nih-gov/www.ncbi.nlm.nih.gov/books/NBK1231/index.html?report=reader

3579 lines
478 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" class="no-js no-jr">
<head>
<!-- For pinger, set start time and add meta elements. -->
<script type="text/javascript">var ncbi_startTime = new Date();</script>
<!-- Logger begin -->
<meta name="ncbi_db" content="books">
<meta name="ncbi_pdid" content="book-part">
<meta name="ncbi_acc" content="NBK1231">
<meta name="ncbi_domain" content="gene">
<meta name="ncbi_report" content="reader">
<meta name="ncbi_type" content="fulltext">
<meta name="ncbi_objectid" content="">
<meta name="ncbi_pcid" content="/NBK1231/?report=reader">
<meta name="ncbi_pagename" content="Isolated Methylmalonic Acidemia - GeneReviews&reg; - NCBI Bookshelf">
<meta name="ncbi_bookparttype" content="chapter">
<meta name="ncbi_app" content="bookshelf">
<!-- Logger end -->
<!--component id="Page" label="meta"/-->
<script type="text/javascript" src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.boots.min.js"> </script><title>Isolated Methylmalonic Acidemia - GeneReviews&reg; - NCBI Bookshelf</title>
<meta charset="utf-8">
<meta name="apple-mobile-web-app-capable" content="no">
<meta name="viewport" content="initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no">
<meta name="jr-col-layout" content="auto">
<meta name="jr-prev-unit" content="/books/n/gene/kms/?report=reader">
<meta name="jr-next-unit" content="/books/n/gene/iso-def/?report=reader">
<meta name="bk-toc-url" content="/books/n/gene/?report=toc">
<meta name="robots" content="INDEX,FOLLOW,NOARCHIVE">
<meta name="citation_inbook_title" content="GeneReviews&reg; [Internet]">
<meta name="citation_title" content="Isolated Methylmalonic Acidemia">
<meta name="citation_publisher" content="University of Washington, Seattle">
<meta name="citation_date" content="2022/09/08">
<meta name="citation_author" content="Irini Manoli">
<meta name="citation_author" content="Jennifer L Sloan">
<meta name="citation_author" content="Charles P Venditti">
<meta name="citation_pmid" content="20301409">
<meta name="citation_fulltext_html_url" content="https://www.ncbi.nlm.nih.gov/books/NBK1231/">
<meta name="citation_keywords" content="Isolated Methylmalonic Aciduria">
<meta name="citation_keywords" content="Isolated Methylmalonic Aciduria">
<meta name="citation_keywords" content="Isolated Methylmalonic Acidemia: Partially Deficient or B12-Responsive">
<meta name="citation_keywords" content="Methylmalonyl-CoA Epimerase Deficiency">
<meta name="citation_keywords" content="Isolated Methylmalonic Acidemia: Infantile/Non-B12-Responsive">
<meta name="citation_keywords" content="Cobalamin trafficking protein CblD">
<meta name="citation_keywords" content="Corrinoid adenosyltransferase MMAB">
<meta name="citation_keywords" content="Methylmalonic aciduria type A protein, mitochondrial">
<meta name="citation_keywords" content="Methylmalonyl-CoA epimerase, mitochondrial">
<meta name="citation_keywords" content="Methylmalonyl-CoA mutase, mitochondrial">
<meta name="citation_keywords" content="MCEE">
<meta name="citation_keywords" content="MMAA">
<meta name="citation_keywords" content="MMAB">
<meta name="citation_keywords" content="MMADHC">
<meta name="citation_keywords" content="MMUT">
<meta name="citation_keywords" content="Isolated Methylmalonic Acidemia">
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/">
<meta name="DC.Title" content="Isolated Methylmalonic Acidemia">
<meta name="DC.Type" content="Text">
<meta name="DC.Publisher" content="University of Washington, Seattle">
<meta name="DC.Contributor" content="Irini Manoli">
<meta name="DC.Contributor" content="Jennifer L Sloan">
<meta name="DC.Contributor" content="Charles P Venditti">
<meta name="DC.Date" content="2022/09/08">
<meta name="DC.Identifier" content="https://www.ncbi.nlm.nih.gov/books/NBK1231/">
<meta name="description" content='For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut&ndash; enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the advent of newborn screening, common phenotypes included:'>
<meta name="og:title" content="Isolated Methylmalonic Acidemia">
<meta name="og:type" content="book">
<meta name="og:description" content='For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut&ndash; enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the advent of newborn screening, common phenotypes included:'>
<meta name="og:url" content="https://www.ncbi.nlm.nih.gov/books/NBK1231/">
<meta name="og:site_name" content="NCBI Bookshelf">
<meta name="og:image" content="https://www.ncbi.nlm.nih.gov/corehtml/pmc/pmcgifs/bookshelf/thumbs/th-gene-lrg.png">
<meta name="twitter:card" content="summary">
<meta name="twitter:site" content="@ncbibooks">
<meta name="bk-non-canon-loc" content="/books/n/gene/mma/?report=reader">
<link rel="canonical" href="https://www.ncbi.nlm.nih.gov/books/NBK1231/">
<link href="https://fonts.googleapis.com/css?family=Archivo+Narrow:400,700,400italic,700italic&amp;subset=latin" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/libs.min.css">
<link rel="stylesheet" href="/corehtml/pmc/jatsreader/ptpmc_3.22/css/jr.min.css">
<meta name="format-detection" content="telephone=no">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books.min.css" type="text/css">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css//books_print.min.css" type="text/css" media="print">
<link rel="stylesheet" href="/corehtml/pmc/css/bookshelf/2.26/css/books_reader.min.css" type="text/css">
<style type="text/css">p a.figpopup{display:inline !important} .bk_tt {font-family: monospace} .first-line-outdent .bk_ref {display: inline} .body-content h2, .body-content .h2 {border-bottom: 1px solid #97B0C8} .body-content h2.inline {border-bottom: none} a.page-toc-label , .jig-ncbismoothscroll a {text-decoration:none;border:0 !important} .temp-labeled-list .graphic {display:inline-block !important} .temp-labeled-list img{width:100%}</style>
<link rel="shortcut icon" href="//www.ncbi.nlm.nih.gov/favicon.ico">
<meta name="ncbi_phid" content="CE8D47507C871F1100000000009C008A.m_5">
<meta name='referrer' content='origin-when-cross-origin'/><link type="text/css" rel="stylesheet" href="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/css/3852956/3849091.css"></head>
<body>
<!-- Book content! -->
<div id="jr" data-jr-path="/corehtml/pmc/jatsreader/ptpmc_3.22/"><div class="jr-unsupported"><table class="modal"><tr><td><span class="attn inline-block"></span><br />Your browser does not support the NLM PubReader view.<br />Go to <a href="/pmc/about/pr-browsers/">this page</a> to see a list of supported browsers<br />or return to the <br /><a href="/books/NBK1231/?report=classic">regular view</a>.</td></tr></table></div><div id="jr-ui" class="hidden"><nav id="jr-head"><div class="flexh tb"><div id="jr-tb1"><a id="jr-links-sw" class="hidden" title="Links"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" x="0px" y="0px" viewBox="0 0 70.6 85.3" style="enable-background:new 0 0 70.6 85.3;vertical-align:middle" xml:space="preserve" width="24" height="24">
<style type="text/css">.st0{fill:#939598;}</style>
<g>
<path class="st0" d="M36,0C12.8,2.2-22.4,14.6,19.6,32.5C40.7,41.4-30.6,14,35.9,9.8"></path>
<path class="st0" d="M34.5,85.3c23.2-2.2,58.4-14.6,16.4-32.5c-21.1-8.9,50.2,18.5-16.3,22.7"></path>
<path class="st0" d="M34.7,37.1c66.5-4.2-4.8-31.6,16.3-22.7c42.1,17.9,6.9,30.3-16.4,32.5h1.7c-66.2,4.4,4.8,31.6-16.3,22.7 c-42.1-17.9-6.9-30.3,16.4-32.5"></path>
</g>
</svg> Books</a></div><div class="jr-rhead f1 flexh"><div class="head"><a href="/books/n/gene/kms/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="body"><div class="t">Isolated Methylmalonic Acidemia</div><div class="j">GeneReviews&#x000ae; [Internet]</div></div><div class="tail"><a href="/books/n/gene/iso-def/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></div><div id="jr-tb2"><a id="jr-bkhelp-sw" class="btn wsprkl hidden" title="Help with NLM PubReader">?</a><a id="jr-help-sw" class="btn wsprkl hidden" title="Settings and typography in NLM PubReader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" preserveAspectRatio="none"><path d="M462,283.742v-55.485l-29.981-10.662c-11.431-4.065-20.628-12.794-25.274-24.001 c-0.002-0.004-0.004-0.009-0.006-0.013c-4.659-11.235-4.333-23.918,0.889-34.903l13.653-28.724l-39.234-39.234l-28.72,13.652 c-10.979,5.219-23.68,5.546-34.908,0.889c-0.005-0.002-0.01-0.003-0.014-0.005c-11.215-4.65-19.933-13.834-24-25.273L283.741,50 h-55.484l-10.662,29.981c-4.065,11.431-12.794,20.627-24.001,25.274c-0.005,0.002-0.009,0.004-0.014,0.005 c-11.235,4.66-23.919,4.333-34.905-0.889l-28.723-13.653l-39.234,39.234l13.653,28.721c5.219,10.979,5.545,23.681,0.889,34.91 c-0.002,0.004-0.004,0.009-0.006,0.013c-4.649,11.214-13.834,19.931-25.271,23.998L50,228.257v55.485l29.98,10.661 c11.431,4.065,20.627,12.794,25.274,24c0.002,0.005,0.003,0.01,0.005,0.014c4.66,11.236,4.334,23.921-0.888,34.906l-13.654,28.723 l39.234,39.234l28.721-13.652c10.979-5.219,23.681-5.546,34.909-0.889c0.005,0.002,0.01,0.004,0.014,0.006 c11.214,4.649,19.93,13.833,23.998,25.271L228.257,462h55.484l10.595-29.79c4.103-11.538,12.908-20.824,24.216-25.525 c0.005-0.002,0.009-0.004,0.014-0.006c11.127-4.628,23.694-4.311,34.578,0.863l28.902,13.738l39.234-39.234l-13.66-28.737 c-5.214-10.969-5.539-23.659-0.886-34.877c0.002-0.005,0.004-0.009,0.006-0.014c4.654-11.225,13.848-19.949,25.297-24.021 L462,283.742z M256,331.546c-41.724,0-75.548-33.823-75.548-75.546s33.824-75.547,75.548-75.547 c41.723,0,75.546,33.824,75.546,75.547S297.723,331.546,256,331.546z"></path></svg></a><a id="jr-fip-sw" class="btn wsprkl hidden" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-rtoc-sw" class="btn wsprkl hidden" title="Table of Contents"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,20h10v8H20V20zM36,20h44v8H36V20zM20,37.33h10v8H20V37.33zM36,37.33h44v8H36V37.33zM20,54.66h10v8H20V54.66zM36,54.66h44v8H36V54.66zM20,72h10v8 H20V72zM36,72h44v8H36V72z"></path></svg></a></div></div></nav><nav id="jr-dash" class="noselect"><nav id="jr-dash" class="noselect"><div id="jr-pi" class="hidden"><a id="jr-pi-prev" class="hidden" title="Previous page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a><div class="pginfo">Page <i class="jr-pg-pn">0</i> of <i class="jr-pg-lp">0</i></div><a id="jr-pi-next" class="hidden" title="Next page"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div><div id="jr-is-tb"><a id="jr-is-sw" class="btn wsprkl hidden" title="Switch between Figures/Tables strip and Progress bar"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><rect x="10" y="40" width="20" height="20"></rect><rect x="40" y="40" width="20" height="20"></rect><rect x="70" y="40" width="20" height="20"></rect></svg></a></div><nav id="jr-istrip" class="istrip hidden"><a id="jr-is-prev" href="#" class="hidden" title="Previous"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M80,40 60,65 80,90 70,90 50,65 70,40z M50,40 30,65 50,90 40,90 20,65 40,40z"></path><text x="35" y="25" textLength="60" style="font-size:25px">Prev</text></svg></a><a id="jr-is-next" href="#" class="hidden" title="Next"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M20,40 40,65 20,90 30,90 50,65 30,40z M50,40 70,65 50,90 60,90 80,65 60,40z"></path><text x="15" y="25" textLength="60" style="font-size:25px">Next</text></svg></a></nav><nav id="jr-progress"></nav></nav></nav><aside id="jr-links-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">NCBI Bookshelf</div></div><div class="cnt lol f1"><a href="/books/">Home</a><a href="/books/browse/">Browse All Titles</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/sharer/sharer.php?u=https://www.ncbi.nlm.nih.gov/books/NBK1231/"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24" preserveAspectRatio="none"><g><path d="M 17.996,32L 12,32 L 12,16 l-4,0 l0-5.514 l 4-0.002l-0.006-3.248C 11.993,2.737, 13.213,0, 18.512,0l 4.412,0 l0,5.515 l-2.757,0 c-2.063,0-2.163,0.77-2.163,2.209l-0.008,2.76l 4.959,0 l-0.585,5.514L 18,16L 17.996,32z"></path></g></svg> Share on Facebook</a><a class="btn share" target="_blank" rel="noopener noreferrer" href="https://twitter.com/intent/tweet?url=https://www.ncbi.nlm.nih.gov/books/NBK1231/&amp;text=Isolated%20Methylmalonic%20Acidemia"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 33 33" style="vertical-align:middle" width="24" height="24"><g><path d="M 32,6.076c-1.177,0.522-2.443,0.875-3.771,1.034c 1.355-0.813, 2.396-2.099, 2.887-3.632 c-1.269,0.752-2.674,1.299-4.169,1.593c-1.198-1.276-2.904-2.073-4.792-2.073c-3.626,0-6.565,2.939-6.565,6.565 c0,0.515, 0.058,1.016, 0.17,1.496c-5.456-0.274-10.294-2.888-13.532-6.86c-0.565,0.97-0.889,2.097-0.889,3.301 c0,2.278, 1.159,4.287, 2.921,5.465c-1.076-0.034-2.088-0.329-2.974-0.821c-0.001,0.027-0.001,0.055-0.001,0.083 c0,3.181, 2.263,5.834, 5.266,6.438c-0.551,0.15-1.131,0.23-1.73,0.23c-0.423,0-0.834-0.041-1.235-0.118 c 0.836,2.608, 3.26,4.506, 6.133,4.559c-2.247,1.761-5.078,2.81-8.154,2.81c-0.53,0-1.052-0.031-1.566-0.092 c 2.905,1.863, 6.356,2.95, 10.064,2.95c 12.076,0, 18.679-10.004, 18.679-18.68c0-0.285-0.006-0.568-0.019-0.849 C 30.007,8.548, 31.12,7.392, 32,6.076z"></path></g></svg> Share on Twitter</a></div></aside><aside id="jr-rtoc-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Table of Content</div></div><div class="cnt lol f1"><a href="/books/n/gene/?report=reader">Title Information</a><a href="/books/n/gene/toc/?report=reader">Table of Contents Page</a></div></aside><aside id="jr-help-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Settings</div></div><div class="cnt f1"><div id="jr-typo-p" class="typo"><div><a class="sf btn wsprkl">A-</a><a class="lf btn wsprkl">A+</a></div><div><a class="bcol-auto btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 100" preserveAspectRatio="none"><text x="10" y="70" style="font-size:60px;font-family: Trebuchet MS, ArialMT, Arial, sans-serif" textLength="180">AUTO</text></svg></a><a class="bcol-1 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M15,25 85,25zM15,40 85,40zM15,55 85,55zM15,70 85,70z"></path></svg></a><a class="bcol-2 btn wsprkl"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M5,25 45,25z M55,25 95,25zM5,40 45,40z M55,40 95,40zM5,55 45,55z M55,55 95,55zM5,70 45,70z M55,70 95,70z"></path></svg></a></div></div><div class="lol"><a class="" href="/books/NBK1231/?report=classic">Switch to classic view</a><a href="/books/NBK1231/pdf/Bookshelf_NBK1231.pdf">PDF (1.5M)</a><a href="/books/NBK1231/?report=printable">Print View</a></div></div></aside><aside id="jr-bkhelp-p" class="hidden flexv"><div class="tb sk-htbar flexh"><div><a class="jr-p-close btn wsprkl">Done</a></div><div class="title-text f1">Help</div></div><div class="cnt f1 lol"><a id="jr-helpobj-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/help.xml" href="">Help</a><a href="mailto:info@ncbi.nlm.nih.gov?subject=PubReader%20feedback%20%2F%20NBK1231%20%2F%20sid%3ACE8B5AF87C7FFCB1_0191SID%20%2F%20phid%3ACE8D47507C871F1100000000009C008A.4">Send us feedback</a><a id="jr-about-sw" data-path="/corehtml/pmc/jatsreader/ptpmc_3.22/" data-href="/corehtml/pmc/jatsreader/ptpmc_3.22/img/bookshelf/about.xml" href="">About PubReader</a></div></aside><aside id="jr-objectbox" class="thidden hidden"><div class="jr-objectbox-close wsprkl">&#10008;</div><div class="jr-objectbox-inner cnt"><div class="jr-objectbox-drawer"></div></div></aside><nav id="jr-pm-left" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Previous Page</text></svg></nav><nav id="jr-pm-right" class="hidden"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 800" preserveAspectRatio="none"><text font-stretch="ultra-condensed" x="800" y="-15" text-anchor="end" transform="rotate(90)" font-size="18" letter-spacing=".1em">Next Page</text></svg></nav><nav id="jr-fip" class="hidden"><nav id="jr-fip-term-p"><input type="search" placeholder="search this page" id="jr-fip-term" autocorrect="off" autocomplete="off" /><a id="jr-fip-mg" class="wsprkl btn" title="Find"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 550 600" preserveAspectRatio="none"><path fill="none" stroke="#000" stroke-width="36" stroke-linecap="round" style="fill:#FFF" d="m320,350a153,153 0 1,0-2,2l170,170m-91-117 110,110-26,26-110-110"></path></svg></a><a id="jr-fip-done" class="wsprkl btn" title="Dismiss find">&#10008;</a></nav><nav id="jr-fip-info-p"><a id="jr-fip-prev" class="wsprkl btn" title="Jump to previuos match">&#9664;</a><button id="jr-fip-matches">no matches yet</button><a id="jr-fip-next" class="wsprkl btn" title="Jump to next match">&#9654;</a></nav></nav></div><div id="jr-epub-interstitial" class="hidden"></div><div id="jr-content"><article data-type="main"><div class="main-content lit-style" itemscope="itemscope" itemtype="http://schema.org/CreativeWork"><div class="meta-content fm-sec"><div class="fm-sec"><h1 id="_NBK1231_"><span class="title" itemprop="name">Isolated Methylmalonic Acidemia</span></h1><div itemprop="alternativeHeadline" class="subtitle whole_rhythm">Synonym: Isolated Methylmalonic Aciduria</div><p class="contribs">Manoli I, Sloan JL, Venditti CP.</p><p class="fm-aai"><a href="#_NBK1231_pubdet_">Publication Details</a></p><p><em>Estimated reading time: 1 hour, 33 minutes</em></p></div></div><div class="jig-ncbiinpagenav body-content whole_rhythm" data-jigconfig="allHeadingLevels: ['h2'],smoothScroll: false" itemprop="text"><div id="mma.Summary" itemprop="description"><h2 id="_mma_Summary_">Summary</h2><div><h4 class="inline">Clinical characteristics.</h4><p>For this <i>GeneReview</i>, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (<i>mut</i><sup>0</sup> enzymatic subtype or <i>mut</i><sup>&#x02013;</sup> enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-cobalamin (<i>cblA</i>, <i>cblB</i>, or <i>cblD</i>-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the advent of newborn screening, common phenotypes included:</p><ul><li class="half_rhythm"><div>Infantile/non-B<sub>12</sub>-responsive form (<i>mut<sup>0</sup></i> enzymatic subtype, <i>cblB</i>), the most common phenotype, associated with infantile-onset lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation of protein-containing feeds. Without appropriate treatment, the infantile/non-B<sub>12</sub>-responsive phenotype could rapidly progress to coma due to hyperammonemic encephalopathy.</div></li><li class="half_rhythm"><div>Partially deficient or B<sub>12</sub>-responsive phenotypes (<i>mut<sup>&#x02013;</sup></i> enzymatic subtype, <i>cblA</i>, <i>cblB</i> [rare], <i>cblD</i>-MMA), in which symptoms occur in the first few months or years of life and are characterized by feeding problems, failure to thrive, hypotonia, and developmental delay marked by episodes of metabolic decompensation</div></li><li class="half_rhythm"><div>Methylmalonyl-CoA epimerase deficiency, in which findings range from complete absence of symptoms to severe metabolic acidosis. Affected individuals can also develop ataxia, dysarthria, hypotonia, mild spastic paraparesis, and seizures.</div></li></ul><p>In those individuals diagnosed by newborn screening and treated from an early age, there appears to be decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental outcome, and lower incidence of movement disorders and irreversible cerebral damage. However, secondary complications may still occur and can include intellectual disability, tubulointerstitial nephritis with progressive impairment of renal function, "metabolic stroke" (bilateral lacunar infarction of the basal ganglia during acute metabolic decompensation), pancreatitis, growth failure, functional immune impairment, bone marrow failure, optic nerve atrophy, arrhythmias and/or cardiomyopathy (dilated or hypertrophic), liver steatosis/fibrosis/cancer, and renal cancer.</p></div><div><h4 class="inline">Diagnosis/testing.</h4><p>The diagnosis of isolated MMA is established in a proband by identification of biallelic pathogenic variants in <i>MCEE</i>, <i>MMAA</i>, <i>MMAB</i>, <i>MMADHC</i>, or <i>MMUT</i> or (in some instances) by significantly reduced activity of one of the following enzymes: methylmalonyl-CoA mutase, methylmalonyl-CoA mutase enzyme cofactor 5'-deoxyadenosylcobalamin, or methylmalonyl-CoA epimerase. Because of its relatively high sensitivity, easier accessibility, and noninvasive nature, molecular genetic testing can obviate the need for enzymatic testing in most instances.</p></div><div><h4 class="inline">Management.</h4><p><i>Treatment of manifestations&#x000a0;/ Prevention of primary manifestations</i>: When isolated MMA is suspected during the diagnostic evaluation due to elevated propionylcarnitine (C3) on a newborn blood spot, metabolic treatment should be initiated immediately, while the suspected diagnosis is being confirmed. Development and evaluation of treatment plans, training and education of affected individuals and their families, and avoidance of side effects of dietary treatment (i.e., malnutrition, growth failure) require a multidisciplinary approach by experienced subspecialists from a specialized metabolic center. The main principles of treatment are to provide supplemental vitamin B<sub>12</sub> to those who are known to be vitamin B<sub>12</sub> responsive; restrict natural protein, particularly of propiogenic amino acid precursors, while maintaining a high-calorie diet; address feeding difficulties, recurrent vomiting, and growth failure; provide supplemental carnitine to those with carnitine deficiency; reduce propionate production from gut flora; and provide emergency treatment during episodes of acute decompensation with the goal of averting catabolism and minimizing central nervous system injury. In those with significant metabolic instability and/or renal failure, liver and/or renal transplantation may be considered.</p><p><i>Prevention of secondary complications</i>: MedicAlert<sup>&#x000ae;</sup> bracelets and up-to-date, easily accessed, detailed emergency treatment and presurgical protocols to facilitate care.</p><p><i>Surveillance</i>: Regular evaluations by a metabolic specialist and metabolic dietician; screening laboratory testing, including plasma amino acids, plasma and urine MMA levels, serum acylcarnitine profile and free and total carnitine levels, blood chemistries, and complete blood count at least every six months to one year, or more frequently in infants or in those who are unstable or require frequent changes in dietary management; measurement of renal function at least annually or as clinically indicated; assessment for liver disease at least annually or as clinically indicated; assessment of developmental progress and for signs of movement disorder at each visit; ophthalmology evaluation to monitor for optic atrophy at least annually or as clinically indicated; audiology evaluation at least annually in childhood and adolescence or as clinically indicated.</p><p><i>Agents/circumstances to avoid</i>: Fasting, stress, increased dietary protein, supplementation with the individual propiogenic amino acids valine and isoleucine, nephrotoxic medications or agents, and agents that prolong QTc in the EKG.</p><p><i>Evaluation of relatives at risk</i>: For at-risk newborn sibs when prenatal testing was not performed: in parallel with newborn screening, measure serum methylmalonic acid, urine organic acids, plasma acylcarnitine profile, plasma amino acids, and serum B<sub>12</sub>; test for the familial isolated methylmalonic acidemia-causing pathogenic variants if biochemistry is abnormal.</p><p><i>Pregnancy management for an affected mother</i>: Monitor for complications including acute decompensation or hyperammonemia, deterioration of renal function, and obstetric complications including preeclampsia and preterm delivery.</p><p><i>Pregnancy management for an unaffected mother with an affected fetus</i>: Oral and intramuscular vitamin B<sub>12</sub> has been administered to women pregnant with a fetus with vitamin B<sub>12</sub>-responsive MMA, resulting in decreased maternal MMA urine output; however, further study of this treatment is needed.</p></div><div><h4 class="inline">Genetic counseling.</h4><p>All forms of isolated MMA are inherited in an autosomal recessive manner. If both parents are known to be heterozygous for an isolated MMA-causing pathogenic variant, each sib of an affected individual has at conception a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of inheriting neither of the familial pathogenic variants. Once the isolated MMA-causing pathogenic variants have been identified in an affected family member, molecular genetic carrier testing and prenatal/preimplantation genetic testing are possible.</p></div></div><div id="mma.GeneReview_Scope"><h2 id="_mma_GeneReview_Scope_"><i>GeneReview</i> Scope</h2><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTisolatedmethylmalonicacidemiaaci"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemiaaci/?report=objectonly" target="object" title="Table. " class="img_link icnblk_img" rid-ob="figobmmaTisolatedmethylmalonicacidemiaaci"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.isolated_methylmalonic_acidemiaaci"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemiaaci/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiaaci">Table. </a></h4><p class="float-caption no_bottom_margin">Isolated Methylmalonic Acidemia/Aciduria: Included Phenotypes </p></div></div></div><div id="mma.Diagnosis"><h2 id="_mma_Diagnosis_">Diagnosis</h2><p>For this <i>GeneReview</i>, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid (<a class="figpopup" href="/books/NBK1231/figure/mma.F1/?report=objectonly" target="object" rid-figpopup="figmmaF1" rid-ob="figobmmaF1">Figure 1</a>).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figmmaF1" co-legend-rid="figlgndmmaF1"><a href="/books/NBK1231/figure/mma.F1/?report=objectonly" target="object" title="Figure 1. " class="img_link icnblk_img figpopup" rid-figpopup="figmmaF1" rid-ob="figobmmaF1"><img class="small-thumb" src="/books/NBK1231/bin/mma-Image001.gif" src-large="/books/NBK1231/bin/mma-Image001.jpg" alt="Figure 1. . Major pathway of the conversion of propionyl-CoA into succinyl-CoA." /></a><div class="icnblk_cntnt" id="figlgndmmaF1"><h4 id="mma.F1"><a href="/books/NBK1231/figure/mma.F1/?report=objectonly" target="object" rid-ob="figobmmaF1">Figure 1. </a></h4><p class="float-caption no_bottom_margin">Major pathway of the conversion of propionyl-CoA into succinyl-CoA. The biotin-dependent enzyme propionyl-CoA carboxylase converts propionyl-CoA into D-methylmalonyl-CoA, which is then racemized into L-methylmalonyl-CoA and isomerized into succinyl-CoA, <a href="/books/NBK1231/figure/mma.F1/?report=objectonly" target="object" rid-ob="figobmmaF1">(more...)</a></p></div></div><div id="mma.Suggestive_Findings"><h3>Suggestive Findings</h3><div id="mma.Scenario_1_Abnormal_Newborn_Screenin"><h4>Scenario 1: Abnormal Newborn Screening (NBS) Result</h4><p><b>Newborn screening test.</b> NBS for isolated methylmalonic acidemia is primarily based on quantification of the analyte propionylcarnitine (C3) on dried blood spots.</p><p>Elevated C3 values above the cutoff reported by the screening laboratory are considered positive and require follow-up biochemical testing (see also the <a href="https://www.acmg.net/PDFLibrary/Elevated%20C3%20Acylcarnitine%20PA%20and%20MA.pdf" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ACMG ACT Sheet</a>).</p><ul><li class="half_rhythm"><div>In the US, individual state NBS programs determine cutoffs based on analytic and other considerations, under the guidance of the CDC Newborn Screening Quality Assurance Program (NSQAP) and Association of Public Health Laboratories (APHL) [<a class="bibr" href="#mma.REF.mchugh.2011.230" rid="mma.REF.mchugh.2011.230">McHugh et al 2011</a>, <a class="bibr" href="#mma.REF.held.2022.13" rid="mma.REF.held.2022.13">Held et al 2022</a>].</div></li><li class="half_rhythm"><div>Since propionylcarnitine is one of the analytes most frequently responsible for false positive results, ratios including C3/C2, C3/C0, C3/C16, C3/glycine, or C3/methionine are recommended in combination with high blood concentration of C3 as decision criteria for "positive" testing in newborn screening acylcarnitine analysis by MS/MS for methylmalonic acidemia and propionic acidemia [<a class="bibr" href="#mma.REF.gavrilov.2020.33" rid="mma.REF.gavrilov.2020.33">Gavrilov et al 2020</a>].</div></li><li class="half_rhythm"><div>Additional biomarkers such as C16:1OH (3-hydroxypalmitoleolyl-carnitine) or, more accurately, C17 (heptadecanoylcarnitine) have been suggested to improve the sensitivity of the first-tier newborn screening test [<a class="bibr" href="#mma.REF.mchugh.2011.230" rid="mma.REF.mchugh.2011.230">McHugh et al 2011</a>, <a class="bibr" href="#mma.REF.malvagia.2015.342" rid="mma.REF.malvagia.2015.342">Malvagia et al 2015</a>].</div></li><li class="half_rhythm"><div>Amino acid analysis of the dried blood spot will show normal methionine and elevated C3/methionine ratio.</div></li><li class="half_rhythm"><div>Precision newborn screening and avoidance of false positive results can be further improved with the utilization of the <a href="https://clir.mayo.edu/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Collaborative Laboratory Integrated Reports</a> software [<a class="bibr" href="#mma.REF.gavrilov.2020.33" rid="mma.REF.gavrilov.2020.33">Gavrilov et al 2020</a>].</div></li></ul><p><b>The following medical interventions</b> need to begin immediately on receipt of an abnormal NBS result while additional testing is performed to determine whether this is a true positive NBS result and to establish the diagnosis of isolated MMA definitively (see <a href="#mma.Management">Management</a>):</p><ul><li class="half_rhythm"><div>Prompt evaluation for prevention or treatment of possible hyperammonemia and metabolic ketoacidosis</div></li><li class="half_rhythm"><div>Daily intramuscular vitamin B<sub>12</sub> administration (Hydroxocobalamin is preferred over cyanocobalamin, especially in individuals with cobalamin C deficiency.)</div></li><li class="half_rhythm"><div>Initiation of a low-protein diet</div></li><li class="half_rhythm"><div>Carnitine supplementation</div></li></ul><p><b>Testing to consider after a positive NBS.</b> A positive C3 screening result is followed by testing for methylmalonic acid, 2-methylcitrate, and total homocysteine in the dried blood spot to differentiate isolated MMA from propionic acidemia and defects resulting in combined methylmalonic acidemia and homocystinuria [<a class="bibr" href="#mma.REF.turgeon.2010.1686" rid="mma.REF.turgeon.2010.1686">Turgeon et al 2010</a>, <a class="bibr" href="#mma.REF.weiss.2020.268" rid="mma.REF.weiss.2020.268">Weiss et al 2020</a>, <a class="bibr" href="#mma.REF.pajares.2021.195" rid="mma.REF.pajares.2021.195">Pajares et al 2021</a>].</p><p>Follow-up biochemical testing after an abnormal NBS typically demonstrates:</p><ul><li class="half_rhythm"><div>Elevated plasma methylmalonic acid (MMA) level</div></li><li class="half_rhythm"><div>Elevated levels of urine MMA and the presence of 3-hydroxypropionate, 2-methylcitrate, and tiglylglycine on urine organic acids</div></li><li class="half_rhythm"><div>Elevated concentrations of glycine and possibly alanine with normal methionine on plasma amino acids</div></li><li class="half_rhythm"><div>Elevated plasma concentration of propionylcarnitine (C3) and variable elevations in C4-dicarboxylic or methylmalonic/succinylcarnitine (C4DC) on plasma acylcarnitine profile</div></li><li class="half_rhythm"><div>Elevated plasma ammonia, metabolic ketoacidosis, pancytopenia, lactic acidosis, hypoglycemia (in some cases)</div></li><li class="half_rhythm"><div>Normal serum B<sub>12</sub> and plasma homocysteine</div></li></ul><p>Note: (1) Although plasma and/or urine methylmalonic acid concentration can be precisely quantitated (see <a href="/books/NBK1231/table/mma.T.methylmalonic_acid_concentration_i/?report=objectonly" target="object" rid-ob="figobmmaTmethylmalonicacidconcentrationi">Table 1</a>), this is generally not needed immediately for diagnostic purposes. (2) If MMA is confirmed, further biochemical testing of plasma homocysteine and serum vitamin B<sub>12</sub> (in both the newborn and the mother) helps further differentiate the cause of MMA (see <a class="figpopup" href="/books/NBK1231/figure/mma.F2/?report=objectonly" target="object" rid-figpopup="figmmaF2" rid-ob="figobmmaF2">Figure 2</a>, left two columns).</p><div class="iconblock whole_rhythm clearfix ten_col fig" id="figmmaF2" co-legend-rid="figlgndmmaF2"><a href="/books/NBK1231/figure/mma.F2/?report=objectonly" target="object" title="Figure 2. " class="img_link icnblk_img figpopup" rid-figpopup="figmmaF2" rid-ob="figobmmaF2"><img class="small-thumb" src="/books/NBK1231/bin/mma-Image002.gif" src-large="/books/NBK1231/bin/mma-Image002.jpg" alt="Figure 2. . An algorithm of conditions to be considered in the differential diagnosis of elevated serum or urine methylmalonic acid detected either during the follow up of an increased propionylcarnitine (C3) on newborn screening or following a positive urine organic acid screen in a symptomatic individual." /></a><div class="icnblk_cntnt" id="figlgndmmaF2"><h4 id="mma.F2"><a href="/books/NBK1231/figure/mma.F2/?report=objectonly" target="object" rid-ob="figobmmaF2">Figure 2. </a></h4><p class="float-caption no_bottom_margin">An algorithm of conditions to be considered in the differential diagnosis of elevated serum or urine methylmalonic acid detected either during the follow up of an increased propionylcarnitine (C3) on newborn screening or following a positive urine organic <a href="/books/NBK1231/figure/mma.F2/?report=objectonly" target="object" rid-ob="figobmmaF2">(more...)</a></p></div></div><p>If follow-up biochemical testing supports the likelihood of isolated methylmalonic acidemia, additional testing is required to establish the diagnosis (see <a href="#mma.Establishing_the_Diagnosis">Establishing the Diagnosis</a>).</p></div><div id="mma.Scenario_2_Symptomatic_Individual"><h4>Scenario 2: Symptomatic Individual</h4><p>A symptomatic individual may present with clinical findings associated with an attenuated MMA phenotype or untreated infantile-onset MMA (see <b>Note</b>). Onset of symptoms can range from the first days of life to adulthood [<a class="bibr" href="#mma.REF.k_lker.2015a.1041" rid="mma.REF.k_lker.2015a.1041">K&#x000f6;lker et al 2015a</a>].</p><p><b>Note:</b> Infantile-onset MMA may be untreated for any of the following reasons: NBS was not performed; NBS yielded a false negative result; caregivers were not adherent to recommended treatment following a positive NBS result.</p><p>Supportive &#x02013; but nonspecific &#x02013; clinical findings, brain MRI findings, and preliminary laboratory findings can include the following.</p><p>
<b>Clinical findings</b>
</p><p>In neonates:</p><ul><li class="half_rhythm"><div>Lethargy</div></li><li class="half_rhythm"><div>Vomiting</div></li><li class="half_rhythm"><div>Hypotonia</div></li><li class="half_rhythm"><div>Hypothermia</div></li><li class="half_rhythm"><div>Respiratory distress</div></li><li class="half_rhythm"><div>Encephalopathy, coma</div></li><li class="half_rhythm"><div>Sepsis-like illness</div></li></ul><p>In older infants and children:</p><ul><li class="half_rhythm"><div>Failure to thrive&#x000a0;/ short stature</div></li><li class="half_rhythm"><div>Protein aversion</div></li><li class="half_rhythm"><div>Hypotonia</div></li><li class="half_rhythm"><div>Intellectual disability</div></li><li class="half_rhythm"><div>Acute and chronic neurologic symptoms including seizures and abnormal movements (choreoathetosis, dystonia, spasticity)</div></li><li class="half_rhythm"><div>Acute and chronic renal manifestations (dehydration, renal tubular acidosis, acute kidney injury)</div></li></ul><p><b>Brain MRI findings</b> include evidence of basal ganglia injury, specific to the globus pallidus [<a class="bibr" href="#mma.REF.baker.2015.194" rid="mma.REF.baker.2015.194">Baker et al 2015</a>], typically in older infants and children.</p><p>
<b>Preliminary laboratory findings</b>
</p><p>Acutely:</p><ul><li class="half_rhythm"><div>Severe ketoacidosis and lactic acidosis (may first present as a catastrophic/lethal ketoacidosis following an intercurrent illness)</div></li><li class="half_rhythm"><div>Hyperammonemia</div></li><li class="half_rhythm"><div>Anemia, neutropenia, and/or thrombocytopenia on complete blood count</div></li></ul><p>In older untreated infants and children: isolated renal tubular acidosis or chronic renal failure</p></div></div><div id="mma.Establishing_the_Diagnosis"><h3>Establishing the Diagnosis</h3><p>The diagnosis of isolated MMA <b>is established</b> in a proband by identification of biallelic pathogenic variants in one of the genes listed in <a href="/books/NBK1231/table/mma.T.molecular_genetic_testing_used_in/?report=objectonly" target="object" rid-ob="figobmmaTmoleculargenetictestingusedin">Table 2</a> on molecular genetic testing or &#x02013; in some instances &#x02013; by significantly reduced activity of the enzymes listed below and in <a href="/books/NBK1231/table/mma.T.methylmalonic_acid_concentration_i/?report=objectonly" target="object" rid-ob="figobmmaTmethylmalonicacidconcentrationi">Table 1</a>. Because of its relatively high sensitivity, easier accessibility, and noninvasive nature, molecular genetic testing can obviate the need for enzymatic testing, and is thus increasingly the preferred confirmatory test for isolated MMA.</p><p>Isolated MMA is caused by any ONE of the following:</p><ul><li class="half_rhythm"><div>Complete (<i>mut<sup>0</sup></i> enzymatic subtype) or partial (<i>mut<sup>&#x02013;</sup></i>) deficiency of the enzyme methylmalonyl-CoA mutase, encoded by <i>MMUT</i></div></li><li class="half_rhythm"><div>Diminished synthesis of the methylmalonyl-CoA mutase enzyme cofactor 5'-deoxyadenosylcobalamin, associated with <i>cblA</i>, <i>cblB</i>, or <i>cblD-</i>MMA complementation groups caused by biallelic pathogenic variants in <i>MMAA</i>, <i>MMAB</i>, or <i>MMADHC</i>, respectively</div></li><li class="half_rhythm"><div>Deficient activity of methylmalonyl-coenzyme A epimerase encoded by <i>MCEE</i></div></li></ul><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTmethylmalonicacidconcentrationi"><a href="/books/NBK1231/table/mma.T.methylmalonic_acid_concentration_i/?report=objectonly" target="object" title="Table 1. " class="img_link icnblk_img" rid-ob="figobmmaTmethylmalonicacidconcentrationi"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.methylmalonic_acid_concentration_i"><a href="/books/NBK1231/table/mma.T.methylmalonic_acid_concentration_i/?report=objectonly" target="object" rid-ob="figobmmaTmethylmalonicacidconcentrationi">Table 1. </a></h4><p class="float-caption no_bottom_margin">Methylmalonic Acid Concentration in Phenotypes and Enzymatic Subtypes of Methylmalonic Acidemia </p></div></div><p>Molecular genetic testing (see <a href="/books/NBK1231/table/mma.T.molecular_genetic_testing_used_in/?report=objectonly" target="object" rid-ob="figobmmaTmoleculargenetictestingusedin">Table 2</a>) can be used to establish the diagnosis of isolated MMA by identifying biallelic pathogenic variants in one of the genes listed in <a href="/books/NBK1231/table/mma.T.molecular_genetic_testing_used_in/?report=objectonly" target="object" rid-ob="figobmmaTmoleculargenetictestingusedin">Table 2</a> and confirming carrier status in the parents.</p><div id="mma.Molecular_Genetic_Testing_Approaches"><h4>Molecular Genetic Testing Approaches</h4><p><b>Scenario 1: Abnormal newborn screening (NBS) result.</b> When NBS results and other laboratory findings suggest the diagnosis of isolated MMA, molecular genetic testing approaches include use of a <b>multigene panel</b>.</p><p><b>A methylmalonic acidemia</b>
<b>multigene panel</b> that includes the genes listed in <a href="/books/NBK1231/table/mma.T.molecular_genetic_testing_used_in/?report=objectonly" target="object" rid-ob="figobmmaTmoleculargenetictestingusedin">Table 2</a> and other genes of interest (see <a href="#mma.Differential_Diagnosis">Differential Diagnosis</a>) is most likely to identify the genetic cause of the condition while limiting identification of variants of uncertain significance and pathogenic variants in genes that do not explain the underlying phenotype. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include genes not associated with the condition discussed in this <i>GeneReview</i>. (3) In some laboratories, panel options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/duplication analysis, and/or other non-sequencing-based tests.</p><p>For an introduction to multigene panels click <a href="/books/n/gene/app5/?report=reader#app5.Multigene_Panels">here</a>. More detailed information for clinicians ordering genetic tests can be found <a href="/books/n/gene/app5/?report=reader#app5.Multigene_Panels_FAQs">here</a>.</p><p><b>Scenario 2: Symptomatic individual.</b> For a symptomatic individual who has findings associated with attenuated isolated MMA OR untreated infantile-onset isolated MMA (see Suggestive Findings, <a href="#mma.Scenario_2_Symptomatic_Individual">Scenario 2</a>, <b>Note</b>), a <b>methylmalonic acidemia multigene panel</b> should be pursued, as detailed above. When a molecular diagnosis is not reached by panel testing, <b>comprehensive</b>
