">Access keys</a>
|
|
<a id="nws_header_accesskey_1" href="https://www.ncbi.nlm.nih.gov" class="usa-sr-only" accesskey="1" tabindex="-1">NCBI Homepage</a>
|
|
<a id="nws_header_accesskey_2" href="/myncbi/" class="set-base-url usa-sr-only" accesskey="2" tabindex="-1">MyNCBI Homepage</a>
|
|
<a id="nws_header_accesskey_3" href="#maincontent" class="usa-sr-only" accesskey="3" tabindex="-1">Main Content</a>
|
|
<a id="nws_header_accesskey_4" href="#" class="usa-sr-only" accesskey="4" tabindex="-1">Main Navigation</a>
|
|
</div>
|
|
<section data-section="Alerts">
|
|
<div class="ncbi-alerts-placeholder"></div>
|
|
</section>
|
|
</div>
|
|
<div class="header">
|
|
<div class="res_logo"><h1 class="res_name"><a href="/books/" title="Bookshelf home">Bookshelf</a></h1><h2 class="res_tagline"></h2></div>
|
|
<div class="search"><form method="get" action="/books/"><div class="search_form"><label for="database" class="offscreen_noflow">Search database</label><select id="database"><optgroup label="Recent"><option value="books" selected="selected" data-ac_dict="bookshelf-search">Books</option><option value="nuccore">Nucleotide</option><option value="taxonomy">Taxonomy</option><option value="omim" class="last">OMIM</option></optgroup><optgroup label="All"><option value="gquery">All Databases</option><option value="assembly">Assembly</option><option value="biocollections">Biocollections</option><option value="bioproject">BioProject</option><option value="biosample">BioSample</option><option value="books" data-ac_dict="bookshelf-search">Books</option><option value="clinvar">ClinVar</option><option value="cdd">Conserved Domains</option><option value="gap">dbGaP</option><option value="dbvar">dbVar</option><option value="gene">Gene</option><option value="genome">Genome</option><option value="gds">GEO DataSets</option><option value="geoprofiles">GEO Profiles</option><option value="gtr">GTR</option><option value="ipg">Identical Protein Groups</option><option value="medgen">MedGen</option><option value="mesh">MeSH</option><option value="nlmcatalog">NLM Catalog</option><option value="nuccore">Nucleotide</option><option value="omim">OMIM</option><option value="pmc">PMC</option><option value="protein">Protein</option><option value="proteinclusters">Protein Clusters</option><option value="protfam">Protein Family Models</option><option value="pcassay">PubChem BioAssay</option><option value="pccompound">PubChem Compound</option><option value="pcsubstance">PubChem Substance</option><option value="pubmed">PubMed</option><option value="snp">SNP</option><option value="sra">SRA</option><option value="structure">Structure</option><option value="taxonomy">Taxonomy</option><option value="toolkit">ToolKit</option><option value="toolkitall">ToolKitAll</option><option value="toolkitbookgh">ToolKitBookgh</option></optgroup></select><div class="nowrap"><label for="term" class="offscreen_noflow" accesskey="/">Search term</label><div class="nowrap"><input type="text" name="term" id="term" title="Search Books. Use up and down arrows to choose an item from the autocomplete." value="" class="jig-ncbiclearbutton jig-ncbiautocomplete" data-jigconfig="dictionary:'bookshelf-search',disableUrl:'NcbiSearchBarAutoComplCtrl'" autocomplete="off" data-sbconfig="ds:'no',pjs:'no',afs:'no'" /></div><button id="search" type="submit" class="button_search nowrap" cmd="go">Search</button></div></div></form><ul class="searchlinks inline_list"><li>
|
|
<a href="/books/browse/">Browse Titles</a>
|
|
</li><li>
|
|
<a href="/books/advanced/">Advanced</a>
|
|
</li><li class="help">
|
|
<a href="/books/NBK3833/">Help</a>
|
|
</li><li class="disclaimer">
|
|
<a target="_blank" data-ga-category="literature_resources" data-ga-action="link_click" data-ga-label="disclaimer_link" href="https://www.ncbi.nlm.nih.gov/books/about/disclaimer/">Disclaimer</a>
|
|
</li></ul></div>
|
|
</div>
|
|
|
|
|
|
|
|
<!--<component id="Page" label="headcontent"/>-->
|
|
|
|
</div>
|
|
<div class="content">
|
|
<!-- site messages -->
|
|
<!-- Custom content 1 -->
|
|
<div class="col1">
|
|
|
|
</div>
|
|
|
|
<div class="container">
|
|
<div id="maincontent" class="content eight_col col">
|
|
<!-- Custom content in the left column above book nav -->
|
|
<div class="col2">
|
|
|
|
</div>
|
|
|
|
<!-- Book content -->
|
|
|
|
|
|
<!-- Custom content between navigation and content -->
|
|
<div class="col3">
|
|
|
|
</div>
|
|
|
|
<div class="document">
|
|
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. </p></div><div class="messagearea bk_noprnt" style="margin-bottom:1.3846em "><ul class="messages"><li class="info icon"><span class="icon">By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.</span></li></ul></div><div class="iconblock clearfix whole_rhythm no_top_margin bk_noprnt"><a class="img_link icnblk_img" title="Table of Contents Page" href="/books/n/mboc4/"><img class="source-thumb" src="/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-mboc4-lrg.png" alt="Cover of Molecular Biology of the Cell" height="100px" width="80px" /></a><div class="icnblk_cntnt eight_col"><h2>Molecular Biology of the Cell. 4th edition.</h2><a data-jig="ncbitoggler" href="#__NBK26810_dtls__">Show details</a><div style="display:none" class="ui-widget" id="__NBK26810_dtls__"><div>Alberts B, Johnson A, Lewis J, et al.</div><div>New York: <a href="http://www.garlandscience.com/textbooks/0815341059.asp" ref="pagearea=page-banner&targetsite=external&targetcat=link&targettype=publisher">Garland Science</a>; 2002.</div></div><div class="half_rhythm"></div><div class="bk_noprnt"><form method="get" action="/books/n/mboc4/" id="bk_srch"><div class="bk_search"><label for="bk_term" class="offscreen_noflow">Search term</label><input type="text" title="Search this book" id="bk_term" name="term" value="" data-jig="ncbiclearbutton" /> <input type="submit" class="jig-ncbibutton" value="Search this book" submit="false" style="padding: 0.1em 0.4em;" /></div></form></div></div></div></div></div>
|
|
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK26810_"><span class="title" itemprop="name">The Extracellular Matrix of Animals</span></h1></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><p>Tissues are not made up solely of cells. A substantial part of their volume is <i>extracellular space</i>, which is largely filled by an intricate network of macromolecules constituting the <a href="/books/n/mboc4/A4754/#A5164">extracellular matrix</a> (<a class="figpopup" href="/books/NBK26810/figure/A3533/?report=objectonly" target="object" rid-figpopup="figA3533" rid-ob="figobA3533">Figure 19-33</a>). This matrix is composed of a variety of proteins and polysaccharides that are secreted locally and assembled into an organized meshwork in close association with the surface of the cell that produced them.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3533" co-legend-rid="figlgndA3533"><a href="/books/NBK26810/figure/A3533/?report=objectonly" target="object" title="Figure 19-33" class="img_link icnblk_img figpopup" rid-figpopup="figA3533" rid-ob="figobA3533"><img class="small-thumb" src="/books/NBK26810/bin/ch19f33.gif" src-large="/books/NBK26810/bin/ch19f33.jpg" alt="Figure 19-33. Cells surrounded by spaces filled with extracellular matrix." /></a><div class="icnblk_cntnt" id="figlgndA3533"><h4 id="A3533"><a href="/books/NBK26810/figure/A3533/?report=objectonly" target="object" rid-ob="figobA3533">Figure 19-33</a></h4><p class="float-caption no_bottom_margin">Cells surrounded by spaces filled with extracellular matrix. The particular cells shown in this low-power electron micrograph are those in an embryonic chick limb bud. The cells have not yet acquired their specialized characteristics. (Courtesy of Cheryll <a href="/books/NBK26810/figure/A3533/?report=objectonly" target="object" rid-ob="figobA3533">(more...)</a></p></div></div><p>Whereas we have discussed cell junctions chiefly in the context of epithelial tissues, our account of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> concentrates on connective tissues (<a class="figpopup" href="/books/NBK26810/figure/A3534/?report=objectonly" target="object" rid-figpopup="figA3534" rid-ob="figobA3534">Figure 19-34</a>). The extracellular matrix in <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a> is frequently more plentiful than the cells it surrounds, and it determines the tissue's physical properties. Connective tissues form the framework of the vertebrate body, but the amounts found in different organs vary greatly—from <a class="def" href="/books/n/mboc4/A4754/def-item/A4919/">cartilage</a> and bone, in which they are the major component, to brain and spinal cord, in which they are only minor constituents.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3534" co-legend-rid="figlgndA3534"><a href="/books/NBK26810/figure/A3534/?report=objectonly" target="object" title="Figure 19-34" class="img_link icnblk_img figpopup" rid-figpopup="figA3534" rid-ob="figobA3534"><img class="small-thumb" src="/books/NBK26810/bin/ch19f34.gif" src-large="/books/NBK26810/bin/ch19f34.jpg" alt="Figure 19-34. The connective tissue underlying an epithelium." /></a><div class="icnblk_cntnt" id="figlgndA3534"><h4 id="A3534"><a href="/books/NBK26810/figure/A3534/?report=objectonly" target="object" rid-ob="figobA3534">Figure 19-34</a></h4><p class="float-caption no_bottom_margin">The connective tissue underlying an epithelium. This tissue contains a variety of cells and extracellular matrix components. The predominant cell type is the fibroblast, which secretes abundant extracellular matrix. </p></div></div><p>Variations in the relative amounts of the different types of matrix macromolecules and the way in which they are organized in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> give rise to an amazing diversity of forms, each adapted to the functional requirements of the particular tissue. The matrix can become calcified to form the rock-hard structures of bone or teeth, or it can form the transparent matrix of the cornea, or it can adopt the ropelike organization that gives tendons their enormous tensile strength. At the interface between an epithelium and <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a>, the matrix forms a <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina (see <a class="figpopup" href="/books/NBK26810/figure/A3534/?report=objectonly" target="object" rid-figpopup="figA3534" rid-ob="figobA3534">Figure 19-34</a>), which is important in controlling cell behavior.</p><p>The vertebrate <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> was once thought to serve mainly as a relatively inert scaffold to stabilize the physical structure of tissues. But now it is clear that the matrix has a far more active and <a class="def" href="/books/n/mboc4/A4754/def-item/A5014/">complex</a> role in regulating the behavior of the cells that contact it, influencing their survival, <a class="def" href="/books/n/mboc4/A4754/def-item/A5071/">development</a>, migration, proliferation, shape, and function. The extracellular matrix has a correspondingly complex molecular composition. Although our understanding of its organization is still incomplete, there has been rapid progress in characterizing many of its major components.</p><p>We focus on the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> of vertebrates, but the origins of the extracellular matrix are very ancient and virtually all multicellular organisms, make it; examples include the cuticles of worms and insects, the shells of mollusks, and, as we discuss later, the cell walls of plants.</p><div id="A3535"><h2 id="_A3535_">The Extracellular Matrix Is Made and Oriented by the Cells Within It</h2><p>The macromolecules that constitute the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> are mainly produced locally by cells in the matrix. As we discuss later, these cells also help to organize the matrix: the orientation of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5054/">cytoskeleton</a> inside the cell can control the orientation of the matrix produced outside. In most connective tissues, the matrix macromolecules are secreted largely by cells called <a href="/books/n/mboc4/A4754/#A5177">fibroblasts</a> (<a class="figpopup" href="/books/NBK26810/figure/A3536/?report=objectonly" target="object" rid-figpopup="figA3536" rid-ob="figobA3536">Figure 19-35</a>). In certain specialized types of connective tissues, such as <a class="def" href="/books/n/mboc4/A4754/def-item/A4919/">cartilage</a> and bone, however, they are secreted by cells of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5177/">fibroblast</a> family that have more specific names: <i>chondroblasts</i>, for example, form cartilage, and <i>osteoblasts</i> form bone.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3536" co-legend-rid="figlgndA3536"><a href="/books/NBK26810/figure/A3536/?report=objectonly" target="object" title="Figure 19-35" class="img_link icnblk_img figpopup" rid-figpopup="figA3536" rid-ob="figobA3536"><img class="small-thumb" src="/books/NBK26810/bin/ch19f35.gif" src-large="/books/NBK26810/bin/ch19f35.jpg" alt="Figure 19-35. Fibroblasts in connective tissue." /></a><div class="icnblk_cntnt" id="figlgndA3536"><h4 id="A3536"><a href="/books/NBK26810/figure/A3536/?report=objectonly" target="object" rid-ob="figobA3536">Figure 19-35</a></h4><p class="float-caption no_bottom_margin">Fibroblasts in connective tissue. This scanning electron micrograph shows tissue from the cornea of a rat. The extracellular matrix surrounding the fibroblasts is composed largely of collagen fibrils (there are no elastic fibers in the cornea). The glycoproteins, <a href="/books/NBK26810/figure/A3536/?report=objectonly" target="object" rid-ob="figobA3536">(more...)</a></p></div></div><p>Two main classes of extracellular macromolecules make up the matrix: (1) <a class="def" href="/books/n/mboc4/A4754/def-item/A5662/">polysaccharide</a> chains of the class called <i>glycosaminoglycans</i> (<i>GAGs</i>), which are usually found covalently linked to <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> in the form of <i>proteoglycans,</i> and (2) fibrous proteins, including <i><a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a>, <a class="def" href="/books/n/mboc4/A4754/def-item/A5115/">elastin</a>, <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a>,</i> and <i><a class="def" href="/books/n/mboc4/A4754/def-item/A5382/">laminin</a>,</i> which have both structural and adhesive functions. We shall see that the members of both classes come in a great variety of shapes and sizes.</p><p>The <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> molecules in <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a> form a highly hydrated, gel-like “ground substance” in which the fibrous proteins are embedded. The <a class="def" href="/books/n/mboc4/A4754/def-item/A5662/">polysaccharide</a> gel resists compressive forces on the matrix while permitting the rapid <a class="def" href="/books/n/mboc4/A4754/def-item/A5076/">diffusion</a> of nutrients, metabolites, and hormones between the blood and the tissue cells. The <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> fibers both strengthen and help organize the matrix, and rubberlike <a class="def" href="/books/n/mboc4/A4754/def-item/A5115/">elastin</a> fibers give it resilience. Finally, many matrix proteins help cells attach in the appropriate locations.</p></div><div id="A3537"><h2 id="_A3537_">Glycosaminoglycan (GAG) Chains Occupy Large Amounts of Space and Form Hydrated Gels</h2><p>
|
|
<b>Glycosaminoglycans (GAGs)</b> are unbranched <a class="def" href="/books/n/mboc4/A4754/def-item/A5662/">polysaccharide</a> chains composed of repeating <a class="def" href="/books/n/mboc4/A4754/def-item/A5079/">disaccharide</a> units. They are called GAGs because one of the two sugars in the repeating disaccharide is always an amino <a class="def" href="/books/n/mboc4/A4754/def-item/A5842/">sugar</a> (<i>N</i>-acetylglucosamine or <i>N</i>-acetylgalactosamine), which in most cases is sulfated. The second sugar is usually a uronic <a class="def" href="/books/n/mboc4/A4754/def-item/A4761/">acid</a> (glucuronic or iduronic). Because there are sulfate or carboxyl groups on most of their sugars, GAGs are highly negatively charged (<a class="figpopup" href="/books/NBK26810/figure/A3538/?report=objectonly" target="object" rid-figpopup="figA3538" rid-ob="figobA3538">Figure 19-36</a>). Indeed, they are the most anionic molecules produced by animal cells. Four main groups of GAGs are distinguished according to their sugars, the type of <a class="def" href="/books/n/mboc4/A4754/def-item/A5397/">linkage</a> between the sugars, and the number and location of sulfate groups: (1) <i>hyaluronan,</i> (2) <i>chondroitin sulfate</i> and <i>dermatan sulfate,</i> (3) <i>heparan sulfate,</i> and (4) <i>keratan sulfate</i>.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3538" co-legend-rid="figlgndA3538"><a href="/books/NBK26810/figure/A3538/?report=objectonly" target="object" title="Figure 19-36" class="img_link icnblk_img figpopup" rid-figpopup="figA3538" rid-ob="figobA3538"><img class="small-thumb" src="/books/NBK26810/bin/ch19f36.gif" src-large="/books/NBK26810/bin/ch19f36.jpg" alt="Figure 19-36. The repeating disaccharide sequence of a dermatan sulfate glycosaminoglycan (GAG) chain." /></a><div class="icnblk_cntnt" id="figlgndA3538"><h4 id="A3538"><a href="/books/NBK26810/figure/A3538/?report=objectonly" target="object" rid-ob="figobA3538">Figure 19-36</a></h4><p class="float-caption no_bottom_margin">The repeating disaccharide sequence of a dermatan sulfate glycosaminoglycan (GAG) chain. These chains are typically 70–200 sugars long. There is a high density of negative charges along the chain resulting from the presence of both carboxyl and <a href="/books/NBK26810/figure/A3538/?report=objectonly" target="object" rid-ob="figobA3538">(more...)