nih-gov/www.ncbi.nlm.nih.gov/books/NBK231880/index.html?report=printable
2025-03-17 02:05:34 +00:00

214 lines
No EOL
124 KiB
XML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- AppResources meta begin -->
<meta name="paf-app-resources" content="" />
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- AppResources meta end -->
<!-- TemplateResources meta begin -->
<meta name="paf_template" content="" />
<!-- TemplateResources meta end -->
<!-- Logger begin -->
<meta name="ncbi_db" content="books" /><meta name="ncbi_pdid" content="book-part" /><meta name="ncbi_acc" content="NBK231880" /><meta name="ncbi_domain" content="gene" /><meta name="ncbi_report" content="printable" /><meta name="ncbi_type" content="fulltext" /><meta name="ncbi_objectid" content="" /><meta name="ncbi_pcid" content="/NBK231880/?report=printable" /><meta name="ncbi_app" content="bookshelf" />
<!-- Logger end -->
<title>Spinocerebellar Ataxia Type 36 RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY - GeneReviews® - NCBI Bookshelf</title>
<!-- AppResources external_resources begin -->
<link rel="stylesheet" href="/core/jig/1.15.2/css/jig.min.css" /><script type="text/javascript" src="/core/jig/1.15.2/js/jig.min.js"></script>
<!-- AppResources external_resources end -->
<!-- Page meta begin -->
<meta name="robots" content="NOINDEX,NOFOLLOW,NOARCHIVE" /><meta name="citation_inbook_title" content="GeneReviews® [Internet]" /><meta name="citation_title" content="Spinocerebellar Ataxia Type 36 RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY" /><meta name="citation_publisher" content="University of Washington, Seattle" /><meta name="citation_date" content="2014/08/07" /><meta name="citation_author" content="Manuel Arias" /><meta name="citation_author" content="Beatriz Quintáns" /><meta name="citation_author" content="María García-Murias" /><meta name="citation_author" content="Maria J Sobrido" /><meta name="citation_pmid" content="25101480" /><meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK231880/" /><meta name="citation_keywords" content="Asidan/SCA36" /><meta name="citation_keywords" content="Costa da Morte Ataxia" /><meta name="citation_keywords" content="SCA36" /><meta name="citation_keywords" content="SCA36" /><meta name="citation_keywords" content="Asidan/SCA36" /><meta name="citation_keywords" content="Costa da Morte Ataxia" /><meta name="citation_keywords" content="Nucleolar protein 56" /><meta name="citation_keywords" content="NOP56" /><meta name="citation_keywords" content="Spinocerebellar Ataxia Type 36" /><link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /><meta name="DC.Title" content="Spinocerebellar Ataxia Type 36 RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY" /><meta name="DC.Type" content="Text" /><meta name="DC.Publisher" content="University of Washington, Seattle" /><meta name="DC.Contributor" content="Manuel Arias" /><meta name="DC.Contributor" content="Beatriz Quintáns" /><meta name="DC.Contributor" content="María García-Murias" /><meta name="DC.Contributor" content="Maria J Sobrido" /><meta name="DC.Date" content="2014/08/07" /><meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK231880/" /><meta name="description" content="NOTE: THIS PUBLICATION HAS BEEN RETIRED. THIS ARCHIVAL VERSION IS FOR HISTORICAL REFERENCE ONLY, AND THE INFORMATION MAY BE OUT OF DATE." /><meta name="og:title" content="Spinocerebellar Ataxia Type 36 RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY" /><meta name="og:type" content="book" /><meta name="og:description" content="NOTE: THIS PUBLICATION HAS BEEN RETIRED. THIS ARCHIVAL VERSION IS FOR HISTORICAL REFERENCE ONLY, AND THE INFORMATION MAY BE OUT OF DATE." /><meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK231880/" /><meta name="og:site_name" content="NCBI Bookshelf" /><meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-gene-lrg.png" /><meta name="twitter:card" content="summary" /><meta name="twitter:site" content="@ncbibooks" /><meta name="warning" content="This publication is provided for historical reference only and the information may be out of date." /><meta name="bk-non-canon-loc" content="/books/n/gene/sca36/" /><link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK231880/" /><link rel="stylesheet" href="/corehtml/pmc/css/figpopup.css" type="text/css" media="screen" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css" /><link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_print.min.css" type="text/css" /><style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} </style><script type="text/javascript" src="/corehtml/pmc/js/jquery.hoverIntent.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/common.min.js?_=3.18"> </script><script type="text/javascript">window.name="mainwindow";</script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/book-toc.min.js"> </script><script type="text/javascript" src="/corehtml/pmc/js/bookshelf/2.26/books.min.js"> </script><script type="text/javascript">if (typeof (jQuery) != 'undefined') { (function ($) { $(function () { var min = Math.ceil(1); var max = Math.floor(100000); var randomNum = Math.floor(Math.random() * (max - min)) + min; var surveyUrl = "/projects/Gene/portal/surveys/seqdbui-survey.js?rando=" + randomNum.toString(); $.getScript(surveyUrl, function () { try { ncbi.seqDbUISurvey.init(); } catch (err) { console.info(err); } }).fail(function (jqxhr, settings, exception) { console.info('Cannot load survey script', jqxhr); });; }); })(jQuery); };</script>
<!-- Page meta end -->
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico" /><meta name="ncbi_phid" content="CE8D15087D42A6610000000000B30096.m_5" />
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3985586/3808861/4121862/3974050/3917732/251717/4216701/14534/45193/4113719/3849091/3984811/3751656/4033350/3840896/3577051/3852958/3984801/12930/3964959.css" /><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3411343/3882866.css" media="print" /></head>
<body class="book-part">
<div class="grid no_max_width">
<div class="col twelve_col nomargin shadow">
<!-- System messages like service outage or JS required; this is handled by the TemplateResources portlet -->
<div class="sysmessages">
<noscript>
<p class="nojs">
<strong>Warning:</strong>
The NCBI web site requires JavaScript to function.
<a href="/guide/browsers/#enablejs" title="Learn how to enable JavaScript" target="_blank">more...</a>
</p>
</noscript>
</div>
<!--/.sysmessage-->
<div class="wrap">
<div class="page">
<div class="top">
<div class="header">
</div>
<!--<component id="Page" label="headcontent"/>-->
</div>
<div class="content">
<!-- site messages -->
<div class="container content">
<div class="document">
<div class="pre-content"><div><div class="bk_prnt"><p class="small">NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.</p><p>Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. </p></div><div class="messagearea bk_noprnt" style="margin-bottom:1.3846em "><ul class="messages"><li class="warn icon"><span class="icon">This publication is provided for historical reference only and the information may be out of date.</span></li></ul></div><div class="bk_prnt"><p style="color:red;"><strong>This publication is provided for historical reference only and the information may be out of date.</strong></p></div></div></div>
<div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><h1 id="_NBK231880_"><span class="title" itemprop="name">Spinocerebellar Ataxia Type 36 &#x02013; RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY</span></h1><div itemprop="alternativeHeadline" class="subtitle whole_rhythm">Synonyms: Asidan/SCA36, Costa da Morte Ataxia, SCA36</div><div class="contrib half_rhythm"><span itemprop="author">Manuel Arias</span>, MD, PhD<div class="affiliation small">Neurogenetics Group<br />Instituto de Investigaci&#x000f3;n Sanitaria (IDIS)<br />Department of Neurology<br />Complexo Hospitalario Universitario<br />Santiago de Compostela, Spain<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="se.sagres@zemog.saira.leunam" class="oemail">se.sagres@zemog.saira.leunam</a></div></div></div><div class="contrib half_rhythm"><span itemprop="author">Beatriz Quint&#x000e1;ns</span>, PhD<div class="affiliation small">Neurogenetics Group<br />Instituto de Investigaci&#x000f3;n Sanitaria (IDIS)<br />Centro de Investigaci&#x000f3;n Biom&#x000e9;dica en red de Enfermedades Raras (CIBERER)<br />Santiago de Compostela, Spain<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="se.sagres@ortsac.snatniuq.zirtaeb" class="oemail">se.sagres@ortsac.snatniuq.zirtaeb</a></div></div></div><div class="contrib half_rhythm"><span itemprop="author">Mar&#x000ed;a Garc&#x000ed;a-Murias</span>, MS<div class="affiliation small">Neurogenetics Group<br />Instituto de Investigaci&#x000f3;n Sanitaria (IDIS)<br />Centro de Investigaci&#x000f3;n Biom&#x000e9;dica en red de Enfermedades Raras (CIBERER)<br />Santiago de Compostela, Spain<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="se.csu@sairum.aicrag.airam" class="oemail">se.csu@sairum.aicrag.airam</a></div></div></div><div class="contrib half_rhythm"><span itemprop="author">Maria J Sobrido</span>, MD, PhD<div class="affiliation small">Neurogenetics Group<br />Instituto de Investigaci&#x000f3;n Sanitaria (IDIS)<br />Centro de Investigaci&#x000f3;n Biom&#x000e9;dica en red de Enfermedades Raras (CIBERER)<br />Santiago de Compostela, Spain<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="ten.acinofelet@odirboss" class="oemail">ten.acinofelet@odirboss</a></div></div></div><p class="small">Initial Posting: <span itemprop="datePublished">August 7, 2014</span>.</p><p><em>Estimated reading time: 31 minutes</em></p></div><div class="body-content whole_rhythm" itemprop="text"><div id="sca36.Summary" itemprop="description"><h2 id="_sca36_Summary_">Summary</h2><p>
<b>NOTE: THIS PUBLICATION HAS BEEN RETIRED. THIS ARCHIVAL VERSION IS FOR HISTORICAL REFERENCE ONLY, AND THE INFORMATION MAY BE OUT OF DATE.</b>
</p><div><h4 class="inline">Clinical characteristics.</h4><p>Spinocerebellar ataxia type 36 (SCA36) is characterized by a late-onset, slowly progressive cerebellar syndrome typically associated with sensorineural hearing loss. Other common features are muscle atrophy and denervation, especially of the tongue, as well as pyramidal signs, thus overlapping with motor neuron disorders. Mild frontal-subcortical affective and cognitive decline may be present as the disease progresses. Brain MRI shows atrophy of the cerebellar vermis in initial stages, later evolving to a pattern of olivopontocerebellar atrophy.</p></div><div><h4 class="inline">Diagnosis/testing.</h4><p>The diagnosis is suspected based on clinical findings in the absence of primary causes of cerebellar dysfunction. It is supported by a family history consistent with autosomal dominant inheritance, which can include simplex cases (i.e., a single occurrence in a family). Confirmation of the diagnosis relies on detection of an abnormal hexanucleotide GGCCTG repeat expansion in <i>NOP56</i>. Affected individuals typically have alleles with 650 or more repeats. Such testing detects virtually 100% of affected individuals.</p></div><div><h4 class="inline">Management.</h4><p><i>Treatment of manifestations</i>: Treatment of SCA36 involves multidisciplinary specialists and focuses on routine exercise and physical therapy with attention to gait and balance, weight control, and walking aids to facilitate ambulation and mobility. Occupational therapy aids fine movement coordination; speech therapy and communication devices for those with dysarthria. Hearing loss may require hearing aids or cochlear implants, together with audiologic rehabilitation. Emotional and cognitive decline can be addressed in cognitive therapy, treatment of depression, and psychological support. Living space may need to be adapted to help with accessibility.</p><p><i>Prevention of secondary complications</i>: Dietary assessment and feeding therapy programs can improve dysphagia and reduce the risk of aspiration.</p><p><i>Surveillance</i>: At least annual evaluation by a neurologist or more frequently if manifestations are progressing. Annual or biannual evaluation by an otolaryngologist to monitor possible hearing loss. Surveillance of speech and ambulation.</p><p><i>Agents/circumstances to avoid</i>: Alcohol and medications known to affect cerebellar function, as well as those affecting the inner auditory function. Avoidance of acoustic trauma (e.g., use of headphones, noisy environments).</p></div><div><h4 class="inline">Genetic counseling.</h4><p>SCA36 is inherited in an autosomal dominant manner. Penetrance is complete, although age-dependent. Offspring of affected individuals have a 50% chance of inheriting the <i>NOP56</i> pathogenic variant. Prenatal testing is possible for pregnancies at increased risk if the pathogenic variant has been identified in an affected family member.