<b>genomic testing</b> (which does not require the clinician to determine which gene[s] are likely involved) is an option. <b>Exome sequencing</b> is most commonly used; <b>genome sequencing</b> is also possible.</p><p>For an introduction to comprehensive genomic testing click <a href="/books/n/gene/app5/?report=reader#app5.Comprehensive_Genomic_Testing">here</a>. More detailed information for clinicians ordering genomic testing can be found <a href="/books/n/gene/app5/?report=reader#app5.Comprehensive_Genomic_Testing_1">here</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTmoleculargenetictestingusedin"><a href="/books/NBK1231/table/mma.T.molecular_genetic_testing_used_in/?report=objectonly" target="object" title="Table 2. " class="img_link icnblk_img" rid-ob="figobmmaTmoleculargenetictestingusedin"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.molecular_genetic_testing_used_in"><a href="/books/NBK1231/table/mma.T.molecular_genetic_testing_used_in/?report=objectonly" target="object" rid-ob="figobmmaTmoleculargenetictestingusedin">Table 2. </a></h4><p class="float-caption no_bottom_margin">Molecular Genetic Testing Used in Isolated Methylmalonic Acidemia </p></div></div></div><div id="mma.Responsiveness_to_Vitamin_B12"><h4>Responsiveness to Vitamin B<sub>12</sub></h4><p>In vivo responsiveness to vitamin B<sub>12</sub> should be determined in all affected individuals, following the proposed protocol by <a class="bibr" href="#mma.REF.fowler.2008.350" rid="mma.REF.fowler.2008.350">Fowler et al [2008]</a>, according to the E-IMD guidelines [<a class="bibr" href="#mma.REF.baumgartner.2014.130" rid="mma.REF.baumgartner.2014.130">Baumgartner et al 2014</a>, <a class="bibr" href="#mma.REF.forny.2021.566" rid="mma.REF.forny.2021.566">Forny et al 2021</a>].</p><ul><li class="half_rhythm"><div>When stable, affected individuals can be given 1.0 mg of hydroxocobalamin (OH-Cbl) (see <b>Note</b>) intramuscularly every day for three to five days or longer, followed by assessment of production of MMA and related metabolites (3-OH-propionic, 2-methylcitrate) by serial urine organic acid analyses and/or measurement of plasma concentrations of MMA, propionylcarnitine, and homocysteine. At least three samples on different days should be obtained at baseline and over the course of the following one to two weeks and mean pre- and post-concentrations compared. Protein and energy intake should be specified.</div></li><li class="half_rhythm"><div>A significant (&#x0003e;50%) reduction in plasma or urine mean methylmalonic acid concentration(s) is considered indicative of responsiveness [<a class="bibr" href="#mma.REF.fowler.2008.350" rid="mma.REF.fowler.2008.350">Fowler et al 2008</a>].</div></li><li class="half_rhythm"><div>In vivo response was reported in all individuals with <i>cblA</i> and only rare individuals with <i>cblB</i>, who have the C terminal pathogenic variants <a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiano">c.700C&#x0003e;T (p.Gln234Ter)</a> or <a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiano">c.656_659del (p.Tyr219SerfsTer4)</a> in <i>MMAB</i> [<a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al 2007</a>, <a class="bibr" href="#mma.REF.forny.2021.566" rid="mma.REF.forny.2021.566">Forny et al 2021</a>, <a class="bibr" href="#mma.REF.h_rster.2021.193" rid="mma.REF.h_rster.2021.193">H&#x000f6;rster et al 2021</a>].</div></li></ul><p><b>Note:</b> Hydroxocobalamin (not cyanocobalamin) is the preferred preparation for treatment of methylmalonic acidemia; if the in vivo response to intramuscular hydroxocobalamin is questionable or borderline, vitamin B<sub>12</sub> administration should be continued and a skin biopsy obtained to isolate fibroblasts to assess B<sub>12</sub> responsiveness by <sup>14</sup>C propionate incorporation in vitro.</p></div><div id="mma.Enzymatic_Testing"><h4>Enzymatic Testing</h4><p>Cellular biochemical testing on skin fibroblasts was historically the gold standard for determining the MMA subtype and B<sub>12</sub> responsiveness in vitro, although molecular genetic testing is now more widely used as the first diagnostic step. Enzymatic testing is useful when molecular genetic testing fails to provide a firm diagnosis to guide management. While the in vitro cellular assay can provide some insight into responsiveness to exogenous administration of cobalamin, it is not always predictive of the in vivo response.</p><p>See <a href="#mma.Therapies_Under_Investigation">Therapies Under Investigation</a> for information about a surrogate biomarker of disease severity that is currently being evaluated.</p></div></div></div><div id="mma.Clinical_Characteristics"><h2 id="_mma_Clinical_Characteristics_">Clinical Characteristics</h2><div id="mma.Clinical_Description"><h3>Clinical Description</h3><p>The phenotypes of isolated methylmalonic acidemia (MMA) described below that are associated with the enzymatic subtypes <i>mut<sup>0</sup></i>, <i>mut<sup>&#x02013;</sup></i>, <i>cblA</i>, <i>cblB</i>, and <i>cblD</i>-MMA share clinical presentations and a natural history characterized by periods of relative health and intermittent metabolic decompensation, usually associated with intercurrent infections and stress [<a class="bibr" href="#mma.REF.zwickler.2012.797" rid="mma.REF.zwickler.2012.797">Zwickler et al 2012</a>]. Each such decompensation can be life threatening. <a href="/books/NBK1231/table/mma.T.phenotype_correlations_by_gene_and/?report=objectonly" target="object" rid-ob="figobmmaTphenotypecorrelationsbygeneand">Table 3</a> reviews the phenotypes, causative genes, enzymatic subtypes, and clinical correlations that will be discussed further in this section.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTphenotypecorrelationsbygeneand"><a href="/books/NBK1231/table/mma.T.phenotype_correlations_by_gene_and/?report=objectonly" target="object" title="Table 3. " class="img_link icnblk_img" rid-ob="figobmmaTphenotypecorrelationsbygeneand"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.phenotype_correlations_by_gene_and"><a href="/books/NBK1231/table/mma.T.phenotype_correlations_by_gene_and/?report=objectonly" target="object" rid-ob="figobmmaTphenotypecorrelationsbygeneand">Table 3. </a></h4><p class="float-caption no_bottom_margin">Phenotype Correlations by Gene and Enzymatic Subtype of Isolated Methylmalonic Acidemia </p></div></div><div id="mma.Effect_of_Newborn_Screening"><h4>Effect of Newborn Screening</h4><p>Decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental outcome, and lower incidence of movement disorders and irreversible cerebral damage were recorded in affected individuals identified through expanded NBS, though a number of infants with the <i>mut<sup>0</sup></i> enzymatic subtype present clinically before the NBS results become available [<a class="bibr" href="#mma.REF.leonard.2003.s21" rid="mma.REF.leonard.2003.s21">Leonard et al 2003</a>, <a class="bibr" href="#mma.REF.dionisivici.2006.383" rid="mma.REF.dionisivici.2006.383">Dionisi-Vici et al 2006</a>, <a class="bibr" href="#mma.REF.heringer.2016.341" rid="mma.REF.heringer.2016.341">Heringer et al 2016</a>]. Limited observations in sibs with the <i>cblA</i> enzymatic subtype suggest that the IQs of the individuals treated from the newborn period were significantly higher than those of their older affected sibs who were diagnosed after the onset of symptoms [<a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al 2007</a>].</p></div><div id="mma.Common_Phenotypes_and_Associated_Fea"><h4>Common Phenotypes and Associated Features</h4><p>As described prior to newborn screening (NBS) availability, the common phenotypes and associated features of isolated MMA included the following.</p><p><b>Infantile/non-B<sub>12</sub>-responsive phenotype (<i>mut<sup>0</sup></i> enzymatic subtype, <i>cblB</i>).</b> The catastrophic neonatal presentation of isolated MMA can result in death despite aggressive intervention. Infants with the B<sub>12</sub>-responsive <i>mut<sup>&#x02013;</sup></i> enzymatic subtype or <i>cblA</i> can also present with an acute neonatal crisis.</p><ul><li class="half_rhythm"><div>The most common phenotype of isolated MMA presents during infancy. Infants are normal at birth but develop lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation of protein-containing feeds.</div></li><li class="half_rhythm"><div>This can rapidly progress to coma due to hyperammonemic encephalopathy, if untreated.</div></li><li class="half_rhythm"><div>Laboratory findings typically show a severe, high anion-gap metabolic acidosis, ketosis and ketonuria (highly abnormal in neonates and strongly suggestive of an organic aciduria), hyperammonemia, and hyperglycinemia [<a class="bibr" href="#mma.REF.k_lker.2015a.1041" rid="mma.REF.k_lker.2015a.1041">K&#x000f6;lker et al 2015a</a>].</div></li><li class="half_rhythm"><div>Dialysis may be needed especially if hyperammonemia is significant and persistent.</div></li><li class="half_rhythm"><div>Thrombocytopenia and neutropenia, suggestive of neonatal sepsis, can be seen.</div></li></ul><p><b>Partially deficient or B<sub>12</sub>-responsive phenotypes (<i>mut</i></b><i><sup>&#x02013;</sup></i><b>, <i>cblA</i>, <i>cblB</i> [rare], <i>cblD</i>-MMA).</b> This intermediate phenotype of isolated methylmalonic acidemia can occur in the first few months or years of life.</p><ul><li class="half_rhythm"><div>Affected infants can exhibit feeding problems (typically anorexia and vomiting), failure to thrive, hypotonia, and developmental delay.</div></li><li class="half_rhythm"><div>Some have protein aversion and/or clinical symptoms of vomiting and lethargy after protein intake.</div></li><li class="half_rhythm"><div>Until the diagnosis is established and treatment initiated, infants are at risk for a catastrophic decompensation (like that in neonates) [<a class="bibr" href="#mma.REF.lernerellis.2006.219" rid="mma.REF.lernerellis.2006.219">Lerner-Ellis et al 2006</a>, <a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al 2007</a>].</div></li><li class="half_rhythm"><div>During such an episode of metabolic decompensation, the child may die despite intensive intervention if prompt treatment specific for MMA (see <a href="#mma.Treatment_of_Manifestations">Treatment of Manifestations</a>) is not instituted and the symptoms are misdiagnosed (as, e.g., diabetic ketoacidosis) [<a class="bibr" href="#mma.REF.ciani.2000.2119" rid="mma.REF.ciani.2000.2119">Ciani et al 2000</a>].</div></li><li class="half_rhythm"><div>Before the availability of NBS, or in cases that are false negative on NBS due to borderline C3 elevations, infants with the <i>cblA</i> or <i>mut<sup>&#x02013;</sup></i> subtypes would present with a devastating injury in the basal ganglia in the context of acute metabolic crisis&#x000a0;/ encephalopathy (more specifically lacunar infarcts in the globus pallidus) resulting in a debilitating movement disorder [<a class="bibr" href="#mma.REF.korf.1986.364" rid="mma.REF.korf.1986.364">Korf et al 1986</a>, <a class="bibr" href="#mma.REF.heidenreich.1988.1022" rid="mma.REF.heidenreich.1988.1022">Heidenreich et al 1988</a>].</div></li><li class="half_rhythm"><div>Individuals with partial enzymatic deficiency (<i>mut</i><sup>&#x02013;</sup>), <i>cblA</i>, or <i>cblB</i> can also present with isolated renal tubular acidosis or chronic renal failure [<a class="bibr" href="#mma.REF.dudley.1998.564" rid="mma.REF.dudley.1998.564">Dudley et al 1998</a>, <a class="bibr" href="#mma.REF.coman.2006.270" rid="mma.REF.coman.2006.270">Coman et al 2006</a>].</div></li></ul><p><b>Methylmalonyl-coenzyme A epimerase (MCEE) deficiency.</b> Findings in infants/children with biallelic pathogenic variants in <i>MCEE</i> have ranged from complete absence of symptoms to severe metabolic acidosis with increased MMA and 2-methylcitrate and ketones in the urine at initial presentation [<a class="bibr" href="#mma.REF.dobson.2006.327" rid="mma.REF.dobson.2006.327">Dobson et al 2006</a>, <a class="bibr" href="#mma.REF.gradinger.2007.1045" rid="mma.REF.gradinger.2007.1045">Gradinger et al 2007</a>, <a class="bibr" href="#mma.REF.heuberger.2019.1265" rid="mma.REF.heuberger.2019.1265">Heuberger et al 2019</a>].</p><ul><li class="half_rhythm"><div>Screening of a large cohort of individuals with undefined MMA identified ten individuals with MCEE deficiency with symptoms including metabolic ketoacidosis, hypoglycemia, seizures, developmental delay, and spasticity. Cardiomyopathy was reported in a single individual, with a similarly affected sib with biochemical but no clinical findings [<a class="bibr" href="#mma.REF.heuberger.2019.1265" rid="mma.REF.heuberger.2019.1265">Heuberger et al 2019</a>].</div></li><li class="half_rhythm"><div>Individuals with MCEE deficiency were not responsive to B<sub>12</sub> supplementation in vitro or in vivo and urine MMA concentrations ranged between 100 and 600 mmol/mol creatinine (normal: 0.3-1.1 mmol/mol) [<a class="bibr" href="#mma.REF.heuberger.2019.1265" rid="mma.REF.heuberger.2019.1265">Heuberger et al 2019</a>].</div></li><li class="half_rhythm"><div>A 78-year-old individual with Parkinson disease, dementia, and stroke was found to have <i>MCEE</i> biallelic pathogenic variants <a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiano">c.139C&#x0003e;T (p.Arg47Ter)</a> and <a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiano">c.419del (p.Lys140ArgfsTer6)</a>, associated with methylmalonic acidemia and increased plasma C3; he was not responsive to high-dose hydroxocobalamin [<a class="bibr" href="#mma.REF.andr_asson.2019.2631" rid="mma.REF.andr_asson.2019.2631">Andr&#x000e9;asson et al 2019</a>].</div></li></ul></div><div id="mma.Secondary_Complications"><h4>Secondary Complications</h4><p>Secondary complications can be observed in any enzymatic subtype but may be dependent on the specific subtype and degree of metabolic control and adherence (see <a href="/books/NBK1231/table/mma.T.phenotype_correlations_by_gene_and/?report=objectonly" target="object" rid-ob="figobmmaTphenotypecorrelationsbygeneand">Table 3</a>). Despite increased knowledge about isolated MMA and possibly earlier symptomatic diagnosis, isolated MMA continues to be associated with substantial morbidity and mortality [<a class="bibr" href="#mma.REF.de_baulny.2005.415" rid="mma.REF.de_baulny.2005.415">de Baulny et al 2005</a>, <a class="bibr" href="#mma.REF.dionisivici.2006.383" rid="mma.REF.dionisivici.2006.383">Dionisi-Vici et al 2006</a>, <a class="bibr" href="#mma.REF.k_lker.2015b.1059" rid="mma.REF.k_lker.2015b.1059">K&#x000f6;lker et al 2015b</a>, <a class="bibr" href="#mma.REF.tuncel.2018.765" rid="mma.REF.tuncel.2018.765">Tuncel et al 2018</a>] that correlates with the underlying defect [<a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al 2007</a>, <a class="bibr" href="#mma.REF.h_rster.2021.193" rid="mma.REF.h_rster.2021.193">H&#x000f6;rster et al 2021</a>]. Individuals with the <i>mut<sup>0</sup></i> and <i>cblB</i> subtypes have a higher rate of mortality and neurologic and other multisystem complications than those with the <i>mut<sup>&#x02013;</sup></i> and <i>cblA</i> subtypes. Multiorgan complications associated with secondary mitochondrial dysfunction accumulate with age and were shown to be associated with a higher total protein intake and imbalanced special metabolic food prescription [<a class="bibr" href="#mma.REF.manoli.2016b.386" rid="mma.REF.manoli.2016b.386">Manoli et al 2016b</a>, <a class="bibr" href="#mma.REF.molema.2018.1179" rid="mma.REF.molema.2018.1179">Molema et al 2018</a>, <a class="bibr" href="#mma.REF.haijes.2019a.730" rid="mma.REF.haijes.2019a.730">Haijes et al 2019a</a>, <a class="bibr" href="#mma.REF.molema.2021a.3622" rid="mma.REF.molema.2021a.3622">Molema et al 2021a</a>].</p><p>Therefore, primary and secondary biomarkers are important for monitoring affected individuals and supporting efficacy in therapeutic clinical trials [<a class="bibr" href="#mma.REF.longo.2022.132" rid="mma.REF.longo.2022.132">Longo et al 2022</a>] (see <a href="#mma.Therapies_Under_Investigation">Therapies Under Investigation</a> and <a href="#mma.Molecular_Genetics">Molecular Genetics</a>). As an example, plasma fibroblast growth factor 21 (FGF21) was shown to correlate with disease severity and long-term complications in different cohorts of affected individuals [<a class="bibr" href="#mma.REF.manoli.2018.e124351" rid="mma.REF.manoli.2018.e124351">Manoli et al 2018</a>, <a class="bibr" href="#mma.REF.molema.2018.1179" rid="mma.REF.molema.2018.1179">Molema et al 2018</a>, <a class="bibr" href="#mma.REF.manoli.2021.1522" rid="mma.REF.manoli.2021.1522">Manoli et al 2021</a>].</p><p>The major secondary complications include the following.</p><p><b>Intellectual disability.</b> Intellectual disability may or may not be present even in those with severe disease.</p><ul><li class="half_rhythm"><div>In one study about 50% of individuals with <i>mut<sup>0</sup></i> subtype, 85% with <i>mut</i><sup>&#x02013;</sup>, 48% with <i>cblA</i>, and 70% with <i>cblB</i> had an IQ above 90 [<a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al 2007</a>].</div></li><li class="half_rhythm"><div>In a natural history study, the mean FSIQ of all individuals with isolated MMA (n=37) was 85.0 &#x000b1; 20.68, which is in the low-average range (80&#x02264;IQ&#x02264;89) [<a class="bibr" href="#mma.REF.oshea.2012.e1541" rid="mma.REF.oshea.2012.e1541">O'Shea et al 2012</a>].</div><ul><li class="half_rhythm"><div>Individuals with <i>cblA</i> (n=7), <i>cblB</i> (n=6), and <i>mut</i> diagnosed prenatally or by NBS (n=3) had mean FSIQs in the average range (90&#x02264;IQ&#x02264;109).</div></li><li class="half_rhythm"><div>The age of disease onset, the presence of severe hyperammonemia at diagnosis, and a history of seizures were associated with more severe impairments.</div></li></ul></li></ul><p><b>Tubulointerstitial nephritis with progressive impairment of renal function.</b> All individuals with isolated MMA, even those who are mildly affected or who have received a liver allograft [<a class="bibr" href="#mma.REF.noone.2019.e13407" rid="mma.REF.noone.2019.e13407">Noone et al 2019</a>], are at risk of developing renal insufficiency [<a class="bibr" href="#mma.REF.cosson.2009.172" rid="mma.REF.cosson.2009.172">Cosson et al 2009</a>, <a class="bibr" href="#mma.REF.kruszka.2013.990" rid="mma.REF.kruszka.2013.990">Kruszka et al 2013</a>, <a class="bibr" href="#mma.REF.manoli.2013.13552" rid="mma.REF.manoli.2013.13552">Manoli et al 2013</a>, <a class="bibr" href="#mma.REF.morath.2013.227" rid="mma.REF.morath.2013.227">Morath et al 2013</a>, <a class="bibr" href="#mma.REF.dao.2021.220" rid="mma.REF.dao.2021.220">Dao et al 2021</a>, <a class="bibr" href="#mma.REF.h_rster.2021.193" rid="mma.REF.h_rster.2021.193">H&#x000f6;rster et al 2021</a>], which can progress to end-stage renal disease requiring kidney transplantation (see <a href="/books/NBK1231/table/mma.T.phenotype_correlations_by_gene_and/?report=objectonly" target="object" rid-ob="figobmmaTphenotypecorrelationsbygeneand">Table 3</a>).</p><ul><li class="half_rhythm"><div>Cystatin-C levels and age-appropriate equations to calculate estimated glomerular filtration rate (GFR) &#x02013; or preferably, measurement of GFR by iohexol clearance or other methods &#x02013; should be used for clinical monitoring, due to the fact that creatinine is a late marker of renal dysfunction in individuals with low muscle mass, as is seen in isolated MMA (see <a href="#mma.Surveillance">Surveillance</a>). This will allow for earlier referral to nephrology services and initiation of renoprotective measures &#x02013; including, importantly, blood pressure control.</div></li><li class="half_rhythm"><div>Renal tubular dysfunction presenting as a decrease in urine concentrating ability and acidification, hyporeninemic hypoaldosteronism, tubular acidosis type 4, and hyperkalemia have been reported in a number of affected individuals [<a class="bibr" href="#mma.REF.dao.2021.220" rid="mma.REF.dao.2021.220">Dao et al 2021</a>].</div></li><li class="half_rhythm"><div>Secondary mitochondrial dysfunction rather than direct nephrotoxicity of methylmalonic acid is hypothesized as the cause for renal disease [<a class="bibr" href="#mma.REF.atkuri.2009.3941" rid="mma.REF.atkuri.2009.3941">Atkuri et al 2009</a>, <a class="bibr" href="#mma.REF.mc_guire.2009.173" rid="mma.REF.mc_guire.2009.173">Mc Guire et al 2009</a>, <a class="bibr" href="#mma.REF.manoli.2013.13552" rid="mma.REF.manoli.2013.13552">Manoli et al 2013</a>, <a class="bibr" href="#mma.REF.zsengell_r.2014.2139" rid="mma.REF.zsengell_r.2014.2139">Zsengell&#x000e9;r et al 2014</a>].</div></li><li class="half_rhythm"><div>Comorbidities of renal disease including anemia, acidosis, hyperuricemia, secondary hyperparathyroidism, osteopenia/osteoporosis, hypertension, and short stature should be monitored regularly by a multidisciplinary care team (see <a href="#mma.Surveillance">Surveillance</a>).</div></li></ul><p><b>Neurologic findings.</b> Some individuals develop a "metabolic stroke" or bilateral lacunar infarction of the basal ganglia during acute metabolic decompensation, which can produce an incapacitating movement disorder.</p><ul><li class="half_rhythm"><div>
<b>Individuals who have not undergone solid organ transplant</b>
</div><ul><li class="half_rhythm"><div>The reported incidence in different cohorts is 17%-30% [<a class="bibr" href="#mma.REF.baumgarter.1995.138" rid="mma.REF.baumgarter.1995.138">Baumgarter &#x00026; Viardot 1995</a>, <a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al 2007</a>]. Distinct segments of the globus pallidus (globus pallidus externa) and sometimes the substantia nigra in the cerebral peduncles are affected, suggesting a non-uniform, cell-specific susceptibility as the underlying mechanism of injury [<a class="bibr" href="#mma.REF.baker.2015.194" rid="mma.REF.baker.2015.194">Baker et al 2015</a>].</div></li><li class="half_rhythm"><div>Delayed myelination, incomplete opercularization, subcortical white matter changes, cortical atrophy, and brain stem and cerebellar changes have also been described [<a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al 2007</a>, <a class="bibr" href="#mma.REF.harting.2008.368" rid="mma.REF.harting.2008.368">Harting et al 2008</a>, <a class="bibr" href="#mma.REF.radmanesh.2008.1054" rid="mma.REF.radmanesh.2008.1054">Radmanesh et al 2008</a>].</div></li></ul></li><li class="half_rhythm"><div>
<b>Individuals who have undergone liver and/or kidney transplantation</b>
</div><ul><li class="half_rhythm"><div>After transplant, individuals can still develop acute lesions of the basal ganglia without overt metabolic decompensation, suggesting that the enzyme deficiency in the brain remains unchanged and trapping of toxic metabolites in the central nervous system compartment can lead to injury despite other systemic benefits of the transplantation. It is therefore important to continue dietary restrictions and metabolic care [<a class="bibr" href="#mma.REF.chakrapani.2002.261" rid="mma.REF.chakrapani.2002.261">Chakrapani et al 2002</a>, <a class="bibr" href="#mma.REF.kaplan.2006.322" rid="mma.REF.kaplan.2006.322">Kaplan et al 2006</a>, <a class="bibr" href="#mma.REF.vernon.2014.899" rid="mma.REF.vernon.2014.899">Vernon et al 2014</a>].</div></li><li class="half_rhythm"><div>Neurotoxicity from anti-rejection medications, especially calcineurin inhibitors (e.g., tacrolimus), has been observed in individuals with MMA who have undergone solid organ transplantation. These include tremors, seizures, and posterior reversible encephalopathy syndrome [<a class="bibr" href="#mma.REF.molema.2020.89" rid="mma.REF.molema.2020.89">Molema et al 2020</a>]. This is important to consider because symptoms can improve with dose reduction/discontinuation of calcineurin inhibitors.</div></li></ul></li></ul><p><b>Pancreatitis.</b> Acute pancreatitis is a well-recognized complication of isolated MMA, with a reported incidence of 10%-27% in different cohorts [<a class="bibr" href="#mma.REF.marquard.2011.241" rid="mma.REF.marquard.2011.241">Marquard et al 2011</a>, <a class="bibr" href="#mma.REF.forny.2018.a24" rid="mma.REF.forny.2018.a24">Forny et al 2018</a>, <a class="bibr" href="#mma.REF.hwang.2021.37" rid="mma.REF.hwang.2021.37">Hwang et al 2021</a>]. It can occur acutely or chronically. Several affected individuals have recurrent pancreatitis episodes. Pancreatitis may be underrecognized because it can manifest nonspecifically with vomiting and abdominal pain. It is therefore recommended that acutely ill individuals with MMA undergo testing for lipase and amylase (see <a href="#mma.Management">Management</a>).</p><p><b>Growth failure</b> is frequent and multifactorial. It is the result of severe chronic illness and perhaps relative protein malnutrition that is complicated further by chronic renal failure. Many infants are more than three standard deviations below the mean for both length and weight [<a class="bibr" href="#mma.REF.manoli.2016b.386" rid="mma.REF.manoli.2016b.386">Manoli et al 2016b</a>].</p><ul><li class="half_rhythm"><div>Rarely, affected individuals have documented growth hormone (GH) deficiency, for which GH therapy has been used.</div></li><li class="half_rhythm"><div>GH therapy has also been used for its anabolic effects or as part of the management of chronic kidney disease [<a class="bibr" href="#mma.REF.alowain.2004.239" rid="mma.REF.alowain.2004.239">Al-Owain et al 2004</a>, <a class="bibr" href="#mma.REF.kao.2009.462" rid="mma.REF.kao.2009.462">Kao et al 2009</a>, <a class="bibr" href="#mma.REF.baumgartner.2014.130" rid="mma.REF.baumgartner.2014.130">Baumgartner et al 2014</a>].</div></li><li class="half_rhythm"><div>Response to GH therapy may vary; careful monitoring of the diet and metabolic parameters is necessary (see <a href="#mma.Management">Management</a>).</div></li></ul><p><b>Functional immune impairment</b> results in an increased susceptibility to severe infections, particularly by fungal and gram-negative organisms. Defects in both humoral and cellular immunity have been documented [<a class="bibr" href="#mma.REF.alizadeh_najjarbashi.2015.638" rid="mma.REF.alizadeh_najjarbashi.2015.638">Alizadeh Najjarbashi et al 2015</a>, <a class="bibr" href="#mma.REF.harrington.2016.345" rid="mma.REF.harrington.2016.345">Harrington et al 2016</a>, <a class="bibr" href="#mma.REF.altun.2022.e15082" rid="mma.REF.altun.2022.e15082">Altun et al 2022</a>].</p><p><b>Bone marrow failure.</b> During episodes of metabolic decompensation affected individuals can exhibit pancytopenia, with bone marrow hypoplasia and/or dysplasia that most frequently reverts to normal with supportive care [<a class="bibr" href="#mma.REF.bakshi.2018.687" rid="mma.REF.bakshi.2018.687">Bakshi et al 2018</a>]. Anemia due to chronic disease or iron deficiency or secondary to progressive renal failure is common. Essential amino acid deficiencies can be a contributing factor in some individuals [<a class="bibr" href="#mma.REF.k_lker.2015b.1059" rid="mma.REF.k_lker.2015b.1059">K&#x000f6;lker et al 2015b</a>].</p><p><b>Optic nerve atrophy.</b> Late-onset optic atrophy associated with acute or subacute visual loss, resembling the presentation of the mitochondrial disorder <a href="/books/n/gene/lhon/?report=reader">Leber hereditary optic neuropathy</a> (LHON), has been reported in 7%-11% of individuals with isolated MMA [<a class="bibr" href="#mma.REF.williams.2009.929" rid="mma.REF.williams.2009.929">Williams et al 2009</a>, <a class="bibr" href="#mma.REF.pinarsueiro.2010.s199" rid="mma.REF.pinarsueiro.2010.s199">Pinar-Sueiro et al 2010</a>, <a class="bibr" href="#mma.REF.traber.2011.344" rid="mma.REF.traber.2011.344">Traber et al 2011</a>, <a class="bibr" href="#mma.REF.martinez_alvarez.2016.98" rid="mma.REF.martinez_alvarez.2016.98">Martinez Alvarez et al 2016</a>] and up to 52% in a cohort of affected Middle Eastern individuals [<a class="bibr" href="#mma.REF.alowain.2019.313" rid="mma.REF.alowain.2019.313">Al-Owain et al 2019</a>]. Response to antioxidant therapies (idebenone, coenzyme Q<sub>10</sub>, and vitamin E) has been variable.</p><p>
<b>Cardiac complications</b>
</p><ul><li class="half_rhythm"><div><b>Arrhythmias or cardiomyopathy</b> (dilated or hypertrophic) have been reported in 10%-20% of individuals with isolated MMA, primarily <i>mut<sup>0</sup></i> or <i>mut-</i> (and <i>cblB</i> subtypes, as well as in the B<sub>12</sub>-responsive <i>cblA</i> subtype) [<a class="bibr" href="#mma.REF.prada.2011.862" rid="mma.REF.prada.2011.862">Prada et al 2011</a>, <a class="bibr" href="#mma.REF.chao.2012.243" rid="mma.REF.chao.2012.243">Chao et al 2012</a>, <a class="bibr" href="#mma.REF.h_rster.2021.193" rid="mma.REF.h_rster.2021.193">H&#x000f6;rster et al 2021</a>].</div></li><li class="half_rhythm"><div><b>Arterial hypertension</b> associated with chronic kidney disease is common and necessitates monitoring and early intervention for renoprotection [<a class="bibr" href="#mma.REF.k_lker.2015b.1059" rid="mma.REF.k_lker.2015b.1059">K&#x000f6;lker et al 2015b</a>, <a class="bibr" href="#mma.REF.park.2020.617451" rid="mma.REF.park.2020.617451">Park et al 2020</a>].</div></li><li class="half_rhythm"><div>Additional cardiometabolic risk factors, including obesity, insulin resistance, and hyperlipidemia, need to be monitored regularly to optimize cardiovascular health [<a class="bibr" href="#mma.REF.gancheva.2020.981" rid="mma.REF.gancheva.2020.981">Gancheva et al 2020</a>].</div></li></ul><p><b>Liver steatosis, fibrosis, and cancer.</b> Progressive liver toxicity associated with elevated transaminases (including GGT) and mild elevations of alpha-fetoprotein (AFP) has been observed in a number of individuals with isolated MMA. Liver ultrasound can show hepatomegaly and/or hyperechoic liver texture. Liver biopsies in three individuals showed steatosis, fibrosis, and (rarely) cirrhosis as early as age eight years [<a class="bibr" href="#mma.REF.imbard.2018.433" rid="mma.REF.imbard.2018.433">Imbard et al 2018</a>].</p><ul><li class="half_rhythm"><div>Liver neoplasms have been reported in five individuals, all severely affected (4 with <i>mut<sup>0</sup></i> subtype and 1 with <i>cblB</i>) [<a class="bibr" href="#mma.REF.cosson.2008.107" rid="mma.REF.cosson.2008.107">Cosson et al 2008</a>, <a class="bibr" href="#mma.REF.chan.2015.635" rid="mma.REF.chan.2015.635">Chan et al 2015</a>, <a class="bibr" href="#mma.REF.forny.2019.793" rid="mma.REF.forny.2019.793">Forny et al 2019</a>]:</div><ul><li class="half_rhythm"><div>Three children had hepatoblastoma (diagnosed at 4 months, 19 months, and 11 years of age).</div></li><li class="half_rhythm"><div>Two adults had hepatocellular carcinoma (diagnosed at age 22 years and 31 years).</div></li></ul></li><li class="half_rhythm"><div>Periodic screening (typically at least annually or as clinically indicated) including liver transaminases, serum AFP level, and liver ultrasound is recommended in individuals with severe MMA subtypes (see <a href="#mma.Surveillance">Surveillance</a>).</div></li></ul><p><b>Renal cancer.</b> A single case of a pediatric renal cell carcinoma has been reported in a female age six years with complete <i>MMUT</i> deficiency (<i>mut<sup>0</sup></i>), complicated by renal tubular acidosis, Stage 4 chronic renal disease, and hypercalcemia with increasing parathyroid hormone-related protein. Inactivating somatic variants in <i>TSC2</i> were identified in the tumor tissue [<a class="bibr" href="#mma.REF.potter.2017" rid="mma.REF.potter.2017">Potter et al 2017</a>].</p><p><b>Survival</b> in isolated methylmalonic acidemia has improved over time [<a class="bibr" href="#mma.REF.matsui.1983.857" rid="mma.REF.matsui.1983.857">Matsui et al 1983</a>, <a class="bibr" href="#mma.REF.van_der_meer.1994.903" rid="mma.REF.van_der_meer.1994.903">van der Meer et al 1994</a>, <a class="bibr" href="#mma.REF.baumgarter.1995.138" rid="mma.REF.baumgarter.1995.138">Baumgarter &#x00026; Viardot 1995</a>, <a class="bibr" href="#mma.REF.nicolaides.1998.508" rid="mma.REF.nicolaides.1998.508">Nicolaides et al 1998</a>, <a class="bibr" href="#mma.REF.k_lker.2015a.1041" rid="mma.REF.k_lker.2015a.1041">K&#x000f6;lker et al 2015a</a>]. Five-year survival improved from 33% in the 1970s to more than 80% in the 1990s.</p><ul><li class="half_rhythm"><div>Overall mortality was about 50% for those with the <i>mut<sup>0</sup></i> enzymatic subtype (median age of death: 2 years) and for the <i>cblB</i> enzymatic subtype (median age of death: 2.9 years) compared to 40% for the <i>mut<sup>&#x02013;</sup></i> enzymatic subtype (median age of death: 4.5 years) and only about 5% for the <i>cblA</i> enzymatic subtype (1 death at age 14 days) [<a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al 2007</a>].</div></li><li class="half_rhythm"><div>More recent reports from the European Registry and Network for Intoxication Type Metabolic Diseases notes a 6% mortality for <i>mut</i> MMA (combined <i>mut</i><sup>-</sup> and <i>mut<sup>0</sup></i> populations) and a 100% survival for those with the B<sub>12</sub>-responsive <i>cblA</i> subtype of MMA [<a class="bibr" href="#mma.REF.h_rster.2021.193" rid="mma.REF.h_rster.2021.193">H&#x000f6;rster et al 2021</a>].</div></li><li class="half_rhythm"><div>Improvements likely reflect changes in diagnosis and NBS, improved treatment guidelines for acute crises/hyperammonemia, optimized nutrition with gastrostomy tube feeding, access to intensive care, hemodialysis and N-carbamylglutamate for the management of hyperammonemia, as well as earlier referral and better morbidity and mortality associated with solid organ transplantation.</div></li></ul></div></div><div id="mma.GenotypePhenotype_Correlations"><h3>Genotype-Phenotype Correlations</h3><p>Precise genotype-phenotype correlations are difficult to determine since most affected individuals are compound heterozygotes and many pathogenic variants are not recurrent in the population.</p><p>
<b>
<i>MMAB</i>
</b>
</p><ul><li class="half_rhythm"><div class="half_rhythm"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiano"><b>c.556C&#x0003e;T (p.Arg186Trp)</b></a><b>.</b> This is the most common pathogenic variant, present in 29%-33% of alleles from European and North American cohorts [<a class="bibr" href="#mma.REF.lernerellis.2006.219" rid="mma.REF.lernerellis.2006.219">Lerner-Ellis et al 2006</a>, <a class="bibr" href="#mma.REF.forny.2022.1253" rid="mma.REF.forny.2022.1253">Forny et al 2022</a>].</div><div class="half_rhythm">Individuals homozygous for this pathogenic variant typically present in the neonatal period and are not responsive to hydroxocobalamin treatment.</div></li><li class="half_rhythm"><div class="half_rhythm"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiano"><b>c.700C&#x0003e;T (p.Gln234Ter)</b></a><b>.</b> Individuals with at least one c.700C&#x0003e;T (p.Gln234Ter) pathogenic variant generally have more variable, often later age of presentation/diagnosis (range: 2 days &#x02013; 6.5 years) and some affected individuals demonstrate a biochemical response to hydroxocobalamin therapy [<a class="bibr" href="#mma.REF.forny.2022.1253" rid="mma.REF.forny.2022.1253">Forny et al 2022</a>]. This variant is located in the last exon and may avoid nonsense-mediated decay, resulting in a partially functional protein.</div></li></ul><p><b><i>MMADHC.</i></b> Truncating pathogenic variants in the N-terminal region (exons 3, 4) cause isolated methylmalonic aciduria due to a defect in adenosylcobalamin synthesis; pathogenic variants elsewhere in this gene cause the other two biochemical phenotypes (see <a href="#mma.Genetically_Related_Allelic_Disorder">Genetically Related Disorders</a>).</p><p><b><i>MMUT</i>.</b> The phenomenon of interallelic complementation makes prediction of genotype/phenotype/enzyme activity difficult because some individuals who have two pathogenic variants can have a <i>mut<sup>&#x02013;</sup></i> enzymatic subtype in the compound state but a <i>mut<sup>0</sup></i> enzymatic subtype in the homozygous state [<a class="bibr" href="#mma.REF.acquaviva.2005.167" rid="mma.REF.acquaviva.2005.167">Acquaviva et al 2005</a>].</p><ul><li class="half_rhythm"><div>Persons with two truncating pathogenic variants usually have the <i>mut<sup>0</sup></i> enzymatic subtype.</div></li><li class="half_rhythm"><div>Most of the pathogenic variants identified in the N-terminal domain have been associated with <i>mut<sup>0</sup></i> enzymatic subtype of methylmalonic acidemia [<a class="bibr" href="#mma.REF.acquaviva.2005.167" rid="mma.REF.acquaviva.2005.167">Acquaviva et al 2005</a>, <a class="bibr" href="#mma.REF.forny.2016.745" rid="mma.REF.forny.2016.745">Forny et al 2016</a>]</div></li><li class="half_rhythm"><div>The <i>mut<sup>&#x02013;</sup></i> enzymatic subtype is known to be associated mostly, but not exclusively, with pathogenic variants in the adenosylcobalamin-binding C-terminal domain of the MMUT protein.</div></li><li class="half_rhythm"><div>The <i>mut<sup>&#x02013;</sup></i> enzymatic subtype pathogenic variant usually plays a dominant role when in compound heterozygous state with a <i>mut<sup>0</sup></i> enzymatic subtype pathogenic variant, given a OH-Cbl response in the in vitro assay [<a class="bibr" href="#mma.REF.lempp.2007.284" rid="mma.REF.lempp.2007.284">Lempp et al 2007</a>, <a class="bibr" href="#mma.REF.forny.2016.745" rid="mma.REF.forny.2016.745">Forny et al 2016</a>].</div></li><li class="half_rhythm"><div>A linker domain spanning residues 482-585 separates the N-terminal, or substrate (methylmalonyl-CoA) binding domain from the C-terminal cobalamin-binding domain. This linker region is less conserved and has a lower frequency of pathogenic variants [<a class="bibr" href="#mma.REF.forny.2016.745" rid="mma.REF.forny.2016.745">Forny et al 2016</a>].</div></li></ul><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTmmutpathogenicmissensevariants"><a href="/books/NBK1231/table/mma.T.mmut_pathogenic_missense_variants/?report=objectonly" target="object" title="Table 4. " class="img_link icnblk_img" rid-ob="figobmmaTmmutpathogenicmissensevariants"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.mmut_pathogenic_missense_variants"><a href="/books/NBK1231/table/mma.T.mmut_pathogenic_missense_variants/?report=objectonly" target="object" rid-ob="figobmmaTmmutpathogenicmissensevariants">Table 4. </a></h4><p class="float-caption no_bottom_margin"><i>MMUT</i> Pathogenic Missense Variants and Their Typical Enzymatic Subtype </p></div></div></div><div id="mma.Prevalence"><h3>Prevalence</h3><p>Several studies have estimated the birth prevalence of isolated methylmalonic acidemia. Urine screening for isolated methylmalonic acidemia in Quebec identified "symptomatic methylmalonic aciduria" in approximately 1:80,000 newborns screened [<a class="bibr" href="#mma.REF.sniderman.1999.675" rid="mma.REF.sniderman.1999.675">Sniderman et al 1999</a>].</p><p>The aggregate incidence from different newborn screening (NBS) programs in the US is reported as 1:159,614 [<a class="bibr" href="#mma.REF.therrell.2014.14" rid="mma.REF.therrell.2014.14">Therrell et al 2014</a>, <a class="bibr" href="#mma.REF.chapman.2018.106" rid="mma.REF.chapman.2018.106">Chapman et al 2018</a>]. A meta-analysis [<a class="bibr" href="#mma.REF.alm_si.2019.84" rid="mma.REF.alm_si.2019.84">Alm&#x000e1;si et al 2019</a>] confirmed that the detection rate of MMA and isolated MMA in North America, Europe and Asia-Pacific regions was &#x0003c;1:100,000, while rates in the Middle East, North Africa, and Japan were higher [<a class="bibr" href="#mma.REF.shigematsu.2002.39" rid="mma.REF.shigematsu.2002.39">Shigematsu et al 2002</a>].</p></div></div><div id="mma.Genetically_Related_Allelic_Disorder"><h2 id="_mma_Genetically_Related_Allelic_Disorder_">Genetically Related (Allelic) Disorders</h2><p>No phenotypes other than those discussed in this <i>GeneReview</i> are known to be associated with biallelic germline pathogenic variants in <i>MMUT</i>, <i>MMAA</i>, <i>MMAB</i>, or <i>MCEE.</i></p><p><i>MMADHC</i> biallelic pathogenic variants are also associated with <i>cblD</i>-combined (methylmalonic acidemia/aciduria and hyperhomocysteinemia/homocystinuria) and <i>cblD</i>-homocystinuria (hyperhomocysteinemia/homocystinuria), which are discussed in <a href="/books/n/gene/cbl/?report=reader">Disorders of Intracellular Cobalamin Metabolism</a>. The reason for the different phenotypes has been explained by reinitiation of translation at the Met62 or Met116 sites in the protein product of <i>MMADHC</i>, resulting in a truncated protein product that is sufficient for methylcobalamin synthesis [<a class="bibr" href="#mma.REF.jusufi.2014.841" rid="mma.REF.jusufi.2014.841">Jusufi et al 2014</a>].</p></div><div id="mma.Differential_Diagnosis"><h2 id="_mma_Differential_Diagnosis_">Differential Diagnosis</h2><p>Other genetic causes of elevated methylmalonic acidemia/aciduria are listed in <a href="/books/NBK1231/table/mma.T.genetic_disorders_with_methylmalon/?report=objectonly" target="object" rid-ob="figobmmaTgeneticdisorderswithmethylmalon">Table 5</a>. Biochemical findings typically allow differentiation of these disorders from isolated methylmalonic acidemia (MMA).</p><p>It is important to note that individuals with <i>cblF</i> or <i>cblJ</i> enzymatic subtypes can have decreased serum vitamin B<sub>12</sub> levels (the finding of decreased serum vitamin B<sub>12</sub> levels suggests a role for the lysosome in intestinal uptake of ingested cobalamin).</p><p>With the exception of <i>cblX</i> deficiency due to variants in <i>HCFC1</i>, which is inherited in an X-linked manner, the disorders summarized in <a href="/books/NBK1231/table/mma.T.genetic_disorders_with_methylmalon/?report=objectonly" target="object" rid-ob="figobmmaTgeneticdisorderswithmethylmalon">Table 5</a> are inherited in an autosomal recessive manner.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTgeneticdisorderswithmethylmalon"><a href="/books/NBK1231/table/mma.T.genetic_disorders_with_methylmalon/?report=objectonly" target="object" title="Table 5. " class="img_link icnblk_img" rid-ob="figobmmaTgeneticdisorderswithmethylmalon"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.genetic_disorders_with_methylmalon"><a href="/books/NBK1231/table/mma.T.genetic_disorders_with_methylmalon/?report=objectonly" target="object" rid-ob="figobmmaTgeneticdisorderswithmethylmalon">Table 5. </a></h4><p class="float-caption no_bottom_margin">Genetic Disorders with Methylmalonic Acidemia/Aciduria in the Differential Diagnosis of Isolated Methylmalonic Acidemia </p></div></div><p><b>"Benign" MMA, "atypical"MMA, and MMA of unknown cause.</b> Newborn screening (NBS) performed on urine rather than dried blood spots (a test method utilized in the province of Quebec and in the early years of the Massachusetts NBS program) identified infants with mild-to-moderate urinary methylmalonic acid excretion. Follow up of such infants revealed resolution in more than 50% of children, as well as an apparently benign, persistent, low-moderate methylmalonic acidemia in some [<a class="bibr" href="#mma.REF.giorgio.1976.310" rid="mma.REF.giorgio.1976.310">Giorgio et al 1976</a>, <a class="bibr" href="#mma.REF.coulombe.1981.26" rid="mma.REF.coulombe.1981.26">Coulombe et al 1981</a>, <a class="bibr" href="#mma.REF.ledley.1984.1015" rid="mma.REF.ledley.1984.1015">Ledley et al 1984</a>, <a class="bibr" href="#mma.REF.sniderman.1999.675" rid="mma.REF.sniderman.1999.675">Sniderman et al 1999</a>]. Relatively benign MMA with distal renal tubular acidosis (one sibship [<a class="bibr" href="#mma.REF.dudley.1998.564" rid="mma.REF.dudley.1998.564">Dudley et al 1998</a>]) and isolated methylmalonic aciduria with normal plasma concentrations have also been reported [<a class="bibr" href="#mma.REF.sewell.1996.203" rid="mma.REF.sewell.1996.203">Sewell et al 1996</a>, <a class="bibr" href="#mma.REF.martens.2002.219" rid="mma.REF.martens.2002.219">Martens et al 2002</a>].</p><p>These older reports were published before the identification of <i>ACSF3</i> pathogenic variants as a cause of CMAMMA (<i>c</i>ombined <i>m</i>alonic <i>a</i>nd <i>m</i>ethyl<i>m</i>alonic <i>a</i>cidemia; OMIM <a href="https://omim.org/entry/614265" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">614265</a>). Given the high minor allele frequency of known <i>ACSF3</i> pathogenic variants (MAF ~ 0.005, with a predicted incidence of 1:37,000) and benign clinical phenotypes in some individuals [<a class="bibr" href="#mma.REF.levtova.2019.107" rid="mma.REF.levtova.2019.107">Levtova et al 2019</a>], it is likely thaT many of these individuals harbor pathogenic variants in <i>ACSF3</i>. In a large cohort of individuals with MMA of unknown cause, 6% of individuals were found to have pathogenic variants in <i>ACSF3, SUCLG1,</i> or <i>TCN2</i> [<a class="bibr" href="#mma.REF.pupavac.2016.363" rid="mma.REF.pupavac.2016.363">Pupavac et al 2016</a>].</p><p>"Atypical" MMA has also been reported in an individual with mitochondrial depletion syndrome/complex IV deficiency and combined propionic and methylmalonic acidemia [<a class="bibr" href="#mma.REF.yano.2003.481" rid="mma.REF.yano.2003.481">Yano et al 2003</a>]. The phenotype has similarities to the phenotypes in individuals with <a href="/books/n/gene/sucla2-def/?report=reader">SUCLA2</a> or <a href="/books/n/gene/suclg1-mtddepl/?report=reader">SUCLG1 deficiency</a>.</p><p>Despite extensive genome and RNA sequencing, the genetic cause of isolated MMA and low propionate incorporation remains unknown in many individuals [<a class="bibr" href="#mma.REF.abdrabo.2020.432" rid="mma.REF.abdrabo.2020.432">Abdrabo et al 2020</a>].</p><p><b>Vitamin B<sub>12</sub> deficiency.</b> Individuals with vitamin B<sub>12</sub> deficiency can have elevated MMA and homocysteine and develop significant hematologic, neurologic, and psychiatric manifestations of B<sub>12</sub> deficiency. Serum methylmalonic acid and plasma total homocysteine are more sensitive markers than B<sub>12</sub> concentrations for detecting B<sub>12</sub> deficiency [<a class="bibr" href="#mma.REF.stabler.2013.149" rid="mma.REF.stabler.2013.149">Stabler 2013</a>].</p><p>Maternal B<sub>12</sub> deficiency can produce an MMA syndrome in an infant that ranges from severe encephalopathy to elevated serum concentration of propionylcarnitine (C3) detected by NBS [<a class="bibr" href="#mma.REF.chace.2001.2040" rid="mma.REF.chace.2001.2040">Chace et al 2001</a>, <a class="bibr" href="#mma.REF.campbell.2005.ecr45" rid="mma.REF.campbell.2005.ecr45">Campbell et al 2005</a>, <a class="bibr" href="#mma.REF.hinton.2010.162" rid="mma.REF.hinton.2010.162">Hinton et al 2010</a>, <a class="bibr" href="#mma.REF.scolamiero.2014.312" rid="mma.REF.scolamiero.2014.312">Scolamiero et al 2014</a>]. This metabolic abnormality can also occur in a breastfed infant of a vegan mother, in an infant born to a mother with subclinical pernicious anemia [<a class="bibr" href="#mma.REF.marble.2008.731" rid="mma.REF.marble.2008.731">Marble et al 2008</a>], and in infants born to mothers who have had gastric bypass surgery [<a class="bibr" href="#mma.REF.grange.1994.311" rid="mma.REF.grange.1994.311">Grange &#x00026; Finlay 1994</a>, <a class="bibr" href="#mma.REF.celiker.2009.640" rid="mma.REF.celiker.2009.640">Celiker &#x00026; Chawla 2009</a>, <a class="bibr" href="#mma.REF.gonz_lez.2016.721" rid="mma.REF.gonz_lez.2016.721">Gonz&#x000e1;lez et al 2016</a>]. The mother does not necessarily have a very low serum concentration of vitamin B<sub>12</sub>. Intramuscular vitamin B<sub>12</sub> replacement therapy to normalize vitamin B<sub>12</sub> serum concentration reverses the metabolic abnormality.</p><p>It is important to screen pregnant mothers by testing maternal serum B<sub>12</sub>, as well as serum methylmalonic acid and plasma total homocysteine, especially in all infants with positive NBS for elevated propionylcarnitine (C3) [<a class="bibr" href="#mma.REF.hinton.2010.162" rid="mma.REF.hinton.2010.162">Hinton et al 2010</a>, <a class="bibr" href="#mma.REF.held.2022.13" rid="mma.REF.held.2022.13">Held et al 2022</a>]. The addition of second-tier strategies of measuring methylmalonic/3-OH-propionic/methylcitric and homocysteine in dried blood spots can greatly improve detection of acquired vitamin B<sub>12</sub> deficiency during NBS and allow treatment to prevent serious neurologic manifestations that can result from prolonged B<sub>12</sub> deficiency in both infant and mother [<a class="bibr" href="#mma.REF.gramer.2020.165" rid="mma.REF.gramer.2020.165">Gramer et al 2020</a>, <a class="bibr" href="#mma.REF.pajares.2021.195" rid="mma.REF.pajares.2021.195">Pajares et al 2021</a>].