</a></p></div></div><p>Polysaccharide chains are too stiff to fold up into the compact globular structures that <a class="def" href="/books/n/mboc4/A4754/def-item/A5658/">polypeptide</a> chains typically form. Moreover, they are strongly <a class="def" href="/books/n/mboc4/A4754/def-item/A5305/">hydrophilic</a>. Thus, GAGs tend to adopt highly extended conformations that occupy a huge volume relative to their mass (<a class="figpopup" href="/books/NBK26810/figure/A3539/?report=objectonly" target="object" rid-figpopup="figA3539" rid-ob="figobA3539">Figure 19-37</a>), and they form gels even at very low concentrations. Their high density of negative charges attracts a cloud of cations, most notably Na<sup>+</sup>, that are osmotically active, causing large amounts of water to be sucked into the matrix. This creates a swelling pressure, or turgor, that enables the matrix to withstand compressive forces (in contrast to <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> fibrils, which resist stretching forces). The <a class="def" href="/books/n/mboc4/A4754/def-item/A4919/">cartilage</a> matrix that lines the knee joint, for example, can support pressures of hundreds of atmospheres in this way.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3539" co-legend-rid="figlgndA3539"><a href="/books/NBK26810/figure/A3539/?report=objectonly" target="object" title="Figure 19-37" class="img_link icnblk_img figpopup" rid-figpopup="figA3539" rid-ob="figobA3539"><img class="small-thumb" src="/books/NBK26810/bin/ch19f37.gif" src-large="/books/NBK26810/bin/ch19f37.jpg" alt="Figure 19-37. The relative dimensions and volumes occupied by various macromolecules." /></a><div class="icnblk_cntnt" id="figlgndA3539"><h4 id="A3539"><a href="/books/NBK26810/figure/A3539/?report=objectonly" target="object" rid-ob="figobA3539">Figure 19-37</a></h4><p class="float-caption no_bottom_margin">The relative dimensions and volumes occupied by various macromolecules. Several proteins, a glycogen granule, and a single hydrated molecule of hyaluronan are shown. </p></div></div><p>The GAGs in <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a> usually constitute less than 10% of the weight of the fibrous proteins. But, because they form porous hydrated gels, the <a class="def" href="/books/n/mboc4/A4754/def-item/A5204/">GAG</a> chains fill most of the extracellular space, providing mechanical support to the tissue. In one rare human genetic disease, there is a severe deficiency in the synthesis of the dermatan sulfate <a class="def" href="/books/n/mboc4/A4754/def-item/A5079/">disaccharide</a> shown in <a class="figpopup" href="/books/NBK26810/figure/A3538/?report=objectonly" target="object" rid-figpopup="figA3538" rid-ob="figobA3538">Figure 19-36</a>. The affected individuals have a short stature, prematurely aged appearance, and generalized defects in their skin, joints, muscles, and bones.</p><p>It should be emphasized, however, that, in invertebrates and plants, other types of polysaccharides often dominate the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a>. Thus, in higher plants, as we discuss later, <a class="def" href="/books/n/mboc4/A4754/def-item/A4949/">cellulose</a> (polyglucose) chains are packed tightly together in ribbonlike crystalline arrays to form the microfibrillar component of the <a class="def" href="/books/n/mboc4/A4754/def-item/A4943/">cell wall</a>. In insects, crustaceans, and other arthropods, chitin (poly-<i>N</i>-acetylglucosamine) similarly forms the main component of the exoskeleton. Together, cellulose and chitin are the most abundant biopolymers on Earth.</p></div><div id="A3540"><h2 id="_A3540_">Hyaluronan Is Thought to Facilitate Cell Migration During Tissue Morphogenesis and Repair</h2><p>
|
|
<b>Hyaluronan</b> (also called <i>hyaluronic <a class="def" href="/books/n/mboc4/A4754/def-item/A4761/">acid</a></i> or <i>hyaluronate</i>) is the simplest of the GAGs (<a class="figpopup" href="/books/NBK26810/figure/A3541/?report=objectonly" target="object" rid-figpopup="figA3541" rid-ob="figobA3541">Figure 19-38</a>). It consists of a regular repeating sequence of up to 25,000 nonsulfated <a class="def" href="/books/n/mboc4/A4754/def-item/A5079/">disaccharide</a> units, is found in variable amounts in all tissues and fluids in adult animals, and is especially abundant in early embryos. Hyaluronan is not typical of the majority of GAGs. In contrast with all of the others, it contains no sulfated sugars, all its disaccharide units are identical, its chain length is enormous (thousands of <a class="def" href="/books/n/mboc4/A4754/def-item/A5842/">sugar</a> monomers), and it is not generally linked covalently to any core <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a>. Moreover, whereas other GAGs are synthesized inside the cell and released by <a class="def" href="/books/n/mboc4/A4754/def-item/A5160/">exocytosis</a>, hyaluronan is spun out directly from the cell surface by an <a class="def" href="/books/n/mboc4/A4754/def-item/A5137/">enzyme</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5014/">complex</a> embedded in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a>.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3541" co-legend-rid="figlgndA3541"><a href="/books/NBK26810/figure/A3541/?report=objectonly" target="object" title="Figure 19-38" class="img_link icnblk_img figpopup" rid-figpopup="figA3541" rid-ob="figobA3541"><img class="small-thumb" src="/books/NBK26810/bin/ch19f38.gif" src-large="/books/NBK26810/bin/ch19f38.jpg" alt="Figure 19-38. The repeating disaccharide sequence in hyaluronan, a relatively simple GAG." /></a><div class="icnblk_cntnt" id="figlgndA3541"><h4 id="A3541"><a href="/books/NBK26810/figure/A3541/?report=objectonly" target="object" rid-ob="figobA3541">Figure 19-38</a></h4><p class="float-caption no_bottom_margin">The repeating disaccharide sequence in hyaluronan, a relatively simple GAG. This ubiquitous molecule in vertebrates consists of a single long chain of up to 25,000 sugars. Note the absence of sulfate groups. </p></div></div><p>Hyaluronan is thought to have a role in resisting compressive forces in tissues and joints. It is also important as a space filler during embryonic <a class="def" href="/books/n/mboc4/A4754/def-item/A5071/">development</a>, where it can be used to force a change in the shape of a structure, as a small quantity expands with water to occupy a large volume (see <a class="figpopup" href="/books/NBK26810/figure/A3539/?report=objectonly" target="object" rid-figpopup="figA3539" rid-ob="figobA3539">Figure 19-37</a>). Hyaluronan synthesized from the <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> side of an epithelium, for example, often serves to create a cell-free space into which cells subsequently migrate; this occurs in the formation of the heart, the cornea, and several other organs. When cell migration ends, the excess hyaluronan is generally degraded by the <a class="def" href="/books/n/mboc4/A4754/def-item/A5137/">enzyme</a> <i>hyaluronidase</i>. Hyaluronan is also produced in large quantities during wound healing, and it is an important constituent of joint fluid, where it serves as a lubricant.</p><p>Many of the functions of hyaluronan depend on specific interactions with other molecules, including both proteins and proteoglycans—molecules consisting of <a class="def" href="/books/n/mboc4/A4754/def-item/A5204/">GAG</a> chains covalently linked to a <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a>. Some of these molecules that bind to hyaluronan are constituents of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a>, while others are integral components of the surface of cells.</p></div><div id="A3542"><h2 id="_A3542_">Proteoglycans Are Composed of GAG Chains Covalently Linked to a Core Protein</h2><p>Except for hyaluronan, all GAGs are found covalently attached to <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> in the form of <a href="/books/n/mboc4/A4754/#A5697">proteoglycans</a>, which are made by most animal cells. The <a class="def" href="/books/n/mboc4/A4754/def-item/A5658/">polypeptide</a> chain, or <i>core protein</i>, of a <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> is made on <a class="def" href="/books/n/mboc4/A4754/def-item/A5438/">membrane</a>-bound ribosomes and threaded into the <a class="def" href="/books/n/mboc4/A4754/def-item/A5409/">lumen</a> of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5131/">endoplasmic reticulum</a>. The <a class="def" href="/books/n/mboc4/A4754/def-item/A5662/">polysaccharide</a> chains are mainly assembled on this core protein in the Golgi apparatus. First, a special <i>link tetrasaccharide</i> is attached to a serine <a class="def" href="/books/n/mboc4/A4754/def-item/A5793/">side chain</a> on the core protein to serve as a primer for polysaccharide growth; then, one <a class="def" href="/books/n/mboc4/A4754/def-item/A5842/">sugar</a> at a time is added by specific glycosyl transferases (<a class="figpopup" href="/books/NBK26810/figure/A3543/?report=objectonly" target="object" rid-figpopup="figA3543" rid-ob="figobA3543">Figure 19-39</a>). While still in the Golgi apparatus, many of the polymerized sugars are covalently modified by a sequential and coordinated series of reactions. Epimerizations alter the configuration of the substituents around individual carbon atoms in the sugar <a class="def" href="/books/n/mboc4/A4754/def-item/A5486/">molecule</a>; sulfations increase the negative charge.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3543" co-legend-rid="figlgndA3543"><a href="/books/NBK26810/figure/A3543/?report=objectonly" target="object" title="Figure 19-39" class="img_link icnblk_img figpopup" rid-figpopup="figA3543" rid-ob="figobA3543"><img class="small-thumb" src="/books/NBK26810/bin/ch19f39.gif" src-large="/books/NBK26810/bin/ch19f39.jpg" alt="Figure 19-39. The linkage between a GAG chain and its core protein in a proteoglycan molecule." /></a><div class="icnblk_cntnt" id="figlgndA3543"><h4 id="A3543"><a href="/books/NBK26810/figure/A3543/?report=objectonly" target="object" rid-ob="figobA3543">Figure 19-39</a></h4><p class="float-caption no_bottom_margin">The linkage between a GAG chain and its core protein in a proteoglycan molecule. A specific link tetrasaccharide is first assembled on a serine side chain. In most cases, it is unclear how the particular serine is selected, but it seems that a specific <a href="/books/NBK26810/figure/A3543/?report=objectonly" target="object" rid-ob="figobA3543">(more...)</a></p></div></div><p>Proteoglycans are usually easily distinguished from other glycoproteins by the nature, quantity, and arrangement of their <a class="def" href="/books/n/mboc4/A4754/def-item/A5842/">sugar</a> side chains. By definition, at least one of the sugar side chains of a <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> must be a <a class="def" href="/books/n/mboc4/A4754/def-item/A5204/">GAG</a>. Whereas glycoproteins contain 1–60% <a class="def" href="/books/n/mboc4/A4754/def-item/A4908/">carbohydrate</a> by weight in the form of numerous relatively short, branched <a class="def" href="/books/n/mboc4/A4754/def-item/A5574/">oligosaccharide</a> chains, proteoglycans can contain as much as 95% carbohydrate by weight, mostly in the form of long, unbranched GAG chains, each typically about 80 sugars long. Proteoglycans can be huge. The proteoglycan <i>aggrecan,</i> for example, which is a major component of <a class="def" href="/books/n/mboc4/A4754/def-item/A4919/">cartilage</a>, has a mass of about 3 × 10<sup>6</sup> daltons with over 100 GAG chains. Other proteoglycans are much smaller and have only 1–10 GAG chains; an example is <i>decorin</i>, which is secreted by fibroblasts and has a single GAG chain (<a class="figpopup" href="/books/NBK26810/figure/A3544/?report=objectonly" target="object" rid-figpopup="figA3544" rid-ob="figobA3544">Figure 19-40</a>).
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3544" co-legend-rid="figlgndA3544"><a href="/books/NBK26810/figure/A3544/?report=objectonly" target="object" title="Figure 19-40" class="img_link icnblk_img figpopup" rid-figpopup="figA3544" rid-ob="figobA3544"><img class="small-thumb" src="/books/NBK26810/bin/ch19f40.gif" src-large="/books/NBK26810/bin/ch19f40.jpg" alt="Figure 19-40. Examples of a small (decorin) and a large (aggrecan) proteoglycan found in the extracellular matrix." /></a><div class="icnblk_cntnt" id="figlgndA3544"><h4 id="A3544"><a href="/books/NBK26810/figure/A3544/?report=objectonly" target="object" rid-ob="figobA3544">Figure 19-40</a></h4><p class="float-caption no_bottom_margin">Examples of a small (decorin) and a large (aggrecan) proteoglycan found in the extracellular matrix. These two proteoglycans are compared with a typical secreted glycoprotein molecule, pancreatic ribonuclease B. All three are drawn to scale. The core <a href="/books/NBK26810/figure/A3544/?report=objectonly" target="object" rid-ob="figobA3544">(more...)</a></p></div></div><p>In principle, proteoglycans have the potential for almost limitless heterogeneity. Even a single type of core <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> can vary greatly in the number and types of attached <a class="def" href="/books/n/mboc4/A4754/def-item/A5204/">GAG</a> chains. Moreover, the underlying repeating pattern of disaccharides in each GAG can be modified by a <a class="def" href="/books/n/mboc4/A4754/def-item/A5014/">complex</a> pattern of sulfate groups. The heterogeneity of these GAGs makes it difficult to identify and classify proteoglycans in terms of their sugars. The sequences of many core proteins have been <a class="def" href="/books/n/mboc4/A4754/def-item/A5070/">determined</a> with the aid of <a class="def" href="/books/n/mboc4/A4754/def-item/A5723/">recombinant DNA</a> techniques, and they, too, are extremely diverse. Although a few small families have been recognized, no common structural feature clearly distinguishes <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> core proteins from other proteins, and many have one or more domains that are <a class="def" href="/books/n/mboc4/A4754/def-item/A5292/">homologous</a> to domains found in other proteins of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> or <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a>. Thus, it is probably best to regard proteoglycans as a diverse group of highly glycosylated glycoproteins whose functions are mediated by both their core proteins and their GAG chains.</p></div><div id="A3545"><h2 id="_A3545_">Proteoglycans Can Regulate the Activities of Secreted Proteins</h2><p>Given the great abundance and structural diversity of <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> molecules, it would be surprising if their function were limited to providing hydrated space around and between cells. Their <a class="def" href="/books/n/mboc4/A4754/def-item/A5204/">GAG</a> chains, for example, can form gels of varying pore size and charge density; one possible function, therefore, is to serve as selective sieves to regulate the traffic of molecules and cells according to their size, charge, or both. Evidence suggests that a heparan sulfate proteoglycan called <i>perlecan</i> has this role in the <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina of the kidney glomerulus, which filters molecules passing into the urine from the bloodstream (discussed below).</p><p>Proteoglycans are thought to have a major role in chemical signaling between cells. They bind various secreted signal molecules, such as certain <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> growth factors, and can enhance or inhibit their signaling activity. For example, the heparan sulfate chains of proteoglycans bind to <i><a class="def" href="/books/n/mboc4/A4754/def-item/A5177/">fibroblast</a> growth factors</i> (<i>FGFs</i>), which stimulate a variety of cell types to proliferate; this interaction oligomerizes the <a class="def" href="/books/n/mboc4/A4754/def-item/A5255/">growth factor</a> molecules, enabling them to cross-link and activate their cell-surface receptors, which are transmembrane tyrosine kinases (see <a href="/books/n/mboc4/A2840/figure/A2850/?report=objectonly" target="object" class="figpopup" rid-figpopup="figA2850" rid-ob="figobA2850">Figure 15-50B</a>). Whereas in most cases the signal molecules bind to the <a class="def" href="/books/n/mboc4/A4754/def-item/A5204/">GAG</a> chains of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a>, this is not always so. Some members of the <i>transforming growth factor β (TGF-β)</i> family bind to the core proteins of several matrix proteoglycans, including decorin; binding to decorin inhibits the activity of the growth factors.</p><p>Proteoglycans also bind, and regulate the activities of, other types of secreted proteins, including proteolytic enzymes (proteases) and protease inhibitors. Binding to a <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> could control the activity of a secreted <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> in any of the following ways: (1) it could immobilize the protein close to the site where it is produced, thereby restricting its range of action; (2) it could sterically block the activity of the protein; (3) it could provide a reservoir of the protein for delayed release; (4) it could protect the protein from proteolytic degradation, thereby prolonging its action; (5) it could alter or concentrate the protein for more effective presentation to cell-surface receptors.</p><p>Proteoglycans are thought to act in all these ways to help regulate the activities of secreted proteins. An example of the last function occurs in inflammatory responses, in which heparan sulfate proteoglycans immobilize secreted chemotactic attractants called <i>chemokines</i> (discussed in Chapter 24) on the endothelial surface of a blood vessel at an inflammatory site. In this way, the chemokines remain there for a prolonged period, stimulating white blood cells to leave the bloodstream and migrate into the inflamed tissue.</p></div><div id="A3546"><h2 id="_A3546_">GAG Chains May Be Highly Organized in the Extracellular Matrix</h2><p>GAGs and proteoglycans can associate to form huge polymeric complexes in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a>. Molecules of aggrecan, for example, the major <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> in <a class="def" href="/books/n/mboc4/A4754/def-item/A4919/">cartilage</a> (see <a class="figpopup" href="/books/NBK26810/figure/A3544/?report=objectonly" target="object" rid-figpopup="figA3544" rid-ob="figobA3544">Figure 19-40</a>), assemble with hyaluronan in the extracellular space to form aggregates that are as big as a bacterium (<a class="figpopup" href="/books/NBK26810/figure/A3547/?report=objectonly" target="object" rid-figpopup="figA3547" rid-ob="figobA3547">Figure 19-41</a>).