</p></div></div><div id="sca36.Diagnosis"><h2 id="_sca36_Diagnosis_">Diagnosis</h2><div id="sca36.Suggestive_Findings"><h3>Suggestive Findings</h3><p>The clinical suspicion of spinocerebellar ataxia type 36 (SCA36) is based on the presence of the following nonspecific findings:</p><ul><li class="half_rhythm"><div class="half_rhythm">Midline cerebellar ataxia of late onset (usually between ages 40 and 60 years) and slow progression</div></li><li class="half_rhythm"><div class="half_rhythm">Dysarthria and appendicular ataxia generally following the gait imbalance</div></li><li class="half_rhythm"><div class="half_rhythm">Slowly progressive sensorineural hearing loss (SNHL) with onset usually a few years after the cerebellar manifestations</div><ul><li class="half_rhythm"><div>A drop of &#x02265;40 dB in frequencies beyond 2500 Hz can be recorded through pure tonal audiometry.</div></li><li class="half_rhythm"><div>Brain stem auditory evoked potentials are characterized by absence or reduced amplitude of waves I and II, consistent with a sensorineural hearing loss [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.ikeda.2013.109">Ikeda et al 2013</a>].</div></li></ul></li><li class="half_rhythm"><div class="half_rhythm">Tongue atrophy and fasciculations, additional signs of motor neuron degeneration in some cases [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.ikeda.2012.333">Ikeda et al 2012</a>].</div><div class="half_rhythm">Note: Peripheral nerve conduction velocities, both motor and sensory, are usually within normal range. Somatosensory evoked potentials may show mild abnormalities after stimulation in the lower limbs [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>].</div></li><li class="half_rhythm"><div class="half_rhythm">Other clinical features variably present: gaze-evoked nystagmus, eyelid ptosis, decreased vibration sense, and cognitive impairment</div></li><li class="half_rhythm"><div class="half_rhythm">On brain MRI: atrophy of the superior vermis in initial stages, global cerebellar atrophy in intermediate stages, and olivopontocerebellar atrophy in advanced stages</div><ul><li class="half_rhythm"><div>Cerebellar atrophy is a constant finding, usually starting in the upper vermis and progressing to the hemispheres.</div></li><li class="half_rhythm"><div>Involvement of the pons and medulla with subcortical atrophy and dilatation of the fourth ventricle is present later on with a pattern of olivopontocerebellar degeneration; however, the "cross sign" brain stem T<sub>2</sub>-weighted signal characteristic of other neurodegenerative diseases was not observed in SCA36.</div></li><li class="half_rhythm"><div>White matter abnormalities are generally not a feature of this disease.</div></li><li class="half_rhythm"><div>Cortical brain atrophy (especially of frontal areas) may be seen in advanced cases [<a class="bk_pop" href="#sca36.REF.abe.2012.1070">Abe et al 2012</a>, <a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.ikeda.2012.333">Ikeda et al 2012</a>].</div></li></ul></li><li class="half_rhythm"><div class="half_rhythm">Family history consistent with autosomal dominant inheritance. Of note, the disease may not be recognized in previous generations because of late onset and/or mild manifestations. Thus, SCA36 should also be considered in simplex cases (i.e., single occurrence in a family) with undiagnosed ataxia, especially in geographic regions where families with SCA36 have been observed (see <a href="#sca36.Prevalence">Prevalence</a>) [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.sugihara.2012.1158">Sugihara et al 2012</a>].</div></li></ul></div><div id="sca36.Establishing_the_Diagnosis"><h3>Establishing the Diagnosis</h3><p>To establish the diagnosis of SCA36 in a proband requires identification of a <b>pathogenic (full-penetrance)</b> 6-bp (GGCCTG)n repeat located in intron 1 of <i>NOP56</i>. See <a href="/books/NBK231880/table/sca36.T.molecular_genetic_testing_used_i/?report=objectonly" target="object" rid-ob="figobsca36Tmoleculargenetictestingusedi">Table 1</a>.</p><p>
<b>Allele sizes</b>
</p><ul><li class="half_rhythm"><div><b>Normal alleles.</b> 3-14 GGCCTG repeats. Only a few population screenings have been published to date. The following may be a population-specific difference, but could also reflect different genotyping protocols.</div><ul><li class="half_rhythm"><div>The number of GGCCTG repeats varies from three to 14, with the nine-repeat allele being the most frequent in persons of northern European background [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.sarto.2013">Sarto et al 2013</a>, <a class="bk_pop" href="#sca36.REF.figley.2014.936.e1">Figley et al 2014</a>].</div></li><li class="half_rhythm"><div><a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al [2011]</a> reported a normal allele size of three to eight repeats in Japanese controls.</div></li></ul></li><li class="half_rhythm"><div><b>Alleles of uncertain significance.</b> Whether alleles of 15 to 650 repeats are large normal, expansion-prone, or pathogenic needs to be elucidated.</div></li><li class="half_rhythm"><div><b>Pathogenic (full-penetrance) alleles.</b> 650 or more GGCCTG repeats. The largest pathogenic alleles reported to date are estimated to comprise about 2500 hexanucleotide repeats [<a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al 2011</a>, <a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>].</div></li></ul><div id="sca36.Molecular_Genetic_Testing"><h4>Molecular Genetic Testing</h4><p>Molecular genetic testing is performed as targeted analysis for pathogenic variants to determine the number of GGCCTG hexanucleotide repeats (see <a href="#sca36.Molecular_Genetics">Molecular Genetics</a> for details).</p><ul><li class="half_rhythm"><div><b>Normal alleles</b> are detected by conventional PCR with primers flanking the GGCCTG repeat region.</div><ul><li class="half_rhythm"><div>The presence of two normal-sized <i>NOP56</i> alleles rules out the diagnosis of SCA36.</div></li><li class="half_rhythm"><div>If only one allele is detected, additional testing by repeat-primed PCR (RP-PCR) is required to determine if a second <i>NOP56</i> allele that is too large to detect by this method is present.</div></li></ul></li><li class="half_rhythm"><div><b>Pathogenic full-penetrance alleles</b> are detected by RP-PCR analysis specific for the GGCCTG hexanucleotide sequence.</div><ul><li class="half_rhythm"><div>The diagnosis of SCA36 is ruled out if one allele is detected by conventional PCR and RP-PCR does not detect an expanded allele.</div></li><li class="half_rhythm"><div>Although RP-PCR is highly sensitive, it does not determine the number of GGCCTG repeats [<a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al 2011</a>]. Southern blot analysis of genomic DNA is necessary to determine the number of GGCCTG repeats in a pathogenic allele; however, exact sizing is not routinely necessary for unequivocally expanded alleles.</div></li></ul></li><li class="half_rhythm"><div><b>Alleles of uncertain significance</b> (15-650 repeats) are detected by the same two methods.</div><ul><li class="half_rhythm"><div>At the smaller end of the range (e.g., 15 to ~50 repeats) conventional PCR is appropriate.</div></li><li class="half_rhythm"><div>Larger alleles can only be detected by RP-PCR and/or Southern blot analysis of genomic DNA.</div></li></ul></li></ul><p>Note: Beyond the normal allele range, no clear clinical utility has been demonstrated to date from knowing the exact repeat number; thus, estimation of allele size by Southern blot or other methods is not performed on a routine basis.</p><div id="sca36.T.molecular_genetic_testing_used_i" class="table"><h3><span class="label">Table 1. </span></h3><div class="caption"><p>Molecular Genetic Testing Used in Spinocerebellar Ataxia Type 36</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK231880/table/sca36.T.molecular_genetic_testing_used_i/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__sca36.T.molecular_genetic_testing_used_i_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_sca36.T.molecular_genetic_testing_used_i_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Gene&#x000a0;<sup>1</sup></th><th id="hd_h_sca36.T.molecular_genetic_testing_used_i_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Method</th><th id="hd_h_sca36.T.molecular_genetic_testing_used_i_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Variants Detected</th><th id="hd_h_sca36.T.molecular_genetic_testing_used_i_1_1_1_4" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Proportion of Probands with a Pathogenic Variant Detectable by Method</th></tr></thead><tbody><tr><td headers="hd_h_sca36.T.molecular_genetic_testing_used_i_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>NOP56</i>
</td><td headers="hd_h_sca36.T.molecular_genetic_testing_used_i_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Targeted analysis for pathogenic variants&#x000a0;<sup>2,&#x000a0;3</sup></td><td headers="hd_h_sca36.T.molecular_genetic_testing_used_i_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Expanded (GGCCTG)n hexanucleotide repeats&#x000a0;<sup>4</sup></td><td headers="hd_h_sca36.T.molecular_genetic_testing_used_i_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">100%</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt>1. </dt><dd><div id="sca36.TF.1.1"><p class="no_margin">See <a href="/books/NBK231880/#sca36.molgen.TA">Table A. Genes and Databases</a> for chromosome locus and protein. See <a href="#sca36.Molecular_Genetics">Molecular Genetics</a> for information on allelic variants.</p></div></dd><dt>2. </dt><dd><div id="sca36.TF.1.2"><p class="no_margin">Conventional PCR analysis detects normal-sized alleles (3-14 GGCCTG repeats) and expanded alleles in the lower range of alleles of uncertain significance.</p></div></dd><dt>3. </dt><dd><div id="sca36.TF.1.3"><p class="no_margin">Only RP-PCR and/or Southern blot analysis of genomic DNA can detect the presence or absence of a large expanded pathogenic GGCCTG hexanucleotide repeat.</p></div></dd><dt>4. </dt><dd><div id="sca36.TF.1.4"><p class="no_margin">Pathogenic allele size is ~650 to &#x02265;&#x0223c;2500 GGCCTG repeats.</p></div></dd></dl></div></div></div></div></div></div><div id="sca36.Clinical_Characteristics"><h2 id="_sca36_Clinical_Characteristics_">Clinical Characteristics</h2><div id="sca36.Clinical_Description"><h3>Clinical Description</h3><p>The first clinical observations proposing the existence of a distinctive new type of spinocerebellar ataxia &#x02013; later designated spinocerebellar ataxia type 36 (SCA36) &#x02013; were reported independently by <a class="bk_pop" href="#sca36.REF.ohta.2007.751">Ohta et al [2007]</a> in Japan, and Arias and collaborators in families from Galicia (northwestern Spain) [<a class="bk_pop" href="#sca36.REF.arias.2008.628">Arias et al 2008</a>]. The main features of SCA36 were detailed in the Galician patients [<a class="bk_pop" href="#sca36.REF.arias.2012.41">Arias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>] as well as in Japanese families in whom the molecular defect was first reported [<a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al 2011</a>, <a class="bk_pop" href="#sca36.REF.ikeda.2012.333">Ikeda et al 2012</a>]. Further knowledge of the clinical manifestations of SCA36 came more recently with thorough characterization of additional cases from Japan, Spain, and Italy [<a class="bk_pop" href="#sca36.REF.sugihara.2012.1158">Sugihara et al 2012</a>, <a class="bk_pop" href="#sca36.REF.de_f_bregues.2013.166">de F&#x000e1;bregues et al 2013</a>, <a class="bk_pop" href="#sca36.REF.sarto.2013">Sarto et al 2013</a>].</p><p>Individuals with SCA36 present with findings of midline cerebellar ataxia around age 50 years (mean 53 years, range 29 to 65 years), followed by dysarthria, appendicular ataxia, and impaired hearing. The first symptoms noticed by affected individuals are usually imbalance and lack of stability while walking. Disease progression is slow and most affected individuals are still able to walk unaided ten years after disease onset.</p><p><b>Dysarthria,</b> present in an estimated 90% of affected individuals, is mostly ataxic in nature. However, in advanced disease the voice acquires a mixed quality with associated bulbar and/or pseudobulbar dysfunction.</p><p><b>Appendicular cerebellar signs</b> are also present in virtually all patients, manifesting as dysmetria and dysdiadochokinesis.</p><p><b>Sensorineural hearing loss (SNHL)</b> was observed in approximately 80% of affected individuals from very large Spanish kindreds, suggesting that hearing loss may be a manifestation of SCA36 [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>]. Although this was later confirmed in independent studies [<a class="bk_pop" href="#sca36.REF.ikeda.2013.109">Ikeda et al 2013</a>], SNHL appeared to be less common in other SCA36 series [<a class="bk_pop" href="#sca36.REF.sugihara.2012.1158">Sugihara et al 2012</a>].