</p><p><b>Reye-like syndrome.</b> A Reye-like syndrome of hepatomegaly and obtundation in the face of a mild intercurrent infection can be seen as an unrecognized presentation of a number of inborn errors of metabolism, including isolated MMA [<a class="bibr" href="#mma.REF.chang.2000.295" rid="mma.REF.chang.2000.295">Chang et al 2000</a>].</p></div><div id="mma.Management"><h2 id="_mma_Management_">Management</h2><p>Consensus guidelines on the diagnosis, management, and follow-up for individuals with methylmalonic acidemia were published in 2014 [<a class="bibr" href="#mma.REF.baumgartner.2014.130" rid="mma.REF.baumgartner.2014.130">Baumgartner et al 2014</a>] (<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180313/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">full text</a>) and revised in 2021 [<a class="bibr" href="#mma.REF.forny.2021.566" rid="mma.REF.forny.2021.566">Forny et al 2021</a>] (<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252715/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">full text</a>). Several additional expert reviews and publications detail management in acute crises and chronic monitoring, treatment of hyperammonemia, dietary practices, and other aspects of clinical care: <a class="bibr" href="#mma.REF.ktena.2015b.847" rid="mma.REF.ktena.2015b.847">Ktena et al [2015b]</a>, <a class="bibr" href="#mma.REF.fraser.2016.682" rid="mma.REF.fraser.2016.682">Fraser &#x00026; Venditti [2016]</a>, <a class="bibr" href="#mma.REF.manoli.2016b.386" rid="mma.REF.manoli.2016b.386">Manoli et al [2016b]</a>, <a class="bibr" href="#mma.REF.valayannopoulos.2016.32" rid="mma.REF.valayannopoulos.2016.32">Valayannopoulos et al [2016]</a>, <a class="bibr" href="#mma.REF.aldubayan.2017.142" rid="mma.REF.aldubayan.2017.142">Aldubayan et al [2017]</a>, <a class="bibr" href="#mma.REF.evans.2017.163" rid="mma.REF.evans.2017.163">Evans et al [2017]</a>, <a class="bibr" href="#mma.REF.molema.2019.1162" rid="mma.REF.molema.2019.1162">Molema et al [2019]</a>, <a class="bibr" href="#mma.REF.pinto.2020.147" rid="mma.REF.pinto.2020.147">Pinto et al [2020]</a>, and <a class="bibr" href="#mma.REF.molema.2021b.593" rid="mma.REF.molema.2021b.593">Molema et al [2021b]</a>, among <a href="https://bimdg.org.uk/site/index.asp" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">others</a>.</p><p>When isolated MMA is suspected during the diagnostic evaluation due to elevated propionylcarnitine (C3) on a newborn blood spot, metabolic treatment should be initiated immediately, while the suspected diagnosis is being confirmed.</p><p>Once confirmed, development and evaluation of treatment plans, training and education of affected individuals and their families, and careful monitoring of dietary treatment (to avoid malnutrition, growth failure) require a multidisciplinary approach including multiple subspecialists, with oversight and expertise from a specialized metabolic center.</p><div id="mma.Evaluations_Following_Initial_Diagno"><h3>Evaluations Following Initial Diagnosis</h3><p>To establish the extent of disease and needs in an individual diagnosed with isolated MMA, the evaluations summarized <a href="/books/NBK1231/table/mma.T.recommended_evaluations_following/?report=objectonly" target="object" rid-ob="figobmmaTrecommendedevaluationsfollowing">Table 6</a> (if not performed as part of the evaluation that led to the diagnosis) are recommended.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTrecommendedevaluationsfollowing"><a href="/books/NBK1231/table/mma.T.recommended_evaluations_following/?report=objectonly" target="object" title="Table 6. " class="img_link icnblk_img" rid-ob="figobmmaTrecommendedevaluationsfollowing"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.recommended_evaluations_following"><a href="/books/NBK1231/table/mma.T.recommended_evaluations_following/?report=objectonly" target="object" rid-ob="figobmmaTrecommendedevaluationsfollowing">Table 6. </a></h4><p class="float-caption no_bottom_margin">Recommended Evaluations Following Initial Diagnosis of Isolated Methylmalonic Acidemia </p></div></div></div><div id="mma.Treatment_of_Manifestations"><h3>Treatment of Manifestations</h3><p>Guidelines developed by professionals across 12 European countries and the US based on rigorous literature evaluation and expert group meetings outline the current management recommendations and areas for further research. See <a class="bibr" href="#mma.REF.baumgartner.2014.130" rid="mma.REF.baumgartner.2014.130">Baumgartner et al [2014]</a> (<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180313/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">full text</a>) and <a class="bibr" href="#mma.REF.forny.2021.566" rid="mma.REF.forny.2021.566">Forny et al [2021]</a> (<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252715/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">full text</a>).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTroutinedailytreatmentinindivid"><a href="/books/NBK1231/table/mma.T.routine_daily_treatment_in_individ/?report=objectonly" target="object" title="Table 7. " class="img_link icnblk_img" rid-ob="figobmmaTroutinedailytreatmentinindivid"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.routine_daily_treatment_in_individ"><a href="/books/NBK1231/table/mma.T.routine_daily_treatment_in_individ/?report=objectonly" target="object" rid-ob="figobmmaTroutinedailytreatmentinindivid">Table 7. </a></h4><p class="float-caption no_bottom_margin">Routine Daily Treatment in Individuals with Isolated Methylmalonic Acidemia </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTtreatmentofsecondarycomplicatio"><a href="/books/NBK1231/table/mma.T.treatment_of_secondary_complicatio/?report=objectonly" target="object" title="Table 8. " class="img_link icnblk_img" rid-ob="figobmmaTtreatmentofsecondarycomplicatio"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.treatment_of_secondary_complicatio"><a href="/books/NBK1231/table/mma.T.treatment_of_secondary_complicatio/?report=objectonly" target="object" rid-ob="figobmmaTtreatmentofsecondarycomplicatio">Table 8. </a></h4><p class="float-caption no_bottom_margin">Treatment of Secondary Complications in Individuals with Isolated Methylmalonic Acidemia </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTemergencyoutpatienttreatmentin"><a href="/books/NBK1231/table/mma.T.emergency_outpatient_treatment_in/?report=objectonly" target="object" title="Table 9. " class="img_link icnblk_img" rid-ob="figobmmaTemergencyoutpatienttreatmentin"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.emergency_outpatient_treatment_in"><a href="/books/NBK1231/table/mma.T.emergency_outpatient_treatment_in/?report=objectonly" target="object" rid-ob="figobmmaTemergencyoutpatienttreatmentin">Table 9. </a></h4><p class="float-caption no_bottom_margin">Emergency Outpatient Treatment in Individuals with Isolated Methylmalonic Acidemia </p></div></div><p>Acute manifestations (e.g., lethargy, encephalopathy, seizures, or progressive coma), often occurring in the setting of intercurrent illness and/or inadequate caloric intake, should be managed symptomatically and with generous caloric support in a hospital setting, with aggressive treatment and supportive care. Immediate consultation with a metabolic/biochemical geneticist is essential. Individuals with MMA can deteriorate rapidly and consultations with neurology, nephrology, and ICU teams are often required during crises (see <a href="/books/NBK1231/table/mma.T.acute_inpatient_treatment_in_indiv/?report=objectonly" target="object" rid-ob="figobmmaTacuteinpatienttreatmentinindiv">Table 10</a>).</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTacuteinpatienttreatmentinindiv"><a href="/books/NBK1231/table/mma.T.acute_inpatient_treatment_in_indiv/?report=objectonly" target="object" title="Table 10. " class="img_link icnblk_img" rid-ob="figobmmaTacuteinpatienttreatmentinindiv"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.acute_inpatient_treatment_in_indiv"><a href="/books/NBK1231/table/mma.T.acute_inpatient_treatment_in_indiv/?report=objectonly" target="object" rid-ob="figobmmaTacuteinpatienttreatmentinindiv">Table 10. </a></h4><p class="float-caption no_bottom_margin">Acute Inpatient Treatment in Individuals with Methylmalonic Acidemia </p></div></div><p><b>Transition from pediatric to adult-centered multidisciplinary care settings.</b> As MMA is a lifelong disorder with varying implications according to age, smooth transition of care from the pediatric setting is essential for long-term management and should be organized as a well-planned, continuous, multidisciplinary process integrating resources of all relevant subspecialties. Standardized procedures for transitional care do not exist for isolated MMA due to the absence of multidisciplinary outpatient departments.</p><ul><li class="half_rhythm"><div>Transitional care concepts have been developed in which adult internal medicine specialists initially see individuals with isolated methylmalonic acidemia together with pediatric or adult metabolic experts, dietitians, psychologists, and social workers.</div></li><li class="half_rhythm"><div>As the long-term course of pediatric metabolic diseases in this age group is not yet fully characterized and there is limited availability of clinics for adults with IEMs, continuous supervision by a center with expertise in metabolic diseases with sufficient resources is essential.</div></li></ul></div><div id="mma.Prevention_of_Primary_Manifestations"><h3>Prevention of Primary Manifestations</h3><p>See also <a href="/books/NBK1231/table/mma.T.routine_daily_treatment_in_individ/?report=objectonly" target="object" rid-ob="figobmmaTroutinedailytreatmentinindivid">Table 7</a>, which outlines dietary therapies that can help to prevent a metabolic crisis.</p><p>Large case series of affected individuals undergoing elective liver or combined liver/kidney transplantation (as opposed to isolated kidney transplantation) have detailed the indications, peri-operative complications, surgical and anesthesia approaches, anti-rejection regimens, and long-term outcomes in people with MMA undergoing these procedures. Inclusion of enzymatic and genotype information in case series of transplanted individuals allows for better comparisons of the outcomes and genotype-phenotype associations that could inform decisions about the indication and timing of transplantation in individual cases.</p><p>Liver transplantation is increasingly offered to younger affected individuals with significant metabolic instability, often in infancy, as a measure to prevent neurologic damage from recurrent metabolic crises associated with hyperammonemia. Referral to centers with experience in managing people with organic acidemias and continued monitoring and dietary therapy are essential for all MMA transplant recipients.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTpreventionofprimarymanifestatio"><a href="/books/NBK1231/table/mma.T.prevention_of_primary_manifestatio/?report=objectonly" target="object" title="Table 11. " class="img_link icnblk_img" rid-ob="figobmmaTpreventionofprimarymanifestatio"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.prevention_of_primary_manifestatio"><a href="/books/NBK1231/table/mma.T.prevention_of_primary_manifestatio/?report=objectonly" target="object" rid-ob="figobmmaTpreventionofprimarymanifestatio">Table 11. </a></h4><p class="float-caption no_bottom_margin">Prevention of Primary Manifestations in Individuals with Isolated Methylmalonic Acidemia </p></div></div><p><b>Antioxidants.</b> One individual with isolated MMA who was documented to be glutathione deficient after a severe metabolic crisis responded to ascorbate therapy [<a class="bibr" href="#mma.REF.treacy.1996.445" rid="mma.REF.treacy.1996.445">Treacy et al 1996</a>]. Several studies document increased oxidative stress, glutathione depletion, and specific respiratory chain complex deficiencies in persons with the <i>mut<sup>0</sup></i> enzymatic subtype of MMA [<a class="bibr" href="#mma.REF.atkuri.2009.3941" rid="mma.REF.atkuri.2009.3941">Atkuri et al 2009</a>, <a class="bibr" href="#mma.REF.chandler.2009.1252" rid="mma.REF.chandler.2009.1252">Chandler et al 2009</a>, <a class="bibr" href="#mma.REF.de_keyzer.2009.91" rid="mma.REF.de_keyzer.2009.91">de Keyzer et al 2009</a>, <a class="bibr" href="#mma.REF.manoli.2013.13552" rid="mma.REF.manoli.2013.13552">Manoli et al 2013</a>], suggesting a potential benefit of treatment with antioxidants or other mitochondria-targeted therapies in these individuals.</p><p>A regimen of coenzyme Q<sub>10</sub> and vitamin E has been shown to prevent progression of acute optic nerve involvement in a patient with MMA [<a class="bibr" href="#mma.REF.pinarsueiro.2010.s199" rid="mma.REF.pinarsueiro.2010.s199">Pinar-Sueiro et al 2010</a>]. Thiamine can help with severe lactic acidosis by overcoming pyruvate dehydrogenase inhibition during the treatment of acute metabolic crises (see <a href="/books/NBK1231/table/mma.T.acute_inpatient_treatment_in_indiv/?report=objectonly" target="object" rid-ob="figobmmaTacuteinpatienttreatmentinindiv">Table 10</a>). Whether chronic administration of CoQ10, vitamin E, or N-acetylcysteine could prevent long-term complications requires further study [<a class="bibr" href="#mma.REF.haijes.2019b.745" rid="mma.REF.haijes.2019b.745">Haijes et al 2019b</a>].</p><p><b>Base replacement.</b> Individuals with MMUT methylmalonic academia (subtype <i>mut<sup>0</sup></i> or <i>mut<sup>-</sup></i>) have renal tubular dysfunction and low-grade chronic acidosis that can accelerate the progression of their chronic kidney disease. Sodium bicarbonate or citrate (Bicitra<sup>&#x000ae;</sup>) replacement aiming for a serum bicarbonate concentration of 22-24 &#x000b5;mol/L, is recommended per standard guidelines for management of chronic kidney disease in children [<a class="bibr" href="#mma.REF.kdoqi_work_group.2009.s11" rid="mma.REF.kdoqi_work_group.2009.s11">KDOQI Work Group 2009</a>, <a class="bibr" href="#mma.REF.brown.2020.755" rid="mma.REF.brown.2020.755">Brown et al 2020</a>]. Bicitra has the additional benefit of offering citrate for TCA cycle anaplerosis and was studied in propionic acidemia [<a class="bibr" href="#mma.REF.longo.2017.51" rid="mma.REF.longo.2017.51">Longo et al 2017</a>]. Polycitra contains potassium, which should be monitored closely due to the risk of developing hyperkalemia in individuals with kidney disease.</p></div><div id="mma.Prevention_of_Secondary_Complication"><h3>Prevention of Secondary Complications</h3><p>One of the most important components of management (as it relates to prevention of secondary complications) is education of parents and caregivers such that diligent observation and management can be administered expediently in the setting of intercurrent illness or other catabolic stressors (see also <a href="/books/NBK1231/table/mma.T.emergency_outpatient_treatment_in/?report=objectonly" target="object" rid-ob="figobmmaTemergencyoutpatienttreatmentin">Tables 9</a> and <a href="/books/NBK1231/table/mma.T.acute_inpatient_treatment_in_indiv/?report=objectonly" target="object" rid-ob="figobmmaTacuteinpatienttreatmentinindiv">10</a>). Adherence to a low-protein diet and frequent monitoring by the primary metabolic clinic (see <a href="/books/NBK1231/table/mma.T.recommended_surveillance_for_indiv/?report=objectonly" target="object" rid-ob="figobmmaTrecommendedsurveillanceforindiv">Table 13</a>), as well as continued care by other specialists (nephrologist, neurologist, gastroenterologist, cardiologist, and others), is necessary throughout life.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTpreventionofsecondarymanifestat"><a href="/books/NBK1231/table/mma.T.prevention_of_secondary_manifestat/?report=objectonly" target="object" title="Table 12. " class="img_link icnblk_img" rid-ob="figobmmaTpreventionofsecondarymanifestat"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.prevention_of_secondary_manifestat"><a href="/books/NBK1231/table/mma.T.prevention_of_secondary_manifestat/?report=objectonly" target="object" rid-ob="figobmmaTpreventionofsecondarymanifestat">Table 12. </a></h4><p class="float-caption no_bottom_margin">Prevention of Secondary Manifestations in Individuals with Isolated Methylmalonic Acidemia </p></div></div></div><div id="mma.Surveillance"><h3>Surveillance</h3><p>During the first year of life, infants may need to be evaluated as frequently as every week and continued at intervals determined by the frequency of metabolic crises/admissions, growth patterns, and dietary needs. Attention to transition periods (e.g., after the first two years, in adolescence) with other stressors in the family are necessary for modification of dietary prescription.</p><p>In addition to regular evaluations by a metabolic specialist and metabolic dietician, the following are recommended. See <a href="/books/NBK1231/table/mma.T.recommended_surveillance_for_indiv/?report=objectonly" target="object" rid-ob="figobmmaTrecommendedsurveillanceforindiv">Table 13</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTrecommendedsurveillanceforindiv"><a href="/books/NBK1231/table/mma.T.recommended_surveillance_for_indiv/?report=objectonly" target="object" title="Table 13. " class="img_link icnblk_img" rid-ob="figobmmaTrecommendedsurveillanceforindiv"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.recommended_surveillance_for_indiv"><a href="/books/NBK1231/table/mma.T.recommended_surveillance_for_indiv/?report=objectonly" target="object" rid-ob="figobmmaTrecommendedsurveillanceforindiv">Table 13. </a></h4><p class="float-caption no_bottom_margin">Recommended Surveillance for Individuals with Isolated Methylmalonic Acidemia </p></div></div></div><div id="mma.AgentsCircumstances_to_Avoid"><h3>Agents/Circumstances to Avoid</h3><p>The following should be avoided:</p><ul><li class="half_rhythm"><div>Fasting. During acute illness, intake of adequate calories is necessary to arrest/prevent decompensation.</div></li><li class="half_rhythm"><div>Stress</div></li><li class="half_rhythm"><div>Increased dietary protein</div></li><li class="half_rhythm"><div>Supplementation with the individual propiogenic amino acids valine and isoleucine, as they directly increase the toxic metabolite load in patients with disordered propionate oxidation [<a class="bibr" href="#mma.REF.nyhan.1973.539" rid="mma.REF.nyhan.1973.539">Nyhan et al 1973</a>, <a class="bibr" href="#mma.REF.hauser.2011.47" rid="mma.REF.hauser.2011.47">Hauser et al 2011</a>, <a class="bibr" href="#mma.REF.manoli.2016b.386" rid="mma.REF.manoli.2016b.386">Manoli et al 2016b</a>]</div></li><li class="half_rhythm"><div>Nephrotoxic medications or agents (e.g. ibuprofen)</div></li><li class="half_rhythm"><div>Agents that prolong QTc in the EKG</div></li></ul></div><div id="mma.Evaluation_of_Relatives_at_Risk"><h3>Evaluation of Relatives at Risk</h3><p>Evaluation of all at-risk sibs of any age is warranted to allow for early diagnosis and treatment of isolated methylmalonic acidemia.</p><p>For at-risk newborn sibs when prenatal testing was not performed: in parallel with newborn screening, measure serum methylmalonic acid, urine organic acids, plasma acylcarnitine profile, plasma amino acids, and serum B<sub>12</sub>; and test for the familial isolated methylmalonic acidemia-causing pathogenic variants if biochemistry is abnormal.</p><p>Prenatal diagnosis of at-risk sibs may allow for prompt treatment of affected newborns at the time of delivery or prenatal administration of vitamin B<sub>12</sub> in responsive subtypes, especially cblA.</p><p>See <a href="#mma.Genetic_Counseling">Genetic Counseling</a> for issues related to testing of at-risk relatives for genetic counseling purposes.</p></div><div id="mma.Pregnancy_Management"><h3>Pregnancy Management</h3><p>
<b>Affected mother</b>
</p><ul><li class="half_rhythm"><div>In pregnancies of affected women with MMA, complications observed included acute decompensation or hyperammonemia, deterioration of renal function, and obstetric complications including preeclampsia, preterm delivery, and c&#x000e6;sarean section [<a class="bibr" href="#mma.REF.raval.2015.839" rid="mma.REF.raval.2015.839">Raval et al 2015</a>].</div></li><li class="half_rhythm"><div>Despite high maternal MMA levels, fetal growth and development have been reported to be normal, suggesting negligible teratogenic effects to the fetus from exposure to high methylmalonic acid levels in utero, though long-term follow up with age-appropriate neurocognitive testing is limited [<a class="bibr" href="#mma.REF.wasserstein.1999.788" rid="mma.REF.wasserstein.1999.788">Wasserstein et al 1999</a>, <a class="bibr" href="#mma.REF.deodato.2002.133" rid="mma.REF.deodato.2002.133">Deodato et al 2002</a>].</div></li><li class="half_rhythm"><div>Pregnancies in transplant recipients are rare and further studies on the health of the offspring are needed [<a class="bibr" href="#mma.REF.marcellino.2021.1013" rid="mma.REF.marcellino.2021.1013">Marcellino et al 2021</a>].</div></li></ul><p><b>Unaffected mother with an affected fetus.</b> Oral and intramuscular vitamin B<sub>12</sub> has been administered to women pregnant with a fetus with vitamin B<sub>12</sub>-responsive MMA, resulting in decreased maternal MMA urine output [<a class="bibr" href="#mma.REF.ampola.1975.313" rid="mma.REF.ampola.1975.313">Ampola et al 1975</a>, <a class="bibr" href="#mma.REF.van_der_meer.1990.923" rid="mma.REF.van_der_meer.1990.923">van der Meer et al 1990</a>]. These observations notwithstanding, maternal vitamin B<sub>12</sub> supplementation for isolated MMA needs further study.</p><p>See <a href="https://www.mothertobaby.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MotherToBaby</a> for further information on medication use during pregnancy.</p></div><div id="mma.Therapies_Under_Investigation"><h3>Therapies Under Investigation</h3><p><b>13-C-propionate breath test.</b> A stable isotope 13-C-propionate breath test has been developed as a surrogate biomarker of disease severity and was shown to correlate with in vitro 14-C-propionate incorporation, isolated MMA subtype, and several disease-related manifestations (rate of progression of chronic renal disease, growth parameters, and cognitive outcomes). Moreover, it showed a response to B<sub>12</sub> supplementation or solid organ transplantation [<a class="bibr" href="#mma.REF.manoli.2021.1522" rid="mma.REF.manoli.2021.1522">Manoli et al 2021</a>]. It can be used in specialized centers to help prognosticate disease severity and select affected individuals with very low oxidation rates for referral to transplantation or clinical trials testing novel genomic therapies.</p><p>Increased understanding of the underlying pathophysiology and the generation of disease-specific animal or cellular models has allowed the development of several novel therapies for isolated MMA [<a class="bibr" href="#mma.REF.chandler.2019.1236" rid="mma.REF.chandler.2019.1236">Chandler &#x00026; Venditti 2019</a>, <a class="bibr" href="#mma.REF.luciani.2020.970" rid="mma.REF.luciani.2020.970">Luciani et al 2020</a>, <a class="bibr" href="#mma.REF.dimitrov.2021.9" rid="mma.REF.dimitrov.2021.9">Dimitrov et al 2021</a>, <a class="bibr" href="#mma.REF.head.2022.eabn4772" rid="mma.REF.head.2022.eabn4772">Head et al 2022</a>]. The effect of each of these therapeutic approaches on the long-term clinical outcomes of MMA remains to be elucidated.</p><ul><li class="half_rhythm"><div>Liver-targeted genomic therapies including systemic canonic recombinant adeno-associated virus (rAAV) gene therapy [<a class="bibr" href="#mma.REF.chandler.2008.53" rid="mma.REF.chandler.2008.53">Chandler &#x00026; Venditti 2008</a>, <a class="bibr" href="#mma.REF.carrillocarrasco.2010.1147" rid="mma.REF.carrillocarrasco.2010.1147">Carrillo-Carrasco et al 2010</a>, <a class="bibr" href="#mma.REF.chandler.2010.11" rid="mma.REF.chandler.2010.11">Chandler &#x00026; Venditti 2010</a>, <a class="bibr" href="#mma.REF.chandler.2012.617" rid="mma.REF.chandler.2012.617">Chandler &#x00026; Venditti 2012</a>, <a class="bibr" href="#mma.REF.s_nac.2012.385" rid="mma.REF.s_nac.2012.385">S&#x000e9;nac et al 2012</a>, <a class="bibr" href="#mma.REF.chandler.2021.2223" rid="mma.REF.chandler.2021.2223">Chandler et al 2021</a>], systemic mRNA replacement [<a class="bibr" href="#mma.REF.an.2017.3548" rid="mma.REF.an.2017.3548">An et al 2017</a>], and genome editing into the albumin locus [<a class="bibr" href="#mma.REF.chandler.2021.2223" rid="mma.REF.chandler.2021.2223">Chandler et al 2021</a>] have shown significant promise in animal models and are reaching Phase I/II clinical trials as promising alternatives to liver transplantation.</div></li><li class="half_rhythm"><div>Studies using primary hepatocytes from individuals with methylmalonic and propionic acidemia have found that administration of the small molecule 2,2-dimethylbutanoic acid (HST5040) leads to a dose dependent reduction in levels of methylmalonyl-CoA and other serum metabolites. This small molecule is being tested in clinical trials [<a class="bibr" href="#mma.REF.armstrong.2021.71" rid="mma.REF.armstrong.2021.71">Armstrong et al 2021</a>].</div></li><li class="half_rhythm"><div>Investigational therapies intended to increase CoA levels by allosterically modulating pantothenate kinases, key enzymes in the CoA biosynthesis pathway, have been shown to increase free CoA and alleviate mitochondrial dysfunction in mouse models of propionic academia (PA) [<a class="bibr" href="#mma.REF.subramanian.2021.eabf5965" rid="mma.REF.subramanian.2021.eabf5965">Subramanian et al 2021</a>] and are being tested in clinical trials for MMA and PA.</div></li><li class="half_rhythm"><div>Carefully designed clinical studies are required to evaluate the efficacy of antioxidant regimens in people with MMA.</div></li></ul><p>Review the following for more information on current clinical trials on isolated MMA:</p><p>
<a href="https://clinicaltrials.gov/ct2/show/NCT04581785" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">clinicaltrials.gov/ct2/show/NCT04581785</a>
</p><p>
<a href="https://clinicaltrials.gov/ct2/show/NCT04732429" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">clinicaltrials.gov/ct2/show/NCT04732429</a>
</p><p>
<a href="https://clinicaltrials.gov/ct2/show/NCT04899310" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">clinicaltrials.gov/ct2/show/NCT04899310</a>
</p><p>
<a href="https://clinicaltrials.gov/ct2/show/NCT04836494" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">clinicaltrials.gov/ct2/show/NCT04836494</a>
</p><p>Search <a href="https://clinicaltrials.gov/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ClinicalTrials.gov</a> in the US and <a href="https://www.clinicaltrialsregister.eu/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">EU Clinical Trials Register</a> in Europe for information on clinical studies for a wide range of diseases and conditions.</p></div></div><div id="mma.Genetic_Counseling"><h2 id="_mma_Genetic_Counseling_">Genetic Counseling</h2><p>
<i>Genetic counseling is the process of providing individuals and families with
information on the nature, mode(s) of inheritance, and implications of genetic disorders to help them
make informed medical and personal decisions. The following section deals with genetic
risk assessment and the use of family history and genetic testing to clarify genetic
status for family members; it is not meant to address all personal, cultural, or
ethical issues that may arise or to substitute for consultation with a genetics
professional</i>. &#x02014;ED.</p><div id="mma.Mode_of_Inheritance"><h3>Mode of Inheritance</h3><p>All forms of isolated methylmalonic acidemia (MMA) &#x02013; including complete or partial deficiency of the enzyme methylmalonyl-CoA mutase; defect in transport or synthesis of the methylmalonyl-CoA mutase cofactor, 5'deoxyadenosyl-cobalamin; and deficiency of the enzyme methylmalonyl-CoA epimerase &#x02013; are inherited in an autosomal recessive manner.</p></div><div id="mma.Risk_to_Family_Members"><h3>Risk to Family Members</h3><p>
<b>Parents of a proband</b>
</p><ul><li class="half_rhythm"><div>The parents of an affected child are presumed to be heterozygous for an <i>MMUT</i>, <i>MMAA</i>, <i>MMAB</i>, <i>MCEE</i>, or <i>MMADHC</i> pathogenic variant.</div></li><li class="half_rhythm"><div>If a molecular diagnosis has been established in the proband, molecular genetic testing is recommended for the parents of the proband to confirm that both parents are heterozygous for an isolated MMA-causing pathogenic variant and to allow reliable recurrence risk assessment. If a pathogenic variant is detected in only one parent and parental identity testing has confirmed biological maternity and paternity, the following possibilities should be considered:</div><ul><li class="half_rhythm"><div>One of the pathogenic variants identified in the proband occurred as a <i>de novo</i> event in the proband or as a postzygotic <i>de novo</i> event in a mosaic parent [<a class="bibr" href="#mma.REF.j_nsson.2017.519" rid="mma.REF.j_nsson.2017.519">J&#x000f3;nsson et al 2017</a>].</div></li><li class="half_rhythm"><div>Uniparental isodisomy for the parental chromosome with the pathogenic variant resulted in homozygosity for the pathogenic variant in the proband. Uniparental isodisomy has been reported (<i>MMUT</i> [id(6)pat] and <i>MMAA</i> [segmental upd(4)mat] [<a class="bibr" href="#mma.REF.abramowicz.1994.418" rid="mma.REF.abramowicz.1994.418">Abramowicz et al 1994</a>, <a class="bibr" href="#mma.REF.chen.2020.e1063" rid="mma.REF.chen.2020.e1063">Chen et al 2020</a>].)</div></li></ul></li><li class="half_rhythm"><div>Heterozygotes (carriers) of a pathogenic variant in an isolated MMA-related gene (i.e., <i>MMUT</i>, <i>MMAA</i>, <i>MMAB</i>, <i>MCEE</i>, or <i>MMADHC</i>) have normal metabolite concentrations.</div></li></ul><p>
<b>Sibs of a proband</b>
</p><ul><li class="half_rhythm"><div>If both parents are known to be heterozygous for an isolated MMA-causing pathogenic variant, each sib of an affected individual has at conception a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of inheriting neither of the familial pathogenic variants.</div></li><li class="half_rhythm"><div>Heterozygotes (carriers) of a pathogenic variant in an isolated MMA-causing gene (i.e., <i>MMUT</i>, <i>MMAA</i>, <i>MMAB</i>, <i>MCEE</i>, or <i>MMADHC</i>) have normal metabolite concentrations.</div></li></ul><p><b>Offspring of a proband.</b> Unless an affected individual's reproductive partner also has isolated MMA or is a carrier, offspring will be obligate heterozygotes (carriers) for a pathogenic variant in an isolated MMA-related gene.</p><p><b>Other family members.</b> Each sib of the proband's parents is at a 50% risk of being a carrier of an isolated MMA-causing pathogenic variant.</p></div><div id="mma.Carrier_Detection"><h3>Carrier Detection</h3><ul><li class="half_rhythm"><div>Carrier testing for at-risk relatives requires prior identification of the isolated MMA-causing pathogenic variants in the family.</div></li><li class="half_rhythm"><div><i>MMUT</i> is included in the recommended gene list for carrier screening (Tier II) and may be included on expanded carrier screening panels [<a class="bibr" href="#mma.REF.gregg.2021.1793" rid="mma.REF.gregg.2021.1793">Gregg et al 2021</a>].</div></li></ul><p>Methods other than molecular genetic testing are not reliable for carrier testing.</p></div><div id="mma.Related_Genetic_Counseling_Issues"><h3>Related Genetic Counseling Issues</h3><p>See Management, <a href="#mma.Evaluation_of_Relatives_at_Risk">Evaluation of Relatives at Risk</a> for information on testing at-risk relatives for the purpose of early diagnosis and treatment.</p><p>
<b>Family planning</b>
</p><ul><li class="half_rhythm"><div>The optimal time for determination of genetic risk and discussion of the availability of prenatal/preimplantation genetic testing is before pregnancy.</div></li><li class="half_rhythm"><div>It is appropriate to offer genetic counseling (including discussion of potential risks to offspring and reproductive options) to young adults who are affected, are carriers, or are at risk of being carriers.</div></li></ul><p><b>DNA banking.</b> Because it is likely that testing methodology and our understanding of genes, pathogenic mechanisms, and diseases will improve in the future, consideration should be given to banking DNA from probands in whom a molecular diagnosis has not been confirmed (i.e., the causative pathogenic mechanism is unknown). For more information, see <a class="bibr" href="#mma.REF.huang.2022.389" rid="mma.REF.huang.2022.389">Huang et al [2022]</a>.</p></div><div id="mma.Prenatal_Testing_and_Preimplantation"><h3>Prenatal Testing and Preimplantation Genetic Testing</h3><p><b>Molecular genetic testing.</b> Once the isolated MMA-causing pathogenic variants have been identified in an affected family member, prenatal and preimplantation genetic testing are possible.</p><p><b>Biochemical testing.</b> Both amniotic fluid measurements for methylmalonic acid and cellular biochemical assays (<sup>14</sup>C propionate incorporation and complementation assays) on cultured fetal cells obtained by amniocentesis or chorionic villus sampling have been used for prenatal testing [<a class="bibr" href="#mma.REF.morel.2005.160" rid="mma.REF.morel.2005.160">Morel et al 2005</a>]. However, due to the limited availability and longer turnaround time for cellular biochemical assays, the preferred method for prenatal diagnosis is molecular genetic testing.</p></div></div><div id="mma.Resources"><h2 id="_mma_Resources_">Resources</h2><p>
<i>GeneReviews staff has selected the following disease-specific and/or umbrella
support organizations and/or registries for the benefit of individuals with this disorder
and their families. GeneReviews is not responsible for the information provided by other
organizations. For information on selection criteria, click <a href="/books/n/gene/app4/?report=reader">here</a>.</i></p>
<ul><li class="half_rhythm"><div>
<b>British Inherited Metabolic Disease Group (BIMDG)</b>
</div><div>TEMPLE (Tools Enabling Metabolic Parents LEarning)</div><div>United Kingdom</div><div>
<a href="https://www.bimdg.org.uk/store/temple//B20030_Temple_Updates_MMA_DIGITAL_515678_21112022.pdf" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMA</a>
</div></li><li class="half_rhythm"><div>
<b>MedlinePlus</b>
</div><div>
<a href="https://medlineplus.gov/genetics/condition/methylmalonic-acidemia/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Methylmalonic acidemia</a>
</div></li><li class="half_rhythm"><div>
<b>Newborn Screening in Your State</b>
</div><div>Health Resources &#x00026; Services Administration</div><div>
<a href="https://newbornscreening.hrsa.gov/your-state" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">newbornscreening.hrsa.gov/your-state</a>
</div></li><li class="half_rhythm"><div>
<b>Organic Acidemia Association</b>
</div><div><b>Phone:</b> 763-559-1797</div><div><b>Email:</b> info@oaanews.org</div><div>
<a href="https://oaanews.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">oaanews.org</a>
</div></li><li class="half_rhythm"><div>
<b>European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD)</b>
</div><div>
<a href="https://www.e-imd.org/event/european-registry-and-network-intoxication-type-metabolic-diseases" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">e-imd.org/event/european-registry-and-network-intoxication-type-metabolic-diseases</a>
</div></li></ul>
</div><div id="mma.Molecular_Genetics"><h2 id="_mma_Molecular_Genetics_">Molecular Genetics</h2><p><i>Information in the Molecular Genetics and OMIM tables may differ from that elsewhere in the GeneReview: tables may contain more recent information. &#x02014;</i>ED.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmamolgenTA"><a href="/books/NBK1231/table/mma.molgen.TA/?report=objectonly" target="object" title="Table A." class="img_link icnblk_img" rid-ob="figobmmamolgenTA"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.molgen.TA"><a href="/books/NBK1231/table/mma.molgen.TA/?report=objectonly" target="object" rid-ob="figobmmamolgenTA">Table A.</a></h4><p class="float-caption no_bottom_margin">Isolated Methylmalonic Acidemia: Genes and Databases </p></div></div><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmamolgenTB"><a href="/books/NBK1231/table/mma.molgen.TB/?report=objectonly" target="object" title="Table B." class="img_link icnblk_img" rid-ob="figobmmamolgenTB"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.molgen.TB"><a href="/books/NBK1231/table/mma.molgen.TB/?report=objectonly" target="object" rid-ob="figobmmamolgenTB">Table B.</a></h4><p class="float-caption no_bottom_margin">OMIM Entries for Isolated Methylmalonic Acidemia (View All in OMIM) </p></div></div><div id="mma.Molecular_Pathogenesis"><h3>Molecular Pathogenesis</h3><p>Isolated MMA results from the failure to isomerize (convert) methylmalonyl-CoA into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid (<a class="figpopup" href="/books/NBK1231/figure/mma.F1/?report=objectonly" target="object" rid-figpopup="figmmaF1" rid-ob="figobmmaF1">Figure 1</a>). Several different enzyme deficiencies affecting these metabolic steps can cause isolated MMA (<a class="figpopup" href="/books/NBK1231/figure/mma.F2/?report=objectonly" target="object" rid-figpopup="figmmaF2" rid-ob="figobmmaF2">Figure 2</a>), including the methylmalonyl-CoA mutase itself and those providing the adenosylcobalamin as a cofactor. <i>MMAA</i> encodes a GTPase critical for the mitochondrial assembly of adenosylcobalamin (AdoCbl) to the methylmalonyl-CoA enzyme [<a class="bibr" href="#mma.REF.froese.2010.38204" rid="mma.REF.froese.2010.38204">Froese et al 2010</a>]. <i>MMAB</i> encodes an ATP:cob(I)alamin adenosyltransferase (ATR) that transfers 5&#x02032;-deoxyadenosyl from ATP to Cbl forming AdoCbl and delivers it to the methylmalonyl-CoA enzyme. <i>MMUT</i> encodes methylmalonyl-CoA mutase, a mitochondrial enzyme that catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA, which requires AdoCbl as coenzyme. <i>MMADHC</i> encodes a protein necessary in the early metabolic pathway of AdoCbl formation.</p><p>Aberrant post-translational modifications (methylmalonylation) have inhibitory effects on critical enzymes in the urea cycle and glycine cleavage pathways, causing the secondary disease manifestations such as hyperammonemia and hyperglycinemia in MMA [<a class="bibr" href="#mma.REF.head.2022.eabn4772" rid="mma.REF.head.2022.eabn4772">Head et al 2022</a>].</p><p>Plasma fibroblast growth factor 21 (FGF21) has been characterized as a marker of hepatic mitochondrial dysfunction in MMA murine models and was shown to correlate with disease severity and long-term complications in different patient cohorts [<a class="bibr" href="#mma.REF.manoli.2018.e124351" rid="mma.REF.manoli.2018.e124351">Manoli et al 2018</a>, <a class="bibr" href="#mma.REF.molema.2018.1179" rid="mma.REF.molema.2018.1179">Molema et al 2018</a>, <a class="bibr" href="#mma.REF.manoli.2021.1522" rid="mma.REF.manoli.2021.1522">Manoli et al 2021</a>].</p><p><b>Mechanism of disease causation.</b> Loss of function</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTisolatedmethylmalonicacidemiage"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_ge/?report=objectonly" target="object" title="Table 14. " class="img_link icnblk_img" rid-ob="figobmmaTisolatedmethylmalonicacidemiage"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.isolated_methylmalonic_acidemia_ge"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_ge/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiage">Table 14. </a></h4><p class="float-caption no_bottom_margin">Isolated Methylmalonic Acidemia: Gene-Specific Laboratory Considerations </p></div></div><p><b>Notable variants by gene.</b> See <a href="/books/NBK1231/table/mma.T.mmut_pathogenic_missense_variants/?report=objectonly" target="object" rid-ob="figobmmaTmmutpathogenicmissensevariants">Table 4</a> for a list of specific pathogenic <i>MMUT</i> variants, that when in a homozygous state, lead to a specific predicted enzymatic phenotype. Further notable pathogenic variants by gene are listed in <a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiano">Table 15</a>.</p><div class="iconblock whole_rhythm clearfix ten_col table-wrap" id="figmmaTisolatedmethylmalonicacidemiano"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" title="Table 15. " class="img_link icnblk_img" rid-ob="figobmmaTisolatedmethylmalonicacidemiano"><img class="small-thumb" src="/corehtml/pmc/css/bookshelf/2.26/img/table-icon.gif" alt="Table Icon" /></a><div class="icnblk_cntnt"><h4 id="mma.T.isolated_methylmalonic_acidemia_no"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiano">Table 15. </a></h4><p class="float-caption no_bottom_margin">Isolated Methylmalonic Acidemia: Notable Pathogenic Variants by Gene </p></div></div></div></div><div id="mma.Chapter_Notes"><h2 id="_mma_Chapter_Notes_">Chapter Notes</h2><div id="mma.Author_Notes"><h3>Author Notes</h3><p>Dr Manoli is a pediatrician and clinical and biochemical geneticist. She is a clinician associate investigator and senior staff clinician in the Organic Acid Research Section of the National Human Genome Research Institute, and an attending physician at the National Institutes of Health Clinical Center.</p><p>Dr Sloan is a genetic counselor, molecular geneticist, and cytogeneticist. She is a staff scientist in the Organic Acid Research Section of the National Human Genome Research Institute.</p><p>Dr Venditti is a pediatrician and clinical and biochemical geneticist. He is a senior investigator and the director of the Organic Acid Research Section at the National Human Genome Research Institute and an attending physician at the National Institutes of Health Clinical Center.</p><p>Websites:</p><p>
<a href="https://www.genome.gov/staff/Charles-P-Venditti-MD-PhD" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">www.genome.gov/staff/Charles-P-Venditti-MD-PhD</a>
</p><p>
<a href="https://www.genome.gov/about-nhgri/Division-of-Intramural-Research/Metabolic-Medicine-Branch" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">www.genome.gov/about-nhgri/Division-of-Intramural-Research/Metabolic-Medicine-Branch</a>
</p></div><div id="mma.Acknowledgments"><h3>Acknowledgments</h3><p>The authors are supported by the Intramural Research Program of the National Human Genome Research Institute, Bethesda, MD. They have a longitudinal natural history protocol on methylmalonic acidemias and cobalamin disorders at the NIH (Study URL: <a href="https://clinicaltrials.gov/ct2/show/NCT00078078" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">clinicaltrials.gov/ct2/show/NCT00078078</a>) and a focused interest on translational research in these disorders. Further details and contact information are provided at the group's website: <a href="https://www.genome.gov/Current-NHGRI-Clinical-Studies/Methylmalonic-Acidemia-MMA" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">www.genome.gov/Current-NHGRI-Clinical-Studies/Methylmalonic-Acidemia-MMA</a>.</p><p>The authors wish to acknowledge the non-profit organizations "Angels for Alyssa," "A Cure for Clark," and the Organic Acidemia Association (OAA), all founded by families and friends of patients with MMA, for their ongoing dedication and support of MMA research.</p></div><div id="mma.Revision_History"><h3>Revision History</h3><ul><li class="half_rhythm"><div>8 September 2022 (ma) Comprehensive update posted live</div></li><li class="half_rhythm"><div>1 December 2016 (cpv) Revision: Molecular Genetics: <i>MMAB</i> and <i>MMUT</i></div></li><li class="half_rhythm"><div>7 January 2016 (me) Comprehensive update posted live</div></li><li class="half_rhythm"><div>28 September 2010 (me) Comprehensive update posted live</div></li><li class="half_rhythm"><div>18 January 2007 (cd) Revision: testing for mutations in <i>MMAA</i> and <i>MMAB</i> clinically available</div></li><li class="half_rhythm"><div>16 August 2005 (me) Review posted live</div></li><li class="half_rhythm"><div>11 May 2004 (cpv) Original submission</div></li></ul><p>Note: Pursuant to 17 USC Section 105 of the United States Copyright Act, the <i>GeneReview</i> "Isolated Methylmalonic Acidemia" is in the public domain in the United States of America.</p></div></div><div id="mma.References"><h2 id="_mma_References_">References</h2><div id="mma.Literature_Cited"><h3>Literature Cited</h3><ul class="simple-list"><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.abdrabo.2020.432">Abdrabo
LS, Watkins
D, Wang
SR, Lafond-Lapalme
J, Riviere
JB, Rosenblatt <em>DS.</em> Genome and RNA sequencing in patients with methylmalonic aciduria of unknown cause.