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3547" co-legend-rid="figlgndA3547"><a href="/books/NBK26810/figure/A3547/?report=objectonly" target="object" title="Figure 19-41" class="img_link icnblk_img figpopup" rid-figpopup="figA3547" rid-ob="figobA3547"><img class="small-thumb" src="/books/NBK26810/bin/ch19f41.gif" src-large="/books/NBK26810/bin/ch19f41.jpg" alt="Figure 19-41. An aggrecan aggregate from fetal bovine cartilage." /></a><div class="icnblk_cntnt" id="figlgndA3547"><h4 id="A3547"><a href="/books/NBK26810/figure/A3547/?report=objectonly" target="object" rid-ob="figobA3547">Figure 19-41</a></h4><p class="float-caption no_bottom_margin">An aggrecan aggregate from fetal bovine cartilage. (A) An electron micrograph of an aggrecan aggregate shadowed with platinum. Many free aggrecan molecules are also visible. (B) A drawing of the giant aggrecan aggregate shown in (A). It consists of about <a href="/books/NBK26810/figure/A3547/?report=objectonly" target="object" rid-ob="figobA3547">(more...)</a></p></div></div><p>Moreover, besides associating with one another, GAGs and proteoglycans associate with fibrous matrix proteins such as <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> and with <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> meshworks such as the <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina, creating extremely <a class="def" href="/books/n/mboc4/A4754/def-item/A5014/">complex</a> structures. Decorin, which binds to collagen fibrils, is essential for collagen fiber formation; mice that cannot make decorin have fragile skin that has reduced tensile strength. The arrangement of <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> molecules in living tissues is generally hard to determine. As the molecules are highly water-soluble, they may be washed out of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> when tissue sections are exposed to <a class="def" href="/books/n/mboc4/A4754/def-item/A4840/">aqueous</a> solutions during fixation. In addition, changes in <a class="def" href="/books/n/mboc4/A4754/def-item/A5610/">pH</a>, ionic, or osmotic conditions can drastically alter their <a class="def" href="/books/n/mboc4/A4754/def-item/A5019/">conformation</a>. Thus, specialized methods must be used to visualize them in tissues (<a class="figpopup" href="/books/NBK26810/figure/A3548/?report=objectonly" target="object" rid-figpopup="figA3548" rid-ob="figobA3548">Figure 19-42</a>).
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3548" co-legend-rid="figlgndA3548"><a href="/books/NBK26810/figure/A3548/?report=objectonly" target="object" title="Figure 19-42" class="img_link icnblk_img figpopup" rid-figpopup="figA3548" rid-ob="figobA3548"><img class="small-thumb" src="/books/NBK26810/bin/ch19f42.gif" src-large="/books/NBK26810/bin/ch19f42.jpg" alt="Figure 19-42. Proteoglycans in the extracellular matrix of rat cartilage." /></a><div class="icnblk_cntnt" id="figlgndA3548"><h4 id="A3548"><a href="/books/NBK26810/figure/A3548/?report=objectonly" target="object" rid-ob="figobA3548">Figure 19-42</a></h4><p class="float-caption no_bottom_margin">Proteoglycans in the extracellular matrix of rat cartilage. The tissue was rapidly frozen at -196°C, and fixed and stained while still frozen (a process called freeze substitution) to prevent the GAG chains from collapsing. In this electron micrograph, <a href="/books/NBK26810/figure/A3548/?report=objectonly" target="object" rid-ob="figobA3548">(more...)</a></p></div></div></div><div id="A3549"><h2 id="_A3549_">Cell-Surface Proteoglycans Act as Co-receptors</h2><p>Not all proteoglycans are secreted components of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a>. Some are integral components of plasma membranes and have their core <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> either inserted across the <a class="def" href="/books/n/mboc4/A4754/def-item/A5400/">lipid bilayer</a> or attached to the lipid bilayer by a glycosylphosphatidylinositol (GPI) anchor. Some of these <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a> proteoglycans act as <i>co-receptors</i> that collaborate with conventional cell-surface <a class="def" href="/books/n/mboc4/A4754/def-item/A5720/">receptor</a> proteins, in both binding cells to the extracellular matrix and initiating the response of cells to some extracellular signal proteins. In addition, some conventional receptors have one or more <a class="def" href="/books/n/mboc4/A4754/def-item/A5204/">GAG</a> chains and are therefore proteoglycans themselves.</p><p>Among the best-characterized <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a> proteoglycans are the <i>syndecans,</i> which have a membrane-spanning core <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a>. The extracellular domains of these transmembrane proteoglycans carry up to three chondroitin sulfate and heparan sulfate <a class="def" href="/books/n/mboc4/A4754/def-item/A5204/">GAG</a> chains, while their intracellular domains are thought to interact with the <a class="def" href="/books/n/mboc4/A4754/def-item/A4766/">actin</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5054/">cytoskeleton</a> in the <a class="def" href="/books/n/mboc4/A4754/def-item/A4935/">cell cortex</a>.</p><p>Syndecans are located on the surface of many types of cells, including fibroblasts and epithelial cells, where they serve as receptors for matrix proteins. In fibroblasts, syndecans can be found in focal adhesions, where they modulate <a class="def" href="/books/n/mboc4/A4754/def-item/A5343/">integrin</a> function by interacting with <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> on the cell surface and with cytoskeletal and signaling proteins inside the cell. Syndecans also bind FGFs and present them to FGF <a class="def" href="/books/n/mboc4/A4754/def-item/A5720/">receptor</a> proteins on the same cell. Similarly, another <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a>, called <i>betaglycan</i>, binds TGF-β and may present it to TGF-β receptors.</p><p>The importance of proteoglycans as co-receptors is illustrated by the severe developmental defects that can occur when specific proteoglycans are inactivated by <a class="def" href="/books/n/mboc4/A4754/def-item/A5502/">mutation</a>. In <i>Drosophila</i>, for example, signaling by the secreted signal <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> <i>Wingless</i> depends on the protein's binding to a specific heparan sulfate <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> co-<a class="def" href="/books/n/mboc4/A4754/def-item/A5720/">receptor</a> called <i>Dally</i> on the target cell. In <a class="def" href="/books/n/mboc4/A4754/def-item/A5500/">mutant</a> flies deficient in Dally, Wingless signaling fails, and the severe developmental defects that result are similar to those that result from mutations in the <i>wingless</i> <a class="def" href="/books/n/mboc4/A4754/def-item/A5215/">gene</a> itself. In some tissues, inactivation of Dally also inhibits signaling by a secreted protein of the TGF-β family called <i>Decapentaplegic (DPP).</i>
|
|
</p><p>Some of the proteoglycans discussed in this chapter are summarized in <a class="figpopup" href="/books/NBK26810/table/A3550/?report=objectonly" target="object" rid-figpopup="figA3550" rid-ob="figobA3550">Table 19-4</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figA3550"><a href="/books/NBK26810/table/A3550/?report=objectonly" target="object" title="Table 19-4" class="img_link icnblk_img figpopup" rid-figpopup="figA3550" rid-ob="figobA3550"><img class="small-thumb" src="/books/NBK26810/table/A3550/?report=thumb" src-large="/books/NBK26810/table/A3550/?report=previmg" alt="Table 19-4. Some Common Proteoglycans." /></a><div class="icnblk_cntnt"><h4 id="A3550"><a href="/books/NBK26810/table/A3550/?report=objectonly" target="object" rid-ob="figobA3550">Table 19-4</a></h4><p class="float-caption no_bottom_margin">Some Common Proteoglycans. </p></div></div></div><div id="A3551"><h2 id="_A3551_">Collagens Are the Major Proteins of the Extracellular Matrix</h2><p>The <a href="/books/n/mboc4/A4754/#A5004">collagens</a> are a family of fibrous proteins found in all multicellular animals. They are secreted by <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a> cells, as well as by a variety of other cell types. As a major component of skin and bone, they are the most abundant proteins in mammals, constituting 25% of the total <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> mass in these animals.</p><p>The primary feature of a typical <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5486/">molecule</a> is its long, stiff, triple-stranded helical structure, in which three collagen <a class="def" href="/books/n/mboc4/A4754/def-item/A5658/">polypeptide</a> chains, called <i>α chains,</i> are wound around one another in a ropelike superhelix (<a class="figpopup" href="/books/NBK26810/figure/A3552/?report=objectonly" target="object" rid-figpopup="figA3552" rid-ob="figobA3552">Figure 19-43</a>). Collagens are extremely rich in proline and glycine, both of which are important in the formation of the triple-stranded helix. Proline, because of its ring structure, stabilizes the helical <a class="def" href="/books/n/mboc4/A4754/def-item/A5019/">conformation</a> in each α chain, while glycine is regularly spaced at every third <a class="def" href="/books/n/mboc4/A4754/def-item/A5737/">residue</a> throughout the central region of the α chain. Being the smallest <a class="def" href="/books/n/mboc4/A4754/def-item/A4807/">amino acid</a> (having only a hydrogen atom as a <a class="def" href="/books/n/mboc4/A4754/def-item/A5793/">side chain</a>), glycine allows the three helical α chains to pack tightly together to form the final collagen superhelix (see <a class="figpopup" href="/books/NBK26810/figure/A3552/?report=objectonly" target="object" rid-figpopup="figA3552" rid-ob="figobA3552">Figure 19-43</a>).
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3552" co-legend-rid="figlgndA3552"><a href="/books/NBK26810/figure/A3552/?report=objectonly" target="object" title="Figure 19-43" class="img_link icnblk_img figpopup" rid-figpopup="figA3552" rid-ob="figobA3552"><img class="small-thumb" src="/books/NBK26810/bin/ch19f43.gif" src-large="/books/NBK26810/bin/ch19f43.jpg" alt="Figure 19-43. The structure of a typical collagen molecule." /></a><div class="icnblk_cntnt" id="figlgndA3552"><h4 id="A3552"><a href="/books/NBK26810/figure/A3552/?report=objectonly" target="object" rid-ob="figobA3552">Figure 19-43</a></h4><p class="float-caption no_bottom_margin">The structure of a typical collagen molecule. (A) A model of part of a single collagen α chain in which each amino acid is represented by a sphere. The chain is about 1000 amino acids long. It is arranged as a left-handed helix, with three amino <a href="/books/NBK26810/figure/A3552/?report=objectonly" target="object" rid-ob="figobA3552">(more...)</a></p></div></div><p>So far, about 25 distinct <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> α chains have been identified, each encoded by a separate <a class="def" href="/books/n/mboc4/A4754/def-item/A5215/">gene</a>. Different combinations of these genes are expressed in different tissues. Although in principle more than 10,000 types of triple-stranded collagen molecules could be assembled from various combinations of the 25 or so α chains, only about 20 types of collagen molecules have been found. The main types of collagen found in connective tissues are types I, II, III, V, and XI, type I being the principal collagen of skin and bone and by far the most common. These are the <a href="/books/n/mboc4/A4754/#A5176">fibrillar collagens</a>, or fibril-forming collagens, with the ropelike structure illustrated in <a class="figpopup" href="/books/NBK26810/figure/A3552/?report=objectonly" target="object" rid-figpopup="figA3552" rid-ob="figobA3552">Figure 19-43</a>. After being secreted into the extracellular space, these collagen molecules assemble into higher-order polymers called <i>collagen fibrils,</i> which are thin structures (10–300 <a class="def" href="/books/n/mboc4/A4754/def-item/A5540/">nm</a> in diameter) many hundreds of micrometers long in mature tissues and clearly visible in <a class="def" href="/books/n/mboc4/A4754/def-item/A5118/">electron</a> micrographs (<a class="figpopup" href="/books/NBK26810/figure/A3553/?report=objectonly" target="object" rid-figpopup="figA3553" rid-ob="figobA3553">Figure 19-44</a>; see also <a class="figpopup" href="/books/NBK26810/figure/A3548/?report=objectonly" target="object" rid-figpopup="figA3548" rid-ob="figobA3548">Figure 19-42</a>). Collagen fibrils often aggregate into larger, cablelike bundles, several micrometers in diameter, which can be seen in the light microscope as <i>collagen fibers</i>.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3553" co-legend-rid="figlgndA3553"><a href="/books/NBK26810/figure/A3553/?report=objectonly" target="object" title="Figure 19-44" class="img_link icnblk_img figpopup" rid-figpopup="figA3553" rid-ob="figobA3553"><img class="small-thumb" src="/books/NBK26810/bin/ch19f44.gif" src-large="/books/NBK26810/bin/ch19f44.jpg" alt="Figure 19-44. Fibroblast surrounded by collagen fibrils in the connective tissue of embryonic chick skin." /></a><div class="icnblk_cntnt" id="figlgndA3553"><h4 id="A3553"><a href="/books/NBK26810/figure/A3553/?report=objectonly" target="object" rid-ob="figobA3553">Figure 19-44</a></h4><p class="float-caption no_bottom_margin">Fibroblast surrounded by collagen fibrils in the connective tissue of embryonic chick skin. In this electron micrograph, the fibrils are organized into bundles that run approximately at right angles to one another. Therefore, some bundles are oriented <a href="/books/NBK26810/figure/A3553/?report=objectonly" target="object" rid-ob="figobA3553">(more...)</a></p></div></div><p>Collagen types IX and XII are called <i>fibril-associated collagens</i> because they decorate the surface of <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> fibrils. They are thought to link these fibrils to one another and to other components in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a>. Types IV and VII are <i>network-forming collagens.</i> Type IV molecules assemble into a feltlike sheet or meshwork that constitutes a major part of mature <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> laminae, while type VII molecules form dimers that assemble into specialized structures called <i>anchoring fibrils.</i> Anchoring fibrils help attach the basal lamina of multilayered epithelia to the underlying <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a> and therefore are especially abundant in the skin.</p><p>There are also a number of “<a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a>-like” proteins, including type XVII, which has a transmembrane <a class="def" href="/books/n/mboc4/A4754/def-item/A5101/">domain</a> and is found in hemidesmosomes, and type XVIII, which is located in the <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> laminae of blood vessels. Cleavage of the C-terminal domain of type XVIII collagen yields a peptide called <i>endostatin,</i> which inhibits new blood vessel formation and is therefore being investigated as an anticancer drug. Some of the collagen types discussed in this chapter are listed in <a class="figpopup" href="/books/NBK26810/table/A3554/?report=objectonly" target="object" rid-figpopup="figA3554" rid-ob="figobA3554">Table 19-5</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figA3554"><a href="/books/NBK26810/table/A3554/?report=objectonly" target="object" title="Table 19-5" class="img_link icnblk_img figpopup" rid-figpopup="figA3554" rid-ob="figobA3554"><img class="small-thumb" src="/books/NBK26810/table/A3554/?report=thumb" src-large="/books/NBK26810/table/A3554/?report=previmg" alt="Table 19-5. Some Types of Collagen and Their Properties." /></a><div class="icnblk_cntnt"><h4 id="A3554"><a href="/books/NBK26810/table/A3554/?report=objectonly" target="object" rid-ob="figobA3554">Table 19-5</a></h4><p class="float-caption no_bottom_margin">Some Types of Collagen and Their Properties. </p></div></div><p>Many proteins that contain a repeated pattern of amino acids have evolved by duplications of <a class="def" href="/books/n/mboc4/A4754/def-item/A5084/">DNA</a> sequences. The fibrillar collagens apparently arose in this way. Thus, the genes that encode the α chains of most of these collagens are very large (up to 44 kilobases in length) and contain about 50 exons. Most of the exons are 54, or multiples of 54, nucleotides long, suggesting that these collagens arose by multiple duplications of a primordial <a class="def" href="/books/n/mboc4/A4754/def-item/A5215/">gene</a> containing 54 nucleotides and encoding exactly 6 Gly-X-Y repeats (see <a class="figpopup" href="/books/NBK26810/figure/A3552/?report=objectonly" target="object" rid-figpopup="figA3552" rid-ob="figobA3552">Figure 19-43</a>).</p></div><div id="A3555"><h2 id="_A3555_">Collagens Are Secreted with a Nonhelical Extension at Each End</h2><p>Individual <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5658/">polypeptide</a> chains are synthesized on <a class="def" href="/books/n/mboc4/A4754/def-item/A5438/">membrane</a>-bound ribosomes and injected into the <a class="def" href="/books/n/mboc4/A4754/def-item/A5409/">lumen</a> of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5131/">endoplasmic reticulum</a> (<a class="def" href="/books/n/mboc4/A4754/def-item/A5151/">ER</a>) as larger precursors, called <i>pro-α chains</i>. These precursors not only have the short amino-terminal signal peptide required to direct the nascent polypeptide to the ER, they also have additional amino acids, called <i>propeptides</i>, at both their N- and C-terminal ends. In the lumen of the ER, selected prolines and lysines are hydroxylated to form hydroxyproline and hydroxylysine, respectively, and some of the hydroxylysines are glycosylated. Each pro-α chain then combines with two others to form a hydrogen-bonded, triple-stranded, helical <a class="def" href="/books/n/mboc4/A4754/def-item/A5486/">molecule</a> known as <i>procollagen</i>.</p><p>
|
|