</p><p>Although the precise onset of SNHL is difficult to establish, hearing deficit is generally noticed by the affected individuals within a decade following gait imbalance. In a few cases, hearing loss may appear before cerebellar symptoms, possibly as a result of additional environmental factors (e.g., acoustic trauma).</p><p>The hearing loss typically evolves slowly, from mild to moderate deficit by the sixth to seventh decades of life. In later stages of the disease, hearing loss can be severe, causing a severe disability in verbal communication. <a class="bk_pop" href="#sca36.REF.ikeda.2013.109">Ikeda et al [2013]</a> found a statistically significant correlation between severity of hearing loss and SARA (Scale for the Assessment and Rating of Cerebellar Ataxia) score and the number of years since the onset of disease manifestations.</p><p><b>Nystagmus and/or abnormality of horizontal saccades</b> are present in roughly 50% of persons with SCA36. Approximately 10% have ptosis. Vertical and lateral gaze limitation can also be present [<a class="bk_pop" href="#sca36.REF.ohta.2007.751">Ohta et al 2007</a>].</p><p><b>Motor neuron degeneration,</b> including both upper and lower motor neuron involvement, is common. Tongue atrophy and fasciculations were observed in up to 60%-70% of individuals in some series [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.ikeda.2012.333">Ikeda et al 2012</a>]. Mild or moderate neurogenic dysphagia, mostly for liquids, may be evident, usually in later stages. More prominent bulbar signs have been noticed in some individuals [<a class="bk_pop" href="#sca36.REF.ohta.2007.751">Ohta et al 2007</a>]. The eventual need for nasogastric or percutaneous feeding is extremely rare, and may be considered in some patients with very advanced disease. This is consistent with the fact that upper neuron involvement (which generally leads to less severe manifestations than lower motor neuron involvement) is more likely the cause of bulbar signs in SCA36 than lower neuron involvement [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.sugihara.2012.1158">Sugihara et al 2012</a>].</p><p>Significant atrophy and fasciculations affecting skeletal muscle of the trunk and limbs were reported in some families from Japan [<a class="bk_pop" href="#sca36.REF.ikeda.2012.333">Ikeda et al 2012</a>]; however, these findings were not evident upon evaluation of other cases [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.sugihara.2012.1158">Sugihara et al 2012</a>].</p><p>Upper motor neuron (pyramidal) features commonly include hyperreflexia and Babinski sign whereas significant weakness and spasticity (velocity-dependent resistance to passive muscle stretch) are rare.</p><p><b>Cognitive decline</b> is usually mild to moderate and has a predominant frontal-dysexecutive pattern.</p><p><b>Mood changes</b> including apathy or depression may also be present.</p><p><b>Other.</b> Sensory disturbance, dysautonomia, and extrapyramidal features were not described in the largest published series of SCA36 and, thus, appear to be rare [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.ikeda.2012.333">Ikeda et al 2012</a>, <a class="bk_pop" href="#sca36.REF.sugihara.2012.1158">Sugihara et al 2012</a>]; however, in rare cases dystonia and parkinsonism have been reported [<a class="bk_pop" href="#sca36.REF.miyashiro.2013.558">Miyashiro et al 2013</a>, <a class="bk_pop" href="#sca36.REF.de_f_bregues.2013.166">de F&#x000e1;bregues et al 2013</a>].</p><p><b>Functional brain imaging.</b> Single photon emission tomography 99mTc-ECD-SPECT studies obtained in a few patients demonstrated cerebellar hypoperfusion in early stages, as well as decline of cortical blood flow in more advanced stages, especially in frontal regions [<a class="bk_pop" href="#sca36.REF.abe.2012.1070">Abe et al 2012</a>].</p><p><b>Histopathology.</b> Cell loss is observed in the Purkinje layer and dentate nucleus in the cerebellum. Reduced neuronal density is observed in the hypoglossal nucleus and anterior horn of the cervical spinal cord. Bunina-type eosinophilic cytoplasmic inclusions in the motor neurons (as seen in amyotrophic lateral sclerosis) were not detected [<a class="bk_pop" href="#sca36.REF.ikeda.2012.333">Ikeda et al 2012</a>].</p></div><div id="sca36.GenotypePhenotype_Correlations"><h3>Genotype-Phenotype Correlations</h3><p><b>Probands.</b> Typically, individuals with the <i>NOP56</i> GGCCTG hexanucleotide repeat expansion present a late-onset cerebellar syndrome with or without some additional features (see <a href="#sca36.Clinical_Description">Natural History</a>). Based on the estimated 100 cases reported so far, SCA36 shows a rather characteristic phenotype with limited variability in its clinical presentation.</p><p>Although a tendency to show earlier and more severe symptoms has been observed in individuals with larger hexanucleotide repeat expansions, no statistically significant correlation has been demonstrated to date with:</p><ul><li class="half_rhythm"><div>Allele size and age at onset [<a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al 2011</a>, <a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>];</div></li><li class="half_rhythm"><div>SARA (Scale for the Assessment and Rating of Cerebellar Ataxia) score [<a class="bk_pop" href="#sca36.REF.ikeda.2012.333">Ikeda et al 2012</a>];</div></li><li class="half_rhythm"><div>Cognitive or affective impairment [<a class="bk_pop" href="#sca36.REF.abe.2012.1070">Abe et al 2012</a>].</div></li></ul><p>For more information see Molecular Genetics, <a href="#sca36.Molecular_Pathogenesis">Molecular Pathogenesis</a>.</p><p><b>At-risk individuals.</b> The age of onset, severity, specific symptoms, and progression of the disease vary and cannot be predicted by family history or <i>NOP56</i> GGCCTG hexanucleotide repeat size.</p></div><div id="sca36.Penetrance"><h3>Penetrance</h3><p>From the families reported to date, penetrance of an <i>NOP56</i> GGCCTG hexanucleotide pathogenic allele appears to be complete but age dependent. Although the first manifestations of SCA36 typically appear roughly between age 45 and 55 years, the range may be as broad as age 30 to 65 years.</p><p><a class="bk_pop" href="#sca36.REF.sugihara.2012.1158">Sugihara et al [2012]</a> identified the <i>NOP56</i> expansion among some simplex cases of ataxia (i.e., single occurrence in a family), and suggested this observation might be explained by reduced penetrance of a pathogenic allele. On the other hand, the <i>NOP56</i> expansion was not detected in any general population controls from different studies, including 300 individuals from Japan [<a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al 2011</a>] and 234 from Spain [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>].</p><p>Some individuals with SCA36 have reported that their parents lived to a very advanced age without signs of the disease [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>]. Although this observation could be explained by anticipation or reduced penetrance, retrospective clinical data from deceased individuals must be interpreted cautiously. Thus, further investigations of multigenerational kindreds with SCA36 are needed in order to address the issue of disease penetrance.</p></div><div id="sca36.Anticipation"><h3>Anticipation</h3><p>A characteristic of many neurodegenerative disorders caused by abnormal expansion of a nucleotide repeat sequence is genetic anticipation (i.e., an increase in severity and earlier onset of disease manifestations in successive generations). Statistically significant evidence of anticipation in SCA36 was not observed in the few large families with SCA36 in which parent-offspring data were available [<a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al 2011</a>, <a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.ikeda.2012.333">Ikeda et al 2012</a>]. Although a slightly lower mean age of onset in successive generations (52.4 years versus 56.3 years) was reported in one kindred [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>], increased awareness could also have been a confounding factor.</p></div><div id="sca36.Nomenclature"><h3>Nomenclature</h3><p>When <a class="bk_pop" href="#sca36.REF.arias.2008.628">Arias et al [2008]</a> described a large number of affected individuals from Galicia and suggested it was a new type of ataxia (subsequently identified as SCA36) they referred to the disease as "Costa da Morte ataxia" after the toponym of that Atlantic region.</p><p>Similarly, since many Japanese with SCA36 lived in the western Japan region of Chugoku near the Asida river the authors named this disease "Asidan ataxia" [<a class="bk_pop" href="#sca36.REF.abe.2012.1070">Abe et al 2012</a>, <a class="bk_pop" href="#sca36.REF.ikeda.2013.109">Ikeda et al 2013</a>].</p></div><div id="sca36.Prevalence"><h3>Prevalence</h3><p>The prevalence of spinocerebellar ataxia types varies among different countries. In general, <a href="/books/n/gene/sca3/">SCA3</a> is the most frequent SCA worldwide [<a class="bk_pop" href="#sca36.REF.sequeiros.2011">Sequeiros et al 2011</a>], while <a href="/books/n/gene/sca10/">SCA10</a> is more prevalent in Mexico [<a class="bk_pop" href="#sca36.REF.matsuura.2002.983">Matsuura et al 2002</a>] and <a href="/books/n/gene/sca7/">SCA7</a> is the most common SCA in Scandinavia [<a class="bk_pop" href="#sca36.REF.johansson.1998.171">Johansson et al 1998</a>]. The few available studies from Spain showed a similar frequency (between 15% and 30%) for <a href="/books/n/gene/sca2/">SCA2</a> and SCA3 among the autosomal dominant spinocerebellar ataxias [<a class="bk_pop" href="#sca36.REF.pujana.1999.516">Pujana et al 1999</a>, <a class="bk_pop" href="#sca36.REF.infante.2005.391">Infante et al 2005</a>].</p><p>Fewer than 100 families with SCA36 have been reported to date and studies specifically designed to investigate the prevalence of SCA36 have not been performed. The prevalence of SCA36 appears to vary among different countries, with possible regional clusters of affected families.</p><p><b>In northwestern Spain</b> (Galicia), SCA36 was the most frequent spinocerebellar ataxia, representing 6.3% of unselected persons with adult-onset ataxia, followed by SCA2 with 4.4%, whereas fewer than 2% had <a href="/books/n/gene/sca1/">SCA1</a>, SCA3, or SCA7. The frequency of SCA36 was as high as 21.3% when only strictly selected index cases were considered with a spinocerebellar syndrome and definitive autosomal dominant inheritance [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>]; however, an overestimation is possible, given the strict ascertainment criteria.</p><p>This prevalence is especially relevant for South America, given the long history of Galician emigration to Latin American countries. In fact, family members from the kindreds studied by <a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al [2012]</a> had emigrated to Argentina, Uruguay, Chile, and Mexico.</p><p>Persons with SCA36 were reported only anecdotally in Spanish regions other than Galicia. The authors are aware of at least three unrelated affected individuals from other areas of Spain, including the individual reported by <a class="bk_pop" href="#sca36.REF.de_f_bregues.2013.166">de F&#x000e1;bregues et al [2013]</a> and as yet unpublished cases [Authors, personal observation]. Whether or not any ancestral relationship exists between these individuals is as yet unknown.</p><p><b>In Japan</b> the frequency of SCA36 found by different authors varied from 0.6% to 3.6% of the spinocerebellar ataxias, depending on whether all individuals with SCA or only those with autosomal dominant SCA were considered [<a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al 2011</a>, <a class="bk_pop" href="#sca36.REF.sugihara.2012.1158">Sugihara et al 2012</a>]. Thus, among Japanese with ataxia, SCA36 has a relatively low frequency, far below that for <a href="/books/n/gene/sca6/">SCA6</a> (&#x0223c;14%), SCA3 (&#x0223c;11%), SCA31 (8%-17%), and <a href="/books/n/gene/drpla/">DRPLA</a> (&#x0223c;5%), and also lower than other SCA types [<a class="bk_pop" href="#sca36.REF.sakai.2010.409">Sakai et al 2010</a>, <a class="bk_pop" href="#sca36.REF.sugihara.2012.1158">Sugihara et al 2012</a>] (see <a href="/books/n/gene/ataxias/">Hereditary Ataxia Overview</a>).</p><p>
<b>In other countries</b>
</p><ul><li class="half_rhythm"><div><b>UK.</b> Screening of 269 individuals with inherited ataxia from the UK without mutation of the other commonly tested genes causing SCA failed to identifiy the <i>NOP56</i> expansion that causes SCA36 [<a class="bk_pop" href="#sca36.REF.hersheson.2012.s183">Hersheson et al 2012</a>].</div></li><li class="half_rhythm"><div><b>Portugal.</b> Interestingly (given the geographic vicinity to Galicia) no individuals with the GGCCTG <i>NOP56</i> expansion were observed among some 100 Portuguese families with ataxia who did not have an established molecular diagnosis [<a class="bk_pop" href="#sca36.REF.loureiro.2013">Loureiro et al 2013</a>].</div></li><li class="half_rhythm"><div><b>Italy.</b>