Genet Med.
2020;22:432-6.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31462756" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31462756</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.abramowicz.1994.418">Abramowicz
MJ, Andrien
M, Dupont
E, Dorchy
H, Parma
J, Duprez
L, Ledley
FD, Courtens
W, Vamos
E. Isodisomy of chromosome 6 in a newborn with methylmalonic acidemia and agenesis of pancreatic beta cells causing diabetes mellitus.
J Clin Invest.
1994;94:418-21.
[<a href="/pmc/articles/PMC296325/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC296325</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7913714" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7913714</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.acquaviva.2005.167">Acquaviva
C, Benoist
JF, Pereira
S, Callebaut
I, Koskas
T, Porquet
D, Elion
J
Molecular basis of methylmalonyl-CoA mutase apoenzyme defect in 40 European patients affected by mut(o) and mut- forms of methylmalonic acidemia: identification of 29 novel mutations in the MUT gene.
Hum Mutat
2005;25:167-76
[<a href="https://pubmed.ncbi.nlm.nih.gov/15643616" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15643616</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.adjalla.1998.s248">Adjalla
CE, Hosack
AR, Matiaszuk
NV, Rosenblatt
DS. A common mutation among blacks with mut- methylmalonic aciduria.
Hum Mutat.
1998;Suppl 1:S248-50.
[<a href="https://pubmed.ncbi.nlm.nih.gov/9452100" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9452100</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.ah_mew.2010.e208">Ah Mew
N, McCarter
R, Daikhin
Y, Nissim
I, Yudkoff
M, Tuchman
M.
N-carbamylglutamate augments ureagenesis and reduces ammonia and glutamine in propionic acidemia.
Pediatrics.
2010;126:e208-14.
[<a href="/pmc/articles/PMC3297024/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3297024</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20566609" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20566609</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.aldubayan.2017.142">Aldubayan
SH, Rodan
LH, Berry
GT, Levy
HL. Acute illness protocol for organic acidemias: methylmalonic acidemia and propionic acidemia.
Pediatr Emerg Care.
2017;33:142-6.
[<a href="https://pubmed.ncbi.nlm.nih.gov/28141776" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28141776</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.alfadhel.2021.422">Alfadhel
M, Nashabat
M, Saleh
M, Elamin
M, Alfares
A, Al Othaim
A, Umair
M, Ahmed
H, Ababneh
F, Al Mutairi
F, Eyaid
W, Alswaid
A, Alohali
L, Faqeih
E, Almannai
M, Aljeraisy
M, Albdah
B, Hussein
MA, Rahbeeni
Z, Alasmari
A. Long-term effectiveness of carglumic acid in patients with propionic acidemia (PA) and methylmalonic acidemia (MMA): a randomized clinical trial.
Orphanet J Rare Dis.
2021;16:422.
[<a href="/pmc/articles/PMC8507242/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8507242</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34635114" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34635114</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.alfares.2011.602">Alfares
A, Nunez
LD, Al-Thihli
K, Mitchell
J, Melan&#x000e7;on
S, Anastasio
N, Ha
KC, Majewski
J, Rosenblatt
DS, Braverman
N. Combined malonic and methylmalonic aciduria: exome sequencing reveals mutations in the ACSF3 gene in patients with a non-classic phenotype.
J Med Genet.
2011;48:602-5.
[<a href="https://pubmed.ncbi.nlm.nih.gov/21785126" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21785126</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.alizadeh_najjarbashi.2015.638">Alizadeh Najjarbashi
F, Mesdaghi
M, Alaei
M, Shakiba
M, Jami
A, Ghadimi
F.
A study on the humoral and complement immune system of patients with organic acidemia.
Iran J Allergy Asthma Immunol.
2015;14:638-41.
[<a href="https://pubmed.ncbi.nlm.nih.gov/26725562" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26725562</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.alm_si.2019.84">Alm&#x000e1;si
T, Guey
LT, Lukacs
C, Csetneki
K, Voko
Z, Zelei
T. Systematic literature review and meta-analysis on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency.
Orphanet J Rare Dis.
2019;14:84.
[<a href="/pmc/articles/PMC6485056/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6485056</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31023387" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31023387</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.alowain.2004.239">Al-Owain
M, Freehauf
C, Bernstein
L, Kappy
M, Thomas
J. Growth hormone deficiency associated with methylmalonic acidemia.
J Pediatr Endocrinol Metab.
2004;17:239-43.
[<a href="https://pubmed.ncbi.nlm.nih.gov/15055362" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15055362</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.alowain.2019.313">Al-Owain
M, Khalifa
OA, Al Sahlawi
Z, Hussein
MH, Sulaiman
RA, Al-Sayed
M, Rahbeeni
Z, Al-Hassnan
Z, Al-Zaidan
H, Nezzar
H, Al Homoud
I, Eldali
A, Altonen
B, Handoom
BS, Mbekeani
JN. Optic neuropathy in classical methylmalonic acidemia.
Ophthalmic Genet.
2019;40:313-22.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31269850" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31269850</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.altun.2022.e15082">Altun
I, Kiykim
A, Zubarioglu
T, Burtecene
N, Hopurcuoglu
D, Topcu
B, Cansever
MS, Kiykim
E, Cezmi Cokugras
H, Aktuglu Zeybek
AC. Altered immune response in organic acidemia.
Pediatr Int.
2022;64:e15082.
[<a href="https://pubmed.ncbi.nlm.nih.gov/34861062" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34861062</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.ampola.1975.313">Ampola
MG, Mahoney
MJ, Nakamura
E, Tanaka
K. Prenatal therapy of a patient with vitamin-B12-responsive methylmalonic acidemia.
N Engl J Med.
1975;293:313-7.
[<a href="https://pubmed.ncbi.nlm.nih.gov/239344" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 239344</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.an.2017.3548">An, D, Schneller
JL, Frassetto
A, Liang
S, Zhu
X, Park
JS, Theisen
M, Hong
SJ, Zhou
J, Rajendran
R, Levy
B, Howell
R, Besin
G, Presnyak
V, Sabnis
S, Murphy-Benenato
KE, Kumarasinghe
ES, Salerno
T, Mihai
C, Lukacs
CM, Chandler
RJ, Guey
LT, Venditti
CP, and Martini
PGV. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia.
Cell Rep
2017;21:3548-58
[<a href="/pmc/articles/PMC9667413/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9667413</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29262333" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29262333</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.andr_asson.2019.2631">Andr&#x000e9;asson
M, Zetterstrom
RH, von Dobeln
U, Wedell
A, Svenningsson
P. MCEE mutations in an adult patient with Parkinson's disease, dementia, stroke and elevated levels of methylmalonic acid.
Int J Mol Sci.
2019;20:2631.
[<a href="/pmc/articles/PMC6600349/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6600349</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31146325" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31146325</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.armstrong.2021.71">Armstrong
AJ, Collado
MS, Henke
BR, Olson
MW, Hoang
SA, Hamilton
CA, Pourtaheri
TD, Chapman
KA, Summar
MM, Johns
BA, Warmhoff
BR, Reardon
JE, Figler
RA. A novel small molecule approach for the treatment of propionic and methylmalonic acidemias.
Mol Genet Metab
2021;133:71-82.
[<a href="/pmc/articles/PMC9109253/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9109253</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33741272" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33741272</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.atkuri.2009.3941">Atkuri
KR, Cowan
TM, Kwan
T, Ng
A, Herzenberg
LA, Herzenberg
LA, Enns
GM (2009) Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia.
Proc Natl Acad Sci USA
106:3941-5
[<a href="/pmc/articles/PMC2656184/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2656184</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19223582" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19223582</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.bain.1995.850">Bain
MD, Nussey
SS, Jones
M, Chalmers
RA
Use of human somatotrophin in the treatment of a patient with methylmalonic aciduria.
Eur J Pediatr
1995;154:850-2
[<a href="https://pubmed.ncbi.nlm.nih.gov/8529687" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8529687</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.baker.2015.194">Baker
EH, Sloan
JL, Hauser
NS, Gropman
AL, Adams
DR, Toro
C, Manoli
I, Venditti
CP. MRI characteristics of globus pallidus infarcts in isolated methylmalonic acidemia.
AJNR Am J Neuroradiol.
2015;36:194-201.
[<a href="/pmc/articles/PMC7965933/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7965933</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25190203" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25190203</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.bakshi.2018.687">Bakshi
NA, Al-Anzi
T, Mohamed
SY, Rahbeeni
Z, AlSayed
M, Al-Owain
M, Sulaiman
RA. Spectrum of bone marrow pathology and hematological abnormalities in methylmalonic acidemia.
Am J Med Genet A.
2018;176:687-91.
[<a href="https://pubmed.ncbi.nlm.nih.gov/29330964" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29330964</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.baumgarter.1995.138">Baumgarter
ER, Viardot
C. Long-term follow-up of 77 patients with isolated methylmalonic acidaemia.
J Inherit Metab Dis.
1995;18:138-42
[<a href="https://pubmed.ncbi.nlm.nih.gov/7564229" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7564229</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.baumgartner.2014.130">Baumgartner
MR, H&#x000f6;rster
F, Dionisi-Vici
C, Haliloglu
G, Karall
D, Chapman
KA, Huemer
M, Hochuli
M, Assoun
M, Ballhausen
D, Burlina
A, Fowler
B, Gr&#x000fc;nert
SC, Gr&#x000fc;newald
S, Honzik
T, Merinero
B, P&#x000e9;rez-Cerd&#x000e1;
C, Scholl-B&#x000fc;rgi
S, Skovby
F, Wijburg
F, MacDonald
A, Martinelli
D, Sass
JO, Valayannopoulos
V, Chakrapani
A. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia.
Orphanet J Rare Dis.
2014;9:130.
[<a href="/pmc/articles/PMC4180313/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4180313</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25205257" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25205257</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.bikker.2006.640">Bikker
H, Bakker
HD, Abeling
NG, Poll-The
BT, Kleijer
WJ, Rosenblatt
DS, Waterham
HR, Wanders
RJ, Duran
M
A homozygous nonsense mutation in the methylmalonyl-CoA epimerase gene (MCEE) results in mild methylmalonic aciduria.
Hum Mutat
2006; 27:640-3
[<a href="https://pubmed.ncbi.nlm.nih.gov/16752391" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16752391</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.brassier.2013.106">Brassier
A, Boyer
O, Valayannopoulos
V, Ottolenghi
C, Krug
P, Cosson
MA, Touati
G, Arnoux
JB, Barbier
V, Bahi-Buisson
N, Desguerre
I, Charbit
M, Benoist
JF, Dupic
L, Aigrain
Y, Blanc
T, Salomon
R, Rabier
D, Guest
G, de Lonlay
P, Niaudet
P. Renal transplantation in 4 patients with methylmalonic aciduria: a cell therapy for metabolic disease.
Mol Genet Metab.
2013;110:106-10.
[<a href="https://pubmed.ncbi.nlm.nih.gov/23751327" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23751327</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.brassier.2020.234">Brassier
A, Krug
P, Lacaille
F, Pontoizeau
C, Krid
S, Sissaoui
S, Servais
A, Arnoux
JB, Legendre
C, Charbit
M, Scemla
A, Francoz
C, Benoist
JF, Schiff
M, Mochel
F, Touati
G, Brou&#x000e9;
P, Cano
A, Tardieu
M, Querciagrossa
S, Gr&#x000e9;vent
D, Boyer
O, Dupic
L, Oualha
M, Girard
M, Aigrain
Y, Debray
D, Capito
C, Ottolenghi
C, Salomon
R, Chardot
C, de Lonlay
P. Long-term outcome of methylmalonic aciduria after kidney, liver, or combined liver-kidney transplantation: the French experience.
J Inherit Metab Dis.
2020;43:234-43.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31525265" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31525265</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.brown.2020.755">Brown
DD, Roem
J, Ng
DK, Reidy
KJ, Kumar
J, Abramowitz
MK, Mak
RH, Furth
SL, Schwartz
GJ, Warady
BA, Kaskel
FJ, Melamed
ML. Low serum bicarbonate and CKD progression in children.
Clin J Am Soc Nephrol.
2020;15:755-65.
[<a href="/pmc/articles/PMC7274283/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7274283</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32467307" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32467307</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.campbell.2005.ecr45">Campbell
CD, Ganesh
J, Ficicioglu
C. Two newborns with nutritional vitamin B12 deficiency: challenges in newborn screening for vitamin B12 deficiency.
Haematologica.
2005;90:ECR45
[<a href="https://pubmed.ncbi.nlm.nih.gov/16464760" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16464760</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.carrillocarrasco.2010.1147">Carrillo-Carrasco
N, Chandler
RJ, Chandrasekaran
S, Venditti
CP. Liver-directed recombinant adeno-associated viral gene delivery rescues a lethal mouse model of methylmalonic acidemia and provides long-term phenotypic correction.
Hum Gene Ther.
2010;21:1147-54.
[<a href="/pmc/articles/PMC2936498/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2936498</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20486773" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20486773</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.carrozzo.2007.862">Carrozzo
R, Dionisi-Vici
C, Steuerwald
U, Lucioli
S, Deodato
F, Di Giandomenico
S, Bertini
E, Franke
B, Kluijtmans
LA, Meschini
MC, Rizzo
C, Piemonte
F, Rodenburg
R, Santer
R, Santorelli
FM, van Rooij
A, Vermunt-de Koning
D, Morava
E, Wevers
RA (2007) SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness.
Brain
130:862-74
[<a href="https://pubmed.ncbi.nlm.nih.gov/17301081" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17301081</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.celiker.2009.640">Celiker
MY, Chawla
A. Congenital B12 deficiency following maternal gastric bypass.
J Perinatol.
2009;29:640-2.
[<a href="https://pubmed.ncbi.nlm.nih.gov/19710657" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19710657</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chace.2001.2040">Chace
DH, DiPerna
JC, Kalas
TA, Johnson
RW, Naylor
EW (2001) Rapid diagnosis of methylmalonic and propionic acidemias: quantitative tandem mass spectrometric analysis of propionylcarnitine in filter-paper blood specimens obtained from newborns.
Clin Chem
47:2040-4
[<a href="https://pubmed.ncbi.nlm.nih.gov/11673377" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11673377</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chakrapani.2002.261">Chakrapani
A, Sivakumar
P, McKiernan
PJ, Leonard
JV (2002) Metabolic stroke in methylmalonic acidemia five years after liver transplantation.
J Pediatr
140:261-3
[<a href="https://pubmed.ncbi.nlm.nih.gov/11865284" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 11865284</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chambliss.2000.497">Chambliss
KL, Gray
RG, Rylance
G, Pollitt
RJ, Gibson
KM. Molecular characterization of methylmalonate semialdehyde dehydrogenase deficiency.
J Inherit Metab Dis.
2000;23:497-504.
[<a href="https://pubmed.ncbi.nlm.nih.gov/10947204" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10947204</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chan.2015.635">Chan
R, Mascarenhas
L, Boles
RG, Kerkar
N, Genyk
Y, Venkatramani
R. Hepatoblastoma in a patient with methylmalonic aciduria.
Am J Med Genet A.
2015;167A:635-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/25691417" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25691417</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chandler.2008.53">Chandler
RJ, Venditti
CP (2008) Adenovirus-mediated gene delivery rescues a neonatal lethal murine model of mut(0) methylmalonic acidemia.
Hum Gene Ther
19:53-60
[<a href="/pmc/articles/PMC2683146/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2683146</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18052792" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18052792</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chandler.2019.1236">Chandler
RJ, Venditti
CP. Gene therapy for methylmalonic acidemia: past, present, and future.
Hum Gene Ther.
2019;30:1236-44.
[<a href="/pmc/articles/PMC6763959/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6763959</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31303064" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31303064</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chandler.2010.11">Chandler
RJ, Venditti
CP (2010) Long-term rescue of a lethal murine model of methylmalonic acidemia using adeno-associated viral gene therapy.
Mol Ther.
18:11-6.
[<a href="/pmc/articles/PMC2839224/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2839224</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19861951" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19861951</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chandler.2012.617">Chandler
RJ, Venditti
CP. Pre-clinical efficacy and dosing of an AAV8 vector expressing human methylmalonyl-CoA mutase in a murine model of methylmalonic acidemia (MMA).
Mol Genet Metab.
2012;107:617-9.
[<a href="/pmc/articles/PMC3522145/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3522145</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23046887" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23046887</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chandler.2021.2223">Chandler
RJ, Venturoni
LE, Liao
J, Hubbard
BT, Schneller
JL, Hoffmann
V, Gordo
S, Zang
S, Ko
CW, Chau
N, Chiang
K, Kay
MA, Barzel
A, Venditti
CP. Promoterless, nuclease-free genome editing confers a growth advantage for corrected hepatocytes in mice with methylmalonic acidemia.
Hepatology.
2021;73:2223-37.
[<a href="/pmc/articles/PMC8252383/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8252383</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32976669" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32976669</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chandler.2009.1252">Chandler
RJ, Zerfas
PM, Shanske
S, Sloan
J, Hoffmann
V, DiMauro
S, Venditti
CP (2009) Mitochondrial dysfunction in mut methylmalonic acidemia.
FASEB J
23:1252-61
[<a href="/pmc/articles/PMC2660647/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2660647</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19088183" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19088183</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chang.2000.295">Chang
PF, Huang
SF, Hwu
WL, Hou
JW, Ni
YH, Chang
MH (2000) Metabolic disorders mimicking Reye's syndrome.
J Formos Med Assoc
99:295-9
[<a href="https://pubmed.ncbi.nlm.nih.gov/10870312" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10870312</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chao.2012.243">Chao
PW, Chang
WK, Lai
IW, et al.
Acute life-threatening arrhythmias caused by severe hyperkalemia after induction of anesthesia in an infant with methylmalonic acidemia.
J Chin Med Assoc.
2012; 75:243&#x02013;245.
[<a href="https://pubmed.ncbi.nlm.nih.gov/22632992" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22632992</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chapelcrespo.2019.113">Chapel-Crespo
C, Gavrilov
D, Sowa
M, Myers
J, Day-Salvatore
DL, Lynn
H, Regier
D, Starin
D, Steenari
M, Schoonderwoerd
K, Abdenur
JE. Clinical, biochemical and molecular characteristics of malonyl-CoA decarboxylase deficiency and long-term follow-up of nine patients.
Mol Genet Metab.
2019;128:113-21.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31395333" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31395333</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chapman.2018.106">Chapman
KA, Gramer
G, Viall
S, Summar
ML. Incidence of maple syrup urine disease, propionic acidemia, and methylmalonic aciduria from newborn screening data.
Mol Genet Metab Rep.
2018;15:106-9.
[<a href="/pmc/articles/PMC6047110/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6047110</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30023298" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30023298</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chen.2020.e1063">Chen
M, Hao
H, Xiong
H, Cai
Y, Ma
F, Shi
C, Xiao
X, Li
S. Segmental uniparental disomy of chromosome 4 in a patient with methylmalonic acidemia.
Mol Genet Genomic Med.
2020;8:e1063.
[<a href="/pmc/articles/PMC6978399/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6978399</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31793236" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31793236</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chu.2016.264">Chu
J, Pupavac
M, Watkins
D, Tian
X, Feng
Y, Chen
S, Fenter
R, Zhang
VW, Wang
J, Wong
LJ, Rosenblatt
DS. Next generation sequencing of patients with mut methylmalonic aciduria: Validation of somatic cell studies and identification of 16 novel mutations.
Mol Genet Metab.
2016;118:264-71.
[<a href="https://pubmed.ncbi.nlm.nih.gov/27233228" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27233228</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.chu.2019.73">Chu
TH, Chien
YH, Lin
HY, Liao
HC, Ho
HJ, Lai
CJ, Chiang
CC, Lin
NC, Yang
CF, Hwu
WL, Lee
NC, Lin
SP, Liu
CS, Hu
RH, Ho
MC, Niu
DM. Methylmalonic acidemia/propionic acidemia - the biochemical presentation and comparing the outcome between liver transplantation versus non-liver transplantation groups.
Orphanet J Rare Dis.
2019;14:73.
[<a href="/pmc/articles/PMC6444613/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6444613</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30940196" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30940196</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.ciani.2000.2119">Ciani
F, Donati
MA, Tulli
G, Poggi
GM, Pasquini
E, Rosenblatt
DS, Zammarchi
E (2000) Lethal late onset cblB methylmalonic aciduria.
Crit Care Med
28:2119-21
[<a href="https://pubmed.ncbi.nlm.nih.gov/10890676" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10890676</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.clothier.2011.695">Clothier
JC, Chakrapani
A, Preece
MA, McKiernan
P, Gupta
R, Macdonald
A, Hulton
SA. Renal transplantation in a boy with methylmalonic acidaemia.
J Inherit Metab Dis.
2011;34:695-700.
[<a href="https://pubmed.ncbi.nlm.nih.gov/21416195" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21416195</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.coelho.2008.1454">Coelho
D, Suormala
T, Stucki
M, Lerner-Ellis
JP, Rosenblatt
DS, Newbold
RF, Baumgartner
MR, Fowler
B (2008) Gene identification for the cblD defect of vitamin B12 metabolism.
N Engl J Med.
358:1454-64.
[<a href="https://pubmed.ncbi.nlm.nih.gov/18385497" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18385497</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.coman.2006.270">Coman
D, Huang
J, McTaggart
S, Sakamoto
O, Ohura
T, McGill
J, Burke
J. Renal transplantation in a 14-year-old girl with vitamin B12-responsive cblA-type methylmalonic acidaemia.
Pediatr Nephrol.
2006;21:270-3.
[<a href="https://pubmed.ncbi.nlm.nih.gov/16247646" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16247646</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.cosson.2009.172">Cosson
MA, Benoist
JF, Touati
G, Dechaux
M, Royer
N, Grandin
L, Jais
JP, Boddaert
N, Barbier
V, Desguerre
I, Campeau
PM, Rabier
D, Valayannopoulos
V, Niaudet
P, de Lonlay
P. Long-term outcome in methylmalonic aciduria: a series of 30 French patients.
Mol Genet Metab.
2009;97:172-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/19375370" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19375370</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.cosson.2008.107">Cosson
MA, Touati
G, Lacaille
F, Valayannnopoulos
V, Guyot
C, Guest
G, Verkarre
V, Chr&#x000e9;tien
D, Rabier
D, Munnich
A, Benoist
JF, de Keyzer
Y, Niaudet
P, de Lonlay
P. Liver hepatoblastoma and multiple OXPHOS deficiency in the follow-up of a patient with methylmalonic aciduria.
Mol Genet Metab.
2008;95:107-9.
[<a href="https://pubmed.ncbi.nlm.nih.gov/18676166" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18676166</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.coulombe.1981.26">Coulombe
JT, Shih
VE, Levy
HL. Massachusetts Metabolic Disorders Screening Program. II. Methylmalonic aciduria.
Pediatrics.
1981;67:26-31.
[<a href="https://pubmed.ncbi.nlm.nih.gov/7243433" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7243433</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.critelli.2018.1260">Critelli
K, McKiernan
P, Vockley
J, Mazariegos
G, Squires
RH, Soltys
K, Squires
JE. Liver transplantation for propionic acidemia and methylmalonic acidemia: perioperative management and clinical outcomes.
Liver Transpl.
2018;24:1260-70.
[<a href="https://pubmed.ncbi.nlm.nih.gov/30080956" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30080956</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.dao.2021.220">Dao
M, Arnoux
JB, Bienaim&#x000e9;
F, Brassier
A, Brazier
F, Benoist
JF, Pontoizeau
C, Ottolenghi
C, Krug
P, Boyer
O, de Lonlay
P, Servais
A. Long-term renal outcome in methylmalonic acidemia in adolescents and adults.
Orphanet J Rare Dis.
2021;16:220.
[<a href="/pmc/articles/PMC8120835/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8120835</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33985557" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33985557</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.de_baulny.2005.415">de Baulny
HO, Benoist
JF, Rigal
O, Touati
G, Rabier
D, Saudubray
JM (2005) Methylmalonic and propionic acidaemias: management and outcome.
J Inherit Metab Dis.
28:415-23.
[<a href="https://pubmed.ncbi.nlm.nih.gov/15868474" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15868474</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.de_keyzer.2009.91">de Keyzer
Y, Valayannopoulos
V, Benoist
JF, Batteux
F, Lacaille
F, Hubert
L, Chr&#x000e9;tien
D, Chadefeaux-Vekemans
B, Niaudet
P, Touati
G, Munnich
A, de Lonlay
P (2009) Multiple OXPHOS deficiency in the liver, kidney, heart and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria.
Pediatr Res
66:91-5
[<a href="https://pubmed.ncbi.nlm.nih.gov/19342984" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19342984</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.deodato.2002.133">Deodato
F, Rizzo
C, Boenzi
S, Baiocco
F, Sabetta
G, Dionisi-Vici
C. Successful pregnancy in a woman with mut- methylmalonic acidaemia.
J Inherit Metab Dis.
2002;25:133-4.
[<a href="https://pubmed.ncbi.nlm.nih.gov/12118529" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12118529</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.de_raeve.1994.416">De Raeve
L, De Meirleir
L, Ramet
J, Vandenplas
Y, Gerlo
E (1994) Acrodermatitis enteropathica-like cutaneous lesions in organic aciduria.
J Pediatr
124:416-20.
[<a href="https://pubmed.ncbi.nlm.nih.gov/8120711" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8120711</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.dimitrov.2021.9">Dimitrov
B, Molema
F, Williams
M, Schmiesing
J, M&#x000fc;hlhausen
C, Baumgartner
MR, Schumann
A, K&#x000f6;lker
S. Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise.
J Inherit Metab Dis.
2021;44:9-21.
[<a href="https://pubmed.ncbi.nlm.nih.gov/32412122" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32412122</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.diodato.2018.565">Diodato
D, Olivieri
G, Pro
S, Maiorani
D, Martinelli
D, Deodato
F, Taurisano
R, Di Capua
M, Dionisi-Vici
C. Axonal peripheral neuropathy in propionic acidemia: a severe side effect of long-term metronidazole therapy.
Neurology.
2018;91:565-7.
[<a href="https://pubmed.ncbi.nlm.nih.gov/30120134" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30120134</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.dionisivici.2006.383">Dionisi-Vici
C, Deodato
F, R&#x000f6;schinger
W, Rhead
W, Wilcken
B (2006) 'Classical' organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry.
J Inherit Metab Dis
29:383-9
[<a href="https://pubmed.ncbi.nlm.nih.gov/16763906" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16763906</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.dobrowolski.2020.272">Dobrowolski
SF, Alodaib
A, Karunanidhi
A, Basu
S, Holecko
M, Lichter-Konecki
U, Pappan
KL, Vockley
J. Clinical, biochemical, mitochondrial, and metabolomic aspects of methylmalonate semialdehyde dehydrogenase deficiency: Report of a fifth case.
Mol Genet Metab.
2020;129:272-7.
[<a href="https://pubmed.ncbi.nlm.nih.gov/32151545" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32151545</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.dobson.2006.327">Dobson
CM, Gradinger
A, Longo
N, Wu
X, Leclerc
D, Lerner-Ellis
J, Lemieux
M, Belair
C, Watkins
D, Rosenblatt
DS, Gravel
RA (2006) Homozygous nonsense mutation in the MCEE gene and siRNA suppression of methylmalonyl-CoA epimerase expression: a novel cause of mild methylmalonic aciduria.
Mol Genet Metab
88:327-33
[<a href="https://pubmed.ncbi.nlm.nih.gov/16697227" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16697227</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.dudley.1998.564">Dudley
J, Allen
J, Tizard
J, McGraw
M (1998) Benign methylmalonic acidemia in a sibship with distal renal tubular acidosis.
Pediatr Nephrol
12:564-6
[<a href="https://pubmed.ncbi.nlm.nih.gov/9761355" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9761355</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.d_ndar.2012.419">D&#x000fc;ndar
H, &#x000d6;zg&#x000fc;l
RK, G&#x000fc;zel-Ozant&#x000fc;rk
A, Dursun
A, Sivri
S, Aliefendio&#x0011f;lu
D, Co&#x0015f;kun
T, Tokatli
A. Microarray based mutational analysis of patients with methylmalonic acidemia: identification of 10 novel mutations.
Mol Genet Metab.
2012;106:419-23.
[<a href="https://pubmed.ncbi.nlm.nih.gov/22727635" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22727635</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.elpeleg.2005.1081">Elpeleg
O, Miller
C, Hershkovitz
E, Bitner-Glindzicz
M, Bondi-Rubinstein
G, Rahman
S, Pagnamenta
A, Eshhar
S, Saada
A (2005) Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion.
Am J Hum Genet
76:1081-6
[<a href="/pmc/articles/PMC1196446/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1196446</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15877282" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15877282</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.evans.2017.163">Evans
M, Truby
H, Boneh
A.
The Relationship between Dietary Intake, Growth, and Body Composition in Inborn Errors of Intermediary Protein Metabolism.
J Pediatr.
2017
Sep;188:163-172.
[<a href="https://pubmed.ncbi.nlm.nih.gov/28629683" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28629683</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.fattahi.2018.3177">Fattahi
Z, Sheikh
TI, Musante
L, Rasheed
M, Taskiran
II, Harripaul
R, Hu
H, Kazeminasab
S, Alam
MR, Hosseini
M, Larti
F, Ghaderi
Z, Celik
A, Ayub
M, Ansar
M, Haddadi
M, Wienker
TF, Ropers
HH, Kahrizi
K, Vincent
JB, Najmabadi
H. Biallelic missense variants in ZBTB11 can cause intellectual disability in humans.
Hum Mol Genet.
2018;27:3177-88.
[<a href="https://pubmed.ncbi.nlm.nih.gov/29893856" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29893856</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.fitzpatrick.1999.318">FitzPatrick
DR, Hill
A, Tolmie
JL, Thorburn
DR, Christodoulou
J. The molecular basis of malonyl-CoA decarboxylase deficiency.
Am J Hum Genet.
1999;65:318-26.
[<a href="/pmc/articles/PMC1377930/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1377930</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10417274" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10417274</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.forny.2018.a24">Forny
P, Davison
J, Skeath
R, Gruenewald
S, Stojanovic
J, Hadzic
N, Barone
G, Vara
R, Munir
S.
057 GOSH-wide review of pancreatitis as a complication in methylmalonic aciduria.
Arch Dis Child.
2018;103:A24.</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.forny.2014.1449">Forny
P, Froese
DS, Suormala
T, Yue
WW, Baumgartner
MR. Functional characterization and categorization of missense mutations that cause methylmalonyl-CoA mutase (MUT) deficiency.
Hum Mutat.
2014;35:1449-58.
[<a href="/pmc/articles/PMC4441004/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4441004</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25125334" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25125334</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.forny.2019.793">Forny
P, Hochuli
M, Rahman
Y, Deheragoda
M, Weber
A, Baruteau
J, Grunewald
S. Liver neoplasms in methylmalonic acidemia. An emerging complication.
J Inherit Metab Dis.
2019;42:793-802.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31260114" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31260114</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.forny.2021.566">Forny
P, Horster
F, Ballhausen
D, Chakrapani
A, Chapman
KA, Dionisi-Vici
C, Dixon
M, Gruenrt
SC, Grunewald
S, Haliloglou
G, Hochuli
M, Hnozik
T, Karall
D, Martinelli
D, Molema
F, Sass
JO, Scholl-Burgi
E, Tal
G, Williams
M, Huemer
M, Baumgartner
MR. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: first revision.
J Inherit Metab Dis.
2021;44:566-92.
[<a href="/pmc/articles/PMC8252715/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8252715</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33595124" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33595124</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.forny.2022.1253">Forny
P, Plessi
T, Frei
C, Burer
C, Froese
SD, Baumgartner
MR. Spectrum and characterization of bi-allelic variants in MMAB causing cblB-type methylmalonic aciduria.
Hum Genet.
2022;141:1253-67.
[<a href="/pmc/articles/PMC9262797/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9262797</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34796408" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34796408</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.forny.2016.745">Forny
P, Schnellmann
AS, Buerer
C, Lutz
S, Fowler
B, Froese
DS, Baumgartner
MR. Molecular Genetic Characterization of 151 Mut-Type Methylmalonic Aciduria Patients and Identification of 41 Novel Mutations in MUT.
Hum Mutat.
2016;37:745-54.
[<a href="https://pubmed.ncbi.nlm.nih.gov/27167370" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27167370</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.fowler.2008.350">Fowler
B, Leonard
JV, Baumgartner
MR (2008) Causes and diagnostic approach to methylmalonic acidurias.
J Inherit Metab Dis
31:350-60
[<a href="https://pubmed.ncbi.nlm.nih.gov/18563633" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18563633</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.fraser.2016.682">Fraser
JL, Venditti
CP. Methylmalonic and propionic acidemias: clinical management update.
Curr Opin Pediatr.
2016;28:682-93.
[<a href="/pmc/articles/PMC5393914/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5393914</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27653704" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27653704</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.froese.2013.1182">Froese
DS, Forouhar
F, Tran
TH, Vollmar
M, Kim
YS, Lew
S, Neely
H, Seetharaman
J, Shen
Y, Xiao
R, Acton
TB, Everett
JK, Cannone
G, Puranik
S, Savitsky
P, Krojer
T, Pilka
ES, Kiyani
W, Lee
WH, Marsden
BD, von Delft
F, Allerston
CK, Spagnolo
L, Gileadi
O, Montelione
GT, Oppermann
U, Yue
WW, Tong
L. Crystal structures of malonyl-coenzyme A decarboxylase provide insights into its catalytic mechanism and disease-causing mutations.
Structure.
2013;21:1182-92.
[<a href="/pmc/articles/PMC3701320/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3701320</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23791943" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23791943</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.froese.2010.38204">Froese
DS, Kochan
G, Muniz
JR, Wu
X, Gileadi
C, Ugochukwu
E, Krysztofinska
E, Gravel
RA, Oppermann
U, Yue
WW. Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation.
J Biol Chem.
2010
Dec
3;285(49):38204-13
[<a href="/pmc/articles/PMC2992254/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2992254</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20876572" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20876572</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.froese.2015.29167">Froese
DS, Kopec
J, Fitzpatrick
F, Schuller
M, McCorvie
TJ, Chalk
R, Plessi
T, Fettelschoss
V, Fowler
B, Baumgartner
MR, Yue
WW. Structural insights into the MMACHC-MMADHC protein complex involved in vitamin B12 trafficking.
J Biol Chem.
2015;290:29167-77.
[<a href="/pmc/articles/PMC4705923/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4705923</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26483544" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26483544</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.gancheva.2020.981">Gancheva
S, Caspari
D, Bierwagen
A, Jelenik
T, Caprio
S, Santoro
N, Rothe
M, Markgraf
DF, Herebian
D, Hwang
JH, &#x000d6;ner-Sieben
S, Mennenga
J, Pacini
G, Thimm
E, Schlune
A, Meissner
T, Vom Dahl
S, Klee
D, Mayatepek
E, Roden
M, Ensenauer
R. Cardiometabolic risk factor clustering in patients with deficient branched-chain amino acid catabolism: A case-control study.
J Inherit Metab Dis.
2020;43:981-93.
[<a href="https://pubmed.ncbi.nlm.nih.gov/32118306" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32118306</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.gavrilov.2020.33">Gavrilov
DK, Piazza
AL, Pino
G, Turgeon
C, Matern
D, Oglesbee
D, Raymond
K, Tortorelli
S, Rinaldo
P. The combined impact of CLIR post-analytical tools and second tier testing on the performance of newborn screening for disorders of propionate, methionine and cobalamin metabolism.
Int J Neonatal Screen.
2020;6:33.
[<a href="/pmc/articles/PMC7423003/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7423003</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33073028" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33073028</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.giorgio.1976.310">Giorgio
AJ, Trowbridge
M, Boone
AW, Patten
RS (1976) Methylmalonic aciduria without vitamin B12 deficiency in an adult sibship.
N Engl J Med
295:310-3
[<a href="https://pubmed.ncbi.nlm.nih.gov/6909" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6909</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.gonz_lez.2016.721">Gonz&#x000e1;lez
I, Lecube
A, Rubio
M&#x000c1;, Garc&#x000ed;a-Luna
PP. Pregnancy after bariatric surgery: improving outcomes for mother and child.
Int J Womens Health.
2016;8:721-9.
[<a href="/pmc/articles/PMC5167470/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5167470</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28008286" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28008286</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.gradinger.2007.1045">Gradinger
AB, B&#x000e9;lair
C, Worgan
LC, Li
CD, Lavall&#x000e9;e
J, Roquis
D, Watkins
D, Rosenblatt
DS. Atypical methylmalonic aciduria: frequency of mutations in the methylmalonyl CoA epimerase gene (MCEE).
Hum Mutat.
2007;28:1045.
[<a href="https://pubmed.ncbi.nlm.nih.gov/17823972" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17823972</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.gramer.2020.165">Gramer
G, Fang-Hoffmann
J, Feyh
P, Klinke
G, Monostori
P, M&#x000fc;tze
U, Posset
R, Weiss
KH, Hoffmann
GF, Okun
JG. Newborn screening for vitamin B12 deficiency in Germany&#x02014;strategies, results, and public health implications.
J Pediatr.
2020;216:165-72.e4.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31604629" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31604629</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.grange.1994.311">Grange
DK, Finlay
JL. Nutritional vitamin B12 deficiency in a breastfed infant following maternal gastric bypass.
Pediatr Hematol Oncol.
1994;11:311-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/8060815" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8060815</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.gregg.2021.1793">Gregg
AR, Aarabi
M, Klugman
S, Leach
NT, Bashford
MT, Goldwaser
T, Chen
E, Sparks
TN, Reddi
HV, Rajkovic
A, Dungan
JS; ACMG Professional Practice and Guidelines Committee. Screening for autosomal recessive and X-linked conditions during pregnancy and preconception: a practice resource of the American College of Medical Genetics and Genomics (ACMG).
Genet Med.
2021;23:1793-806.
[<a href="/pmc/articles/PMC8488021/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8488021</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34285390" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34285390</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.guerramoreno.2003.17">Guerra-Moreno
J, Barrios
N, Santiago-Borrero
PJ. Severe neutropenia in an infant with methylmalonic acidemia.
Bol Asoc Med P R.
2003;95:17-20.
[<a href="https://pubmed.ncbi.nlm.nih.gov/12898746" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12898746</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.haijes.2019a.730">Haijes
HA, Jans
JJM, Tas
SY, Verhoeven-Duif
NM, van Hasselt
PM. Pathophysiology of propionic and methylmalonic acidemias. Part 1: complications.
J Inherit Metab Dis.
2019a;42:730-44.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31119747" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31119747</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.haijes.2019b.745">Haijes
HA, van Hasselt
PM, Jans
JJM, Verhoeven-Duif
NM. Pathophysiology of propionic and methylmalonic acidemias. Part 2: Treatment strategies.
J Inherit Metab Dis.
2019b;42:745-61.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31119742" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31119742</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.hannahshmouni.2018.1411">Hannah-Shmouni
F, Cruz
V, Schulze
A, Mercimek-Andrews
S.
Transcobalamin receptor defect: Identification of two new cases through positive newborn screening for propionic/methylmalonic aciduria and long-term outcome.
Am J Med Genet A.
2018;176:1411-5.
[<a href="https://pubmed.ncbi.nlm.nih.gov/29663633" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29663633</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.harrington.2016.345">Harrington
EA, Sloan
JL, Manoli
I, Chandler
RJ, Schneider
M, McGuire
PJ, Calcedo
R, Wilson
JM, Venditti
CP. Neutralizing Antibodies Against Adeno-Associated Viral Capsids in Patients with mut Methylmalonic Acidemia.
Hum Gene Ther.
2016;27:345-53.
[<a href="/pmc/articles/PMC4841085/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4841085</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26790480" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26790480</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.harting.2008.368">Harting
I, Seitz
A, Geb
S, Zwickler
T, Porto
L, Lindner
M, K&#x000f6;lker
S, H&#x000f6;rster
F (2008) Looking beyond the basal ganglia: the spectrum of MRI changes in methylmalonic acidaemia.
J Inherit Metab Dis.
31:368-78.
[<a href="https://pubmed.ncbi.nlm.nih.gov/18470632" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18470632</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.hauser.2011.47">Hauser
NS, Manoli
I, Graf
JC, Sloan
J, Venditti
CP. Variable dietary management of methylmalonic acidemia: metabolic and energetic correlations.
Am J Clin Nutr.
2011;93:47-56.
[<a href="/pmc/articles/PMC3001598/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3001598</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21048060" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21048060</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.head.2022.eabn4772">Head
PE, Myung
S, Chen
Y, Schneller
JL, Wang
C, Duncan
N, Hoffman
P, Chang
D, Gebremariam
A, Gucek
M, Manoli
I, Venditti
CP. Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin.
Sci Transl Med.
2022;14:eabn4772.
[<a href="/pmc/articles/PMC10468269/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC10468269</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35613279" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35613279</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.heidenreich.1988.1022">Heidenreich
R, Natowicz
M, Hainline
BE, Berman
P, Kelley
RI, Hillman
RE, Berry
GT (1988) Acute extrapyramidal syndrome in methylmalonic acidemia: "metabolic stroke" involving the globus pallidus.
J Pediatr
113:1022-7
[<a href="https://pubmed.ncbi.nlm.nih.gov/3193307" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3193307</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.held.2022.13">Held
PK, Singh
E, Scott Schwoerer
J. Screening for Methylmalonic and Propionic Acidemia: Clinical Outcomes and Follow-Up Recommendations.
Int J Neonatal Screen.
2022;8:13.
[<a href="/pmc/articles/PMC8883915/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8883915</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35225935" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35225935</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.heringer.2016.341">Heringer
J, Valayannopoulos
V, Lund
AM, Wijburg
FA, Freisinger
P, Bari&#x00107;
I, Baumgartner
MR, Burgard
P, Burlina
AB, Chapman
KA, I Saladelafont EC, Karall D, M&#x000fc;hlhausen C, Riches V, Schiff M, Sykut-Cegielska J, Walter JH, Zeman J, Chabrol B, K&#x000f6;lker S, et al. Impact of age at onset and newborn screening on outcome in organic acidurias.
J Inherit Metab Dis.
2016;39:341-53.
[<a href="https://pubmed.ncbi.nlm.nih.gov/26689403" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26689403</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.heuberger.2019.1265">Heuberger
K, Bailey
HJ, Burda
P, Chaikuad
A, Krysztofinska
E, Suormala
T, B&#x000fc;rer
C, Lutz
S, Fowler
B, Froese
DS, Yue
WW, Baumgartner
MR. Genetic, structural, and functional analysis of pathogenic variations causing methylmalonyl-CoA epimerase deficiency.
Biochim Biophys Acta Mol Basis Dis.
2019;1865:1265-72.