<i>Hydroxylysines</i> and <i>hydroxyprolines</i> (<a class="figpopup" href="/books/NBK26810/figure/A3556/?report=objectonly" target="object" rid-figpopup="figA3556" rid-ob="figobA3556">Figure 19-45</a>) are infrequently found in other animal proteins, although hydroxyproline is abundant in some proteins in the plant <a class="def" href="/books/n/mboc4/A4754/def-item/A4943/">cell wall</a>. In <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a>, the <a class="def" href="/books/n/mboc4/A4754/def-item/A5308/">hydroxyl</a> groups of these amino acids are thought to form interchain hydrogen bonds that help stabilize the triple-stranded helix. Conditions that prevent proline hydroxylation, such as a deficiency of ascorbic <a class="def" href="/books/n/mboc4/A4754/def-item/A4761/">acid</a> (vitamin C), have serious consequences. In <i>scurvy</i>, the disease caused by a dietary deficiency of vitamin C that was common in sailors until the nineteenth century, the defective pro-α chains that are synthesized fail to form a stable triple helix and are immediately degraded within the cell. Consequently, with the gradual loss of the preexisting normal collagen in the matrix, blood vessels become extremely fragile and teeth become loose in their sockets, implying that in these particular tissues the degradation and replacement of collagen occur relatively rapidly. In many other adult tissues, however, the turnover of collagen (and other <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> macromolecules) is thought to be very slow. In bone, to take an extreme example, collagen molecules persist for about 10 years before they are degraded and replaced. By contrast, most cell proteins have half-lives of hours or days.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3556" co-legend-rid="figlgndA3556"><a href="/books/NBK26810/figure/A3556/?report=objectonly" target="object" title="Figure 19-45" class="img_link icnblk_img figpopup" rid-figpopup="figA3556" rid-ob="figobA3556"><img class="small-thumb" src="/books/NBK26810/bin/ch19f45.gif" src-large="/books/NBK26810/bin/ch19f45.jpg" alt="Figure 19-45. Hydroxylysine and hydroxyproline." /></a><div class="icnblk_cntnt" id="figlgndA3556"><h4 id="A3556"><a href="/books/NBK26810/figure/A3556/?report=objectonly" target="object" rid-ob="figobA3556">Figure 19-45</a></h4><p class="float-caption no_bottom_margin">Hydroxylysine and hydroxyproline. These modified amino acids are common in collagen. They are formed by enzymes that act after the lysine and proline have been incorporated into procollagen molecules. </p></div></div></div><div id="A3557"><h2 id="_A3557_">After Secretion, Fibrillar Procollagen Molecules Are Cleaved to Collagen Molecules, Which Assemble into Fibrils</h2><p>After secretion, the propeptides of the fibrillar procollagen molecules are removed by specific proteolytic enzymes outside the cell. This converts the procollagen molecules to <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> molecules, which assemble in the extracellular space to form much larger <a href="/books/n/mboc4/A4754/#A5003">collagen fibrils</a>. The propeptides have at least two functions. First, they guide the intracellular formation of the triple-stranded collagen molecules. Second, because they are removed only after secretion, they prevent the intracellular formation of large collagen fibrils, which could be catastrophic for the cell.</p><p>The process of fibril formation is driven, in part, by the tendency of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> molecules, which are more than a thousandfold less soluble than procollagen molecules, to self-assemble. The fibrils begin to form close to the cell surface, often in deep infoldings of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a> formed by the fusion of secretory vesicles with the cell surface. The underlying cortical <a class="def" href="/books/n/mboc4/A4754/def-item/A5054/">cytoskeleton</a> can therefore influence the sites, rates, and orientation of fibril assembly.</p><p>When viewed in an <a class="def" href="/books/n/mboc4/A4754/def-item/A5122/">electron microscope</a>, <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> fibrils have characteristic cross-striations every 67 <a class="def" href="/books/n/mboc4/A4754/def-item/A5540/">nm</a>, reflecting the regularly staggered packing of the individual collagen molecules in the fibril. After the fibrils have formed in the extracellular space, they are greatly strengthened by the formation of covalent cross-links between lysine residues of the constituent collagen molecules (<a class="figpopup" href="/books/NBK26810/figure/A3558/?report=objectonly" target="object" rid-figpopup="figA3558" rid-ob="figobA3558">Figure 19-46</a>). The types of covalent bonds involved are found only in collagen and <a class="def" href="/books/n/mboc4/A4754/def-item/A5115/">elastin</a>. If cross-linking is inhibited, the tensile strength of the fibrils is drastically reduced; collagenous tissues become fragile, and structures such as skin, tendons, and blood vessels tend to tear. The extent and type of cross-linking vary from tissue to tissue. Collagen is especially highly cross-linked in the Achilles tendon, for example, where tensile strength is crucial.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3558" co-legend-rid="figlgndA3558"><a href="/books/NBK26810/figure/A3558/?report=objectonly" target="object" title="Figure 19-46" class="img_link icnblk_img figpopup" rid-figpopup="figA3558" rid-ob="figobA3558"><img class="small-thumb" src="/books/NBK26810/bin/ch19f46.gif" src-large="/books/NBK26810/bin/ch19f46.jpg" alt="Figure 19-46. Cross-links formed between modified lysine side chains within a collagen fibril." /></a><div class="icnblk_cntnt" id="figlgndA3558"><h4 id="A3558"><a href="/books/NBK26810/figure/A3558/?report=objectonly" target="object" rid-ob="figobA3558">Figure 19-46</a></h4><p class="float-caption no_bottom_margin">Cross-links formed between modified lysine side chains within a collagen fibril. Covalent intramolecular and intermolecular cross-links are formed in several steps. First, certain lysines and hydroxylysines are deaminated by the extracellular enzyme lysyl <a href="/books/NBK26810/figure/A3558/?report=objectonly" target="object" rid-ob="figobA3558">(more...)</a></p></div></div><p>
|
|
<a class="figpopup" href="/books/NBK26810/figure/A3559/?report=objectonly" target="object" rid-figpopup="figA3559" rid-ob="figobA3559">Figure 19-47</a> summarizes the various steps in the synthesis and assembly of <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> fibrils. Given the large number of enzymatic steps involved, it is not surprising that there are many human genetic diseases that affect fibril formation. Mutations affecting type I collagen cause <i>osteogenesis imperfecta</i>, characterized by weak bones that fracture easily. Mutations affecting type II collagen cause <i>chondrodysplasias</i>, characterized by abnormal <a class="def" href="/books/n/mboc4/A4754/def-item/A4919/">cartilage</a>, which leads to bone and joint deformities. Mutations affecting type III collagen cause <i>Ehlers-Danlos syndrome</i>, characterized by fragile skin and blood vessels and hypermobile joints.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3559" co-legend-rid="figlgndA3559"><a href="/books/NBK26810/figure/A3559/?report=objectonly" target="object" title="Figure 19-47" class="img_link icnblk_img figpopup" rid-figpopup="figA3559" rid-ob="figobA3559"><img class="small-thumb" src="/books/NBK26810/bin/ch19f47.gif" src-large="/books/NBK26810/bin/ch19f47.jpg" alt="Figure 19-47. The intracellular and extracellular events in the formation of a collagen fibril." /></a><div class="icnblk_cntnt" id="figlgndA3559"><h4 id="A3559"><a href="/books/NBK26810/figure/A3559/?report=objectonly" target="object" rid-ob="figobA3559">Figure 19-47</a></h4><p class="float-caption no_bottom_margin">The intracellular and extracellular events in the formation of a collagen fibril. (A) Note that collagen fibrils are shown assembling in the extracellular space contained within a large infolding in the plasma membrane. As one example of how collagen <a href="/books/NBK26810/figure/A3559/?report=objectonly" target="object" rid-ob="figobA3559">(more...)</a></p></div></div></div><div id="A3560"><h2 id="_A3560_">Fibril-associated Collagens Help Organize the Fibrils</h2><p>In contrast to GAGs, which resist compressive forces, <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> fibrils form structures that resist tensile forces. The fibrils have various diameters and are organized in different ways in different tissues. In mammalian skin, for example, they are woven in a wickerwork pattern so that they resist tensile stress in multiple directions. In tendons, they are organized in parallel bundles aligned along the major axis of tension. In mature bone and in the cornea, they are arranged in orderly plywoodlike layers, with the fibrils in each layer lying parallel to one another but nearly at right angles to the fibrils in the layers on either side. The same arrangement occurs in tadpole skin (<a class="figpopup" href="/books/NBK26810/figure/A3561/?report=objectonly" target="object" rid-figpopup="figA3561" rid-ob="figobA3561">Figure 19-48</a>).
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3561" co-legend-rid="figlgndA3561"><a href="/books/NBK26810/figure/A3561/?report=objectonly" target="object" title="Figure 19-48" class="img_link icnblk_img figpopup" rid-figpopup="figA3561" rid-ob="figobA3561"><img class="small-thumb" src="/books/NBK26810/bin/ch19f48.gif" src-large="/books/NBK26810/bin/ch19f48.jpg" alt="Figure 19-48. Collagen fibrils in the tadpole skin." /></a><div class="icnblk_cntnt" id="figlgndA3561"><h4 id="A3561"><a href="/books/NBK26810/figure/A3561/?report=objectonly" target="object" rid-ob="figobA3561">Figure 19-48</a></h4><p class="float-caption no_bottom_margin">Collagen fibrils in the tadpole skin. This electron micrograph shows the plywoodlike arrangement of the fibrils. Successive layers of fibrils are laid down nearly at right angles to each other. This organization is also found in mature bone and in the <a href="/books/NBK26810/figure/A3561/?report=objectonly" target="object" rid-ob="figobA3561">(more...)</a></p></div></div><p>The <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a> cells themselves must determine the size and arrangement of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> fibrils. The cells can express one or more genes for the different types of fibrillar procollagen molecules. But even fibrils composed of the same mixture of <a class="def" href="/books/n/mboc4/A4754/def-item/A5176/">fibrillar collagen</a> molecules have different arrangements in different tissues. How is this achieved? Part of the answer is that cells can regulate the disposition of the collagen molecules after secretion by guiding <a class="def" href="/books/n/mboc4/A4754/def-item/A5003/">collagen fibril</a> formation in close association with the <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a> (see <a class="figpopup" href="/books/NBK26810/figure/A3558/?report=objectonly" target="object" rid-figpopup="figA3558" rid-ob="figobA3558">Figure 19-46</a>). In addition, as the spatial organization of collagen fibrils at least partly reflects their interactions with other molecules in the matrix, cells can influence this organization by secreting, along with their fibrillar collagens, different kinds and amounts of other matrix macromolecules.</p><p>
|
|
<b>Fibril-associated collagens</b>, such as types IX and XII collagens, are thought to be especially important in this regard. They differ from fibrillar collagens in several ways.</p><p>
|
|
<dl class="temp-labeled-list"><dt>1.</dt><dd id="A3562"><p class="no_top_margin">Their triple-stranded helical structure is interrupted by one or two short nonhelical domains, which makes the molecules more flexible than <a class="def" href="/books/n/mboc4/A4754/def-item/A5176/">fibrillar collagen</a> molecules.</p></dd><dt>2.</dt><dd id="A3563"><p class="no_top_margin">They are not cleaved after secretion and therefore retain their propeptides.</p></dd><dt>3.</dt><dd id="A3564"><p class="no_top_margin">They do not aggregate with one another to form fibrils in the extracellular space. Instead, they bind in a periodic manner to the surface of fibrils formed by the fibrillar collagens. Type IX molecules bind to type-II-<a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a>-containing fibrils in <a class="def" href="/books/n/mboc4/A4754/def-item/A4919/">cartilage</a>, the cornea, and the vitreous of the eye (<a class="figpopup" href="/books/NBK26810/figure/A3565/?report=objectonly" target="object" rid-figpopup="figA3565" rid-ob="figobA3565">Figure 19-49</a>), whereas type XII molecules bind to type-I-collagen-containing fibrils in tendons and various other tissues.</p></dd></dl>
|
|
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3565" co-legend-rid="figlgndA3565"><a href="/books/NBK26810/figure/A3565/?report=objectonly" target="object" title="Figure 19-49" class="img_link icnblk_img figpopup" rid-figpopup="figA3565" rid-ob="figobA3565"><img class="small-thumb" src="/books/NBK26810/bin/ch19f49.gif" src-large="/books/NBK26810/bin/ch19f49.jpg" alt="Figure 19-49. Type IX collagen." /></a><div class="icnblk_cntnt" id="figlgndA3565"><h4 id="A3565"><a href="/books/NBK26810/figure/A3565/?report=objectonly" target="object" rid-ob="figobA3565">Figure 19-49</a></h4><p class="float-caption no_bottom_margin">Type IX collagen. (A) Type IX collagen molecules binding in a periodic pattern to the surface of a fibril containing type II collagen. (B) Electron micrograph of a rotary-shadowed type-II-collagen-containing fibril in cartilage, sheathed in type IX collagen <a href="/books/NBK26810/figure/A3565/?report=objectonly" target="object" rid-ob="figobA3565">(more...)</a></p></div></div><p>Fibril-associated collagens are thought to mediate the interactions of <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> fibrils with one another and with other matrix macromolecules. In this way, they have a role in determining the organization of the fibrils in the matrix.</p></div><div id="A3566"><h2 id="_A3566_">Cells Help Organize the Collagen Fibrils They Secrete by Exerting Tension on the Matrix</h2><p>Cells interact with the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> mechanically as well as chemically, with dramatic effects on the architecture of the tissue. Thus, for example, fibroblasts work on the <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> they have secreted, crawling over it and tugging on it—helping to compact it into sheets and draw it out into cables. When fibroblasts are mixed with a meshwork of randomly oriented collagen fibrils that form a gel in a culture dish, the fibroblasts tug on the meshwork, drawing in collagen from their surroundings and thereby causing the gel to contract to a small fraction of its initial volume. By similar activities, a cluster of fibroblasts surrounds itself with a capsule of densely packed and circumferentially oriented collagen fibers.</p><p>If two small pieces of embryonic tissue containing fibroblasts are placed far apart on a <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> gel, the intervening collagen becomes organized into a compact band of aligned fibers that connect the two explants (<a class="figpopup" href="/books/NBK26810/figure/A3567/?report=objectonly" target="object" rid-figpopup="figA3567" rid-ob="figobA3567">Figure 19-50</a>). The fibroblasts subsequently migrate out from the explants along the aligned collagen fibers. Thus, the fibroblasts influence the alignment of the collagen fibers, and the collagen fibers in turn affect the distribution of the fibroblasts. Fibroblasts presumably have a similar role in generating long-range order in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> inside the body—in helping to create tendons and ligaments, for example, and the tough, dense layers of <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a> that ensheathe and bind together most organs.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3567" co-legend-rid="figlgndA3567"><a href="/books/NBK26810/figure/A3567/?report=objectonly" target="object" title="Figure 19-50" class="img_link icnblk_img figpopup" rid-figpopup="figA3567" rid-ob="figobA3567"><img class="small-thumb" src="/books/NBK26810/bin/ch19f50.gif" src-large="/books/NBK26810/bin/ch19f50.jpg" alt="Figure 19-50. The shaping of the extracellular matrix by cells." /></a><div class="icnblk_cntnt" id="figlgndA3567"><h4 id="A3567"><a href="/books/NBK26810/figure/A3567/?report=objectonly" target="object" rid-ob="figobA3567">Figure 19-50</a></h4><p class="float-caption no_bottom_margin">The shaping of the extracellular matrix by cells. This micrograph shows a region between two pieces of embryonic chick heart (rich in fibroblasts as well as heart muscle cells) that were cultured on a collagen gel for 4 days. A dense tract of aligned <a href="/books/NBK26810/figure/A3567/?report=objectonly" target="object" rid-ob="figobA3567">(more...)</a></p></div></div></div><div id="A3568"><h2 id="_A3568_">Elastin Gives Tissues Their Elasticity</h2><p>Many vertebrate tissues, such as skin, blood vessels, and lungs, need to be both strong and elastic in order to function. A network of <b>elastic fibers</b> in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> of these tissues gives them the required resilience so that they can recoil after transient stretch (<a class="figpopup" href="/books/NBK26810/figure/A3569/?report=objectonly" target="object" rid-figpopup="figA3569" rid-ob="figobA3569">Figure 19-51</a>). Elastic fibers are at least five times more extensible than a rubber band of the same cross-sectional area. Long, inelastic <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> fibrils are interwoven with the elastic fibers to limit the extent of stretching and prevent the tissue from tearing.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3569" co-legend-rid="figlgndA3569"><a href="/books/NBK26810/figure/A3569/?report=objectonly" target="object" title="Figure 19-51" class="img_link icnblk_img figpopup" rid-figpopup="figA3569" rid-ob="figobA3569"><img class="small-thumb" src="/books/NBK26810/bin/ch19f51.gif" src-large="/books/NBK26810/bin/ch19f51.jpg" alt="Figure 19-51. Elastic fibers." /></a><div class="icnblk_cntnt" id="figlgndA3569"><h4 id="A3569"><a href="/books/NBK26810/figure/A3569/?report=objectonly" target="object" rid-ob="figobA3569">Figure 19-51</a></h4><p class="float-caption no_bottom_margin">Elastic fibers. These scanning electron micrographs show (A) a low-power view of a segment of a dog's aorta and (B) a high-power view of the dense network of longitudinally oriented elastic fibers in the outer layer of the same blood vessel. All the other <a href="/books/NBK26810/figure/A3569/?report=objectonly" target="object" rid-ob="figobA3569">(more...)</a></p></div></div><p>The main component of elastic fibers is <a href="/books/n/mboc4/A4754/#A5115">elastin</a>, a highly hydrophobic <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> (about 750 amino acids long), which, like <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a>, is unusually rich in proline and glycine but, unlike collagen, is not glycosylated and contains some hydroxy-proline but no hydroxylysine. Soluble <i>tropoelastin</i> (the biosynthetic precursor of <a class="def" href="/books/n/mboc4/A4754/def-item/A5115/">elastin</a>) is secreted into the extracellular space and assembled into elastic fibers close to the <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a>, generally in cell-surface infoldings. After secretion, the tropoelastin molecules become highly cross-linked to one another, generating an extensive network of elastin fibers and sheets. The cross-links are formed between lysines by a mechanism similar to the one discussed earlier that operates in cross-linking collagen molecules.</p><p>The <a class="def" href="/books/n/mboc4/A4754/def-item/A5115/">elastin</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> is composed largely of two types of short segments that alternate along the <a class="def" href="/books/n/mboc4/A4754/def-item/A5658/">polypeptide</a> chain: hydrophobic segments, which are responsible for the elastic properties of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5486/">molecule</a>; and alanine- and lysine-rich α-helical segments, which form cross-links between adjacent molecules. Each segment is encoded by a separate <a class="def" href="/books/n/mboc4/A4754/def-item/A5161/">exon</a>. There is still controversy, however, concerning the <a class="def" href="/books/n/mboc4/A4754/def-item/A5019/">conformation</a> of elastin molecules in elastic fibers and how the structure of these fibers accounts for their rubberlike properties. In one view, the elastin polypeptide chain, like the <a class="def" href="/books/n/mboc4/A4754/def-item/A5655/">polymer</a> chains in ordinary rubber, adopts a loose “random coil” conformation, and it is the random coil structure of the component molecules cross-linked into the elastic fiber network that allows the network to stretch and recoil like a rubber band (<a class="figpopup" href="/books/NBK26810/figure/A3570/?report=objectonly" target="object" rid-figpopup="figA3570" rid-ob="figobA3570">Figure 19-52</a>).