<a class="bk_pop" href="#sca36.REF.sarto.2013">Sarto et al [2013]</a> found that SCA36 accounts for an estimated 3% of families with autosomal dominant ataxia who do not have mutation of the other commonly tested SCA-related genes.</div></li><li class="half_rhythm"><div><b>Poland.</b> Five families with SCA36 were identified [<a class="bk_pop" href="#sca36.REF.sulek.2013">Sulek et al 2013</a>].</div></li></ul><p>In summary, the worldwide distribution of SCA36 is still largely unknown. Most families reported to date come either from northwestern Spain or from western Japan, with some possible clusters in other regions such as Italy or Poland, while virtually no cases were observed to date in other countries.</p></div></div><div id="sca36.Genetically_Related_Allelic_Disord"><h2 id="_sca36_Genetically_Related_Allelic_Disord_">Genetically Related (Allelic) Disorders</h2><p>No phenotypes other than those discussed in this <i>GeneReview</i> are known to be associated with mutation of <i>NOP56</i>.</p></div><div id="sca36.Differential_Diagnosis"><h2 id="_sca36_Differential_Diagnosis_">Differential Diagnosis</h2><p>Given its spectrum of cerebellar and non-cerebellar clinical manifestations, spinocerebellar ataxia type 36 (SCA36) needs to be considered in the differential diagnosis of a range of disorders.</p><p>
<b>Hereditary ataxias</b>
</p><ul><li class="half_rhythm"><div class="half_rhythm"><b>Autosomal dominant spinocerebellar ataxias.</b> SCA36 should be considered among the cerebellar-plus SCAs (Harding ADCA type I), which include <a href="/books/n/gene/sca1/">SCA1</a>, <a href="/books/n/gene/sca2/">SCA2</a>, and <a href="/books/n/gene/sca3/">SCA3</a>. However, unlike other ataxias in this group SCA36 does not generally affect life expectancy.</div><div class="half_rhythm">In its initial stages SCA36 is more reminiscent of the pure cerebellar SCAs (ADCA type III), including SCA5, <a href="/books/n/gene/sca6/">SCA6</a>, <a href="/books/n/gene/sca11/">SCA11</a>, SCA26, SCA30, and SCA31, which should, therefore, be taken into account, especially in geographic areas where SCA36 has not been reported.</div><div class="half_rhythm">The age of symptom onset of most of the SCAs included in ADCA type III is younger than that of SCA36 [<a class="bk_pop" href="#sca36.REF.sch_ls.2004.291">Sch&#x000f6;ls et al 2004</a>].</div><div class="half_rhythm">Although sensorineural hearing loss (SNHL) is a cardinal feature of SCA36, it is not specific as it has also been reported in SCA31 [<a class="bk_pop" href="#sca36.REF.owada.2005.629">Owada et al 2005</a>], and can be present in other SCAs as well [<a class="bk_pop" href="#sca36.REF.hoche.2008.479">Hoche et al 2008</a>, <a class="bk_pop" href="#sca36.REF.ikeda.2011.427">Ikeda et al 2011</a>].</div></li><li class="half_rhythm"><div class="half_rhythm"><b>Late-onset autosomal recessive cerebellar ataxias.</b> Several typically early-onset ataxias can sometimes present later in life, including <a href="/books/n/gene/friedreich/">Friedreich ataxia</a> (FRDA), <a href="/books/n/gene/aoa/">ataxia with oculomotor apraxia type 1</a> and <a href="/books/n/gene/aoa2/">type 2</a>, <a href="/books/n/gene/ataxia-telangiectas/">ataxia-telangiectasia</a>, <a href="/books/n/gene/arsacs/">autosomal recessive spastic ataxia of Charlevoix-Saguenay</a> (ARSACS), and <a href="/books/n/gene/ctx/">cerebrotendinous xanthomatosis</a>.</div><div class="half_rhythm">Although the autosomal recessive ataxias often have associated peripheral neuropathy, these disorders can also have pyramidal signs [<a class="bk_pop" href="#sca36.REF.fogel.2007.245">Fogel &#x00026; Perlman 2007</a>]. While this is especially true for the spastic ataxias, late-onset FRDA can also include spasticity [<a class="bk_pop" href="#sca36.REF.berciano.2002.75">Berciano et al 2002</a>].</div><div class="half_rhythm">As in SCA36, Friedreich ataxia can also include abnormal central auditory pathways [<a class="bk_pop" href="#sca36.REF.rance.2008.2002">Rance et al 2008</a>].</div></li><li class="half_rhythm"><div class="half_rhythm"><b>X-linked ataxias.</b> Fragile X-associated tremor/ataxia syndrome (FXTAS; see <a href="/books/n/gene/fragilex/"><i>FMR1</i>-related disorders</a>) is another late-onset ataxia that can clinically resemble SCA36. Brain MRI (T<sub>2</sub>-weighted sequences) shows a characteristic hyperintense signal in the middle cerebellar peduncles not observed in SCA36 [<a class="bk_pop" href="#sca36.REF.berrykravis.2007.2018">Berry-Kravis et al 2007</a>].</div></li></ul><p>See also <a href="/books/n/gene/ataxias/">Hereditary Ataxia Overview</a> and <a href="http://www.omim.org/phenotypicSeries/PS164400" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Spinocerebellar ataxia: OMIM Phenotypic Series</a> to view genes associated with this phenotype in OMIM.</p><p><b>Non-genetic ataxias.</b> The differential diagnosis of a simplex case of SCA36 (i.e., a single occurrence in a family) is very broad and includes late-onset ataxias of diverse etiology including: toxic (alcohol, drugs), metabolic (vitamin E deficiency, Wernicke encephalopathy), paraneoplastic, and immune (Miller-Fisher syndrome, Bickerstaff encephalopathy, anti-GAD and other antibody-mediated syndromes, <a href="/books/n/gene/celiac/">gluten ataxia</a>). An acute or subacute onset and appropriate clinical context (e.g., known tumor, chronic intestinal disease), together with characteristic neuroimaging and/or cerebrospinal fluid findings are helpful diagnostic clues.</p><p><b>Mitochondrial cytopathies.</b> Since hearing loss is also a common associated feature in mitochondrial cytopathies, these diseases must be considered in the differential diagnosis of ataxia with deafness (see <a href="/books/n/gene/mt-overview/">Mitochondrial Disease Overview</a>). For example, cerebellar signs, hearing impairment, and ophthalmoplegia are within the phenotype spectrum of <a href="/books/n/gene/alpers/"><i>POLG</i>-associated disorders</a> [<a class="bk_pop" href="#sca36.REF.horvath.2006.1674">Horvath et al 2006</a>]. Compared to SCA36, mitochondrial disorders usually show multisystem involvement as well as a broad intrafamilial range in age of onset and clinical manifestations.</p><p><b>Motor neuron diseases.</b> While tongue fasciculations and atrophy are core features in SCA36, significant signs of lower motor neuron involvement in other muscles are less frequently observed. Thus, SCA36 is unlikely when lower motor neuron involvement is the unique or main manifestation. Consistent with this, no instances of expansion of the <i>NOP56</i> GGCCTG hexanucleotide repeat were identified in the 154 individuals with <a href="/books/n/gene/als-overview/">amyotrophic lateral sclerosis</a> (ALS) studied by <a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al [2011]</a>, or in a larger panel of 352 persons with ALS [<a class="bk_pop" href="#sca36.REF.figley.2014.936.e1">Figley et al 2014</a>].</p><p>Likewise, no <i>NOP56</i> pathogenic expansions were identified in 214 Spanish individuals with <a href="/books/n/gene/hsp/">spastic paraplegia</a>, another group of disorders affecting the upper motor neurons [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>].</p><p>Degeneration of bulbospinal motor neurons has also been reported in <a href="/books/n/gene/drpla/">DRPLA</a> [<a class="bk_pop" href="#sca36.REF.sch_ls.2004.291">Sch&#x000f6;ls et al 2004</a>] and in <a href="/books/n/gene/sca2/">SCA2</a> [<a class="bk_pop" href="#sca36.REF.nanetti.2009.1926">Nanetti et al 2009</a>].</p><p><i>C9orf72-</i>associated neurodegeneration (caused by an intronic hexanucleotide expansion) has a broad phenotypic spectrum, and appears to be the most frequent genetic cause of ALS and frontotemporal dementia (FTD). It can also include cerebellar manifestations [<a class="bk_pop" href="#sca36.REF.fogel.2012.1832">Fogel et al 2012</a>, <a class="bk_pop" href="#sca36.REF.cooperknock.2014.333">Cooper-Knock et al 2014</a>], and thus should be considered in the differential diagnosis of individuals who are in the advanced stage of SCA36. See <a href="/books/n/gene/als-ftd/"><i>C9orf72</i>-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia</a>.</p><p><b>Multiple system atrophy, cerebellar type (MSA-C).</b> The cerebellar form of multiple system atrophy (MSA-C) shares clinical similarities with SCA36 in its initial stages. However, other manifestations typical of MSA (dysautonomia, parkinsonism) do not occur or are very uncommon in SCA36 [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>].</p></div><div id="sca36.Management"><h2 id="_sca36_Management_">Management</h2><div id="sca36.Evaluations_Following_Initial_Diag"><h3>Evaluations Following Initial Diagnosis</h3><p>To establish the extent of disease and needs in an individual diagnosed with spinocerebellar ataxia type 36 (SCA36) the following evaluations are recommended:</p><ul><li class="half_rhythm"><div>Neurologic examination with appropriate scoring protocols:</div><ul><li class="half_rhythm"><div>SARA (Scale for the Assessment and Rating of Cerebellar Ataxia) is used to monitor disease severity.</div></li><li class="half_rhythm"><div>The mini-mental state examination (MMSE) may be sufficient for the initial neurologic check-up; however, other cognitive tests more specifically directed to evaluate frontal-subcortical functions may be more appropriate as the disease progresses.</div></li></ul></li><li class="half_rhythm"><div>Examination by an otolaryngologist and audiologist, with emphasis in a comprehensive characterization of degree and anatomic level of hearing dysfunction.</div></li><li class="half_rhythm"><div>Clinical genetics consultation and genetic counseling</div></li></ul><p>Additional brain MRI is not necessary following the diagnosis of SCA36; however, it can be used for complementary follow-up evaluation.</p></div><div id="sca36.Treatment_of_Manifestations"><h3>Treatment of Manifestations</h3><p>Specific treatment for SCA36 is currently not available. The therapeutic approach should be multidisciplinary and include the following:</p><ul><li class="half_rhythm"><div>Physical and occupational therapy to improve gait, balance, and fine motor coordination. Special attention should be paid to activities of daily life.</div></li><li class="half_rhythm"><div>Regular physical exercise and weight control to reduce the effect of future balance and walking problems</div></li><li class="half_rhythm"><div>Walking aids to facilitate ambulation and mobility. The use of a wheelchair is rare; however, it may be necessary in advanced disease stages. Living space may need to be adapted to help with accessibility.</div></li><li class="half_rhythm"><div>Speech therapy and communication devices for those with dysarthria</div></li><li class="half_rhythm"><div>Dietary assessment and feeding therapy programs to improve dysphagia and reduce the risk of aspiration</div></li><li class="half_rhythm"><div>Depending on the severity of hearing loss and the relative impairment at different levels of the auditory tract, consideration of hearing aids on a case by case basis. The utility of cochlear implants in SCA36 is unknown; however, they have been proposed for central auditory impairment in other neurodegenerative ataxias [<a class="bk_pop" href="#sca36.REF.frewin.2013.287">Frewin et al 2013</a>]. Audiologic rehabilitation and speech therapy can help improve the ability to distinguish words and speech patterns from background sounds, while also taking into account the dysarthria in the therapy program.</div></li><li class="half_rhythm"><div>Management of emotional and cognitive decline through cognitive therapy, treatment of depression, and psychological support.</div></li></ul></div><div id="sca36.Surveillance"><h3>Surveillance</h3><p>The following routine monitoring is recommended after a diagnosis of SCA36 has been confirmed.</p><ul><li class="half_rhythm"><div>At least annual evaluation by a neurologist or more frequently if symptoms are progressing</div></li><li class="half_rhythm"><div>Annual or biannual evaluation by an otolaryngologist to detect or monitor hearing loss</div></li><li class="half_rhythm"><div>Surveillance of speech and ambulation</div></li></ul><p>In presymptomatic individuals who tested positive for the <i>NOP56</i> expansion, it is appropriate to start surveillance of neurologic status and hearing by age 40-45 years.</p></div><div id="sca36.AgentsCircumstances_to_Avoid"><h3>Agents/Circumstances to Avoid</h3><p>Avoid the following:</p><ul><li class="half_rhythm"><div>Alcohol, as well as drugs with possible side effects on cerebellar function (e.g., phenytoin, carbamazepine, metronidazole, amiodarone, lithium), or the inner ear (e.g., salicilates)</div></li><li class="half_rhythm"><div>Environmental noise at work and in everyday life (e.g., listening to loud music or videos directly through headphones)</div></li></ul></div><div id="sca36.Evaluation_of_Relatives_at_Risk"><h3>Evaluation of Relatives at Risk</h3><p>See <a href="#sca36.Related_Genetic_Counseling_Issues">Genetic Counseling</a> for issues related to testing of at-risk relatives for genetic counseling purposes.</p></div><div id="sca36.Therapies_Under_Investigation"><h3>Therapies Under Investigation</h3><p>Search <a href="https://clinicaltrials.gov/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ClinicalTrials.gov</a> in the US and <a href="http://www.clinicaltrialsregister.eu/ctr-search/search" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">EU Clinical Trials Register</a> in Europe for access to information on clinical studies for a wide range of diseases and conditions. Note: There may not be clinical trials for this disorder.</p></div></div><div id="sca36.Genetic_Counseling"><h2 id="_sca36_Genetic_Counseling_">Genetic Counseling</h2><p>