[<a href="/pmc/articles/PMC6525113/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6525113</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30682498" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30682498</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.hinton.2010.162">Hinton
CF, Ojodu
JA, Fernhoff
PM, Rasmussen
SA, Scanlon
KS, Hannon
WH. Maternal and neonatal vitamin B12 deficiency detected through expanded newborn screening--United States, 2003-2007.
J Pediatr.
2010;157:162-3.
[<a href="https://pubmed.ncbi.nlm.nih.gov/20400092" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20400092</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.h_rster.2007.225">H&#x000f6;rster
F, Baumgartner
MR, Viardot
C, Suormala
T, Burgard
P, Fowler
B, Hoffmann
GF, Garbade
SF, K&#x000f6;lker
S, Baumgartner
ER (2007) Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB).
Pediatr Res.
62:225-30.
[<a href="https://pubmed.ncbi.nlm.nih.gov/17597648" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17597648</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.h_rster.2009.630">H&#x000f6;rster
F, Garbade
SF, Zwickler
T, Aydin
HI, Bodamer
OA, Burlina
AB, Das
AM, De Klerk
JBC, Dionisi-Vici
C, Geb
S, G&#x000f6;kcay
G, Guffon
N, Maier
EM, Morava
E, Walter
JH, Schwahn
B, Wijburg
FA, Lindner
M, Gr&#x000fc;newald
S, Baumgartner
MR, K&#x000f6;lker
S. Prediction of outcome in isolated methylmalonic acidurias: combined use of clinical and biochemical parameters.
J Inherit Metab Dis.
2009;32:630.
[<a href="https://pubmed.ncbi.nlm.nih.gov/19642010" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19642010</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.h_rster.2021.193">H&#x000f6;rster
F, Tuncel
AT, Gleich
F, Plessl
T, Froese
SD, Garbade
SF, K&#x000f6;lker
S, Baumgartner
MR, et al.
Delineating the clinical spectrum of isolated methylmalonic acidurias: cblA and mut.
J Inherit Metab Dis.
2021;44:193-214.
[<a href="https://pubmed.ncbi.nlm.nih.gov/32754920" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32754920</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.hsui.2003.171">Hsui
JY, Chien
YH, Chu
SY, Lu
FL, Chen
HL, Ho
MJ, Lee
PH, Hwu
WL. Living-related liver transplantation for methylmalonic acidemia: report of one case.
Acta Paediatr Taiwan.
2003;44:171-3.
[<a href="https://pubmed.ncbi.nlm.nih.gov/14521026" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14521026</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.huang.2022.389">Huang
SJ, Amendola
LM, Sternen
DL. Variation among DNA banking consent forms: points for clinicians to bank on.
J Community Genet.
2022;13:389-97.
[<a href="/pmc/articles/PMC9314484/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9314484</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35834113" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35834113</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.hwang.2021.37">Hwang
WJ, Lim
HH, Kim
YM, Chang
MY, Kil
HR, Kim
JY, Song
WJ, Levy
HL, Kim
SZ. Pancreatic involvement in patients with inborn errors of metabolism.
Orphanet J Rare Dis.
2021;16:37
[<a href="/pmc/articles/PMC7819202/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7819202</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33472655" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33472655</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.imbard.2018.433">Imbard
A, Garcia Segarra
N, Tardieu
M, Brou&#x000e9;
P, Bouchereau
J, Pichard
S, de Baulny
HO, Slama
A, Mussini
C, Touati
G, Danjoux
M, Gaignard
P, Vogel
H, Labarthe
F, Schiff
M, Benoist
JF. Long-term liver disease in methylmalonic and propionic acidemias.
Mol Genet Metab.
2018;123:433-40.
[<a href="https://pubmed.ncbi.nlm.nih.gov/29433791" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29433791</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.inoue.1981.95">Inoue
S, Krieger
I, Sarnaik
A, Ravindranath
Y, Fracassa
M, Ottenbreit
MJ. Inhibition of bone marrow stem cell growth in vitro by methylmalonic acid: a mechanism for pancytopenia in a patient with methylmalonic acidemia.
Pediatr Res.
1981;15:95-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/7254944" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7254944</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.irie.2020.635">Irie
R, Nakazawa
A, Sakamoto
S, Takeda
M, Yanagi
Y, Shimizu
S, Uchida
H, Fukuda
A, Horikawa
R, Kasahara
M. Etiology of liver dysfunction after liver transplantation in children with metabolic disorders.
Hepatol Res.
2020;50:635-42.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31957215" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31957215</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.jang.2021.288">Jang
JG, Oh
SH, Kim
YB, Kim
SH, Yoo
HW, Lee
BH, Namgoong
JM, Kim
DY, Kim
KH, Song
GW, Moon
DB, Hwang
S, Lee
SG, Kim
KM. Efficacy of living donor liver transplantation in patients with methylmalonic acidemia.
Pediatr Gastroenterol Hepatol Nutr.
2021;24:288-94.
[<a href="/pmc/articles/PMC8128783/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8128783</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34046332" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34046332</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.jiang.2019">Jiang YZ, Sun LY. The value of liver transplantation for methylmalonic acidemia. Front Pediatr. 2019;21;7:87. [<a href="/pmc/articles/PMC6437036/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6437036</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30949461" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30949461</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.j_nsson.2017.519">J&#x000f3;nsson
H, Sulem
P, Kehr
B, Kristmundsdottir
S, Zink
F, Hjartarson
E, Hardarson
MT, Hjorleifsson
KE, Eggertsson
HP, Gudjonsson
SA, Ward
LD, Arnadottir
GA, Helgason
EA, Helgason
H, Gylfason
A, Jonasdottir
A, Jonasdottir
A, Rafnar
T, Frigge
M, Stacey
SN, Th Magnusson
O, Thorsteinsdottir
U, Masson
G, Kong
A, Halldorsson
BV, Helgason
A, Gudbjartsson
DF, Stefansson
K. Parental influence on human germline de novo mutations in 1,548 trios from Iceland.
Nature.
2017;549:519-22.
[<a href="https://pubmed.ncbi.nlm.nih.gov/28959963" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28959963</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.jusufi.2014.841">Jusufi
J, Suormala
T, Burda
P, Fowler
B, Froese
DS, Baumgartner
MR. Characterization of functional domains of the cblD (MMADHC) gene product.
J Inherit Metab Dis.
2014;37:841-9.
[<a href="https://pubmed.ncbi.nlm.nih.gov/24722857" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24722857</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.kao.2009.462">Kao
CH, Liu
MY, Liu
TT, Hsiao
KJ, Cheng
KH, Huang
CH, Lin
HY, Niu
DM: Growth hormone therapy in neonatal patients with methylmalonic acidemia.
J Chin Med Assoc.
2009, 72:462-7.
[<a href="https://pubmed.ncbi.nlm.nih.gov/19762313" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19762313</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.kaplan.2006.322">Kaplan
P, Ficicioglu
C, Mazur
AT, Palmieri
MJ, Berry
GT (2006) Liver transplantation is not curative for methylmalonic acidopathy caused by methylmalonyl-CoA mutase deficiency.
Mol Genet Metab
88:322-6
[<a href="https://pubmed.ncbi.nlm.nih.gov/16750411" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16750411</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.kasahara.2006.943">Kasahara
M, Horikawa
R, Tagawa
M, Uemoto
S, Yokoyama
S, Shibata
Y, Kawano
T, Kuroda
T, Honna
T, Tanaka
K, Saeki
M. Current role of liver transplantation for methylmalonic acidemia: a review of the literature.
Pediatr Transplant.
2006;10:943-7.
[<a href="https://pubmed.ncbi.nlm.nih.gov/17096763" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17096763</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.kasahara.2014.6">Kasahara
M, Sakamoto
S, Horikawa
R, Koji
U, Mizuta
K, Shinkai
M, Takahito
Y, Taguchi
T, Inomata
Y, Uemoto
S, Tatsuo
K, Kato
S. Living donor liver transplantation for pediatric patients with metabolic disorders: the Japanese multicenter registry.
Pediatr Transplant.
2014;18:6-15.
[<a href="https://pubmed.ncbi.nlm.nih.gov/24283623" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24283623</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.kayler.2002.295">Kayler
LK, Merion
RM, Lee
S, Sung
RS, Punch
JD, Rudich
SM, Turcotte
JG, Campbell
DA
Jr, Holmes
R, Magee
JC (2002) Long-term survival after liver transplantation in children with metabolic disorders.
Pediatr Transplant
6:295-300
[<a href="https://pubmed.ncbi.nlm.nih.gov/12234269" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12234269</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.kdoqi_work_group.2009.s11">KDOQI Work Group. KDOQI Clinical Practice Guideline for Nutrition in Children with CKD: 2008 update. Executive summary.
Am J Kidney Dis.
2009;53:S11-104.
[<a href="https://pubmed.ncbi.nlm.nih.gov/19231749" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19231749</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.kiykim.2021.100715">Kiykim
E, Oguz
O, Duman
C, Zubarioglu
T, Cansever
MS, Zeybek
ACA. Long-term N-carbamylglutamate treatment of hyperammonemia in patients with classic organic acidemias.
Mol Genet Metab Rep.
2021;26:100715.
[<a href="/pmc/articles/PMC7851327/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7851327</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33552909" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33552909</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.k_lker.2015a.1041">K&#x000f6;lker
S, Garcia-Cazorla
A, Valayannopoulos
V, Lund
AM, Burlina
AB, Sykut-Cegielska
J, Wijburg
FA, Teles
EL, Zeman
J, Dionisi-Vici
C, Bari&#x00107;
I, Karall
D, Augoustides-Savvopoulou
P, Aksglaede
L, Arnoux
JB, Avram
P, Baumgartner
MR, Blasco-Alonso
J, Chabrol
B, Chakrapani
A, Chapman
K, I Saladelafont EC, Couce ML, de Meirleir L, Dobbelaere D, Dvorakova V, Furlan F, Gleich F, Gradowska W, Gr&#x000fc;newald S, Jalan A, H&#x000e4;berle J, Haege G, Lachmann R, Laemmle A, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, M&#x000fc;hlhausen C, de Baulny HO, Ortez C, Pe&#x000f1;a-Quintana L, Ramad&#x0017e;a DP, Rodrigues E, Scholl-B&#x000fc;rgi S, Sokal E, Staufner C, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Burgard P. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation.
J Inherit Metab Dis.
2015a;38:1041-57.
[<a href="https://pubmed.ncbi.nlm.nih.gov/25875215" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25875215</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.k_lker.2015b.1059">K&#x000f6;lker
S, Valayannopoulos
V, Burlina
AB, Sykut-Cegielska
J, Wijburg
FA, Teles
EL, Zeman
J, Dionisi-Vici
C, Bari&#x00107;
I, Karall
D, Arnoux
JB, Avram
P, Baumgartner
MR, Blasco-Alonso
J, Boy
SP, Rasmussen
MB, Burgard
P, Chabrol
B, Chakrapani
A, Chapman
K, Cort&#x000e8;s
I
Saladelafont
E, Couce
ML, de Meirleir
L, Dobbelaere
D, Furlan
F, Gleich
F, Gonz&#x000e1;lez
MJ, Gradowska
W, Gr&#x000fc;newald
S, Honzik
T, H&#x000f6;rster
F, Ioannou
H, Jalan
A, H&#x000e4;berle
J, Haege
G, Langereis
E, de Lonlay
P, Martinelli
D, Matsumoto
S, M&#x000fc;hlhausen
C, Murphy
E, de Baulny
HO, Ortez
C, Pedr&#x000f3;n
CC, Pintos-Morell
G, Pena-Quintana
L, Ramad&#x0017e;a
DP, Rodrigues
E, Scholl-B&#x000fc;rgi
S, Sokal
E, Summar
ML, Thompson
N, Vara
R, Pinera
IV, Walter
JH, Williams
M, Lund
AM, Garcia-Cazorla
A.
The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype.
J Inherit Metab Dis.
2015b;38:1059-74.
[<a href="https://pubmed.ncbi.nlm.nih.gov/25875216" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25875216</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.korf.1986.364">Korf
B, Wallman
JK, Levy
HL (1986) Bilateral lucency of the globus pallidus complicating methylmalonic acidemia.
Ann Neurol
20:364-6
[<a href="https://pubmed.ncbi.nlm.nih.gov/3767321" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 3767321</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.kruszka.2013.990">Kruszka
PS, Manoli
I, Sloan
JL, Kopp
JB, Venditti
CP. Renal growth in isolated methylmalonic acidemia.
Genet Med.
2013;15:990-6.
[<a href="/pmc/articles/PMC4149057/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4149057</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23639900" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23639900</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.ktena.2015a.2075">Ktena
YP, Paul
SM, Hauser
NS, Sloan
JL, Gropman
A, Manoli
I, Venditti
CP. Delineating the spectrum of impairments, disabilities, and rehabilitation needs in methylmalonic acidemia (MMA).
Am J Med Genet A.
2015a;167A:2075-84.
[<a href="/pmc/articles/PMC9017244/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9017244</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25959030" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25959030</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.ktena.2015b.847">Ktena
YP, Ramstad
T, Baker
EH, Sloan
JL, Mannes
AJ, Manoli
I, Venditti
CP. Propofol administration in patients with methylmalonic acidemia and intracellular cobalamin metabolism disorders: a review of theoretical concerns and clinical experiences in 28 patients.
J Inherit Metab Dis.
2015b;38:847-53.
[<a href="/pmc/articles/PMC5577977/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5577977</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25985870" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25985870</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.ledley.1984.1015">Ledley
FD, Levy
HL, Shih
VE, Benjamin
R, Mahoney
MJ. Benign methylmalonic aciduria.
N Engl J Med.
1984;311:1015-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/6148691" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6148691</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.lempp.2007.284">Lempp
TJ, Suormala
T, Siegenthaler
R, Baumgartner
ER, Fowler
B, Steinmann
B, Baumgartner
MR (2007) Mutation and biochemical analysis of 19 probands with mut0 and 13 with mut- methylmalonic aciduria: identification of seven novel mutations.
Mol Genet Metab.
90:284-90.
[<a href="https://pubmed.ncbi.nlm.nih.gov/17113806" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17113806</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.leonard.2003.s21">Leonard
JV, Vijayaraghavan
S, Walter
JH (2003) The impact of screening for propionic and methylmalonic acidaemia.
Eur J Pediatr
162:S21-4
[<a href="https://pubmed.ncbi.nlm.nih.gov/14586648" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14586648</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.lernerellis.2004.509">Lerner-Ellis
JP, Dobson
CM, Wai
T, Watkins
D, Tirone
JC, Leclerc
D, Dore
C, Lepage
P, Gravel
RA, Rosenblatt
DS (2004) Mutations in the MMAA gene in patients with the cblA disorder of vitamin B12 metabolism.
Hum Mutat
24:509-16
[<a href="https://pubmed.ncbi.nlm.nih.gov/15523652" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15523652</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.lernerellis.2006.219">Lerner-Ellis
JP, Gradinger
AB, Watkins
D, Tirone
JC, Villeneuve
A, Dobson
CM, Montpetit
A, Lepage
P, Gravel
RA, Rosenblatt
DS (2006) Mutation and biochemical analysis of patients belonging to the cblB complementation class of vitamin B12-dependent methylmalonic aciduria.
Mol Genet Metab.
87:219-25.
[<a href="https://pubmed.ncbi.nlm.nih.gov/16410054" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16410054</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.levtova.2019.107">Levtova
A, Waters
PJ, Buhas
D, L&#x000e9;vesque
S, Auray-Blais
C, Clarke
JTR, Laframboise
R, Maranda
B, Mitchell
GA, Brunel-Guitton
C, Braverman
NE. Combined malonic and methylmalonic aciduria due to ACSF3 mutations: Benign clinical course in an unselected cohort.
J Inherit Metab Dis.
2019;42:107-16.
[<a href="https://pubmed.ncbi.nlm.nih.gov/30740739" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30740739</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.liang.2021.22">Liang
L, Shuai
R, Yu
Y, QIu W, Shen L, Qu S, Wei H, Chen Y, Yang C, Xu P, Chen X, Zou H, Feng J, Niu T, Hu H, Ye J, Zhang H, Lu D, Gong Z, Zhan X, Ji W, Yu Y, Gu X, Han L. A rare mutation c.1663G&#x02009;&#x0003e;&#x02009;A (p.A555T) in the MMUT gene associated with mild clinical and biochemical phenotypes of methylmalonic acidemia in 30 Chinese patients.
Orphanet J Rare Dis.
2021;16:22.
[<a href="/pmc/articles/PMC7792044/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7792044</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33413471" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33413471</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.longo.2017.51">Longo
N, Price
LB, Gappmaier
E, Cantor
NL, Ernst
SL, Bailey
C, Pasquali
M. Anaplerotic therapy in propionic acidemia.
Mol Genet Metab.
2017;122:51-9.
[<a href="/pmc/articles/PMC5612888/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5612888</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28712602" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28712602</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.longo.2022.132">Longo
N, Sass
JO, Jurecka
A, Vockley
J. Biomarkers for drug development in propionic and methylmalonic acidemias.
J Inherit Metab Dis.
2022;45:132-43.
[<a href="/pmc/articles/PMC9303879/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9303879</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35038174" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35038174</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.lubrano.2013.2067">Lubrano
R, Perez
B, Elli
M. Methylmalonic acidemia and kidney transplantation.
Pediatr Nephrol.
2013;28:2067-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/23793882" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23793882</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.luciani.2020.970">Luciani
A, Schumann
A, Berquez
M, Chen
Z, Nieri
D, Failli
M, Debaix
H, Festa
BP, Tokonami
N, Raimondi
A, Cremonesi
A, Carrella
D, Forny
P, K&#x000f6;lker
S, Diomedi Camassei
F, Diaz
F, Moraes
CT, Di Bernardo
D, Baumgartner
MR, Devuyst
O. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency.
Nat Commun.
2020;11:970.
[<a href="/pmc/articles/PMC7033137/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7033137</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32080200" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32080200</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.macfarland.2015.1840">MacFarland
S, Hartung
H. Pancytopenia in a patient with methylmalonic acidemia.
Blood.
2015;125:1840.
[<a href="https://pubmed.ncbi.nlm.nih.gov/25927084" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25927084</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.malvagia.2015.342">Malvagia
S, Haynes, CA, Grisotto
L, Ombrone
D, Funghini
S, Moretti
E, McGreevy
KS, Biggeri
A, Guerrini
R, Yahyaoui
R, Garg
U, Seeterlin
M, Chace
D, De Jesus
VR, la Marca
G. Heptadecanoylcarnitine (C17) a novel candidate biomarker for newborn screening of propionic and methylmalonic acidemias.
Clin Chim Acta.
2015;450:342-8.
[<a href="/pmc/articles/PMC5577792/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5577792</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26368264" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26368264</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.manoli.2016a.396">Manoli
I, Myles
JG, Sloan
JL, Carrillo-Carrasco
N, Morava
E, Strauss
KA, Morton
H, Venditti
CP. A critical reappraisal of dietary practices in methylmalonic acidemia raises concerns about the safety of medical foods. Part 2: cobalamin C deficiency.
Genet Med.
2016a;18:396-404.
[<a href="/pmc/articles/PMC4752912/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4752912</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26270766" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26270766</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.manoli.2016b.386">Manoli
I, Myles
JG, Sloan
JL, Shchelochkov
OA, Venditti
CP. A critical reappraisal of dietary practices in methylmalonic acidemia raises concerns about the safety of medical foods. Part 1: isolated methylmalonic acidemias.
Genet Med.
2016b;18:386-95.
[<a href="/pmc/articles/PMC4752925/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4752925</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26270765" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26270765</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.manoli.2021.1522">Manoli
I, Pass
AR, Harrington
EA, Sloan
JL, Gagn&#x000e9;
J, McCoy
S, Bell
SL, Hattenbach
JD, Leitner
BP, Duckworth
CJ, Fletcher
LA, Cassimatis
TM, Galaretta
CI, Thurm
A, Snow
J, Van Ryzin
C, Ferry
S, Ah Mew
N, Shchelochkov
OA, Chen
KY, Venditti
CP. <sup>13</sup>C- propionate breath testing as a surrogate endpoint to assess efficacy of liver-directed therapies in methylmalonic acidemia (MMA).
Genet Med.
2021;23:1522-33.
[<a href="/pmc/articles/PMC8354855/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8354855</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33820958" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33820958</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.manoli.2018.e124351">Manoli
I, Sysol
JR, Epping
MW, Li
L, Wang
C, Sloan
JL, Pass
A, Gagn&#x000e9;
J, Ktena
YP, Li
L, Trivedi
NS, Ouattara
B, Zerfas
PM, Hoffmann
V, Abu-Asab
M, Tsokos
MG, Kleiner
DE, Garone
C, Cusmano-Ozog
K, Enns
GM, Vernon
HJ, Andersson
HC, Grunewald
S, Elkahloun
AG, Girard
CL, Schnermann
J, DiMauro
S, Andres-Mateos
E, Vandenberghe
LH, Chandler
RJ, Venditti
CP. FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia.
JCI Insight.
2018;3:e124351
[<a href="/pmc/articles/PMC6328030/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6328030</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30518688" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30518688</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.manoli.2013.13552">Manoli
I, Sysol
JR, Li
L, Houillier
P, Garone
C, Wang
C, Zerfas
PM, Cusmano-Ozog
K, Young
S, Trivedi
NS, Cheng
J, Sloan
JL, Chandler
RJ, Abu-Asab
M, Tsokos
M, Elkahloun
AG, Rosen
S, Enns
GM, Berry
GT, Hoffmann
V, DiMauro
S, Schnermann
J, Venditti
CP. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia.
Proc Natl Acad Sci U S A.
2013;110:13552-7.
[<a href="/pmc/articles/PMC3746875/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3746875</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23898205" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23898205</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.marble.2008.731">Marble
M, Copeland
S, Khanfar
N, Rosenblatt
DS. Neonatal vitamin B12 deficiency secondary to maternal subclinical pernicious anemia: identification by expanded newborn screening.
J Pediatr.
2008;152:731-3.
[<a href="https://pubmed.ncbi.nlm.nih.gov/18410783" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18410783</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.marcadier.2013.98">Marcadier
JL, Smith
AM, Pohl
D, Schwartzentruber
J, Al-Dirbashi
OY; FORGE Canada Consortium, Majewski J, Ferdinandusse S, Wanders RJ, Bulman DE, Boycott KM, Chakraborty P, Geraghty MT. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria.
Orphanet J Rare Dis.
2013;8:98.
[<a href="/pmc/articles/PMC3710243/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3710243</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23835272" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23835272</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.marcellino.2021.1013">Marcellino
A, Guido
CA, Bloise
S, Mallardo
S, Isoldi
S, Del Giudice
E, Dilillo
A, Martucci
V, Sanseviero
M, Iorfida
D, Spalice
A, Lubrano
R. Physical and Neurological Development of a Girl Born to a Mother with Methylmalonic Acidemia and Kidney Transplantation and Review of the Literature.
Children (Basel). 2021;8:1013.
[<a href="/pmc/articles/PMC8619094/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8619094</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34828726" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34828726</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.marelli.2022">Marelli
C, Fouilhoux
A, Benoist
JF, De Lonlay
P, Guffon-Fouilhoux
N, Brassier
A, Cano
A, Chabrol
B, Pennisi
A, Schiff
M, Acquaviva
C, Murphy
E, Servais
A, Lachmann
R. Very long-term outcomes in 23 patients with cblA type methylmalonic acidemia.
J Inherit Metab Dis.
2022. Epub ahead of print.
[<a href="/pmc/articles/PMC9540587/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9540587</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35618652" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35618652</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.marquard.2011.241">Marquard
J, el Scheich
T, Klee
D, Schmitt
M, Meissner
T, Mayatepek
E, Oh
J. Chronic pancreatitis in branched-chain organic acidurias&#x02014;a case of methylmalonic aciduria and an overview of the literature.
Eur J Pediatr.
2011;170:241-5
[<a href="https://pubmed.ncbi.nlm.nih.gov/20924605" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20924605</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.martens.2002.219">Martens
DH, Bakker
JA, van der Meer
SB, Spaapen
LJ (2002) Unexplained familial benign methylmalonic aciduria.
Eur J Pediatr
161:219-20
[<a href="https://pubmed.ncbi.nlm.nih.gov/12014390" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12014390</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.mart_nez.2005.317">Mart&#x000ed;nez
MA, Rinc&#x000f3;n
A, Desviat
LR, Merinero
B, Ugarte
M, P&#x000e9;rez
B. Genetic analysis of three genes causing isolated methylmalonic acidemia: identification of 21 novel allelic variants.
Mol Genet Metab.
2005;84:317-25.
[<a href="https://pubmed.ncbi.nlm.nih.gov/15781192" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 15781192</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.martinez_alvarez.2016.98">Martinez Alvarez
L, Jameson
E, Parry
NR, Lloyd
C, Ashworth
JL. Optic neuropathy in methylmalonic acidemia and propionic acidemia.
Br J Ophthalmol.
2016;100:98-104.
[<a href="https://pubmed.ncbi.nlm.nih.gov/26209586" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26209586</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.matsui.1983.857">Matsui
SM, Mahoney
MJ, Rosenberg
LE (1983) The natural history of the inherited methylmalonic acidemias.
N Engl J Med
308:857-61
[<a href="https://pubmed.ncbi.nlm.nih.gov/6132336" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 6132336</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.mcguire.2011.e142">McGuire
MM, Jones
BA, Hull
MA, Misra
MV, Smithers
CJ, Feins
NR, Jenkins
RL, Lillehei
CW, Harmon
WE, Jonas
MM, Kim
HB. Combined en bloc liver-double kidney transplantation in an infant with IVC thrombosis.
Pediatr Transplant.
2011;15:E142-4.
[<a href="https://pubmed.ncbi.nlm.nih.gov/20412506" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20412506</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.mc_guire.2009.173">Mc Guire
PJ, Parikh
A, Diaz
GA. Profiling of oxidative stress in patients with inborn errors of metabolism.
Mol Genet Metab.
2009;98:173-80.
[<a href="/pmc/articles/PMC2915835/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2915835</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19604711" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19604711</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.mchugh.2011.230">McHugh
D, Cameron
CA, Abdenur
JE, Abdulrahman
M, Adair
O, Al Nuaimi
SA, &#x000c5;hlman
H, Allen
JJ, Antonozzi
I, Archer
S, Au
S, Auray-Blais
C, Baker
M, et al.
Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.
Genet Med.
2011;13:230-54.
[<a href="https://pubmed.ncbi.nlm.nih.gov/21325949" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21325949</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.molema.2019.1162">Molema
F, Gleich
F, Burgard
P, van der Ploeg
AT, Summar
ML, Chapman
KA, Bari&#x00107;
I, Lund
AM, K&#x000f6;lker
S, Williams
M, et al.
Evaluation of dietary treatment and amino acid supplementation in organic acidurias and urea-cycle disorders: on the basis of information from a European multicenter registry.
J Inherit Metab Dis.
2019;42:1162-75
[<a href="https://pubmed.ncbi.nlm.nih.gov/30734935" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30734935</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.molema.2021a.3622">Molema
F, Haijes
HA, Janssen
MC, Bosch
AM, van Spronsen
FJ, Mulder
MF, Verhoeven-Duif
NM, Jans
JJM, van der Ploeg
AT, Wagenmakers
MA, Rubio-Gozalbo
ME, Brouwers
MCGJ, de Vries
MC, Fuchs
S, Langendonk
JG, Rizopoulos
D, van Hasselt
PM, Williams
M. High protein prescription in methylmalonic and propionic acidemia patients and its negative association with long-term outcome.
Clin Nutr.
2021a;40:3622-30.
[<a href="https://pubmed.ncbi.nlm.nih.gov/33451859" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33451859</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.molema.2018.1179">Molema
F, Jacobs
EH, Onkenhout
W, Schoonderwoerd
GC, Langendonk
JG, Williams
M. Fibroblast growth factor 21 as a biomarker for long-term complications in organic acidemias.
J Inherit Metab Dis.
2018;41:1179-87.
[<a href="/pmc/articles/PMC6327009/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6327009</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30159853" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30159853</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.molema.2021b.593">Molema
F, Martinelli
D, H&#x000f6;rster
F, K&#x000f6;lker
S, Tangeraas
T, de Koning
B, Dionisi-Vici
C, Williams
M, et al.
Liver and/or kidney transplantation in amino and organic acid-related inborn errors of metabolism: an overview on European data.
J Inherit Metab Dis.
2021b;44:593-605.
[<a href="/pmc/articles/PMC8247334/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8247334</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32996606" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32996606</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.molema.2020.89">Molema
F, Williams
M, Langendonk
J, Darwish-Murad
S, van de Wetering
J, Jacobs
E, Onkenhout
W, Brusse
E, van der Eerden
A, Wagenmakers
M. Neurotoxicity including posterior reversible encephalopathy syndrome after initiation of calcineurin inhibitors in transplanted methylmalonic acidemia patients: Two case reports and review of the literature.
JIMD Rep.
2020;51:89-104.
[<a href="/pmc/articles/PMC7012740/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7012740</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32071844" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32071844</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.morath.2013.227">Morath
MA, H&#x000f6;rster
F, Sauer
SW. Renal dysfunction in methylmalonic acidurias: review for the pediatric nephrologist.
Pediatr Nephrol.
2013;28:227-35.
[<a href="https://pubmed.ncbi.nlm.nih.gov/22814947" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22814947</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.morava.2009.438">Morava
E, Steuerwald
U, Carrozzo
R, Kluijtmans
LA, Joensen
F, Santer
R, Dionisi-Vici
C, Wevers
RA (2009) Dystonia and deafness due to SUCLA2 defect; Clinical course and biochemical markers in 16 children.
Mitochondrion.
9:438-42.
[<a href="https://pubmed.ncbi.nlm.nih.gov/19666145" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19666145</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.morel.2005.160">Morel
CF, Watkins
D, Scott
P, Rinaldo
P, Rosenblatt
DS (2005) Prenatal diagnosis for methylmalonic acidemia and inborn errors of vitamin B12 metabolism and transport.
Mol Genet Metab.
86:160-71.
[<a href="https://pubmed.ncbi.nlm.nih.gov/16150626" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16150626</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.morioka.2007.2782">Morioka
D, Kasahara
M, Horikawa
R, Yokoyama
S, Fukuda
A, Nakagawa
A (2007) Efficacy of living donor liver transplantation for patients with methylmalonic acidemia.
Am J Transplant
7:2782-7
[<a href="https://pubmed.ncbi.nlm.nih.gov/17908273" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17908273</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.nicolaides.1998.508">Nicolaides
P, Leonard
J, Surtees
R (1998) Neurological outcome of methylmalonic acidaemia.
Arch Dis Child
78:508-12
[<a href="/pmc/articles/PMC1717592/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC1717592</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9713004" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9713004</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.niemi.2015.1455">Niemi
AK, Kim
IK, Krueger
CE, Cowan
TM, Baugh
N, Farrell
R, Bonham
CA, Concepcion
W, Esquivel
CO, Enns
GM. Treatment of methylmalonic acidemia by liver or combined liver-kidney transplantation.
J Pediatr.
2015;166:1455-61.e1.
[<a href="https://pubmed.ncbi.nlm.nih.gov/25771389" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25771389</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.nizon.2013.148">Nizon
M, Ottolenghi
C, Valayannopoulos
V, Arnoux
JB, Barbier
V, Habarou
F, Desguerre
I, Boddaert
N, Bonnefont
JP, Acquaviva
C, Benoist
JF, Rabier
D, Touati
G, de Lonlay
P. Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias.
Orphanet J Rare Dis.
2013;8:148.
[<a href="/pmc/articles/PMC4016503/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4016503</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24059531" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24059531</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.noone.2019.e13407">Noone
D, Riedi
M, Atkinson
P, Avitzur
Y, Sharma
AP, Filler
G, Siriwardena
K, Prasad
C. Kidney disease and organ transplantation in methylmalonic acidemia.
Pediatr Transplant.
2019;23:e13407.
[<a href="https://pubmed.ncbi.nlm.nih.gov/30973671" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30973671</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.nyhan.1973.539">Nyhan
WL, Fawcett
N, Ando
T, Rennert
OM, Julius
RL. Response to dietary therapy in B 12 unresponsive methylmalonic acidemia.
Pediatrics.
1973;51:539-48.
[<a href="https://pubmed.ncbi.nlm.nih.gov/4707869" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 4707869</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.nyhan.2002.377">Nyhan
WL, Gargus
JJ, Boyle
K, Selby
R, Koch
R (2002) Progressive neurologic disability in methylmalonic acidemia despite transplantation of the liver.
Eur J Pediatr
161:377-9
[<a href="https://pubmed.ncbi.nlm.nih.gov/12111189" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12111189</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.oshea.2012.e1541">O'Shea
CJ, Sloan
JL, Wiggs
EA, Pao
M, Gropman
A, Baker
EH, Manoli
I, Venditti
CP, Snow
J. Neurocognitive phenotype of isolated methylmalonic acidemia.
Pediatrics.
2012;129:e1541-51.
[<a href="/pmc/articles/PMC3362903/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3362903</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22614770" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22614770</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.ostergaard.2007.853">Ostergaard
E, Hansen
FJ, Sorensen
N, Duno
M, Vissing
J, Larsen
PL, Faeroe
O, Thorgrimsson
S, Wibrand
F, Christensen
E, Schwartz
M (2007) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations.
Brain
130:853-61
[<a href="https://pubmed.ncbi.nlm.nih.gov/17287286" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 17287286</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.pajares.2021.195">Pajares
S, Arranz
JA, Ormazabal
A, Del Toro
M, Garc&#x000ed;a-Cazorla
&#x000c1;, Navarro-Sastre
A, L&#x000f3;pez
RM, Meavilla
SM, de Los Santos
MM, Garc&#x000ed;a-Volpe
C, de Aledo-Castillo
JMG, Argudo
A, Mar&#x000ed;n
JL, Carnicer
C, Artuch
R, Tort
F, Gort
L, Fern&#x000e1;ndez
R, Garc&#x000ed;a-Villoria
J, Ribes
A. Implementation of second-tier tests in newborn screening for the detection of vitamin B<sub>12</sub> related acquired and genetic disorders: results on 258,637 newborns.
Orphanet J Rare Dis.
2021;16:195.
[<a href="/pmc/articles/PMC8086297/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8086297</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33931066" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33931066</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.pangilinan.2010.677">Pangilinan
F, Mitchell
A, VanderMeer
J, Molloy
AM, Troendle
J, Conley
M, Kirke
PN, Sutton
M, Sequeira
JM, Quadros
EV, Scott
JM, Mills
JL, Brody
LC. Transcobalamin II receptor polymorphisms are associated with increased risk for neural tube defects.
J Med Genet.
2010;47:677-85.
[<a href="/pmc/articles/PMC4112773/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4112773</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20577008" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20577008</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.pangilinan.2022.1124">Pangilinan
F, Watkins
D, Bernard
D, Chen
Y, Dong
N, Wu
Q, Ozel-Abaan
H, Kaur
M, Caggana
M, Morrissey
M, Browne
ML, Mills
JL, Van Ryzin
C, Shchelochkov
O, Sloan
J, Venditti
CP, Sarafoglou
K, Rosenblatt
DS, Kay
DM, Brody
LC. Probing the functional consequence and clinical relevance of CD320 p.E88del, a variant in the transcobalamin receptor gene.
Am J Med Genet A.
2022;188:1124-41.
[<a href="/pmc/articles/PMC8923979/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8923979</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35107211" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35107211</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.pappas.2022.1102">Pappas
KB, Younan
M, Conway
R. Transcobalamin receptor deficiency in seven asymptomatic patients ascertained through newborn screening.
Am J Med Genet A.
2022;188:1102-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/34978764" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34978764</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.park.2020.617451">Park
KC, Krywawych
S, Richard
E, Desviat
LR, Swietach
P. Cardiac complications of propionic and other inherited organic acidemias.
Front Cardiovasc Med.
2020;7:617451.
[<a href="/pmc/articles/PMC7782273/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7782273</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33415129" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 33415129</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.pillai.2019.431">Pillai
NR, Stroup
BM, Poliner
A, Rossetti
L, Rawls
B, Shayota
BJ, Soler-Alfonso
C, Tunuguntala
HP, Goss
J, Craigen
W, Scaglia
F, Sutton
VR, Himes
RW, Burrage
LC. Liver transplantation in propionic and methylmalonic acidemia: A single center study with literature review.
Mol Genet Metab.
2019;128:431-43.
[<a href="/pmc/articles/PMC6898966/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6898966</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31757659" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31757659</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.pinarsueiro.2010.s199">Pinar-Sueiro
S, Mart&#x000ed;nez-Fern&#x000e1;ndez
R, Lage-Medina
S, Aldamiz-Echevarria
L, Vecino
E. Optic neuropathy in methylmalonic acidemia: the role of neuroprotection.
J Inherit Metab Dis.
2010;33
Suppl 3:S199-203.
[<a href="https://pubmed.ncbi.nlm.nih.gov/20449661" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20449661</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.pinto.2020.147">Pinto
A, Evans
S, Daly
A, Almeida
MF, Assoun
M, Belanger-Quintana
A, Bernabei
SM, Bollhalder
S, Cassiman
D, Champion
H, Chan
H, Corthouts
K, Dalmau
J, Boer
F, Laet
C, Meyer
A, Desloovere
A, Dianin
A, Dixon
M, Dokoupil
K, Dubois
S, Eyskens
F, Faria
A, Fasan
I, Favre
E, Feillet
F, Fekete
A, Gallo
G, Gingell
C, Gribben
J, Hansen
KK, Horst
NT, Jankowski
C, Janssen-Regelink
R, Jones
I, Jouault
C, Kahrs
GE, Kok
I, Kowalik
A, Laguerre
C, Verge
SL, Liguori
A, Lilje
R, Maddalon
C, Mayr
D, Meyer
U, Micciche
A, Och
U, Robert
M, Rocha
JC, Rogozinski
H, Rohde
C, Ross
K, Saruggia
I, Schlune
A, Singleton
K, Sjoqvist
E, Skeath
R, Stolen
LH, Terry
A, Timmer
C, Tomlinson
L, Tooke
A, Kerckhove
KV, van Dam
E, Hurk
DVD, Ploeg
LV, van Driessche
M, van Rijn
M, Wegberg
AV, Vasconcelos
C, Vestergaard
H, Vitoria
I, Webster
D, White
F, White
L, Zweers
H, MacDonald
A. Dietary practices in methylmalonic acidaemia: a European survey.
J Pediatr Endocrinol Metab.
2020;33:147-55.
[<a href="https://pubmed.ncbi.nlm.nih.gov/31846426" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 31846426</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.plessl.2017.988">Plessl
T, B&#x000fc;rer
C, Lutz
S, Yue
WW, Baumgartner
MR, Froese
DS. Protein destabilization and loss of protein-protein interaction are fundamental mechanisms in cblA-type methylmalonic aciduria.
Hum Mutat.
2017;38:988-1001.
[<a href="https://pubmed.ncbi.nlm.nih.gov/28497574" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 28497574</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.potter.2017">Potter
SL, Venkatramani
R, Wenderfer
S, Graham
BH, Vasudevan
SA, Sher
A, Wu
H, Wheeler
DA, Yang
Y, Eng
CM, Gibbs
RA, Roy
A, Plon
SE, Parsons
DW. Renal cell carcinoma harboring somatic TSC2 mutations in a child with methylmalonic acidemia.
Pediatr Blood Cancer.
2017;64:.10.1002/pbc.26286
[<a href="/pmc/articles/PMC5469213/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5469213</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27748010" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27748010</span></a>] [<a href="http://dx.crossref.org/10.1002/pbc.26286" ref="pagearea=cite-ref&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">CrossRef</a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.prada.2011.862">Prada
CE, Al Jasmi
F, Kirk
EP, Hopp
M, Jones
O, Leslie
ND, Burrow
TA. Cardiac disease in methylmalonic acidemia.
J Pediatr.
2011;159:862-4.
[<a href="https://pubmed.ncbi.nlm.nih.gov/21784454" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21784454</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.pupavac.2016.363">Pupavac
M, Tian
X, Chu
J, Wang
G, Feng
Y, Chen
S, Fenter
R, Zhang
VW, Wang
J, Watkins
D, Wong
LJ, Rosenblatt
DS. Added value of next generation gene panel analysis for patients with elevated methylmalonic acid and no clinical diagnosis following functional studies of vitamin B12 metabolism.
Mol Genet Metab.
2016;117:363-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/26827111" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26827111</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.quadros.2010.924">Quadros
EV, Lai
SC, Nakayama
Y, Sequeira
JM, Hannibal
L, Wang
S, Jacobsen
DW, Fedosov
S, Wright
E, Gallagher
RC, Anastasio
N, Watkins
D, Rosenblatt
DS. Positive newborn screen for methylmalonic aciduria identifies the first mutation in TCblR/CD320, the gene for cellular uptake of transcobalamin-bound vitamin B(12).
Hum Mutat.
2010;31:924-9.
[<a href="/pmc/articles/PMC2909035/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2909035</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20524213" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20524213</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.radmanesh.2008.1054">Radmanesh
A, Zaman
T, Ghanaati
H, Molaei
S, Robertson
RL, Zamani
AA. Methylmalonic acidemia: brain imaging findings in 52 children and a review of the literature.
Pediatr Radiol.
2008;38:1054-61.
[<a href="https://pubmed.ncbi.nlm.nih.gov/18636250" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18636250</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.raval.2015.839">Raval
DB, Merideth
M, Sloan
JL, Braverman
NE, Conway
RL, Manoli
I, Venditti
CP. Methylmalonic acidemia (MMA) in pregnancy: a case series and literature review.
J Inherit Metab Dis.
2015;38:839-46.
[<a href="/pmc/articles/PMC4496322/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4496322</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25567501" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25567501</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.ruzkova.2015.807">Ruzkova
K, Weingarten
TN, Larson
KJ, Friedhoff
RJ, Gavrilov
DK, Sprung
J. Anesthesia and organic aciduria: is the use of lactated Ringer's solution absolutely contraindicated?
Paediatr Anaesth.
2015;25:807-17.
[<a href="https://pubmed.ncbi.nlm.nih.gov/25943188" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25943188</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.sakamoto.2016.1081">Sakamoto
R, Nakamura
K, Kido
J, Matsumoto
S, Mitsubuchi
H, Inomata
Y, Endo
F. Improvement in the prognosis and development of patients with methylmalonic acidemia after living donor liver transplant.
Pediatr Transplant.
2016;20:1081-6.
[<a href="https://pubmed.ncbi.nlm.nih.gov/27670840" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27670840</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.sass.2012.437">Sass
JO, Walter
M, Shield
JP, Atherton
AM, Garg
U, Scott
D, Woods
CG, Smith
LD. 3-Hydroxyisobutyrate aciduria and mutations in the ALDH6A1 gene coding for methylmalonate semialdehyde dehydrogenase.
J Inherit Metab Dis.
2012;35:437-42.
[<a href="https://pubmed.ncbi.nlm.nih.gov/21863277" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21863277</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.schiff.2010.223">Schiff
M, Ogier de Baulny
H, Bard
G, Barlogis
V, Hamel
C, Moat
SJ, Odent
S, Shortland
G, Touati
G, Giraudier
S. Should transcobalamin deficiency be treated aggressively?
J Inherit Metab Dis.
2010;33:223-9.
[<a href="https://pubmed.ncbi.nlm.nih.gov/20352340" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20352340</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.scolamiero.2014.312">Scolamiero
E, Villani
GR, Ingenito
L, Pecce
R, Albano
L, Caterino
M, di Girolamo
MG, Di Stefano
C, Franzese
I, Gallo
G, Ruoppolo
M. Maternal vitamin B12 deficiency detected in expanded newborn screening.
Clin Biochem.
2014;47:312-7.
[<a href="https://pubmed.ncbi.nlm.nih.gov/25204964" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25204964</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.s_nac.2012.385">S&#x000e9;nac
JS, Chandler
RJ, Sysol
JR, Li
L, Venditti
CP. Gene therapy in a murine model of methylmalonic acidemia using rAAV9-mediated gene delivery.
Gene Ther.
2012;19:385-91.
[<a href="/pmc/articles/PMC3382069/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3382069</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21776024" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21776024</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.sewell.1996.203">Sewell
AC, Poets
CF, Degen
I, St&#x000f6;ss
H, Pontz
BF. The spectrum of free neuraminic acid storage disease in childhood: clinical, morphological and biochemical observations in three non-Finnish patients.
Am J Med Genet.
1996;63:203-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/8723111" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8723111</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.shigematsu.2002.39">Shigematsu
Y, Hirano
S, Hata
I, Tanaka
Y, Sudo
M, Sakura
N, Tajima
T, Yamaguchi
S (2002) Newborn mass screening and selective screening using electrospray tandem mass spectrometry in Japan.
J Chromatogr B Analyt Technol Biomed Life Sci
776:39-48
[<a href="https://pubmed.ncbi.nlm.nih.gov/12127323" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 12127323</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.sloan.2011.883">Sloan
JL, Johnston
JJ, Manoli
I, Chandler
RJ, Krause
C, Carrillo-Carrasco
N, Chandrasekaran
SD, Sysol
JR, O'Brien
K, Hauser
NS, Sapp
JC, Dorward
HM, Huizing
M; NIH Intramural Sequencing Center Group, Barshop BA, Berry SA, James PM, Champaigne NL, de Lonlay P, Valayannopoulos V, Geschwind MD, Gavrilov DK, Nyhan WL, Biesecker LG, Venditti CP. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria.