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3570" co-legend-rid="figlgndA3570"><a href="/books/NBK26810/figure/A3570/?report=objectonly" target="object" title="Figure 19-52" class="img_link icnblk_img figpopup" rid-figpopup="figA3570" rid-ob="figobA3570"><img class="small-thumb" src="/books/NBK26810/bin/ch19f52.gif" src-large="/books/NBK26810/bin/ch19f52.jpg" alt="Figure 19-52. Stretching a network of elastin molecules." /></a><div class="icnblk_cntnt" id="figlgndA3570"><h4 id="A3570"><a href="/books/NBK26810/figure/A3570/?report=objectonly" target="object" rid-ob="figobA3570">Figure 19-52</a></h4><p class="float-caption no_bottom_margin">Stretching a network of elastin molecules. The molecules are joined together by covalent bonds <i>(red)</i> to generate a cross-linked network. In this model, each elastin molecule in the network can expand and contract as a random coil, so that the entire assembly <a href="/books/NBK26810/figure/A3570/?report=objectonly" target="object" rid-ob="figobA3570">(more...)</a></p></div></div><p>Elastin is the <a class="def" href="/books/n/mboc4/A4754/def-item/A5103/">dominant</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> in arteries, comprising 50% of the dry weight of the largest artery—the aorta. Mutations in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5115/">elastin</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5215/">gene</a> causing a deficiency of the protein in mice or humans result in narrowing of the aorta or other arteries as a result of excessive proliferation of smooth muscle cells in the arterial wall. Apparently, the normal elasticity of an artery is required to restrain the proliferation of these cells.</p><p>Elastic fibers are not composed solely of <a class="def" href="/books/n/mboc4/A4754/def-item/A5115/">elastin</a>. The elastin core is covered with a sheath of <i>microfibrils,</i> each of which has a diameter of about 10 <a class="def" href="/books/n/mboc4/A4754/def-item/A5540/">nm</a>. Microfibrils are composed of a number of distinct glycoproteins, including the large <a class="def" href="/books/n/mboc4/A4754/def-item/A5241/">glycoprotein</a> <i>fibrillin,</i> which binds to elastin and is essential for the integrity of elastic fibers. Mutations in the fibrillin <a class="def" href="/books/n/mboc4/A4754/def-item/A5215/">gene</a> result in <i>Marfan's syndrome,</i> a relatively common human genetic disease affecting connective tissues that are rich in elastic fibers; in the most severely affected individuals, the aorta is prone to rupture. Microfibrils are thought to be important in the assembly of elastic fibers. They appear before elastin in developing tissues and seem to form a scaffold on which the secreted elastin molecules are deposited. As the elastin is deposited, the microfibrils become displaced to the periphery of the growing fiber.</p></div><div id="A3571"><h2 id="_A3571_">Fibronectin Is an Extracellular Protein That Helps Cells Attach to the Matrix</h2><p>The <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> contains a number of noncollagen proteins that typically have multiple domains, each with specific binding sites for other matrix macromolecules and for receptors on the surface of cells. These proteins therefore contribute to both organizing the matrix and helping cells attach to it. The first of them to be well characterized was <a href="/books/n/mboc4/A4754/#A5178">fibronectin</a>, a large <a class="def" href="/books/n/mboc4/A4754/def-item/A5241/">glycoprotein</a> found in all vertebrates. Fibronectin is a dimer composed of two very large subunits joined by disulfide bonds at one end. Each <a class="def" href="/books/n/mboc4/A4754/def-item/A5840/">subunit</a> is folded into a series of functionally distinct domains separated by regions of flexible <a class="def" href="/books/n/mboc4/A4754/def-item/A5658/">polypeptide</a> chain (<a class="figpopup" href="/books/NBK26810/figure/A3572/?report=objectonly" target="object" rid-figpopup="figA3572" rid-ob="figobA3572">Figure 19-53A</a> and <a class="figpopup" href="/books/NBK26810/figure/A3572/?report=objectonly" target="object" rid-figpopup="figA3572" rid-ob="figobA3572">B</a>). The domains in turn consist of smaller modules, each of which is serially repeated and usually encoded by a separate <a class="def" href="/books/n/mboc4/A4754/def-item/A5161/">exon</a>, suggesting that the <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5215/">gene</a>, like the <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> genes, evolved by multiple exon duplications. All forms of fibronectin are encoded by a single large gene that contains about 50 exons of similar size. Transcription produces a single large <a class="def" href="/books/n/mboc4/A4754/def-item/A5756/">RNA</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5486/">molecule</a> that can be alternatively spliced to produce the various isoforms of fibronectin. The main type of <a class="def" href="/books/n/mboc4/A4754/def-item/A5481/">module</a>, called the <b>type III fibronectin repeat</b>, binds to integrins. It is about 90 amino acids long and occurs at least 15 times in each subunit. The type III fibronectin repeat is among the most common of all <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> domains in vertebrates.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3572" co-legend-rid="figlgndA3572"><a href="/books/NBK26810/figure/A3572/?report=objectonly" target="object" title="Figure 19-53" class="img_link icnblk_img figpopup" rid-figpopup="figA3572" rid-ob="figobA3572"><img class="small-thumb" src="/books/NBK26810/bin/ch19f53.gif" src-large="/books/NBK26810/bin/ch19f53.jpg" alt="Figure 19-53. The structure of a fibronectin dimer." /></a><div class="icnblk_cntnt" id="figlgndA3572"><h4 id="A3572"><a href="/books/NBK26810/figure/A3572/?report=objectonly" target="object" rid-ob="figobA3572">Figure 19-53</a></h4><p class="float-caption no_bottom_margin">The structure of a fibronectin dimer. (A) Electron micrographs of individual fibronectin dimer molecules shadowed with platinum; <i>red arrows</i> mark the C-termini. (B) The two polypeptide chains are similar but generally not identical (being made from the <a href="/books/NBK26810/figure/A3572/?report=objectonly" target="object" rid-ob="figobA3572">(more...)</a></p></div></div><p>One way to analyze a <a class="def" href="/books/n/mboc4/A4754/def-item/A5014/">complex</a> multifunctional <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5486/">molecule</a> like <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> is to chop it into pieces and determine the function of its individual domains. When fibronectin is treated with a low concentration of a <a class="def" href="/books/n/mboc4/A4754/def-item/A5699/">proteolytic enzyme</a>, the <a class="def" href="/books/n/mboc4/A4754/def-item/A5658/">polypeptide</a> chain is cut in the connecting regions between the domains, leaving the domains themselves intact. One can then show that one of its domains binds to <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a>, another to heparin, another to specific receptors on the surface of various types of cells, and so on (see <a class="figpopup" href="/books/NBK26810/figure/A3572/?report=objectonly" target="object" rid-figpopup="figA3572" rid-ob="figobA3572">Figure 19-53B</a>). Synthetic peptides corresponding to different segments of the cell-binding <a class="def" href="/books/n/mboc4/A4754/def-item/A5101/">domain</a> have been used to identify a specific tripeptide sequence (<i>Arg-Gly-Asp,</i> or <i>RGD</i>), which is found in one of the type III repeats (see <a class="figpopup" href="/books/NBK26810/figure/A3572/?report=objectonly" target="object" rid-figpopup="figA3572" rid-ob="figobA3572">Figure 19-53C</a>), as a central feature of the <a class="def" href="/books/n/mboc4/A4754/def-item/A4882/">binding site</a>. Even very short peptides containing this <b>RGD sequence</b> can compete with fibronectin for the binding site on cells, thereby inhibiting the attachment of the cells to a fibronectin matrix. If these peptides are coupled to a solid surface, they cause cells to adhere to it.</p><p>The RGD sequence is not confined to <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a>. It is found in a number of extracellular proteins, including, for example, the blood-clotting factor <i>fibrinogen</i>. Fibrinogen peptides containing this RGD sequence have been useful in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5071/">development</a> of anti-clotting drugs that mimic these peptides. Snakes use a similar strategy to cause their victims to bleed: they secrete RGD-containing anti-clotting proteins called <i>disintegrins</i> into their venom.</p><p>RGD sequences are recognized by several members of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5343/">integrin</a> family of cell-surface matrix receptors. Each integrin, however, specifically recognizes its own small set of matrix molecules, indicating that tight binding requires more than just the RGD sequence.</p></div><div id="A3573"><h2 id="_A3573_">Fibronectin Exists in Both Soluble and Fibrillar Forms</h2><p>There are multiple isoforms of <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a>. One, called <i>plasma fibronectin,</i> is soluble and circulates in the blood and other body fluids, where it is thought to enhance blood clotting, wound healing, and <a class="def" href="/books/n/mboc4/A4754/def-item/A5615/">phagocytosis</a>. All of the other forms assemble on the surface of cells and are deposited in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> as highly insoluble <i>fibronectin fibrils</i>. In these cell-surface and matrix forms, fibronectin dimers are cross-linked to one another by additional disulfide bonds.</p><p>Unlike <a class="def" href="/books/n/mboc4/A4754/def-item/A5176/">fibrillar collagen</a> molecules, which can be made to self-assemble into fibrils in a test tube, <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> molecules assemble into fibrils only on the surface of certain cells. This is because additional proteins are needed for fibril formation, especially fibronectin-binding integrins. In the case of fibroblasts, fibronectin fibrils are associated with integrins at sites called <i>fibrillar adhesions</i>. These are distinct from focal adhesions, in that they are more elongated and contain different intracellular anchor proteins. The fibronectin fibrils on the cell surface are highly stretched and under tension. The tension is exerted by the cell and is essential for fibril formation, as we discuss below. Some secreted proteins function to prevent fibronectin assembly in inappropriate places. <i>Uteroglobin,</i> for example, binds to fibronectin and prevents it from forming fibrils in the kidney. Mice that have a <a class="def" href="/books/n/mboc4/A4754/def-item/A5502/">mutation</a> in the uteroglobin <a class="def" href="/books/n/mboc4/A4754/def-item/A5215/">gene</a> accumulate insoluble fibronectin fibrils in their kidneys.</p><p>The importance of <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> in animal <a class="def" href="/books/n/mboc4/A4754/def-item/A5071/">development</a> is dramatically demonstrated by <a class="def" href="/books/n/mboc4/A4754/def-item/A5215/">gene</a> inactivation experiments. Mutant mice that are unable to make fibronectin die early in <a class="def" href="/books/n/mboc4/A4754/def-item/A5125/">embryogenesis</a> because their endothelial cells fail to form proper blood vessels. This defect is thought to result from abnormalities in the interactions of these cells with the surrounding <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a>, which normally contains fibronectin.</p></div><div id="A3574"><h2 id="_A3574_">Intracellular Actin Filaments Regulate the Assembly of Extracellular Fibronectin Fibrils</h2><p>The <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> fibrils that form on or near the surface of fibroblasts are usually aligned with adjacent intracellular <a class="def" href="/books/n/mboc4/A4754/def-item/A4766/">actin</a> stress fibers (<a class="figpopup" href="/books/NBK26810/figure/A3575/?report=objectonly" target="object" rid-figpopup="figA3575" rid-ob="figobA3575">Figure 19-54</a>). In fact, intracellular actin filaments promote the assembly of secreted fibronectin molecules into fibrils and influence fibril orientation. If cells are treated with the drug cytochalasin, which disrupts actin filaments, the fibronectin fibrils dissociate from the cell surface (just as they do during <a class="def" href="/books/n/mboc4/A4754/def-item/A5477/">mitosis</a> when a cell rounds up).
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3575" co-legend-rid="figlgndA3575"><a href="/books/NBK26810/figure/A3575/?report=objectonly" target="object" title="Figure 19-54" class="img_link icnblk_img figpopup" rid-figpopup="figA3575" rid-ob="figobA3575"><img class="small-thumb" src="/books/NBK26810/bin/ch19f54.gif" src-large="/books/NBK26810/bin/ch19f54.jpg" alt="Figure 19-54. Coalignment of extracellular fibronectin fibrils and intracellular actin filament bundles." /></a><div class="icnblk_cntnt" id="figlgndA3575"><h4 id="A3575"><a href="/books/NBK26810/figure/A3575/?report=objectonly" target="object" rid-ob="figobA3575">Figure 19-54</a></h4><p class="float-caption no_bottom_margin">Coalignment of extracellular fibronectin fibrils and intracellular actin filament bundles. (A) The fibronectin is revealed in two rat fibroblasts in culture by the binding of rhodamine-coupled anti-fibronectin antibodies. (B) The actin is revealed by <a href="/books/NBK26810/figure/A3575/?report=objectonly" target="object" rid-ob="figobA3575">(more...)</a></p></div></div><p>The interactions between extracellular <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> fibrils and intracellular <a class="def" href="/books/n/mboc4/A4754/def-item/A4766/">actin</a> filaments across the <a class="def" href="/books/n/mboc4/A4754/def-item/A5177/">fibroblast</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a> are mediated mainly by <a class="def" href="/books/n/mboc4/A4754/def-item/A5343/">integrin</a> transmembrane adhesion proteins. The contractile actin and myosin <a class="def" href="/books/n/mboc4/A4754/def-item/A5054/">cytoskeleton</a> thereby pulls on the fibronectin matrix to generate tension. As a result, the fibronectin fibrils are stretched, exposing a cryptic (hidden) <a class="def" href="/books/n/mboc4/A4754/def-item/A4882/">binding site</a> in the fibronectin molecules that allows them to bind directly to one another. In addition, the stretching exposes more binding sites for integrins. In this way, the actin cytoskeleton promotes fibronectin polymerization and matrix assembly.</p><p>Extracellular signals can regulate the assembly process by altering the <a class="def" href="/books/n/mboc4/A4754/def-item/A4766/">actin</a> <a class="def" href="/books/n/mboc4/A4754/def-item/A5054/">cytoskeleton</a> and thereby the tension on the fibrils. Many other <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> proteins have multiple repeats similar to the type III <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> repeat, and it is possible that tension exerted on these proteins also uncovers cryptic binding sites and thereby influences their polymerization.</p></div><div id="A3576"><h2 id="_A3576_">Glycoproteins in the Matrix Help Guide Cell Migration</h2><p>Fibronectin is important not only for cell adhesion to the matrix but also for guiding cell migrations in vertebrate embryos. Large amounts of <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a>, for example, are found along the pathway followed by migrating prospective mesodermal cells during amphibian <a class="def" href="/books/n/mboc4/A4754/def-item/A5209/">gastrulation</a> (discussed in Chapter 21). Although all cells of the early embryo can attach to fibronectin, only these migrating cells can spread and migrate on fibronectin. The migration is inhibited by an injection into the developing amphibian embryo of various ligands that disrupt the ability of the cells to bind to fibronectin.</p><p>Many matrix proteins are believed to have a role in guiding cell movements during <a class="def" href="/books/n/mboc4/A4754/def-item/A5071/">development</a>. The <i>tenascins</i> and <i>thrombospondins,</i> for example, are composed of several types of short <a class="def" href="/books/n/mboc4/A4754/def-item/A4807/">amino acid</a> sequences that are repeated many times and form functionally distinct domains. They can either promote or inhibit cell adhesion, depending on the cell type. Indeed, anti-adhesive interactions are as important as adhesive ones in guiding cell migration, as we discuss in Chapter 21.</p></div><div id="A3577"><h2 id="_A3577_">Basal Laminae Are Composed Mainly of Type IV Collagen, Laminin, Nidogen, and a Heparan Sulfate Proteoglycan</h2><p>As mentioned earlier, <b><a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> laminae</b> are flexible, thin (40–120 <a class="def" href="/books/n/mboc4/A4754/def-item/A5540/">nm</a> thick) mats of specialized <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> that underlie all epithelial cell sheets and tubes. They also surround individual muscle cells, <a class="def" href="/books/n/mboc4/A4754/def-item/A5169/">fat</a> cells, and Schwann cells (which wrap around peripheral <a class="def" href="/books/n/mboc4/A4754/def-item/A5520/">nerve cell</a> axons to form myelin). The basal lamina thus separates these cells and epithelia from the underlying or surrounding <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a>. In other locations, such as the kidney glomerulus, a basal lamina lies between two cell sheets and functions as a highly selective filter (<a class="figpopup" href="/books/NBK26810/figure/A3578/?report=objectonly" target="object" rid-figpopup="figA3578" rid-ob="figobA3578">Figure 19-55</a>). Basal laminae have more than simple structural and filtering roles, however. They are able to determine cell polarity, influence cell <a class="def" href="/books/n/mboc4/A4754/def-item/A5449/">metabolism</a>, organize the proteins in adjacent plasma membranes, promote cell survival, proliferation, or <a class="def" href="/books/n/mboc4/A4754/def-item/A5074/">differentiation</a>, and serve as specific highways for cell migration.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3578" co-legend-rid="figlgndA3578"><a href="/books/NBK26810/figure/A3578/?report=objectonly" target="object" title="Figure 19-55" class="img_link icnblk_img figpopup" rid-figpopup="figA3578" rid-ob="figobA3578"><img class="small-thumb" src="/books/NBK26810/bin/ch19f55.gif" src-large="/books/NBK26810/bin/ch19f55.jpg" alt="Figure 19-55. Three ways in which basal laminae are organized." /></a><div class="icnblk_cntnt" id="figlgndA3578"><h4 id="A3578"><a href="/books/NBK26810/figure/A3578/?report=objectonly" target="object" rid-ob="figobA3578">Figure 19-55</a></h4><p class="float-caption no_bottom_margin">Three ways in which basal laminae are organized. Basal laminae <i>(yellow)</i> surround certain cells (such as skeletal muscle cells), underlie epithelia, and are interposed between two cell sheets (as in the kidney glomerulus). Note that, in the kidney glomerulus, <a href="/books/NBK26810/figure/A3578/?report=objectonly" target="object" rid-ob="figobA3578">(more...)</a></p></div></div><p>The <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina is synthesized largely by the cells that rest on it (<a class="figpopup" href="/books/NBK26810/figure/A3579/?report=objectonly" target="object" rid-figpopup="figA3579" rid-ob="figobA3579">Figure 19-56</a>). In some multilayered epithelia, such as the stratified squamous epithelium that forms the <a class="def" href="/books/n/mboc4/A4754/def-item/A5139/">epidermis</a> of the skin, the basal lamina is tethered to the underlying <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a> by specialized anchoring fibrils made of type VII <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> molecules. The term <i>basement <a class="def" href="/books/n/mboc4/A4754/def-item/A5438/">membrane</a></i> is often used to describe the composite of the basal lamina and this layer of collagen fibrils. In one type of skin disease, these connections are either absent or destroyed, and the epidermis and its basal lamina become detached from the underlying connective tissue, causing blistering.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3579" co-legend-rid="figlgndA3579"><a href="/books/NBK26810/figure/A3579/?report=objectonly" target="object" title="Figure 19-56" class="img_link icnblk_img figpopup" rid-figpopup="figA3579" rid-ob="figobA3579"><img class="small-thumb" src="/books/NBK26810/bin/ch19f56.gif" src-large="/books/NBK26810/bin/ch19f56.jpg" alt="Figure 19-56. The basal lamina in the cornea of a chick embryo." /></a><div class="icnblk_cntnt" id="figlgndA3579"><h4 id="A3579"><a href="/books/NBK26810/figure/A3579/?report=objectonly" target="object" rid-ob="figobA3579">Figure 19-56</a></h4><p class="float-caption no_bottom_margin">The basal lamina in the cornea of a chick embryo. In this scanning electron micrograph, some of the epithelial cells (E) have been removed to expose the upper surface of the matlike basal lamina (BL). A network of collagen fibrils (C) in the underlying <a href="/books/NBK26810/figure/A3579/?report=objectonly" target="object" rid-ob="figobA3579">(more...)</a></p></div></div><p>Although its precise composition varies from tissue to tissue and even from region to region in the same lamina, most mature <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> laminae contain <i>type IV <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a></i>, the large heparan sulfate <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> perlecan, and the glycoproteins <a class="def" href="/books/n/mboc4/A4754/def-item/A5382/">laminin</a> and nidogen (also called entactin).</p><p>