<i>Genetic counseling is the process of providing individuals and families with
information on the nature, mode(s) of inheritance, and implications of genetic disorders to help them
make informed medical and personal decisions. The following section deals with genetic
risk assessment and the use of family history and genetic testing to clarify genetic
status for family members; it is not meant to address all personal, cultural, or
ethical issues that may arise or to substitute for consultation with a genetics
professional</i>. &#x02014;ED.</p><div id="sca36.Mode_of_Inheritance"><h3>Mode of Inheritance</h3><p>Spinocerebellar ataxia type 36 (SCA36) is inherited in an autosomal dominant manner.</p></div><div id="sca36.Risk_to_Family_Members"><h3>Risk to Family Members</h3><p>
<b>Parents of a proband</b>
</p><ul><li class="half_rhythm"><div>Most individuals diagnosed with SCA36 have an affected parent.</div></li><li class="half_rhythm"><div>A proband with SCA36 may have the disorder as the result of a <i>de novo</i> pathogenic variant. Because simplex cases (i.e., a single occurrence in a family) have not been evaluated sufficiently to determine if the pathogenic allele was <i>de novo</i>, the proportion of SCA36 caused by <i>de novo</i> pathogenic variants is unknown.</div></li><li class="half_rhythm"><div>Recommendations for the evaluation of parents of a proband with an apparent <i>de novo</i> pathogenic allele include molecular genetic testing to determine if a <i>NOP56</i> GGCCTG hexanucleotide expansion is present. Evaluation of parents may determine that one is affected but has escaped previous diagnosis because of a milder phenotypic presentation and/or lack of recognition of symptoms of cerebellar disease. Therefore, an apparently negative family history cannot be confirmed until appropriate evaluations have been performed.</div></li></ul><p>Note: Although most of individuals diagnosed with SCA36 have an affected parent, the family history may appear to be negative because of failure to recognize the disorder in family members, early death of the parent before the onset of symptoms, or late onset of the disease in the affected parent.</p><p>
<b>Sibs of a proband</b>
</p><ul><li class="half_rhythm"><div>The risk to the sibs of the proband depends on the genetic status of the proband's parents.</div></li><li class="half_rhythm"><div>If a parent of the proband is affected or has a <i>NOP56</i> GGCCTG hexanucleotide repeat expansion, the risk to the sibs of inheriting the pathogenic allele is 50%.</div></li><li class="half_rhythm"><div>The sibs of a proband with clinically unaffected parents are still at increased risk for SCA36 because penetrance is age related.</div></li></ul><p><b>Offspring of a proband.</b> Each child of an individual with SCA36 has a 50% chance of inheriting the pathogenic allele. On transmission, the GGCCTG hexanucleotide expansion may be longer or shorter than the <i>NOP56</i> allele from the affected parent.</p><p><b>Other family members.</b> The risk to other family members depends on the status of the proband's parents. If a parent has a <i>NOP56</i> GGCCTG hexanucleotide repeat expansion and/or is affected, his or her family members may be at risk.</p></div><div id="sca36.Related_Genetic_Counseling_Issues"><h3>Related Genetic Counseling Issues</h3><p><b>Testing of asymptomatic adults</b> at risk for SCA36 is possible using the techniques described in <a href="#sca36.Molecular_Genetic_Testing">Molecular Genetic Testing</a>. Such testing is not useful in predicting age of onset, severity, type of symptoms, or rate of progression in asymptomatic individuals. When testing at-risk individuals for SCA36, an affected family member should be tested first to confirm the molecular diagnosis of SCA36 in the family.</p><p>Testing for the <i>NOP56</i> GGCCTG expansion repeat pathogenic allele in the absence of definite symptoms of the disease is predictive testing. At-risk asymptomatic adult family members may seek testing in order to make personal decisions regarding reproduction, lifestyle, financial matters, and occupation or career planning. Others may have different motivations including simply "the need to know."</p><p>Testing of asymptomatic at-risk adult family members usually involves pretest interviews in which the motives for requesting the test, the individual's knowledge of SCA36, the possible impact of positive and negative test results, and neurologic status are assessed. Those seeking testing should be counseled about possible problems that they may encounter with regard to health, life, and disability insurance coverage, employment and educational discrimination, and changes in social and family interaction. Another issue to consider is the implications for the at-risk status of other family members. Informed consent should be procured and records kept confidential. Individuals with a positive test result need arrangements for long-term follow-up and genetic counseling.</p><p><b>Testing of at-risk asymptomatic individuals younger than age 18 years.</b> Consensus holds that individuals younger than age 18 years at risk for adult-onset disorders should not have testing in the absence of symptoms. The principal arguments against such testing are that it removes the individual's choice to know or not know this information, it raises the possibility of stigmatization within the family and in other social settings, and it could have serious educational and career implications.</p><p><b>Considerations in families with an apparent <i>de novo</i> pathogenic variant.</b> When neither parent of an individual with SCA36 has a pathogenic <i>NOP56</i> GGCCTG hexanucleotide repeat expansion or clinical evidence of the disorder beyond age 60 years, it is possible that the pathogenic variant is <i>de novo</i>. The possibility that a normal- or near-normal-sized <i>NOP56</i> allele had expanded to a full mutation cannot be ruled out based on current knowledge. Possible non-medical explanations including alternate paternity or maternity (e.g., with assisted reproduction) or undisclosed adoption could also be explored.</p><p>
<b>Family planning</b>
</p><ul><li class="half_rhythm"><div>The optimal time for determination of genetic risk and discussion of the availability of prenatal/preimplantation genetic testing is before pregnancy.</div></li><li class="half_rhythm"><div>It is appropriate to offer genetic counseling (including discussion of potential risks to offspring and reproductive options) to young adults who are affected or at risk.</div></li></ul><p><b>DNA banking</b> is the storage of DNA (typically extracted from white blood cells) for possible future use. Because it is likely that testing methodology and our understanding of genes, allelic variants, and diseases will improve in the future, consideration should be given to banking DNA of affected individuals.</p></div><div id="sca36.Prenatal_Testing_and_Preimplantati"><h3>Prenatal Testing and Preimplantation Genetic Testing</h3><p>Once a <i>NOP56</i> GGCCTG hexanucleotide repeat expansion has been identified in an affected family member, prenatal testing for a pregnancy at increased risk and preimplantation genetic testing are possible.</p></div></div><div id="sca36.Resources"><h2 id="_sca36_Resources_">Resources</h2><p>
<i>GeneReviews staff has selected the following disease-specific and/or umbrella
support organizations and/or registries for the benefit of individuals with this disorder
and their families. GeneReviews is not responsible for the information provided by other
organizations. For information on selection criteria, click <a href="/books/n/gene/app4/">here</a>.</i></p>
<ul><li class="half_rhythm"><div>
<b>Ataxia UK</b>
</div><div>United Kingdom</div><div><b>Phone:</b> 0800 995 6037; +44 (0) 20 7582 1444 (from abroad)</div><div><b>Email:</b> help@ataxia.org.uk</div><div>
<a href="https://www.ataxia.org.uk" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ataxia.org.uk</a>
</div></li><li class="half_rhythm"><div>
<b>euro-ATAXIA (European Federation of Hereditary Ataxias)</b>
</div><div>United Kingdom</div><div><b>Email:</b> ageorgousis@ataxia.org.uk</div><div>
<a href="https://www.euroataxia.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">euroataxia.org</a>
</div></li><li class="half_rhythm"><div>
<b>Galician Ataxia Association (AGA)</b>
</div><div>Centro Municipal Asociativo &#x0201c;Domingo Garc&#x000ed;a Sabell&#x0201d;</div><div>Plaza Esteban Lareo, Bloque 17, S&#x000f3;tano</div><div>15008 La Coru&#x000f1;a </div><div>Spain</div><div><b>Phone:</b> 34 981 24 09 85</div><div><b>Email:</b> ataxias.galicia@gmail.com</div></li><li class="half_rhythm"><div>
<b>National Ataxia Foundation</b>
</div><div><b>Phone:</b> 763-553-0020</div><div><b>Email:</b> naf@ataxia.org</div><div>
<a href="https://www.ataxia.org" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ataxia.org</a>
</div></li><li class="half_rhythm"><div>
<b>NCBI Genes and Disease</b>
</div><div>
<a href="https://www.ncbi.nlm.nih.gov/books/NBK22234/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Spinocerebellar ataxia</a>
</div></li><li class="half_rhythm"><div>
<b>Spanish Ataxia Federation (FEDAES)</b>
</div><div>Spain</div><div><b>Phone:</b> 601 037 982</div><div><b>Email:</b> info@fedaes.org</div><div>
<a href="https://fedaes.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">fedaes.org</a>
</div></li><li class="half_rhythm"><div>
<b>CoRDS Registry</b>
</div><div>Sanford Research</div><div><b>Phone:</b> 605-312-6300</div><div>
<a href="https://research.sanfordhealth.org/rare-disease-registry" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CoRDS Registry</a>
</div></li></ul>
</div><div id="sca36.Molecular_Genetics"><h2 id="_sca36_Molecular_Genetics_">Molecular Genetics</h2><p><i>Information in the Molecular Genetics and OMIM tables may differ from that elsewhere in the GeneReview: tables may contain more recent information. &#x02014;</i>ED.</p><div id="sca36.molgen.TA" class="table"><h3><span class="label">Table A.</span></h3><div class="caption"><p>Spinocerebellar Ataxia Type 36: Genes and Databases</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK231880/table/sca36.molgen.TA/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__sca36.molgen.TA_lrgtbl__"><table class="no_bottom_margin"><tbody><tr><th id="hd_b_sca36.molgen.TA_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Gene</th><th id="hd_b_sca36.molgen.TA_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">Chromosome Locus</th><th id="hd_b_sca36.molgen.TA_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Protein</th><th id="hd_b_sca36.molgen.TA_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">HGMD</th><th id="hd_b_sca36.molgen.TA_1_1_1_5" rowspan="1" colspan="1" style="vertical-align:top;">ClinVar</th></tr><tr><td headers="hd_b_sca36.molgen.TA_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="/gene/10528" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=gene">
<i>NOP56</i>
</a>
</td><td headers="hd_b_sca36.molgen.TA_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&#x00026;acc=10528" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">20p13</a>
</td><td headers="hd_b_sca36.molgen.TA_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.uniprot.org/uniprot/O00567" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Nucleolar protein 56</a>
</td><td headers="hd_b_sca36.molgen.TA_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=NOP56" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NOP56</a>
</td><td headers="hd_b_sca36.molgen.TA_1_1_1_5" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/clinvar/?term=NOP56[gene]" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NOP56</a>
</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div id="sca36.TFA.1"><p class="no_margin">Data are compiled from the following standard references: gene from
<a href="http://www.genenames.org/index.html" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">HGNC</a>;
chromosome locus from
<a href="http://www.omim.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>;
protein from <a href="http://www.uniprot.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">UniProt</a>.