Nat Genet.
2011;43:883-6.
[<a href="/pmc/articles/PMC3163731/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC3163731</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21841779" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21841779</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.sloan.2015.1346">Sloan
JL, Manoli
I, Venditti
CP. Liver or combined liver-kidney transplantation for patients with isolated methylmalonic acidemia: who and when?
J Pediatr.
2015;166:1346-50.
[<a href="https://pubmed.ncbi.nlm.nih.gov/25882873" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25882873</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.sniderman.1999.675">Sniderman
LC, Lambert
M, Giguere
R, Auray-Blais
C, Lemieux
B, Laframboise
R, Rosenblatt
DS, Treacy
EP (1999) Outcome of individuals with low-moderate methylmalonic aciduria detected through a neonatal screening program.
J Pediatr
134:675-80
[<a href="https://pubmed.ncbi.nlm.nih.gov/10356133" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10356133</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.spada.2015.1173">Spada
M, Calvo
PL, Brunati
A, Peruzzi
L, Dell'Olio
D, Romagnoli
R, Porta
F. Liver transplantation in severe methylmalonic acidemia: The sooner, the better.
J Pediatr.
2015;167:1173.
[<a href="https://pubmed.ncbi.nlm.nih.gov/26362094" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 26362094</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.stabler.2013.149">Stabler
SP. Clinical practice. Vitamin B12 deficiency.
N Engl J Med.
2013;368:149-60.
[<a href="https://pubmed.ncbi.nlm.nih.gov/23301732" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 23301732</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.stenson.2020.1197">Stenson
PD, Mort
M, Ball
EV, Chapman
M, Evans
K, Azevedo
L, Hayden
M, Heywood
S, Millar
DS, Phillips
AD, Cooper
DN. The Human Gene Mutation Database (HGMD&#x000ae;): optimizing its use in a clinical diagnostic or research setting.
Hum Genet.
2020;139:1197-207.
[<a href="/pmc/articles/PMC7497289/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7497289</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32596782" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32596782</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.str_mme.1995.1">Str&#x000f8;mme
P, Stokke
O, Jellum
E, Skjeldal
OH, Baumgartner
R (1995) Atypical methylmalonic aciduria with progressive encephalopathy, microcephaly and cataract in two siblings--a new recessive syndrome?
Clin Genet
48:1-5
[<a href="https://pubmed.ncbi.nlm.nih.gov/7586637" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7586637</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.stucki.2012.1410">Stucki
M, Coelho
D, Suormala
T, Burda
P, Fowler
B, Baumgartner
MR. Molecular mechanisms leading to three different phenotypes in the cblD defect of intracellular cobalamin metabolism.
Hum Mol Genet.
2012;21:1410-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/22156578" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22156578</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.subramanian.2021.eabf5965">Subramanian
C, Frank
MW, Tangallapally
R, Yun
MK, Edwards
A, White
SW, Lee
RE, Rock
CO, Jackowski
S. Pantothenate kinase activation relieves coenzyme A sequestration and improves mitochondrial function in mice with propionic acidemia.
Sci Transl Med.
2021;13:eabf5965.
[<a href="/pmc/articles/PMC8830021/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8830021</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34524863" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34524863</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.sumathipala.2022.2602">Sumathipala
D, Str&#x000f8;mme
P, Fattahi
Z, L&#x000fc;ders
T, Sheng
Y, Kahrizi
K, Einarsen
IH, Sloan
JL, Najmabadi
H, van den Heuvel
L, Wevers
RA, Guerrero-Castillo
S, M&#x000f8;rkrid
L, Valayannopoulos
V, Backe
PH, Venditti
CP, van Karnebeek
CD, Nilsen
H, Frengen
E, Misceo
D. ZBTB11 dysfunction: spectrum of brain abnormalities, biochemical signature and cellular consequences.
Brain.
2022;145:2602-16.
[<a href="/pmc/articles/PMC9337812/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC9337812</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35104841" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 35104841</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.therrell.2014.14">Therrell
BL
Jr, Lloyd-Puryear
MA, Camp
KM, Mann
MY. Inborn errors of metabolism identified via newborn screening: Ten-year incidence data and costs of nutritional interventions for research agenda planning.
Mol Genet Metab.
2014;113:14-26.
[<a href="/pmc/articles/PMC4177968/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4177968</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25085281" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 25085281</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.traber.2011.344">Traber
G, Baumgartner
MR, Schwarz
U, Pangalu
A, Donath
MY, Landau
K. Subacute bilateral visual loss in methylmalonic acidemia.
J Neuroophthalmol.
2011;31:344-6.
[<a href="https://pubmed.ncbi.nlm.nih.gov/21873889" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 21873889</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.trakadis.2014.461">Trakadis
YJ, Alfares
A, Bodamer
OA, Buyukavci
M, Christodoulou
J, Connor
P, Glamuzina
E, Gonzalez-Fernandez
F, Bibi
H, Echenne
B, Manoli
I, Mitchell
J, Nordwall
M, Prasad
C, Scaglia
F, Schiff
M, Schrewe
B, Touati
G, Tchan
MC, Varet
B, Venditti
CP, Zafeiriou
D, Rupar
CA, Rosenblatt
DS, Watkins
D, Braverman
N. Update on transcobalamin deficiency: clinical presentation, treatment and outcome.
J Inherit Metab Dis.
2014;37:461-73.
[<a href="https://pubmed.ncbi.nlm.nih.gov/24305960" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24305960</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.treacy.1996.445">Treacy
E, Arbour
L, Chessex
P, Graham
G, Kasprzak
L, Casey
K, Bell
L, Mamer
O, Scriver
CR (1996) Glutathione deficiency as a complication of methylmalonic acidemia: response to high doses of ascorbate.
J Pediatr
129:445-8
[<a href="https://pubmed.ncbi.nlm.nih.gov/8804337" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 8804337</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.tuchman.2008.213">Tuchman
M, Caldovic
L, Daikhin
Y, Horyn
O, Nissim
I, Nissim
I, Korson
M, Burton
B, Yudkoff
M. N-carbamylglutamate markedly enhances ureagenesis in N-acetylglutamate deficiency and propionic acidemia as measured by isotopic incorporation and blood biomarkers.
Pediatr Res.
2008;64:213-7.
[<a href="/pmc/articles/PMC2640836/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC2640836</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18414145" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 18414145</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.tuncel.2018.765">Tuncel
AT, Boy
N, Morath
MA, H&#x000f6;rster
F, M&#x000fc;tze
U, K&#x000f6;lker
S. Organic acidurias in adults:late complications and management.
J Inherit Metab Dis.
2018;41:765-76.
[<a href="https://pubmed.ncbi.nlm.nih.gov/29335813" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 29335813</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.turgeon.2010.1686">Turgeon
CT, Magera
MJ, Cuthbert
CD, Loken
PR, Gavrilov
DK, Tortorelli
S, Raymond
KM, Oglesbee
D, Rinaldo
P, Matern
D. Determination of total homocysteine, methylmalonic acid, and 2-methylcitric acid in dried blood spots by tandem mass spectrometry.
Clin Chem
2010;56:1686-95
[<a href="https://pubmed.ncbi.nlm.nih.gov/20807894" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 20807894</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.valayannopoulos.2016.32">Valayannopoulos
V, Baruteau
J, Delgado
MB, Cano
A, Couce
ML, Del Toro
M, Donati
MA, Garcia-Cazorla
A, Gil-Ortega
D, Gomez-de Quero
P, Guffon
N, Hofstede
FC, Kalkan-Ucar
S, Coker
M, Lama-More
R, Martinez-Pardo Casanova
M, Molina
A, Pichard
S, Papadia
F, Rosello
P, Plisson
C, Le Mouhaer
J, Chakrapani
A. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: a retrospective observational study.
Orphanet J Rare Dis.
2016;11:32.
[<a href="/pmc/articles/PMC4815113/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4815113</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27030250" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27030250</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.valayannopoulos.2009.159">Valayannopoulos
V, Hubert
L, Benoist
JF, Romano
S, Arnoux
JB, Chr&#x000e9;tien
D, Kaplan
J, Fakhouri
F, Rabier
D, R&#x000f6;tig
A, Lebre
AS, Munnich
A, de Keyzer
Y, de Lonlay
P. Multiple OXPHOS deficiency in the liver of a patient with CblA methylmalonic aciduria sensitive to vitamin B(12).
J Inherit Metab Dis.
2009;32:159-62.
[<a href="https://pubmed.ncbi.nlm.nih.gov/19277894" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19277894</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.van_calcar.1998.729">Van Calcar
SC, Harding
CO, Lyne
P, Hogan
K, Banerjee
R, Sollinger
H, Rieselbach
RE, Wolff
JA (1998) Renal transplantation in a patient with methylmalonic acidaemia.
J Inherit Metab Dis
21:729-37
[<a href="https://pubmed.ncbi.nlm.nih.gov/9819702" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9819702</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.van_der_meer.1994.903">van der Meer
SB, Poggi
F, Spada
M, Bonnefont
JP, Ogier
H, Hubert
P, Depondt
E, Rapoport
D, Rabier
D, Charpentier
C, et al.
Clinical outcome of long-term management of patients with vitamin B12-unresponsive methylmalonic acidemia.
J Pediatr.
1994;125:903-8.
[<a href="https://pubmed.ncbi.nlm.nih.gov/7996362" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 7996362</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.van_der_meer.1990.923">van der Meer
SB, Spaapen
LJ, Fowler
B, Jakobs
C, Kleijer
WJ, Wendel
U. Prenatal treatment of a patient with vitamin B12-responsive methylmalonic acidemia.
J Pediatr.
1990;117:923-6.
[<a href="https://pubmed.ncbi.nlm.nih.gov/2246694" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 2246694</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.vant_hoff.1999.s70">van't Hoff
W, McKiernan
PJ, Surtees
RA, Leonard
JV. Liver transplantation for methylmalonic acidaemia.
Eur J Pediatr.
1999;158
Suppl 2:S70-4.
[<a href="https://pubmed.ncbi.nlm.nih.gov/10603103" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10603103</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.van_t_hoff.1998.1043">van 't Hoff
WG, Dixon
M, Taylor
J, Mistry
P, Rolles
K, Rees
L, Leonard
JV. Combined liver-kidney transplantation in methylmalonic acidemia.
J Pediatr.
1998;132:1043-4.
[<a href="https://pubmed.ncbi.nlm.nih.gov/9627602" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 9627602</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.vernon.2014.899">Vernon
HJ, Sperati
CJ, King
JD, Poretti
A, Miller
NR, Sloan
JL, Cameron
AM, Myers
D, Venditti
CP, Valle
D. A detailed analysis of methylmalonic acid kinetics during hemodialysis and after combined liver/kidney transplantation in a patient with mut (0) methylmalonic acidemia.
J Inherit Metab Dis.
2014;37:899-907.
[<a href="/pmc/articles/PMC4373418/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC4373418</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24961826" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24961826</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.wang.2018.2477">Wang
C, Zhang
YQ, Zhang
SH, Meng
YT, Lin
SX, Cai
CQ, Shu
JB. A novel two-nucleotide deletion of MMADHC gene causing cblD disease in a Chinese family.
Chin Med J (Engl). 2018;131:2477-9.
[<a href="/pmc/articles/PMC6202588/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC6202588</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30334532" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 30334532</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.wasserstein.1999.788">Wasserstein
MP, Gaddipati
S, Snyderman
SE, Eddleman
K, Desnick
RJ, Sansaricq
C (1999) Successful pregnancy in severe methylmalonic acidaemia.
J Inherit Metab Dis
22:788-94
[<a href="https://pubmed.ncbi.nlm.nih.gov/10518278" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 10518278</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.waters.2016.19">Waters
PJ, Thuriot
F, Clarke
JT, Gravel
S, Watkins
D, Rosenblatt
DS, L&#x000e9;vesque
S. Methylmalonyl-coA epimerase deficiency: a new case, with an acute metabolic presentation and an intronic splicing mutation in the MCEE gene.
Mol Genet Metab Rep.
2016;9:19-24.
[<a href="/pmc/articles/PMC5037260/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC5037260</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27699154" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 27699154</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.weiss.2020.268">Weiss
KJ, R&#x000f6;schinger
W, Blessing
H, Lotz-Havla
AS, Schiergens
KA, Maier
EM. Diagnostic Challenges Using a 2-Tier Strategy for Methylmalonic Acidurias: Data from 1.2 Million Dried Blood Spots.
Ann Nutr Metab.
2020;76:268-76.
[<a href="https://pubmed.ncbi.nlm.nih.gov/32683363" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32683363</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.williams.2009.929">Williams
ZR, Hurley
PE, Altiparmak
UE, Feldon
SE, Arnold
GL, Eggenberger
E, Mejico
LJ (2009) Late onset optic neuropathy in methylmalonic and propionic acidemia.
Am J Ophthalmol
147:929-33
[<a href="https://pubmed.ncbi.nlm.nih.gov/19243738" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 19243738</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.worgan.2006.31">Worgan
LC, Niles
K, Tirone
JC, Hofmann
A, Verner
A, Sammak
A, Kucic
T, Lepage
P, Rosenblatt
DS (2006) Spectrum of mutations in mut methylmalonic acidemia and identification of a common Hispanic mutation and haplotype.
Hum Mutat
27:31-43
[<a href="https://pubmed.ncbi.nlm.nih.gov/16281286" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 16281286</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.yano.2003.481">Yano
S, Li
L, Le
TP, Moseley
K, Guedalia
A, Lee
J, Gonzalez
I, Boles
RG (2003) Infantile mitochondrial DNA depletion syndrome associated with methylmalonic aciduria and 3-methylcrotonyl-CoA and propionyl-CoA carboxylase deficiencies in two unrelated patients: a new phenotype of mtDNA depletion syndrome.
J Inherit Metab Dis
26:481-8
[<a href="https://pubmed.ncbi.nlm.nih.gov/14518828" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 14518828</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.yap.2020.1866">Yap
S, Vara
R, Morais
A.
Post-transplantation Outcomes in Patients with PA or MMA: A Review of the Literature.
Adv Ther.
2020;37:1866-96.
[<a href="/pmc/articles/PMC7141097/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC7141097</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32270363" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 32270363</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.yu.2021.e1822">Yu
Y, Shuai
R, Liang
L, Qui
W, Shen
L, Wu
S, Wei
H, Chen
Y, Yan
C, Xu
P, Chen XZou H, Feng J, Niu T, Hu H, Ye J, Zhang H, Lu D, Gong Z, Zhan X, Ji W, Gu Z, Han L. Different mutations in the MMUT gene are associated with the effect of vitamin B12 in a cohort of 266 Chinese patients with mut&#x02010;type methylmalonic acidemia: A retrospective study.
Mol Genet Genomic Med.
2021;9: e1822.
[<a href="/pmc/articles/PMC8606212/" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pmc">PMC free article<span class="bk_prnt">: PMC8606212</span></a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34668645" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 34668645</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.zsengell_r.2014.2139">Zsengell&#x000e9;r
ZK, Aljinovic
N, Teot
LA, Korson
M, Rodig
N, Sloan
JL, Venditti
CP, Berry
GT, Rosen
S. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney.
Pediatr Nephrol.
2014;29:2139-46.
[<a href="https://pubmed.ncbi.nlm.nih.gov/24865477" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 24865477</span></a>]</div></p></li><li class="half_rhythm"><p><div class="bk_ref" id="mma.REF.zwickler.2012.797">Zwickler
T, Haege
G, Riderer
A, H&#x000f6;rster
F, Hoffmann
GF, Burgard
P, K&#x000f6;lker
S. Metabolic decompensation in methylmalonic aciduria: which biochemical parameters are discriminative?
J Inherit Metab Dis.
2012;35:797-806.
[<a href="https://pubmed.ncbi.nlm.nih.gov/22249333" ref="pagearea=cite-ref&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=pubmed">PubMed<span class="bk_prnt">: 22249333</span></a>]</div></p></li></ul></div></div><div id="bk_toc_contnr"></div></div></div><div class="fm-sec"><h2 id="_NBK1231_pubdet_">Publication Details</h2><h3>Author Information and Affiliations</h3><div class="contrib half_rhythm"><span itemprop="author">Irini Manoli</span>, MD, PhD<div class="affiliation small">Metabolic Medicine Branch<br />National Human Genome Research Institute<br />National Institutes of Health<br />Bethesda, Maryland<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="vog.hin.liam@iilonam" class="oemail">vog.hin.liam@iilonam</a></div></div></div><div class="contrib half_rhythm"><span itemprop="author">Jennifer L Sloan</span>, PhD<div class="affiliation small">Metabolic Medicine Branch<br />National Human Genome Research Institute<br />National Institutes of Health<br />Bethesda, Maryland<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="vog.hin.liam@naolsj" class="oemail">vog.hin.liam@naolsj</a></div></div></div><div class="contrib half_rhythm"><span itemprop="author">Charles P Venditti</span>, MD, PhD<div class="affiliation small">Metabolic Medicine Branch<br />National Human Genome Research Institute<br />National Institutes of Health<br />Bethesda, Maryland<div><span class="email-label">Email: </span><a href="mailto:dev@null" data-email="vog.hin.liam@ittidnev" class="oemail">vog.hin.liam@ittidnev</a></div></div></div><h3>Publication History</h3><p class="small">Initial Posting: <span itemprop="datePublished">August 16, 2005</span>; Last Update: <span itemprop="dateModified">September 8, 2022</span>.</p><h3>Copyright</h3><div><div class="half_rhythm"><a href="/books/about/copyright/">Copyright</a> &#x000a9; 1993-2025, University of Washington, Seattle. GeneReviews is
a registered trademark of the University of Washington, Seattle. All rights
reserved.<p class="small">GeneReviews&#x000ae; chapters are owned by the University of Washington. Permission is
hereby granted to reproduce, distribute, and translate copies of content materials for
noncommercial research purposes only, provided that (i) credit for source (<a href="http://www.genereviews.org/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">http://www.genereviews.org/</a>) and copyright (&#x000a9; 1993-2025 University of
Washington) are included with each copy; (ii) a link to the original material is provided
whenever the material is published elsewhere on the Web; and (iii) reproducers,
distributors, and/or translators comply with the <a href="https://www.ncbi.nlm.nih.gov/books/n/gene/GRcopyright_permiss/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">GeneReviews&#x000ae; Copyright Notice and Usage
Disclaimer</a>. No further modifications are allowed. For clarity, excerpts
of GeneReviews chapters for use in lab reports and clinic notes are a permitted
use.</p><p class="small">For more information, see the <a href="https://www.ncbi.nlm.nih.gov/books/n/gene/GRcopyright_permiss/" ref="pagearea=meta&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">GeneReviews&#x000ae; Copyright Notice and Usage
Disclaimer</a>.</p><p class="small">For questions regarding permissions or whether a specified use is allowed,
contact: <a href="mailto:dev@null" data-email="ude.wu@tssamda" class="oemail">ude.wu@tssamda</a>.</p></div></div><h3>Publisher</h3><p><a href="http://www.washington.edu" ref="pagearea=page-banner&amp;targetsite=external&amp;targetcat=link&amp;targettype=publisher">University of Washington, Seattle</a>, Seattle (WA)</p><h3>NLM Citation</h3><p>Manoli I, Sloan JL, Venditti CP. Isolated Methylmalonic Acidemia. 2005 Aug 16 [Updated 2022 Sep 8]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews&#x000ae; [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. <span class="bk_cite_avail"></span></p></div><div class="small-screen-prev"><a href="/books/n/gene/kms/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M75,30 c-80,60 -80,0 0,60 c-30,-60 -30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Prev</text></svg></a></div><div class="small-screen-next"><a href="/books/n/gene/iso-def/?report=reader"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" preserveAspectRatio="none"><path d="M25,30c80,60 80,0 0,60 c30,-60 30,0 0,-60"></path><text x="20" y="28" textLength="60" style="font-size:25px">Next</text></svg></a></div></article><article data-type="table-wrap" id="figobmmaTisolatedmethylmalonicacidemiaaci"><div id="mma.T.isolated_methylmalonic_acidemiaaci" class="table"><h3><span class="label">Table. </span></h3><div class="caption"><p>Isolated Methylmalonic Acidemia/Aciduria: Included Phenotypes</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemiaaci/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.isolated_methylmalonic_acidemiaaci_lrgtbl__"><table><thead><tr><th id="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" colspan="2" scope="colgroup" rowspan="1" style="text-align:center;vertical-align:middle;">Enzymatic Subtype</th><th id="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Methylmalonic Acidemia Phenotype</th><th id="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Associated<br />Gene</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Complete deficiency of methylmalonyl-CoA mutase</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut</i>
<sup>0</sup>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Infantile/non-B<sub>12</sub>-responsive</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_3" rowspan="2" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMUT</i>
</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Partial deficiency of methylmalonyl-CoA mutase</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut</i>
<sup>&#x02013;</sup>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Partially deficient or B<sub>12</sub>-responsive</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" rowspan="3" scope="row" colspan="1" style="text-align:left;vertical-align:middle;">Defect in the synthesis or transport of the methylmalonyl-CoA mutase cofactor, 5'-deoxyadenosyl-cobalamin</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>cblA</i>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Partially deficient or B<sub>12</sub>-responsive</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMAA</i>
</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">
<i>cblB</i>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Infantile/non-B<sub>12</sub>-responsive or, rarely, partially deficient or B<sub>12</sub>-responsive</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMAB</i>
</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;"><i>cblD</i>-MMA</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Partially deficient or B<sub>12</sub>-responsive</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMADHC</i>
</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Deficient activity of methylmalonyl-CoA epimerase</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MCEE</i>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Methylmalonyl-CoA epimerase deficiency</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemiaaci_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MCEE</i>
</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobmmaTmethylmalonicacidconcentrationi"><div id="mma.T.methylmalonic_acid_concentration_i" class="table"><h3><span class="label">Table 1. </span></h3><div class="caption"><p>Methylmalonic Acid Concentration in Phenotypes and Enzymatic Subtypes of Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.methylmalonic_acid_concentration_i/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.methylmalonic_acid_concentration_i_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_1" rowspan="2" scope="col" colspan="1" headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_1" style="text-align:left;vertical-align:middle;">Methylmalonic Acidemia<br />Phenotype&#x000a0;/ Enzymatic<br />Subtype&#x000a0;<sup>1</sup></th><th id="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2" colspan="2" scope="colgroup" rowspan="1" style="text-align:center;vertical-align:middle;">Methylmalonic Acid Concentration</th></tr><tr><th headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2" id="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_1" colspan="1" scope="colgroup" rowspan="1" style="text-align:left;vertical-align:middle;">Urine</th><th headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2" id="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Blood</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Infantile/non-B<sub>12</sub>-responsive&#x000a0;<sup>2</sup>&#x000a0;/<br /><i>mut</i><sup>0</sup>, <i>mut<sup>&#x02013;</sup></i>, <i>cblB</i></td><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2 hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">1,000-10,000 mmol/mol Cr</td><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2 hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>100-1,000 &#x000b5;mol/L (if eGFR &#x0003e;50 mL/min/1.73 m<sup>2</sup>)</div></li><li class="half_rhythm"><div>1,000-10,000 &#x000b5;mol/L in those w/advanced renal disease</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">B<sub>12</sub>-responsive&#x000a0;<sup>2</sup>&#x000a0;/<br /><i>cblA</i>, <i>cblD</i>-MMA, <i>cblB</i>, <i>mut</i><sup>&#x02013;</sup> (rare)</td><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2 hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Tens - hundreds mmol/mol Cr</td><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2 hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">5-100 &#x000b5;mol/L</td></tr><tr><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">MCEE deficiency&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2 hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">100-6,800 mmol/mol Cr</td><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2 hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">5-180 &#x000b5;mol/L</td></tr><tr><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Normal&#x000a0;<sup>4</sup></td><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2 hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">&#x0003c;4 mmol/mol Cr</td><td headers="hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_1_2 hd_h_mma.T.methylmalonic_acid_concentration_i_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">&#x0003c;0.27 &#x000b5;mol/L</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Cr = creatinine; eGFR = estimated glomerular filtration rate; MCEE = methylmalonyl-coenzyme A epimerase</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.1.1"><p class="no_margin">Biochemical parameters and clinical phenotype are not always concordant, partly because renal function can influence plasma MMA concentration [<a class="bibr" href="#mma.REF.kruszka.2013.990" rid="mma.REF.kruszka.2013.990">Kruszka et al 2013</a>, <a class="bibr" href="#mma.REF.manoli.2013.13552" rid="mma.REF.manoli.2013.13552">Manoli et al 2013</a>]. Patients in kidney failure show massive elevations in plasma MMA that can exceed 5,000 &#x000b5;mol/L.</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.1.2"><p class="no_margin">Approximate numbers, representing the author's experience with &#x0003e;150 individuals with the B<sub>12</sub>-responsive and non-B<sub>12</sub>-responsive types as well as data from <a class="bibr" href="#mma.REF.fowler.2008.350" rid="mma.REF.fowler.2008.350">Fowler et al [2008]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.1.3"><p class="no_margin"><a class="bibr" href="#mma.REF.bikker.2006.640" rid="mma.REF.bikker.2006.640">Bikker et al [2006]</a>, <a class="bibr" href="#mma.REF.dobson.2006.327" rid="mma.REF.dobson.2006.327">Dobson et al [2006]</a>, <a class="bibr" href="#mma.REF.gradinger.2007.1045" rid="mma.REF.gradinger.2007.1045">Gradinger et al [2007]</a>, <a class="bibr" href="#mma.REF.heuberger.2019.1265" rid="mma.REF.heuberger.2019.1265">Heuberger et al [2019]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.1.4"><p class="no_margin">Normal values have not been exclusively derived from children or neonates. Some laboratories report urine MMA concentrations in mg/g/Cr (normal: &#x0003c;3 mg/g/Cr) and serum concentrations in nmol/L (normal: &#x0003c;271 nmol/L). The molecular weight of MMA is 118 g/mol.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTmoleculargenetictestingusedin"><div id="mma.T.molecular_genetic_testing_used_in" class="table"><h3><span class="label">Table 2. </span></h3><div class="caption"><p>Molecular Genetic Testing Used in Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.molecular_genetic_testing_used_in/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.molecular_genetic_testing_used_in_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_1" rowspan="2" scope="col" colspan="1" headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_1" style="text-align:left;vertical-align:middle;">Gene&#x000a0;<sup>1,&#x000a0;2</sup></th><th id="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_2" rowspan="2" scope="col" colspan="1" headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_2" style="text-align:left;vertical-align:middle;">Proportion of Isolated MMA Attributed to Mutation of Gene&#x000a0;<sup>3</sup></th><th id="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3" colspan="2" scope="colgroup" rowspan="1" style="text-align:left;vertical-align:middle;">Proportion of Pathogenic Variants&#x000a0;<sup>4</sup> Detected by Method</th></tr><tr><th headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3" id="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_1" colspan="1" scope="colgroup" rowspan="1" style="text-align:left;vertical-align:middle;">Sequence analysis&#x000a0;<sup>5</sup></th><th headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3" id="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Gene-targeted deletion/duplication analysis&#x000a0;<sup>6</sup></th></tr></thead><tbody><tr><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MCEE</i>
</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Rare</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">25 probands/families&#x000a0;<sup>7</sup></td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Unknown, none reported&#x000a0;<sup>8</sup></td></tr><tr><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMAA</i>
</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">25%</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">97%&#x000a0;<sup>9</sup></td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Unknown, one large deletion reported&#x000a0;<sup>8,&#x000a0;10</sup></td></tr><tr><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMAB</i>
</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">12%</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">98%&#x000a0;<sup>11</sup></td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Unknown, none reported&#x000a0;<sup>8</sup></td></tr><tr><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMADHC</i>
</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Rare</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">9 probands/families&#x000a0;<sup>12</sup></td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Unknown, none reported&#x000a0;<sup>8</sup></td></tr><tr><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMUT</i>
</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">60% (75%-78% <i>mut</i><sup>0</sup> enzymatic subtype, 20%-22% <i>mut</i><sup>&#x02013;</sup> enzymatic subtype)</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_1" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">96%&#x000a0;<sup>13,&#x000a0;14</sup></td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">~1%&#x000a0;<sup>8</sup></td></tr><tr><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Unknown&#x000a0;<sup>15</sup></td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Rare</td><td headers="hd_h_mma.T.molecular_genetic_testing_used_in_1_1_1_3 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_1 hd_h_mma.T.molecular_genetic_testing_used_in_1_1_2_2" colspan="2" rowspan="1" style="text-align:left;vertical-align:middle;">NA</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">NA = not applicable</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.2.1"><p class="no_margin">Genes are listed in alphabetic order.</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.2.2"><p class="no_margin">See <a href="/books/NBK1231/?report=reader#mma.molgen.TA">Table A. Genes and Databases</a> for chromosome locus and protein.</p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.2.3"><p class="no_margin">Based on <a class="bibr" href="#mma.REF.worgan.2006.31" rid="mma.REF.worgan.2006.31">Worgan et al [2006]</a>, <a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al [2007]</a>, <a class="bibr" href="#mma.REF.h_rster.2009.630" rid="mma.REF.h_rster.2009.630">H&#x000f6;rster et al [2009]</a>, <a class="bibr" href="#mma.REF.forny.2016.745" rid="mma.REF.forny.2016.745">Forny et al [2016]</a>, <a class="bibr" href="#mma.REF.forny.2021.566" rid="mma.REF.forny.2021.566">Forny et al [2021]</a>, <a class="bibr" href="#mma.REF.h_rster.2021.193" rid="mma.REF.h_rster.2021.193">H&#x000f6;rster et al [2021]</a>. Depending on the definition of B<sub>12</sub> responsiveness these percentages vary in different reports and populations [<a class="bibr" href="#mma.REF.yu.2021.e1822" rid="mma.REF.yu.2021.e1822">Yu et al 2021</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.2.4"><p class="no_margin">See <a href="#mma.Molecular_Genetics">Molecular Genetics</a> for information on allelic variants detected in this gene.</p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.2.5"><p class="no_margin">Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Variants may include missense, nonsense, and splice site variants and small intragenic deletions/insertions; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click <a href="/books/n/gene/app2/?report=reader">here</a>.</p></div></dd></dl><dl class="bkr_refwrap"><dt>6. </dt><dd><div id="mma.TF.2.6"><p class="no_margin">Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.</p></div></dd></dl><dl class="bkr_refwrap"><dt>7. </dt><dd><div id="mma.TF.2.7"><p class="no_margin"><a class="bibr" href="#mma.REF.gradinger.2007.1045" rid="mma.REF.gradinger.2007.1045">Gradinger et al [2007]</a>, <a class="bibr" href="#mma.REF.heuberger.2019.1265" rid="mma.REF.heuberger.2019.1265">Heuberger et al [2019]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>8. </dt><dd><div id="mma.TF.2.8"><p class="no_margin">Data derived from the subscription-based professional view of Human Gene Mutation Database [<a class="bibr" href="#mma.REF.stenson.2020.1197" rid="mma.REF.stenson.2020.1197">Stenson et al 2020</a>]</p></div></dd></dl><dl class="bkr_refwrap"><dt>9. </dt><dd><div id="mma.TF.2.9"><p class="no_margin"><a class="bibr" href="#mma.REF.lernerellis.2004.509" rid="mma.REF.lernerellis.2004.509">Lerner-Ellis et al [2004]</a>, <a class="bibr" href="#mma.REF.plessl.2017.988" rid="mma.REF.plessl.2017.988">Plessl et al [2017]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>10. </dt><dd><div id="mma.TF.2.10"><p class="no_margin">
<a class="bibr" href="#mma.REF.nizon.2013.148" rid="mma.REF.nizon.2013.148">Nizon et al [2013]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>11. </dt><dd><div id="mma.TF.2.11"><p class="no_margin"><a class="bibr" href="#mma.REF.lernerellis.2006.219" rid="mma.REF.lernerellis.2006.219">Lerner-Ellis et al [2006]</a>, <a class="bibr" href="#mma.REF.forny.2016.745" rid="mma.REF.forny.2016.745">Forny et al [2016]</a>, <a class="bibr" href="#mma.REF.forny.2021.566" rid="mma.REF.forny.2021.566">Forny et al [2021]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>12. </dt><dd><div id="mma.TF.2.12"><p class="no_margin"><a class="bibr" href="#mma.REF.coelho.2008.1454" rid="mma.REF.coelho.2008.1454">Coelho et al [2008]</a>, <a class="bibr" href="#mma.REF.stucki.2012.1410" rid="mma.REF.stucki.2012.1410">Stucki et al [2012]</a>, <a class="bibr" href="#mma.REF.froese.2015.29167" rid="mma.REF.froese.2015.29167">Froese et al [2015]</a>, <a class="bibr" href="#mma.REF.wang.2018.2477" rid="mma.REF.wang.2018.2477">Wang et al [2018]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>13. </dt><dd><div id="mma.TF.2.13"><p class="no_margin"><a class="bibr" href="#mma.REF.worgan.2006.31" rid="mma.REF.worgan.2006.31">Worgan et al [2006]</a>, <a class="bibr" href="#mma.REF.forny.2016.745" rid="mma.REF.forny.2016.745">Forny et al [2016]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>14. </dt><dd><div id="mma.TF.2.14"><p class="no_margin">For individuals of Hispanic descent, targeted exon 2 analysis for the <i>MMUT</i>
<a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object" rid-ob="figobmmaTisolatedmethylmalonicacidemiano">c.322C&#x0003e;T</a> pathogenic variant may be considered (see <a href="#mma.Molecular_Genetics">Molecular Genetics</a>).</p></div></dd></dl><dl class="bkr_refwrap"><dt>15. </dt><dd><div id="mma.TF.2.15"><p class="no_margin">Some individuals with isolated MMA remain undiagnosed despite extensive genome and RNA sequencing, suggesting that additional genetic causes of isolated or combined subtypes of MMA may be identified with future research [<a class="bibr" href="#mma.REF.abdrabo.2020.432" rid="mma.REF.abdrabo.2020.432">Abdrabo et al 2020</a>].</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTphenotypecorrelationsbygeneand"><div id="mma.T.phenotype_correlations_by_gene_and" class="table"><h3><span class="label">Table 3. </span></h3><div class="caption"><p>Phenotype Correlations by Gene and Enzymatic Subtype of Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.phenotype_correlations_by_gene_and/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.phenotype_correlations_by_gene_and_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Methylmalonic Acidemia Phenotype</th><th id="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Gene</th><th id="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Enzymatic Subtype</th><th id="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_4" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Clinical Correlation</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_1" rowspan="3" scope="row" colspan="1" style="text-align:left;vertical-align:middle;">Infantile&#x000a0;/ non-B<sub>12</sub>-responsive&#x000a0;<sup>1</sup></td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMUT</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut</i>
<sup>0</sup>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Most common &#x00026; severe form, typically presenting in infancy</div></li><li class="half_rhythm"><div>Higher rate of mortality &#x00026; neurologic &#x00026; other multisystem complications than in those w/<i>mut</i><sup>&#x02013;</sup> &#x00026; <i>cblA</i> subtypes</div></li><li class="half_rhythm"><div>Renal disease may manifest in childhood in ~43%-60%, w/median age of onset 6-11 yrs.&#x000a0;<sup>2</sup></div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">
<i>MMUT</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut</i>
<sup>&#x02013;</sup>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Onset may occur later, in 1st few mos or yrs of life.</div></li><li class="half_rhythm"><div>Symptoms often incl feeding problems, failure to thrive, hypotonia, &#x00026; DD.</div></li><li class="half_rhythm"><div>Catastrophic decompensation can occur when diagnosis is delayed, incl injury in basal ganglia &#x02192; movement disorder.</div></li><li class="half_rhythm"><div>Some persons have isolated renal tubular acidosis or chronic renal failure as primary finding.</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">
<i>MMAB</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>cblB</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Most affected persons have phenotype that resembles <i>mut</i><sup>0</sup>, although certain pathogenic variants may be assoc w/milder phenotype.</div></li><li class="half_rhythm"><div>Higher rate of mortality &#x00026; neurologic &#x00026; other multisystem complications than in those w/<i>mut</i><sup>&#x02013;</sup> &#x00026; <i>cblA</i> sybtypes</div></li><li class="half_rhythm"><div>Chronic renal failure occurs in ~66% &#x00026; is less frequent than in those w/<i>cblA</i> subtype.</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_1" rowspan="4" scope="row" colspan="1" style="text-align:left;vertical-align:middle;">B<sub>12</sub>-responsive&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMAA</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>cblA</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">If diagnosed early &#x00026; consistently treated w/injectable B<sub>12</sub>&#x000a0;<sup>4</sup>:
<ul><li class="half_rhythm"><div>Milder disease course</div></li><li class="half_rhythm"><div>Normal life expectancy</div></li><li class="half_rhythm"><div>Slower decline in renal function w/&#x02248;9%-12% developing chronic renal failure&#x000a0;<sup>5</sup></div></li><li class="half_rhythm"><div>Better neurocognitive outcomes than in <i>mut</i><sup>0</sup>/<i>mut</i><sup>&#x02013;</sup> &#x00026; <i>cblB</i> subtypes</div></li></ul>
If not adherent to diet &#x00026; injectable B<sub>12</sub> therapy: at risk for significant neurologic &#x00026; multiorgan complications&#x000a0;<sup>6</sup></td></tr><tr><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;"><i>MMADHC</i>&#x000a0;<sup>7</sup></td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><i>cblD</i>-MMA</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Metabolic acidosis, respiratory distress, hyperammonemia, &#x00026; neurologic symptoms</td></tr><tr><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">
<i>MMAB</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>cblB</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Only rarely is this subtype responsive to injectable B<sub>12</sub> therapy.</div></li><li class="half_rhythm"><div>May present w/isolated renal tubular acidosis or chronic renal failure</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">
<i>MMUT</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut</i>
<sup>&#x02013;</sup>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">See <b>Infantile/non-B<sub>12</sub>-responsive</b>; this phenotype is rarely B<sub>12</sub>-responsive.</td></tr><tr><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">MCEE deficiency</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MCEE</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MCEE</i>
</td><td headers="hd_h_mma.T.phenotype_correlations_by_gene_and_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>In general, milder features ranging from no symptoms to severe metabolic acidosis.</div></li><li class="half_rhythm"><div>Not responsive to injectable B<sub>12</sub> therapy</div></li><li class="half_rhythm"><div>A rare cause of persistent moderate MMA</div></li></ul>
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">DD = developmental delay; MCEE = methylmalonyl-coenzyme A epimerase</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.3.1"><p class="no_margin">The most common phenotype, which typically presents during infancy</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.3.2"><p class="no_margin"><a class="bibr" href="#mma.REF.cosson.2009.172" rid="mma.REF.cosson.2009.172">Cosson et al [2009]</a>, <a class="bibr" href="#mma.REF.kruszka.2013.990" rid="mma.REF.kruszka.2013.990">Kruszka et al [2013]</a>, <a class="bibr" href="#mma.REF.dao.2021.220" rid="mma.REF.dao.2021.220">Dao et al [2021]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.3.3"><p class="no_margin">Sometimes referred to as partial deficiency</p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.3.4"><p class="no_margin"><a class="bibr" href="#mma.REF.h_rster.2021.193" rid="mma.REF.h_rster.2021.193">H&#x000f6;rster et al [2021]</a>, <a class="bibr" href="#mma.REF.manoli.2021.1522" rid="mma.REF.manoli.2021.1522">Manoli et al [2021]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.3.5"><p class="no_margin"><a class="bibr" href="#mma.REF.h_rster.2021.193" rid="mma.REF.h_rster.2021.193">H&#x000f6;rster et al [2021]</a>, <a class="bibr" href="#mma.REF.marelli.2022" rid="mma.REF.marelli.2022">Marelli et al [2022]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>6. </dt><dd><div id="mma.TF.3.6"><p class="no_margin">Including optic nerve atrophy, basal ganglia injury, and multiorgan failure [<a class="bibr" href="#mma.REF.valayannopoulos.2009.159" rid="mma.REF.valayannopoulos.2009.159">Valayannopoulos et al 2009</a>]</p></div></dd></dl><dl class="bkr_refwrap"><dt>7. </dt><dd><div id="mma.TF.3.7"><p class="no_margin">See also <a href="#mma.Genetically_Related_Allelic_Disorder">Genetically Related Disorders</a> for other phenotypes associated with mutation of this gene.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTmmutpathogenicmissensevariants"><div id="mma.T.mmut_pathogenic_missense_variants" class="table"><h3><span class="label">Table 4. </span></h3><div class="caption"><p><i>MMUT</i> Pathogenic Missense Variants and Their Typical Enzymatic Subtype</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.mmut_pathogenic_missense_variants/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.mmut_pathogenic_missense_variants_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Mut Enzymatic Subtype (when Homozygous)</th><th id="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">DNA Nucleotide Change</th><th id="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Predicted Protein Change</th><th id="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_4" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Reference Sequences</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.19C&#x0003e;T</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gln7Ter</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_4" rowspan="42" colspan="1" style="text-align:left;vertical-align:middle;">
<a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_000255.4" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NM_000255<wbr style="display:inline-block"></wbr>&#8203;.4</a>
<br />
<a href="https://www.ncbi.nlm.nih.gov/protein/NP_000246.2" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NP_000246<wbr style="display:inline-block"></wbr>&#8203;.2</a>
</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.52C&#x0003e;T</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gln18Ter</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.91C&#x0003e;T</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg31Ter</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.278G&#x0003e;A</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg93His</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.284C&#x0003e;G</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Pro95Arg</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.313T&#x0003e;C</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Trp105Arg</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><i>mut<sup>0</sup></i>&#x000a0;<sup>1</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.322C&#x0003e;T&#x000a0;<sup>2</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg108Cys</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.397G&#x0003e;A&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly133Arg</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.410C&#x0003e;T&#x000a0;<sup>4</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Ala137Val</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.415G&#x0003e;A&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Asp139Asn</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.521T&#x0003e;C</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Phe174Ser</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.572C&#x0003e;A&#x000a0;<sup>5</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Ala191Glu</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.607G&#x0003e;A</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly203Arg</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.643G&#x0003e;A&#x000a0;<sup>5</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly215Ser</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.655A&#x0003e;T&#x000a0;<sup>2,&#x000a0;3,&#x000a0;5</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Asn219Tyr</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.935G&#x0003e;T</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly312Val</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.982C&#x0003e;T&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Leu328Phe</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1105C&#x0003e;T</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg369Cys</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1106G&#x0003e;A&#x000a0;<sup>2,&#x000a0;3,&#x000a0;5,&#x000a0;6</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg369His</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1280G&#x0003e;A</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly427Asp</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1553T&#x0003e;C</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Leu518Pro</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1843C&#x0003e;A&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Pro615Thr</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>0</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1867G&#x0003e;A</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly623Arg</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.299A&#x0003e;G&#x000a0;<sup>4,&#x000a0;6</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Tyr100Cys</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.566A&#x0003e;T&#x000a0;<sup>3,&#x000a0;7</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Asn189Ile</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.828G&#x0003e;C&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Glu276Asp</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.947A&#x0003e;G&#x000a0;<sup>2</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Tyr316Cys</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.970G&#x0003e;A&#x000a0;<sup>2</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Ala324Thr</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1097A&#x0003e;G&#x000a0;<sup>4</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Asn366Ser</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1160C&#x0003e;T&#x000a0;<sup>8</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Thr387Ile</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1276G&#x0003e;A&#x000a0;<sup>2,&#x000a0;3</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly426Arg</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1277G&#x0003e;A&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly426Glu</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1663G&#x0003e;A&#x000a0;<sup>9</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Ala555Thr</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1846C&#x0003e;T&#x000a0;<sup>2,&#x000a0;6</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg616Cys</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1898T&#x0003e;G&#x000a0;<sup>10,&#x000a0;10</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Val633Gly</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.1924G&#x0003e;C&#x000a0;<sup>6</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly642Arg</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.2020C&#x0003e;T&#x000a0;<sup>8</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Leu674Phe</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.2054T&#x0003e;G&#x000a0;<sup>2,&#x000a0;10</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Leu685Arg</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.2080C&#x0003e;T&#x000a0;<sup>4,&#x000a0;6</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg694Trp</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.2099T&#x0003e;A&#x000a0;<sup>3,&#x000a0;5</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Met700Lys</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><i>mut<sup>&#x02013;</sup></i>&#x000a0;<sup>11</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.2150G&#x0003e;T&#x000a0;<sup>2,&#x000a0;3,&#x000a0;6</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly717Val</td></tr><tr><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>mut<sup>&#x02013;</sup></i>