|
|
<b>Type IV collagens</b> exist in several isoforms. They all have a more flexible structure than the fibrillar collagens; their triple-stranded helix is interrupted in 26 regions, allowing multiple bends. They are not cleaved after secretion, but interact via their uncleaved terminal domains to assemble extracellularly into a flexible, sheetlike, multilayered network.</p><p>Early in <a class="def" href="/books/n/mboc4/A4754/def-item/A5071/">development</a>, <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> laminae contain little or no type IV <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> and consist mainly of <a class="def" href="/books/n/mboc4/A4754/def-item/A5382/">laminin</a> molecules. <b>Laminin-1</b> (classical laminin) is a large, flexible <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> composed of three very long <a class="def" href="/books/n/mboc4/A4754/def-item/A5658/">polypeptide</a> chains (α, β, and γ) arranged in the shape of an asymmetric cross and held together by disulfide bonds (<a class="figpopup" href="/books/NBK26810/figure/A3580/?report=objectonly" target="object" rid-figpopup="figA3580" rid-ob="figobA3580">Figure 19-57</a>). Several isoforms of each type of chain can associate in different combinations to form a large family of laminins. The laminin γ-1 chain is a component of most laminin heterotrimers, and mice lacking it die during <a class="def" href="/books/n/mboc4/A4754/def-item/A5125/">embryogenesis</a> because they are unable to make a basal lamina. Like many other proteins in the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a>, the laminin in basement membranes consists of several functional domains: one binds to <i>perlecan,</i> one to <i>nidogen,</i> and two or more to laminin <a class="def" href="/books/n/mboc4/A4754/def-item/A5720/">receptor</a> proteins on the surface of cells.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3580" co-legend-rid="figlgndA3580"><a href="/books/NBK26810/figure/A3580/?report=objectonly" target="object" title="Figure 19-57" class="img_link icnblk_img figpopup" rid-figpopup="figA3580" rid-ob="figobA3580"><img class="small-thumb" src="/books/NBK26810/bin/ch19f57.gif" src-large="/books/NBK26810/bin/ch19f57.jpg" alt="Figure 19-57. The structure of laminin." /></a><div class="icnblk_cntnt" id="figlgndA3580"><h4 id="A3580"><a href="/books/NBK26810/figure/A3580/?report=objectonly" target="object" rid-ob="figobA3580">Figure 19-57</a></h4><p class="float-caption no_bottom_margin">The structure of laminin. (A) The subunits of a laminin-1 molecule. This multidomain glycoprotein is composed of three polypeptides (α, β, and γ) that are disulfide-bonded into an asymmetric crosslike structure. Each of the polypeptide <a href="/books/NBK26810/figure/A3580/?report=objectonly" target="object" rid-ob="figobA3580">(more...)</a></p></div></div><p>Like type IV <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a>, laminins can self-assemble <i><a class="def" href="/books/n/mboc4/A4754/def-item/A5327/">in vitro</a></i> into a feltlike sheet, largely through interactions between the ends of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5382/">laminin</a> arms. As nidogen and perlecan can bind to both laminin and type IV collagen, it is thought that they connect the type IV collagen and laminin networks (<a class="figpopup" href="/books/NBK26810/figure/A3581/?report=objectonly" target="object" rid-figpopup="figA3581" rid-ob="figobA3581">Figure 19-58</a>). In tissues, laminins and type IV collagen preferentially polymerize while bound to receptors on the surface of the cells producing the proteins. Many of the cell-surface receptors for type IV collagen and laminin are members of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5343/">integrin</a> family. Another important type of laminin <a class="def" href="/books/n/mboc4/A4754/def-item/A5720/">receptor</a> is the <a class="def" href="/books/n/mboc4/A4754/def-item/A5893/">transmembrane protein</a> <i>dystroglycan,</i> which, together with integrins, may organize the assembly of the <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3581" co-legend-rid="figlgndA3581"><a href="/books/NBK26810/figure/A3581/?report=objectonly" target="object" title="Figure 19-58" class="img_link icnblk_img figpopup" rid-figpopup="figA3581" rid-ob="figobA3581"><img class="small-thumb" src="/books/NBK26810/bin/ch19f58.gif" src-large="/books/NBK26810/bin/ch19f58.jpg" alt="Figure 19-58. A model of the molecular structure of a basal lamina." /></a><div class="icnblk_cntnt" id="figlgndA3581"><h4 id="A3581"><a href="/books/NBK26810/figure/A3581/?report=objectonly" target="object" rid-ob="figobA3581">Figure 19-58</a></h4><p class="float-caption no_bottom_margin">A model of the molecular structure of a basal lamina. (A) The basal lamina is formed by specific interactions (B) between the proteins type IV collagen, laminin, and nidogen, and the proteoglycan perlecan. Arrows in (B) connect molecules that can bind <a href="/books/NBK26810/figure/A3581/?report=objectonly" target="object" rid-ob="figobA3581">(more...)</a></p></div></div><p>The shapes and sizes of some of the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> molecules discussed in this chapter are compared in <a class="figpopup" href="/books/NBK26810/figure/A3582/?report=objectonly" target="object" rid-figpopup="figA3582" rid-ob="figobA3582">Figure 19-59</a>.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3582" co-legend-rid="figlgndA3582"><a href="/books/NBK26810/figure/A3582/?report=objectonly" target="object" title="Figure 19-59" class="img_link icnblk_img figpopup" rid-figpopup="figA3582" rid-ob="figobA3582"><img class="small-thumb" src="/books/NBK26810/bin/ch19f59.gif" src-large="/books/NBK26810/bin/ch19f59.jpg" alt="Figure 19-59. The comparative shapes and sizes of some of the major extracellular matrix macromolecules." /></a><div class="icnblk_cntnt" id="figlgndA3582"><h4 id="A3582"><a href="/books/NBK26810/figure/A3582/?report=objectonly" target="object" rid-ob="figobA3582">Figure 19-59</a></h4><p class="float-caption no_bottom_margin">The comparative shapes and sizes of some of the major extracellular matrix macromolecules. Protein is shown in <i>green,</i> and glycosaminoglycan in <i>red.</i>
|
|
</p></div></div></div><div id="A3583"><h2 id="_A3583_">Basal Laminae Perform Diverse Functions</h2><p>As we have mentioned, in the kidney glomerulus, an unusually thick <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina acts as a molecular filter, preventing the passage of macromolecules from the blood into the urine as urine is formed (see <a class="figpopup" href="/books/NBK26810/figure/A3578/?report=objectonly" target="object" rid-figpopup="figA3578" rid-ob="figobA3578">Figure 19-55</a>). The heparan sulfate <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> in the basal lamina seems to be important for this function: when its <a class="def" href="/books/n/mboc4/A4754/def-item/A5204/">GAG</a> chains are removed by specific enzymes, the filtering properties of the lamina are destroyed. Type IV <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> also has a role, as a human hereditary kidney disorder <i>(Alport syndrome)</i> results from mutations in type IV collagen α-chain genes.</p><p>The <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina can also act as a selective barrier to the movement of cells. The lamina beneath an epithelium, for example, usually prevents fibroblasts in the underlying <a class="def" href="/books/n/mboc4/A4754/def-item/A5020/">connective tissue</a> from making contact with the epithelial cells. It does not, however, stop macrophages, lymphocytes, or nerve processes from passing through it. The basal lamina is also important in tissue regeneration after injury. When tissues such as muscles, nerves, and epithelia are damaged, the basal lamina survives and provides a scaffold along which regenerating cells can migrate. In this way, the original tissue architecture is readily reconstructed. In some cases, as in the skin or cornea, the basal lamina becomes chemically altered after injury—for example, by the addition of <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a>, which promotes the cell migration required for wound healing.</p><p>A particularly striking example of the instructive role of the <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina in regeneration comes from studies on the <i><a class="def" href="/books/n/mboc4/A4754/def-item/A5525/">neuromuscular junction</a></i>, the site where the nerve terminals of a motor neuron form a chemical <a class="def" href="/books/n/mboc4/A4754/def-item/A5848/">synapse</a> with a skeletal muscle cell (discussed in Chapter 11). The basal lamina that surrounds the muscle cell separates the nerve and muscle cell plasma membranes at the synapse, and the synaptic region of the lamina has a distinctive chemical character, with special isoforms of type IV <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> and <a class="def" href="/books/n/mboc4/A4754/def-item/A5382/">laminin</a> and a heparan sulfate <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> called <b>agrin</b>.</p><p>This <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina at the <a class="def" href="/books/n/mboc4/A4754/def-item/A5848/">synapse</a> has a central role in reconstructing the synapse after nerve or muscle injury. If a frog muscle and its motor nerve are destroyed, the basal lamina around each muscle cell remains intact and the sites of the old neuromuscular junctions are still recognizable. If the motor nerve, but not the muscle, is allowed to regenerate, the nerve axons seek out the original synaptic sites on the empty basal lamina and differentiate there to form normal-looking nerve terminals. Thus, the junctional basal lamina by itself can guide the regeneration of motor nerve terminals.</p><p>Similar experiments show that the <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina also controls the localization of the <a class="def" href="/books/n/mboc4/A4754/def-item/A4760/">acetylcholine</a> receptors that cluster in the muscle cell <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a> at a <a class="def" href="/books/n/mboc4/A4754/def-item/A5525/">neuromuscular junction</a>. If the muscle and nerve are both destroyed, but now the muscle is allowed to regenerate while the nerve is prevented from doing so, the acetylcholine receptors synthesized by the regenerated muscle localize predominantly in the region of the old junctions, even though the nerve is absent (<a class="figpopup" href="/books/NBK26810/figure/A3584/?report=objectonly" target="object" rid-figpopup="figA3584" rid-ob="figobA3584">Figure 19-60</a>). Thus, the junctional basal lamina apparently coordinates the local spatial organization of the components in each of the two cells that form a neuromuscular junction. Some of the matrix proteins have been identified. Motor neuron axons, for example, deposit agrin in the junctional basal lamina, where it triggers the assembly of acetylcholine receptors and other proteins in the junctional plasma membrane of the muscle cell. Conversely, muscle cells deposit a particular isoform of <a class="def" href="/books/n/mboc4/A4754/def-item/A5382/">laminin</a> in the junctional basal lamina. Both agrin and this isoform of laminin are essential for the formation of normal neuromuscular junctions.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3584" co-legend-rid="figlgndA3584"><a href="/books/NBK26810/figure/A3584/?report=objectonly" target="object" title="Figure 19-60" class="img_link icnblk_img figpopup" rid-figpopup="figA3584" rid-ob="figobA3584"><img class="small-thumb" src="/books/NBK26810/bin/ch19f60.gif" src-large="/books/NBK26810/bin/ch19f60.jpg" alt="Figure 19-60. Regeneration experiments demonstrating the special character of the junctional basal lamina at a neuromuscular junction." /></a><div class="icnblk_cntnt" id="figlgndA3584"><h4 id="A3584"><a href="/books/NBK26810/figure/A3584/?report=objectonly" target="object" rid-ob="figobA3584">Figure 19-60</a></h4><p class="float-caption no_bottom_margin">Regeneration experiments demonstrating the special character of the junctional basal lamina at a neuromuscular junction. When the nerve, but not the muscle, is allowed to regenerate after both the nerve and muscle have been damaged (<i>upper</i> part of figure), <a href="/books/NBK26810/figure/A3584/?report=objectonly" target="object" rid-ob="figobA3584">(more...)</a></p></div></div></div><div id="A3585"><h2 id="_A3585_">The Extracellular Matrix Can Influence Cell Shape, Cell Survival, and Cell Proliferation</h2><p>The <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> can influence the organization of a cell's <a class="def" href="/books/n/mboc4/A4754/def-item/A5054/">cytoskeleton</a>. This can be vividly demonstrated by using transformed (cancerlike) fibroblasts in culture (discussed in Chapter 23). Transformed cells often make less <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> than normal cultured cells and behave differently. They adhere poorly to the culture <a class="def" href="/books/n/mboc4/A4754/def-item/A5839/">substratum</a>, for example, and fail to flatten out or develop the organized intracellular bundles of <a class="def" href="/books/n/mboc4/A4754/def-item/A4766/">actin</a> filaments known as <i>stress fibers</i>. The decrease in fibronectin production and adhesion may contribute to the tendency of cancer cells to break away from the primary tumor and spread to other parts of the body.</p><p>In some cases, <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> deficiency seems also to be at least partly responsible for this abnormal morphology of cancer cells: if the cells are grown on a matrix of organized fibronectin fibrils, they flatten out and assemble intracellular stress fibers that are aligned with the extracellular fibronectin fibrils. This interaction between the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> and the <a class="def" href="/books/n/mboc4/A4754/def-item/A5054/">cytoskeleton</a> is reciprocal in that intracellular <a class="def" href="/books/n/mboc4/A4754/def-item/A4766/">actin</a> filaments can promote the assembly and influence the orientation of fibronectin fibrils, as described earlier. Since the cytoskeleton can exert forces that orient the matrix macromolecules the cell secretes and the matrix macromolecules can in turn organize the cytoskeleton of the cells they contact, the extracellular matrix can in principle propagate order from cell to cell (<a class="figpopup" href="/books/NBK26810/figure/A3586/?report=objectonly" target="object" rid-figpopup="figA3586" rid-ob="figobA3586">Figure 19-61</a>), creating large-scale oriented structures, as described earlier (see <a class="figpopup" href="/books/NBK26810/figure/A3567/?report=objectonly" target="object" rid-figpopup="figA3567" rid-ob="figobA3567">Figure 19-50</a>). The integrins serve as the main adaptors in this ordering process, mediating the interactions between cells and the matrix around them.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3586" co-legend-rid="figlgndA3586"><a href="/books/NBK26810/figure/A3586/?report=objectonly" target="object" title="Figure 19-61" class="img_link icnblk_img figpopup" rid-figpopup="figA3586" rid-ob="figobA3586"><img class="small-thumb" src="/books/NBK26810/bin/ch19f61.gif" src-large="/books/NBK26810/bin/ch19f61.jpg" alt="Figure 19-61. How the extracellular matrix could, in principle, propagate order from cell to cell within a tissue." /></a><div class="icnblk_cntnt" id="figlgndA3586"><h4 id="A3586"><a href="/books/NBK26810/figure/A3586/?report=objectonly" target="object" rid-ob="figobA3586">Figure 19-61</a></h4><p class="float-caption no_bottom_margin">How the extracellular matrix could, in principle, propagate order from cell to cell within a tissue. For simplicity, the figure represents a hypothetical scheme in which one cell influences the orientation of its neighboring cells. It is more likely, <a href="/books/NBK26810/figure/A3586/?report=objectonly" target="object" rid-ob="figobA3586">(more...)</a></p></div></div><p>Most cells need to attach to the <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> to grow and proliferate—and, in many cases, even to survive. This dependence of cell growth, proliferation, and survival on attachment to a <a class="def" href="/books/n/mboc4/A4754/def-item/A5839/">substratum</a> is known as <a href="/books/n/mboc4/A4754/#A4818">anchorage dependence</a>, and it is mediated mainly by integrins and the intracellular signals they generate. The physical spreading of a cell on the matrix also has a strong influence on intracellular events. Cells that are forced to spread over a large surface area survive better and proliferate faster than cells that are not so spread out, even if in both cases the cells have the same area making contact with the matrix directly (<a class="figpopup" href="/books/NBK26810/figure/A3587/?report=objectonly" target="object" rid-figpopup="figA3587" rid-ob="figobA3587">Figure 19-62</a>). This stimulatory effect of cell spreading presumably helps tissues to regenerate after injury. If cells are lost from an epithelium, for example, the spreading of the remaining cells into the vacated space will stimulate them to proliferate until they fill the gap. It is still uncertain, however, how a cell senses its extent of spreading so as to adjust its behavior accordingly.