For a description of databases (Locus Specific, HGMD, ClinVar) to which links are provided, click
<a href="/books/n/gene/app1/">here</a>.</p></div></dd></dl></div></div></div><div id="sca36.molgen.TB" class="table"><h3><span class="label">Table B.</span></h3><div class="caption"><p>OMIM Entries for Spinocerebellar Ataxia Type 36 (<a href="/omim/614153,614154" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">View All in OMIM</a>) </p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK231880/table/sca36.molgen.TB/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__sca36.molgen.TB_lrgtbl__"><table><tbody><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/614153" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">614153</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">SPINOCEREBELLAR ATAXIA 36; SCA36</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/614154" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">614154</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">NOP56 RIBONUCLEAR PROTEIN; NOP56</td></tr></tbody></table></div></div><div id="sca36.Molecular_Pathogenesis"><h3>Molecular Pathogenesis</h3><p>SCA36 is caused by the pathogenic expansion of a noncoding GGCCTG repeat in the first intron of <i>NOP56.</i> This gene encodes a 56-kd protein (nucleolar protein 56, Nop56p) which interacts with <i>NOP1</i> and <i>NOP58</i> to form the 60S ribosomal subunit. Nop56p belongs to the NOP5/NOP56 protein family involved in ribosomal RNA methylation and pre-rRNA processing [<a class="bk_pop" href="#sca36.REF.mckeegan.2009.4971">McKeegan et al 2009</a>]. Nop56p is necessary for Myc-induced cell transformation and is hyperactivated in oncogenesis [<a class="bk_pop" href="#sca36.REF.cowling.2014.3519">Cowling et al 2014</a>]. However, the pathogenic mechanisms of SCA36, including whether dysfunction of the Nop56 protein is actually involved, are still unknown.</p><p><a href="/books/n/gene/als-ftd/"><i>C9orf72</i> ALS/FTD syndrome</a> is also caused by a hexanucleotide repeat located in intron 1 of <i>C9orf72</i> [<a class="bk_pop" href="#sca36.REF.dejesushernandez.2011.245">DeJesus-Hernandez et al 2011</a>, <a class="bk_pop" href="#sca36.REF.renton.2011.257">Renton et al 2011</a>]. The <i>C9orf72</i> expansion, which is typically associated with lower motor neuron disease, can also cause cerebellar manifestations [<a class="bk_pop" href="#sca36.REF.sim_ns_nchez.2012.723">Sim&#x000f3;n-S&#x000e1;nchez et al 2012</a>, <a class="bk_pop" href="#sca36.REF.whitwell.2012.794">Whitwell et al 2012</a>]; however, this expansion appears to be uncommon among individuals with ataxia [<a class="bk_pop" href="#sca36.REF.fogel.2012.1832">Fogel et al 2012</a>].</p><p>The presence of a large expanded pathogenic allele does not appear to change NOP56 transcript or protein levels in cells from individuals in whom novel <i>NOP56</i> splicing variants were not detected. Diverse mechanisms leading to a toxic effect of altered RNA metabolism have been proposed for repeat expansion disorders.</p><ul><li class="half_rhythm"><div>The intronic expansion induces formation of intranuclear RNA foci in lymphoblastoid cell lines, which may disrupt normal transcription through sequestration or inactivation of splicing and other transcription factors [<a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al 2011</a>]. The presence of RNA foci has also been reported in other SCAs [<a class="bk_pop" href="#sca36.REF.daughters.2009.e1000600">Daughters et al 2009</a>, <a class="bk_pop" href="#sca36.REF.sato.2009.544">Sato et al 2009</a>], in myotonic dystrophies <a href="/books/n/gene/myotonic-d/">type 1</a> and <a href="/books/n/gene/myotonic-d2/">type 2</a>, and in <a href="/books/n/gene/hd-l2/">Huntington disease-like 2</a> [<a class="bk_pop" href="#sca36.REF.rudnicki.2007.272">Rudnicki et al 2007</a>].</div></li><li class="half_rhythm"><div>Another hypothesis regarding possible mechanisms contributing to SCA36 pathogenicity comes from the evidence that microRNA levels can be affected by repeat expansions. <a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al [2011]</a> found that <i>MIR1292</i>, the gene located just downstream of the repeat, is downregulated in patient cells.</div></li><li class="half_rhythm"><div>The possibility that abnormal translation products originate from different reading frames on both stands of the elongated repeat (repeat associated non-ATG (RAN) initiated translation) &#x02013; as suggested for other repeat expansion disorders [<a class="bk_pop" href="#sca36.REF.cleary.2013.r45">Cleary &#x00026; Ranum 2013</a>] &#x02013; has not been investigated in SCA36.</div></li><li class="half_rhythm"><div>Changes in the local chromatin structure and epigenetic modifications could also be at play [<a class="bk_pop" href="#sca36.REF.dion.2009.288">Dion &#x00026; Wilson 2009</a>], and perhaps affect nearby genes. For instance, just upstream from <i>NOP56</i> is <i>TMC2</i>, a gene that is mainly expressed in the inner ear and thus may be crucial for auditory function. Pathogenic variants in <i>TMC1</i> cause hearing loss [<a class="bk_pop" href="#sca36.REF.kurima.2002.277">Kurima et al 2002</a>, <a class="bk_pop" href="#sca36.REF.tlili.2008.213">Tlili et al 2008</a>]. Whether dysfunction of <i>TMC2</i> could underlie sensorineural hearing loss in patients with SCA36 is unknown.</div></li></ul><p>Future studies with more detailed measures are needed to fully understand genotype-phenotype relationships in SCA36. Limitations to such investigations include:</p><ul><li class="half_rhythm"><div>Measuring the precise repeat size for large repeat expansions requires labor-intensive, operator-dependent methods such as Southern blot analysis.</div></li><li class="half_rhythm"><div>It is not known whether <i>NOP56</i> repeat size as measured in peripheral blood cells reflects the actual repeat number in affected tissues.</div></li><li class="half_rhythm"><div>Age of onset is difficult to establish and prone to ascertainment bias in slowly progressive neurodegenerative diseases.</div></li><li class="half_rhythm"><div>Severity scoring of many neurologic findings (e.g., imbalance, tremor, cognition) is based on clinical scales that can have significant inter-examiner (and other sources of) variability.</div></li></ul><p><b>Gene structure.</b>
<i>NOP56</i> comprises 12 exons spanning 5786 bp. The coding region is 1782 bp long (<a href="/nuccore/NM_006392.3" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NM_006392.3</a>). Alternatively spliced <i>NOP56</i> isoforms have not been fully characterized. The (GGCCTG)n repeat which is pathogenic at more than 650 copies is located in the first intron of <i>NOP56</i>. The presence of a 6-bp indel polymorphism (<a href="/projects/SNP/snp_ref.cgi?rs=28970277" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">rs28970277</a>) 44 bp upstream from the pathogenic repeat must be taken into account in primer design and genotype interpretation. For a detailed summary of gene and protein information, see <a href="/books/NBK231880/#sca36.molgen.TA">Table A</a>, <b>Gene</b>.</p><p><b>Benign variants.</b> Normal alleles are 3 to14 GGCCTG repeats in length; the nine-repeat allele is the most frequent [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.sarto.2013">Sarto et al 2013</a>, <a class="bk_pop" href="#sca36.REF.figley.2014.936.e1">Figley et al 2014</a>]. Normal alleles are stable on intergenerational transmission.</p><p><b>Alleles of uncertain significance.</b> The clinical implications, if any, of GGCCTG alleles between 15 and 650 repeats remain to be established. Alleles in this size range are not observed in the general population [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>, <a class="bk_pop" href="#sca36.REF.sarto.2013">Sarto et al 2013</a>, <a class="bk_pop" href="#sca36.REF.figley.2014.936.e1">Figley et al 2014</a>].</p><p><b>Pathogenic variants.</b> Expanded alleles with 650 or more GGCCTG repeats have been described in diverse ethnic background, including individuals from Japan and several European countries (see <a href="#sca36.Prevalence">Prevalence</a>).</p><p>No ethnic-specific variants or characteristics of the SCA36 molecular defect have been reported to date.</p><p><b>Repeat-primed PCR (RP-PCR)</b> can detect the presence or absence of an expanded hexanucleotide (GGCCTG) repeat. RP-PCR could also be used to estimate the size of alleles in the range of a few tens of repeats; however, the performance of this technique for allele sizing for SCA36 has not been validated [<a class="bk_pop" href="#sca36.REF.van_der_zee.2013.363">van der Zee et al 2013</a>]. For larger alleles, the RP-PCR technique is only useful to determine the existence of a pathogenic allele, not allele size. RP-PCR is a commonly used method of detecting large expansions of nucleotide repeats [<a class="bk_pop" href="#sca36.REF.warner.1996.1022">Warner et al 1996</a>].</p><p><b>Repeat instability.</b> The size of a large expanded hexanucleotide GGCCTG repeat that is in the definitely pathogenic range (&#x0003e;650) is unstable on intergenerational transmission. Although increase and decrease of the GGCCTG repeat can be observed, increase in repeat size is more common. Thus, the size of the <i>NOP56</i> GGCCTG expansion may vary among members of the same family. Whether or how repeat instability may influence the phenotype is unclear.</p><ul><li class="half_rhythm"><div>The mean increase of allele size reported in the large Galician kindreds studied by <a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al [2012]</a> was 1.8 kb, from &#x0223c;1230 repeats to &#x0223c;1530 repeats (i.e. an increase of &#x0223c;300 repeats), over three successive generations. A larger allele size was noted in the individuals who inherited the variant from their father compared to those who inherited it from their mother [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>].</div></li><li class="half_rhythm"><div>Decrease in allele size has also been observed especially on maternal transmission [<a class="bk_pop" href="#sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias et al 2012</a>].</div></li></ul><div id="sca36.T.nop56_variants_discussed_in_this" class="table"><h3><span class="label">Table 2. </span></h3><div class="caption"><p><i>NOP56</i> Variants Discussed in This <i>GeneReview</i></p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK231880/table/sca36.T.nop56_variants_discussed_in_this/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__sca36.T.nop56_variants_discussed_in_this_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Variant Classification</th><th id="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">DNA Nucleotide Change</th><th id="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Predicted Protein Change</th><th id="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_4" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Reference Sequences</th></tr></thead><tbody><tr><td headers="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Benign</b>
</td><td headers="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.3+71_3+76GGCCTG(3_14)<br />(3-14 GGCCTG repeats)</td><td headers="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">None</td><td headers="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_4" rowspan="2" colspan="1" style="text-align:left;vertical-align:middle;">
<a href="/nuccore/NM_006392.3" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NM_006392<wbr style="display:inline-block"></wbr>.3</a>
<br />
<a href="/protein/NP_006383.2" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NP_006383<wbr style="display:inline-block"></wbr>.2</a>
</td></tr><tr><td headers="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Pathogenic</b>
</td><td headers="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.3+71_3+76GGCCTG(650_?)<br />(&#x0003e;650 GGCCTG repeats)</td><td headers="hd_h_sca36.T.nop56_variants_discussed_in_this_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">None</td></tr></tbody></table></div><div><div><dl class="temp-labeled-list small"><dt></dt><dd><div><p class="no_margin">Variants listed in the table have been provided by the authors. <i>GeneReviews</i> staff have not independently verified the classification of variants.</p></div></dd><dt></dt><dd><div><p class="no_margin"><i>GeneReviews</i> follows the standard naming conventions of the Human Genome Variation Society (<a href="http://varnomen.hgvs.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">varnomen<wbr style="display:inline-block"></wbr>.hgvs.org</a>). See <a href="/books/n/gene/app3/">Quick Reference</a> for an explanation of nomenclature.</p></div></dd></dl></div></div></div><p><b>Normal gene product.</b> Nucleolar protein 56 (also called nucleolar protein 5A) has 594 amino acids (<a href="/protein/NP_006383.2" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NP_006383.2</a>) and a molecular size of 56 kd. Nop56p belongs to the family of proteins containing a Nop domain, an alpha-helical ribonucleoprotein binding module required for ribosomal biogenesis [<a class="bk_pop" href="#sca36.REF.hayano.2003.34309">Hayano et al 2003</a>, <a class="bk_pop" href="#sca36.REF.liu.2007.115">Liu et al 2007</a>]. See <a href="#sca36.Molecular_Pathogenesis">Molecular Pathogenesis</a>.</p><p><b>Abnormal gene product.</b>