</td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.2206C&#x0003e;T&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.mmut_pathogenic_missense_variants_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Leu736Phe</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Data in the table have been provided by the authors. <i>GeneReviews</i> staff have not independently verified the classification of variants.</p></div></dd></dl><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin"><i>GeneReviews</i> follows the standard naming conventions of the Human Genome Variation Society (<a href="https://varnomen.hgvs.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">varnomen<wbr style="display:inline-block"></wbr>&#8203;.hgvs.org</a>). See <a href="/books/n/gene/app3/?report=reader">Quick Reference</a> for an explanation of nomenclature.</p></div></dd></dl><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin"><i>mut</i><sup>0</sup> = <i>mut</i><sup>0</sup> enzymatic subtype</p></div></dd></dl><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin"><i>mut</i><sup>&#x02013;</sup> = <i>mut</i><sup>&#x02013;</sup> enzymatic subtype</p></div></dd></dl><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">NA = not applicable</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.4.1"><p class="no_margin">Observed in individuals of Mexican/Hispanic descent.</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.4.2"><p class="no_margin">
<a class="bibr" href="#mma.REF.worgan.2006.31" rid="mma.REF.worgan.2006.31">Worgan et al [2006]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.4.3"><p class="no_margin"><a class="bibr" href="#mma.REF.forny.2014.1449" rid="mma.REF.forny.2014.1449">Forny et al [2014]</a>, <a class="bibr" href="#mma.REF.forny.2016.745" rid="mma.REF.forny.2016.745">Forny et al [2016]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.4.4"><p class="no_margin">
<a class="bibr" href="#mma.REF.lempp.2007.284" rid="mma.REF.lempp.2007.284">Lempp et al [2007]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.4.5"><p class="no_margin">
<a class="bibr" href="#mma.REF.acquaviva.2005.167" rid="mma.REF.acquaviva.2005.167">Acquaviva et al [2005]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>6. </dt><dd><div id="mma.TF.4.6"><p class="no_margin">
<a class="bibr" href="#mma.REF.manoli.2021.1522" rid="mma.REF.manoli.2021.1522">Manoli et al [2021]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>7. </dt><dd><div id="mma.TF.4.7"><p class="no_margin">
<a class="bibr" href="#mma.REF.chu.2016.264" rid="mma.REF.chu.2016.264">Chu et al [2016]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>8. </dt><dd><div id="mma.TF.4.8"><p class="no_margin">
<a class="bibr" href="#mma.REF.d_ndar.2012.419" rid="mma.REF.d_ndar.2012.419">D&#x000fc;ndar et al [2012]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>9. </dt><dd><div id="mma.TF.4.9"><p class="no_margin"><a class="bibr" href="#mma.REF.liang.2021.22" rid="mma.REF.liang.2021.22">Liang et al [2021]</a>, observed in individuals of Chinese descent</p></div></dd></dl><dl class="bkr_refwrap"><dt>10. </dt><dd><div id="mma.TF.4.10"><p class="no_margin">
<a class="bibr" href="#mma.REF.adjalla.1998.s248" rid="mma.REF.adjalla.1998.s248">Adjalla et al [1998]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>11. </dt><dd><div id="mma.TF.4.11"><p class="no_margin">Observed in individuals of African descent</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTgeneticdisorderswithmethylmalon"><div id="mma.T.genetic_disorders_with_methylmalon" class="table"><h3><span class="label">Table 5. </span></h3><div class="caption"><p>Genetic Disorders with Methylmalonic Acidemia/Aciduria in the Differential Diagnosis of Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.genetic_disorders_with_methylmalon/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.genetic_disorders_with_methylmalon_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Gene</th><th id="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Disorder</th><th id="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Biochemical Features</th><th id="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Clinical Features</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>ABCD4</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><i>cblJ</i> deficiency (See <a href="/books/n/gene/cbl/?report=reader">Disorders of Intracellular Cobalamin Metabolism</a>.)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Combined methylmalonic acidemia &#x00026; hyperhomocysteinemia / homocystinuria; can present w/low serum B<sub>12</sub> levels</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">5 persons reported: 3 presented neonatally w/poor growth, feeding problems, hypotonia, respiratory distress, bone marrow suppression, &#x00026; congenital heart defect. 2 presented in early childhood w/hyperpigmentation &#x00026; premature graying, &#x00026; transient ischemic attack (in 1 of 2 children).</td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>ACSF3</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Combined malonic &#x00026; methylmalonic aciduria (OMIM <a href="https://omim.org/entry/614265" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">614265</a>)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">High MA &#x00026; MMA levels in urine or plasma, w/MMA excretion typically higher than MA excretion (MMA/MA &#x0003e;5).<br />Because C3 (propionylcarnitine) is not &#x02191;, affected infants are not detected by NBS based on a dried blood spot acylcarnitine analysis.&#x000a0;<sup>1</sup></td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Broad phenotypic spectrum ranging from completely asymptomatic to adults w/neurologic syndromes (seizures, memory problems, psychiatric disease, &#x000b1;cognitive decline) to children w/a wide range of manifestations (e.g., coma, ketoacidosis, hypoglycemia, FTT, &#x02191; transaminases, microcephaly, dystonia, axial hypotonia, &#x00026;/or DD). No biochemical or clinical response to B<sub>12</sub> therapy. A largely benign clinical course was reported in an unselected cohort (children-young adult) ascertained through urine NBS in Quebec.&#x000a0;<sup>1</sup></td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>ALDH6A1</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Methylmalonate semialdehyde dehydrogenase deficiency (OMIM <a href="https://omim.org/entry/614105" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">614105</a>)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Extremely variable biochemical phenotypes: may be assoc w/3-hydroxyisobutyric, 3-OH propionic aciduria, 3-aminoisobutyric, &#x00026; &#x003b2;-alanine, &#x00026;/or transient methylmalonic acidemia/aciduria&#x000a0;<sup>2</sup></td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Extremely variable clinical phenotypes incl severe ID, dysmorphic features; assoc w/significant brain myelination defects&#x000a0;<sup>2</sup></td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>AMN</i>
<br />
<i>CUBN</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Imerslund-Grasbeck syndrome (OMIM <a href="https://omim.org/phenotypicSeries/PS261100" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">PS261100</a>)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Low serum B<sub>12</sub>, combined methylmalonic acidemia &#x00026; hyperhomocysteinemia / homocystinuria, proteinuria in ~50% of affected persons</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Megaloblastic anemia, pallor, FTT, recurrent infections, mild proteinuria.</td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>CD320</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Transcobalamin receptor defect (TcblR) (OMIM <a href="https://omim.org/entry/613646" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">613646</a>)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Identified on NBS w/an &#x02191; C3 &#x00026; &#x02191; C3/C2 ratio, &#x02191; plasma &#x00026; urine MMA, &#x000b1; &#x02191; homocysteine &#x00026; normal or mildly &#x02191; serum vitamin B<sub>12</sub> levels&#x000a0;<sup>3</sup></td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Largely asymptomatic. Normal biochemistry w/parenteral hydroxocobalamin or oral B<sub>12</sub> supplementation. Bilateral central retinal artery occlusion assoc w/hyperhomocysteinemia reported in 1 person. Most reported persons are homozygous for NM_016579.3:c.262_264del (p.Glu88del).&#x000a0;<sup>3,&#x000a0;4</sup></td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>HCFC1</i>
<br />
<i>THAP11</i>
<br />
<i>ZNF143</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><i>cblX</i> &#x00026; cblX-like deficiency (See <a href="/books/n/gene/cbl/?report=reader">Disorders of Intracellular Cobalamin Metabolism</a>.)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Combined methylmalonic acidemia &#x00026; hyperhomocysteinemia</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">IUGR, congenital malformations, severe DD w/significant ID, early-onset intractable seizures; microcephaly, brain malformations, &#x00026; dysmorphic features in some persons</td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>LMBRD1</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><i>cblF</i> deficiency (See <a href="/books/n/gene/cbl/?report=reader">Disorders of Intracellular Cobalamin Metabolism</a>.)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Combined methylmalonic acidemia &#x00026; hyperhomocysteinemia / homocystinuria; presents w/low serum B<sub>12</sub> levels.</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Often presents in infancy w/IUGR, poor postnatal growth, feeding difficulties, &#x00026; DD; may also have stomatitis &#x000b1; glossitis &#x00026; congenital heart malformations</td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMACHC</i>
<br />
<i>PRDX1</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><i>cblC</i> deficiency (See <a href="/books/n/gene/cbl/?report=reader">Disorders of Intracellular Cobalamin Metabolism</a>.)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">&#x02191; plasma concentrations of homocysteine &#x00026; methylmalonic acid, w/&#x02193; levels of methionine</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Frequently assoc w/DD, ID, progressive pigmentary retinopathy, "bull's eye" maculopathy, seizures; highly variable age of onset</td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MLYCD</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Malonyl-CoA decarboxylase deficiency (OMIM <a href="https://omim.org/entry/248360" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">248360</a>)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Combined methylmalonic &#x00026; malonic aciduria w/significantly &#x02191; malonic vs methylmalonic acid levels; &#x02191; C3DC in acylcarnitine profile; ketotic dicarboxylic aciduria; hypoglycemia&#x000a0;<sup>5</sup></td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Hypoglycemia, metabolic acidosis, ketosis, cognitive impairment, seizures, microcephaly. Cardiomyopathy (left ventricular non-compaction, dilated or hypertrophic) is the leading cause of morbidity &#x00026; mortality.&#x000a0;<sup>5</sup></td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>SUCLA2</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><a href="/books/n/gene/sucla2-def/?report=reader"><i>SUCLA2</i>-related mtDNA depletion syndrome, encephalomyopathic form w/methylmalonic aciduria</a> (succinyl-CoA ligase deficiency)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Methylmalonic aciduria ranges from 10 to 200 mmol/mol creatinine &#x00026; is accompanied by &#x02191; plasma concentrations of lactate, methylcitrate, 3-hydroxyproprionic &#x00026; 3-hydroxyisovaleric acid, proprionylcarnitine, &#x00026; C4-dicarboxylic carnitine (C4DC).&#x000a0;<sup>6</sup></td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Hypotonia, muscle atrophy (presenting at age ~3-6 mos), hyperkinesia, seizures, severe hearing impairment, &#x00026; growth failure. Leigh syndrome-like disorder, cortical &#x00026; basal ganglia atrophy, &#x00026; dystonia. ~30% of affected persons succumb during childhood.</td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>SUCLG1</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><a href="/books/n/gene/suclg1-mtddepl/?report=reader"><i>SUCLG1</i>-related mtDNA depletion syndrome, encephalomyopathic form w/methylmalonic aciduria</a> (succinyl-CoA ligase deficiency)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Methylmalonic aciduria ranges from 10 to 200 mmol/mol creatinine &#x00026; is accompanied by &#x02191; plasma concentrations of lactate, methylcitrate, 3-hydroxyproprionic &#x00026; 3-hydroxyisovaleric acid, proprionylcarnitine, &#x00026; C4-dicarboxylic carnitine (C4DC)&#x000a0;<sup>6</sup></td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Hypotonia, muscle atrophy, feeding difficulties, &#x00026; lactic acidosis. Affected infants commonly manifest DD/cognitive impairment, growth restriction/FTT, hepatopathy, hearing impairment, dystonia, &#x00026; hypertonia. Life span is shortened (median survival: 20 mos).</td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>TCN2</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Transcobalamin II deficiency (OMIM <a href="https://omim.org/entry/275350" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">275350</a>)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Combined methylmalonic acidemia &#x00026; hyperhomocysteinemia. Mostly normal serum B<sub>12</sub>, but &#x02193; unsaturated B<sub>12</sub> binding capacity &#x00026; &#x02193;TCII detected by immunoassay.&#x000a0;<sup>7</sup></td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Pallor, FTT, diarrhea, pancytopenia (can be misdiagnosed as leukemia), recurrent infections, megaloblastic anemia, immunodeficiency, neurologic abnormalities if delayed or inadequate treatment winjectable B<sub>12</sub>.&#x000a0;<sup>7</sup></td></tr><tr><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>ZBTB11</i>
</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><i>ZBTB11</i>-related intellectual developmental disorder (OMIM <a href="https://omim.org/entry/618383" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">618383</a>)</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Biochemical phenotype similar to ACSF3 deficiency w/high MA &#x00026; MMA levels in urine or plasma, w/MMA excretion typically higher than MA excretion (MMA/MA &#x0003e;5). Because C3 (propionylcarnitine) is not &#x02191;, affected infants are not detected by NBS based on a dried blood spot acylcarnitine analysis.</td><td headers="hd_h_mma.T.genetic_disorders_with_methylmalon_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">DD, ID, FTT, microcephaly, cataracts, brain abnormalities; some persons can have isolated ID &#x00026; no biochemical phenotype.&#x000a0;<sup>8</sup></td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">cbl = cobalamin; DD = developmental delay; FTT = failure to thrive; ID = intellectual disability; IUGR = intrauterine growth restriction; MA = malonic acid; MMA = methylmalonic acid; mtDNA = mitochondrial DNA; NBS = newborn screening</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.5.1"><p class="no_margin"><a class="bibr" href="#mma.REF.alfares.2011.602" rid="mma.REF.alfares.2011.602">Alfares et al [2011]</a>, <a class="bibr" href="#mma.REF.sloan.2011.883" rid="mma.REF.sloan.2011.883">Sloan et al [2011]</a>, <a class="bibr" href="#mma.REF.levtova.2019.107" rid="mma.REF.levtova.2019.107">Levtova et al [2019]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.5.2"><p class="no_margin"><a class="bibr" href="#mma.REF.chambliss.2000.497" rid="mma.REF.chambliss.2000.497">Chambliss et al [2000]</a>, <a class="bibr" href="#mma.REF.sass.2012.437" rid="mma.REF.sass.2012.437">Sass et al [2012]</a>, <a class="bibr" href="#mma.REF.marcadier.2013.98" rid="mma.REF.marcadier.2013.98">Marcadier et al [2013]</a>, <a class="bibr" href="#mma.REF.dobrowolski.2020.272" rid="mma.REF.dobrowolski.2020.272">Dobrowolski et al [2020]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.5.3"><p class="no_margin"><a class="bibr" href="#mma.REF.quadros.2010.924" rid="mma.REF.quadros.2010.924">Quadros et al [2010]</a>, <a class="bibr" href="#mma.REF.hannahshmouni.2018.1411" rid="mma.REF.hannahshmouni.2018.1411">Hannah-Shmouni et al [2018]</a>, <a class="bibr" href="#mma.REF.pangilinan.2022.1124" rid="mma.REF.pangilinan.2022.1124">Pangilinan et al [2022]</a>, <a class="bibr" href="#mma.REF.pappas.2022.1102" rid="mma.REF.pappas.2022.1102">Pappas et al [2022]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.5.4"><p class="no_margin">Polymorphisms in <i>CD320</i> have been associated with increased risk for neural tube defects in an Irish cohort [<a class="bibr" href="#mma.REF.pangilinan.2010.677" rid="mma.REF.pangilinan.2010.677">Pangilinan et al 2010</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.5.5"><p class="no_margin"><a class="bibr" href="#mma.REF.fitzpatrick.1999.318" rid="mma.REF.fitzpatrick.1999.318">FitzPatrick et al [1999]</a>, <a class="bibr" href="#mma.REF.froese.2013.1182" rid="mma.REF.froese.2013.1182">Froese et al [2013]</a>, <a class="bibr" href="#mma.REF.chapelcrespo.2019.113" rid="mma.REF.chapelcrespo.2019.113">Chapel-Crespo et al [2019]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>6. </dt><dd><div id="mma.TF.5.6"><p class="no_margin"><a class="bibr" href="#mma.REF.elpeleg.2005.1081" rid="mma.REF.elpeleg.2005.1081">Elpeleg et al [2005]</a>, <a class="bibr" href="#mma.REF.carrozzo.2007.862" rid="mma.REF.carrozzo.2007.862">Carrozzo et al [2007]</a>, <a class="bibr" href="#mma.REF.ostergaard.2007.853" rid="mma.REF.ostergaard.2007.853">Ostergaard et al [2007]</a>, <a class="bibr" href="#mma.REF.morava.2009.438" rid="mma.REF.morava.2009.438">Morava et al [2009]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>7. </dt><dd><div id="mma.TF.5.7"><p class="no_margin"><a class="bibr" href="#mma.REF.schiff.2010.223" rid="mma.REF.schiff.2010.223">Schiff et al [2010]</a>, <a class="bibr" href="#mma.REF.trakadis.2014.461" rid="mma.REF.trakadis.2014.461">Trakadis et al [2014]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>8. </dt><dd><div id="mma.TF.5.8"><p class="no_margin"><a class="bibr" href="#mma.REF.str_mme.1995.1" rid="mma.REF.str_mme.1995.1">Str&#x000f8;mme et al [1995]</a>, <a class="bibr" href="#mma.REF.fattahi.2018.3177" rid="mma.REF.fattahi.2018.3177">Fattahi et al [2018]</a>, <a class="bibr" href="#mma.REF.sumathipala.2022.2602" rid="mma.REF.sumathipala.2022.2602">Sumathipala et al [2022]</a></p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTrecommendedevaluationsfollowing"><div id="mma.T.recommended_evaluations_following" class="table"><h3><span class="label">Table 6. </span></h3><div class="caption"><p>Recommended Evaluations Following Initial Diagnosis of Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.recommended_evaluations_following/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.recommended_evaluations_following_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Evaluation</th><th id="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Comment</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Consultation w/metabolic physician&#x000a0;/ biochemical geneticist &#x00026; specialist metabolic dietitian&#x000a0;<sup>1</sup></td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Transfer to specialist center w/experience in mgmt of inherited metabolic diseases is strongly recommended.</div></li><li class="half_rhythm"><div>Consider short hospitalization at a center of expertise for inherited metabolic conditions to provide caregivers w/detailed education (natural history, maintenance &#x00026; emergency treatment, prognosis, &#x00026; risks for acute encephalopathic crises).</div></li><li class="half_rhythm"><div>Review diet/food records w/metabolic dietitian.</div></li><li class="half_rhythm"><div>Provide patient/family w/sick-day diet instructions &#x00026; emergency treatment letter detailing mgmt plan &#x00026; specialist contact information (see <a href="/books/NBK1231/table/mma.T.prevention_of_secondary_manifestat/?report=objectonly" target="object" rid-ob="figobmmaTpreventionofsecondarymanifestat">Table 12</a>).</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Assessment of vitamin B<sub>12</sub> responsiveness</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Generally, 1.0-mg injections (preferably of OHCbl) daily for 3-5 days</div></li><li class="half_rhythm"><div>Obtain &#x0003e;1 baseline &#x00026; follow-up measures over 10 days to assess for a &#x02193; in serum &#x00026; urine methylmalonic acid (&#x0003e;50% &#x02193; is considered a positive B<sub>12</sub> response).</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Consider screening laboratory testing, which may incl:
<ul><li class="half_rhythm"><div>Serum vitamin B<sub>12</sub> concentration (in newborns; see above for vitamin B<sub>12</sub> responsiveness.)</div></li><li class="half_rhythm"><div>Serum chemistry panel incl renal function, liver enzymes&#x000a0;<sup>2</sup></div></li><li class="half_rhythm"><div>CBC w/differential, iron status, folate</div></li><li class="half_rhythm"><div>Arterial or venous blood gas</div></li><li class="half_rhythm"><div>Plasma ammonium &#x00026; lactic acid concentration</div></li><li class="half_rhythm"><div>Urinalysis &#x00026; urine ketone measurement</div></li><li class="half_rhythm"><div>Quantitative plasma amino acids</div></li><li class="half_rhythm"><div>Urine organic acids&#x000a0;<sup>3</sup></div></li><li class="half_rhythm"><div>Serum methylmalonic acid &#x00026; (if available) methylcitrate levels</div></li><li class="half_rhythm"><div>Measurement of free &#x00026; total carnitine levels</div></li><li class="half_rhythm"><div>Pancreatic enzymes (amylase, lipase)</div></li><li class="half_rhythm"><div>Serum albumin, total protein, &#x00026; prealbumin to assess for nutritional status</div></li></ul>
</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">The choice of screening labs depends on the patient&#x02019;s current age &#x00026; clinical status.</td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Cardiac eval, which may incl:
<ul><li class="half_rhythm"><div>Blood pressure measurement</div></li><li class="half_rhythm"><div>EKG</div></li><li class="half_rhythm"><div>Echocardiogram</div></li><li class="half_rhythm"><div>Consult w/cardiologist</div></li></ul>
</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">To assess for hypertension, abnormal QT interval, or other cardiac issues</td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Measure growth parameters (weight, length/height, head circumference).</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">To assess for failure to thrive, poor growth, &#x00026;/or short stature</td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Baseline bone age &#x00026; bone density (DXA)</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Assess for evidence of growth failure, need for gastrostomy tube to meet caloric needs, growth hormone treatment.</div></li><li class="half_rhythm"><div>Prevent &#x00026; treat osteopenia due to low-protein diet, renal osteodystrophy, delayed puberty.</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Developmental assessment</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Consider referral to developmental pediatrician after newborn period.</td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Consultation w/neurologist</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>To assess for signs &#x00026; symptoms of mvmt disorder, seizures, neuropathy</div></li><li class="half_rhythm"><div>Brain imaging (MRI, MRS) in case of abnormal neurologic exam findings</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Ophthalmology eval</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">To assess for optic nerve atrophy, which typically develops in older persons</td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Audiology eval</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">To assess for hearing loss&#x000a0;<sup>4</sup></td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Consultation w/psychologist &#x00026;/or social worker</td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">To ensure understanding of diagnosis &#x00026; assess parental&#x000a0;/ affected person's coping skills &#x00026; <a href="#mma.Resources">resources</a></td></tr><tr><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Genetic counseling by genetics professionals&#x000a0;<sup>5</sup></td><td headers="hd_h_mma.T.recommended_evaluations_following_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">To inform affected persons &#x00026; families re nature, MOI, &#x00026; implications of isolated MMA in order to facilitate medical &#x00026; personal decision making</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">CBC = complete blood count; OHCbl = hydroxocobalamin (as opposed to cyanocobalamin); MOI = mode of inheritance</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.6.1"><p class="no_margin">After a new diagnosis of isolated methylmalonic acidemia in a child, the closest hospital and local pediatrician should also be informed. The family needs to have an updated emergency treatment letter and plan.</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.6.2"><p class="no_margin">Na<sup>+</sup>, K<sup>+</sup>, CI<sup>&#x02013;</sup>, glucose, urea, creatinine, bicarbonate, AST, ALT, alkaline phosphatase, bilirubin [T/U], lipid panel, and cystatin-C.</p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.6.3"><p class="no_margin">By gas chromatography and mass spectrometry (GC-MS)</p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.6.4"><p class="no_margin">Hearing loss may occur in those who have experienced episodes of metabolic decompensation. The risk of hearing loss likely increases with age and can be seen along with optic nerve atrophy.</p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.6.5"><p class="no_margin">Medical/biochemical geneticist, certified genetic counselor, certified advanced genetic nurse</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTroutinedailytreatmentinindivid"><div id="mma.T.routine_daily_treatment_in_individ" class="table"><h3><span class="label">Table 7. </span></h3><div class="caption"><p>Routine Daily Treatment in Individuals with Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.routine_daily_treatment_in_individ/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.routine_daily_treatment_in_individ_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Principle/Manifestation</th><th id="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Treatment</th><th id="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Considerations/Other</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Vitamin B<sub>12</sub> supplementation in those known to be vitamin B<sub>12</sub> responsive (See </b>
<a href="/books/NBK1231/table/mma.T.recommended_evaluations_following/?report=objectonly" target="object" rid-ob="figobmmaTrecommendedevaluationsfollowing">
<b>Table 6</b>
</a>
<b>.)</b>
</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">1 mg hydroxocobalamin administered by intramuscular injections, 1-3x/wk to daily, depending on metabolic response</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Treatment w/cyanocobalamin is <b>contraindicated</b> in persons w/cobalamin C deficiency.</td></tr><tr><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Restriction of natural protein, particularly of propiogenic amino acid precursors&#x000a0;<sup>1</sup>, while maintaining a high-calorie diet&#x000a0;<sup>2</sup></b>
</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Safe levels of natural protein per age group should be the aim (see 2007 <a href="https://apps.who.int/iris/bitstream/10665/43411/1/WHO_TRS_935_eng.pdf" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">FAO/WHO/UNU report</a>).</div></li><li class="half_rhythm"><div>The individual protein amount prescribed depends on growth parameters, metabolic stability, &#x00026; stage of renal failure.</div></li><li class="half_rhythm"><div>A propiogenic amino acid-deficient formula&#x000a0;<sup>3,&#x000a0;4</sup> &#x00026; a protein-free formula&#x000a0;<sup>5</sup> (medical foods) are often used to provide addl calories</div></li><li class="half_rhythm"><div>Use medical foods in moderation, w/relative intake of natural protein to propiogenic amino-acid-deficient formula not exceeding a ratio of 1:1</div></li></ul>
</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Natural protein must be carefully titrated to allow for normal growth.&#x000a0;<sup>6</sup></div></li><li class="half_rhythm"><div>As infants grow, total protein load is slowly &#x02193;, based on growth, plasma amino acid concentrations, &#x00026; plasma &#x00026; urine methylmalonic acid concentrations.</div></li><li class="half_rhythm"><div>Adjustment of dietary whole (complete)-protein intake (based on lab findings) is required lifelong (see <a href="#mma.Surveillance">Surveillance</a>).</div></li><li class="half_rhythm"><div>Isolated valine &#x00026; isoleucine deficiencies may be caused in part by overuse of propiogenic amino-acid deficient formula; individual amino acid supplementation should be avoided (see <a href="#mma.AgentsCircumstances_to_Avoid">Agents/Circumstances to Avoid</a>).</div></li><li class="half_rhythm"><div>A ratio of complete protein to medical formula of 60%/40% to 70%/30% of total protein prescription is usually not assoc w/deficiency of valine or isoleucine [Authors, personal observation].</div></li><li class="half_rhythm"><div>Attn to protein:energy ratio is important; when available, accurate assessment of resting energy expenditure can guide dietary &#x00026; caloric prescriptions &#x00026; avoid overfeeding.&#x000a0;<sup>7</sup></div></li><li class="half_rhythm"><div>Plasma amino acids should be drawn ~4 hrs after food intake.</div></li><li class="half_rhythm"><div>Continue protein restriction &#x00026; dietary monitoring after liver transplantation to avoid extrahepatic disease complications.</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Addressing feeding difficulties, recurrent vomiting, growth failure</b>
</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Fundoplication, gastrostomy, or jejunostomy</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Adequate provision of dietary information &#x00026; education to parents, affected persons, &#x00026; caregivers</td></tr><tr><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Secondary carnitine deficiency</b>
</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Oral dosage of 50-100 mg/kg/day, up to ~300 mg/kg/day, of L-carnitine divided into 3-4 doses is common.</div></li><li class="half_rhythm"><div>Dose is adjusted on an individual basis to maintain plasma free carnitine concentration w/in normal age-appropriate reference range.</div></li></ul>
</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Lifelong carnitine supplementation is generally recommended.&#x000a0;<sup>8</sup></td></tr><tr><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Reduction in propionate production from gut flora</b>
</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Metronidazole at a dose of 10-15 mg/kg/day typically given 1 wk to 10 days every 1-3 mos</td><td headers="hd_h_mma.T.routine_daily_treatment_in_individ_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Rotating antibiotic regimens may be considered in some persons.</div></li><li class="half_rhythm"><div>Responsiveness to antibiotic should be determined by a &#x02193; in serum methylmalonic acid concentration compared to patient's baseline value, or a &#x02193; in whole-body output of methylmalonic acid on antibiotic therapy by a timed urine collection compared to patient's baseline value.</div></li><li class="half_rhythm"><div>Chronic cyclic antibiotic therapy is not innocuous; it introduces the risk of repopulation w/resistant flora &#x00026; has been assoc w/peripheral neuropathy.&#x000a0;<sup>9</sup></div></li></ul>
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.7.1"><p class="no_margin">Propiogenic amino acid precursors include isoleucine, valine, methionine and threonine</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.7.2"><p class="no_margin">These dietary guidelines <b>do not apply</b> for patients with <a href="/books/n/gene/cbl/?report=reader"><i>CblC</i> deficiency</a>, a separate disorder in the pathway [<a class="bibr" href="#mma.REF.manoli.2016a.396" rid="mma.REF.manoli.2016a.396">Manoli et al 2016a</a>, <a class="bibr" href="#mma.REF.manoli.2016b.386" rid="mma.REF.manoli.2016b.386">Manoli et al 2016b</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.7.3"><p class="no_margin">For example, Propimex<sup>&#x000ae;</sup>-1/2, XMTVI-1/2, or OA-1/2</p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.7.4"><p class="no_margin">An iatrogenic essential amino acid deficiency can be induced by the relatively high leucine intake through the MMA formulas that can negatively affect long-term growth and possibly other outcomes, especially if propiogenic amino-acid deficient formula is prescribed in excess of complete protein sources [<a class="bibr" href="#mma.REF.manoli.2016a.396" rid="mma.REF.manoli.2016a.396">Manoli et al 2016a</a>, <a class="bibr" href="#mma.REF.manoli.2016b.386" rid="mma.REF.manoli.2016b.386">Manoli et al 2016b</a>, <a class="bibr" href="#mma.REF.molema.2019.1162" rid="mma.REF.molema.2019.1162">Molema et al 2019</a>, <a class="bibr" href="#mma.REF.pinto.2020.147" rid="mma.REF.pinto.2020.147">Pinto et al 2020</a>, <a class="bibr" href="#mma.REF.molema.2021a.3622" rid="mma.REF.molema.2021a.3622">Molema et al 2021a</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.7.5"><p class="no_margin">For example, Pro-Phree<sup>&#x000ae;</sup> or Duocal<sup>&#x000ae;</sup></p></div></dd></dl><dl class="bkr_refwrap"><dt>6. </dt><dd><div id="mma.TF.7.6"><p class="no_margin">In patients with low protein tolerance, severe restriction of propiogenic amino acid precursors (isoleucine, valine, methionine, and threonine) can produce a nutritional deficiency state.</p></div></dd></dl><dl class="bkr_refwrap"><dt>7. </dt><dd><div id="mma.TF.7.7"><p class="no_margin"><a class="bibr" href="#mma.REF.hauser.2011.47" rid="mma.REF.hauser.2011.47">Hauser et al [2011]</a>, <a class="bibr" href="#mma.REF.evans.2017.163" rid="mma.REF.evans.2017.163">Evans et al [2017]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>8. </dt><dd><div id="mma.TF.7.8"><p class="no_margin">Carnitine may replace the free carnitine pool and enhance the conjugation and excretion of propionylcarnitine. The contribution of propionylcarnitine excretion to the total propionate load is, however, small. The relief of intracellular CoA accretion may be the mechanism by which carnitine supplementation benefits some individuals.</p></div></dd></dl><dl class="bkr_refwrap"><dt>9. </dt><dd><div id="mma.TF.7.9"><p class="no_margin">This could pose a serious infectious threat and could be especially dangerous to individuals with isolated methylmalonic acidemia, since most deaths are related to metabolic decompensation, often precipitated by infection [<a class="bibr" href="#mma.REF.diodato.2018.565" rid="mma.REF.diodato.2018.565">Diodato et al 2018</a>, <a class="bibr" href="#mma.REF.forny.2021.566" rid="mma.REF.forny.2021.566">Forny et al 2021</a>].</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTtreatmentofsecondarycomplicatio"><div id="mma.T.treatment_of_secondary_complicatio" class="table"><h3><span class="label">Table 8. </span></h3><div class="caption"><p>Treatment of Secondary Complications in Individuals with Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.treatment_of_secondary_complicatio/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.treatment_of_secondary_complicatio_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Manifestation</th><th id="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Treatment</th><th id="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Consideration/Other</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Developmental delay&#x000a0;/</b>
<br />
<b>Intellectual</b>
<br />
<b>disability</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Supportive developmental therapies (may incl PT, OT, speech &#x00026; cognitive therapies)</div></li><li class="half_rhythm"><div>Coordination of individualized educational plan in school</div></li></ul>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Specialists in physiatry, PT, &#x00026; OT &#x00026; developmental pediatrician can help address the complex challenges faced by patients &#x00026; families, maximize functionality, &#x00026; improve quality of life.&#x000a0;<sup>1</sup></td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Tubulointerstitial nephritis</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Standard therapy per nephrologist incl mgmt of chronic acidosis (bicitra or sodium bicarbonate), hypertension, anemia, hyperuricemia, &#x00026; renal osteodystrophy/osteopenia</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;"><ul><li class="half_rhythm"><div>See <a href="/books/NBK1231/table/mma.T.recommended_surveillance_for_indiv/?report=objectonly" target="object" rid-ob="figobmmaTrecommendedsurveillanceforindiv">Table 13</a> for recommended surveillance of renal function.</div></li><li class="half_rhythm"><div>Avoid nephrotoxic medications (see <a href="#mma.AgentsCircumstances_to_Avoid">Agents/Circumstances to Avoid</a>).</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>End-stage renal</b>
<br />
<b>disease</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Standard therapy, which may incl renal replacement therapy such as dialysis</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Renal transplantation should be considered ideally before the need for hemodialysis, as those w/MMA are at risk for exacerbation of complications (e.g., hospitalizations, optic nerve disease)</td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Anemia&#x000a0;/</b>
<br />
<b>Bone marrow</b>
<br />
<b>suppression&#x000a0;<sup>2</sup></b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Iron supplementation &#x00026; erythropoietin may be considered; per nephrologiat</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">This is a typical complication of chronic renal failure &#x00026; may resolve after renal transplantation.</td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Pancreatitis</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Standard therapy incl bowel rest, analgesia, institution of IVF hydration &#x00026; calories, &#x00026; careful enteral alimentation w/low-fat preparations</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Providing TPN w/intralipids can exacerbate pancreatitis.</td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Liver disease</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Liver transplantation may be considered.</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">See also <a href="#mma.Prevention_of_Primary_Manifestations">Prevention of Primary Manifestations</a>.</td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Optic nerve</b>
<br />
<b>atrophy</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">No specific treatment is available.</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Community vision services</td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Hearing loss</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Hearing aids may be helpful; per otolaryngologist.</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Community hearing services through early intervention or school district</td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Growth hormone</b>
<br />
<b>deficiency</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Growth hormone therapy</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Dose &#x00026; diet must be carefully adjusted.&#x000a0;<sup>3</sup></td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Movement</b>
<br />
<b>disorders&#x000a0;/</b>
<br />
<b>Dystonia</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Standard therapy per neurologist</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Antispasmodic medications (trihexyphenidil, baclofen pump) or deep brain stimulation have been used in persons w/severe basal ganglia strokes.</td></tr><tr><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Spasticity</b>
</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Orthopedics / physical medicine &#x00026; rehab / PT/OT incl stretching to help avoid contractures &#x00026; falls</td><td headers="hd_h_mma.T.treatment_of_secondary_complicatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Consider need for positioning &#x00026; mobility devices, disability parking placard.</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">IVF = intravenous fluids; OT = occupational therapy; PT = physical therapy; TPN = total parenteral nutrition</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.8.1"><p class="no_margin">
<a class="bibr" href="#mma.REF.ktena.2015b.847" rid="mma.REF.ktena.2015b.847">Ktena et al [2015b]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.8.2"><p class="no_margin"><a class="bibr" href="#mma.REF.inoue.1981.95" rid="mma.REF.inoue.1981.95">Inoue et al [1981]</a>, <a class="bibr" href="#mma.REF.guerramoreno.2003.17" rid="mma.REF.guerramoreno.2003.17">Guerra-Moreno et al [2003]</a>, <a class="bibr" href="#mma.REF.macfarland.2015.1840" rid="mma.REF.macfarland.2015.1840">MacFarland &#x00026; Hartung [2015]</a></p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.8.3"><p class="no_margin">Documented growth hormone deficiency is a rare cause of growth failure [<a class="bibr" href="#mma.REF.bain.1995.850" rid="mma.REF.bain.1995.850">Bain et al 1995</a>, <a class="bibr" href="#mma.REF.alowain.2004.239" rid="mma.REF.alowain.2004.239">Al-Owain et al 2004</a>]</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTemergencyoutpatienttreatmentin"><div id="mma.T.emergency_outpatient_treatment_in" class="table"><h3><span class="label">Table 9. </span></h3><div class="caption"><p>Emergency Outpatient Treatment in Individuals with Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.emergency_outpatient_treatment_in/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.emergency_outpatient_treatment_in_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Manifestation</th><th id="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Treatment</th><th id="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Consideration/Other</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Vomiting, mildly increased catabolism&#x000a0;<sup>1</sup></b>
</td><td headers="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Carbohydrate supplementation orally or via tube feed&#x000a0;<sup>2</sup></div></li><li class="half_rhythm"><div>Reduce natural protein intake&#x000a0;<sup>3</sup></div></li><li class="half_rhythm"><div>Increase carnitine supplementation&#x000a0;<sup>4</sup></div></li></ul>
</td><td headers="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Trial of outpatient treatment at home for up to 12 hours</div></li><li class="half_rhythm"><div>Initiation of sick-day dietary plan</div></li><li class="half_rhythm"><div>Reassessment (~every 2 hours) for clinical changes&#x000a0;<sup>5</sup></div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Fever</b>
</td><td headers="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Administration of antipyretics (acetaminophen) if temperature rises &#x0003e;38.5&#x000b0;C</td><td headers="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Limit ibuprofen/NSAID use for renoprotection.</div></li><li class="half_rhythm"><div>Avoid excessive acetaminophen use for risk of liver toxicity.</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Occasional vomiting</b>
</td><td headers="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Antiemetics&#x000a0;<sup>6</sup></td><td headers="hd_h_mma.T.emergency_outpatient_treatment_in_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Avoid repeat doses of ondansetron as it can prolong the QTc interval on EKG.</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.9.1"><p class="no_margin">Fever &#x0003c;38.5&#x000b0;C (101&#x000b0;F); enteral or gastrostomy tube feeding is tolerated without recurrent vomiting or diarrhea; absence of neurologic symptoms (altered consciousness, irritability)</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.9.2"><p class="no_margin">Stringent guidelines to quantify carbohydrate/caloric requirements are available to guide nutritional arrangements in the outpatient setting, with some centers recommending frequent provision of carbohydrate-rich, protein-free beverages every two hours, with frequent reassessment.</p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.9.3"><p class="no_margin">Some centers advocate additional steps such as reducing natural protein intake to zero or to 50% of the normal prescribed regimen for short periods (&#x0003c;24 hours) in the outpatient setting during intercurrent illness. Protein restriction more than 24-48 hours could lead to catabolism and should be avoided.</p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.9.4"><p class="no_margin">Temporarily increasing L-carnitine doses (e.g., to 200 mg/kg/day in infants) may be considered.</p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.9.5"><p class="no_margin">Alterations in mentation/alertness, fever, and enteral feeding tolerance, with any new or evolving clinical features should be discussed with the designated center of expertise for inherited metabolic diseases.</p></div></dd></dl><dl class="bkr_refwrap"><dt>6. </dt><dd><div id="mma.TF.9.6"><p class="no_margin">Some classes of antiemetics can be used safely on an occasional basis to temporarily improve enteral tolerance of food and beverages at home or during transfer to hospital.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTacuteinpatienttreatmentinindiv"><div id="mma.T.acute_inpatient_treatment_in_indiv" class="table"><h3><span class="label">Table 10. </span></h3><div class="caption"><p>Acute Inpatient Treatment in Individuals with Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.acute_inpatient_treatment_in_indiv/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.acute_inpatient_treatment_in_indiv_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Manifestation</th><th id="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Treatment&#x000a0;<sup>1</sup></th><th id="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Consideration/Other</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>&#x02191; catabolism (due to fever, perioperative/peri-interventional fasting periods, repeated vomiting/diarrhea)</b>
</td><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Administration of high-energy IV fluids (D10/0.45 or 0.9 saline) at 1.5x maintenance rate to achieve age-appropriate glucose infusion rate (GIR), &#x00026;, if needed insulin&#x000a0;<sup>2,&#x000a0;3</sup></div></li><li class="half_rhythm"><div>Lipid emulsion is often necessary to provide sufficient calories at a dose of 1- 2 g/kg/day.</div></li><li class="half_rhythm"><div>Address electrolytes &#x00026; pH imbalances w/bicarbonate bolus, expect need for potassium replacement, as needed.&#x000a0;<sup>4</sup></div></li><li class="half_rhythm"><div>&#x02193; or omit total protein for &#x02264;24-48 hours.&#x000a0;<sup>5</sup></div></li><li class="half_rhythm"><div>L-carnitine IV supplementation at 50-100 mg/kg/day either BID or QID</div></li></ul>
</td><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Blood glucose, electrolyte concentrations (particularly sodium, potassium &#x00026; bicarbonate concentrations), blood gases (w/monitoring of the anion gap), complete blood count &#x00026; differential, serum lactate, urine ketones &#x00026; urine output should be followed serially.</div></li><li class="half_rhythm"><div>Central or peripheral TPN, which typically contains glucose &#x00026; amino acids, &#x00026; in some instances lipids, may be required. Thiamine may be added, esp in the presence of lactic acidosis.</div></li><li class="half_rhythm"><div>Lipid infusions must be used w/caution due to risk of pancreatitis.</div></li><li class="half_rhythm"><div>Dietary protein should be reintroduced enterally as soon as is feasible given the clinical scenario &#x00026; may need to be further augmented w/TPN.</div></li><li class="half_rhythm"><div>Nasograstric or orogastric feeding should be strongly considered so that enteral feedings can be reintroduced w/o delay.</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Hyperammonemia</b>
</td><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>N-carbamylglutamate (NCG, Carbaglu<sup>&#x000ae;</sup>)&#x000a0;<sup>4,&#x000a0;6</sup></div></li><li class="half_rhythm"><div>Administer IV sodium benzoate&#x000a0;<sup>4,&#x000a0;7</sup>; if hyperammonemia persists consider sodium phenylbutyrate/acetate.</div></li><li class="half_rhythm"><div>Hemodialysis or hemofiltration in consultation w/nephrologist may be required in the event of treatment failure (uncontrollable acidosis &#x00026;/or hyperammonemia).</div></li></ul>
</td><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>A STAT plasma ammonia level should be obtained in the ED or on admission.</div></li><li class="half_rhythm"><div>NCG activates the first step in the urea cycle (CPS1 enzyme) &#x00026; is effective in lowering ammonia concentration during acute crises in patients w/MMA. Chronic or periodic use has been attempted in cases w/frequent decompensations, but has not obtained regulatory approval.&#x000a0;<sup>6</sup></div></li><li class="half_rhythm"><div>Use of phenylacetate may accentuate low glutamine levels by generating phenylacetylglutamine &#x00026; deplete 2-ketoglutarate in the TCA cycle.</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>New or evolving neurologic symptoms (&#x02193; consciousness, seizures, dystonic/ choreoathetotic movements of face/extremities, changes in visual acuity)</b>
</td><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Initiate the treatment listed above for &#x02191; catabolism.</div></li><li class="half_rhythm"><div>Neurologic consultation</div></li><li class="half_rhythm"><div>Brain MRI</div></li></ul>
</td><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Symptoms of mvmt disorder can evolve gradually &#x00026; periodic neurologic exam during crises is important for early initiation of PT to preserve function.</td></tr><tr><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Bone marrow failure&#x000a0;<sup>8</sup></b>
</td><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Granulocyte-colony stimulating factor may be considered.</td><td headers="hd_h_mma.T.acute_inpatient_treatment_in_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">Supportive care of the metabolic disease typically results in resolution of this finding.</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">BID = twice a day; ED = emergency department; PT = physical therapy; QID = four times a day; TPN = total parenteral nutrition</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.10.1"><p class="no_margin">Inpatient emergency treatment should: <br />(1) take place at the closest medical facility, <br />(2) be started without delay, and <br />(3) be supervised by physicians and specialist dieticians at the responsible metabolic center, who should be contacted without delay.</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.10.2"><p class="no_margin">Intravenous glucose solutions should preferably consist of D<sub>10</sub> or D<sub>12.5</sub> (10 - 12.5% dextrose).</p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.10.3"><p class="no_margin">Use of insulin if hyperglycemia emerges; intravenous insulin given at a starting dose of 0.01-0.02 IU/kg/hour in the event of persistent hyperglycemia (&#x0003e;150-180 mg/dL in plasma, or glucosuria)</p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.10.4"><p class="no_margin">Consult published guidelines, <a class="bibr" href="#mma.REF.baumgartner.2014.130" rid="mma.REF.baumgartner.2014.130">Baumgartner et al [2014]</a>, <a class="bibr" href="#mma.REF.fraser.2016.682" rid="mma.REF.fraser.2016.682">Fraser &#x00026; Venditti [2016]</a>, and <a class="bibr" href="#mma.REF.forny.2021.566" rid="mma.REF.forny.2021.566">Forny et al [2021]</a>. Emergency laboratory studies can include amylase/lipase, plasma amino acid levels (to guide TPN prescription), plasma free and total carnitine levels (to guide carnitine supplementation), and serum MMA level.</p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.10.5"><p class="no_margin">Total protein can be gradually reintroduced depending on the patient's acid-base balance and remaining laboratory values, including ammonia, lactic acid, and plasma amino acids, among others.</p></div></dd></dl><dl class="bkr_refwrap"><dt>6. </dt><dd><div id="mma.TF.10.6"><p class="no_margin">The dose of N-carbamylglutamate (NCG) is 100 mg/kg bolus, followed by 25-62 mg/kg every 6 hours PO (orally). NCG is an N-acetylglutamate analog that allosterically activates CPS1 (carbamyl phosphate synthetase 1), the first step of the urea cycle [<a class="bibr" href="#mma.REF.tuchman.2008.213" rid="mma.REF.tuchman.2008.213">Tuchman et al 2008</a>, <a class="bibr" href="#mma.REF.ah_mew.2010.e208" rid="mma.REF.ah_mew.2010.e208">Ah Mew et al 2010</a>, <a class="bibr" href="#mma.REF.valayannopoulos.2016.32" rid="mma.REF.valayannopoulos.2016.32">Valayannopoulos et al 2016</a>, <a class="bibr" href="#mma.REF.alfadhel.2021.422" rid="mma.REF.alfadhel.2021.422">Alfadhel et al 2021</a>, <a class="bibr" href="#mma.REF.kiykim.2021.100715" rid="mma.REF.kiykim.2021.100715">Kiykim et al 2021</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>7. </dt><dd><div id="mma.TF.10.7"><p class="no_margin">The dose of sodium benzoate is 250 mg/kg as a bolus given over 90-120 min, followed by 250 mg/kg/day for maintenance, administered in 10% dextrose IV (intravenously). The same dose regimen is used for sodium phenylbutyrate (PBA). The maximum dose of sodium benzoate or sodium PBA is 5.5 g/m<sup>2</sup> or 12 g/d.</p></div></dd></dl><dl class="bkr_refwrap"><dt>8. </dt><dd><div id="mma.TF.10.8"><p class="no_margin">May include both bone marrow hypoplasia and/or dysplasia</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTpreventionofprimarymanifestatio"><div id="mma.T.prevention_of_primary_manifestatio" class="table"><h3><span class="label">Table 11. </span></h3><div class="caption"><p>Prevention of Primary Manifestations in Individuals with Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.prevention_of_primary_manifestatio/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.prevention_of_primary_manifestatio_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.prevention_of_primary_manifestatio_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Principle</th><th id="hd_h_mma.T.prevention_of_primary_manifestatio_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Prevention</th><th id="hd_h_mma.T.prevention_of_primary_manifestatio_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Considerations/Other</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.prevention_of_primary_manifestatio_1_1_1_1" rowspan="2" scope="row" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Protection against metabolic instability&#x000a0;<sup>1</sup></b>