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3587" co-legend-rid="figlgndA3587"><a href="/books/NBK26810/figure/A3587/?report=objectonly" target="object" title="Figure 19-62" class="img_link icnblk_img figpopup" rid-figpopup="figA3587" rid-ob="figobA3587"><img class="small-thumb" src="/books/NBK26810/bin/ch19f62.gif" src-large="/books/NBK26810/bin/ch19f62.jpg" alt="Figure 19-62. Anchorage dependence and the importance of cell spreading." /></a><div class="icnblk_cntnt" id="figlgndA3587"><h4 id="A3587"><a href="/books/NBK26810/figure/A3587/?report=objectonly" target="object" rid-ob="figobA3587">Figure 19-62</a></h4><p class="float-caption no_bottom_margin">Anchorage dependence and the importance of cell spreading. For many cells, contact with the extracellular matrix is essential for survival, growth, and proliferation. In this experiment, the extent of cell spreading on a substratum, rather than the number <a href="/books/NBK26810/figure/A3587/?report=objectonly" target="object" rid-ob="figobA3587">(more...)</a></p></div></div></div><div id="A3588"><h2 id="_A3588_">The Controlled Degradation of Matrix Components Helps Cells Migrate</h2><p>The regulated turnover of <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> macromolecules is crucial to a variety of important biological processes. Rapid degradation occurs, for example, when the uterus involutes after childbirth, or when the tadpole tail is resorbed during metamorphosis (see <a href="/books/n/mboc4/A3245/figure/A3247/?report=objectonly" target="object" class="figpopup" rid-figpopup="figA3247" rid-ob="figobA3247">Figure 17-36</a>). A more localized degradation of matrix components is required when cells migrate through a <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> lamina. This occurs when white blood cells migrate across the basal lamina of a blood vessel into tissues in response to infection or injury, and when cancer cells migrate from their site of origin to distant organs via the bloodstream or lymphatic vessels—the process known as <i><a class="def" href="/books/n/mboc4/A4754/def-item/A5453/">metastasis</a></i>. Even in the seemingly static extracellular matrix of adult animals, there is a slow, continuous turnover, with matrix macromolecules being degraded and resynthesized.</p><p>In each of these cases, matrix components are degraded by extracellular proteolytic enzymes (proteases) that are secreted locally by cells. Thus, antibodies that recognize the products of proteolytic <a class="def" href="/books/n/mboc4/A4754/def-item/A4992/">cleavage</a> stain matrix only around cells. Many of these proteases belong to one of two general classes. Most are <b>matrix metalloproteases</b>, which depend on bound Ca<sup>2+</sup> or Zn<sup>2+</sup> for activity; the others are <a href="/books/n/mboc4/A4754/#A5789">serine proteases</a>, which have a highly reactive serine in their <a class="def" href="/books/n/mboc4/A4754/def-item/A4772/">active site</a>. Together, metalloproteases and serine proteases cooperate to degrade matrix proteins such as <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a>, <a class="def" href="/books/n/mboc4/A4754/def-item/A5382/">laminin</a>, and <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a>. Some metalloproteases, such as the <i>collagenases</i>, are highly specific, cleaving particular proteins at a small number of sites. In this way, the structural integrity of the matrix is largely retained, but cell migration can be greatly facilitated by the small amount of <a class="def" href="/books/n/mboc4/A4754/def-item/A5698/">proteolysis</a>. Other metalloproteases may be less specific, but, because they are anchored to the <a class="def" href="/books/n/mboc4/A4754/def-item/A5642/">plasma membrane</a>, they can act just where they are needed.</p><p>The importance of <a class="def" href="/books/n/mboc4/A4754/def-item/A5698/">proteolysis</a> in cell migration can be shown by using protease inhibitors, which often block migration. Moreover, cells that migrate readily on type I <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> in culture can no longer do so if the collagen is made resistant to proteolysis by mutating the collagenase-sensitive <a class="def" href="/books/n/mboc4/A4754/def-item/A4992/">cleavage</a> sites. The proteolysis of matrix proteins can contribute to cell migration in several ways: (1) it can simply clear a path through the matrix; (2) it can expose cryptic sites on the cleaved proteins that promote cell binding, cell migration, or both; (3) it can promote cell detachment so that a cell can move onward, or (4) it can release extracellular signal proteins that stimulate cell migration.</p><p>Three <a class="def" href="/books/n/mboc4/A4754/def-item/A4877/">basic</a> mechanisms operate to ensure that the proteases that degrade the matrix components are tightly controlled.</p><p>
|
|
<i>Local activation:</i> Many proteases are secreted as inactive precursors that can be activated locally when needed. An example is <i>plasminogen</i>, an inactive protease precursor that is abundant in the blood. It is cleaved locally by other proteases called <i>plasminogen activators</i> to yield the active <a class="def" href="/books/n/mboc4/A4754/def-item/A5789/">serine protease</a> <i>plasmin</i>, which helps break up blood clots. <i>Tissue-type plasminogen activator (tPA)</i> is often given to patients who have just had a heart attack or thrombotic stroke; it helps dissolve the arterial clot that caused the attack, thereby restoring bloodflow to the tissue.</p><p>
|
|
<i>Confinement by cell-surface receptors:</i> Many cells have receptors on their surface that bind proteases, thereby confining the <a class="def" href="/books/n/mboc4/A4754/def-item/A5137/">enzyme</a> to the sites where it is needed. A second type of plasminogen activator called <i>urokinase-type plasminogen activator (uPA)</i> is an example. It is found bound to receptors on the growing tips of axons and at the leading edge of some migrating cells, where it may serve to clear a pathway for their migration. Receptor-bound uPA may also help some cancer cells metastasize (<a class="figpopup" href="/books/NBK26810/figure/A3589/?report=objectonly" target="object" rid-figpopup="figA3589" rid-ob="figobA3589">Figure 19-63</a>).
|
|
</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figA3589" co-legend-rid="figlgndA3589"><a href="/books/NBK26810/figure/A3589/?report=objectonly" target="object" title="Figure 19-63" class="img_link icnblk_img figpopup" rid-figpopup="figA3589" rid-ob="figobA3589"><img class="small-thumb" src="/books/NBK26810/bin/ch19f63.gif" src-large="/books/NBK26810/bin/ch19f63.jpg" alt="Figure 19-63. The importance of proteases bound to cell-surface receptors." /></a><div class="icnblk_cntnt" id="figlgndA3589"><h4 id="A3589"><a href="/books/NBK26810/figure/A3589/?report=objectonly" target="object" rid-ob="figobA3589">Figure 19-63</a></h4><p class="float-caption no_bottom_margin">The importance of proteases bound to cell-surface receptors. (A) Human prostate cancer cells make and secrete the serine protease uPA, which binds to cell-surface uPA receptor proteins. (B) The same cells have been transfected with DNA that encodes an <a href="/books/NBK26810/figure/A3589/?report=objectonly" target="object" rid-ob="figobA3589">(more...)</a></p></div></div><p>
|
|
<i>Secretion of inhibitors:</i> The action of proteases is confined to specific areas by various secreted protease inhibitors, including the <i>tissue inhibitors of metalloproteases (TIMPs)</i> and the <a class="def" href="/books/n/mboc4/A4754/def-item/A5789/">serine protease</a> inhibitors known as <i>serpins</i>. These inhibitors are protease-specific and bind tightly to the activated <a class="def" href="/books/n/mboc4/A4754/def-item/A5137/">enzyme</a>, blocking its activity. An attractive idea is that the inhibitors are secreted by cells at the margins of areas of active <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> degradation in order to protect uninvolved matrix; they may also protect cell-surface proteins required for cell adhesion and migration. The overexpression of TIMPs inhibits the migration of some cell types, indicating the importance of metalloproteases for the migration.</p></div><div id="A3590"><h2 id="_A3590_">Summary</h2><p>Cells in connective tissues are embedded in an intricate <a class="def" href="/books/n/mboc4/A4754/def-item/A5164/">extracellular matrix</a> that not only binds the cells together but also influences their survival, <a class="def" href="/books/n/mboc4/A4754/def-item/A5071/">development</a>, shape, polarity, and behavior. The matrix contains various <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> fibers interwoven in a hydrated gel composed of a network of <a class="def" href="/books/n/mboc4/A4754/def-item/A5242/">glycosaminoglycan (GAG)</a> chains.</p><p>GAGs are a heterogeneous group of negatively charged <a class="def" href="/books/n/mboc4/A4754/def-item/A5662/">polysaccharide</a> chains that (except for hyaluronan) are covalently linked to <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> to form <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> molecules. They occupy a large volume and form hydrated gels in the extracellular space. Proteoglycans are also found on the surface of cells, where they function as co-receptors to help cells respond to secreted signal proteins.</p><p>Fiber-forming proteins strengthen the matrix and give it form. They also provide surfaces for cells to adhere to. Elastin molecules form an extensive cross-linked network of fibers and sheets that can stretch and recoil, imparting elasticity to the matrix. The fibrillar collagens (types I, II, III, V, and XI) are ropelike, triple-stranded helical molecules that aggregate into long fibrils in the extracellular space. The fibrils in turn can assemble into a variety of highly ordered arrays. Fibril-associated <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> molecules, such as types IX and XII, decorate the surface of collagen fibrils and influence the interactions of the fibrils with one another and with other matrix components.</p><p>In contrast, type IV <a class="def" href="/books/n/mboc4/A4754/def-item/A5004/">collagen</a> molecules assemble into a sheetlike meshwork that is a crucial component of all mature <a class="def" href="/books/n/mboc4/A4754/def-item/A4872/">basal</a> laminae. All basal laminae are based on a mesh of <a class="def" href="/books/n/mboc4/A4754/def-item/A5382/">laminin</a> molecules. The collagen and laminin networks in mature basal laminae are bridged by the <a class="def" href="/books/n/mboc4/A4754/def-item/A5688/">protein</a> nidogen and the large heparan sulfate <a class="def" href="/books/n/mboc4/A4754/def-item/A5697/">proteoglycan</a> perlecan. Fibronectin and laminin are examples of large, multidomain matrix glycoproteins. By means of their multiple binding domains, such proteins help organize the matrix and help cells adhere to it.</p><p>Matrix proteins such as collagens, laminins, and <a class="def" href="/books/n/mboc4/A4754/def-item/A5178/">fibronectin</a> are assembled into fibrils or networks on the surface of the cells that produce them by a process that depends on the underlying <a class="def" href="/books/n/mboc4/A4754/def-item/A4766/">actin</a> cortex. The organization of the matrix can reciprocally influence the organization of the cell's <a class="def" href="/books/n/mboc4/A4754/def-item/A5054/">cytoskeleton</a> and can mechanically influence cell spreading. The matrix also influences cell behavior by binding to cell-surface receptors that activate intracellular signaling pathways.</p><p>Matrix components are degraded by extracellular proteolytic enzymes. Most of these are matrix metalloproteases, which depend on bound Ca<sup>2+</sup> or Zn<sup>2+</sup> for activity, while others are serine proteases, which have a reactive serine in their <a class="def" href="/books/n/mboc4/A4754/def-item/A4772/">active site</a>. Various mechanisms operate to ensure that the degradation of matrix components is tightly controlled. Cells can, for example, cause a localized degradation of matrix components to clear a path through the matrix.</p></div><div style="display:none"><div id="figA2850"><img alt="Image ch15f50" src-large="/books/n/mboc4/A2840/bin/ch15f50.jpg" /></div><div id="figA3277"><img alt="Image ch17f49" src-large="/books/n/mboc4/A3255/bin/ch17f49.jpg" /></div><div id="figA3247"><img alt="Image ch17f36" src-large="/books/n/mboc4/A3245/bin/ch17f36.jpg" /></div></div></div></div>
|
|
<div class="post-content"><div><p>By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.</p><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> © 2002, Bruce Alberts, Alexander Johnson, Julian
|
|
Lewis, Martin Raff, Keith Roberts, and Peter Walter; Copyright © 1983,
|
|
1989, 1994, Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts,
|
|
and James D. Watson .</div><div class="small"><span class="label">Bookshelf ID: NBK26810</span></div></div></div>
|
|
|
|
</div>
|
|
|
|
<!-- Custom content below content -->
|
|
<div class="col4">
|
|
|
|
</div>
|
|
|
|
|
|
<!-- Book content -->
|
|
|
|
<!-- Custom contetnt below bottom nav -->
|
|
<div class="col5">
|
|
|
|
</div>
|
|
</div>
|
|
|
|
<div id="rightcolumn" class="four_col col last">
|
|
<!-- Custom content above discovery portlets -->
|
|
<div class="col6">
|
|
|
|
</div>
|
|
<div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Views</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="PDF_download" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a data-jig="ncbidialog" href="#_ncbi_dlg_citbx_NBK26810" data-jigconfig="width:400,modal:true">Cite this Page</a><div id="_ncbi_dlg_citbx_NBK26810" style="display:none" title="Cite this Page"><div class="bk_tt">Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. The Extracellular Matrix of Animals.