<i>NOP56</i> (GGCCTG)n repeat expansions induce RNA foci and sequester the RNA-binding protein SRSF2. In addition, the transcription of <i>MIR1292</i>, a microRNA gene located just 19 bp 3' of the GGCCTG repeat, is significantly decreased [<a class="bk_pop" href="#sca36.REF.kobayashi.2011.121">Kobayashi et al 2011</a>]. See <a href="#sca36.Molecular_Pathogenesis">Molecular Pathogenesis</a>.</p></div></div><div id="sca36.References"><h2 id="_sca36_References_">References</h2><div id="sca36.Literature_Cited"><h3>Literature Cited</h3><ul class="simple-list"><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.abe.2012.1070">Abe K, Ikeda Y, Kurata T, Ohta Y, Manabe Y, Okamoto M, Takamatsu K, Ohta T, Takao Y, Shiro Y, Shoji M, Kamiya T, Kobayashi H, Koizumi A. Cognitive and affective impairments of a novel SCA/MND crossroad mutation Asidan. <span><span class="ref-journal">Eur J Neurol. </span>2012;<span class="ref-vol">19</span>:10708.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22353375" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22353375</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.arias.2008.628">Arias M, Arias-Rivas S, Blanco-Arias P, Dapena D, V&#x000e1;zquez F, Rossi M, Otero J, Sobrido MJ. SCA from the Costa da Morte: "A new SCA." Description of the phenotype. <span><span class="ref-journal">Neurologia. </span>2008;<span class="ref-vol">23</span>:6289.</span></div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.arias.2012.41">Arias M, Garc&#x000ed;a-Murias M, Quint&#x000e1;ns B, Arias-Rivas S, Pardo J, V&#x000e1;zquez F, Dapena D, Cacheiro P, Blanco-Arias P, Carracedo A, Sobrido MJ. First SAC36 patients in Europe: clinical, physiological and imaging details of 10 families. <span><span class="ref-journal">Eur J Neurol. </span>2012;<span class="ref-vol">19</span>:41.</span></div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.berciano.2002.75">Berciano J, Mateo I, De Pablos C, Polo JM, Combarros O. Friedreich ataxia with minimal GAA expansion presenting as adult-onset spastic ataxia. <span><span class="ref-journal">J Neurol Sci. </span>2002;<span class="ref-vol">194</span>:7582.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11809170" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11809170</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.berrykravis.2007.2018">Berry-Kravis E, Abrams L, Coffey SM, Hall DA, Greco C, Gane LW, Grisby J, Bourgeois JA, Finucane B, Jacquemont S, Brunberg JA, Zhang L, Lin J, Tassone F, Hagerman PJ, Hagerman RJ, Leehey MA. Fragile X-associated tremor /ataxia syndrome: clinical features, genetics, and testing guidelines. <span><span class="ref-journal">Mov Disord. </span>2007;<span class="ref-vol">22</span>:201830.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17618523" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17618523</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.cleary.2013.r45">Cleary JD, Ranum LP. Repeat-associated non-ATG (RAN) translation in neurological disease. <span><span class="ref-journal">Hum Mol Genet. </span>2013;<span class="ref-vol">22</span>:R4551.</span> [<a href="/pmc/articles/PMC3782068/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3782068</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23918658" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23918658</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.cooperknock.2014.333">Cooper-Knock J, Shaw PJ, Kirby J. The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. <span><span class="ref-journal">Acta Neuropathol. </span>2014;<span class="ref-vol">127</span>:33345.</span> [<a href="/pmc/articles/PMC3925297/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3925297</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24493408" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24493408</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.cowling.2014.3519">Cowling VH, Turner SA, Cole MD. Burkitt's lymphoma-associated c-Myc mutations converge on a dramatically altered target gene response and implicate Nol5a/Nop56 in oncogenesis. <span><span class="ref-journal">Oncogene. </span>2014;<span class="ref-vol">33</span>:351927.</span> [<a href="/pmc/articles/PMC5003617/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5003617</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24013231" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24013231</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.daughters.2009.e1000600">Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ, Swanson MS, Ranum LP. RNA gainof-function in spinocerebellar ataxia type 8. <span><span class="ref-journal">PLoS Genet. </span>2009;<span class="ref-vol">5</span>:e1000600. </span> [<a href="/pmc/articles/PMC2719092/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2719092</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19680539" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19680539</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.de_f_bregues.2013.166">de F&#x000e1;bregues O, de Jorge L, G&#x000e1;mez J, Corral J, San Nicol&#x000e1;s H, Campos B, Castill&#x000f3; J, Munuera J, Minoves T, Raguer N, &#x000c1;lvarez-Sab&#x000ed;n J, Volpini V. New SCA36 from the Tajo riverbank: spinocerbellar ataxia with pyramidal and parkinsonian syndrome. <span><span class="ref-journal">Neurologia. </span>2013;<span class="ref-vol">28</span>:166.</span></div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.dejesushernandez.2011.245">DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. <span><span class="ref-journal">Neuron. </span>2011;<span class="ref-vol">72</span>:24556.</span> [<a href="/pmc/articles/PMC3202986/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3202986</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21944778" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21944778</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.dion.2009.288">Dion V, Wilson JH. Instability and chromatin structure of expanded trinucleotide repeats. <span><span class="ref-journal">Trends Genet. </span>2009;<span class="ref-vol">25</span>:28897.</span> [<a href="/pmc/articles/PMC3671858/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3671858</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19540013" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19540013</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.figley.2014.936.e1">Figley MD, Thomas A, Gitler AD. Evaluating noncoding nucleotide repeat expansions in amyotrophic lateral sclerosis. <span><span class="ref-journal">Neurobiol Aging. </span>2014;<span class="ref-vol">35</span>:936.e14.</span> [<a href="/pmc/articles/PMC3880650/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3880650</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24269018" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24269018</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.fogel.2007.245">Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. <span><span class="ref-journal">Lancet Neurol. </span>2007;<span class="ref-vol">6</span>:24557.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17303531" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17303531</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.fogel.2012.1832">Fogel BL, Pribadi M, Pi S, Perlman SL, Geschwind DH, Coppola G. C9ORF72 expansion is not a significant cause of sporadic spinocerebellar ataxia. <span><span class="ref-journal">Mov Disord. </span>2012;<span class="ref-vol">27</span>:18323.</span> [<a href="/pmc/articles/PMC3536912/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3536912</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23080112" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23080112</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.frewin.2013.287">Frewin B, Chung M, Donnelly N. Bilateral cochlear implantation in Friedreich's ataxia: a case study. <span><span class="ref-journal">Cochlear Implants Int. </span>2013;<span class="ref-vol">14</span>:28790.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/23485447" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23485447</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.garc_amurias.2012.1423">Garc&#x000ed;a-Murias M, Quint&#x000e1;ns B, Arias M, Seixas AI, Cacheiro P, Tarrio R, Pardo J, Mill&#x000e1;n MJ, Arias-Rivas S, Blanco-Arias P, Dapena D, Moreira R, Rodr&#x000ed;guez-Trelles F, Sequeiros J, Carracedo A, Silveira I, Sobrido MJ. "Costa da Morte" ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. <span><span class="ref-journal">Brain. </span>2012;<span class="ref-vol">135</span>:142335.</span> [<a href="/pmc/articles/PMC3338928/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3338928</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22492559" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22492559</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.hayano.2003.34309">Hayano T, Yanagida M, Yamauchi Y, Shinkawa T, Isobe T, Takahashi N. Proteomic Analysis of Human Nop56p-associated Pre-ribosomal Ribonucleoprotein Complexes. Possible link between nop56p and the nucleolar protein treacle responsible for treacher collins syndrome. <span><span class="ref-journal">J Biol Chem. </span>2003;<span class="ref-vol">278</span>:3430919.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/12777385" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12777385</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.hersheson.2012.s183">Hersheson JS, Mencacci NE, Giunti P, Houlden H. Screening a UK cohort for spinocerebellar ataxia type 36 (SCA36). <span><span class="ref-journal">Mov Disord. </span>2012;<span class="ref-vol">27</span>:S183.</span></div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.hoche.2008.479">Hoche F, Seidel K, Brunt ER, Auburger G, Sch&#x000f6;ls L, B&#x000fc;rk K, de Vos RA, den Dunnen W, Bechmann I, Egensperger R, Van Broeckhoven C, Gierga K, Deller T, R&#x000fc;b U. Involvement of the auditory brainstem system in spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7). <span><span class="ref-journal">Neuropathol Appl Neurobiol. </span>2008;<span class="ref-vol">34</span>:47991.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18221259" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18221259</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.horvath.2006.1674">Horvath R, Hudson G, Ferrari G, F&#x000fc;tterer N, Ahola S, Lamantea E, Prokisch H, Lochm&#x000fc;ller H, McFarland R, Ramesh V, Klopstock T, Freisinger P, Salvi F, Mayr JA, Santer R, Tesarova M, Zeman J, Udd B, Taylor RW, Turnbull D, Hanna M, Fialho D, Suomalainen A, Zeviani M, Chinnery PF. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. <span><span class="ref-journal">Brain. </span>2006;<span class="ref-vol">129</span>:167484.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16621917" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16621917</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.ikeda.2011.427">Ikeda Y, Nagai M, Kurata T, Yamashita T, Ohta Y, Nagotani S, Deguchi K, Takehisa Y, Shiro Y, Matsuura T, Abe K. Comparison of acoustic function in SCA31 and other forms of ataxia. <span><span class="ref-journal">Neurol Res. </span>2011;<span class="ref-vol">33</span>:42732.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/21535943" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21535943</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.ikeda.2012.333">Ikeda Y, Ohta Y, Kobayashi H, Okamoto M, Takamatsu K, Ota T, Manabe Y, Okamoto K, Koizumi A, Abe K. Clinical features of SCA36. Anovel spinocerebellar ataxia with motor neuron involvement (Asidan). <span><span class="ref-journal">Neurology. </span>2012;<span class="ref-vol">79</span>:33341.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22744658" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22744658</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.ikeda.2013.109">Ikeda Y, Ohta Y, Kurata T, Shiro Y, Takao Y, Abe K. Acoustic impairment is a distinguishable clinical feature of Asidan/SCA36. <span><span class="ref-journal">J Neurol Sci. </span>2013;<span class="ref-vol">324</span>:10912.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/23140984" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23140984</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.infante.2005.391">Infante J, Combarros O, Volpini V, Corral J, Llorca J, Berciano J. Autosomal dominant cerebellar ataxias in Spain: molecular and clinical correlations, prevalence estimation and survival analysis. <span><span class="ref-journal">Acta Neurol Scand. </span>2005;<span class="ref-vol">111</span>:3919.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15876341" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15876341</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.johansson.1998.171">Johansson J, Forsgreen L, Sandgren O, Brice A, Holmgrem G, Homgren M. Expanded CAG repeats in Swedish spionocerebellar ataxia type 7 (SCA7) patients affect of CAG repeat length on the clinical manifestation. <span><span class="ref-journal">Hum Mol Genet. </span>1998;<span class="ref-vol">7</span>:1716.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/9425223" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9425223</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.kobayashi.2011.121">Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, Habu T, Liu W, Okuda H, Koizumi A. Expansion of Intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. <span><span class="ref-journal">Am J Hum Genet. </span>2011;<span class="ref-vol">89</span>:12130.</span> [<a href="/pmc/articles/PMC3135815/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3135815</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21683323" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21683323</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.kurima.2002.277">Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S, Arnaud D, Drury S, Mo J, Makishima T, Ghosh M, Menon PS, Deshmukh D, Oddoux C, Ostrer H, Khan S, Riazuddin S, Deininger PL, Hampton LL, Sullivan SL, Battey JF Jr, Keats BJ, Wilcox ER, Friedman TB, Griffith AJ. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. <span><span class="ref-journal">Nat Genet. </span>2002;<span class="ref-vol">30</span>:27784.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11850618" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11850618</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.liu.2007.115">Liu S, Li P, Dybkov O, Nottrott S, Hartmuth K, L&#x000fc;hrmann R, Carlomagno T, Wahl MC. Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. <span><span class="ref-journal">Science. </span>2007;<span class="ref-vol">316</span>:11520.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17412961" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17412961</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.loureiro.2013">Loureiro JR, Seixas AI, Loureiro JL, Carracedo A, Sobrido MJ, Coutinho P, Sequeiros J, Silveira I. Genetics of spinocerebellar ataxias in Portuguese families: screening for SCA15, SCA28 and SCA36. PCN 1396F. Boston, MA: American Society of Human Genetics 63rd Annual Meeting; 2013.</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.matsuura.2002.983">Matsuura T, Ranum LP, Volpini V, Pandolfo M, Sasaki H, Tashiro K, Watase K, Zoghbi HY, Ashizawa T. Spinocerebellar ataxia type 10 is rare in populations other than Mexicans. <span><span class="ref-journal">Neurology. </span>2002;<span class="ref-vol">58</span>:9834.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/11914424" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11914424</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.mckeegan.2009.4971">McKeegan KS, Debieux CM, Watkins NJ. Evidence that the AAA+ proteins TIP48 and TIP49 bridge interactions between 15.5K and the related NOP56 and NOP58 proteins during box C/D snoRNP biogenesis. <span><span class="ref-journal">Mol Cell Biol. </span>2009;<span class="ref-vol">29</span>:497181.</span> [<a href="/pmc/articles/PMC2738292/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2738292</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19620283" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19620283</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.miyashiro.2013.558">Miyashiro A, Sugihara K, Kawarai T, Miyamoto R, Izumi Y, Morino HJ, Maruyama H, Orlacchio A, Kawakami H, Kaji R. Oromandibular dystonia associated with SCA36. <span><span class="ref-journal">Mov Disord. </span>2013;<span class="ref-vol">28</span>:5589.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/23390045" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23390045</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.nanetti.2009.1926">Nanetti L, Fancellu R, Tomasello C, Gellera C, Pareyson D, Mariotti C. Rare association of motor neuron disease and spinocerebellar ataxia type 2 (SCA2): a new case and review of the literature. <span><span class="ref-journal">J Neurol. </span>2009;<span class="ref-vol">256</span>:19268.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/19644730" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19644730</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.ohta.2007.751">Ohta Y, Hayashi T, Nagai M, Okamoto M, Nagotani S, Nagano I, Ohmori N, Takehisa Y, Murakami T, Shoji M, Kamiya T, Abe K. Two cases of spinocerebellar ataxia accompanied by involvement of the skeletal motor neuron system and bulbar palsy. <span><span class="ref-journal">Intern Med. </span>2007;<span class="ref-vol">46</span>:7515.