</td><td headers="hd_h_mma.T.prevention_of_primary_manifestatio_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Liver transplantation&#x000a0;<sup>2</sup></td><td headers="hd_h_mma.T.prevention_of_primary_manifestatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>The underlying biochemical parameters &#x00026; frequency of metabolic decompensation improve significantly in persons undergoing liver transplantation despite persistent metabolic abnormalities.</div></li><li class="half_rhythm"><div>Liver transplantation is not curative. Patients remain at risk for long-term complications incl renal disease, basal ganglia injury &#x00026; neurologic complications, &#x00026; optic nerve atrophy.&#x000a0;<sup>3</sup> High CSF concentrations of methylmalonic acid have been reported, especially when protein intake is liberalized.</div></li><li class="half_rhythm"><div>Neurotoxicity due to calcineurin inhibitors has been described in transplanted patients.&#x000a0;<sup>4</sup></div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.prevention_of_primary_manifestatio_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">Kidney transplantation&#x000a0;<sup>5</sup></td><td headers="hd_h_mma.T.prevention_of_primary_manifestatio_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>More mildly affected persons w/<i>mut-</i> or <i>cblA</i> MMA subtypes who have primarily renal failure may undergo isolated renal transplantation.</div></li><li class="half_rhythm"><div>Elective kidney transplantation, before the onset of renal disease, cannot stabilize persons w/<i>mut<sup>0</sup></i> MMA and is not recommended. Double liver kidney transplant offers a higher amount of enzyme activity and allows for better control of kidney rejection.&#x000a0;<sup>6</sup></div></li></ul>
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.11.1"><p class="no_margin">Most of the metabolic conversion of propionate occurs in the liver, so liver transplantation has the potential to provide enough enzymatic activity to avert severe metabolic crises for the most significantly affected individuals (MMA <i>mut<sup>0</sup></i> subtype) and is performed electively in younger people to avoid recurrent hospitalizations.</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.11.2"><p class="no_margin">More than 100 individuals with MMA have undergone living-donor [<a class="bibr" href="#mma.REF.kasahara.2006.943" rid="mma.REF.kasahara.2006.943">Kasahara et al 2006</a>, <a class="bibr" href="#mma.REF.morioka.2007.2782" rid="mma.REF.morioka.2007.2782">Morioka et al 2007</a>, <a class="bibr" href="#mma.REF.kasahara.2014.6" rid="mma.REF.kasahara.2014.6">Kasahara et al 2014</a>, <a class="bibr" href="#mma.REF.sakamoto.2016.1081" rid="mma.REF.sakamoto.2016.1081">Sakamoto et al 2016</a>, <a class="bibr" href="#mma.REF.jang.2021.288" rid="mma.REF.jang.2021.288">Jang et al 2021</a>] or cadaveric, orthotopic, or partial liver transplantation, or combined liver-kidney transplantation [<a class="bibr" href="#mma.REF.van_t_hoff.1998.1043" rid="mma.REF.van_t_hoff.1998.1043">van 't Hoff et al 1998</a>, <a class="bibr" href="#mma.REF.vant_hoff.1999.s70" rid="mma.REF.vant_hoff.1999.s70">van't Hoff et al 1999</a>, <a class="bibr" href="#mma.REF.kayler.2002.295" rid="mma.REF.kayler.2002.295">Kayler et al 2002</a>, <a class="bibr" href="#mma.REF.nyhan.2002.377" rid="mma.REF.nyhan.2002.377">Nyhan et al 2002</a>, <a class="bibr" href="#mma.REF.hsui.2003.171" rid="mma.REF.hsui.2003.171">Hsui et al 2003</a>, <a class="bibr" href="#mma.REF.mcguire.2011.e142" rid="mma.REF.mcguire.2011.e142">McGuire et al 2011</a>, <a class="bibr" href="#mma.REF.niemi.2015.1455" rid="mma.REF.niemi.2015.1455">Niemi et al 2015</a>, <a class="bibr" href="#mma.REF.sloan.2015.1346" rid="mma.REF.sloan.2015.1346">Sloan et al 2015</a>, <a class="bibr" href="#mma.REF.spada.2015.1173" rid="mma.REF.spada.2015.1173">Spada et al 2015</a>, <a class="bibr" href="#mma.REF.critelli.2018.1260" rid="mma.REF.critelli.2018.1260">Critelli et al 2018</a>, <a class="bibr" href="#mma.REF.jiang.2019" rid="mma.REF.jiang.2019">Jiang &#x00026; Sun 2019</a>, <a class="bibr" href="#mma.REF.chu.2019.73" rid="mma.REF.chu.2019.73">Chu et al 2019</a>, <a class="bibr" href="#mma.REF.pillai.2019.431" rid="mma.REF.pillai.2019.431">Pillai et al 2019</a>, <a class="bibr" href="#mma.REF.brassier.2020.234" rid="mma.REF.brassier.2020.234">Brassier et al 2020</a>, <a class="bibr" href="#mma.REF.yap.2020.1866" rid="mma.REF.yap.2020.1866">Yap et al 2020</a>, <a class="bibr" href="#mma.REF.molema.2021b.593" rid="mma.REF.molema.2021b.593">Molema et al 2021b</a>]. Living-related donor transplants from heterozygote (carrier) parents may be associated with higher incidence of steatosis in the graft liver [<a class="bibr" href="#mma.REF.irie.2020.635" rid="mma.REF.irie.2020.635">Irie et al 2020</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.11.3"><p class="no_margin">Liver transplantation is associated with complications related to surgery (hepatic artery thrombosis, bile duct stenosis, perforation), graft rejection, and lifelong immunosuppressive therapy [<a class="bibr" href="#mma.REF.chakrapani.2002.261" rid="mma.REF.chakrapani.2002.261">Chakrapani et al 2002</a>, <a class="bibr" href="#mma.REF.nyhan.2002.377" rid="mma.REF.nyhan.2002.377">Nyhan et al 2002</a>, <a class="bibr" href="#mma.REF.kaplan.2006.322" rid="mma.REF.kaplan.2006.322">Kaplan et al 2006</a>, <a class="bibr" href="#mma.REF.cosson.2008.107" rid="mma.REF.cosson.2008.107">Cosson et al 2008</a>, <a class="bibr" href="#mma.REF.mcguire.2011.e142" rid="mma.REF.mcguire.2011.e142">McGuire et al 2011</a>, <a class="bibr" href="#mma.REF.vernon.2014.899" rid="mma.REF.vernon.2014.899">Vernon et al 2014</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.11.4"><p class="no_margin">Neurotoxicity from calcineurin inhibitors, including posterior reversible encephalopathy syndrome (PRES), has been reported [<a class="bibr" href="#mma.REF.molema.2021b.593" rid="mma.REF.molema.2021b.593">Molema et al 2021b</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.11.5"><p class="no_margin">A smaller number (~20) of individuals with MMA (mostly with milder <i>mut-</i> or <i>cblA</i> subtypes) have received isolated renal allografts [<a class="bibr" href="#mma.REF.van_calcar.1998.729" rid="mma.REF.van_calcar.1998.729">Van Calcar et al 1998</a>, <a class="bibr" href="#mma.REF.coman.2006.270" rid="mma.REF.coman.2006.270">Coman et al 2006</a>, <a class="bibr" href="#mma.REF.cosson.2008.107" rid="mma.REF.cosson.2008.107">Cosson et al 2008</a>, <a class="bibr" href="#mma.REF.clothier.2011.695" rid="mma.REF.clothier.2011.695">Clothier et al 2011</a>, <a class="bibr" href="#mma.REF.lubrano.2013.2067" rid="mma.REF.lubrano.2013.2067">Lubrano et al 2013</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>6. </dt><dd><div id="mma.TF.11.6"><p class="no_margin"><a class="bibr" href="#mma.REF.brassier.2013.106" rid="mma.REF.brassier.2013.106">Brassier et al [2013]</a>, <a class="bibr" href="#mma.REF.brassier.2020.234" rid="mma.REF.brassier.2020.234">Brassier et al [2020]</a>. One patient died after developing hepatoblastoma, neurologic deterioration accompanied by CSF lactic acidosis, and multiorgan failure; a second patient developed progressive neurologic symptoms; and two others developed metabolic decompensations post-transplant.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTpreventionofsecondarymanifestat"><div id="mma.T.prevention_of_secondary_manifestat" class="table"><h3><span class="label">Table 12. </span></h3><div class="caption"><p>Prevention of Secondary Manifestations in Individuals with Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.prevention_of_secondary_manifestat/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.prevention_of_secondary_manifestat_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.prevention_of_secondary_manifestat_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Manifestation/<br />Situation</th><th id="hd_h_mma.T.prevention_of_secondary_manifestat_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Prevention</th><th id="hd_h_mma.T.prevention_of_secondary_manifestat_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Considerations/Other</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.prevention_of_secondary_manifestat_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Acute</b>
<br />
<b>encephalopathic</b>
<br />
<b>crisis</b>
</td><td headers="hd_h_mma.T.prevention_of_secondary_manifestat_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Intense &#x00026; ongoing education of affected persons &#x00026; caregivers re natural history, maintenance &#x00026; emergency treatment, prognosis, &#x00026; risks of acute encephalopathic crises</div></li><li class="half_rhythm"><div>Treatment protocols &#x00026; provision of emergency letters or cards to incl guidance for care in the event of illness while on holiday/vacation</div></li><li class="half_rhythm"><div>MediAlert<sup>&#x000ae;</sup> bracelets/pendants, or car seat stickers</div></li><li class="half_rhythm"><div>Adequate supplies of specialized dietary products (protein-free or propiogenic amino acid deficient formulas); medication required for maintenance &#x00026; emergency treatment (vitamin B<sub>12</sub>, carnitine, antipyretics, base replacement, in some cases Carbaglu<sup>&#x000ae;</sup>,&#x00026; other medications, as well as gastrostomy or tube feeding supplies) should always be maintained at home.</div></li></ul>
</td><td headers="hd_h_mma.T.prevention_of_secondary_manifestat_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Written protocols for maintenance &#x00026; emergency treatment should be provided to parents &#x00026; primary care providers/pediatricians, &#x00026; to teachers &#x00026; school staff.&#x000a0;<sup>1,&#x000a0;2</sup></div></li><li class="half_rhythm"><div>Emergency letters/cards should be provided summarizing key information &#x00026; principles of emergency treatment for MMA &#x00026; containing contact info for the primary treating metabolic center.</div></li><li class="half_rhythm"><div>For any planned travel or vacations, consider contacting a center of expertise near the destination prior to travel dates.</div></li></ul>
</td></tr><tr><td headers="hd_h_mma.T.prevention_of_secondary_manifestat_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Surgery or</b>
<br />
<b>procedure (incl</b>
<br />
<b>dental)&#x000a0;<sup>3</sup></b>
</td><td headers="hd_h_mma.T.prevention_of_secondary_manifestat_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Notify designated metabolic center in advance of the procedure to discuss perioperative management w/surgeons &#x00026; anesthesiologists.&#x000a0;<sup>4</sup></div></li><li class="half_rhythm"><div>Emergency surgeries/procedures require planning input from physicians w/expertise in inherited metabolic diseases (w/respect to perioperative fluid &#x00026; nutritional management).</div></li></ul>
</td><td headers="hd_h_mma.T.prevention_of_secondary_manifestat_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Consider placing a "flag" in the affected person's medical record so that all care providers are aware of the diagnosis &#x00026; the need to solicit opinions &#x00026; guidance from designated metabolic specialists in the setting of certain procedures.</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.12.1"><p class="no_margin">Essential information including written treatment protocols should be in place in anticipation of possible future need for inpatient emergency treatment.</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.12.2"><p class="no_margin">Parents or local hospitals should immediately inform the designated metabolic center if: (1) temperature rises &#x0003e;38.5&#x000b0;C; (2) vomiting/diarrhea or other symptoms of intercurrent illness develop; or (3) new neurologic symptoms occur.</p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.12.3"><p class="no_margin">Special considerations regarding choices of anesthetic agents in this patient population may apply [<a class="bibr" href="#mma.REF.ktena.2015a.2075" rid="mma.REF.ktena.2015a.2075">Ktena et al 2015a</a>, <a class="bibr" href="#mma.REF.ruzkova.2015.807" rid="mma.REF.ruzkova.2015.807">Ruzkova et al 2015</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.12.4"><p class="no_margin">Perioperative/perianesthetic management precautions may include visitations at specialist anesthetic clinics for affected persons deemed to be at high risk for perioperative complications.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTrecommendedsurveillanceforindiv"><div id="mma.T.recommended_surveillance_for_indiv" class="table"><h3><span class="label">Table 13. </span></h3><div class="caption"><p>Recommended Surveillance for Individuals with Isolated Methylmalonic Acidemia</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.recommended_surveillance_for_indiv/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.recommended_surveillance_for_indiv_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Manifestation</th><th id="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Evaluation</th><th id="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Frequency/Comment</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Poor growth</b>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Measurement of growth &#x00026; head circumference</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">At each visit</td></tr><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Metabolic</b>
<br />
<b>abnormalities</b>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Screening lab testing, incl:
<ul><li class="half_rhythm"><div>Plasma amino acids&#x000a0;<sup>1</sup></div></li><li class="half_rhythm"><div>Plasma &#x00026; urine MMA levels</div></li><li class="half_rhythm"><div>Serum acylcarnitine profile &#x00026; free &#x00026; total carnitine levels</div></li><li class="half_rhythm"><div>Blood chemistries&#x000a0;<sup>2</sup></div></li><li class="half_rhythm"><div>CBC</div></li></ul>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">At least every 6-12 mos; more frequently in infants or in those who are unstable or require frequent changes in mgmt</td></tr><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Renal</b>
<br />
<b>insufficiency&#x000a0;<sup>3</sup></b>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Measurement of creatinine, cystatin-C, &#x00026; (if available) GFR (e.g., iohexol plasma decay)&#x000a0;<sup>4,&#x000a0;5,&#x000a0;6</sup></div></li><li class="half_rhythm"><div>Renal imaging</div></li><li class="half_rhythm"><div>Bone mineral density (DXA)&#x000a0;<sup>7</sup></div></li><li class="half_rhythm"><div>Early referral to nephrologist is critical for consideration of renoprotective measures.</div></li><li class="half_rhythm"><div>Monitoring of renal comorbidities by multidisciplinary team</div></li></ul>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">At least annually, or as clinically indicated</td></tr><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Liver disease</b>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;"><ul><li class="half_rhythm"><div>Liver ultrasound</div></li><li class="half_rhythm"><div>Measurement of liver transaminases &#x00026; alpha-fetoprotein&#x000a0;<sup>8</sup></div></li></ul>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Annually, or as clinically indicated <sup>9</sup></td></tr><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_1" rowspan="3" scope="row" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Delayed</b>
<br />
<b>acquisition of developmental</b>
<br />
<b>milestones</b>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Monitor developmental milestones.&#x000a0;<sup>10</sup></td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">At each visit</td></tr><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">Neuropsychological testing using age-appropriate standardized assessment batteries, development of an individualized education plan.</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">As clinically indicated</td></tr><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">Standardized quality-of-life assessment tools for affected persons &#x00026; parents/caregivers</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">As needed</td></tr><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Movement</b>
<br />
<b>disorder</b>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Assessment for clinical symptoms &#x00026; signs of mvmt disorders, severity, &#x00026; responses to treatment, PT, &#x00026; pharmacologic interventions</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">At each visit</td></tr><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Optic nerve</b>
<br />
<b>atrophy</b>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Ophthalmology eval&#x000a0;<sup>11</sup></td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">At least annually, or as clinically indicated</td></tr><tr><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<b>Hearing loss&#x000a0;<sup>12</sup></b>
</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Audiology eval</td><td headers="hd_h_mma.T.recommended_surveillance_for_indiv_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">At least annually in childhood &#x00026; adolescence, or as clinically indicated</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">CBC = complete blood count; GFR = glomerular filtration rate; PT = physical therapy</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.13.1"><p class="no_margin">Frequent monitoring of plasma amino acids is necessary to avoid deficiencies of essential amino acids (particularly isoleucine, valine, and methionine) as a result of excessive protein restriction and the development of acrodermatitis-enteropathica-like cutaneous lesions in methylmalonic aciduria, as in other organic acidurias (<a href="/books/n/gene/glutaric-a1/?report=reader">glutaric aciduria-I</a>) and amino acid disorders (<a href="/books/n/gene/msud/?report=reader">maple syrup urine disease</a>) [<a class="bibr" href="#mma.REF.de_raeve.1994.416" rid="mma.REF.de_raeve.1994.416">De Raeve et al 1994</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.13.2"><p class="no_margin">Including Na+, K+, CI&#x02013;, glucose, urea, creatinine, bicarbonate, AST, ALT, alkaline phosphatase, bilirubin (T/U), triglycerides, and cholesterol</p></div></dd></dl><dl class="bkr_refwrap"><dt>3. </dt><dd><div id="mma.TF.13.3"><p class="no_margin">Comorbidities of renal disease may include anemia, acidosis, hyperuricemia, secondary hyperparathyroidism, osteopenia/osteoporosis, hypertension, and short stature. In addition to cystatin-C, biochemical markers of bone health (Ca, P, alkaline phosphatase, parathyroid hormone, 1.25 dihydroxy-vit D (D3), and uric acid should be assessed periodically.</p></div></dd></dl><dl class="bkr_refwrap"><dt>4. </dt><dd><div id="mma.TF.13.4"><p class="no_margin">Combined equations based on creatinine and cystatin-C and measured GFR by iohexol clearance or other methods are expected to reflect more accurately the kidney function in people with MMA [<a class="bibr" href="#mma.REF.dao.2021.220" rid="mma.REF.dao.2021.220">Dao et al 2021</a>]. Age-appropriate formulas to estimate GFR are available for both <a href="https://www.kidney.org/professionals/kdoqi/gfr_calculatorped" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">pediatric patients</a> and <a href="https://www.kidney.org/professionals/kdoqi/gfr_calculator" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">adult patients</a>.</p></div></dd></dl><dl class="bkr_refwrap"><dt>5. </dt><dd><div id="mma.TF.13.5"><p class="no_margin">To allow for early referral to nephrologist and appropriate timing of renal transplantation when needed [<a class="bibr" href="#mma.REF.vant_hoff.1999.s70" rid="mma.REF.vant_hoff.1999.s70">van't Hoff et al 1999</a>, <a class="bibr" href="#mma.REF.kruszka.2013.990" rid="mma.REF.kruszka.2013.990">Kruszka et al 2013</a>].</p></div></dd></dl><dl class="bkr_refwrap"><dt>6. </dt><dd><div id="mma.TF.13.6"><p class="no_margin">Nephrotoxic medication should be avoided (see <a href="#mma.AgentsCircumstances_to_Avoid">Agents/Circumstances to Avoid</a>).</p></div></dd></dl><dl class="bkr_refwrap"><dt>7. </dt><dd><div id="mma.TF.13.7"><p class="no_margin">DXA scan is typically done in older individuals, starting in adolescence, unless there is evidence for renal disease earlier.</p></div></dd></dl><dl class="bkr_refwrap"><dt>8. </dt><dd><div id="mma.TF.13.8"><p class="no_margin">
<a class="bibr" href="#mma.REF.imbard.2018.433" rid="mma.REF.imbard.2018.433">Imbard et al [2018]</a>
</p></div></dd></dl><dl class="bkr_refwrap"><dt>9. </dt><dd><div id="mma.TF.13.9"><p class="no_margin">Particularly in individuals with severe MMA subtypes</p></div></dd></dl><dl class="bkr_refwrap"><dt>10. </dt><dd><div id="mma.TF.13.10"><p class="no_margin">Enrollment in early intervention programs for physical, occupational, and speech therapy is recommended.</p></div></dd></dl><dl class="bkr_refwrap"><dt>11. </dt><dd><div id="mma.TF.13.11"><p class="no_margin">To assess for optic nerve thinning/pallor</p></div></dd></dl><dl class="bkr_refwrap"><dt>12. </dt><dd><div id="mma.TF.13.12"><p class="no_margin">Hearing loss can occur in isolated MMA and may be a result of episodes of metabolic decompensation.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmamolgenTA"><div id="mma.molgen.TA" class="table"><h3><span class="label">Table A.</span></h3><div class="caption"><p>Isolated Methylmalonic Acidemia: Genes and Databases</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.molgen.TA/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.molgen.TA_lrgtbl__"><table class="no_bottom_margin"><tbody><tr><th id="hd_b_mma.molgen.TA_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">Gene</th><th id="hd_b_mma.molgen.TA_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">Chromosome Locus</th><th id="hd_b_mma.molgen.TA_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">Protein</th><th id="hd_b_mma.molgen.TA_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">Locus-Specific Databases</th><th id="hd_b_mma.molgen.TA_1_1_1_5" rowspan="1" colspan="1" style="vertical-align:top;">HGMD</th><th id="hd_b_mma.molgen.TA_1_1_1_6" rowspan="1" colspan="1" style="vertical-align:top;">ClinVar</th></tr><tr><td headers="hd_b_mma.molgen.TA_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="/gene/84693" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=gene">
<i>MCEE</i>
</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&#x00026;acc=84693" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">2p13<wbr style="display:inline-block"></wbr>&#8203;.3</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.uniprot.org/uniprot/Q96PE7" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Methylmalonyl-CoA epimerase, mitochondrial</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://lovd.nl/MCEE" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ZJU-CGGM Database (MCEE)</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_5" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MCEE" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MCEE</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_6" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/clinvar/?term=MCEE[gene]" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MCEE</a>
</td></tr><tr><td headers="hd_b_mma.molgen.TA_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="/gene/166785" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=gene">
<i>MMAA</i>
</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&#x00026;acc=166785" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">4q31<wbr style="display:inline-block"></wbr>&#8203;.21</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.uniprot.org/uniprot/Q8IVH4" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Methylmalonic aciduria type A protein, mitochondrial</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://lovd.nl/MMAA" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ZJU-CGGM Database (MMAA)</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_5" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MMAA" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMAA</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_6" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/clinvar/?term=MMAA[gene]" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMAA</a>
</td></tr><tr><td headers="hd_b_mma.molgen.TA_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="/gene/326625" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=gene">
<i>MMAB</i>
</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&#x00026;acc=326625" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">12q24<wbr style="display:inline-block"></wbr>&#8203;.11</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.uniprot.org/uniprot/Q96EY8" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Corrinoid adenosyltransferase MMAB</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://lovd.nl/MMAB" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ZJU-CGGM Database (MMAB)</a>
<br />
<a href="https://databases.lovd.nl/shared/genes/MMAB" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMAB @ LOVD</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_5" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MMAB" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMAB</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_6" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/clinvar/?term=MMAB[gene]" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMAB</a>
</td></tr><tr><td headers="hd_b_mma.molgen.TA_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="/gene/27249" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=gene">
<i>MMADHC</i>
</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&#x00026;acc=27249" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">2q23<wbr style="display:inline-block"></wbr>&#8203;.2</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.uniprot.org/uniprot/Q9H3L0" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Cobalamin trafficking protein CblD</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://lovd.nl/MMADHC" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ZJU-CGGM Database (MMADHC)</a>
<br />
<a href="https://databases.lovd.nl/shared/genes/MMADHC" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMADHC @ LOVD</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_5" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MMADHC" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMADHC</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_6" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/clinvar/?term=MMADHC[gene]" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMADHC</a>
</td></tr><tr><td headers="hd_b_mma.molgen.TA_1_1_1_1" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="/gene/4594" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=link&amp;targettype=gene">
<i>MMUT</i>
</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_2" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&#x00026;acc=4594" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">6p12<wbr style="display:inline-block"></wbr>&#8203;.3</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_3" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.uniprot.org/uniprot/P22033" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">Methylmalonyl-CoA mutase, mitochondrial</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_4" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://lovd.nl/MUT" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">ZJU-CGGM Database (MUT)</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_5" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MMUT" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMUT</a>
</td><td headers="hd_b_mma.molgen.TA_1_1_1_6" rowspan="1" colspan="1" style="vertical-align:top;">
<a href="https://www.ncbi.nlm.nih.gov/clinvar/?term=MMUT[gene]" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">MMUT</a>
</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div id="mma.TFA.1"><p class="no_margin">Data are compiled from the following standard references: gene from
<a href="http://www.genenames.org/index.html" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">HGNC</a>;
chromosome locus from
<a href="http://www.omim.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">OMIM</a>;
protein from <a href="http://www.uniprot.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">UniProt</a>.
For a description of databases (Locus Specific, HGMD, ClinVar) to which links are provided, click
<a href="/books/n/gene/app1/?report=reader">here</a>.</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmamolgenTB"><div id="mma.molgen.TB" class="table"><h3><span class="label">Table B.</span></h3><div class="caption"><p>OMIM Entries for Isolated Methylmalonic Acidemia (<a href="/omim/251000,251100,251110,251120,607481,607568,608419,609058,611935,620953" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">View All in OMIM</a>) </p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.molgen.TB/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.molgen.TB_lrgtbl__"><table><tbody><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/251000" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">251000</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METHYLMALONIC ACIDURIA DUE TO METHYLMALONYL-CoA MUTASE DEFICIENCY; MAMM</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/251100" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">251100</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METHYLMALONIC ACIDURIA, cblA TYPE; MACA</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/251110" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">251110</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METHYLMALONIC ACIDURIA, cblB TYPE; MACB</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/251120" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">251120</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METHYLMALONYL-CoA EPIMERASE DEFICIENCY</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/607481" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">607481</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METABOLISM OF COBALAMIN ASSOCIATED A; MMAA</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/607568" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">607568</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METABOLISM OF COBALAMIN ASSOCIATED B; MMAB</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/608419" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">608419</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METHYLMALONYL-CoA EPIMERASE; MCEE</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/609058" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">609058</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METHYLMALONYL-CoA MUTASE; MMUT</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/611935" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">611935</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METABOLISM OF COBALAMIN ASSOCIATED D; MMADHC</td></tr><tr><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">
<a href="/omim/620953" ref="pagearea=body&amp;targetsite=entrez&amp;targetcat=term&amp;targettype=omim">620953</a></td><td rowspan="1" colspan="1" style="text-align:left;vertical-align:top;">METHYLMALONIC ACIDURIA, cblD TYPE; MACD</td></tr></tbody></table></div></div></article><article data-type="table-wrap" id="figobmmaTisolatedmethylmalonicacidemiage"><div id="mma.T.isolated_methylmalonic_acidemia_ge" class="table"><h3><span class="label">Table 14. </span></h3><div class="caption"><p>Isolated Methylmalonic Acidemia: Gene-Specific Laboratory Considerations</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_ge/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.isolated_methylmalonic_acidemia_ge_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.isolated_methylmalonic_acidemia_ge_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Gene&#x000a0;<sup>1</sup></th><th id="hd_h_mma.T.isolated_methylmalonic_acidemia_ge_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Special Consideration</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_ge_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MCEE</i>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_ge_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">A deep intronic variant (c.379-644A&#x0003e;G) that may not be detected by routine NGS panels or WES (depending on coverage) has been reported.</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_ge_1_1_1_1" scope="row" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMUT</i>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_ge_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Intronic variants that may not be detected by routine NGS panels or WES (depending on coverage) have been reported.</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">NGS = next generation sequencing; WES = whole-exome sequencing</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.14.1"><p class="no_margin">Genes from <a href="/books/NBK1231/table/mma.T.molecular_genetic_testing_used_in/?report=objectonly" target="object" rid-ob="figobmmaTmoleculargenetictestingusedin">Table 2</a> in alphabetic order</p></div></dd></dl></dl></div></div></div></article><article data-type="table-wrap" id="figobmmaTisolatedmethylmalonicacidemiano"><div id="mma.T.isolated_methylmalonic_acidemia_no" class="table"><h3><span class="label">Table 15. </span></h3><div class="caption"><p>Isolated Methylmalonic Acidemia: Notable Pathogenic Variants by Gene</p></div><p class="large-table-link" style="display:none"><span class="right"><a href="/books/NBK1231/table/mma.T.isolated_methylmalonic_acidemia_no/?report=objectonly" target="object">View in own window</a></span></p><div class="large_tbl" id="__mma.T.isolated_methylmalonic_acidemia_no_lrgtbl__"><table class="no_bottom_margin"><thead><tr><th id="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_1" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Gene&#x000a0;<sup>1</sup></th><th id="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_2" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Reference Sequences</th><th id="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">DNA Nucleotide Change</th><th id="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Predicted Protein Change</th><th id="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" scope="col" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Comment</th></tr></thead><tbody><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_1" rowspan="3" scope="row" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MCEE</i>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_2" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">
<a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_032601.4" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NM_032601<wbr style="display:inline-block"></wbr>&#8203;.4</a>
<br />
<a href="https://www.ncbi.nlm.nih.gov/protein/NP_115990.3" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NP_115990<wbr style="display:inline-block"></wbr>&#8203;.3</a>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.139C&#x0003e;T</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg47Ter</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Common pathogenic variant, observed in homozygous state in &#x0003e;50% of reported persons [<a class="bibr" href="#mma.REF.heuberger.2019.1265" rid="mma.REF.heuberger.2019.1265">Heuberger et al 2019</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">
<a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_032601.4" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NM_032601<wbr style="display:inline-block"></wbr>&#8203;.4</a>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.379-644A&#x0003e;G</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">--</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Deep intronic variant that creates new splice site [<a class="bibr" href="#mma.REF.waters.2016.19" rid="mma.REF.waters.2016.19">Waters et al 2016</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_2" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">
<a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_032601.4" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NM_032601<wbr style="display:inline-block"></wbr>&#8203;.4</a>
<br />
<a href="https://www.ncbi.nlm.nih.gov/protein/NP_115990.3" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NP_115990<wbr style="display:inline-block"></wbr>&#8203;.3</a>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.419del</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Lys140ArgfsTer6</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Reported in an adult w/&#x02191; serum MMA, neurodegeneration initially attributed to Parkinson disease, dementia, &#x00026; stroke [<a class="bibr" href="#mma.REF.andr_asson.2019.2631" rid="mma.REF.andr_asson.2019.2631">Andr&#x000e9;asson et al 2019</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_1" rowspan="2" scope="row" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMAA</i>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_2" rowspan="2" colspan="1" style="text-align:left;vertical-align:middle;">
<a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_172250.3" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NM_172250<wbr style="display:inline-block"></wbr>&#8203;.3</a>
<br />
<a href="https://www.ncbi.nlm.nih.gov/protein/26892295" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NP_758454<wbr style="display:inline-block"></wbr>&#8203;.1</a>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.433C&#x0003e;T</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg145Ter</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Common pathogenic variant, accounting for 43% of mutated alleles [<a class="bibr" href="#mma.REF.lernerellis.2004.509" rid="mma.REF.lernerellis.2004.509">Lerner-Ellis et al 2004</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">c.503del</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.(Thr168MetfsTer10)</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">This variant resides on a common haplotype &#x00026; has also been seen in Spanish persons [<a class="bibr" href="#mma.REF.mart_nez.2005.317" rid="mma.REF.mart_nez.2005.317">Mart&#x000ed;nez et al 2005</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_1" rowspan="3" scope="row" colspan="1" style="text-align:left;vertical-align:middle;">
<i>MMAB</i>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_2" rowspan="3" colspan="1" style="text-align:left;vertical-align:middle;">
<a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_052845.4" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NM_052845<wbr style="display:inline-block"></wbr>&#8203;.4</a>
<br />
<a href="https://www.ncbi.nlm.nih.gov/protein/16418349" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NP_443077<wbr style="display:inline-block"></wbr>&#8203;.1</a>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.556C&#x0003e;T</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg186Trp</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Most common pathogenic variant, accounts for 33% of all alleles; seen exclusively in persons of European descent; assoc w/early onset of symptoms (age &#x0003c;1 yr) whether in heterozygous or homozygous state [<a class="bibr" href="#mma.REF.lernerellis.2006.219" rid="mma.REF.lernerellis.2006.219">Lerner-Ellis et al 2006</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">c.700C&#x0003e;T</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gln234Ter</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Cobalamin-responsive variant assoc w/late-onset disease &#x00026; an attenuated phenotype [<a class="bibr" href="#mma.REF.forny.2021.566" rid="mma.REF.forny.2021.566">Forny et al 2021</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">c.656_659del</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Tyr219SerfsTer4</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">In vivo response to vitamin B<sub>12</sub> reported in heterozygotes [<a class="bibr" href="#mma.REF.h_rster.2007.225" rid="mma.REF.h_rster.2007.225">H&#x000f6;rster et al 2007</a>, <a class="bibr" href="#mma.REF.h_rster.2021.193" rid="mma.REF.h_rster.2021.193">H&#x000f6;rster et al 2021</a>, <a class="bibr" href="#mma.REF.forny.2022.1253" rid="mma.REF.forny.2022.1253">Forny et al 2022</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_1" rowspan="4" scope="row" colspan="1" style="text-align:left;vertical-align:middle;"><i>MMUT</i>&#x000a0;<sup>2</sup></td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_2" rowspan="4" colspan="1" style="text-align:left;vertical-align:middle;">
<a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_000255.4" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NM_000255<wbr style="display:inline-block"></wbr>&#8203;.4</a>
<br />
<a href="https://www.ncbi.nlm.nih.gov/protein/NP_000246.2" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">NP_000246<wbr style="display:inline-block"></wbr>&#8203;.2</a>
</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">c.322C&#x0003e;T</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg108Cys</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">Observed in persons of Hispanic descent [<a class="bibr" href="#mma.REF.worgan.2006.31" rid="mma.REF.worgan.2006.31">Worgan et al 2006</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">c.2150G&#x0003e;T</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Gly717Val</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">More common in persons of African descent [<a class="bibr" href="#mma.REF.worgan.2006.31" rid="mma.REF.worgan.2006.31">Worgan et al 2006</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">c.655A&#x0003e;T</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Asn219Tyr</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_5" rowspan="2" colspan="1" style="text-align:left;vertical-align:middle;">Observed more frequently in persons of European descent [<a class="bibr" href="#mma.REF.forny.2016.745" rid="mma.REF.forny.2016.745">Forny et al 2016</a>]</td></tr><tr><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_3" colspan="1" scope="row" rowspan="1" style="text-align:left;vertical-align:middle;">c.1106G&#x0003e;A</td><td headers="hd_h_mma.T.isolated_methylmalonic_acidemia_no_1_1_1_4" rowspan="1" colspan="1" style="text-align:left;vertical-align:middle;">p.Arg369His</td></tr></tbody></table></div><div class="tblwrap-foot"><div><dl class="temp-labeled-list small"><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin">Variants listed in the table have been provided by the authors. <i>GeneReviews</i> staff have not independently verified the classification of variants.</p></div></dd></dl><dl class="bkr_refwrap"><dt></dt><dd><div><p class="no_margin"><i>GeneReviews</i> follows the standard naming conventions of the Human Genome Variation Society (<a href="https://varnomen.hgvs.org/" ref="pagearea=body&amp;targetsite=external&amp;targetcat=link&amp;targettype=uri">varnomen<wbr style="display:inline-block"></wbr>&#8203;.hgvs.org</a>). See <a href="/books/n/gene/app3/?report=reader">Quick Reference</a> for an explanation of nomenclature.</p></div></dd></dl><dl class="bkr_refwrap"><dt>1. </dt><dd><div id="mma.TF.15.1"><p class="no_margin">Genes from <a href="/books/NBK1231/table/mma.T.molecular_genetic_testing_used_in/?report=objectonly" target="object" rid-ob="figobmmaTmoleculargenetictestingusedin">Table 2</a> in alphabetic order</p></div></dd></dl><dl class="bkr_refwrap"><dt>2. </dt><dd><div id="mma.TF.15.2"><p class="no_margin">See also <a href="/books/NBK1231/table/mma.T.mmut_pathogenic_missense_variants/?report=objectonly" target="object" rid-ob="figobmmaTmmutpathogenicmissensevariants">Table 4</a> for a list of variants and their predicted enzymatic activities when homozygous.</p></div></dd></dl></dl></div></div></div></article><article data-type="fig" id="figobmmaF1"><div id="mma.F1" class="figure bk_fig"><div class="graphic"><a href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Figure%201.%20.%20Major%20pathway%20of%20the%20conversion%20of%20propionyl-CoA%20into%20succinyl-CoA.&amp;p=BOOKS&amp;id=1231_mma-Image001.jpg" target="tileshopwindow" class="inline_block pmc_inline_block ts_canvas img_link" title="Click on image to zoom"><div class="ts_bar small" title="Click on image to zoom"></div><img data-src="/books/NBK1231/bin/mma-Image001.jpg" alt="Figure 1. . Major pathway of the conversion of propionyl-CoA into succinyl-CoA." class="tileshop" title="Click on image to zoom" /></a></div><h3><span class="label">Figure 1. </span></h3><div class="caption"><p>Major pathway of the conversion of propionyl-CoA into succinyl-CoA. The biotin-dependent enzyme propionyl-CoA carboxylase converts propionyl-CoA into D-methylmalonyl-CoA, which is then racemized into L-methylmalonyl-CoA and isomerized into succinyl-CoA, a Krebs cycle intermediate. The L-methylmalonyl-CoA mutase reaction requires 5'-deoxyadenosylcobalamin, an activated form of vitamin B<sub>12</sub>. The pathway of cellular processing of cobalamin (reduction from Cbl<sup>+3</sup> to Cbl<sup>+2</sup>) and subsequently formation of adenosyl- (AdoCbl) and methylcobalamin (MeCbl) is depicted. Adenosyl-cobalamin is the cofactor of the methylmalonyl-CoA mutase reaction; methylcobalamin is the cofactor of the methionine synthase reaction.</p><p>The color-coded boxes around the cobalamin-processing enzymes indicate their role in causing: (1) methylmalonyl-CoA mutase or isolated AdoCbl deficiency and associated increase in serum methylmalonic acid [sMMA] (blue); (2) isolated MeCbl deficiency and hyperhomocysteinemia (green); (3) both cofactor deficiencies causing elevations in MMA and homocysteine (purple). Note: The light blue striped boxes indicate the enzymes (and the genes encoding them) that are deficient in different disorders in which methylmalonic acidemia occurs: epimerase deficiency (<i>MCEE</i>) and succinate-CoA ligase deficiency (<i>SUCLA2/SUCLG1</i>), combined malonic and methylmalonic acidemia (<i>ACSF3, ZBTB11</i>), and methylmalonyl-semialdehyde dehydrogenase deficiency (<i>ALDH6A1</i>). The light purple striped box indicates <i>cblX</i> deficiency (<i>HCFC1</i>), the only X-linked disorder in this pathway and rare transcription factors (<i>ZNF143, THAP11</i>) or neighboring genes (<i>PRDX1</i>) associated with cblC deficiency or epi-cblC. See <a href="/books/n/gene/cbl/?report=reader">Disorders of Intracellular Cobalamin Metabolism</a>.</p><p>MMA = methylmalonic acid; Cbl = cobalamin; Cbl<sup>+3</sup> = oxidized cobalamin, Cbl<sup>+2</sup> = reduced cobalamin; AdoCbl = 5'-deoxyadenosylcobalamin; MeCbl = methylcobalamin; TC = transcobalamin; TCblR = transcobalamin receptor.</p><p>The genes (and the enzymatic subtypes) associated with isolated methylmalonic acidemia included in this <i>GeneReview</i> are:</p><p><i>MMUT</i> (<i>mut<sup>0</sup>, mut<sup>&#x02013;</sup></i>)</p><p><i>MMAA</i> (<i>cblA</i>)</p><p><i>MMAB</i> (<i>cblB</i>)</p><p><i>MMADHC</i> (<i>cblD</i>-MMA)</p><p>
<i>MCEE</i>
</p><p>Isolated methylmalonic acidemia caused by mutation of <i>SUCLA2</i> and <i>SUCLG1</i> is discussed in <a href="/books/n/gene/sucla2-def/?report=reader"><i>SUCLA2</i>-Related Mitochondrial DNA Depletion Syndrome, Encephalomyopathic Form with Methylmalonic Aciduria</a> and <a href="/books/n/gene/suclg1-mtddepl/?report=reader"><i>SUCLG1</i>-Related Mitochondrial DNA Depletion Syndrome, Encephalomyopathic Form with Methylmalonic Aciduria</a>, respectively.</p></div></div></article><article data-type="fig" id="figobmmaF2"><div id="mma.F2" class="figure bk_fig"><div class="graphic"><img data-src="/books/NBK1231/bin/mma-Image002.jpg" alt="Figure 2. . An algorithm of conditions to be considered in the differential diagnosis of elevated serum or urine methylmalonic acid detected either during the follow up of an increased propionylcarnitine (C3) on newborn screening or following a positive urine organic acid screen in a symptomatic individual." /></div><h3><span class="label">Figure 2. </span></h3><div class="caption"><p>An algorithm of conditions to be considered in the differential diagnosis of elevated serum or urine methylmalonic acid detected either during the follow up of an increased propionylcarnitine (C3) on newborn screening or following a positive urine organic acid screen in a symptomatic individual. The algorithm includes disorders that can present after the newborn period.</p><p>AC = acylcarnitine profile; CBC = complete blood count; Cbl = cobalamin; MMA = methylmalonic acid; Mut = mutase; OA = organic acids; PA = propionic acid; TC-II = transcobalamin II</p><p>Footnotes:</p><p>1. Succinate ligase deficiency (caused by biallelic pathogenic variants in <i>SUCLA2</i> or <i>SUCLG1)</i> presents with lactic acidosis; excess 2-methylcitric, 3-hydroxyproprionic acid, and 3-hydroxyisovaleric acid in the urine; and excess C3-propionylcarnitine and C4-dicarboxylic carnitine (C4DC) in the blood and/or urine.</p><p>2. CMAMMA presents with <b>normal</b> propionylcarnitine (C3) in the plasma acylcarnitine profile and elevated methylmalonic and malonic acid in the plasma or urine. CMAMMA can be caused by biallelic pathogenic variants in <i>ACSF3</i> or <i>ZBTB11</i>.</p><p>3. Methylmalonyl-semialdehyde-dehydrogenase deficiency (MMASDH) and other ill-defined syndromes should be considered (see <a href="#mma.Differential_Diagnosis">Differential Diagnosis</a>).</p><p>4. B<sub>12</sub> deficiency syndromes include intrinsic factor deficiency, Imerslund-Gr&#x000e4;sbeck syndrome, and others. c<i>blF</i> and <i>cblJ</i> can have low serum B<sub>12</sub> concentration due to abnormal gastrointestinal absorption.</p><p>5. In rare instances metabolites can be normal in affected individuals.</p></div></div></article></div><div id="jr-scripts"><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/libs.min.js"> </script><script src="/corehtml/pmc/jatsreader/ptpmc_3.22/js/jr.min.js"> </script><script type="text/javascript">if (typeof (jQuery) != 'undefined') { (function ($) { $(function () { var min = Math.ceil(1); var max = Math.floor(100000); var randomNum = Math.floor(Math.random() * (max - min)) + min; var surveyUrl = "/projects/Gene/portal/surveys/seqdbui-survey.js?rando=" + randomNum.toString(); $.getScript(surveyUrl, function () { try { ncbi.seqDbUISurvey.init(); } catch (err) { console.info(err); } }).fail(function (jqxhr, settings, exception) { console.info('Cannot load survey script', jqxhr); });; }); })(jQuery); };</script></div></div>
<!-- Book content -->
<script type="text/javascript" src="/portal/portal3rc.fcgi/rlib/js/InstrumentNCBIBaseJS/InstrumentPageStarterJS.js"> </script>
<!-- CE8B5AF87C7FFCB1_0191SID /projects/books/PBooks@9.11 portal106 v4.1.r689238 Tue, Oct 22 2024 16:10:51 -->
<span id="portal-csrf-token" style="display:none" data-token="CE8B5AF87C7FFCB1_0191SID"></span>
<script type="text/javascript" src="//static.pubmed.gov/portal/portal3rc.fcgi/4216699/js/3968615.js" snapshot="books"></script></body>
</html>