<span class="bk_cite_avail"></span></div></div></li><li><a href="#" class="toggle-glossary-link" title="Enable/disable links to the glossary">Disable Glossary Links</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>In this Page</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="page-toc" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="#A3535" ref="log$=inpage&link_id=inpage">The Extracellular Matrix Is Made and Oriented by the Cells Within It</a></li><li><a href="#A3537" ref="log$=inpage&link_id=inpage">Glycosaminoglycan (GAG) Chains Occupy Large Amounts of Space and Form Hydrated Gels</a></li><li><a href="#A3540" ref="log$=inpage&link_id=inpage">Hyaluronan Is Thought to Facilitate Cell Migration During Tissue Morphogenesis and Repair</a></li><li><a href="#A3542" ref="log$=inpage&link_id=inpage">Proteoglycans Are Composed of GAG Chains Covalently Linked to a Core Protein</a></li><li><a href="#A3545" ref="log$=inpage&link_id=inpage">Proteoglycans Can Regulate the Activities of Secreted Proteins</a></li><li><a href="#A3546" ref="log$=inpage&link_id=inpage">GAG Chains May Be Highly Organized in the Extracellular Matrix</a></li><li><a href="#A3549" ref="log$=inpage&link_id=inpage">Cell-Surface Proteoglycans Act as Co-receptors</a></li><li><a href="#A3551" ref="log$=inpage&link_id=inpage">Collagens Are the Major Proteins of the Extracellular Matrix</a></li><li><a href="#A3555" ref="log$=inpage&link_id=inpage">Collagens Are Secreted with a Nonhelical Extension at Each End</a></li><li><a href="#A3557" ref="log$=inpage&link_id=inpage">After Secretion, Fibrillar Procollagen Molecules Are Cleaved to Collagen Molecules, Which Assemble into Fibrils</a></li><li><a href="#A3560" ref="log$=inpage&link_id=inpage">Fibril-associated Collagens Help Organize the Fibrils</a></li><li><a href="#A3566" ref="log$=inpage&link_id=inpage">Cells Help Organize the Collagen Fibrils They Secrete by Exerting Tension on the Matrix</a></li><li><a href="#A3568" ref="log$=inpage&link_id=inpage">Elastin Gives Tissues Their Elasticity</a></li><li><a href="#A3571" ref="log$=inpage&link_id=inpage">Fibronectin Is an Extracellular Protein That Helps Cells Attach to the Matrix</a></li><li><a href="#A3573" ref="log$=inpage&link_id=inpage">Fibronectin Exists in Both Soluble and Fibrillar Forms</a></li><li><a href="#A3574" ref="log$=inpage&link_id=inpage">Intracellular Actin Filaments Regulate the Assembly of Extracellular Fibronectin Fibrils</a></li><li><a href="#A3576" ref="log$=inpage&link_id=inpage">Glycoproteins in the Matrix Help Guide Cell Migration</a></li><li><a href="#A3577" ref="log$=inpage&link_id=inpage">Basal Laminae Are Composed Mainly of Type IV Collagen, Laminin, Nidogen, and a Heparan Sulfate Proteoglycan</a></li><li><a href="#A3583" ref="log$=inpage&link_id=inpage">Basal Laminae Perform Diverse Functions</a></li><li><a href="#A3585" ref="log$=inpage&link_id=inpage">The Extracellular Matrix Can Influence Cell Shape, Cell Survival, and Cell Proliferation</a></li><li><a href="#A3588" ref="log$=inpage&link_id=inpage">The Controlled Degradation of Matrix Components Helps Cells Migrate</a></li><li><a href="#A3590" ref="log$=inpage&link_id=inpage">Summary</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Related Items in Bookshelf</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="source-links" id="Shutter"></a></div><div class="portlet_content"><ul xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="simple-list"><li><a href="https://www.ncbi.nlm.nih.gov/books?term="textbooks"%5BResource%20Type%5D" ref="pagearea=source-links&targetsite=external&targetcat=link&targettype=uri">All Textbooks</a></li></ul></div></div><div class="portlet"><div class="portlet_head"><div class="portlet_title"><h3><span>Recent Activity</span></h3></div><a name="Shutter" sid="1" href="#" class="portlet_shutter" title="Show/hide content" remembercollapsed="true" pgsec_name="recent_activity" id="Shutter"></a></div><div class="portlet_content"><div xmlns:np="http://ncbi.gov/portal/XSLT/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="HTDisplay" class=""><div class="action"><a href="javascript:historyDisplayState('ClearHT')">Clear</a><a href="javascript:historyDisplayState('HTOff')" class="HTOn">Turn Off</a><a href="javascript:historyDisplayState('HTOn')" class="HTOff">Turn On</a></div><ul id="activity"><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&linkpos=1" href="/portal/utils/pageresolver.fcgi?recordid=67d6a3af84f3725e590d60ea">The Extracellular Matrix of Animals - Molecular Biology of the Cell</a><div class="ralinkpop offscreen_noflow">The Extracellular Matrix of Animals - Molecular Biology of the Cell<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&linkpos=2" href="/portal/utils/pageresolver.fcgi?recordid=67d6a3af84f3725e590d59b0">From RNA to Protein - Molecular Biology of the Cell</a><div class="ralinkpop offscreen_noflow">From RNA to Protein - Molecular Biology of the Cell<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&linkpos=3" href="/portal/utils/pageresolver.fcgi?recordid=67d6a3ae67c23b31e0940c02">From DNA to RNA - Molecular Biology of the Cell</a><div class="ralinkpop offscreen_noflow">From DNA to RNA - Molecular Biology of the Cell<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&linkpos=4" href="/portal/utils/pageresolver.fcgi?recordid=67d6a3ad67c23b31e0940a7a">The Chemical Components of a Cell - Molecular Biology of the Cell</a><div class="ralinkpop offscreen_noflow">The Chemical Components of a Cell - Molecular Biology of the Cell<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li><li class="ra_rcd ralinkpopper two_line"><a class="htb ralinkpopperctrl" ref="log$=activity&linkpos=5" href="/portal/utils/pageresolver.fcgi?recordid=67d6a3accde49f3df7be7e7d">Protein Function - Molecular Biology of the Cell</a><div class="ralinkpop offscreen_noflow">Protein Function - Molecular Biology of the Cell<div class="brieflinkpopdesc"></div></div><div class="tertiary"></div></li></ul><p class="HTOn">Your browsing activity is empty.</p><p class="HTOff">Activity recording is turned off.</p><p id="turnOn" class="HTOff"><a href="javascript:historyDisplayState('HTOn')">Turn recording back on</a></p><a class="seemore" href="/sites/myncbi/recentactivity">See more...</a></div></div></div>
|
|
|
|
<!-- Custom content below discovery portlets -->
|
|
<div class="col7">
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<!-- Custom content after all -->
|
|
<div class="col8">
|
|
|
|
</div>
|
|
<div class="col9">
|
|
|
|
</div>
|
|
|
|
<script type="text/javascript" src="/corehtml/pmc/js/jquery.scrollTo-1.4.2.js"></script>
|
|
<script type="text/javascript">
|
|
(function($){
|
|
$('.skiplink').each(function(i, item){
|
|
var href = $($(item).attr('href'));
|
|
href.attr('tabindex', '-1').addClass('skiptarget'); // ensure the target can receive focus
|
|
$(item).on('click', function(event){
|
|
event.preventDefault();
|
|
$.scrollTo(href, 0, {
|
|
onAfter: function(){
|
|
href.focus();
|
|
}
|
|
});
|
|
});
|
|
});
|
|
})(jQuery);
|
|
</script>
|
|
</div>
|
|
<div class="bottom">
|
|
<script type="text/javascript">
|
|
var PBooksSearchTermData = {
|
|
highlighter: "bold",
|
|
dateTime: "03/16/2025 05:16:39",
|
|
terms: [
|
|
'degeneration', 'disease', 'hepatolenticular', 'hepatolenticular degeneration', 'hepatolenticular degeneration', 'practice guideline', 'wilson', 'wilson disease'
|
|
]
|
|
};
|
|
</script>
|
|
<div id="NCBIFooter_dynamic">
|
|
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
|
|
<component id="Breadcrumbs" label="helpdesk"/>-->
|
|
|
|
</div>
|
|
|
|
<div class="footer" id="footer">
|
|
<section class="icon-section">
|
|
<div id="icon-section-header" class="icon-section_header">Follow NCBI</div>
|
|
<div class="grid-container container">
|
|
<div class="icon-section_container">
|
|
<a class="footer-icon" id="footer_twitter" href="https://twitter.com/ncbi" aria-label="Twitter"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
|
|
<defs>
|
|
<style>
|
|
.cls-11 {
|
|
fill: #737373;
|
|
}
|
|
</style>
|
|
</defs>
|
|
<title>Twitter</title>
|
|
<path class="cls-11" d="M250.11,105.48c-7,3.14-13,3.25-19.27.14,8.12-4.86,8.49-8.27,11.43-17.46a78.8,78.8,0,0,1-25,9.55,39.35,39.35,0,0,0-67,35.85,111.6,111.6,0,0,1-81-41.08A39.37,39.37,0,0,0,81.47,145a39.08,39.08,0,0,1-17.8-4.92c0,.17,0,.33,0,.5a39.32,39.32,0,0,0,31.53,38.54,39.26,39.26,0,0,1-17.75.68,39.37,39.37,0,0,0,36.72,27.3A79.07,79.07,0,0,1,56,223.34,111.31,111.31,0,0,0,116.22,241c72.3,0,111.83-59.9,111.83-111.84,0-1.71,0-3.4-.1-5.09C235.62,118.54,244.84,113.37,250.11,105.48Z">
|
|
</path>
|
|
</svg></a>
|
|
<a class="footer-icon" id="footer_facebook" href="https://www.facebook.com/ncbi.nlm" aria-label="Facebook"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
|
|
<title>Facebook</title>
|
|
<path class="cls-11" d="M210.5,115.12H171.74V97.82c0-8.14,5.39-10,9.19-10h27.14V52l-39.32-.12c-35.66,0-42.42,26.68-42.42,43.77v19.48H99.09v36.32h27.24v109h45.41v-109h35Z">
|
|
</path>
|
|
</svg></a>
|
|
<a class="footer-icon" id="footer_linkedin" href="https://www.linkedin.com/company/ncbinlm" aria-label="LinkedIn"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
|
|
<title>LinkedIn</title>
|
|
<path class="cls-11" d="M101.64,243.37H57.79v-114h43.85Zm-22-131.54h-.26c-13.25,0-21.82-10.36-21.82-21.76,0-11.65,8.84-21.15,22.33-21.15S101.7,78.72,102,90.38C102,101.77,93.4,111.83,79.63,111.83Zm100.93,52.61A17.54,17.54,0,0,0,163,182v61.39H119.18s.51-105.23,0-114H163v13a54.33,54.33,0,0,1,34.54-12.66c26,0,44.39,18.8,44.39,55.29v58.35H198.1V182A17.54,17.54,0,0,0,180.56,164.44Z">
|
|
</path>
|
|
</svg></a>
|
|
<a class="footer-icon" id="footer_github" href="https://github.com/ncbi" aria-label="GitHub"><svg xmlns="http://www.w3.org/2000/svg" data-name="Layer 1" viewBox="0 0 300 300">
|
|
<defs>
|
|
<style>
|
|
.cls-11,
|
|
.cls-12 {
|
|
fill: #737373;
|
|
}
|
|
|
|
.cls-11 {
|
|
fill-rule: evenodd;
|
|
}
|
|
</style>
|
|
</defs>
|
|
<title>GitHub</title>
|
|
<path class="cls-11" d="M151.36,47.28a105.76,105.76,0,0,0-33.43,206.1c5.28,1,7.22-2.3,7.22-5.09,0-2.52-.09-10.85-.14-19.69-29.42,6.4-35.63-12.48-35.63-12.48-4.81-12.22-11.74-15.47-11.74-15.47-9.59-6.56.73-6.43.73-6.43,10.61.75,16.21,10.9,16.21,10.9,9.43,16.17,24.73,11.49,30.77,8.79,1-6.83,3.69-11.5,6.71-14.14C108.57,197.1,83.88,188,83.88,147.51a40.92,40.92,0,0,1,10.9-28.39c-1.1-2.66-4.72-13.42,1-28,0,0,8.88-2.84,29.09,10.84a100.26,100.26,0,0,1,53,0C198,88.3,206.9,91.14,206.9,91.14c5.76,14.56,2.14,25.32,1,28a40.87,40.87,0,0,1,10.89,28.39c0,40.62-24.74,49.56-48.29,52.18,3.79,3.28,7.17,9.71,7.17,19.58,0,14.15-.12,25.54-.12,29,0,2.82,1.9,6.11,7.26,5.07A105.76,105.76,0,0,0,151.36,47.28Z">
|
|
</path>
|
|
<path class="cls-12" d="M85.66,199.12c-.23.52-1.06.68-1.81.32s-1.2-1.06-.95-1.59,1.06-.69,1.82-.33,1.21,1.07.94,1.6Zm-1.3-1">
|
|
</path>
|
|
<path class="cls-12" d="M90,203.89c-.51.47-1.49.25-2.16-.49a1.61,1.61,0,0,1-.31-2.19c.52-.47,1.47-.25,2.17.49s.82,1.72.3,2.19Zm-1-1.08">
|
|
</path>
|
|
<path class="cls-12" d="M94.12,210c-.65.46-1.71,0-2.37-.91s-.64-2.07,0-2.52,1.7,0,2.36.89.65,2.08,0,2.54Zm0,0"></path>
|
|
<path class="cls-12" d="M99.83,215.87c-.58.64-1.82.47-2.72-.41s-1.18-2.06-.6-2.7,1.83-.46,2.74.41,1.2,2.07.58,2.7Zm0,0">
|
|
</path>
|
|
<path class="cls-12" d="M107.71,219.29c-.26.82-1.45,1.2-2.64.85s-2-1.34-1.74-2.17,1.44-1.23,2.65-.85,2,1.32,1.73,2.17Zm0,0">
|
|
</path>
|
|
<path class="cls-12" d="M116.36,219.92c0,.87-1,1.59-2.24,1.61s-2.29-.68-2.3-1.54,1-1.59,2.26-1.61,2.28.67,2.28,1.54Zm0,0">
|
|
</path>
|
|
<path class="cls-12" d="M124.42,218.55c.15.85-.73,1.72-2,1.95s-2.37-.3-2.52-1.14.73-1.75,2-2,2.37.29,2.53,1.16Zm0,0"></path>
|
|
</svg></a>
|
|
<a class="footer-icon" id="footer_blog" href="https://ncbiinsights.ncbi.nlm.nih.gov/" aria-label="Blog">
|
|
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1" viewBox="0 0 40 40">
|
|
<defs><style>.cls-1{fill:#737373;}</style></defs>
|
|
<title>NCBI Insights Blog</title>
|
|
<path class="cls-1" d="M14,30a4,4,0,1,1-4-4,4,4,0,0,1,4,4Zm11,3A19,19,0,0,0,7.05,15a1,1,0,0,0-1,1v3a1,1,0,0,0,.93,1A14,14,0,0,1,20,33.07,1,1,0,0,0,21,34h3a1,1,0,0,0,1-1Zm9,0A28,28,0,0,0,7,6,1,1,0,0,0,6,7v3a1,1,0,0,0,1,1A23,23,0,0,1,29,33a1,1,0,0,0,1,1h3A1,1,0,0,0,34,33Z"></path>
|
|
</svg>
|
|
</a>
|
|
</div>
|
|
</div>
|
|
</section>
|
|
|
|
<section class="container-fluid bg-primary">
|
|
<div class="container pt-5">
|
|
<div class="row mt-3">
|
|
<div class="col-lg-3 col-12">
|
|
<p><a class="text-white" href="https://www.nlm.nih.gov/socialmedia/index.html">Connect with NLM</a></p>
|
|
<ul class="list-inline social_media">
|
|
<li class="list-inline-item"><a href="https://twitter.com/NLM_NIH" aria-label="Twitter" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
|
|
<style type="text/css">
|
|
.st20 {
|
|
fill: #FFFFFF;
|
|
}
|
|
|
|
.st30 {
|
|
fill: none;
|
|
stroke: #FFFFFF;
|
|
stroke-width: 8;
|
|
stroke-miterlimit: 10;
|
|
}
|
|
</style>
|
|
<title>Twitter</title>
|
|
<g>
|
|
<g>
|
|
<g>
|
|
<path class="st20" d="M192.9,88.1c-5,2.2-9.2,2.3-13.6,0.1c5.7-3.4,6-5.8,8.1-12.3c-5.4,3.2-11.4,5.5-17.6,6.7 c-10.5-11.2-28.1-11.7-39.2-1.2c-7.2,6.8-10.2,16.9-8,26.5c-22.3-1.1-43.1-11.7-57.2-29C58,91.6,61.8,107.9,74,116 c-4.4-0.1-8.7-1.3-12.6-3.4c0,0.1,0,0.2,0,0.4c0,13.2,9.3,24.6,22.3,27.2c-4.1,1.1-8.4,1.3-12.5,0.5c3.6,11.3,14,19,25.9,19.3 c-11.6,9.1-26.4,13.2-41.1,11.5c12.7,8.1,27.4,12.5,42.5,12.5c51,0,78.9-42.2,78.9-78.9c0-1.2,0-2.4-0.1-3.6 C182.7,97.4,189.2,93.7,192.9,88.1z"></path>
|
|
</g>
|
|
</g>
|
|
<circle class="st30" cx="124.4" cy="128.8" r="108.2"></circle>
|
|
</g>
|
|
</svg></a></li>
|
|
<li class="list-inline-item"><a href="https://www.facebook.com/nationallibraryofmedicine" aria-label="Facebook" rel="noopener noreferrer" target="_blank">
|
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
|
|
<style type="text/css">
|
|
.st10 {
|
|
fill: #FFFFFF;
|
|
}
|
|
|
|
.st110 {
|
|
fill: none;
|
|
stroke: #FFFFFF;
|
|
stroke-width: 8;
|
|
stroke-miterlimit: 10;
|
|
}
|
|
</style>
|
|
<title>Facebook</title>
|
|
<g>
|
|
<g>
|
|
<path class="st10" d="M159,99.1h-24V88.4c0-5,3.3-6.2,5.7-6.2h16.8V60l-24.4-0.1c-22.1,0-26.2,16.5-26.2,27.1v12.1H90v22.5h16.9 v67.5H135v-67.5h21.7L159,99.1z"></path>
|
|
</g>
|
|
</g>
|
|
<circle class="st110" cx="123.6" cy="123.2" r="108.2"></circle>
|
|
</svg>
|
|
</a></li>
|
|
<li class="list-inline-item"><a href="https://www.youtube.com/user/NLMNIH" aria-label="Youtube" target="_blank" rel="noopener noreferrer"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" x="0px" y="0px" viewBox="0 0 249 249" style="enable-background:new 0 0 249 249;" xml:space="preserve">
|
|
<title>Youtube</title>
|
|
<style type="text/css">
|
|
.st4 {
|
|
fill: none;
|
|
stroke: #FFFFFF;
|
|
stroke-width: 8;
|
|
stroke-miterlimit: 10;
|
|
}
|
|
|
|
.st5 {
|
|
fill: #FFFFFF;
|
|
}
|
|
</style>
|
|
<circle class="st4" cx="124.2" cy="123.4" r="108.2"></circle>
|
|
<g transform="translate(0,-952.36218)">
|
|
<path class="st5" d="M88.4,1037.4c-10.4,0-18.7,8.3-18.7,18.7v40.1c0,10.4,8.3,18.7,18.7,18.7h72.1c10.4,0,18.7-8.3,18.7-18.7 v-40.1c0-10.4-8.3-18.7-18.7-18.7H88.4z M115.2,1058.8l29.4,17.4l-29.4,17.4V1058.8z"></path>
|
|
</g>
|
|
</svg></a></li>
|
|
</ul>
|
|
</div>
|
|
<div class="col-lg-3 col-12">
|
|
<p class="address_footer text-white">National Library of Medicine<br />
|
|
<a href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/@38.9959508,-77.101021,17z/data=!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb:0x19156f88b27635b8!8m2!3d38.9959508!4d-77.0988323" class="text-white" target="_blank" rel="noopener noreferrer">8600 Rockville Pike<br />
|
|
Bethesda, MD 20894</a></p>
|
|
</div>
|
|
<div class="col-lg-3 col-12 centered-lg">
|
|
<p><a href="https://www.nlm.nih.gov/web_policies.html" class="text-white">Web Policies</a><br />
|
|
<a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="text-white">FOIA</a><br />
|
|
<a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="text-white" id="vdp">HHS Vulnerability Disclosure</a></p>
|
|
</div>
|
|
<div class="col-lg-3 col-12 centered-lg">
|
|
<p><a class="supportLink text-white" href="https://support.nlm.nih.gov/">Help</a><br />
|
|
<a href="https://www.nlm.nih.gov/accessibility.html" class="text-white">Accessibility</a><br />
|
|
<a href="https://www.nlm.nih.gov/careers/careers.html" class="text-white">Careers</a></p>
|
|
</div>
|
|
</div>
|
|
<div class="row">
|
|
<div class="col-lg-12 centered-lg">
|
|
<nav class="bottom-links">
|
|
<ul class="mt-3">
|
|
<li>
|
|
<a class="text-white" href="//www.nlm.nih.gov/">NLM</a>
|
|
</li>
|
|
<li>
|
|
<a class="text-white" href="https://www.nih.gov/">NIH</a>
|
|
</li>
|
|
<li>
|
|
<a class="text-white" href="https://www.hhs.gov/">HHS</a>
|
|
</li>
|
|
<li>
|
|
<a class="text-white" href="https://www.usa.gov/">USA.gov</a>
|
|
</li>
|
|
</ul>
|
|
</nav>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</section>
|
|
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentOmnitureBaseJS/InstrumentNCBIConfigJS/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js?v=1"> </script>
|
|
<script type="text/javascript" src="/portal/portal3rc.fcgi/static/js/hfjs2.js"> </script>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<!--/.page-->
|
|
</div>
|
|
<!--/.wrap-->
|
|
</div><!-- /.twelve_col -->
|
|
</div>
|
|
<!-- /.grid -->
|
|
|
|
<span class="PAFAppResources"></span>
|
|
|
|
<!-- BESelector tab -->
|
|
|
|
|
|
|
|
<noscript><img alt="statistics" src="/stat?jsdisabled=true&ncbi_db=books&ncbi_pdid=book-part&ncbi_acc=NBK26810&ncbi_domain=mboc4&ncbi_report=record&ncbi_type=fulltext&ncbi_objectid=&ncbi_pcid=/NBK26810/&ncbi_pagename=The Extracellular Matrix of Animals - Molecular Biology of the Cell - NCBI Bookshelf&ncbi_bookparttype=section&ncbi_app=bookshelf" /></noscript>
|
|
|
|
|
|
<!-- usually for JS scripts at page bottom -->
|
|
<!--<component id="PageFixtures" label="styles"></component>-->
|
|
|
|
|
|
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal107 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
|
|
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
|
|
|
|
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/4062932/4209313/4212053/4076480/3921943/3400083/3426610.js" snapshot="books"></script></body>
|
|
</html> |