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17541229" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17541229</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.owada.2005.629">Owada K, Ishikawa K, Toru S, Ishida G, Gomyoda M, Tao O, Noguchi Y, Kitamura K, Kondo I, Noguchi E, Arinami T, Mizusawa H. A clinical, genetic, and neuropathologic study in a family with 16q-linked ADCA type III. <span><span class="ref-journal">Neurology. </span>2005;<span class="ref-vol">65</span>:62932.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/16116133" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16116133</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.pujana.1999.516">Pujana MA, Corral J, Gratac&#x000f2;s M, Combarros O, Berciano J, Gen&#x000ed;s D, Banchs I, Estivill X, Volpini V. Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group. <span><span class="ref-journal">Hum Genet. </span>1999;<span class="ref-vol">104</span>:51622.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/10453742" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10453742</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.rance.2008.2002">Rance G, Fava R, Baldock H, Chong A, Barker E, Corben L, Delatycki MB. Speech perception ability in individuals with Friedreich ataxia. <span><span class="ref-journal">Brain. </span>2008;<span class="ref-vol">131</span>:200212.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18515321" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18515321</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.renton.2011.257">Renton AE, Majounie E, Waite A, Sim&#x000f3;n-S&#x000e1;nchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, H&#x000f6;ltt&#x000e4;-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chi&#x000f2; A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. <span><span class="ref-journal">Neuron. </span>2011;<span class="ref-vol">72</span>:25768.</span> [<a href="/pmc/articles/PMC3200438/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3200438</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21944779" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21944779</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.rudnicki.2007.272">Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL. Huntington's disease-like 2 is associated with CUG repeat-containing RNA foci. <span><span class="ref-journal">Ann Neurol. </span>2007;<span class="ref-vol">61</span>:27282.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/17387722" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17387722</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.sakai.2010.409">Sakai H, Yoshida K, Shimizu Y, Morita H, Ikeda S, Matsumoto N. Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan. <span><span class="ref-journal">Neurogenetics. </span>2010;<span class="ref-vol">11</span>:40915.</span> [<a href="/pmc/articles/PMC2944954/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2944954</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20424877" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20424877</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.sarto.2013">Sarto E, Magri S, Mariotti C, Nanetti L, Gellera C, Di Bella D, Taroni F. SCA36 molecular analysis in patients with spinocerebellar ataxia. PCN 62. Paris, France: International Conference on Spinocerebellar Degenerations; 2013.</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.sato.2009.544">Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, Takahashi M, Matsuura T, Flanigan KM, Iwasaki S, Ishino F, Saito Y, Murayama S, Yoshida M, Hashizume Y, Takahashi Y, Tsuji S, Shimizu N, Toda T, Ishikawa K, Mizusawa H. Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. <span><span class="ref-journal">Am J Hum Genet. </span>2009;<span class="ref-vol">85</span>:54457.</span> [<a href="/pmc/articles/PMC2775824/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2775824</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19878914" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19878914</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.sch_ls.2004.291">Sch&#x000f6;ls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. <span><span class="ref-journal">Lancet Neurol. </span>2004;<span class="ref-vol">3</span>:291304.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/15099544" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15099544</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.sequeiros.2011">Sequeiros J, Martins S, Silveira I. Epidemiology and population genetics of degenerative ataxias. In: Subramony SH, D&#x000fc;rr A, eds. <em>Ataxic Disorders. Handbook of Clinical Neurology</em>. Vol 103, 3rd series. Edinburgh, UK: Elsevier; 2011:225-48. [<a href="https://pubmed.ncbi.nlm.nih.gov/21827892" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21827892</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.sim_ns_nchez.2012.723">Sim&#x000f3;n-S&#x000e1;nchez J, Dopper EG, Cohn-Hokke PE, Hukema RK, Nicolaou N, Seelaar H, de Graaf JR, de Koning I, van Schoor NM, Deeg DJ, Smits M, Raaphorst J, van den Berg LH, Schelhaas HJ, De Die-Smulders CE, Majoor-Krakauer D, Rozemuller AJ, Willemsen R, Pijnenburg YA, Heutink P, van Swieten JC. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. <span><span class="ref-journal">Brain. </span>2012;<span class="ref-vol">135</span>:72335.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22300876" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22300876</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.sugihara.2012.1158">Sugihara K, Maruyama H, Morino H, Miyamoto R, Ueno H, Matsumoto M, Kaji R, Kitaguchi H, Yukitake M, Higashi Y, Nishinaka K, Oda M, Izumi Y, Kawakami H. The clinical characteristics of spinocerebellar ataxia 36: a study of 2121 Japanese ataxia patients. <span><span class="ref-journal">Mov Disord. </span>2012;<span class="ref-vol">27</span>:115863.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/22753339" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22753339</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.sulek.2013">Sulek A, Krysa W, Elert-Dobkowska E, Rajkiewicz M, Stepniak I, Rakowicz M, Rola R, Dusza-Rowinska M, Zaremba J. Spinocerebellar ataxias (SCAs) and hereditary spastic paraplegias (HSP) - rare movement disorders prevalence in Poland. Poster presentation 67. Paris, France: International Conference on Spinocerebellar Degenerations; 2013.</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.tlili.2008.213">Tlili A, Rebeh IB, Aifa-Hmani M, Dhouib H, Moalla J, Tlili-Chouch&#x000e8;ne J, Said MB, Lahmar I, Benzina Z, Charfedine I, Driss N, Ghorbel A, Ayadi H, Masmoudi S. TMC1 but not TMC2 is responsible for autosomal recessive nonsyndromic hearing impairment in Tunisian families. <span><span class="ref-journal">Audiol Neurootol. </span>2008;<span class="ref-vol">13</span>:2138.</span> [<a href="https://pubmed.ncbi.nlm.nih.gov/18259073" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18259073</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.van_der_zee.2013.363">van der Zee J, Gijselinck I, Dillen L, Van Langenhove T, Theuns J, Engelborghs S, Philtjens S, Vandenbulcke M, Sleegers K, Sieben A, B&#x000e4;umer V, Maes G, Corsmit E, Borroni B, Padovani A, Archetti S, Perneczky R, Diehl-Schmid J, de Mendon&#x000e7;a A, Miltenberger-Miltenyi G, Pereira S, Pimentel J, Nacmias B, Bagnoli S, Sorbi S, Graff C, Chiang HH, Westerlund M, Sanchez-Valle R, Llado A, Gelpi E, Santana I, Almeida MR, Santiago B, Frisoni G, Zanetti O, Bonvicini C, Synofzik M, Maetzler W, Vom Hagen JM, Sch&#x000f6;ls L, Heneka MT, Jessen F, Matej R, Parobkova E, Kovacs GG, Str&#x000f6;bel T, Sarafov S, Tournev I, Jordanova A, Danek A, Arzberger T, Fabrizi GM, Testi S, Salmon E, Santens P, Martin JJ, Cras P, Vandenberghe R, De Deyn PP, Cruts M, Van Broeckhoven C, van der Zee J, Gijselinck I, Dillen L, Van Langenhove T, Theuns J, Philtjens S, Sleegers K, B&#x000e4;umer V, Maes G, Corsmit E, Cruts M, Van Broeckhoven C, van der Zee J, Gijselinck I, Dillen L, Van Langenhove T, Philtjens S, Theuns J, Sleegers K, B&#x000e4;umer V, Maes G, Cruts M, Van Broeckhoven C, Engelborghs S, De Deyn PP, Cras P, Engelborghs S, De Deyn PP, Vandenbulcke M, Vandenbulcke M, Borroni B, Padovani A, Archetti S, Perneczky R, Diehl-Schmid J, Synofzik M, Maetzler W, M&#x000fc;ller Vom Hagen J, Sch&#x000f6;ls L, Synofzik M, Maetzler W, M&#x000fc;ller Vom Hagen J, Sch&#x000f6;ls L, Heneka MT, Jessen F, Ramirez A, Kurzwelly D, Sachtleben C, Mairer W, de Mendon&#x000e7;a A, Miltenberger-Miltenyi G, Pereira S, Firmo C, Pimentel J, Sanchez-Valle R, Llado A, Antonell A, Molinuevo J, Gelpi E, Graff C, Chiang HH, Westerlund M, Graff C, Kinhult St&#x000e5;hlbom A, Thonberg H, Nennesmo I, B&#x000f6;rjesson-Hanson A, Nacmias B, Bagnoli S, Sorbi S, Bessi V, Piaceri I, Santana I, Santiago B, Santana I, Helena Ribeiro M, Ros&#x000e1;rio Almeida M, Oliveira C, Massano J, Garret C, Pires P, Frisoni G, Zanetti O, Bonvicini C, Sarafov S, Tournev I, Jordanova A, Tournev I, Kovacs GG, Str&#x000f6;bel T, Heneka MT, Jessen F, Ramirez A, Kurzwelly D, Sachtleben C, Mairer W, Jessen F, Matej R, Parobkova E, Danel A, Arzberger T, Maria Fabrizi G, Testi S, Ferrari S, Cavallaro T, Salmon E, Santens P, Cras P, et al. A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. <span><span class="ref-journal">Hum Mutat. </span>2013;<span class="ref-vol">34</span>:36373.</span> [<a href="/pmc/articles/PMC3638346/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3638346</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23111906" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23111906</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.warner.1996.1022">Warner JP, Barron LH, Goudie D, Kelly K, Dow D, Fitzpatrick DR, Brock DJ. A general method for the detection of large CAG repeat expansions by fluorescent PCR. <span><span class="ref-journal">J Med Genet. </span>1996;<span class="ref-vol">33</span>:10226.</span> [<a href="/pmc/articles/PMC1050815/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1050815</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9004136" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9004136</span></a>]</div></li><li class="half_rhythm"><div class="bk_ref" id="sca36.REF.whitwell.2012.794">Whitwell JL, Weigand SD, Boeve BF, Senjem ML, Gunter JL, DeJesus-Hernandez M, Rutherford NJ, Baker M, Knopman DS, Wszolek ZK, Parisi JE, Dickson DW, Petersen RC, Rademakers R, Jack CR Jr, Josephs KA. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. <span><span class="ref-journal">Brain. </span>2012;<span class="ref-vol">135</span>:794806.</span> [<a href="/pmc/articles/PMC3286334/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3286334</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22366795" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22366795</span></a>]</div></li></ul></div></div><div id="sca36.Chapter_Notes"><h2 id="_sca36_Chapter_Notes_">Chapter Notes</h2><div id="sca36.Author_Notes"><h3>Author Notes</h3><p>The Neurogenetics Group of the <a href="http://www.idisantiago.es/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Instituto de Investigaci&#x000f3;n Sanitaria de Santiago</a> (IDIS) is a multidisciplinary team of clinical neurologists, geneticists, molecular biologists, and psychologists. The main research interests of the group are:</p><ul><li class="half_rhythm"><div>Spastic paraplegias, spinocerebellar ataxias, and other movement disorders</div></li><li class="half_rhythm"><div>Molecular mechanisms of neurodegenerative and neuromuscular diseases</div></li><li class="half_rhythm"><div>Application of genomics, bioinformatics, and databases to understanding genotype-phenotype relationships</div></li><li class="half_rhythm"><div>Psychosocial and ethical aspects of translational neurogenetics and genetic counseling</div></li></ul></div><div id="sca36.Revision_History"><h3>Revision History</h3><ul><li class="half_rhythm"><div>11 February 2021 (ma) Chapter retired: extremely rare; qualified authors not available for update</div></li><li class="half_rhythm"><div>7 August 2014 (me) Review posted live</div></li><li class="half_rhythm"><div>13 January 2014 (mjs) Original Submission</div></li></ul></div></div><div id="bk_toc_contnr"></div></div></div>
<div class="post-content"><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> © 1993-2025, University of Washington, Seattle. GeneReviews is
a registered trademark of the University of Washington, Seattle. All rights
reserved.<p class="small">GeneReviews® chapters are owned by the University of Washington. Permission is
hereby granted to reproduce, distribute, and translate copies of content materials for
noncommercial research purposes only, provided that (i) credit for source (<a href="http://www.genereviews.org/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://www.genereviews.org/</a>) and copyright (© 1993-2025 University of
Washington) are included with each copy; (ii) a link to the original material is provided
whenever the material is published elsewhere on the Web; and (iii) reproducers,
distributors, and/or translators comply with the <a href="https://www.ncbi.nlm.nih.gov/books/n/gene/GRcopyright_permiss/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">GeneReviews® Copyright Notice and Usage
Disclaimer</a>. No further modifications are allowed. For clarity, excerpts
of GeneReviews chapters for use in lab reports and clinic notes are a permitted
use.</p><p class="small">For more information, see the <a href="https://www.ncbi.nlm.nih.gov/books/n/gene/GRcopyright_permiss/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">GeneReviews® Copyright Notice and Usage
Disclaimer</a>.</p><p class="small">For questions regarding permissions or whether a specified use is allowed,
contact: <a href="mailto:dev@null" data-email="ude.wu@tssamda" class="oemail">ude.wu@tssamda</a>.</p></div><div class="small"><span class="label">Bookshelf ID: NBK231880</span><span class="label">PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/25101480" title="PubMed record of this page" ref="pagearea=meta&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">25101480</a></span></div><div style="margin-top:2em" class="bk_noprnt"><a class="bk_cntns" href="/books/n/gene/">GeneReviews by Title</a><div class="pagination bk_noprnt"><a class="active page_link prev" href="/books/n/gene/sca28/" title="Previous page in this title">&lt; Prev</a><a class="active page_link next" href="/books/n/gene/sca37/" title="Next page in this title">Next &gt;</a></div></div></div></div>
</div>
</div>
</div>
<div class="bottom">
<script type="text/javascript">
var PBooksSearchTermData = {
highlighter: "bold",
dateTime: "03/14/2025 09:49:24",
terms: [
'Hepatic', 'practice guideline', 'syndrome', 'syndrome', 'syndrome', 'veno-occlusive'
]
};
</script>
<div id="NCBIFooter_dynamic">
<!--<component id="Breadcrumbs" label="breadcrumbs"/>
<component id="Breadcrumbs" label="helpdesk"/>-->
</div>
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
</div>
</div>
<!--/.page-->
</div>
<!--/.wrap-->
</div><!-- /.twelve_col -->
</div>
<!-- /.grid -->
<span class="PAFAppResources"></span>
<!-- BESelector tab -->
<noscript><img alt="statistics" src="/stat?jsdisabled=true&amp;ncbi_db=books&amp;ncbi_pdid=book-part&amp;ncbi_acc=NBK231880&amp;ncbi_domain=gene&amp;ncbi_report=printable&amp;ncbi_type=fulltext&amp;ncbi_objectid=&amp;ncbi_pcid=/NBK231880/?report=printable&amp;ncbi_app=bookshelf" /></noscript>
<!-- usually for JS scripts at page bottom -->
<!--<component id="PageFixtures" label="styles"></component>-->
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3879255/4121861/3501987/4008961/3893018/3821238/3400083/3426610.js" snapshot="books"></script></body>
</html>